WO2018051686A1 - 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2h-tetrazolium salt, biological component concentration measurement reagent containing said salt, and biological component concentration measurement method using said salt - Google Patents

2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2h-tetrazolium salt, biological component concentration measurement reagent containing said salt, and biological component concentration measurement method using said salt Download PDF

Info

Publication number
WO2018051686A1
WO2018051686A1 PCT/JP2017/028831 JP2017028831W WO2018051686A1 WO 2018051686 A1 WO2018051686 A1 WO 2018051686A1 JP 2017028831 W JP2017028831 W JP 2017028831W WO 2018051686 A1 WO2018051686 A1 WO 2018051686A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological component
group
phenyl
tetrazolium salt
compound
Prior art date
Application number
PCT/JP2017/028831
Other languages
French (fr)
Japanese (ja)
Inventor
嘉哉 佐藤
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2018539571A priority Critical patent/JP6893215B2/en
Publication of WO2018051686A1 publication Critical patent/WO2018051686A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase

Definitions

  • the present invention relates to a 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt, a biological component concentration measuring reagent containing the salt, and a biological component concentration measuring method using the salt.
  • Patent Document 1 JP-A-8-53444 (Patent Document 1), the following structure:
  • R 1 represents a hydrogen atom or a methoxy group
  • R 2 represents a hydrogen atom, a carboxyl group or a sulfonic acid.
  • Formazan produced from the tetrazolium salt disclosed in JP-A-8-53444 has high water solubility, but the color intensity in a wavelength region (over 600 nm) that does not overlap with the main absorption band of hemoglobin is not sufficient. For this reason, the tetrazolium salt disclosed in JP-A-8-53444 cannot achieve sufficient sensitivity for whole blood samples.
  • an object of the present invention is to provide means capable of quantifying a biological component with sufficient sensitivity even for a whole blood sample while maintaining water solubility.
  • Another object of the present invention is to provide a means capable of stably quantifying a biological component with sufficient sensitivity to a whole blood sample while maintaining water solubility.
  • R 1 represents a methyl group or an ethyl group
  • R 2 and R 3 each independently represents a methyl group, an ethyl group, a methoxy group or an ethoxy group
  • X represents a hydrogen atom or an alkali metal
  • FIG. 1 is a diagram showing the spectrum of a chelate compound of formazan and Ni 2+ produced from tetrazolium compound 1.
  • FIG. 2 is a graph showing the relationship between the glucose concentration and the absorbance of produced formazan for tetrazolium compound 1 and WST-4.
  • FIG. 3 is a diagram showing the results of stability evaluation of the tetrazolium compound 1.
  • FIG. 4 is a plan view schematically showing a blood glucose meter (component measurement device) equipped with the measurement chip according to the present embodiment. 4, 10 represents a blood glucose meter, 12 represents a measurement chip, 14 represents a measurement unit, 18 represents a chip body, 40 represents a housing, 42 represents a control unit, and 44 represents a box.
  • FIG. 5 is an enlarged perspective view showing the measurement chip of FIG. 4 and the photometric block of the apparatus main body.
  • 10 represents a blood glucose meter
  • 12 represents a measurement chip
  • 14 represents a measurement unit
  • 16 represents a device body
  • 18 represents a chip body
  • 20 represents a cavity
  • 20a represents 20b represents the base end
  • 22 represents the long side
  • 24 represents the short side
  • 30 represents the plate piece
  • 32 represents the spacer
  • 40 represents the housing
  • 46 represents photometry.
  • FIG. 6 is a side view showing the measurement chip of FIG. In FIG.
  • FIG. 7A is a first plan view showing the mounting operation of the measurement chip of FIG. 4 and the apparatus main body.
  • 20 represents a cavity
  • 20a represents a distal end
  • 20b represents a proximal end
  • 22 represents a long side
  • 22a represents the upper long side
  • 22b represents the lower long side
  • 24 represents the short side
  • 24a represents the distal side
  • 24b represents the proximal side
  • 26 represents the reagent
  • 28 represents the measurement target part.
  • 30 represents a plate piece
  • 32 represents a spacer.
  • FIG. 7A is a first plan view showing the mounting operation of the measurement chip of FIG. 4 and the apparatus main body. In FIG.
  • 12 represents a measurement chip
  • 14 represents a measurement unit
  • 16 represents an apparatus body
  • 20 represents a cavity
  • 26 represents a reagent
  • 30 represents a plate piece
  • 32 represents a spacer.
  • 40 represents a housing
  • 46 represents a photometric block
  • 46a represents a fixed wall
  • 56 represents an eject pin
  • 56a represents a rod portion
  • 56b represents a receiving portion
  • 58 represents an insertion slot
  • 58a represents Represents an insertion opening
  • 59 represents a measurement hole
  • 60 represents a chip mounting portion
  • 60a represents a flange
  • 62 represents a wall
  • 64 represents an element housing space
  • 66 represents a light guide.
  • FIG. 7B is a second plan cross-sectional view showing the mounting operation following FIG. 7A.
  • 12 represents a measurement chip
  • 14 represents a measurement unit
  • 16 represents an apparatus main body
  • 20 represents a hollow portion
  • 20a represents a tip opening
  • 26 represents a reagent
  • 30 represents a plate.
  • 32 represents a spacer, 32 represents a spacer, 40 represents a housing, 46 represents a photometric block, 46a represents a fixed wall, 56 represents an eject pin, 56a represents a rod portion, 56b represents a receiving portion, 60 Represents a chip mounting part, 60a represents a flange part, 62 represents a wall part, 68 represents a light emitting element, 68a represents a first light emitting element, 68b represents a second light emitting element, and 70 represents a light emitting part. , 72 represents a light receiving element, 74 represents a light receiving portion, and 76 represents a coil spring.
  • 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salts having the structure:
  • the 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt of the above formula (1) is also simply referred to as “tetrazolium salt of the present invention” or “tetrazolium salt”.
  • the formazan produced from the tetrazolium salt of the present invention or a chelate compound of formazan and a transition metal ion is excellent in water solubility. Moreover, it has a maximum absorption wavelength in a wavelength region (over 600 nm) that does not overlap with the main absorption band of hemoglobin. For this reason, there is little influence of the coloring substance which exists in the blood, and a measurement error can be reduced. Therefore, by using the tetrazolium salt of the present invention, the biological component concentration can be measured with high sensitivity even for a whole blood sample.
  • formazan produced from the tetrazolium salt of the present invention or a chelate compound of formazan and a transition metal ion is also simply referred to as “formazan according to the present invention” or “formazan compound”.
  • Formazan produced from the tetrazolium salt described in JP-A-8-53444 has a maximum absorption at 510 to 550 nm (paragraph “0011”).
  • the NADH concentration is quantified by the absorbance at 550 nm (paragraph “0029”, FIG. 2).
  • the absorbance to be measured it is necessary that the absorbance to be measured be in a wavelength region that does not overlap with the main absorption band of hemoglobin.
  • the wavelength for detecting the concentration of red blood cells in blood is about 510 to 540 nm, and the maximum absorption wavelength of oxygenated hemoglobin is around 550 nm. For this reason, it is preferable that the maximum absorption wavelength of formazan is more than 600 nm (particularly 650 nm or more). As a result, the formazan produced from the tetrazolium salt described in JP-A-8-53444 cannot sufficiently eliminate the influence of blood cells, and it was difficult to measure the concentration of biological components with good sensitivity. . For this reason, it is necessary to shift the maximum absorption wavelength of the tetrazolium salt described in JP-A-8-53444 to the longer wavelength region side.
  • the maximum absorption wavelength can be shifted to the longer wavelength side by forming formazan with a transition metal ion (for example, nickel ion or cobalt ion) and a chelate compound.
  • a transition metal ion for example, nickel ion or cobalt ion
  • a chelate compound for example, nickel ion or cobalt ion
  • the tetrazolium salt of the present invention is soluble in water at a concentration of 200 mM or more, and is excellent in water solubility.
  • formazan (formazan according to the present invention) produced from the tetrazolium salt of the present invention also has excellent water solubility.
  • the formazan according to the present invention does not form a precipitate even in the presence of a transition metal ion, and has a maximum absorption wavelength in a wavelength region (over 600 nm, particularly 650 nm or more) that does not overlap with the blood absorption band. For this reason, by using the tetrazolium salt of the present invention, the biological component concentration can be measured with high sensitivity even for a whole blood sample.
  • the tetrazolium salt of the present invention has a substituted thiazolyl group bonded to the 2-position of the tetrazole ring, a phenyl group having an alkoxy group and a nitro group (—NO 2 ) bonded to the 3-position, and the 5-position. It has a structure in which a phenyl group having two sulfo groups (—SO 3 ⁇ ) is bonded.
  • the tetrazolium salt and the formazan compound are dissolved in water at a concentration of 200 mM or more, and are excellent in water solubility. Moreover, since a nitro group exists, it is possible to shift the maximum absorption wavelength of formazan (or a chelate compound of formazan and a transition metal ion) generated from a tetrazolium salt to the longer wavelength side (Example 1 and Comparative Example below). Comparison with 2).
  • the formazan according to the present invention forms a chelate compound efficiently and quickly with transition metal ions such as Co 2+ and Ni 2+ .
  • transition metal ions such as Co 2+ and Ni 2+ .
  • the maximum absorption wavelength is further shifted to the longer wavelength side, that is, the maximum absorption wavelength can be further shifted to a wavelength region (over 600 nm, particularly 650 nm or more) that does not overlap with the blood absorption band.
  • the tetrazolium salt of the present invention is excellent in stability.
  • the biological component concentration can be measured with high sensitivity and promptly. Further, by using the tetrazolium salt of the present invention, the concentration of biological components can be measured with high sensitivity and promptly even after long-term storage.
  • the tetrazolium salt of the present invention is water-soluble and has a wavelength region (over 600 nm) where the maximum absorption wavelength of the formazan compound, which is a reduced form thereof, does not overlap with the blood absorption band. For this reason, by using the tetrazolium salt of the present invention, the biological component concentration can be measured with high sensitivity even for a whole blood sample. Moreover, the tetrazolium salt of the present invention is excellent in stability.
  • the tetrazolium salt of the present invention has the following formula (1):
  • a substituted thiazolyl group at the 2-position, a phenyl group having an alkoxy group and a nitro group (—NO 2 ) at the 3-position, and two sulfo groups (—SO 3 ) at the 5-position of the tetrazole ring -) is a phenyl group having been introduced.
  • the tetrazolium salt having the above structure the tetrazole ring is a part that mainly absorbs light.
  • the presence of the substituted thiazolyl group at the 2-position of the tetrazole ring can form a chelate compound efficiently and quickly with the transition metal compound (the maximum absorption wavelength of the formazan compound can be shifted to a long wavelength region).
  • R 2 and R 3 represent a methyl group, an ethyl group, a methoxy group, or an ethoxy group.
  • R 2 and R 3 may be the same or different.
  • R 2 and R 3 are an alkyl group having 3 or more carbon atoms, the resulting tetrazolium salt and formazan produced from the tetrazolium salt are poor in water solubility.
  • R 2 and R 3 are hydrogen atoms, the electron density of the thiazolyl ring is lowered, which is not preferable.
  • a phenyl group having an alkoxy group and a nitro group exists at the 3-position of the tetrazole ring.
  • the formazan produced from the tetrazolium salt and the tetrazolium salt has a maximum absorption wavelength ( ⁇ max) on the long wavelength side exceeding 600 nm (especially 650 nm or more).
  • the presence of the alkoxy group (—OR 1 ) improves the stability of the tetrazolium salt.
  • R 1 represents a methyl group or an ethyl group.
  • R 1 is an alkyl group having 3 or more carbon atoms
  • the resulting tetrazolium salt and formazan produced from the tetrazolium salt are poor in water solubility.
  • the bonding position of the nitro group (—NO 2 ) and the alkoxy group (—OR 1 ) to the phenyl group is not particularly limited. From the viewpoint of shifting the maximum absorption wavelength to the longer wavelength side, the nitro group (—NO 2 ) is preferably present at the 4-position of the phenyl group.
  • the alkoxy group (—OR 1 ) is preferably present at the 2-position and 4-position of the phenyl group, and particularly preferably present at the 2-position from the viewpoint of steric hindrance. preferable. That is, in a preferred embodiment of the present invention, in the above formula (1), the phenyl group at the 3-position is a phenyl group in which the alkoxy group (—OR 1 ) is at the 2-position and the nitro group (—NO 2 ) is at the 4-position. It is.
  • a phenyl group having two sulfo groups exists at the 5-position of the tetrazole ring.
  • the formazan produced from the tetrazolium salt and the tetrazolium salt can exhibit high water solubility.
  • the formazan produced from the tetrazolium salt and the tetrazolium salt is inferior in water solubility.
  • the bonding position of the sulfo group (—SO 3 ⁇ ) to the phenyl group is not particularly limited.
  • the sulfo group (—SO 3 ⁇ ) is preferably present at the 2, 4th, 3rd, and 5th positions of the phenyl group, and is located at the 2nd and 4th positions due to water solubility. It is particularly preferred that it is present. That is, in a preferred embodiment of the present invention, in the above formula (1), the phenyl group at the 5-position is a phenyl group in which the sulfo group (—SO 3 ⁇ ) is present at the 2,4-position or the 3,5-position.
  • X represents a hydrogen atom or an alkali metal.
  • X + exists to neutralize two anions (sulfo group (—SO 3 ⁇ )) and one tetrazole ring cation.
  • the kind of alkali metal is not particularly limited, and may be any of lithium, sodium, potassium, rubidium, and cesium. Among these, sodium and potassium are preferable from the viewpoint of versatility, and sodium is more preferable.
  • X represents an alkali metal
  • the method for producing the tetrazolium salt of the present invention is not particularly limited, and conventionally known methods can be applied in the same manner or appropriately modified. Specifically, the following structure:
  • a hydrazino-substituted thiazole having the structure:
  • Hydrochloric acid is added to an alkoxynitrobenzene having an ice-cooling, and a sodium nitrite solution is further added dropwise to form the following structure:
  • a benzenediazonium chloride compound having The hydrazine compound obtained above and a benzenediazonium chloride compound are reacted under basic conditions (for example, the presence of sodium hydroxide and potassium hydroxide) to form the following structure:
  • a formazan compound having Subsequently, the formazan compound thus obtained is oxidized in an alcohol solvent (eg, methanol, ethanol) using an oxidizing agent (eg, nitrite such as ethyl nitrite and butyl nitrite),
  • an oxidizing agent eg, nitrite such as ethyl nitrite and butyl nitrite
  • the tetrazolium salt of the present invention has high water solubility. Further, formazan produced from the tetrazolium salt, or a chelate compound of formazan and a transition metal ion (formazan or formazan compound according to the present invention) is highly water-soluble by forming a chelate compound alone or with a transition metal compound. And has a maximum absorption wavelength in a wavelength region (over 600 nm, particularly 650 nm or more) that does not overlap with the main absorption band of hemoglobin. For this reason, by using the tetrazolium salt of the present invention, the concentration of biological components can be measured with high sensitivity even for biological samples, particularly whole blood samples.
  • the maximum absorption wavelength ( ⁇ max) of formazan produced from the tetrazolium salt of the present invention or a chelate compound of formazan and a transition metal ion is preferably more than 600 nm, more preferably 650 nm or more.
  • Formazan having such a maximum absorption wavelength or a chelate compound of formazan and a transition metal ion is hardly affected by absorption derived from blood color.
  • the upper limit of the maximum absorption wavelength ( ⁇ max) of the formazan produced from the tetrazolium salt of the present invention or the chelate compound of formazan and a transition metal ion is not particularly limited, but is usually 900 nm or less, preferably 800 nm or less. is there. In the present specification, the value measured according to the method described in the examples below is adopted as the maximum absorption wavelength ( ⁇ max).
  • a reagent for measuring the concentration of biological components containing the 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt of the present invention.
  • the 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt, oxidoreductase and transition metal compound of the present invention are added to a biological sample.
  • a method for measuring the concentration of a biological component comprising measuring the color development amount and quantifying the concentration of the biological component in the biological sample based on the color development amount.
  • the biological component measurement target is not particularly limited as long as it includes the target biological component.
  • Specific examples include blood and body fluids such as urine, saliva and interstitial fluid.
  • the biological component is not particularly limited, and usually, a biological component measured by a colorimetric method or an electrode method can be used in the same manner.
  • Specific examples include glucose, cholesterol, neutral fat, nicotinamide adenine dinucleotide phosphate (NADPH), nicotinamide adenine dinucleotide (NADH), uric acid and the like.
  • the biological component concentration measurement reagent of the present invention comprises glucose, cholesterol, neutral fat, nicotinamide adenine dinucleotide phosphate (NADPH) in blood or body fluid. Used for the determination of nicotinamide adenine dinucleotide (NADH) or uric acid concentration.
  • the biological component in the biological sample is glucose, cholesterol, neutral fat, nicotinamide adenine dinucleotide phosphate (NADPH), nicotinamide in blood or body fluid. Adenine dinucleotide (NADH) or uric acid.
  • the biological component concentration measuring reagent of the present invention essentially contains the tetrazolium salt of the present invention.
  • the formazan produced by the reduction reaction of the tetrazolium salt can shift the maximum absorption wavelength to the longer wavelength side by producing a transition metal ion and a chelate compound.
  • the transition metal compound that can be used when the biological component concentration measuring reagent contains a transition metal compound is not particularly limited. Specifically, compounds capable of generating transition metal ions such as nickel ions (Ni 2+ ), cobalt ions (Co 2+ ), zinc ions (Zn 2+ ), and copper ions (Cu 2+ ) ions can be used.
  • the transition metal compound is a nickel compound.
  • the compound that generates the transition metal ion is not particularly limited, but it is preferable to generate an ion in an aqueous liquid (for example, water, buffer solution, blood, body fluid).
  • examples of the compound that generates the transition metal ion include organic acid salts of the transition metal such as chloride, bromide, sulfate, and acetate.
  • the transition metal compound may be used alone or in combination of two or more in the biological component concentration measurement reagent.
  • the content of the transition metal compound is not particularly limited, but can be appropriately selected according to the desired maximum absorption wavelength of the formazan compound.
  • the content of the transition metal compound is such that the transition metal (transition metal ion) is preferably 0.1 to 10 mol, more preferably 0.5 to 4 mol, per 1 mol of the tetrazolium salt. It is an amount like this. With such an amount, the maximum absorption wavelength of the formazan compound can be shifted to a desired wavelength range.
  • the biological component concentration measuring reagent may further contain other components in addition to the transition metal compound or in place of the transition metal compound.
  • components that are normally selected according to the type of biological component to be measured and added to measure the concentration of biological components can be used in the same manner. Specific examples include oxidoreductases, electron carriers, pH buffers, surfactants, and the like.
  • the other components contained in the biological component concentration measurement reagent may be used singly or in combination of two or more. Each of the other components may be used alone or in combination of two or more.
  • the oxidoreductase is not particularly limited, and can be appropriately selected depending on the type of biological component to be measured. Specifically, glucose dehydrogenase (GDH) (for example, glucose dehydrogenase (GDH-PQQ) using pyrroloquinoline quinone (PQQ) as a coenzyme, glucose dehydrogenase (GDH-FAD) using flavin adenine dinucleotide (FAD) as a coenzyme ), Glucose dehydrogenase (GDH-NAD) using nicotinamide adenine dinucleotide (NAD) as a coenzyme and glucose dehydrogenase (GDH-NADP) using nicotine adenine dinucleotide phosphate (NADP) as a coenzyme), glucose oxidase ( GOD), glucose-6-phosphate dehydrogenase, cholesterol dehydrogenase, cholesterol oxidase, g
  • the oxidoreductase may be used alone or in combination of two or more.
  • the oxidoreductase is preferably glucose dehydrogenase or glucose oxidase.
  • the oxidoreductase is preferably cholesterol dehydrogenase or cholesterol oxidase.
  • the content of oxidoreductase when the biological component concentration measurement reagent contains oxidoreductase is not particularly limited, and can be appropriately selected according to the amount of tetrazolium salt.
  • the content of the oxidoreductase is preferably 1 to 100% by mass, more preferably 5 to 50% by mass with respect to the tetrazolium salt. With such an amount, the oxidoreductase can sufficiently act on the biological component. For this reason, the measurement sensitivity of the biological component concentration can be further improved.
  • the electron carrier is not particularly limited, and a known electron carrier may be used. Specifically, diaphorase, phenazine methylsulfate (PMS), 1-methoxy-5-methylphenazinium methylsulfate (1-methoxy PMS or m-PMS), Nicotinamide adenine dinucleotide phosphate (NADPH), nicotinamide adenine dinucleotide (NADH) and the like can be mentioned.
  • an electron carrier may be used individually by 1 type, or may combine 2 or more types.
  • the content of the electron carrier when the biological component concentration measuring reagent contains an electron carrier is not particularly limited, and can be appropriately selected according to the amount of the tetrazolium salt.
  • the content of the electron carrier is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass with respect to the tetrazolium salt. With such an amount, the reduction reaction can proceed more efficiently. For this reason, the measurement sensitivity of the biological component concentration can be further improved.
  • the biological component concentration measurement reagent preferably further includes a transition metal compound and an oxidoreductase, and more preferably further includes a transition metal compound, an oxidoreductase, and an electron carrier. That is, according to a preferred embodiment of the present invention, the biological component concentration measurement reagent comprises the 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt, transition metal compound and oxidoreductase of the present invention. Including.
  • the biological component concentration measuring reagent is a 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt, transition metal compound, oxidoreductase of the present invention. And an electron carrier.
  • the biological component is ⁇ -D-glucose
  • the transition metal compound is nickel chloride
  • the oxidoreductase is flavin adenine dinucleotide-dependent glucose dehydrogenase (GDH-FAD)
  • the electron carrier is 1
  • m-PMS -methoxy-5-methylphenadium methyl sulfate
  • this formazan forms a chelate compound with nickel ions, and the maximum absorption wavelength is shifted to the longer wavelength region side (for example, more than 600 nm). For this reason, since the influence of the main absorption band of hemoglobin at the measurement wavelength to be measured can be reduced by using the biological component concentration measurement reagent of the present invention, it is highly sensitive to biological samples, particularly whole blood samples. Biological component concentration can be measured.
  • the usage form of the biological component concentration measuring reagent is not particularly limited, and may be either a solid form or a liquid form.
  • the biological component concentration measurement reagent preferably further contains water, a buffer solution, and a surfactant, and more preferably contains water and / or a buffer solution.
  • the buffer solution is not particularly limited, and a buffer agent generally used when measuring the concentration of a biological component can be used in the same manner.
  • the concentration of the buffer is not particularly limited, but is preferably 0.01 to 1.0M.
  • the concentration of the buffering agent refers to the concentration of the buffering agent (M, mol / L) contained in the aqueous solution.
  • pH of a buffer solution does not have an effect
  • the concentration of the tetrazolium salt when the reagent for measuring the concentration of biological component is liquid is not particularly limited as long as the concentration of the desired biological component can be measured, but the tetrazolium salt is less than the amount of the desired biological component present. It is preferably contained in a larger amount.
  • the concentration of the tetrazolium salt is preferably 0.005 to 0.2 mol / L, more preferably 0.01 to 0.00 in the biological component concentration measuring reagent. 1 mol / L.
  • the concentration of the tetrazolium salt is 0.005 to 0.2 mol / L, more preferably 0.01 to 0.1 mol / L in the solution state before being applied to the substrate. It is. In such an amount, the tetrazolium salt depends on the amount of substantially all (for example, 95 mol% or more, preferably 98 mol% or more, particularly preferably 100 mol%) of the biological component contained in the biological sample. React. For this reason, a desired biological component concentration can be quickly measured accurately and with good sensitivity.
  • the concentration of a specific biological component contained in a biological sample can be measured with good sensitivity.
  • the measurement method is not particularly limited, and can be appropriately selected according to the type of biological component to be measured.
  • the biological component is ⁇ -D-glucose and the oxidoreductase is glucose dehydrogenase (GDH)
  • GDH glucose dehydrogenase
  • glucose is oxidized by GDH to produce gluconic acid.
  • GDH coenzymes or electron mediators is determined.
  • the method is roughly divided into a method of optical measurement (colorimetric method) and a method of measuring current generated by the oxidation-reduction reaction (electrode method).
  • colorimetric method a method of measuring current generated by the oxidation-reduction reaction
  • electrode method a method of measuring current generated by the oxidation-reduction reaction
  • the biological component concentration measurement reagent can be suitably used for the colorimetric method.
  • a colorimetric method is preferably used when measuring the glucose concentration in a whole blood sample.
  • the biological component concentration measuring reagent of the present invention may be used for measuring the biological component concentration as it is, or may be incorporated in the biological component concentration measuring chip. That is, the present invention also provides a biological component concentration measuring chip (hereinafter, also simply referred to as “measuring chip”) including the biological component concentration measuring reagent of the present invention.
  • a biological component concentration measuring chip hereinafter, also simply referred to as “measuring chip”
  • the reagent and method for measuring the concentration of biological components of the present invention can be incorporated into an automatic analyzer, a measurement kit, a simple blood glucose meter, etc., and used for daily clinical examinations. It is also possible to incorporate the reagent of the present invention into a commercially available biosensor.
  • the content of the reagent per chip is not particularly limited, and the amount usually used in the field can be similarly adopted.
  • the tetrazolium salt is contained in a sufficient amount with respect to the abundance of the desired biological component.
  • the amount of tetrazolium salt is preferably 3 to 50 nmol, more preferably 10 to 30 nmol per chip. In such an amount, the tetrazolium salt depends on the amount of substantially all (for example, 95 mol% or more, preferably 98 mol% or more, particularly preferably 100 mol%) of the biological component contained in the biological sample. React. For this reason, a desired biological component concentration can be quickly measured accurately and with good sensitivity.
  • the form of the measurement chip (colorimetric blood glucose meter) of the present invention used for measuring the blood glucose level by the colorimetric method will be described with reference to the drawings.
  • the present invention is characterized by using the biological component concentration measuring reagent of the present invention, and the chip structure is not particularly limited.
  • a specific form of a chip for measuring blood glucose level will be described.
  • the measuring chip is not limited to the application, and may be appropriately or appropriately used for other applications. Applicable with modification.
  • FIG. 4 is a plan view schematically showing a blood glucose meter used for detection of glucose (blood glucose) using the measurement chip according to the present embodiment.
  • the blood glucose meter 10 is configured as a device for measuring glucose (blood glucose) in a blood sample.
  • This blood glucose meter 10 can be mainly used for personal use operated by a user (subject). The user can also measure blood sugar before meals and manage his blood sugar.
  • the blood glucose meter 10 can be used by a medical worker to evaluate the health condition of the subject.
  • the blood glucose meter 10 may be appropriately modified and installed in a medical facility or the like.
  • the blood glucose meter 10 employs the principle of a colorimetric method for optically measuring the glucose content (blood glucose level) contained in a blood sample.
  • a measurement method any of reflected light measurement, transmitted light measurement, and absorbance measurement may be employed.
  • the blood glucose meter 10 performs blood glucose measurement with a measurement unit 14 for measuring transmitted light, which irradiates the analysis sample (blood) with measurement light having a predetermined wavelength and receives light transmitted through the analysis sample.
  • the blood glucose meter 10 attaches the measurement chip 12 that has taken in blood, or takes blood into the measurement chip 12 with the measurement chip 12 attached, and detects glucose by the measurement unit 14.
  • the measurement chip 12 may be configured as a disposable type that is discarded every measurement.
  • the blood glucose meter 10 is preferably configured as a portable and robust device so that the user can easily repeat the measurement.
  • the measurement chip 12 includes a chip body 18 formed in a plate shape, and a cavity 20 (liquid cavity) extending in the surface direction of the plate surface inside the chip body 18. Prepare.
  • the chip body 18 has a long side 22 in the insertion and removal direction of the blood glucose meter 10 (the distal end and proximal direction of the blood glucose meter 10) and a short short in the vertical direction, as viewed from the side. It is formed in a rectangular shape having sides 24.
  • the length of the long side 22 of the chip body 18 may be set to a length that is twice or more the short side 24. As a result, a sufficient amount of insertion of the measuring chip 12 into the blood glucose meter 10 is ensured.
  • the thickness of the chip body 18 is extremely small (thin) compared to the side surface formed in a rectangular shape (in FIG. 5, it is shown to have a sufficient thickness).
  • the thickness of the chip body 18 is preferably set to 1/10 or less of the short side 24 described above.
  • the thickness of the chip body 18 may be appropriately designed according to the shape of the insertion hole 58 of the blood glucose meter 10.
  • the measuring chip 12 includes the chip body 18 by a pair of plate pieces 30 and a pair of spacers 32 so as to have the cavity 20.
  • FIG. 6 is a side view showing the measurement chip of FIG.
  • the corners of the chip body 18 are pointed, but the corners may be formed as rounded corners, for example.
  • the chip body 18 is not limited to a thin plate shape, and it is needless to say that the shape may be freely designed.
  • the chip body 18 may be formed in a square shape, another polygonal shape, or a circular shape (including an elliptical shape) in a side view.
  • the cavity 20 provided inside the chip body 18 is located at an intermediate position in the vertical direction of the chip body 18 and is formed linearly over the longitudinal direction of the chip body 18.
  • the hollow portion 20 is connected to the distal end port portion 20 a formed on the distal end side 24 a of the chip body portion 18 and the proximal end port portion 20 b formed on the proximal end side 24 b, and communicates with the outside of the chip body portion 18. Yes.
  • the cavity 20 receives the user's blood from the distal end 20a, the cavity 20 can flow the blood along the extending direction based on the capillary phenomenon.
  • the amount of blood flowing through the cavity 20 is small, and even if it moves to the proximal end port 20b, leakage is suppressed by tension.
  • an absorption part that absorbs blood for example, a spacer 32 which will be described later is made porous only on the base end side
  • a reagent (coloring reagent) 26 that colors in accordance with the glucose (blood sugar) concentration in the blood is applied, and a measurement target portion 28 to be measured by the blood glucose meter 10 is set.
  • the blood that flows in the proximal direction through the cavity 20 comes into contact with the measurement target portion 28, and reacts with the reagent 26 applied to the measurement target portion 28, thereby causing coloration.
  • the application position of the reagent 26 and the measurement target part 28 may be shifted from each other on the longitudinal direction of the cavity 20.
  • the reaction part to which the reagent 26 is applied is located upstream of the measurement target part 28 in the blood flow direction. It may be provided.
  • the measuring chip 12 includes the chip main body portion 18 by a pair of plate pieces 30 and a pair of spacers 32 so as to have the cavity 20 described above.
  • the pair of plate pieces 30 are each formed in the rectangular shape described above in a side view and are arranged in the stacking direction. That is, the pair of plate pieces 30 constitutes both side surfaces (left side surface and right side surface) of the chip body 18.
  • the plate thickness of each plate piece 30 is very small, and is preferably set to the same dimension of about 5 to 50 ⁇ m, for example. The thicknesses of the two (one set) plate pieces 30 may be different from each other.
  • the pair of plate pieces 30 has a strength that maintains the plate shape and does not undergo plastic deformation even when a certain amount of pressing force is applied from a direction orthogonal to the surface direction.
  • Each plate piece 30 is configured to be transparent or translucent so that the measurement light can be transmitted.
  • each plate piece 30 is formed on a flat plate surface having appropriate hydrophilicity so that blood can flow in the cavity 20 (or a coating agent is applied to the plate surface). preferable.
  • each plate piece 30 is not particularly limited, but a thermoplastic resin material, glass, quartz or the like may be applied.
  • the thermoplastic resin material include polyolefin (eg, polyethylene, polypropylene pyrene, etc.), cycloolefin polymer, polyester (eg, polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, polystyrene, ABS resin, acrylic resin. , Polymer materials such as polyamide and fluororesin, and mixtures thereof.
  • each spacer 32 is a member that forms the cavity 20 between the pair of plate pieces 30 and the pair of spacers 32 itself by being disposed between the pair of plate pieces 30 so as to be separated from each other.
  • one spacer 32 is disposed so as to be in contact with the upper long side 22a of the chip body 18 in FIG. 6 and extend in the distal end and proximal direction along the upper long side 22a.
  • the other spacer 32 is in contact with the lower long side 22b of the chip body 18 in FIG. 6 and is disposed so as to extend in the distal and proximal directions along the lower long side 22b.
  • the material (base material) constituting the pair of spacers 32 is not particularly limited.
  • various thermoplastic elastomers such as chlorinated polyethylene.
  • various elastically deformable materials may be applied, and a structure such as an elastically deformable porous body (for example, a sponge) may be applied.
  • the spacer 32 which has the adhesive agent which adhere
  • the spacer 32 may be configured to elute the reagent 26 into the cavity 20 by containing the reagent 26.
  • the plate piece 30 and the spacer 32 may be subjected to a hydrophilic treatment.
  • the hydrophilic treatment method include immersion of an aqueous solution containing a hydrophilic polymer such as polyacrylic acid, polyvinyl pyrrolidone, and polyacrylamide in addition to surfactant, polyethylene glycol, polypropylene glycol, hydroxypropyl cellulose, water-soluble silicone, and the like.
  • a hydrophilic polymer such as polyacrylic acid, polyvinyl pyrrolidone, and polyacrylamide in addition to surfactant, polyethylene glycol, polypropylene glycol, hydroxypropyl cellulose, water-soluble silicone, and the like.
  • examples thereof include a method of coating by a method or a spray method, a method of plasma irradiation, glow discharge, corona discharge, ultraviolet irradiation (for example, excimer light irradiation), and the like, and these methods may be used alone or in combination.
  • the blood glucose meter 10 has a housing 40 that constitutes the appearance.
  • the housing 40 has a size that is easy for a user to hold and operate, and a box body portion 44 that houses the control unit 42 of the blood glucose meter 10 therein, and protrudes from one side (tip side) of the box body portion 44 in the distal direction to the inside.
  • a cylindrical photometric block 46 that houses the measuring unit 14 of the optical system.
  • a power button 48, an operation button 50, and a display 52 are provided on the upper surface of the box portion 44, and an eject lever 54 is provided on the upper surface of the photometry block 46.
  • the power button 48 switches between starting and stopping the blood glucose meter 10 under the operation of the user.
  • the operation button 50 functions as an operation unit for measuring and displaying a blood glucose level based on a user's operation and switching display of measurement results (including past measurement results) in the activated blood glucose meter 10. To do.
  • the display 52 is composed of a liquid crystal, an organic EL, or the like, and displays information to be provided to the user in the measurement operation such as measurement result display or error display.
  • the eject rod lever 54 is provided so as to be movable in the distal end and proximal direction, and unlocks an eject rod pin (not shown) provided in the photometry block 46 so that the eject rod pin can be advanced in the distal direction.
  • the photometric block 46 of the apparatus main body 16 extends from the box 44 in the distal direction so as to press the distal end against the user's finger or the like.
  • the photometric block 46 is provided with a chip mounting portion 60 having an insertion hole 58 and a measuring portion 14 that optically detects blood glucose (blood glucose).
  • the tip mounting portion 60 is formed of a material having high rigidity (rigidity) (for example, stainless steel) and has a flange portion 60a that protrudes outward, on the tip side, and is formed in a cylindrical shape having a predetermined length in the axial direction. .
  • the chip mounting portion 60 is positioned and fixed over the tip surface and the axial center portion (center portion) of the photometric block 46 made of a resin material. As shown in FIG. 7A, a fixed wall 46a for firmly fixing the chip mounting portion 60 is formed on the inner surface of the photometric block 46 so as to protrude.
  • the chip mounting portion 60 for example, a metal such as stainless steel or titanium, anodized aluminum, a liquid crystal polymer, a plastic added with a filler such as glass or mica, or a nickel-plated surface is hardened.
  • a metal such as stainless steel or titanium, anodized aluminum, a liquid crystal polymer, a plastic added with a filler such as glass or mica, or a nickel-plated surface is hardened.
  • examples thereof include materials such as plastic, carbon fiber, fine ceramic, etc. that are hard and do not easily change in size, and that do not wear easily even when the measurement chip is repeatedly inserted and removed, and that can be processed with high dimensional accuracy.
  • the insertion hole 58 can be easily formed with high dimensional accuracy when the chip mounting portion 60 is manufactured (injection molding, press molding or the like).
  • the chip mounting part 60 may be integrally formed by configuring the photometric block 46 itself from a hard material (for example, a metal material).
  • the insertion hole 58 is provided in the axial center part of the chip mounting part 60 by being surrounded by the wall part 62 of the chip mounting part 60.
  • the insertion hole 58 is formed in a rectangular shape that is long in the vertical direction and short in the left-right width direction.
  • the insertion hole 58 has a predetermined depth from the distal end surface toward the back (base end direction) in a state where the chip mounting portion 60 is fixed to the photometric block 46.
  • an insertion opening 58a that is continuous with the insertion hole 58 and communicates with the outside is formed.
  • the vertical dimension of the insertion opening 58a matches the dimension (vertical length) of the short side 24 of the measuring chip 12.
  • the dimension of the insertion opening 58a in the left-right width direction that is, the distance between the pair of wall portions 62 constituting the side surface of the insertion hole 58 is, as shown in FIG. 7A, the thickness in the stacking direction of the measurement chip 12 (FIG. 7A). Substantially the same as Tall in the middle).
  • the chip mounting portion 60 forms a pair of element accommodating spaces 64 in cooperation with the fixed wall 46a of the photometry block 46 at a midway position where the insertion hole 58 (measurement hole portion 59) extends.
  • the pair of element housing spaces 64 are a part of the measurement unit 14, are provided at positions facing each other across the insertion hole 58, and each of the measurement hole units is formed via the light guide units 66 formed by the chip mounting unit 60. 59.
  • the measuring unit 14 configures the light emitting unit 70 by accommodating the light emitting element 68 in one element accommodating space 64, and configures the light receiving unit 74 by accommodating the light receiving element 72 in the other element accommodating space 64.
  • the light guide part 66 of the chip mounting part 60 plays a role of a so-called aperture by being formed in a circular hole having an appropriate diameter.
  • the light emitting element 68 of the light emitting unit 70 measures the first light emitting element 68a that irradiates the measuring chip 12 with the measuring light having the first wavelength, and the measuring light having the second wavelength different from the first wavelength. And a second light emitting element 68b that irradiates the chip 12 (not shown in FIG. 5).
  • the first light emitting element 68a and the second light emitting element 68b are arranged side by side at a position facing the light guide portion 66 of the element accommodating space 64.
  • the light emitting element 68 may be formed of a light emitting diode (LED).
  • the first wavelength is a wavelength for detecting the color density of the reagent 26 according to the blood glucose level, and is, for example, more than 600 nm and 680 nm or less.
  • the second wavelength is a wavelength for detecting the concentration of red blood cells in blood, and is, for example, 510 nm to 540 nm.
  • the control unit 42 in the box unit 44 supplies a drive current to cause the first and second light emitting elements 68a and 68b to emit light at a predetermined timing.
  • the blood glucose level obtained from the color concentration is corrected using the hematocrit value obtained from the red blood cell concentration, and the blood glucose level is obtained.
  • the light receiving part 74 is configured by arranging one light receiving element 72 at a position facing the light guide part 66 of the element accommodating space 64.
  • the light receiving unit 74 receives transmitted light from the measuring chip 12, and may be configured by, for example, a photodiode (PD).
  • PD photodiode
  • an eject pin 56 (eject portion) connected to the eject lever 54 is provided at the bottom portion (base end surface) of the insertion hole 58.
  • the eject pin 56 includes a rod portion 56a extending along the axial direction of the photometry block 46, and a receiving portion 56b having a large diameter on the radially outer side at the tip portion of the rod portion 56a.
  • the base end side 24b of the measuring chip 12 inserted into the insertion hole 58 is in contact with the receiving portion 56b.
  • a coil spring 76 that surrounds the eject pin 56 in a non-contact manner is provided between the bottom of the insertion hole 58 and the receiving portion 56 b of the eject pin 56. The coil spring 76 elastically supports the receiving portion 56b of the eject pin 56.
  • the measurement target part 28 of the measurement chip 12 is arranged at a position overlapping the light guide part 66 as shown in FIG. 7B.
  • the eject pin 56 is displaced in the proximal direction when the receiving portion 56b is pushed along with the insertion of the measuring chip 12 by the user, and is locked (fixed) by a lock mechanism (not shown) provided in the housing 40.
  • the coil spring 76 is elastically contracted according to the displacement of the receiving portion 56b.
  • the lock mechanism is unlocked and slides in the distal direction by the elastic restoring force of the coil spring 76. As a result, the measuring chip 12 is pushed out to the eject pin 56 and taken out from the insertion hole 58.
  • control unit 42 of the apparatus main body 16 includes, for example, a control circuit having a calculation unit, a storage unit, and an input / output unit (not shown).
  • the control unit 42 can be a known computer.
  • the control unit 42 drives and controls the measurement unit 14 to detect and calculate blood glucose under the operation of the operation button 50 of the user, and displays the calculated blood glucose level on the display 52.
  • the control unit 42 is based on the Beer-Lambert law expressed by the following equation (A). Calculate the measurement results.
  • l 0 is the intensity of light before entering the blood sample
  • l 1 is the intensity of light after exiting the blood sample
  • is the extinction coefficient
  • L is the distance through which the measurement light passes (cell Long).
  • Example 1 Synthesis of tetrazolium compound 1 A compound having the following structure (tetrazolium compound 1) was synthesized according to the following method.
  • hydrazone compound 1 Disodium 4-formylbenzene-1,3-disulfonate (manufactured by Tokyo Chemical Industry Co., Ltd.) 8.59 g and (4,5-dimethyl-thiazole) -2-yl) hydrazine ((4,5-Dimethyl-thiazol-2-yl) -hydrazine) (manufactured by Fluorochem) was dissolved in 300 mL of RO water. To this was added 1.6 mL of acetic acid, and the mixture was heated and stirred at 60 ° C. for 2 hours in a water bath. After completion of heating and stirring, the solvent was removed. The obtained residue was washed with alcohol, and then the precipitate was filtered off. The obtained precipitate was dried to obtain hydrazone compound 1.
  • This diazotized solution was kept at ⁇ 20 ° C. and added dropwise to the hydrazone compound 1 solution. After completion of the dropping, 600 ⁇ L of 10N NaOH was added dropwise and stirred for 2 hours at room temperature (25 ° C.) to prepare a solution containing formazan compound 1 (formazan compound 1 solution).
  • the formazan compound 1 solution was adjusted to neutral pH with 9.6N HCl, and the solvent was removed. The obtained residue was washed with isopropanol, and then the precipitate was filtered off. The formazan compound 1 was obtained by drying this precipitate.
  • Formazan compound 1 was dissolved in 10 mL of RO water to prepare a formazan compound 1 solution.
  • a disposable column (size: 20 cm ⁇ 5 cm) is packed with a packing material for column chromatography (manufactured by Nacalai Tesque Co., Ltd., COSMOSIL 40C 18- PREP), and a column preparative system (manufactured by Nihon Büch, trade name: Sepacore). Set.
  • Formazan compound 1 solution was purified using this column system.
  • Example 2 Synthesis of tetrazolium compound 2 A compound having the following structure (tetrazolium compound 2) was synthesized according to the following method.
  • a hydrazone compound 2 solution was prepared by dissolving 1.39 g of the hydrazone compound 2 obtained in 1 above in a mixed solution of 25 mL of RO water and 25 mL of methanol.
  • 0.455 g of 2-Ethoxy-4-nitroaniline (manufactured by Goji Chemical Industry Co., Ltd.) was dissolved in a mixed solution of 3.44 mL of RO water and 10 mL of acetonitrile. While maintaining this solution at 0 ° C., 560 ⁇ L of 9.6N HCl was added, and sodium nitrite solution was added dropwise to perform diazotization. This diazotized solution was kept at ⁇ 20 ° C.
  • Formazan compound 2 was dissolved in 10 mL of RO water to prepare a formazan compound 2 solution.
  • a disposable column (size: 20 cm ⁇ 5 cm) is packed with a packing material for column chromatography (manufactured by Nacalai Tesque Co., Ltd., COSMOSIL 40C 18- PREP), and a column preparative system (manufactured by Nihon Büch, trade name: Sepacore). Set.
  • Formazan compound 2 solution was purified using this column system.
  • Examples 1-2, Comparative Examples 1-5 For the tetrazolium compounds 1 to 2 of Examples 1 and 2 and the comparative compounds 1 to 5 having the following structures (Comparative Examples 1 to 5, respectively), water solubility, sensitivity, chelate rate, maximum absorption wavelength ( ⁇ max) were determined according to the following methods. The stability was evaluated, and the results are shown in Table 1 below.
  • GDH-FAD glucose dehydrogenase
  • FAD flavin adenine dinucleotide
  • s-PMS 1-methoxy-5-methylphenadium methyl sulfate
  • An s-PMS solution was prepared by adding 200 ⁇ L of RO water to 3.5 mg and dissolving. 1 mL of RO water was added to 129 mg of nickel chloride and dissolved therein to prepare a nickel solution.
  • a reaction solution was prepared by adding 10 ⁇ L of the GDH solution prepared above, 5 ⁇ L of m-PMS solution, and 10 ⁇ L of nickel solution to each sample. In addition, 10 ⁇ L of the GDH solution prepared above and 5 ⁇ L of the m-PMS solution were added to the control sample to prepare a control reaction solution.
  • FIG. 2 is a graph showing the relationship between the glucose concentration and the absorbance of produced formazan for tetrazolium compound 1 and WST-4.
  • the ratio of slope sample / slope WST-4 is about 2.4 (sensitivity is ⁇ ). .
  • the ratio of the slope sample / inclination WST-4 in Example 2 is 2.4 (sensitivity is ⁇ ), and the ratio of the inclination sample / inclination WST-4 in Comparative Example 1 is 1.6. (Sensitivity is x), and the ratio of slope sample / slope WST-4 in Comparative Example 3 was 2.5 (sensitivity was good). Further, Comparative Examples 2 and 4 did not form a chelate, so the maximum absorption wavelength of formazan did not shift to more than 600 nm. For this reason, Comparative Examples 2 and 4 were not evaluated for sensitivity. (The sensitivity result is shown as “ ⁇ ” in Table 1.) The slope is an index of the color intensity of each compound.
  • the value obtained by dividing the inclination sample by the inclination WST-4 (inclination sample / inclination WST-4 ) is more than 1 time, as compared with WST-4, which is a known coloring reagent, color development on the long wavelength side. Means high.
  • Samples were prepared by adding and dissolving 75 ⁇ L of RO water and 100 ⁇ L of 0.5 M MOPS solution (pH 7.2) to 0.02 mmol of each compound.
  • the value obtained by subtracting the absorbance at the time of preparation of the measurement solution (0 hour) from the absorbance at each measurement time divided by the measurement time [(Abs 1h ⁇ Abs 0h ) / 1, (Abs 2h ⁇ Abs 0h ) / 2 and (Abs 6h -Abs 0h ) / 6] are less than 0.05, the stability is “ ⁇ ”, and when the above value is more than 0.05 and 0.15 or less, the stability is When “ ⁇ ” was given and the above value exceeded 0.15, the stability was evaluated as “x”.
  • the stability evaluation result of the tetrazolium compound 1 is shown in FIG. FIG.
  • the tetrazolium salt of the present invention exhibits good water solubility. From the above results, it is presumed that the formazan produced from the tetrazolium salt of the present invention and the chelate compound of the formazan and the transition metal ion also show good water solubility, similar to the tetrazolium salt of the present invention.
  • the chelate compound of formazan and nickel ions generated from the tetrazolium salt of the example shows a maximum absorption wavelength ( ⁇ max) of 650 nm or more. Therefore, it is considered that the concentration of biological components such as blood glucose level can be accurately measured with high sensitivity even for a whole blood sample.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

The purpose of the present invention is to provide a means that maintains water solubility while making it possible to quantify a biological component with sufficient sensitivity even in the case of a whole blood sample. The present invention is a 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt that is represented by formula (1) (in the formula, R1 represents a methyl group or any ethyl group, R2 and R3 each independently represent a methyl group, an ethyl group, a methoxy group, or an ethoxy group, and X represents a hydrogen atom or an alkali metal).

Description

2-置換チアゾリル-3-置換フェニル-5-スルホ化フェニル-2H-テトラゾリウム塩、ならびに当該塩を含む生体成分濃度測定用試薬および当該塩を用いる生体成分濃度の測定方法2-Substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt, reagent for measuring biological component concentration containing the salt, and method for measuring biological component concentration using the salt
 本発明は、2-置換チアゾリル-3-置換フェニル-5-スルホ化フェニル-2H-テトラゾリウム塩、ならびに当該塩を含む生体成分濃度測定用試薬および当該塩を用いる生体成分濃度の測定方法に関する。 The present invention relates to a 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt, a biological component concentration measuring reagent containing the salt, and a biological component concentration measuring method using the salt.
 臨床化学検査では、血液や尿等の生体の体液に含まれる生体成分の量を色素量として検出定量する方法があり、この方法に用いる試薬を発色試薬と呼んでいる。 In clinical chemistry tests, there is a method for detecting and quantifying the amount of biological components contained in biological fluids such as blood and urine as the amount of pigment, and the reagent used in this method is called a coloring reagent.
 例えば、特開平8-53444号公報(特許文献1)では、下記構造: For example, in JP-A-8-53444 (Patent Document 1), the following structure:
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(Rは水素原子またはメトキシ基を表わし、Rは水素原子、カルボキシル基またはスルホン酸を表わす)を有する水溶性テトラゾリウム塩化合物を用いて還元型ニコチン酸アミドアデニンジヌクレオチドを定量する方法が開示されている。特開平8-53444号公報によると、上記水溶性テトラゾリウム塩化合物を用いることにより、得られるホルマザンの水溶性が向上し、測定機器への沈着がなく、また、極大吸収波長が510~550nmであるため生体成分の干渉を受けず、自動分析装置による測定が可能であるとしている。 Disclosed is a method for quantifying reduced nicotinamide adenine dinucleotide using a water-soluble tetrazolium salt compound having R 1 represents a hydrogen atom or a methoxy group, and R 2 represents a hydrogen atom, a carboxyl group or a sulfonic acid. Has been. According to Japanese Patent Laid-Open No. 8-53444, the use of the water-soluble tetrazolium salt compound improves the water-solubility of the formazan obtained, does not deposit on the measuring instrument, and has a maximum absorption wavelength of 510 to 550 nm. Therefore, it is said that measurement by an automatic analyzer is possible without receiving interference from biological components.
特開平8-53444号公報JP-A-8-53444
 上記特開平8-53444号公報のテトラゾリウム塩から生成するホルマザンは高い水溶性を有するが、血色素の主な吸収帯と重ならない波長域(600nm超)での発色強度が十分でない。このため、上記特開平8-53444号公報のテトラゾリウム塩では、全血サンプルに対しては十分な感度を達成することができない。 Formazan produced from the tetrazolium salt disclosed in JP-A-8-53444 has high water solubility, but the color intensity in a wavelength region (over 600 nm) that does not overlap with the main absorption band of hemoglobin is not sufficient. For this reason, the tetrazolium salt disclosed in JP-A-8-53444 cannot achieve sufficient sensitivity for whole blood samples.
 したがって、本発明は、上記事情を鑑みてなされたものであり、水溶性は維持しつつ全血サンプルに対しても十分な感度で生体成分を定量できる手段を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to provide means capable of quantifying a biological component with sufficient sensitivity even for a whole blood sample while maintaining water solubility.
 本発明の他の目的は、水溶性は維持しつつ全血サンプルに対しても十分な感度でかつ安定的に生体成分を定量できる手段を提供することである。 Another object of the present invention is to provide a means capable of stably quantifying a biological component with sufficient sensitivity to a whole blood sample while maintaining water solubility.
 本発明者は、上記の問題を解決すべく、鋭意研究を行った結果、テトラゾール環の、2位に置換チアゾリル基を、3位にアルコキシ基及びニトロ基(-NO)を有するフェニル基を、ならびに5位に2個のスルホ基(-SO ;-S(=O);以下同様)を有するフェニル基を有するテトラゾリウム塩が上記課題を解決することを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventor has found that a substituted thiazolyl group at the 2-position and a phenyl group having an alkoxy group and a nitro group (—NO 2 ) at the 3-position of the tetrazole ring. And a tetrazolium salt having a phenyl group having two sulfo groups at the 5-position (—SO 3 ; —S (═O) 2 O ; the same shall apply hereinafter) solves the above-mentioned problems. Completed.
 すなわち、上記目的は、下記式(1): That is, the above-mentioned purpose is the following formula (1):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
ただし、Rは、メチル基またはエチル基を表わし;
およびRは、それぞれ独立して、メチル基、エチル基、メトキシ基またはエトキシ基を表わし;および
Xは、水素原子またはアルカリ金属を表わす、
で示される、2-置換チアゾリル-3-置換フェニル-5-スルホ化フェニル-2H-テトラゾリウム塩によって達成できる。
Where R 1 represents a methyl group or an ethyl group;
R 2 and R 3 each independently represents a methyl group, an ethyl group, a methoxy group or an ethoxy group; and X represents a hydrogen atom or an alkali metal,
This can be achieved by the 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt represented by
図1は、テトラゾリウム化合物1から生成するホルマザンおよびNi2+のキレート化合物のスペクトルを示す図である。FIG. 1 is a diagram showing the spectrum of a chelate compound of formazan and Ni 2+ produced from tetrazolium compound 1. 図2は、テトラゾリウム化合物1及びWST-4に関するグルコース濃度と生成ホルマザンの吸光度との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the glucose concentration and the absorbance of produced formazan for tetrazolium compound 1 and WST-4. 図3は、テトラゾリウム化合物1の安定性評価結果を示す図である。FIG. 3 is a diagram showing the results of stability evaluation of the tetrazolium compound 1. 図4は、本形態に係る測定用チップが装着された血糖計(成分測定装置)を概略的に示す平面図である。図4において、10は血糖計を表し、12は測定用チップを表し、14は測定部を表し、18はチップ本体部を表し、40は筺体を表し、42は制御部を表し、44は箱体部を表し、46は測光ブロックを表し、48は電源ボタンを表し、50は操作ボタンを表し、52はディスプレイを表し、54はイジェクトレバーを表す。FIG. 4 is a plan view schematically showing a blood glucose meter (component measurement device) equipped with the measurement chip according to the present embodiment. 4, 10 represents a blood glucose meter, 12 represents a measurement chip, 14 represents a measurement unit, 18 represents a chip body, 40 represents a housing, 42 represents a control unit, and 44 represents a box. It represents a body part, 46 represents a photometric block, 48 represents a power button, 50 represents an operation button, 52 represents a display, and 54 represents an eject lever. 図5は、図4の測定用チップと装置本体の測光ブロックを拡大して示す斜視図である。図5において、10は血糖計を表し、12は測定用チップを表し、14は測定部を表し、16は装置本体を表し、18はチップ本体部を表し、20は空洞部を表し、20aは先端口部を表し、20bは基端口部を表し、22は長辺を表し、24は短辺を表し、30は板片を表し、32はスペーサを表し、40は筺体を表し、46は測光ブロックを表し、56はイジェクトピン、56aは棒部を表し、56bは受部を表し、58は挿入口を表し、58aは挿入開口部を表し、59は測定用孔部を表し、60はチップ装着部を表し、60aはフランジ部を表し、62は壁部を表し、68は発光素子を表し、70は発光部を表し、72は受光素子を表し、74は受光部を表し、76はコイルバネを表す。FIG. 5 is an enlarged perspective view showing the measurement chip of FIG. 4 and the photometric block of the apparatus main body. In FIG. 5, 10 represents a blood glucose meter, 12 represents a measurement chip, 14 represents a measurement unit, 16 represents a device body, 18 represents a chip body, 20 represents a cavity, and 20a represents 20b represents the base end, 22 represents the long side, 24 represents the short side, 30 represents the plate piece, 32 represents the spacer, 40 represents the housing, 46 represents photometry. 56 represents an eject pin, 56a represents a bar, 56b represents a receiving portion, 58 represents an insertion port, 58a represents an insertion opening, 59 represents a measurement hole, and 60 represents a tip. 60a represents a wall portion, 68 represents a light emitting element, 70 represents a light emitting element, 72 represents a light receiving element, 74 represents a light receiving element, and 76 represents a coil spring. Represents. 図6は、図4の測定用チップを示す側面図である。図6において、12は測定用チップを表し、18はチップ本体部を表し、20は空洞部を表し、20aは先端口部を表し、20bは基端口部を表し、22は長辺を表し、22aは上側長辺を表し、22bは下側長辺を表し、24は短辺を表し、24aは先端辺を表し、24bは基端辺を表し、26は試薬を表し、28は測定対象部を表し、30は板片を表し、32はスペーサを表す。FIG. 6 is a side view showing the measurement chip of FIG. In FIG. 6, 12 represents a measuring chip, 18 represents a chip body, 20 represents a cavity, 20a represents a distal end, 20b represents a proximal end, 22 represents a long side, 22a represents the upper long side, 22b represents the lower long side, 24 represents the short side, 24a represents the distal side, 24b represents the proximal side, 26 represents the reagent, and 28 represents the measurement target part. , 30 represents a plate piece, and 32 represents a spacer. 図7Aは、図4の測定用チップと装置本体の装着動作を示す第1平面図である。図7Aにおいて、12は測定用チップを表し、14は測定部を表し、16は装置本体を表し、20は空洞部を表し、26は試薬を表し、30は板片を表し、32はスペーサを表し、40は筺体を表し、46は測光ブロックを表し、46aは固定壁を表し、56はイジェクトピン、56aは棒部を表し、56bは受部を表し、58は挿入口を表し、58aは挿入開口部を表し、59は測定用孔部を表し、60はチップ装着部を表し、60aはフランジ部を表し、62は壁部を表し、64は素子収容空間を表し、66は導光部を表し、68は発光素子を表し、68aは第1発光素子を表し、68bは第2発光素子を表し、70は発光部を表し、72は受光素子を表し、74は受光部を表し、76はコイルバネを表す。FIG. 7A is a first plan view showing the mounting operation of the measurement chip of FIG. 4 and the apparatus main body. In FIG. 7A, 12 represents a measurement chip, 14 represents a measurement unit, 16 represents an apparatus body, 20 represents a cavity, 26 represents a reagent, 30 represents a plate piece, and 32 represents a spacer. 40 represents a housing, 46 represents a photometric block, 46a represents a fixed wall, 56 represents an eject pin, 56a represents a rod portion, 56b represents a receiving portion, 58 represents an insertion slot, 58a represents Represents an insertion opening, 59 represents a measurement hole, 60 represents a chip mounting portion, 60a represents a flange, 62 represents a wall, 64 represents an element housing space, and 66 represents a light guide. 68 represents a light emitting element, 68a represents a first light emitting element, 68b represents a second light emitting element, 70 represents a light emitting part, 72 represents a light receiving element, 74 represents a light receiving part, 76 Represents a coil spring. 図7Bは、図7Aに続く装着動作を示す第2平面断面図である。図7Bにおいて、12は測定用チップを表し、14は測定部を表し、16は装置本体を表し、20は空洞部を表し、20aは先端口部を表し、26は試薬を表し、30は板片を表し、32はスペーサを表し、40は筺体を表し、46は測光ブロックを表し、46aは固定壁を表し、56はイジェクトピン、56aは棒部を表し、56bは受部を表し、60はチップ装着部を表し、60aはフランジ部を表し、62は壁部を表し、68は発光素子を表し、68aは第1発光素子を表し、68bは第2発光素子を表し、70は発光部を表し、72は受光素子を表し、74は受光部を表し、76はコイルバネを表す。FIG. 7B is a second plan cross-sectional view showing the mounting operation following FIG. 7A. In FIG. 7B, 12 represents a measurement chip, 14 represents a measurement unit, 16 represents an apparatus main body, 20 represents a hollow portion, 20a represents a tip opening, 26 represents a reagent, and 30 represents a plate. 32 represents a spacer, 32 represents a spacer, 40 represents a housing, 46 represents a photometric block, 46a represents a fixed wall, 56 represents an eject pin, 56a represents a rod portion, 56b represents a receiving portion, 60 Represents a chip mounting part, 60a represents a flange part, 62 represents a wall part, 68 represents a light emitting element, 68a represents a first light emitting element, 68b represents a second light emitting element, and 70 represents a light emitting part. , 72 represents a light receiving element, 74 represents a light receiving portion, and 76 represents a coil spring.
 本発明の第一の側面では、下記式(1): In the first aspect of the present invention, the following formula (1):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
の構造を有する2-置換チアゾリル-3-置換フェニル-5-スルホ化フェニル-2H-テトラゾリウム塩が提供される。本明細書において、上記式(1)の2-置換チアゾリル-3-置換フェニル-5-スルホ化フェニル-2H-テトラゾリウム塩を、単に「本発明のテトラゾリウム塩」または「テトラゾリウム塩」とも称する。 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salts having the structure: In the present specification, the 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt of the above formula (1) is also simply referred to as “tetrazolium salt of the present invention” or “tetrazolium salt”.
 本発明のテトラゾリウム塩から生成するホルマザンまたはホルマザンと遷移金属イオンとのキレート化合物は、水溶性に優れる。また、血色素の主な吸収帯と重ならない波長域(600nm超)に極大吸収波長を有する。このため、血液中に存在する着色物質の影響が少なく、測定誤差を減らすことができる。ゆえに、本発明のテトラゾリウム塩を用いることによって、全血サンプルに対しても感度よく生体成分濃度を測定できる。なお、本明細書において、本発明のテトラゾリウム塩から生成するホルマザンまたはホルマザンと遷移金属イオンとのキレート化合物を、単に「本発明に係るホルマザン」または「ホルマザン化合物」とも称する。 The formazan produced from the tetrazolium salt of the present invention or a chelate compound of formazan and a transition metal ion is excellent in water solubility. Moreover, it has a maximum absorption wavelength in a wavelength region (over 600 nm) that does not overlap with the main absorption band of hemoglobin. For this reason, there is little influence of the coloring substance which exists in the blood, and a measurement error can be reduced. Therefore, by using the tetrazolium salt of the present invention, the biological component concentration can be measured with high sensitivity even for a whole blood sample. In the present specification, the formazan produced from the tetrazolium salt of the present invention or a chelate compound of formazan and a transition metal ion is also simply referred to as “formazan according to the present invention” or “formazan compound”.
 上記特開平8-53444号公報に記載のテトラゾリウム塩から生成するホルマザンは510~550nmに極大吸収を有する(段落「0011」)。事実、上記特開平8-53444号公報の実施例3では、NADH濃度を550nmにおける吸光度で定量している(段落「0029」、図2)。一方、全血サンプルを用いて生体成分(例えば、グルコース)濃度を測定する場合には、測定する吸光度が、血色素の主な吸収帯と重ならない波長域にあることが必要である。血液中の赤血球濃度を検出するための波長が510~540nm程度であり、酸素化ヘモグロビンの極大吸収波長は550nm前後である。このため、ホルマザンの極大吸収波長が600nm超(特に650nm以上)にあることが好ましい。してみると、特開平8-53444号公報に記載のテトラゾリウム塩から生じるホルマザンでは、血球による影響を十分排除することはできず、良好な感度で生体成分濃度を測定することは困難であった。このため、特開平8-53444号公報に記載のテトラゾリウム塩の極大吸収波長をより長波長域側にシフトさせる必要がある。一般的に、ホルマザンを遷移金属イオン(例えば、ニッケルイオンやコバルトイオン)とキレート化合物を生成させることにより、極大吸収波長を長波長側にシフトすることができる。しかし、特開平8-53444号公報の実施例3において、長波長側にシフトさせるために遷移金属イオン(例えば、ニッケルイオン)をさらに添加すると、沈殿物を形成する。このため、特開平8-53444号公報に記載のテトラゾリウム塩は、全血サンプルに対しては試薬として好適に使用できるとは言い難い。 Formazan produced from the tetrazolium salt described in JP-A-8-53444 has a maximum absorption at 510 to 550 nm (paragraph “0011”). In fact, in Example 3 of the above-mentioned JP-A-8-53444, the NADH concentration is quantified by the absorbance at 550 nm (paragraph “0029”, FIG. 2). On the other hand, when measuring the concentration of a biological component (for example, glucose) using a whole blood sample, it is necessary that the absorbance to be measured be in a wavelength region that does not overlap with the main absorption band of hemoglobin. The wavelength for detecting the concentration of red blood cells in blood is about 510 to 540 nm, and the maximum absorption wavelength of oxygenated hemoglobin is around 550 nm. For this reason, it is preferable that the maximum absorption wavelength of formazan is more than 600 nm (particularly 650 nm or more). As a result, the formazan produced from the tetrazolium salt described in JP-A-8-53444 cannot sufficiently eliminate the influence of blood cells, and it was difficult to measure the concentration of biological components with good sensitivity. . For this reason, it is necessary to shift the maximum absorption wavelength of the tetrazolium salt described in JP-A-8-53444 to the longer wavelength region side. Generally, the maximum absorption wavelength can be shifted to the longer wavelength side by forming formazan with a transition metal ion (for example, nickel ion or cobalt ion) and a chelate compound. However, in Example 3 of JP-A-8-53444, when a transition metal ion (for example, nickel ion) is further added in order to shift to the longer wavelength side, a precipitate is formed. For this reason, it is difficult to say that the tetrazolium salt described in JP-A-8-53444 can be suitably used as a reagent for whole blood samples.
 これに対して、本発明のテトラゾリウム塩は、200mM以上の濃度で水に可溶であり、水溶性に優れる。また、本発明のテトラゾリウム塩から生じるホルマザン(本発明に係るホルマザン)も、優れた水溶性を有する。さらに、本発明に係るホルマザンは、遷移金属イオンの存在下でも沈殿物を形成せず、また、極大吸収波長が血液の吸収帯と重ならない波長域(600nm超、特に650nm以上)にある。このため、本発明のテトラゾリウム塩を用いることによって、全血サンプルに対しても感度よく生体成分濃度を測定できる。上記効果を奏する詳細なメカニズムは依然として不明であるが、以下のように考えられる。なお、以下のメカニズムは推測であり、本発明の技術的範囲を制限するものではない。詳細には、本発明のテトラゾリウム塩は、テトラゾール環の、2位に置換チアゾリル基が結合し、3位にアルコキシ基及びニトロ基(-NO)を有するフェニル基が結合し、ならびに5位に2個のスルホ基(-SO )を有するフェニル基が結合する構造を有する。ここで、スルホ基(-SO )を2個有するため、テトラゾリウム塩およびホルマザン化合物は200mM以上の濃度で水に溶解し、水溶性に優れる。また、ニトロ基が存在するため、テトラゾリウム塩から生じるホルマザン(またはホルマザンと遷移金属イオンとのキレート化合物)の極大吸収波長を長波長側にシフトすることが可能である(下記実施例1と比較例2との比較参照)。また、テトラゾール環の2位に存在するチアゾリル基により、本発明に係るホルマザンはCo2+やNi2+等の遷移金属イオンと効率よくかつ速やかにキレート化合物を形成する。このようなキレート化合物の形成により、その極大吸収波長はさらに長波長側にシフトする、すなわち、極大吸収波長を血液の吸収帯と重ならない波長域(600nm超、特に650nm以上)にさらにシフトできる。このため、本発明のテトラゾリウム塩を用いることによって、全血サンプル中の生体成分濃度であっても高感度で正確に測定することができる。また、本発明のテトラゾリウム塩は安定性に優れる。 In contrast, the tetrazolium salt of the present invention is soluble in water at a concentration of 200 mM or more, and is excellent in water solubility. In addition, formazan (formazan according to the present invention) produced from the tetrazolium salt of the present invention also has excellent water solubility. Furthermore, the formazan according to the present invention does not form a precipitate even in the presence of a transition metal ion, and has a maximum absorption wavelength in a wavelength region (over 600 nm, particularly 650 nm or more) that does not overlap with the blood absorption band. For this reason, by using the tetrazolium salt of the present invention, the biological component concentration can be measured with high sensitivity even for a whole blood sample. Although the detailed mechanism for achieving the above effect is still unclear, it is considered as follows. The following mechanism is speculative and does not limit the technical scope of the present invention. Specifically, the tetrazolium salt of the present invention has a substituted thiazolyl group bonded to the 2-position of the tetrazole ring, a phenyl group having an alkoxy group and a nitro group (—NO 2 ) bonded to the 3-position, and the 5-position. It has a structure in which a phenyl group having two sulfo groups (—SO 3 ) is bonded. Here, since it has two sulfo groups (—SO 3 ), the tetrazolium salt and the formazan compound are dissolved in water at a concentration of 200 mM or more, and are excellent in water solubility. Moreover, since a nitro group exists, it is possible to shift the maximum absorption wavelength of formazan (or a chelate compound of formazan and a transition metal ion) generated from a tetrazolium salt to the longer wavelength side (Example 1 and Comparative Example below). Comparison with 2). Further, due to the thiazolyl group present at the 2-position of the tetrazole ring, the formazan according to the present invention forms a chelate compound efficiently and quickly with transition metal ions such as Co 2+ and Ni 2+ . By forming such a chelate compound, the maximum absorption wavelength is further shifted to the longer wavelength side, that is, the maximum absorption wavelength can be further shifted to a wavelength region (over 600 nm, particularly 650 nm or more) that does not overlap with the blood absorption band. For this reason, by using the tetrazolium salt of the present invention, even a biological component concentration in a whole blood sample can be accurately measured with high sensitivity. Moreover, the tetrazolium salt of the present invention is excellent in stability.
 したがって、本発明のテトラゾリウム塩を用いることによって、感度よくかつすみやかに生体成分濃度を測定できる。また、本発明のテトラゾリウム塩を用いることによって、長期間保存した後であっても、生体成分濃度を感度よくかつすみやかに測定できる。 Therefore, by using the tetrazolium salt of the present invention, the biological component concentration can be measured with high sensitivity and promptly. Further, by using the tetrazolium salt of the present invention, the concentration of biological components can be measured with high sensitivity and promptly even after long-term storage.
 以下、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本発明のテトラゾリウム塩は、水溶性であり、かつその還元体であるホルマザン化合物の極大吸収波長が血液の吸収帯と重ならない波長域(600nm超)である。このため、本発明のテトラゾリウム塩を用いることによって、全血サンプルに対しても感度よく生体成分濃度を測定できる。また、本発明のテトラゾリウム塩は安定性に優れる。 The tetrazolium salt of the present invention is water-soluble and has a wavelength region (over 600 nm) where the maximum absorption wavelength of the formazan compound, which is a reduced form thereof, does not overlap with the blood absorption band. For this reason, by using the tetrazolium salt of the present invention, the biological component concentration can be measured with high sensitivity even for a whole blood sample. Moreover, the tetrazolium salt of the present invention is excellent in stability.
 本発明のテトラゾリウム塩は、下記式(1): The tetrazolium salt of the present invention has the following formula (1):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
に示されるように、テトラゾール環の、2位に置換チアゾリル基が、3位にアルコキシ基及びニトロ基(-NO)を有するフェニル基が、ならびに5位に2個のスルホ基(-SO )を有するフェニル基が導入されている。上記構造を有するテトラゾリウム塩において、テトラゾール環が主に光を吸収する部分である。 As shown in the figure, a substituted thiazolyl group at the 2-position, a phenyl group having an alkoxy group and a nitro group (—NO 2 ) at the 3-position, and two sulfo groups (—SO 3 ) at the 5-position of the tetrazole ring -) is a phenyl group having been introduced. In the tetrazolium salt having the above structure, the tetrazole ring is a part that mainly absorbs light.
 上記式(1)において、テトラゾール環の2位に置換チアゾリル基が存在することにより、遷移金属化合物と効率よくかつ速やかにキレート化合物を形成できる(ホルマザン化合物の極大吸収波長を長波長域にシフトできる)。ここで、RおよびRは、メチル基、エチル基、メトキシ基またはエトキシ基を表わす。ここで、RおよびRは、同じであってもまたは異なるものであってもよい。ここで、RおよびRが炭素原子数3以上のアルキル基である場合には、得られるテトラゾリウム塩およびテトラゾリウム塩から生じるホルマザンは、水溶性に劣る。また、RおよびRが水素原子である場合には、チアゾリル環の電子密度が低くなるため好ましくない。 In the above formula (1), the presence of the substituted thiazolyl group at the 2-position of the tetrazole ring can form a chelate compound efficiently and quickly with the transition metal compound (the maximum absorption wavelength of the formazan compound can be shifted to a long wavelength region). ). Here, R 2 and R 3 represent a methyl group, an ethyl group, a methoxy group, or an ethoxy group. Here, R 2 and R 3 may be the same or different. Here, when R 2 and R 3 are an alkyl group having 3 or more carbon atoms, the resulting tetrazolium salt and formazan produced from the tetrazolium salt are poor in water solubility. Further, when R 2 and R 3 are hydrogen atoms, the electron density of the thiazolyl ring is lowered, which is not preferable.
 上記式(1)において、テトラゾール環の3位にアルコキシ基及びニトロ基(-NO)を有するフェニル基が存在する。ここで、ニトロ基が存在することによって、テトラゾリウム塩およびテトラゾリウム塩から生じるホルマザンは、600nm超(特に650nm以上)という長波長側に極大吸収波長(λmax)を有する。また、アルコキシ基(-OR)が存在することによって、テトラゾリウム塩の安定性が向上する。ここで、Rは、メチル基またはエチル基を表わす。なお、Rが炭素原子数3以上のアルキル基である場合には、得られるテトラゾリウム塩およびテトラゾリウム塩から生じるホルマザンは、水溶性に劣る。なお、ニトロ基(-NO)及びアルコキシ基(-OR)のフェニル基への結合位置は特に制限されない。最大吸収波長の長波長側へのシフトの点から、ニトロ基(-NO)は、フェニル基の4位に存在することが好ましい。また、安定性のさらなる向上効果の点から、アルコキシ基(-OR)は、フェニル基の、2位、4位に存在することが好ましく、立体障害の点から2位に存在することが特に好ましい。すなわち、本発明の好ましい形態では、上記式(1)において、3位のフェニル基が、アルコキシ基(-OR)が2位におよびニトロ基(-NO)が4位に存在するフェニル基である。 In the above formula (1), a phenyl group having an alkoxy group and a nitro group (—NO 2 ) exists at the 3-position of the tetrazole ring. Here, due to the presence of the nitro group, the formazan produced from the tetrazolium salt and the tetrazolium salt has a maximum absorption wavelength (λmax) on the long wavelength side exceeding 600 nm (especially 650 nm or more). In addition, the presence of the alkoxy group (—OR 1 ) improves the stability of the tetrazolium salt. Here, R 1 represents a methyl group or an ethyl group. When R 1 is an alkyl group having 3 or more carbon atoms, the resulting tetrazolium salt and formazan produced from the tetrazolium salt are poor in water solubility. Note that the bonding position of the nitro group (—NO 2 ) and the alkoxy group (—OR 1 ) to the phenyl group is not particularly limited. From the viewpoint of shifting the maximum absorption wavelength to the longer wavelength side, the nitro group (—NO 2 ) is preferably present at the 4-position of the phenyl group. In addition, from the viewpoint of further improving the stability, the alkoxy group (—OR 1 ) is preferably present at the 2-position and 4-position of the phenyl group, and particularly preferably present at the 2-position from the viewpoint of steric hindrance. preferable. That is, in a preferred embodiment of the present invention, in the above formula (1), the phenyl group at the 3-position is a phenyl group in which the alkoxy group (—OR 1 ) is at the 2-position and the nitro group (—NO 2 ) is at the 4-position. It is.
 上記式(1)において、テトラゾール環の5位に2個のスルホ基(-SO )を有するフェニル基が存在する。ここで、スルホ基(-SO )が2個存在することによって、テトラゾリウム塩およびテトラゾリウム塩から生じるホルマザンは、高い水溶性を発揮できる。なお、スルホ基が1個であると、テトラゾリウム塩およびテトラゾリウム塩から生じるホルマザンは水溶性に劣る。ここで、スルホ基(-SO )のフェニル基への結合位置は特に制限されない。水溶性のさらなる向上効果の点から、スルホ基(-SO )は、フェニル基の、2,4位、3,5位に存在することが好ましく、水溶性の点より2,4位に存在することが特に好ましい。すなわち、本発明の好ましい形態では、上記式(1)において、5位のフェニル基が、スルホ基(-SO )が2,4位または3,5位に存在するフェニル基である。 In the above formula (1), a phenyl group having two sulfo groups (—SO 3 ) exists at the 5-position of the tetrazole ring. Here, due to the presence of two sulfo groups (—SO 3 ), the formazan produced from the tetrazolium salt and the tetrazolium salt can exhibit high water solubility. In addition, if there is one sulfo group, the formazan produced from the tetrazolium salt and the tetrazolium salt is inferior in water solubility. Here, the bonding position of the sulfo group (—SO 3 ) to the phenyl group is not particularly limited. From the viewpoint of further improving the water solubility, the sulfo group (—SO 3 ) is preferably present at the 2, 4th, 3rd, and 5th positions of the phenyl group, and is located at the 2nd and 4th positions due to water solubility. It is particularly preferred that it is present. That is, in a preferred embodiment of the present invention, in the above formula (1), the phenyl group at the 5-position is a phenyl group in which the sulfo group (—SO 3 ) is present at the 2,4-position or the 3,5-position.
 上記式(1)において、Xは、水素原子またはアルカリ金属を表わす。ここで、Xは、2個のアニオン(スルホ基(-SO ))及び1個のテトラゾール環のカチオンを中和するために存在する。このため、アルカリ金属の種類は特に制限されず、リチウム、ナトリウム、カリウム、ルビジウム、セシウムのいずれでもよい。これらのうち、汎用性の点から、ナトリウムおよびカリウムが好ましく、ナトリウムがより好ましい。 In the above formula (1), X represents a hydrogen atom or an alkali metal. Here, X + exists to neutralize two anions (sulfo group (—SO 3 )) and one tetrazole ring cation. For this reason, the kind of alkali metal is not particularly limited, and may be any of lithium, sodium, potassium, rubidium, and cesium. Among these, sodium and potassium are preferable from the viewpoint of versatility, and sodium is more preferable.
 すなわち、本発明のテトラゾリウム塩の好ましい構造としては、下記がある。なお、下記構造において、Xは、アルカリ金属を表わす。 That is, the preferred structure of the tetrazolium salt of the present invention is as follows. In the following structure, X represents an alkali metal.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 本発明のテトラゾリウム塩の製造方法は、特に制限されず、従来公知の方法が同様にしてまたは適宜修飾して適用できる。具体的には、下記構造: The method for producing the tetrazolium salt of the present invention is not particularly limited, and conventionally known methods can be applied in the same manner or appropriately modified. Specifically, the following structure:
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
を有するヒドラジノ置換チアゾールと、下記構造: A hydrazino-substituted thiazole having the structure:
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
を有するホルミルベンゼン2スルホン酸ナトリウムとを反応させて、下記構造: Is reacted with sodium formylbenzene disulfonate having the following structure:
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
を有するヒドラゾン化合物を得る。一方、下記構造: A hydrazone compound having On the other hand, the following structure:
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
を有するアルコキシニトロベンゼンを氷冷しながら塩酸を加え、さらに亜硝酸ナトリウム溶液を滴下して、下記構造: Hydrochloric acid is added to an alkoxynitrobenzene having an ice-cooling, and a sodium nitrite solution is further added dropwise to form the following structure:
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
を有する塩化ベンゼンジアゾニウム化合物を得る。上記にて得られたヒドラジン化合物と塩化ベンゼンジアゾニウム化合物とを塩基性条件(例えば、水酸化ナトリウム、水酸化カリウム存在)下で反応させて、下記構造: A benzenediazonium chloride compound having The hydrazine compound obtained above and a benzenediazonium chloride compound are reacted under basic conditions (for example, the presence of sodium hydroxide and potassium hydroxide) to form the following structure:
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
を有するホルマザン化合物を得る。次いで、このようにして得られたホルマザン化合物を、酸化剤(例えば、亜硝酸エチル、亜硝酸ブチル等の亜硝酸エステル)を用いてアルコール溶媒(例えば、メタノール、エタノール)中で酸化することによって、本発明のテトラゾリウム塩が得られる。 A formazan compound having Subsequently, the formazan compound thus obtained is oxidized in an alcohol solvent (eg, methanol, ethanol) using an oxidizing agent (eg, nitrite such as ethyl nitrite and butyl nitrite), The tetrazolium salt of the present invention is obtained.
 本発明のテトラゾリウム塩は、高い水溶性を有する。また、当該テトラゾリウム塩から生成するホルマザン、またはホルマザンと遷移金属イオンとのキレート化合物(本発明に係るホルマザン、ホルマザン化合物)は、単独でまたは遷移金属化合物とのキレート化合物を形成することにより、高い水溶性を有しかつ血色素の主な吸収帯と重ならない波長域(600nm超、特に650nm以上)に極大吸収波長を有する。このため、本発明のテトラゾリウム塩を用いることによって、生体試料、特に全血サンプルに対しても感度よく生体成分濃度を測定できる。具体的には、本発明のテトラゾリウム塩から生成したホルマザン、またはホルマザンと遷移金属イオンとのキレート化合物の極大吸収波長(λmax)は、好ましくは600nm超、より好ましくは650nm以上である。このような極大吸収波長を有するホルマザンまたはホルマザンと遷移金属イオンとのキレート化合物(ゆえに、このようなホルマザンを生成できるテトラゾリウム塩)であれば、血液色由来の吸収の影響を受けにくい。本発明のテトラゾリウム塩を用いることで、生体成分濃度をより正確にかつ良好な感度で測定できる。ここで、本発明のテトラゾリウム塩から生成したホルマザンまたはホルマザンと遷移金属イオンとのキレート化合物の極大吸収波長(λmax)の上限は、特に制限されないが、通常、900nm以下であり、好ましくは800nm以下である。なお、本明細書において、極大吸収波長(λmax)は、下記実施例に記載の方法に従って測定された値を採用する。 The tetrazolium salt of the present invention has high water solubility. Further, formazan produced from the tetrazolium salt, or a chelate compound of formazan and a transition metal ion (formazan or formazan compound according to the present invention) is highly water-soluble by forming a chelate compound alone or with a transition metal compound. And has a maximum absorption wavelength in a wavelength region (over 600 nm, particularly 650 nm or more) that does not overlap with the main absorption band of hemoglobin. For this reason, by using the tetrazolium salt of the present invention, the concentration of biological components can be measured with high sensitivity even for biological samples, particularly whole blood samples. Specifically, the maximum absorption wavelength (λmax) of formazan produced from the tetrazolium salt of the present invention or a chelate compound of formazan and a transition metal ion is preferably more than 600 nm, more preferably 650 nm or more. Formazan having such a maximum absorption wavelength or a chelate compound of formazan and a transition metal ion (hence, a tetrazolium salt capable of generating such formazan) is hardly affected by absorption derived from blood color. By using the tetrazolium salt of the present invention, the concentration of biological components can be measured more accurately and with good sensitivity. Here, the upper limit of the maximum absorption wavelength (λmax) of the formazan produced from the tetrazolium salt of the present invention or the chelate compound of formazan and a transition metal ion is not particularly limited, but is usually 900 nm or less, preferably 800 nm or less. is there. In the present specification, the value measured according to the method described in the examples below is adopted as the maximum absorption wavelength (λmax).
 したがって、本発明の第二の側面では、本発明の2-置換チアゾリル-3-置換フェニル-5-スルホ化フェニル-2H-テトラゾリウム塩を含む生体成分濃度測定用試薬が提供される。また、本発明の第三の側面では、生体試料に、本発明の2-置換チアゾリル-3-置換フェニル-5-スルホ化フェニル-2H-テトラゾリウム塩、酸化還元酵素および遷移金属化合物を添加して、発色量を測定し、当該発色量に基づいて前記生体試料中の生体成分の濃度を定量することを有する、生体成分濃度の測定方法が提供される。 Therefore, in the second aspect of the present invention, there is provided a reagent for measuring the concentration of biological components containing the 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt of the present invention. In the third aspect of the present invention, the 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt, oxidoreductase and transition metal compound of the present invention are added to a biological sample. There is provided a method for measuring the concentration of a biological component, comprising measuring the color development amount and quantifying the concentration of the biological component in the biological sample based on the color development amount.
 本発明において、生体成分測定対象は、目的とする生体成分を含むものであれば特に制限されない。具体的には、血液、ならびに尿、唾液、間質液等の体液などが挙げられる。また、生体成分は、特に制限されず、通常、比色法または電極法により測定される生体成分が同様にして使用できる。具体的には、グルコース、コレステロール、中性脂肪、ニコチンアミドアデニンジヌクレオチドリン酸(NADPH)、ニコチンアミドアデニンジヌクレオチド(NADH)、尿酸などが挙げられる。すなわち、本発明の第二の側面における好ましい形態によると、本発明の生体成分濃度測定用試薬は、血液または体液中の、グルコース、コレステロール、中性脂肪、ニコチンアミドアデニンジヌクレオチドリン酸(NADPH)、ニコチンアミドアデニンジヌクレオチド(NADH)または尿酸の濃度の測定のために使用される。また、本発明の第三の側面における好ましい形態によると、生体試料中の生体成分が、血液または体液中の、グルコース、コレステロール、中性脂肪、ニコチンアミドアデニンジヌクレオチドリン酸(NADPH)、ニコチンアミドアデニンジヌクレオチド(NADH)または尿酸である。 In the present invention, the biological component measurement target is not particularly limited as long as it includes the target biological component. Specific examples include blood and body fluids such as urine, saliva and interstitial fluid. In addition, the biological component is not particularly limited, and usually, a biological component measured by a colorimetric method or an electrode method can be used in the same manner. Specific examples include glucose, cholesterol, neutral fat, nicotinamide adenine dinucleotide phosphate (NADPH), nicotinamide adenine dinucleotide (NADH), uric acid and the like. That is, according to a preferred embodiment of the second aspect of the present invention, the biological component concentration measurement reagent of the present invention comprises glucose, cholesterol, neutral fat, nicotinamide adenine dinucleotide phosphate (NADPH) in blood or body fluid. Used for the determination of nicotinamide adenine dinucleotide (NADH) or uric acid concentration. According to a preferred embodiment of the third aspect of the present invention, the biological component in the biological sample is glucose, cholesterol, neutral fat, nicotinamide adenine dinucleotide phosphate (NADPH), nicotinamide in blood or body fluid. Adenine dinucleotide (NADH) or uric acid.
 本発明の生体成分濃度測定用試薬は、本発明のテトラゾリウム塩を必須に含む。上述したように、生体成分濃度測定用試薬では、テトラゾリウム塩の還元反応により生成したホルマザンは、遷移金属イオンとキレート化合物を生成することにより、極大吸収波長をより長波長側にシフトすることができる。このため、特に全血サンプル中の生体成分濃度を測定する場合には、生体成分濃度測定用試薬中に遷移金属化合物を含むことが好ましい。すなわち、本発明の好ましい形態では、生体成分濃度測定用試薬は、さらに遷移金属化合物を含む。当該形態によると、全血サンプル中の生体成分濃度を測定する場合であっても、ホルマザンが血色素の主な吸収帯と重ならない波長域(600nm超、特に650nm以上)に極大吸収波長を有する。このため、生体試料、特に全血サンプルに対しても、生体成分濃度の測定感度をさらに向上できる。生体成分濃度測定用試薬が遷移金属化合物を含む場合に使用できる遷移金属化合物としては、特に制限されない。具体的には、ニッケルイオン(Ni2+)、コバルトイオン(Co2+)、亜鉛イオン(Zn2+)および銅イオン(Cu2+)イオンなどの遷移金属イオンを生成できる化合物が使用できる。このようなイオンであれば、ホルマザンの極大吸収波長をより長波長側にシフトできる。これらのうち、ニッケルイオンが好ましい。ニッケルイオンは、酸化や還元作用を受けにくいため、測定誤差をより有効に低減できる。すなわち、本発明の好ましい形態によると、遷移金属化合物は、ニッケル化合物である。また、上記遷移金属イオンを生成する化合物は特に制限されないが、水性液体(例えば、水、緩衝液、血液、体液)中でイオンを生成するものであることが好ましい。例えば、上記遷移金属イオンを生成する化合物は、上記遷移金属の、塩化物、臭化物、硫酸塩、酢酸塩等の有機酸塩などが挙げられる。上記遷移金属化合物は、生体成分濃度測定試薬中に、1種を単独で使用しても、または2種以上を併用してもよい。また、本形態において、遷移金属化合物の含有量は、特に制限されないが、ホルマザン化合物の所望の極大吸収波長に応じて適切に選択できる。具体的には、遷移金属化合物の含有量は、遷移金属(遷移金属イオン)が、テトラゾリウム塩 1モルに対して、好ましくは0.1~10モル、より好ましくは0.5~4モルとなるような量である。このような量であれば、ホルマザン化合物の極大吸収波長を所望の波長域にまでシフトできる。 The biological component concentration measuring reagent of the present invention essentially contains the tetrazolium salt of the present invention. As described above, in the biological component concentration measuring reagent, the formazan produced by the reduction reaction of the tetrazolium salt can shift the maximum absorption wavelength to the longer wavelength side by producing a transition metal ion and a chelate compound. . For this reason, it is preferable to include a transition metal compound in the biological component concentration measurement reagent, particularly when measuring the biological component concentration in the whole blood sample. That is, in a preferred embodiment of the present invention, the biological component concentration measuring reagent further contains a transition metal compound. According to this form, even when the concentration of a biological component in a whole blood sample is measured, formazan has a maximum absorption wavelength in a wavelength region (over 600 nm, particularly 650 nm or more) that does not overlap with the main absorption band of hemoglobin. For this reason, the measurement sensitivity of the biological component concentration can be further improved for biological samples, particularly whole blood samples. The transition metal compound that can be used when the biological component concentration measuring reagent contains a transition metal compound is not particularly limited. Specifically, compounds capable of generating transition metal ions such as nickel ions (Ni 2+ ), cobalt ions (Co 2+ ), zinc ions (Zn 2+ ), and copper ions (Cu 2+ ) ions can be used. With such ions, the maximum absorption wavelength of formazan can be shifted to the longer wavelength side. Of these, nickel ions are preferred. Since nickel ions are less susceptible to oxidation and reduction, measurement errors can be reduced more effectively. That is, according to a preferred embodiment of the present invention, the transition metal compound is a nickel compound. In addition, the compound that generates the transition metal ion is not particularly limited, but it is preferable to generate an ion in an aqueous liquid (for example, water, buffer solution, blood, body fluid). For example, examples of the compound that generates the transition metal ion include organic acid salts of the transition metal such as chloride, bromide, sulfate, and acetate. The transition metal compound may be used alone or in combination of two or more in the biological component concentration measurement reagent. In the present embodiment, the content of the transition metal compound is not particularly limited, but can be appropriately selected according to the desired maximum absorption wavelength of the formazan compound. Specifically, the content of the transition metal compound is such that the transition metal (transition metal ion) is preferably 0.1 to 10 mol, more preferably 0.5 to 4 mol, per 1 mol of the tetrazolium salt. It is an amount like this. With such an amount, the maximum absorption wavelength of the formazan compound can be shifted to a desired wavelength range.
 生体成分濃度測定用試薬は、上記遷移金属化合物に加えてまたは上記遷移金属化合物に代えて、さらに他の成分を含んでもよい。ここで、他の成分としては、通常、測定対象である生体成分の種類に応じて適切に選択され、生体成分濃度を測定するために添加される成分が同様にして使用できる。具体的には、酸化還元酵素、電子伝達体、pH緩衝剤、界面活性剤などが挙げられる。ここで、生体成分濃度測定用試薬に含まれる上記他の成分は、それぞれ、1種を単独で使用しても、または2種以上を組み合わせてしてもよい。また、上記他の成分のそれぞれは、1種を単独で使用しても、または2種以上を併用してもよい。 The biological component concentration measuring reagent may further contain other components in addition to the transition metal compound or in place of the transition metal compound. Here, as other components, components that are normally selected according to the type of biological component to be measured and added to measure the concentration of biological components can be used in the same manner. Specific examples include oxidoreductases, electron carriers, pH buffers, surfactants, and the like. Here, the other components contained in the biological component concentration measurement reagent may be used singly or in combination of two or more. Each of the other components may be used alone or in combination of two or more.
 ここで、酸化還元酵素は、特に制限されず、測定される対象である生体成分の種類によって適切に選択されうる。具体的には、グルコースデヒドロゲナーゼ(GDH)(例えば、ピロロキノリンキノン(PQQ)を補酵素とするグルコースデヒドロゲナーゼ(GDH-PQQ)、フラビンアデニンジヌクレオチド(FAD)を補酵素とするグルコースデヒドロゲナーゼ(GDH-FAD)、ニコチンアミドアデニンジヌクレオチド(NAD)を補酵素とするグルコースデヒドロゲナーゼ(GDH-NAD)およびニコチンアデニンジヌクレオチドリン酸(NADP)を補酵素とするグルコースデヒドロゲナーゼ(GDH-NADP)等)、グルコースオキシダーゼ(GOD)、グルコース-6-リン酸デヒドロゲナーゼ、コレステロールデヒドロゲナーゼ、コレステロールオキシダーゼ、グリセロリン酸デヒドロゲナーゼ、グリセロリン酸オキシダーゼ、乳酸デヒドロゲナーゼ酵素(LDH)、乳酸オキシダーゼ、アルコールデヒドロゲナーゼ、アルコールオキシダーゼ、ウリカーゼ、尿酸デヒドロゲナーゼなどが挙げられる。ここで、酸化還元酵素は、1種を単独で使用しても、または2種以上を組み合わせてしてもよい。例えば、生体成分がグルコースである場合には、酸化還元酵素がグルコースデヒドロゲナーゼやグルコースオキシダーゼであることが好ましい。また、生体成分がコレステロールである場合には、酸化還元酵素がコレステロールデヒドロゲナーゼやコレステロールオキシダーゼであることが好ましい。生体成分濃度測定用試薬が酸化還元酵素を含む場合の、酸化還元酵素の含有量は、特に制限されず、テトラゾリウム塩の量に応じて適宜選択できる。例えば、酸化還元酵素の含有量は、テトラゾリウム塩に対して、好ましくは1~100質量%、より好ましくは5~50質量%である。このような量であれば、酸化還元酵素を生体成分に十分作用させることができる。このため、生体成分濃度の測定感度をさらに向上できる。 Here, the oxidoreductase is not particularly limited, and can be appropriately selected depending on the type of biological component to be measured. Specifically, glucose dehydrogenase (GDH) (for example, glucose dehydrogenase (GDH-PQQ) using pyrroloquinoline quinone (PQQ) as a coenzyme, glucose dehydrogenase (GDH-FAD) using flavin adenine dinucleotide (FAD) as a coenzyme ), Glucose dehydrogenase (GDH-NAD) using nicotinamide adenine dinucleotide (NAD) as a coenzyme and glucose dehydrogenase (GDH-NADP) using nicotine adenine dinucleotide phosphate (NADP) as a coenzyme), glucose oxidase ( GOD), glucose-6-phosphate dehydrogenase, cholesterol dehydrogenase, cholesterol oxidase, glycerophosphate dehydrogenase, glycerophosphate oxidase, Dehydrogenase enzyme (LDH), lactate oxidase, alcohol dehydrogenase, alcohol oxidase, uricase, such as urine dehydrogenase and the like. Here, the oxidoreductase may be used alone or in combination of two or more. For example, when the biological component is glucose, the oxidoreductase is preferably glucose dehydrogenase or glucose oxidase. When the biological component is cholesterol, the oxidoreductase is preferably cholesterol dehydrogenase or cholesterol oxidase. The content of oxidoreductase when the biological component concentration measurement reagent contains oxidoreductase is not particularly limited, and can be appropriately selected according to the amount of tetrazolium salt. For example, the content of the oxidoreductase is preferably 1 to 100% by mass, more preferably 5 to 50% by mass with respect to the tetrazolium salt. With such an amount, the oxidoreductase can sufficiently act on the biological component. For this reason, the measurement sensitivity of the biological component concentration can be further improved.
 電子伝達体は、特に制限されず、公知の電子伝達体を使用してもよい。具体的には、ジアホラーゼ、フェナジンメチルサルフェート(phenazine methosulfate)(PMS)、1-メトキシ-5-メチルフェナジウムメチルサルフェート(1-methoxy-5-methylphenazinium methylsulfate)(1-Methoxy PMSまたはm-PMS)、ニコチンアミドアデニンジヌクレオチドリン酸(NADPH)、ニコチンアミドアデニンジヌクレオチド(NADH)などが挙げられる。ここで、電子伝達体は、1種を単独で使用しても、または2種以上を組み合わせてしてもよい。生体成分濃度測定用試薬が電子伝達体を含む場合の、電子伝達体の含有量は、特に制限されず、テトラゾリウム塩の量に応じて適宜選択できる。例えば、電子伝達体の含有量は、テトラゾリウム塩に対して、好ましくは0.05~10質量%、より好ましくは0.1~5質量%である。このような量であれば、還元反応をより効率よく進行できる。このため、生体成分濃度の測定感度をさらに向上できる。 The electron carrier is not particularly limited, and a known electron carrier may be used. Specifically, diaphorase, phenazine methylsulfate (PMS), 1-methoxy-5-methylphenazinium methylsulfate (1-methoxy PMS or m-PMS), Nicotinamide adenine dinucleotide phosphate (NADPH), nicotinamide adenine dinucleotide (NADH) and the like can be mentioned. Here, an electron carrier may be used individually by 1 type, or may combine 2 or more types. The content of the electron carrier when the biological component concentration measuring reagent contains an electron carrier is not particularly limited, and can be appropriately selected according to the amount of the tetrazolium salt. For example, the content of the electron carrier is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass with respect to the tetrazolium salt. With such an amount, the reduction reaction can proceed more efficiently. For this reason, the measurement sensitivity of the biological component concentration can be further improved.
 上記のうち、生体成分濃度測定用試薬は、遷移金属化合物及び酸化還元酵素をさらに含むことが好ましく、遷移金属化合物、酸化還元酵素及び電子伝達体をさらに含むことがより好ましい。すなわち、本発明の好ましい形態によると、生体成分濃度測定用試薬は、本発明の2-置換チアゾリル-3-置換フェニル-5-スルホ化フェニル-2H-テトラゾリウム塩、遷移金属化合物及び酸化還元酵素を含む。また、本発明のより好ましい形態によると、生体成分濃度測定用試薬は、本発明の2-置換チアゾリル-3-置換フェニル-5-スルホ化フェニル-2H-テトラゾリウム塩、遷移金属化合物、酸化還元酵素及び電子伝達体を含む。ここで、例えば、生体成分がβ-D-グルコースであり、遷移金属化合物が塩化ニッケルであり、酸化還元酵素がフラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ(GDH-FAD)であり、電子伝達体が1-メトキシ-5-メチルフェナジウムメチルサルフェート(m-PMS)である場合について説明する。まず、β-D-グルコース及びm-PMSがGDH-FADの作用を受けて、グルコン酸及び還元型のm-PMSになり、この還元型のm-PMS及びテトラゾリウム塩からm-PMSおよびホルマザンになり、発色する。また、このホルマザンがニッケルイオンとキレート化合物を形成して、極大吸収波長がより長波長域側(例えば、600nm超)にシフトする。このため、本発明の生体成分濃度測定用試薬を用いることによって、測定対象の測定波長において血色素の主な吸収帯が及ぼす影響を低減できるため、生体試料、特に全血サンプルに対しても感度よく生体成分濃度を測定できる。 Among the above, the biological component concentration measurement reagent preferably further includes a transition metal compound and an oxidoreductase, and more preferably further includes a transition metal compound, an oxidoreductase, and an electron carrier. That is, according to a preferred embodiment of the present invention, the biological component concentration measurement reagent comprises the 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt, transition metal compound and oxidoreductase of the present invention. Including. Further, according to a more preferred form of the present invention, the biological component concentration measuring reagent is a 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt, transition metal compound, oxidoreductase of the present invention. And an electron carrier. Here, for example, the biological component is β-D-glucose, the transition metal compound is nickel chloride, the oxidoreductase is flavin adenine dinucleotide-dependent glucose dehydrogenase (GDH-FAD), and the electron carrier is 1 The case of -methoxy-5-methylphenadium methyl sulfate (m-PMS) will be described. First, β-D-glucose and m-PMS are subjected to the action of GDH-FAD to become gluconic acid and reduced m-PMS. From this reduced m-PMS and tetrazolium salt to m-PMS and formazan. Color. Further, this formazan forms a chelate compound with nickel ions, and the maximum absorption wavelength is shifted to the longer wavelength region side (for example, more than 600 nm). For this reason, since the influence of the main absorption band of hemoglobin at the measurement wavelength to be measured can be reduced by using the biological component concentration measurement reagent of the present invention, it is highly sensitive to biological samples, particularly whole blood samples. Biological component concentration can be measured.
 生体成分濃度測定用試薬の使用形態は、特に制限されず、固体の形態であってもまたは液体の形態であってもいずれでもよい。後者の場合には、生体成分濃度測定用試薬は、さらに水、緩衝液、界面活性剤を含むことが好ましく、水および/または緩衝液を含むことがより好ましい。ここで、緩衝液は、特に制限されず、一般的に生体成分濃度を測定する際に使用される緩衝剤が同様にして使用できる。具体的には、リン酸緩衝剤、クエン酸緩衝剤、クエン酸-リン酸緩衝剤、トリスヒドロキシメチルアミノメタン-HCl緩衝剤(トリス塩酸緩衝剤)、MES緩衝剤(2-モルホリノエタンスルホン酸緩衝剤)、TES緩衝剤(N-トリス(ヒドロキシメチル)メチル-2-アミノエタンスルホン酸緩衝剤)、酢酸緩衝剤、MOPS緩衝剤(3-モルホリノプロパンスルホン酸緩衝剤)、MOPS-NaOH緩衝剤、HEPES緩衝剤(4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸緩衝剤)、HEPES-NaOH緩衝剤などのGOOD緩衝剤、グリシン-塩酸緩衝剤、グリシン-NaOH緩衝剤、グリシルグリシン-NaOH緩衝剤、グリシルグリシン-KOH緩衝剤などのアミノ酸系緩衝剤、トリス-ホウ酸緩衝剤、ホウ酸-NaOH緩衝剤、ホウ酸緩衝剤などのホウ酸系緩衝剤、またはイミダゾール緩衝剤などが用いられる。これらのうち、リン酸緩衝剤、クエン酸緩衝剤、クエン酸-リン酸緩衝剤、トリス塩酸緩衝剤、MES緩衝剤、酢酸緩衝剤、MOPS緩衝剤、HEPES-NaOH緩衝剤が好ましい。ここで、緩衝剤の濃度としては、特に制限されないが、0.01~1.0Mであるのが好ましい。なお、本発明において緩衝剤の濃度とは、水性溶液中に含まれる緩衝剤の濃度(M、mol/L)をいう。また、緩衝液のpHは、生体成分に対して作用を及ぼさないことが好ましい。上記観点から、緩衝液のpHは、中性付近、例えば、5.0~8.0程度であることが好ましい。なお、生体成分濃度測定用試薬が液状である場合の、テトラゾリウム塩の濃度は、所望の生体成分濃度を測定できる濃度であれば特に制限されないが、テトラゾリウム塩が所望の生体成分の存在量に対してより多い量で含まれることが好ましい。上記観点及び通常測定すべき生体成分濃度などを考慮すると、テトラゾリウム塩の濃度は、生体成分濃度測定用試薬において、好ましくは0.005~0.2mol/L、より好ましくは0.01~0.1mol/Lである。乾燥状態の試薬を調製する際においても、テトラゾリウム塩の濃度は、基材に塗布する前の溶液状態で、0.005~0.2mol/L、より好ましくは0.01~0.1mol/Lである。このような量であれば、テトラゾリウム塩は、生体試料に含まれる実質的にすべて(例えば、95モル%以上、好ましくは98モル%以上、特に好ましくは100モル%)の生体成分の量に応じて反応する。このため、所望の生体成分濃度を正確にかつ良好な感度で速やかに測定できる。 The usage form of the biological component concentration measuring reagent is not particularly limited, and may be either a solid form or a liquid form. In the latter case, the biological component concentration measurement reagent preferably further contains water, a buffer solution, and a surfactant, and more preferably contains water and / or a buffer solution. Here, the buffer solution is not particularly limited, and a buffer agent generally used when measuring the concentration of a biological component can be used in the same manner. Specifically, phosphate buffer, citrate buffer, citrate-phosphate buffer, trishydroxymethylaminomethane-HCl buffer (Tris-HCl buffer), MES buffer (2-morpholinoethane sulfonate buffer) Agent), TES buffer (N-tris (hydroxymethyl) methyl-2-aminoethanesulfonic acid buffer), acetic acid buffer, MOPS buffer (3-morpholinopropanesulfonic acid buffer), MOPS-NaOH buffer, HEPES buffer (4- (2-hydroxyethyl) -1-piperazineethanesulfonic acid buffer), GOOD buffer such as HEPES-NaOH buffer, glycine-hydrochloric acid buffer, glycine-NaOH buffer, glycylglycine- Amino acid buffers such as NaOH buffer, glycylglycine-KOH buffer, Tris-borate buffer Borate -NaOH buffer, borate buffer such as borate buffer, or an imidazole buffer are used. Of these, phosphate buffer, citrate buffer, citrate-phosphate buffer, Tris-HCl buffer, MES buffer, acetate buffer, MOPS buffer, and HEPES-NaOH buffer are preferred. Here, the concentration of the buffer is not particularly limited, but is preferably 0.01 to 1.0M. In the present invention, the concentration of the buffering agent refers to the concentration of the buffering agent (M, mol / L) contained in the aqueous solution. Moreover, it is preferable that pH of a buffer solution does not have an effect | action with respect to a biological component. From the above viewpoint, the pH of the buffer solution is preferably near neutral, for example, about 5.0 to 8.0. The concentration of the tetrazolium salt when the reagent for measuring the concentration of biological component is liquid is not particularly limited as long as the concentration of the desired biological component can be measured, but the tetrazolium salt is less than the amount of the desired biological component present. It is preferably contained in a larger amount. In consideration of the above viewpoint and the concentration of the biological component to be normally measured, the concentration of the tetrazolium salt is preferably 0.005 to 0.2 mol / L, more preferably 0.01 to 0.00 in the biological component concentration measuring reagent. 1 mol / L. When preparing a reagent in a dry state, the concentration of the tetrazolium salt is 0.005 to 0.2 mol / L, more preferably 0.01 to 0.1 mol / L in the solution state before being applied to the substrate. It is. In such an amount, the tetrazolium salt depends on the amount of substantially all (for example, 95 mol% or more, preferably 98 mol% or more, particularly preferably 100 mol%) of the biological component contained in the biological sample. React. For this reason, a desired biological component concentration can be quickly measured accurately and with good sensitivity.
 本発明の生体成分濃度測定用試薬を用いることにより、生体試料中に含まれる特定の生体成分濃度を良好な感度にて測定できる。ここで、測定方法は、特に制限されず、測定対象となる生体成分の種類に応じて適宜選択できる。例えば、生体成分がβ-D-グルコースであり、酸化還元酵素がグルコースデヒドロゲナーゼ(GDH)であるグルコース還元酵素法の場合には、グルコースがGDHによって酸化されてグルコン酸を生成するが、その際にGDHの補酵素または電子伝達物質が還元されることを利用したものであり、具体的には結果として還元されたテトラゾリウム塩(ゆえにホルマザンまたはホルマザンと遷移金属イオンとのキレート化合物)の呈色度合を光学的に測定する方法(比色法)、および酸化還元反応によって生じた電流を測定する方法(電極法)に大別される。上記方法のうち、比色法による血糖値の測定は、血糖値の算出の際にヘマトクリット値を用いた補正を行ないやすい、製造工程が簡易である等の利点を有している。このため、生体成分濃度測定用試薬は比色法に好適に使用できる。特に全血サンプル中のグルコース濃度を測定する場合には、比色法が好ましく使用される。 By using the biological component concentration measuring reagent of the present invention, the concentration of a specific biological component contained in a biological sample can be measured with good sensitivity. Here, the measurement method is not particularly limited, and can be appropriately selected according to the type of biological component to be measured. For example, in the glucose reductase method in which the biological component is β-D-glucose and the oxidoreductase is glucose dehydrogenase (GDH), glucose is oxidized by GDH to produce gluconic acid. This is based on the reduction of GDH coenzymes or electron mediators. Specifically, as a result, the degree of coloration of the reduced tetrazolium salt (and hence chelate compound of formazan or formazan and transition metal ions) is determined. The method is roughly divided into a method of optical measurement (colorimetric method) and a method of measuring current generated by the oxidation-reduction reaction (electrode method). Among the above methods, the measurement of blood glucose level by the colorimetric method has advantages such as easy correction using a hematocrit value when calculating the blood glucose level, and a simple manufacturing process. Therefore, the biological component concentration measurement reagent can be suitably used for the colorimetric method. In particular, a colorimetric method is preferably used when measuring the glucose concentration in a whole blood sample.
 本発明の生体成分濃度測定用試薬は、そのままの形態で生体成分濃度の測定に使用されてもよいが、生体成分濃度測定用チップに組み込まれてもよい。すなわち、本発明は、本発明の生体成分濃度測定用試薬を含む生体成分濃度測定用チップ(以下では、単に「測定用チップ」とも称する)をも提供する。また、本発明の生体成分濃度測定用試薬や方法は、自動分析機や測定キット、簡易血糖計等に組み込まれ、日常的な臨床検査に使用できる。また、本発明の試薬を市販のバイオセンサに組み込むことも可能である。なお、生体成分濃度測定用試薬を生体成分濃度測定用チップに組み込む場合には、1チップ当たりの試薬の含有量は、特に制限されず、通常当該分野において使用される量が同様にして採用できるが、テトラゾリウム塩が所望の生体成分の存在量に対して十分量で含まれることが好ましい。上記観点及び通常測定すべき生体成分濃度などを考慮すると、テトラゾリウム塩の量は、1チップ当たり、好ましくは3~50nmol、より好ましくは10~30nmolである。このような量であれば、テトラゾリウム塩は、生体試料に含まれる実質的にすべて(例えば、95モル%以上、好ましくは98モル%以上、特に好ましくは100モル%)の生体成分の量に応じて反応する。このため、所望の生体成分濃度を正確にかつ良好な感度で速やかに測定できる。 The biological component concentration measuring reagent of the present invention may be used for measuring the biological component concentration as it is, or may be incorporated in the biological component concentration measuring chip. That is, the present invention also provides a biological component concentration measuring chip (hereinafter, also simply referred to as “measuring chip”) including the biological component concentration measuring reagent of the present invention. In addition, the reagent and method for measuring the concentration of biological components of the present invention can be incorporated into an automatic analyzer, a measurement kit, a simple blood glucose meter, etc., and used for daily clinical examinations. It is also possible to incorporate the reagent of the present invention into a commercially available biosensor. When the biological component concentration measuring reagent is incorporated into the biological component concentration measuring chip, the content of the reagent per chip is not particularly limited, and the amount usually used in the field can be similarly adopted. However, it is preferable that the tetrazolium salt is contained in a sufficient amount with respect to the abundance of the desired biological component. Considering the above viewpoint and the concentration of biological components to be normally measured, the amount of tetrazolium salt is preferably 3 to 50 nmol, more preferably 10 to 30 nmol per chip. In such an amount, the tetrazolium salt depends on the amount of substantially all (for example, 95 mol% or more, preferably 98 mol% or more, particularly preferably 100 mol%) of the biological component contained in the biological sample. React. For this reason, a desired biological component concentration can be quickly measured accurately and with good sensitivity.
 以下では、比色法により血糖値を測定するに使用される本発明の測定用チップ(比色式血糖計)の形態を、図を参照しながら説明する。しかしながら、本発明は、本発明の生体成分濃度測定用試薬を使用することを特徴とし、チップの構造は特に制限されない。このため、本発明の生体成分濃度測定用試薬を、市販の測定用チップならびにWO2014/04970やWO 2016/051930等の公報に記載されるチップに適用してもよい。同様にして、下記実施形態では、血糖値の測定を目的としたチップの具体的な形態を説明するが、測定用チップは当該用途に限定されず、他の用途にも同様にしてまたは適切に修飾して適用できる。 Hereinafter, the form of the measurement chip (colorimetric blood glucose meter) of the present invention used for measuring the blood glucose level by the colorimetric method will be described with reference to the drawings. However, the present invention is characterized by using the biological component concentration measuring reagent of the present invention, and the chip structure is not particularly limited. For this reason, you may apply the reagent for a biological component density | concentration measurement of this invention to the chip | tip described in gazettes, such as a commercially available measurement chip | tip and WO2014 / 04970, WO2016 / 051930. Similarly, in the following embodiment, a specific form of a chip for measuring blood glucose level will be described. However, the measuring chip is not limited to the application, and may be appropriately or appropriately used for other applications. Applicable with modification.
 図4は、本実施形態に係る測定用チップを用いたグルコース(血糖)の検出に用いられる血糖計を概略的に示す平面図である。 FIG. 4 is a plan view schematically showing a blood glucose meter used for detection of glucose (blood glucose) using the measurement chip according to the present embodiment.
 図4において、血糖計10は、血液サンプル中のグルコース(血糖)を測定する機器として構成されている。この血糖計10は、主に、ユーザ(被検者)が操作するパーソナルユースとして用いられ得る。ユーザは、食前の血糖を測定して自身の血糖管理を行うこともできる。また、医療従事者が被検者の健康状態を評価するために血糖計10を使用することもでき、この場合、血糖計10を適宜改変して医療施設等に設置可能な構成としてもよい。 In FIG. 4, the blood glucose meter 10 is configured as a device for measuring glucose (blood glucose) in a blood sample. This blood glucose meter 10 can be mainly used for personal use operated by a user (subject). The user can also measure blood sugar before meals and manage his blood sugar. In addition, the blood glucose meter 10 can be used by a medical worker to evaluate the health condition of the subject. In this case, the blood glucose meter 10 may be appropriately modified and installed in a medical facility or the like.
 血糖計10は、血液サンプル中に含まれるグルコースの含有量(血糖値)を光学的に測定する、比色法の原理を採用している。測定方法としては、反射光測定、透過光測定、吸光度測定のいずれかを採用してもよい。特に、この血糖計10は、所定波長の測定光を分析サンプル(血液)に照射し、分析サンプルを透過した光を受光する、透過光測定用の測定部14により血糖測定を行う。 The blood glucose meter 10 employs the principle of a colorimetric method for optically measuring the glucose content (blood glucose level) contained in a blood sample. As a measurement method, any of reflected light measurement, transmitted light measurement, and absorbance measurement may be employed. In particular, the blood glucose meter 10 performs blood glucose measurement with a measurement unit 14 for measuring transmitted light, which irradiates the analysis sample (blood) with measurement light having a predetermined wavelength and receives light transmitted through the analysis sample.
 血糖計10は、血液を取り込んだ測定用チップ12を装着して、または測定用チップ12を装着した状態で測定用チップ12に血液を取り込み、測定部14によりグルコースを検出する。測定用チップ12は、1回の測定毎に廃棄するディスポーザブルタイプに構成されてもよい。一方、血糖計10は、ユーザが測定を簡易に繰り返すことができるように、携帯可能且つ頑強な機器に構成されることが好ましい。 The blood glucose meter 10 attaches the measurement chip 12 that has taken in blood, or takes blood into the measurement chip 12 with the measurement chip 12 attached, and detects glucose by the measurement unit 14. The measurement chip 12 may be configured as a disposable type that is discarded every measurement. On the other hand, the blood glucose meter 10 is preferably configured as a portable and robust device so that the user can easily repeat the measurement.
 測定用チップ12は、図5に示すように、板状に形成されたチップ本体部18と、チップ本体部18の内部で板面の面方向に延びる空洞部20(液体用空洞部)とを備える。 As shown in FIG. 5, the measurement chip 12 includes a chip body 18 formed in a plate shape, and a cavity 20 (liquid cavity) extending in the surface direction of the plate surface inside the chip body 18. Prepare.
 チップ本体部18は、図5に示すように、側面視で、血糖計10の挿入および離脱方向(血糖計10の先端および基端方向)に長い長辺22を有すると共に、上下方向に短い短辺24を有する長方形状に形成されている。例えば、チップ本体部18の長辺22の長さは、短辺24の2倍以上の長さに設定されるとよい。これにより測定用チップ12は、血糖計10に対して充分な挿入量が確保される。 As shown in FIG. 5, the chip body 18 has a long side 22 in the insertion and removal direction of the blood glucose meter 10 (the distal end and proximal direction of the blood glucose meter 10) and a short short in the vertical direction, as viewed from the side. It is formed in a rectangular shape having sides 24. For example, the length of the long side 22 of the chip body 18 may be set to a length that is twice or more the short side 24. As a result, a sufficient amount of insertion of the measuring chip 12 into the blood glucose meter 10 is ensured.
 また、チップ本体部18の厚みは、長方形状に形成された側面に比べて極めて小さく(薄く)形成される(図5では、敢えて十分な厚みを有するように図示している)。例えば、チップ本体部18の厚みは、上述した短辺24の1/10以下に設定されることが好ましい。このチップ本体部18の厚みについては、血糖計10の挿入孔58の形状に応じて適宜設計されるとよい。 Also, the thickness of the chip body 18 is extremely small (thin) compared to the side surface formed in a rectangular shape (in FIG. 5, it is shown to have a sufficient thickness). For example, the thickness of the chip body 18 is preferably set to 1/10 or less of the short side 24 described above. The thickness of the chip body 18 may be appropriately designed according to the shape of the insertion hole 58 of the blood glucose meter 10.
 測定用チップ12は、空洞部20を有するように、一対の板片30と、一対のスペーサ32とによりチップ本体部18を構成している。 The measuring chip 12 includes the chip body 18 by a pair of plate pieces 30 and a pair of spacers 32 so as to have the cavity 20.
 図6は、図4の測定用チップを示す側面図である。図6中では、チップ本体部18の角部が尖っているが、例えば角部は丸角に形成されてもよい。また、チップ本体部18は、薄板状に限定されるものではなく、その形状を自由に設計してよいことは勿論である。例えば、チップ本体部18は、側面視で、正方形状や他の多角形状、または円形状(楕円形状を含む)等に形成されてもよい。 FIG. 6 is a side view showing the measurement chip of FIG. In FIG. 6, the corners of the chip body 18 are pointed, but the corners may be formed as rounded corners, for example. Further, the chip body 18 is not limited to a thin plate shape, and it is needless to say that the shape may be freely designed. For example, the chip body 18 may be formed in a square shape, another polygonal shape, or a circular shape (including an elliptical shape) in a side view.
 チップ本体部18の内部に設けられる空洞部20は、チップ本体部18の上下方向中間位置にあり、チップ本体部18の長手方向にわたって直線状に形成される。この空洞部20は、チップ本体部18の先端辺24aに形成された先端口部20aと、基端辺24bに形成された基端口部20bにそれぞれ連なり、チップ本体部18の外側に連通している。空洞部20は、先端口部20aからユーザの血液を取り込むと、毛細管現象に基づき延在方向に沿って血液を流動させ得る。空洞部20を流動する血液は少量であり、基端口部20bまで移動しても張力により漏れが抑止される。なお、チップ本体部18の基端辺24b側には、血液を吸収する吸収部(例えば、後述するスペーサ32を基端側のみ多孔質体としたもの等)が設けられていてもよい。 The cavity 20 provided inside the chip body 18 is located at an intermediate position in the vertical direction of the chip body 18 and is formed linearly over the longitudinal direction of the chip body 18. The hollow portion 20 is connected to the distal end port portion 20 a formed on the distal end side 24 a of the chip body portion 18 and the proximal end port portion 20 b formed on the proximal end side 24 b, and communicates with the outside of the chip body portion 18. Yes. When the cavity 20 receives the user's blood from the distal end 20a, the cavity 20 can flow the blood along the extending direction based on the capillary phenomenon. The amount of blood flowing through the cavity 20 is small, and even if it moves to the proximal end port 20b, leakage is suppressed by tension. It should be noted that an absorption part that absorbs blood (for example, a spacer 32 which will be described later is made porous only on the base end side) may be provided on the base end side 24b side of the chip body part 18.
 また、空洞部20の所定位置(例えば、図6中に示す先端口部20aと基端口部20bの中間点よりも若干基端寄りの位置)には、血液中のグルコース(血糖)と反応することにより血液中のグルコース(血糖)濃度に応じた色に呈色する試薬(発色試薬)26が塗布され、血糖計10により測定がなされる測定対象部28が設定されている。空洞部20を基端方向に流動する血液が測定対象部28と接触し、測定対象部28に塗布された試薬26反応することで呈色する。なお、空洞部20の長手方向上において、試薬26の塗布位置と測定対象部28は互いにずれていてもよく、例えば試薬26が塗布された反応部を測定対象部28の血液流動方向上流側に設けてもよい。 Moreover, it reacts with glucose (blood glucose) in blood at a predetermined position of the cavity 20 (for example, a position slightly closer to the base end than the intermediate point between the front end opening 20a and the base end opening 20b shown in FIG. 6). Thus, a reagent (coloring reagent) 26 that colors in accordance with the glucose (blood sugar) concentration in the blood is applied, and a measurement target portion 28 to be measured by the blood glucose meter 10 is set. The blood that flows in the proximal direction through the cavity 20 comes into contact with the measurement target portion 28, and reacts with the reagent 26 applied to the measurement target portion 28, thereby causing coloration. It should be noted that the application position of the reagent 26 and the measurement target part 28 may be shifted from each other on the longitudinal direction of the cavity 20. For example, the reaction part to which the reagent 26 is applied is located upstream of the measurement target part 28 in the blood flow direction. It may be provided.
 測定用チップ12は、以上の空洞部20を有するように、一対の板片30と、一対のスペーサ32とによりチップ本体部18を構成している。一対の板片30は、側面視でそれぞれ上述した長方形状に形成され、互いに積層方向に配置される。つまり、一対の板片30は、チップ本体部18の両側面(左側面および右側面)を構成している。各板片30の板厚は、非常に小さく、例えば、5~50μm程度の同一寸法に設定されるとよい。2つ(一組)の板片30の厚みは、相互に異なっていてもよい。 The measuring chip 12 includes the chip main body portion 18 by a pair of plate pieces 30 and a pair of spacers 32 so as to have the cavity 20 described above. The pair of plate pieces 30 are each formed in the rectangular shape described above in a side view and are arranged in the stacking direction. That is, the pair of plate pieces 30 constitutes both side surfaces (left side surface and right side surface) of the chip body 18. The plate thickness of each plate piece 30 is very small, and is preferably set to the same dimension of about 5 to 50 μm, for example. The thicknesses of the two (one set) plate pieces 30 may be different from each other.
 一対の板片30は、面方向と直交する方向からある程度の押圧力が加えられても、板形状を維持して塑性変形しない強度を有する。また、各板片30は、測定光が透過可能となるように透明又は半透明に構成される。さらに、各板片30は、空洞部20において血液を流動させ得るように適度な親水性を有する平坦状の板面に形成されている(又は板面に塗布剤が塗布されている)ことが好ましい。 The pair of plate pieces 30 has a strength that maintains the plate shape and does not undergo plastic deformation even when a certain amount of pressing force is applied from a direction orthogonal to the surface direction. Each plate piece 30 is configured to be transparent or translucent so that the measurement light can be transmitted. Furthermore, each plate piece 30 is formed on a flat plate surface having appropriate hydrophilicity so that blood can flow in the cavity 20 (or a coating agent is applied to the plate surface). preferable.
 各板片30を構成する材料は、特に限定されるものではないが、熱可塑性樹脂材料、ガラス、石英等を適用するとよい。熱可塑性樹脂材料としては、例えば、ポリオレフィン(例えば、ポリエチレン、ポリプ口ピレンなど)、シクロオレフィンポリマー、ポリエステル(例えば、ポリエチレンテフタレート、ポリエチレンナフタレートなど)、ポリ塩化ビニル、ポリスチレン、ABS樹脂、アクリル樹脂、ポリアミド、フッ素樹脂等の高分子材料又はこれらの混合物が挙げられる。 The material constituting each plate piece 30 is not particularly limited, but a thermoplastic resin material, glass, quartz or the like may be applied. Examples of the thermoplastic resin material include polyolefin (eg, polyethylene, polypropylene pyrene, etc.), cycloolefin polymer, polyester (eg, polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, polystyrene, ABS resin, acrylic resin. , Polymer materials such as polyamide and fluororesin, and mixtures thereof.
 また、一対のスペーサ32は、一対の板片30の間に挟まれるように配置され、所定の接合手段(接着剤等)よりに各板片30の対向面に強固に接着される。つまり各スペーサ32は、一対の板片30同士を離間させるように間に配置されることで、一対の板片30と一対のスペーサ32自体の間に空洞部20を形成させる部材である。この場合、一方のスペーサ32は、図6中のチップ本体部18の上側長辺22aに接し、この上側長辺22aに沿って先端および基端方向に延びるように配置される。他方のスペーサ32は、図6中のチップ本体部18の下側長辺22bに接し、この下側長辺22bに沿って先端および基端方向に延びるように配置される。 Also, the pair of spacers 32 are disposed so as to be sandwiched between the pair of plate pieces 30 and are firmly bonded to the opposing surfaces of the plate pieces 30 by a predetermined joining means (adhesive or the like). In other words, each spacer 32 is a member that forms the cavity 20 between the pair of plate pieces 30 and the pair of spacers 32 itself by being disposed between the pair of plate pieces 30 so as to be separated from each other. In this case, one spacer 32 is disposed so as to be in contact with the upper long side 22a of the chip body 18 in FIG. 6 and extend in the distal end and proximal direction along the upper long side 22a. The other spacer 32 is in contact with the lower long side 22b of the chip body 18 in FIG. 6 and is disposed so as to extend in the distal and proximal directions along the lower long side 22b.
 一対のスペーサ32を構成する材料(基材)は、特に限定されるものではないが、例えば、スチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、トランスポリイソプレン系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマーが挙げられる。または、熱可塑性エス卜ラマ一以外にも、弾性変形可能な種々の材料を適用してもよく、また弾性変形可能な多孔質体(例えばスポンジ)等の構造体を適用してもよい。さらに、一対の板片30の間で硬化状態又は半硬化状態となることにより板片30同士を接着する接着剤を基材の一方または両面に有するスペーサ32として適用してもよい。またさらに、スペーサ32は、試薬26を含有することで、空洞部20に試薬26を溶出する構成であってもよい。 The material (base material) constituting the pair of spacers 32 is not particularly limited. For example, styrene, polyolefin, polyurethane, polyester, polyamide, polybutadiene, transpolyisoprene, fluoro rubber And various thermoplastic elastomers such as chlorinated polyethylene. Alternatively, in addition to the thermoplastic elastomer, various elastically deformable materials may be applied, and a structure such as an elastically deformable porous body (for example, a sponge) may be applied. Furthermore, you may apply as the spacer 32 which has the adhesive agent which adhere | attaches the board pieces 30 by becoming a hardening state or a semi-hardened state between a pair of board pieces 30 on one or both surfaces of a base material. Furthermore, the spacer 32 may be configured to elute the reagent 26 into the cavity 20 by containing the reagent 26.
 板片30やスペーサ32は、親水化処理されたものであってもよい。親水化処理の方法としては、例えば界面活性剤、ポリエチレングリコール、ポリプロピレングリコール、ヒドロキシプロピルセルロース、水溶性シリコーンの他、ポリアクリル酸、ポリビニルピロリドン、ポリアクリルアミド等の親水性高分子を含有した水溶液を浸漬法またはスプレー法等により塗布する方法や、プラズマ照射、グロー放電、コロナ放電、紫外線照射(例えば、エキシマ光照射)等の方法等が挙げられ、これらの方法を単独又は組み合わせてもよい。 The plate piece 30 and the spacer 32 may be subjected to a hydrophilic treatment. Examples of the hydrophilic treatment method include immersion of an aqueous solution containing a hydrophilic polymer such as polyacrylic acid, polyvinyl pyrrolidone, and polyacrylamide in addition to surfactant, polyethylene glycol, polypropylene glycol, hydroxypropyl cellulose, water-soluble silicone, and the like. Examples thereof include a method of coating by a method or a spray method, a method of plasma irradiation, glow discharge, corona discharge, ultraviolet irradiation (for example, excimer light irradiation), and the like, and these methods may be used alone or in combination.
 測定用チップ12は以上のように構成される。次に血糖計10の装置本体16について説明する。図4に示すように、血糖計10は、外観を構成する筐体40を有する。筐体40は、ユーザが把持操作し易い大きさでその内部に血糖計10の制御部42を収容する箱体部44と、箱体部44の一辺(先端側)から先端方向に突出し内部に光学系の測定部14を収容する筒状の測光ブロック46とを含む。また、箱体部44の上面には、電源ボタン48、操作ボタン50、ディスプレイ52が設けられ、測光ブロック46の上面にはイジェク卜レバー54が設けられている。 The measuring chip 12 is configured as described above. Next, the apparatus main body 16 of the blood glucose meter 10 will be described. As shown in FIG. 4, the blood glucose meter 10 has a housing 40 that constitutes the appearance. The housing 40 has a size that is easy for a user to hold and operate, and a box body portion 44 that houses the control unit 42 of the blood glucose meter 10 therein, and protrudes from one side (tip side) of the box body portion 44 in the distal direction to the inside. And a cylindrical photometric block 46 that houses the measuring unit 14 of the optical system. Further, a power button 48, an operation button 50, and a display 52 are provided on the upper surface of the box portion 44, and an eject lever 54 is provided on the upper surface of the photometry block 46.
 電源ボタン48は、ユーザの操作下に、血糖計10の起動と起動停止を切り換える。操作ボタン50は、起動状態となった血糖計10において、ユーザの操作に基づき、血糖値の測定や表示を行う、測定結果(過去の測定結果を含む)の表示を切り換える等の操作部として機能する。ディスプレイ52は、液晶や有機EL等により構成され、測定結果の表示やエラー表示等のように測定操作においてユーザに提供する情報を表示する。 The power button 48 switches between starting and stopping the blood glucose meter 10 under the operation of the user. The operation button 50 functions as an operation unit for measuring and displaying a blood glucose level based on a user's operation and switching display of measurement results (including past measurement results) in the activated blood glucose meter 10. To do. The display 52 is composed of a liquid crystal, an organic EL, or the like, and displays information to be provided to the user in the measurement operation such as measurement result display or error display.
 イジェク卜レバー54は、先端および基端方向に移動可能に設けられ、測光ブロック46内に設けられる図示しないイジェク卜ピンのロックを解除して、イジェク卜ピンを先端方向に進出可能とする。 The eject rod lever 54 is provided so as to be movable in the distal end and proximal direction, and unlocks an eject rod pin (not shown) provided in the photometry block 46 so that the eject rod pin can be advanced in the distal direction.
 一方、装置本体16の測光ブロック46は、ユーザの指等に先端を押し当てるために、箱体部44から先端方向に長く延出している。図5に示すように、この測光ブロック46には、挿入孔58を有するチップ装着部60と、血中のグルコース(血糖)を光学的に検出する測定部14とが設けられる。 On the other hand, the photometric block 46 of the apparatus main body 16 extends from the box 44 in the distal direction so as to press the distal end against the user's finger or the like. As shown in FIG. 5, the photometric block 46 is provided with a chip mounting portion 60 having an insertion hole 58 and a measuring portion 14 that optically detects blood glucose (blood glucose).
 チップ装着部60は、高い硬質性(剛性)を有する材料(例えば、ステンレス)により、外方向に突出するフランジ部60aを先端側に備え、軸方向に所定長さを有する筒状に形成される。このチップ装着部60は、樹脂材料で構成された測光ブロック46の先端面と軸心部(中心部)にわたって位置決め固定される。測光ブロック46の内面には、図7Aに示すように、チップ装着部60を強固に固定する固定壁46aが突出形成されている。 The tip mounting portion 60 is formed of a material having high rigidity (rigidity) (for example, stainless steel) and has a flange portion 60a that protrudes outward, on the tip side, and is formed in a cylindrical shape having a predetermined length in the axial direction. . The chip mounting portion 60 is positioned and fixed over the tip surface and the axial center portion (center portion) of the photometric block 46 made of a resin material. As shown in FIG. 7A, a fixed wall 46a for firmly fixing the chip mounting portion 60 is formed on the inner surface of the photometric block 46 so as to protrude.
 チップ装着部60を構成する材料としては、例えば、ステンレスやチタン等の金属、アルマイト皮膜処理をしたアルミニウム、液晶ポリマー、ガラスやマイカ等のフィラーを添加したプラスティック、ニッケルめっき等で表面を硬化皮膜したプラスティック、カーボンファイバー、ファインセラミック等、硬質で安易に寸法が変化せず、また繰り返し測定用チップの抜き差しをしても摩耗しにくく、且つ寸法精度良く加工可能な材料が挙げられる。この中でも金属材料を適用すれば、チップ装着部60の製造(射出成形やプレス成形等)時に、高い寸法精度且つ容易に挿入孔58を成形することができる。なお、装置本体16は、測光ブロック46自体を硬質な材料(例えば、金属材料)により構成することで、チップ装着部60を一体成形していてもよい。 As a material constituting the chip mounting portion 60, for example, a metal such as stainless steel or titanium, anodized aluminum, a liquid crystal polymer, a plastic added with a filler such as glass or mica, or a nickel-plated surface is hardened. Examples thereof include materials such as plastic, carbon fiber, fine ceramic, etc. that are hard and do not easily change in size, and that do not wear easily even when the measurement chip is repeatedly inserted and removed, and that can be processed with high dimensional accuracy. Among these, if a metal material is applied, the insertion hole 58 can be easily formed with high dimensional accuracy when the chip mounting portion 60 is manufactured (injection molding, press molding or the like). In the apparatus main body 16, the chip mounting part 60 may be integrally formed by configuring the photometric block 46 itself from a hard material (for example, a metal material).
 チップ装着部60の軸心部には、このチップ装着部60の壁部62に囲われることにより挿入孔58が設けられる。挿入孔58は、上下方向に長く、左右幅方向に短い断面長方形状に形成されている。挿入孔58は、チップ装着部60が測光ブロック46に固着された状態で、その先端面から奥部(基端方向)に向かって所定深さを有する。 The insertion hole 58 is provided in the axial center part of the chip mounting part 60 by being surrounded by the wall part 62 of the chip mounting part 60. The insertion hole 58 is formed in a rectangular shape that is long in the vertical direction and short in the left-right width direction. The insertion hole 58 has a predetermined depth from the distal end surface toward the back (base end direction) in a state where the chip mounting portion 60 is fixed to the photometric block 46.
 チップ装着部60の先端側には、挿入孔58に連なると共に、外部に連通する挿入開口部58aが形成される。この挿入開口部58aの上下方向の寸法は、測定用チップ12の短辺24の寸法(上下方向の長さ)に一致している。また、挿入開口部58aの左右幅方向の寸法、すなわち挿入孔58の側面を構成する一対の壁部62の間隔は、図7Aに示すように、測定用チップ12の積層方向の厚み(図7A中のTall)と実質的に同じである。 At the distal end side of the chip mounting portion 60, an insertion opening 58a that is continuous with the insertion hole 58 and communicates with the outside is formed. The vertical dimension of the insertion opening 58a matches the dimension (vertical length) of the short side 24 of the measuring chip 12. Further, the dimension of the insertion opening 58a in the left-right width direction, that is, the distance between the pair of wall portions 62 constituting the side surface of the insertion hole 58 is, as shown in FIG. 7A, the thickness in the stacking direction of the measurement chip 12 (FIG. 7A). Substantially the same as Tall in the middle).
 チップ装着部60は、挿入孔58(測定用孔部59)が延在する途中位置に、測光ブロック46の固定壁46aと協働して一対の素子収容空間64を形成している。一対の素子収容空間64は、測定部14の一部であり、挿入孔58を挟んで互いに対向位置に設けられ、チップ装着部60により形成された各導光部66を介して測定用孔部59に連通している。 The chip mounting portion 60 forms a pair of element accommodating spaces 64 in cooperation with the fixed wall 46a of the photometry block 46 at a midway position where the insertion hole 58 (measurement hole portion 59) extends. The pair of element housing spaces 64 are a part of the measurement unit 14, are provided at positions facing each other across the insertion hole 58, and each of the measurement hole units is formed via the light guide units 66 formed by the chip mounting unit 60. 59.
 測定部14は、一方の素子収容空間64に発光素子68を収容することで発光部70を構成し、他方の素子収容空間64に受光素子72を収容することで受光部74を構成している。チップ装着部60の導光部66は、適宜な直径を有する円形状の穴に形成されることで、所謂アパーチャの役割を果たしている。 The measuring unit 14 configures the light emitting unit 70 by accommodating the light emitting element 68 in one element accommodating space 64, and configures the light receiving unit 74 by accommodating the light receiving element 72 in the other element accommodating space 64. . The light guide part 66 of the chip mounting part 60 plays a role of a so-called aperture by being formed in a circular hole having an appropriate diameter.
 発光部70の発光素子68は、第1の波長を有する測定光を測定用チップ12に照射する第1発光素子68aと、第1の波長とは異なる第2の波長を有する測定光を測定用チップ12に照射する第2発光素子68bとを含む(図5中では図示を省略する)。第1発光素子68aと第2発光素子68bは、素子収容空間64の導光部66を臨む位置に並設されている。 The light emitting element 68 of the light emitting unit 70 measures the first light emitting element 68a that irradiates the measuring chip 12 with the measuring light having the first wavelength, and the measuring light having the second wavelength different from the first wavelength. And a second light emitting element 68b that irradiates the chip 12 (not shown in FIG. 5). The first light emitting element 68a and the second light emitting element 68b are arranged side by side at a position facing the light guide portion 66 of the element accommodating space 64.
 発光素子68(第1及び第2発光素子68a、68b)は、発光ダイオード(LED)で構成され得る。第1の波長は、血糖量に応じた試薬26の呈色濃度を検出するための波長であり、例えば、600nmを超えて680nm以下である。第2の波長は、血液中の赤血球濃度を検出するための波長であり、例えば、510nm~540nmである。箱体部44内の制御部42は、駆動電流を供給して、第1及び第2発光素子68a、68bをそれぞれ所定タイミングで発光させる。この場合、呈色濃度から得られる血糖値を赤血球濃度から得られるヘマトクリット値を用いて補正し、血糖値を求める。なお、さらに他の測定波長で測定することで、血球に起因するノイズを補正してもよい。 The light emitting element 68 (first and second light emitting elements 68a and 68b) may be formed of a light emitting diode (LED). The first wavelength is a wavelength for detecting the color density of the reagent 26 according to the blood glucose level, and is, for example, more than 600 nm and 680 nm or less. The second wavelength is a wavelength for detecting the concentration of red blood cells in blood, and is, for example, 510 nm to 540 nm. The control unit 42 in the box unit 44 supplies a drive current to cause the first and second light emitting elements 68a and 68b to emit light at a predetermined timing. In this case, the blood glucose level obtained from the color concentration is corrected using the hematocrit value obtained from the red blood cell concentration, and the blood glucose level is obtained. In addition, you may correct | amend the noise resulting from a blood cell by measuring at another measurement wavelength.
 受光部74は、素子収容空間64の導光部66を臨む位置に1つの受光素子72を配置して構成される。この受光部74は、測定用チップ12からの透過光を受光するものであり、例えば、フォトダイオード(PD)で構成され得る。 The light receiving part 74 is configured by arranging one light receiving element 72 at a position facing the light guide part 66 of the element accommodating space 64. The light receiving unit 74 receives transmitted light from the measuring chip 12, and may be configured by, for example, a photodiode (PD).
 また、挿入孔58の底部(基端面)には、イジェクトレバー54に連結されたイジェクトピン56(イジェクト部)が設けられている。イジェクトピン56は、測光ブロック46の軸方向に沿って延びる棒部56aと、棒部56aの先端部で径方向外側に大径な受部56bとを備える。受部56bには、挿入孔58に挿入された測定用チップ12の基端辺24bが接触する。また、挿入孔58の底部とイジェクトピン56の受部56bの間には、イジェクトピン56を非接触に囲うコイルバネ76が設けられている。コイルバネ76は、イジェクトピン56の受部56bを弾性的に支持する。 Further, an eject pin 56 (eject portion) connected to the eject lever 54 is provided at the bottom portion (base end surface) of the insertion hole 58. The eject pin 56 includes a rod portion 56a extending along the axial direction of the photometry block 46, and a receiving portion 56b having a large diameter on the radially outer side at the tip portion of the rod portion 56a. The base end side 24b of the measuring chip 12 inserted into the insertion hole 58 is in contact with the receiving portion 56b. A coil spring 76 that surrounds the eject pin 56 in a non-contact manner is provided between the bottom of the insertion hole 58 and the receiving portion 56 b of the eject pin 56. The coil spring 76 elastically supports the receiving portion 56b of the eject pin 56.
 測定用チップ12の挿入が完了すると、図7Bに示すように、測定用チップ12の測定対象部28が導光部66に重なる位置に配置される。 When the insertion of the measurement chip 12 is completed, the measurement target part 28 of the measurement chip 12 is arranged at a position overlapping the light guide part 66 as shown in FIG. 7B.
 イジェクトピン56は、ユーザによる測定用チップ12の挿入に伴い受部56bが押されることで基端方向に変位し、筐体40内に設けられた図示しないロック機構によりロック(固定)される。コイルバネ76は、受部56bの変位に従って弾性的に収縮する。そして、ユーザのイジェクトレバー54の操作により、イジェクトピン56が多少移動するとロック機構のロックが解除され、コイルバネ76の弾性復元力により先端方向にスライドする。これにより、測定用チップ12がイジェクトピン56に押し出されて、挿入孔58から取り出される。 The eject pin 56 is displaced in the proximal direction when the receiving portion 56b is pushed along with the insertion of the measuring chip 12 by the user, and is locked (fixed) by a lock mechanism (not shown) provided in the housing 40. The coil spring 76 is elastically contracted according to the displacement of the receiving portion 56b. When the eject pin 56 is slightly moved by the user's operation of the eject lever 54, the lock mechanism is unlocked and slides in the distal direction by the elastic restoring force of the coil spring 76. As a result, the measuring chip 12 is pushed out to the eject pin 56 and taken out from the insertion hole 58.
 図4に戻り、装置本体16の制御部42は、例えば、図示しない演算部、記憶部、入出力部を有する制御回路によって構成される。この制御部42は、周知のコンピュータを適用することが可能である。制御部42は、例えば、ユーザの操作ボタン50の操作下に、測定部14を駆動制御して血中のグルコースを検出及び算出し、ディスプレイ52に算出した血糖値を表示する。 Returning to FIG. 4, the control unit 42 of the apparatus main body 16 includes, for example, a control circuit having a calculation unit, a storage unit, and an input / output unit (not shown). The control unit 42 can be a known computer. For example, the control unit 42 drives and controls the measurement unit 14 to detect and calculate blood glucose under the operation of the operation button 50 of the user, and displays the calculated blood glucose level on the display 52.
 例えば、測定用チップ12に対し測定光を透過させて分析対象物(例えば、グルコース)を測定する血糖計10において、制御部42は、以下の式(A)で示すBeer-Lambert則に基づいて測定結果を算出する。 For example, in the blood glucose meter 10 that measures an analysis object (for example, glucose) by transmitting measurement light to the measurement chip 12, the control unit 42 is based on the Beer-Lambert law expressed by the following equation (A). Calculate the measurement results.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 上記式(A)において、lは血液サンプルに入射する前の光の強度、lは血液サンプルから出射した後の光の強度、αは吸光係数、Lは測定光が通過する距離(セル長)である。 In the above formula (A), l 0 is the intensity of light before entering the blood sample, l 1 is the intensity of light after exiting the blood sample, α is the extinction coefficient, and L is the distance through which the measurement light passes (cell Long).
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. In the following examples, the operation was performed at room temperature (25 ° C.) unless otherwise specified. Unless otherwise specified, “%” and “part” mean “% by mass” and “part by mass”, respectively.
 実施例1:テトラゾリウム化合物1の合成
 以下の方法に従って、下記構造を有する化合物(テトラゾリウム化合物1)を合成した。
Example 1: Synthesis of tetrazolium compound 1 A compound having the following structure (tetrazolium compound 1) was synthesized according to the following method.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 1.ヒドラゾン化合物1の合成
 4-ホルミルベンゼン-1,3-ジスルホン酸二ナトリウム(Disodium 4-Formylbenzene-1,3-disulfonate)(東京化成工業株式会社製) 8.59g及び(4,5-ジメチル-チアゾール-2-イル)ヒドラジン((4,5-Dimethyl-thiazol-2-yl)-hydrazine)(Fluorochem社製) 4.0gをRO水300mLに溶解させた。これに、酢酸1.6mLを加えウォーターバスにて60℃で2時間、加熱・攪拌した。加熱・攪拌終了後、溶媒を除去した。得られた残渣をアルコール洗浄した後、沈殿を濾別した。得られた沈殿を乾燥させることにより、ヒドラゾン化合物1を得た。
1. Synthesis of hydrazone compound 1 Disodium 4-formylbenzene-1,3-disulfonate (manufactured by Tokyo Chemical Industry Co., Ltd.) 8.59 g and (4,5-dimethyl-thiazole) -2-yl) hydrazine ((4,5-Dimethyl-thiazol-2-yl) -hydrazine) (manufactured by Fluorochem) was dissolved in 300 mL of RO water. To this was added 1.6 mL of acetic acid, and the mixture was heated and stirred at 60 ° C. for 2 hours in a water bath. After completion of heating and stirring, the solvent was removed. The obtained residue was washed with alcohol, and then the precipitate was filtered off. The obtained precipitate was dried to obtain hydrazone compound 1.
 2.ホルマザン化合物1の合成
 上記1.のヒドラゾン化合物1 1.39gを、RO水25mLとメタノール(和光純薬工業株式会社製)25mLとの混合液に溶解して、ヒドラゾン化合物1溶液を調製した。2-メトキシ-4-ニトロアニリン(2-methoxy-4-nitroaniline)(東京化成工業株式会社製) 0.437gをRO水3.44mLとアセトニトリル10mLとの混合液に溶解した。この溶液を0℃に保持しつつ、9.6N HCl 560μLを加え、亜硝酸ナトリウム溶液を滴下し、ジアゾ化を行った。このジアゾ化溶液を、-20℃に保持し、ヒドラゾン化合物1溶液に滴下した。滴下終了後、10N NaOH 600μLを滴下し、2時間室温(25℃)で攪拌して、ホルマザン化合物1を含む溶液(ホルマザン化合物1溶液)を調製した。このホルマザン化合物1溶液を9.6N HClにてpHを中性に調整し、溶媒を除去した。得られた残渣をイソプロパノールで洗浄した後、沈殿を濾別した。この沈殿を乾燥させることにより、ホルマザン化合物1を得た。
2. Synthesis of formazan compound 1 1.39 g of hydrazone compound 1 was dissolved in a mixed solution of 25 mL of RO water and 25 mL of methanol (manufactured by Wako Pure Chemical Industries, Ltd.) to prepare a hydrazone compound 1 solution. 0.437 g of 2-methoxy-4-nitroaniline (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in a mixed solution of 3.44 mL of RO water and 10 mL of acetonitrile. While maintaining this solution at 0 ° C., 560 μL of 9.6N HCl was added, and sodium nitrite solution was added dropwise to perform diazotization. This diazotized solution was kept at −20 ° C. and added dropwise to the hydrazone compound 1 solution. After completion of the dropping, 600 μL of 10N NaOH was added dropwise and stirred for 2 hours at room temperature (25 ° C.) to prepare a solution containing formazan compound 1 (formazan compound 1 solution). The formazan compound 1 solution was adjusted to neutral pH with 9.6N HCl, and the solvent was removed. The obtained residue was washed with isopropanol, and then the precipitate was filtered off. The formazan compound 1 was obtained by drying this precipitate.
 3.ホルマザン化合物1の精製およびテトラゾリウム化合物1の合成
 上記2.のホルマザン化合物1をRO水10mLに溶解して、ホルマザン化合物1溶液を調製した。ディスポーザブルカラム(大きさ:20cm×5cm)に、カラムクロマトグラフィー用充填剤(ナカライテスク株式会社製、COSMOSIL 40C18-PREP)を充填し、カラム分取システム(日本ビュッヒ社製、商品名:セパコア)にセットした。このカラムシステムを用いて、ホルマザン化合物1溶液を精製した。脱塩処理後、採取したフラクションの溶媒を除去し、得られた固形成分に、メタノール15mL、9.6N HCl 250μL、15%亜硝酸エチル(CHCHNO)-エタノール溶液5mLを加えて、72時間、室温(25℃で)遮光にて攪拌した。
3. Purification of formazan compound 1 and synthesis of tetrazolium compound 1 Formazan compound 1 was dissolved in 10 mL of RO water to prepare a formazan compound 1 solution. A disposable column (size: 20 cm × 5 cm) is packed with a packing material for column chromatography (manufactured by Nacalai Tesque Co., Ltd., COSMOSIL 40C 18- PREP), and a column preparative system (manufactured by Nihon Büch, trade name: Sepacore). Set. Formazan compound 1 solution was purified using this column system. After desalting, the solvent of the collected fraction was removed, and 15 mL of methanol, 250 μL of 9.6N HCl, and 5 mL of a 15% ethyl nitrite (CH 3 CH 2 NO 2 ) -ethanol solution were added to the obtained solid components. The mixture was stirred for 72 hours at room temperature (at 25 ° C.) and protected from light.
 4.テトラゾリウム化合物1の回収
 上記3.の反応溶液5mLに対し、ジエチルエーテルを加えて、テトラゾリウム化合物1を沈殿させた。この沈殿をドラフト内で乾燥させ、テトラゾリウム化合物1を得た(90mg、収率:5.0質量%)。
4). Recovery of tetrazolium compound 1 3. Diethyl ether was added to 5 mL of the reaction solution to precipitate tetrazolium compound 1. This precipitate was dried in a draft to obtain tetrazolium compound 1 (90 mg, yield: 5.0% by mass).
 実施例2:テトラゾリウム化合物2の合成
 以下の方法に従って、下記構造を有する化合物(テトラゾリウム化合物2)を合成した。
Example 2: Synthesis of tetrazolium compound 2 A compound having the following structure (tetrazolium compound 2) was synthesized according to the following method.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 1.ヒドラゾン化合物2の合成
 4-ホルミルベンゼン-1,3-ジスルホン酸二ナトリウム(Disodium 4-Formylbenzene-1,3-disulfonate)(東京化成工業株式会社製) 8.59g及び(4,5-ジメチル-チアゾール-2-イル)ヒドラジン((4,5-Dimethyl-thiazol-2-yl)-hydrazine)(Fluorochem社製) 4.0gを、逆浸透水(RO水)300mLに溶解させた。これに、酢酸1.6mLを加えウォーターバスにて60℃で2時間、加熱・攪拌した。加熱・攪拌終了後、溶媒を除去した。得られた残渣をエタノールで洗浄した後、沈殿を濾別した。この沈殿を乾燥させることにより、ヒドラゾン化合物2を得た。
1. Synthesis of hydrazone compound 2 8.59 g and (4,5-dimethyl-thiazole) disodium 4-formylbenzene-1,3-disulfonate (manufactured by Tokyo Chemical Industry Co., Ltd.) -2-yl) hydrazine ((4,5-Dimethyl-thiazol-2-yl) -hydrazine) (manufactured by Fluorochem) was dissolved in 300 mL of reverse osmosis water (RO water). To this was added 1.6 mL of acetic acid, and the mixture was heated and stirred at 60 ° C. for 2 hours in a water bath. After completion of heating and stirring, the solvent was removed. The obtained residue was washed with ethanol, and then the precipitate was filtered off. The hydrazone compound 2 was obtained by drying this precipitate.
 2.ホルマザン化合物2の合成
 上記1.で得られたヒドラゾン化合物2 1.39gを、RO水25mLとメタノール25mLとの混合液に溶解して、ヒドラゾン化合物2溶液を調製した。2-エトキシ-4-ニトロアニリン(2-Ethoxy-4-nitroaniline)(五二化学工業株式会社製) 0.455gをRO水3.44mLとアセトニトリル10mLとの混合液に溶解した。この溶液を0℃に保持しつつ、9.6N HCl 560μLを加え、亜硝酸ナトリウム溶液を滴下し、ジアゾ化を行った。このジアゾ化溶液を、-20℃に保持し、ヒドラゾン化合物2溶液に滴下した。滴下終了後、10N NaOH 600μLを滴下し、2時間室温(25℃)で攪拌して、ホルマザン化合物2を含む溶液(ホルマザン化合物2溶液)を調製した。このホルマザン化合物2溶液を9.6N HClにてpHを中性に調整し、溶媒を除去した。得られた残渣をイソプロパノールで洗浄した後、沈殿を濾別した。得られた沈殿を乾燥させることにより、ホルマザン化合物2を得た。
2. Synthesis of formazan compound 2 1. A hydrazone compound 2 solution was prepared by dissolving 1.39 g of the hydrazone compound 2 obtained in 1 above in a mixed solution of 25 mL of RO water and 25 mL of methanol. 0.455 g of 2-Ethoxy-4-nitroaniline (manufactured by Goji Chemical Industry Co., Ltd.) was dissolved in a mixed solution of 3.44 mL of RO water and 10 mL of acetonitrile. While maintaining this solution at 0 ° C., 560 μL of 9.6N HCl was added, and sodium nitrite solution was added dropwise to perform diazotization. This diazotized solution was kept at −20 ° C. and added dropwise to the hydrazone compound 2 solution. After completion of the dropwise addition, 600 μL of 10N NaOH was added dropwise and stirred for 2 hours at room temperature (25 ° C.) to prepare a solution containing formazan compound 2 (formazan compound 2 solution). The formazan compound 2 solution was adjusted to neutral pH with 9.6N HCl, and the solvent was removed. The obtained residue was washed with isopropanol, and then the precipitate was filtered off. The formazan compound 2 was obtained by drying the obtained precipitate.
 3.ホルマザン化合物2の精製およびテトラゾリウム化合物2の合成
 上記2.のホルマザン化合物2をRO水10mLに溶解して、ホルマザン化合物2溶液を調製した。ディスポーザブルカラム(大きさ:20cm×5cm)に、カラムクロマトグラフィー用充填剤(ナカライテスク株式会社製、COSMOSIL 40C18-PREP)を充填し、カラム分取システム(日本ビュッヒ社製、商品名:セパコア)にセットした。このカラムシステムを用いて、ホルマザン化合物2溶液を精製した。脱塩処理後、採取した赤色フラクションをエバポレーターで溶媒を除去し、得られた固形成分に、メタノール15mL、9.6N HCl 250μL、15%亜硝酸エチル(CHCHNO)-エタノール溶液5mLを加えて、72時間、室温(25℃で)遮光にて攪拌した。
3. Purification of formazan compound 2 and synthesis of tetrazolium compound 2 Formazan compound 2 was dissolved in 10 mL of RO water to prepare a formazan compound 2 solution. A disposable column (size: 20 cm × 5 cm) is packed with a packing material for column chromatography (manufactured by Nacalai Tesque Co., Ltd., COSMOSIL 40C 18- PREP), and a column preparative system (manufactured by Nihon Büch, trade name: Sepacore). Set. Formazan compound 2 solution was purified using this column system. After desalting, the solvent was removed from the collected red fraction with an evaporator, and 15 mL of methanol, 9.6N HCl 250 μL, and 15% ethyl nitrite (CH 3 CH 2 NO 2 ) -ethanol solution 5 mL were obtained. Was added and stirred for 72 hours at room temperature (at 25 ° C.) protected from light.
 4.テトラゾリウム化合物2の回収
 上記3.の反応溶液5mLに対し、ジエチルエーテル50mLを加えることにより、テトラゾリウム化合物2を沈殿させた。これを遠心分離し、上澄みを除去後、さらにジエチルエーテルで洗浄した。この沈殿をドラフト内で乾燥させ、テトラゾリウム化合物2を得た(120mg、6.5質量%)。
4). Recovery of tetrazolium compound 2 3. The tetrazolium compound 2 was precipitated by adding 50 mL of diethyl ether to 5 mL of the reaction solution. This was centrifuged, the supernatant was removed, and further washed with diethyl ether. This precipitate was dried in a draft to obtain tetrazolium compound 2 (120 mg, 6.5% by mass).
 実施例1~2、比較例1~5
 上記実施例1~2のテトラゾリウム化合物1~2および下記構造の比較化合物1~5(それぞれ、比較例1~5)について、下記方法に従って、水溶性、感度、キレート速度、極大吸収波長(λmax)、および安定性を評価し、結果を下記表1に示す。
Examples 1-2, Comparative Examples 1-5
For the tetrazolium compounds 1 to 2 of Examples 1 and 2 and the comparative compounds 1 to 5 having the following structures (Comparative Examples 1 to 5, respectively), water solubility, sensitivity, chelate rate, maximum absorption wavelength (λmax) were determined according to the following methods. The stability was evaluated, and the results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 (水溶性の評価)
 各化合物を、水溶液中の化合物の濃度が200mMとなるような量で、RO水 100μL、0.5M MOPS溶液(pH7.2)100μLに加えた。5分間撹拌した後、沈殿物を目視で確認した。200mMの水溶液にて沈殿物がない場合には溶解性を○とした。200mMの水溶液にても沈殿物が認められる場合には、溶解性を「×」とした。
(Evaluation of water solubility)
Each compound was added to 100 μL of RO water and 100 μL of 0.5M MOPS solution (pH 7.2) in such an amount that the concentration of the compound in the aqueous solution was 200 mM. After stirring for 5 minutes, the precipitate was visually confirmed. In the case where there was no precipitate in a 200 mM aqueous solution, the solubility was evaluated as ◯. In the case where a precipitate was observed even in a 200 mM aqueous solution, the solubility was evaluated as “x”.
 (キレート速度および極大吸収波長(λmax)の評価)
 各化合物のホルマザンの終濃度が50~200mMとなるように、10mM MOPS溶液(pH7.2)を加えて、試料を調製した。このとき、いずれの試料も赤褐色に発色した。
(Evaluation of chelate rate and maximum absorption wavelength (λmax))
A sample was prepared by adding a 10 mM MOPS solution (pH 7.2) so that the final concentration of formazan of each compound was 50 to 200 mM. At this time, each sample developed reddish brown.
 上記試料100μLに、1M ニッケルイオンを含むニッケル水溶液を10μL加え、素早く攪拌しながら、色調変化を観察した。ニッケル水溶液を添加してから発色を目視にて確認するまでの時間を計り、上記時間が1分以内である場合にはキレート速度を「○」とし、上記時間が1分を超えた場合にはキレート速度を「×」として評価した。なお、比較例2および4では、ニッケルイオンを添加後の試料の色調が、長波長側へと色調変化しなかったため、キレート形成しなかったと判断し、表1において「-」と表示した。 10 μL of a nickel aqueous solution containing 1M nickel ions was added to 100 μL of the sample, and the color tone change was observed while stirring rapidly. Measure the time until the color development is visually confirmed after adding the nickel aqueous solution. If the time is within 1 minute, the chelate rate is set to “◯”. If the time exceeds 1 minute, The chelation rate was evaluated as “x”. In Comparative Examples 2 and 4, it was determined that chelate was not formed because the color tone of the sample after the addition of nickel ions did not change toward the long wavelength side, and “-” was displayed in Table 1.
 また、各化合物のホルマザン水溶液とニッケル水溶液の混合溶液について、スペクトルを、分光光度計(測定セル長:10mm)にて測定した(n=1)。各スペクトルに基づいて、各化合物のホルマザンでの極大吸収波長(λmax)(nm)を求めた。それぞれの結果は、表1に示される。一例として、テトラゾリウム化合物1から得られたスペクトルを図1に示す。図1から、化合物1から生成したホルマザンとニッケルイオンとのキレート化合物の極大吸収波長(λmax)は650nmであることが分かる。 Further, the spectrum of the mixed solution of each compound formazan aqueous solution and nickel aqueous solution was measured with a spectrophotometer (measurement cell length: 10 mm) (n = 1). Based on each spectrum, the maximum absorption wavelength (λmax) (nm) of each compound in formazan was determined. The respective results are shown in Table 1. As an example, a spectrum obtained from the tetrazolium compound 1 is shown in FIG. FIG. 1 shows that the maximum absorption wavelength (λmax) of the chelate compound of formazan and nickel ions produced from compound 1 is 650 nm.
 (感度の評価)
 各化合物 0.02mmolに、RO水 75μL及び0.5M MOPS溶液(pH7.2)100μLを添加、溶解して、試料を調製した。対照として、2-benzothiazolyl-3-(4-carboxy-2-methoxyphenyl)-5-[4-(2-sulfoethylcarbamoyl)phenyl]-2H-tetrazolium(WST-4) 11.6mgに、RO水 85μL及び0.5M MOPS溶液(pH7.2)100μLを添加、溶解して、対照試料を調製した。
(Evaluation of sensitivity)
Samples were prepared by adding and dissolving 75 μL of RO water and 100 μL of 0.5 M MOPS solution (pH 7.2) to 0.02 mmol of each compound. As a control, 11.6 mg of 2-benzothiazolyl-3- (4-carboxy-2-methoxyphenyl) -5- [4- (2-sulfoethylcarbamoyl) phenyl] -2H-tetrazolium (WST-4), 85 μL of RO water and 0 A control sample was prepared by adding and dissolving 100 μL of a 5 M MOPS solution (pH 7.2).
 別途、フラビンアデニンジヌクレオチド(FAD)を補酵素とするグルコースデヒドロゲナーゼ(GDH-FAD)(東洋紡株式会社製、品番:GLD-351)7mgに、RO水 100μLを加え、溶解させて、GDH溶液を調製した。また、1-メトキシ-5-メチルフェナジウムメチルサルフェート(m-PMS)(株式会社同仁化学研究所製)
 3.5mgに、RO水 200μLを加えて溶解させて、s-PMS溶液を調製した。塩化ニッケル 129mgにRO水1mL加え溶解させ、ニッケル溶液を調製した。
Separately, 100 μL of RO water was added to 7 mg of glucose dehydrogenase (GDH-FAD) (product number: GLD-351, manufactured by Toyobo Co., Ltd.) using flavin adenine dinucleotide (FAD) as a coenzyme, and dissolved to prepare a GDH solution. did. Also, 1-methoxy-5-methylphenadium methyl sulfate (m-PMS) (manufactured by Dojin Chemical Laboratory)
An s-PMS solution was prepared by adding 200 μL of RO water to 3.5 mg and dissolving. 1 mL of RO water was added to 129 mg of nickel chloride and dissolved therein to prepare a nickel solution.
 各試料に、それぞれ、上記にて調製したGDH溶液 10μL、m-PMS溶液 5μL、ニッケル溶液 10μLを加えて、反応溶液を作製した。また、対照試料に、上記にて調製したGDH溶液 10μL及びm-PMS溶液 5μLを加えて、対照反応溶液を作製した。 A reaction solution was prepared by adding 10 μL of the GDH solution prepared above, 5 μL of m-PMS solution, and 10 μL of nickel solution to each sample. In addition, 10 μL of the GDH solution prepared above and 5 μL of the m-PMS solution were added to the control sample to prepare a control reaction solution.
 上記にて調製した反応溶液 40μLに、それぞれ、50mg/dL、100mg/dL及び200mg/dL濃度のグルコース溶液10μL加えて発色させ、スペクトルを分光光度計(測定セル長:50μm)にて測定した(n=1)。各スペクトルにおいて、上記にて求めた各化合物の極大吸収波長(λmax)での吸光度を測定し、発色溶液中のグルコース濃度及び吸光度をそれぞれ横軸及び縦軸として、プロットし、傾き(傾きsample)を求める。 To 40 μL of the reaction solution prepared above, 10 μL of glucose solutions having a concentration of 50 mg / dL, 100 mg / dL and 200 mg / dL were added for color development, and the spectrum was measured with a spectrophotometer (measurement cell length: 50 μm) ( n = 1). In each spectrum, the absorbance at the maximum absorption wavelength (λmax) of each compound obtained above was measured, and the glucose concentration and absorbance in the coloring solution were plotted with the horizontal axis and the vertical axis, respectively, and the slope (slope sample ). Ask for.
 上記にて調製した対照反応溶液 40μLに、それぞれ、50mg/dL及び200mg/dL濃度のグルコース溶液 10μL加えて発色させ、スペクトルを分光光度計(測定セル長:50μm)にて測定した(n=1)。各スペクトルにおいて、650nmでの吸光度を測定し、グルコース濃度及び吸光度をそれぞれ横軸及び縦軸として、プロットし、傾き(傾きWST-4)を求める。 To 40 μL of the control reaction solution prepared above, 10 μL of a glucose solution having a concentration of 50 mg / dL and 200 mg / dL was added for color development, and the spectrum was measured with a spectrophotometer (measurement cell length: 50 μm) (n = 1). ). In each spectrum, the absorbance at 650 nm is measured, plotted with the glucose concentration and absorbance as the horizontal axis and the vertical axis, respectively, and the slope (slope WST-4 ) is obtained.
 上記にて求められた傾きsampleを傾きWST-4で除した値(傾きsample/傾きWST-4)が2倍以上である場合には感度を「○」とし、上記傾きsample/傾きWST-4の比が2倍未満である場合にはキレート速度「×」として評価した。一例として、テトラゾリウム化合物1及びWST-4のプロット図を図2に示す。図2は、テトラゾリウム化合物1及びWST-4に関するグルコース濃度と生成ホルマザンの吸光度との関係を示すグラフである。図2から、化合物1及びWST-4の傾きはそれぞれ0.0062及び0.0026であることから、傾きsample/傾きWST-4の比は約2.4(感度が○)であることが分かる。また、図示していないが、実施例2の傾きsample/傾きWST-4の比は2.4(感度が○)であり、比較例1の傾きsample/傾きWST-4の比は1.6(感度が×)であり、比較例3の傾きsample/傾きWST-4の比は2.5(感度が○)であった。また、比較例2および4は、キレート形成しなかったため、ホルマザンの極大吸収波長が600nm超へシフトしなかった。このため、比較例2および4は、感度の評価を実施しなかった。(表1において感度結果を「-」と表示した。)なお、傾きは各化合物の発色強度の指標となる。このため、傾きsampleを傾きWST-4で除した値(傾きsample/傾きWST-4)が1倍を超えることは、公知の発色試薬であるWST-4に比して長波長側での発色が高いことを意味する。 When the value obtained by dividing the slope sample obtained above by the slope WST-4 (slope sample / slope WST-4 ) is twice or more, the sensitivity is “◯”, and the slope sample / slope WST-4 When the ratio was less than 2 times, the chelate rate was evaluated as “x”. As an example, a plot of tetrazolium compound 1 and WST-4 is shown in FIG. FIG. 2 is a graph showing the relationship between the glucose concentration and the absorbance of produced formazan for tetrazolium compound 1 and WST-4. As can be seen from FIG. 2, since the slopes of Compound 1 and WST-4 are 0.0062 and 0.0026, respectively, the ratio of slope sample / slope WST-4 is about 2.4 (sensitivity is ◯). . Although not shown, the ratio of the slope sample / inclination WST-4 in Example 2 is 2.4 (sensitivity is ◯), and the ratio of the inclination sample / inclination WST-4 in Comparative Example 1 is 1.6. (Sensitivity is x), and the ratio of slope sample / slope WST-4 in Comparative Example 3 was 2.5 (sensitivity was good). Further, Comparative Examples 2 and 4 did not form a chelate, so the maximum absorption wavelength of formazan did not shift to more than 600 nm. For this reason, Comparative Examples 2 and 4 were not evaluated for sensitivity. (The sensitivity result is shown as “−” in Table 1.) The slope is an index of the color intensity of each compound. For this reason, the value obtained by dividing the inclination sample by the inclination WST-4 (inclination sample / inclination WST-4 ) is more than 1 time, as compared with WST-4, which is a known coloring reagent, color development on the long wavelength side. Means high.
 (安定性の評価)
 各化合物 0.02mmolに、RO水 75μL及び0.5M MOPS溶液(pH7.2)100μLを添加、溶解して、試料を調製した。
(Evaluation of stability)
Samples were prepared by adding and dissolving 75 μL of RO water and 100 μL of 0.5 M MOPS solution (pH 7.2) to 0.02 mmol of each compound.
 この試料に、上記(感度の評価)と同様にして調製したGDH溶液 10μL、m-PMS溶液 5μL、ニッケル溶液 10μLを加えて、測定溶液を作製した。 To this sample, 10 μL of GDH solution, 5 μL of m-PMS solution and 10 μL of nickel solution prepared in the same manner as described above (sensitivity evaluation) were added to prepare a measurement solution.
 測定溶液作製時(0時間)、ならびに作製してから1時間、2時間及び6時間後に、上記にて調製した測定溶液のスペクトルを分光光度計(測定セル長:50μm)にて測定した(n=1)。各スペクトルにおいて、上記にて求めた各化合物の極大吸収波長(λmax)での吸光度を測定した。測定溶液作製時(0時間)、ならびに作製してから1時間、2時間及び6時間後での吸光度を、それぞれ、Abs0h、Abs1h、Abs2h及びAbs6hとする。各測定時間での吸光度から測定溶液作製時(0時間)での吸光度を差し引いた値を測定時間で除した値[それぞれ、(Abs1h-Abs0h)/1、(Abs2h-Abs0h)/2及び(Abs6h-Abs0h)/6]が0.05未満である場合には安定性を「○」とし、上記値が0.05を超え0.15以下である場合には安定性を「△」とし、上記値が0.15を超える場合には安定性を「×」として評価した。一例として、テトラゾリウム化合物1の安定性評価結果を図3に示す。図3から、化合物1の[(Abs6h-Abs0h)/6]は約0.03であることから、安定性が良好なことが分かる。また、図示していないが、実施例2の化合物の[(Abs6h-Abs0h)/6]は約0.02であり、安定性が良好なことが分かる。一方、本発明の実施例に対して、比較例1、3の化合物の[(Abs6h-Abs0h)/6]のそれぞれの値は、0.05、0.20であった。比較例2、4は、キレート形成しなかったため、600nm超の極大吸収波長を有するホルマザンまたは当該ホルマザンとニッケルイオンとのキレート化合物を得ることはできなかった。ゆえに、比較例2、4の化合物の安定性を評価しなかった。 The spectrum of the measurement solution prepared above was measured with a spectrophotometer (measurement cell length: 50 μm) at the time of preparation of the measurement solution (0 hour) and 1 hour, 2 hours and 6 hours after the preparation (n = 1). In each spectrum, the absorbance at the maximum absorption wavelength (λmax) of each compound determined above was measured. Absorbances at the time of preparation of the measurement solution (0 hour) and 1 hour, 2 hours, and 6 hours after the preparation are Abs 0h , Abs 1h , Abs 2h, and Abs 6h , respectively. The value obtained by subtracting the absorbance at the time of preparation of the measurement solution (0 hour) from the absorbance at each measurement time divided by the measurement time [(Abs 1h −Abs 0h ) / 1, (Abs 2h −Abs 0h ) / 2 and (Abs 6h -Abs 0h ) / 6] are less than 0.05, the stability is “◯”, and when the above value is more than 0.05 and 0.15 or less, the stability is When “Δ” was given and the above value exceeded 0.15, the stability was evaluated as “x”. As an example, the stability evaluation result of the tetrazolium compound 1 is shown in FIG. FIG. 3 shows that [(Abs 6h -Abs 0h ) / 6] of Compound 1 is about 0.03, indicating that the stability is good. Although not shown, [(Abs6h-Abs0h) / 6] of the compound of Example 2 is about 0.02, indicating that the stability is good. On the other hand, with respect to the examples of the present invention, the values of [(Abs 6h -Abs 0h ) / 6] of the compounds of Comparative Examples 1 and 3 were 0.05 and 0.20, respectively. Since Comparative Examples 2 and 4 did not form a chelate, formazan having a maximum absorption wavelength of more than 600 nm or a chelate compound of formazan and nickel ions could not be obtained. Therefore, the stability of the compounds of Comparative Examples 2 and 4 was not evaluated.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表1に示されるように、本発明のテトラゾリウム塩は、良好な水溶性を示す。上記結果から、本発明のテトラゾリウム塩から生成するホルマザンおよび当該ホルマザンと遷移金属イオンとのキレート化合物もまた、本発明のテトラゾリウム塩と同様、良好な水溶性を示すことが推測される。 As shown in Table 1, the tetrazolium salt of the present invention exhibits good water solubility. From the above results, it is presumed that the formazan produced from the tetrazolium salt of the present invention and the chelate compound of the formazan and the transition metal ion also show good water solubility, similar to the tetrazolium salt of the present invention.
 また、上記表1の結果から、実施例のテトラゾリウム塩を用いることによって、良好な感度で速やかに血糖値を測定できることがわかる。また、実施例のテトラゾリウム塩によれば、測定後にある程度の時間が経過した後であっても、測定直後の値と同様の結果が得られ、安定性に優れることが分かる。 Also, from the results in Table 1 above, it can be seen that blood sugar levels can be measured quickly with good sensitivity by using the tetrazolium salts of the examples. Moreover, according to the tetrazolium salt of an Example, even if a certain amount of time has passed after the measurement, the same result as the value immediately after the measurement is obtained, and it can be seen that the stability is excellent.
 さらに、実施例のテトラゾリウム塩から生じるホルマザンとニッケルイオンとのキレート化合物は650nm以上の極大吸収波長(λmax)を示す。ゆえに、全血サンプルに対しても、血糖値等の生体成分濃度を高感度で正確に測定できると考察される。 Furthermore, the chelate compound of formazan and nickel ions generated from the tetrazolium salt of the example shows a maximum absorption wavelength (λmax) of 650 nm or more. Therefore, it is considered that the concentration of biological components such as blood glucose level can be accurately measured with high sensitivity even for a whole blood sample.
 本出願は、2016年9月14日に出願された日本特許出願第2016-179908号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2016-179908 filed on September 14, 2016, the disclosure of which is incorporated by reference in its entirety.

Claims (10)

  1.  下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    ただし、Rは、メチル基またはエチル基を表わし;
    およびRは、それぞれ独立して、メチル基、エチル基、メトキシ基またはエトキシ基を表わし;および
    Xは、水素原子またはアルカリ金属を表わす、
    で示される、2-置換チアゾリル-3-置換フェニル-5-スルホ化フェニル-2H-テトラゾリウム塩。
    Following formula (1):
    Figure JPOXMLDOC01-appb-C000001
    Where R 1 represents a methyl group or an ethyl group;
    R 2 and R 3 each independently represents a methyl group, an ethyl group, a methoxy group or an ethoxy group; and X represents a hydrogen atom or an alkali metal,
    A 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt represented by
  2.  前記式(1)において、3位のフェニル基が、アルコキシ基(-OR)が2位におよびニトロ基(-NO)が4位に存在するフェニル基である、請求項1に記載のテトラゾリウム塩。 In the formula (1), the phenyl group at the 3-position is a phenyl group having an alkoxy group (—OR 1 ) at the 2-position and a nitro group (—NO 2 ) at the 4-position. Tetrazolium salt.
  3.  前記式(1)において、5位のフェニル基が、スルホ基(-SO )が2,4位または3,5位に存在するフェニル基である、請求項1または2に記載のテトラゾリウム塩。 In the formula (1), 5-position of the phenyl group, a sulfo group (-SO 3 -) is a phenyl group present in 2,4-position or 3,5-position, the tetrazolium salt according to claim 1 or 2 .
  4.  下記群:
    Figure JPOXMLDOC01-appb-C000002
    ただし、Xは、アルカリ金属を表わす、
    からなる群より選択される構造を有する、2-置換チアゾリル-3-置換フェニル-5-スルホ化フェニル-2H-テトラゾリウム塩。
    The following groups:
    Figure JPOXMLDOC01-appb-C000002
    Where X represents an alkali metal,
    2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt having a structure selected from the group consisting of
  5.  請求項1~4のいずれか1項に記載の2-置換チアゾリル-3-置換フェニル-5-スルホ化フェニル-2H-テトラゾリウム塩を含む生体成分濃度測定用試薬。 A reagent for measuring a concentration of a biological component comprising the 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt according to any one of claims 1 to 4.
  6.  さらに遷移金属化合物を含む、請求項5に記載の生体成分濃度測定用試薬。 The biological component concentration measuring reagent according to claim 5, further comprising a transition metal compound.
  7.  前記遷移金属化合物がニッケル化合物である、請求項6に記載の生体成分濃度測定用試薬。 The biological component concentration measuring reagent according to claim 6, wherein the transition metal compound is a nickel compound.
  8.  血液または体液中の、グルコース、コレステロール、中性脂肪、ニコチンアミドアデニンジヌクレオチドリン酸(NADPH)、ニコチンアミドアデニンジヌクレオチド(NADH)または尿酸の濃度の測定のために使用される、請求項5~7のいずれか1項に記載の生体成分濃度測定用試薬。 Used for determination of glucose, cholesterol, neutral fat, nicotinamide adenine dinucleotide phosphate (NADPH), nicotinamide adenine dinucleotide (NADH) or uric acid in blood or body fluids 8. The reagent for measuring a biological component concentration according to any one of 7 above.
  9.  生体試料に、請求項1~4のいずれか1項に記載の2-置換チアゾリル-3-置換フェニル-5-スルホ化フェニル-2H-テトラゾリウム塩、酸化還元酵素および遷移金属化合物を添加して、発色量を測定し、当該発色量に基づいて前記生体試料中の生体成分の濃度を定量することを有する、生体成分濃度の測定方法。 A 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2H-tetrazolium salt, an oxidoreductase and a transition metal compound according to any one of claims 1 to 4 are added to a biological sample, A biological component concentration measurement method comprising measuring a color development amount and quantifying a concentration of a biological component in the biological sample based on the color development amount.
  10.  前記生体試料中の生体成分が、血液または体液中の、グルコース、コレステロール、中性脂肪、ニコチンアミドアデニンジヌクレオチドリン酸(NADPH)、ニコチンアミドアデニンジヌクレオチド(NADH)または尿酸である、請求項9に記載の方法。 The biological component in the biological sample is glucose, cholesterol, neutral fat, nicotinamide adenine dinucleotide phosphate (NADPH), nicotinamide adenine dinucleotide (NADH) or uric acid in blood or body fluid. The method described in 1.
PCT/JP2017/028831 2016-09-14 2017-08-08 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2h-tetrazolium salt, biological component concentration measurement reagent containing said salt, and biological component concentration measurement method using said salt WO2018051686A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018539571A JP6893215B2 (en) 2016-09-14 2017-08-08 2-Substituted thiazolyl-3-substituted phenyl-5-sulfolated phenyl-2H-tetrazolium salt, a reagent for measuring the concentration of biological components containing the salt, and a method for measuring the concentration of biological components using the salt.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016179908 2016-09-14
JP2016-179908 2016-09-14

Publications (1)

Publication Number Publication Date
WO2018051686A1 true WO2018051686A1 (en) 2018-03-22

Family

ID=61619494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028831 WO2018051686A1 (en) 2016-09-14 2017-08-08 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2h-tetrazolium salt, biological component concentration measurement reagent containing said salt, and biological component concentration measurement method using said salt

Country Status (2)

Country Link
JP (1) JP6893215B2 (en)
WO (1) WO2018051686A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075470A (en) * 1983-09-30 1985-04-27 Wako Pure Chem Ind Ltd Water-soluble tetrazolium compound and determination using it
JPH04340466A (en) * 1990-09-19 1992-11-26 Miles Inc Analysis method using tetrasorium salt indicator having reflectance plateau
JPH09286784A (en) * 1996-04-18 1997-11-04 Doujin Kagaku Kenkyusho:Kk Novel water-soluble tetrazolium salt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075470A (en) * 1983-09-30 1985-04-27 Wako Pure Chem Ind Ltd Water-soluble tetrazolium compound and determination using it
JPH04340466A (en) * 1990-09-19 1992-11-26 Miles Inc Analysis method using tetrasorium salt indicator having reflectance plateau
JPH09286784A (en) * 1996-04-18 1997-11-04 Doujin Kagaku Kenkyusho:Kk Novel water-soluble tetrazolium salt

Also Published As

Publication number Publication date
JPWO2018051686A1 (en) 2019-06-27
JP6893215B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
Hoenes et al. The technology behind glucose meters: test strips
JP7208219B2 (en) Methods, reagents and chips for measuring analyte concentrations in biological samples
US11656182B2 (en) Method, composition, and chip for detecting analyte in blood sample
CN108368472B (en) Blood sugar level measuring reagent, blood sugar level measuring chip, and blood sugar level measuring apparatus set
CN107462531B (en) Enzyme-free colorimetric detection method for uric acid
CA2708156C (en) Reagents and methods for detecting analytes
US11739083B2 (en) Disposable sensor chip with reagent including 2-substituted benzothiazolyl-3-substituted phenyl-5-substituted sulfonated phenyl-2H-tetrazolium salt
KR101435303B1 (en) Sterilizing chemistry for test elements
EP3578634B1 (en) Blood sugar level measurement chip and blood sugar level measurement device set
WO2018051686A1 (en) 2-substituted thiazolyl-3-substituted phenyl-5-sulfonated phenyl-2h-tetrazolium salt, biological component concentration measurement reagent containing said salt, and biological component concentration measurement method using said salt
JPH06253895A (en) Measurement of total amount of ketone compounds and reagent therefor
WO2023112442A1 (en) Biological component concentration measurement reagent, measurement method, and sensor
JP2023087330A (en) Organism component concentration measurement reagent and method for measurement and sensor
JP2023087327A (en) Organism component concentration measurement reagent, measurement method, and sensor
WO2020183916A1 (en) Blood-sugar level calculation program, blood-sugar level calculation method, and blood-sugar level measurement device
JP2014530208A (en) Azo Mediator
JP2004317308A (en) Small gap colorimetric analyzing instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850592

Country of ref document: EP

Kind code of ref document: A1