WO2018051554A1 - Method and device for recovering waste water from incineration plant - Google Patents

Method and device for recovering waste water from incineration plant Download PDF

Info

Publication number
WO2018051554A1
WO2018051554A1 PCT/JP2017/011130 JP2017011130W WO2018051554A1 WO 2018051554 A1 WO2018051554 A1 WO 2018051554A1 JP 2017011130 W JP2017011130 W JP 2017011130W WO 2018051554 A1 WO2018051554 A1 WO 2018051554A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
exhaust gas
water
incineration plant
wastewater
Prior art date
Application number
PCT/JP2017/011130
Other languages
French (fr)
Japanese (ja)
Inventor
恵一 水品
邦洋 早川
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201780052562.2A priority Critical patent/CN109641765B/en
Publication of WO2018051554A1 publication Critical patent/WO2018051554A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a method and apparatus for collecting wastewater discharged from an incineration plant.
  • a wastewater treatment method Emission from an incineration plant equipped with an incinerator for burning organic matter, a heat recovery device for recovering the heat of combustion exhaust gas discharged from the incinerator, and a temperature reducing device for further reducing the temperature of the exhaust gas recovered by heat recovery
  • a wastewater treatment method a wastewater treatment method is known in which the wastewater is subjected to a coagulation treatment with a coagulant or the like and then filtered.
  • Patent Document 1 There is also known a wastewater treatment method in which wastewater discharged from an incineration plant is subjected to a biological treatment after being agglomerated with a flocculant or the like, and further subjected to a filtration treatment by sand filtration. Patent Document 1 describes that most of the purified water purified by this wastewater treatment method can be discharged.
  • the outlet temperature of the heat recovery device is determined based on the amount of spray water of the temperature-reduced water. . That is, in order to evaporate a large amount of water in the temperature reduction device, the amount of heat recovered from the combustion exhaust gas in the heat recovery device may be reduced in order to increase the outlet temperature of the heat recovery device (inlet temperature of the temperature reduction device). Necessary.
  • the outlet temperature of the heat recovery device can be lowered, and the heat recovery efficiency can be increased.
  • Patent Document 2 in order to reduce the amount of water sent to the temperature reducing device, the incineration plant wastewater is treated with an MF membrane, the permeate is treated with an RO membrane, and MF membrane concentrated water and RO membrane concentrated water are used. It is described that it is supplied to a temperature reducing device. If this method is used, the amount of water sprayed on the temperature reducing device can be reduced by concentrating the wastewater with the MF membrane and the RO membrane, and the reduction in heat recovery efficiency can be suppressed.
  • the combustion exhaust gas reduced in temperature by the temperature reducing device is usually neutralized by adding sodium bicarbonate (sodium bicarbonate) or calcium hydroxide (slaked lime), then removed by a dust collector, and further NOx contained in the exhaust gas.
  • sodium bicarbonate sodium bicarbonate
  • calcium hydroxide slaked lime
  • the temperature of the exhaust gas reduced in temperature by the temperature reducing device needs to be a temperature suitable for the treatment of these exhaust gases.
  • the temperature suitable for the neutralization treatment with baking soda is relatively high, if the amount of water supplied to the temperature reduction device increases and the temperature at the outlet of the temperature reduction device decreases, neutralization treatment with sodium bicarbonate cannot be performed sufficiently. Since the neutralization temperature with slaked lime is slightly lower than with baking soda, neutralization can be performed stably using slaked lime even if the amount of water supplied to the temperature reducing device increases and the temperature at the outlet of the temperature reducing device decreases. However, if the temperature reducing device outlet temperature is too low, the processing efficiency in the denitration catalyst device after the dust collector deteriorates or cannot be processed. Therefore, it is necessary to perform heating with boiler steam or electricity in the denitration catalyst device.
  • the amount of water supplied to the temperature reducing device is not controlled, and the temperature at the outlet of the temperature reducing device fluctuates. There was a problem that reheating was required and thermal efficiency was poor.
  • An object of the present invention is to provide a wastewater recovery method and apparatus for an incineration plant that can efficiently recover the heat of the combustion exhaust gas in the incineration plant and that can stably and efficiently treat the combustion exhaust gas.
  • the gist of the present invention is as follows.
  • An incinerator that combusts organic matter, a heat recovery device that recovers the heat of the combustion exhaust gas discharged from the incinerator, a temperature reduction device that reduces the temperature of the combustion exhaust gas recovered by the heat recovery device,
  • a wastewater recovery method for wastewater discharged from an incineration plant comprising an exhaust gas treatment device for processing combustion exhaust gas reduced in temperature by the temperature reduction device, wherein the water treatment clarifies the wastewater discharged from the incineration plant
  • the amount of water sent to the temperature reducing device for the treated water in the water treatment step is set so that the flue gas temperature at the outlet of the temperature reducing device is 150 to 200 ° C.
  • a wastewater recovery method for an incineration plant wherein the water treatment step includes a membrane separation step, and the water supply amount is controlled by adjusting a water recovery rate in the membrane separation step.
  • the exhaust gas treatment device includes a dust collector and a catalyst denitration device that treats the exhaust gas removed by the dust collector, and between the dust collector and the catalyst denitration device.
  • An incinerator that burns organic matter, a heat recovery device that recovers the heat of the combustion exhaust gas discharged from the incineration device, a temperature reduction device that reduces the temperature of the combustion exhaust gas heat recovered by the heat recovery device,
  • a wastewater recovery device for wastewater discharged from an incineration plant comprising an exhaust gas treatment device for processing combustion exhaust gas reduced in temperature by the temperature reduction device, wherein the water treatment clarifies the wastewater discharged from the incineration plant
  • An apparatus water supply means for supplying treated water from the water treatment device to the temperature reducing device, and reducing the combustion exhaust gas by blowing and evaporating the treated water fed into the combustion exhaust gas in the temperature reducing device.
  • a wastewater recovery apparatus of an incineration plant having a blowing means for heating, control for controlling the amount of water fed from the water treatment apparatus to the temperature reducing apparatus so that the combustion exhaust gas temperature at the outlet of the temperature reducing apparatus is 150 to 200 ° C means Waste water recovery system of incineration plants, characterized in that it comprises.
  • the water treatment device includes a membrane separation device, and the control means is a means for controlling the water supply amount by adjusting a water recovery rate in the membrane separation device. Wastewater recovery equipment for incineration plants.
  • any one of [7] to [9] there is provided a chemical addition means for adding sodium bicarbonate and / or calcium hydroxide to the temperature-reduced combustion exhaust gas, and the sodium bicarbonate and / or A wastewater recovery apparatus for an incineration plant, wherein the exhaust gas to which calcium hydroxide is added is processed by the exhaust gas processing apparatus.
  • the exhaust gas treatment device includes a dust collector and a catalyst denitration device that treats the exhaust gas removed by the dust collector, and between the dust collector and the catalyst denitration device.
  • the present invention by controlling the amount of water supplied to the temperature reducing device so that the temperature at the outlet of the temperature reducing device is within a predetermined range, it is possible to stably and efficiently treat the reduced temperature combustion exhaust gas.
  • heat recovery in the heat recovery apparatus can be performed stably and efficiently.
  • the temperature of the combustion exhaust gas discharged from the heat recovery device, the temperature reducing device, or the like may be simply referred to as “exit temperature”.
  • the incineration plant to which the present embodiment is applied includes an incinerator 1 that combusts organic matter, a heat recovery device 2 that recovers heat of combustion exhaust gas discharged from the incinerator 1, and the heat recovery device. 2, a temperature reducing device 3 for further reducing the temperature of the combustion exhaust gas recovered in heat (hereinafter also referred to as heat recovery combustion exhaust gas), a dust collector 4 for removing dust from the reduced temperature combustion exhaust gas, Based on the measurement results of a catalytic denitration device 5 that decomposes and removes NOx gas, a water treatment device 6 that treats wastewater generated and discharged in the incineration plant, and a thermometer T that measures the outlet temperature of the temperature reducing device 3. A control device 7 that controls the amount of water supplied to the temperature reducing device 3 among the treated water treated by the water treatment device 6 is provided. However, you may have apparatuses other than the apparatus shown in figure.
  • the dust collector 4 and the catalyst denitration device 5 are provided as the exhaust gas treatment device, but the exhaust gas treatment device is not limited to these.
  • the dust collector 4 may be used, or an activated carbon device may be provided after the catalyst denitration device 5.
  • a stoker furnace As the incinerator 1, a stoker furnace, a fluidized bed furnace, a gasification melting furnace, an ash melting furnace, an incineration plant, or the like can be used.
  • the burning organic matter is not particularly limited, and examples thereof include municipal waste, industrial waste, sewage sludge, and waste wood.
  • the combustion exhaust gas discharged from the incinerator 1 is usually at a temperature of about 800 to 1300 ° C.
  • the heat recovery device 2 recovers the heat of the combustion exhaust gas discharged from the incinerator 1.
  • Examples of the heat recovery device 2 include a waste heat boiler.
  • the outlet temperature of the heat recovery apparatus 2 is usually 230 ° C. or higher, particularly 250 ° C. or higher. If this temperature is less than 230 ° C., corrosion may occur.
  • the upper limit of the outlet temperature of the heat recovery apparatus 2 is usually 400 ° C. or less from the viewpoint of heat recovery efficiency.
  • the temperature reducing device 3 further reduces the temperature of the combustion exhaust gas (heat recovery combustion exhaust gas) recovered by the heat recovery device 2.
  • the temperature reducing device 3 sprays (or injects) the treated water from the water treatment device 6 onto the heat recovery combustion exhaust gas introduced from the heat recovery device 2 so that the temperature of the heat recovery combustion exhaust gas is reduced by the heat of vaporization of water. It is configured.
  • the temperature of the heat recovery combustion exhaust gas introduced into the temperature reducing device 3, that is, the outlet temperature of the heat recovery device 2 is usually about 230 to 400 ° C.
  • the temperature of the outlet of the temperature reducing device 3 that is, the temperature of the combustion exhaust gas reduced in temperature by the temperature reducing device 3 is 150 to 200 ° C., preferably 160 to 190 ° C.
  • the amount of water supplied from the processing device 6 to the temperature reducing device 3 and sprayed (or sprayed) is controlled.
  • the outlet temperature of the temperature reducing device 3 is lower than 150 ° C., clogging due to deliquescence (CaCl 2 ) or low temperature corrosion of the dust collector occurs in the dust collector (bag filter) 4 at the subsequent stage.
  • this temperature is higher than 230 ° C., re-synthesis of dioxins occurs and the total amount of dioxins increases.
  • the generated dioxin needs to be processed by the catalyst denitration device 5 or the activated carbon device at the subsequent stage, which increases the load of the exhaust gas processing device at the subsequent stage or requires a separate processing facility.
  • the exhaust gas reduced in temperature by the temperature reducing device 3 is neutralized by adding an acid gas treatment agent such as sodium bicarbonate (bicarbonate) or calcium hydroxide (slaked lime), and then removed by the dust collector 4.
  • an acid gas treatment agent such as sodium bicarbonate (bicarbonate) or calcium hydroxide (slaked lime)
  • the relationship between the outlet gas of the temperature reducing device 3, that is, the gas composition of the inlet gas of the dust collector 4, etc., and suitable processing conditions is as follows.
  • Moisture content in exhaust gas 10-40%
  • Acid gas treatment chemical addition amount: Baking soda 1.0 to 1.2 equivalents (HCl / SOx concentration of dust collector inlet gas)
  • Slaked lime 2.0-4.0 equivalents (concentration of HCl and SOx in the dust collector inlet gas)
  • baking acid When baking acid is used for acid gas treatment, stable treatment is possible at an exhaust gas temperature of 150 to 200 ° C., particularly 180 to 200 ° C.
  • the baking soda to be added preferably has a particle size of 30 ⁇ m or less, for example, 5 to 20 ⁇ m.
  • the slaked lime added preferably has a particle size of 10 ⁇ m or less, for example, 4 to 8 ⁇ m.
  • the exhaust gas removed by the dust collector 4 is then decomposed and removed by NOx in the gas by a catalytic reduction reaction in which the exhaust gas is brought into contact with the denitration catalyst as a mixed gas with ammonia in the catalyst denitration device 5, and the processing gas is discharged out of the system. .
  • the inlet gas temperature in the catalyst denitration device 5 is required to be 180 ° C. or higher, preferably 190 ° C. or higher, for example, 190 to 230 ° C. If the temperature is lower than this, NOx cannot be decomposed and removed, so that the exhaust gas is recycled. It is necessary to heat.
  • the inlet gas conditions of the catalyst denitration device 5 are usually as follows. Exhaust gas NOx concentration: 50-300ppm Exhaust gas amount: 1,000 to 200,000 Nm 3 -dry / hr Moisture content in exhaust gas: 10-40%
  • a water treatment apparatus for treating wastewater of an incineration plant suitable for the present invention will be described with reference to FIG. 2, but the water treatment apparatus according to the present invention is not limited to that shown in FIG.
  • the waste water discharged from the incineration plant means waste water generated within the site of the incineration plant.
  • the waste water generated in the premises of the incineration plant include boiler blow water blown from the heat recovery device 2 such as a waste heat boiler, boiler maintenance filled in the can of the heat recovery device when stopped, and discharged before restarting
  • boiler blow water blown from the heat recovery device 2
  • miscellaneous wastewater include incineration residue generated from an incinerator 1 such as an incinerator, residue cooling wastewater that cools slag, and wastewater other than the above that does not contain a surfactant and oil generated in an incineration plant.
  • miscellaneous wastewater is treated with the first pretreatment device 10A, then mixed with boiler canned water, boiler blow water, and cooling tower blow water, and supplied to the pretreatment device 8.
  • Preliminary treatment of miscellaneous wastewater in this way suppresses the clogging of the membrane of the membrane separation device 9.
  • a sand filter, a microfiltration (MF) membrane, an ultrafiltration (UF) membrane separation device, or the like can be used.
  • MF microfiltration
  • UF ultrafiltration
  • the membrane separation device 9 a reverse osmosis (RO) membrane separation device is suitable.
  • the first pretreatment device 10A for treating miscellaneous wastewater at least one of neutralization, aggregation, precipitation, filtration, and biological treatment device is preferable.
  • Car wash wastewater and floor wash wastewater are treated by the second pretreatment device 10B that removes organic components for SS.
  • the second pretreatment device 10B is preferably at least one of neutralization, aggregation, precipitation, filtration, and biological treatment device.
  • the concentrated water of the membrane separation device 9 and the treated water of the second pretreatment device 10B are supplied to the temperature reducing device 3.
  • the amount of treated water supplied to the temperature reducing device 3 (the amount of mixed water of the concentrated water of the membrane separation device 9 and the treated water of the second pretreatment device 10B in FIG. 2) is The controller (the control device 7 in FIG. 1) controls the outlet temperature of the temperature reducing device 3 to be 150 to 200 ° C., preferably 160 to 190 ° C.
  • the water recovery rate of the membrane separation apparatus 9 is controlled, the amount of concentrated water supplied to the temperature reduction apparatus 3 is controlled, or the membrane of the membrane separation apparatus 9 is controlled.
  • a method of controlling the amount of concentrated water by adjusting the number of modules and the amount of permeated water is preferable.
  • each device in the water treatment device by bypassing some devices, circulating the treated water of the subsequent device to the previous device, increasing or decreasing the amount of water supplied to the subsequent device and the residence time, etc.
  • a method of adjusting the amount of treated water discharged from the water treatment device per hour can also be adopted.
  • the amount of water returned to the pit or the amount of water used as the cooling water for the fly ash humidification or main ash cooling device may be increased.
  • thermometer T for measuring the outlet gas temperature of the temperature reducing device 3 is provided, and based on the measured value of the thermometer T, the measured value of the thermometer T is 150 to 200 ° C., preferably 160 to 190.
  • the control device 7 controls the amount of water supplied from the water treatment device 6 to the temperature reducing device 3 so that the temperature becomes 0 ° C., the temperature of the exhaust gas that has been reduced in temperature is maintained at a predetermined temperature, and then the acidity It is possible to stably perform exhaust gas treatment such as gas treatment and deNOx treatment. That is, for example, the outlet gas temperature of the temperature reducing device 3 can be adjusted to a temperature suitable for the chemical used in the aforementioned acidic gas treatment, and the acidic gas treatment can be performed stably and efficiently.
  • the exhaust gas temperature flowing into the catalyst denitration apparatus is stabilized, so that a stable and efficient process can be performed.
  • the temperature suitable for the NOx removal treatment in the catalyst denitration apparatus is 180 ° C. or higher, preferably 190 to 230 ° C. as described above, so that the preceding acid gas treatment is performed at 180 to 200 ° C. using baking soda. Further, temperature adjustment such as heating can be eliminated between the dust collector and the catalyst denitration device. Therefore, in this case, it is preferable to set the outlet temperature of the temperature reducing device to a range of 180 to 200 ° C. by controlling the amount of water supplied to the temperature reducing device.
  • the preferred temperature of the acid gas treatment with slaked lime is 150 to 170 ° C., which is lower than the temperature suitable for removing NOx in the catalytic denitration device. Therefore, when using slaked lime, the boiler is disposed between the dust collector and the catalytic denitration device. Reheating with steam or electricity may be required.
  • the acidic gas treatment is performed at 180 to 200 ° C. using baking soda, and the treatment gas is sent to the catalytic denitration device without heating. It is preferable to supply.
  • the MF membrane or UF membrane separator When the MF membrane or UF membrane separator is used in the pretreatment device 8, it is preferable to treat the MF or UF membrane concentrated water with the first pretreatment device 10A to remove the organic component from SS. However, the processing may be performed by the second preliminary processing apparatus 10B. By not spraying the MF or UF membrane concentrated water of the pretreatment device 8 with the temperature reducing device 3, the spray nozzle is prevented from being blocked and a stable temperature reduction treatment is possible.
  • Water treatment chemicals such as anti-corrosion agents, dispersants and slime control agents, condensate amine agents, and oxygen scavengers in boiler canned water, boiler blow water, and cooling tower blow water for stabilization and efficiency of treatment. It is included. As these chemicals, those that do not adversely affect the membrane treatment and contribute to the stabilization of the membrane treatment are selected, and the boiler can water, the boiler blow water, and the cooling tower blow water are pretreated in the pretreatment device 8. By performing only the RO membrane treatment, efficient membrane separation treatment can be performed without newly adding a water treatment chemical for the RO membrane treatment. In addition, when the chemical concentration is insufficient, a necessary chemical may be added.
  • Dispersant contained in boiler blow water and cooling water blow water becomes an impediment to the coagulation treatment. Therefore, when the boiler blow water and the cooling water blow water are caused to flow into the first pretreatment device 10A, the necessary amount of the flocculant is remarkably increased. In addition, the slime control agent has an adverse effect on the biological treatment, and there are cases where the biological activity is reduced. Therefore, by supplying these waters to the pretreatment device 8 without introducing them into the first pretreatment device 10A, the pretreatment device 10A can be reduced in size.
  • Car wash wastewater and floor washing wastewater are pretreated by the second pretreatment device 10B and then sprayed by the temperature reducing device 3.
  • Car wash wastewater and floor wash wastewater may contain substances that block the MF membrane or RO membrane, such as oil and surfactant, and the concentration is not constant, making it difficult to perform membrane separation treatment stably. is there. Therefore, the car wash wastewater and the floor wash wastewater are treated by the second pretreatment device 10B having at least one of neutralization, aggregation, precipitation, filtration, and biological treatment equipment to remove SS components and organic components. After performing, it sprays with the temperature decreasing apparatus 3.
  • a flocculant is added to the waste water, and the suspended matter is mainly agglomerated.
  • a filtration process such as sand filtration may be performed, or a precipitation step may be performed instead of filtration.
  • a pressure levitation process can be added.
  • a pH adjustment step can be added.
  • the submerged MF membrane separation apparatus can be used instead of the sand filtration apparatus to perform the treatment by the membrane separation activated sludge method. Aggregates captured by the submerged MF membrane separation device are extracted and then put into a garbage pit and incinerated by the incinerator 1.
  • the following effects are obtained.
  • the membrane separation device 9 the waste water discharged from the incineration plant is concentrated by the separation membrane to obtain concentrated water having a reduced volume, and this concentrated water is supplied to the temperature reducing device 3.
  • the amount of concentrated water supplied to the temperature device 3 is small, and the temperature of the combustion exhaust gas introduced into the temperature reduction device 3 can be lowered. As a result, it is possible to increase the amount of heat recovered from the combustion exhaust gas in the heat recovery device installed on the upstream side of the temperature reducing device.
  • water treatment chemicals such as a dispersant and a slime control agent are contained in order to stabilize and increase the efficiency of the treatment.
  • the dispersant contained in the boiler blow water and the cooling water blow water becomes an impediment to the coagulation treatment.
  • Slime control agents have an adverse effect on biological treatment and may reduce biological activity.
  • FIG. 2 after treating these waters with a simple pretreatment device consisting of sand filtration, MF membrane or UF membrane separation device, the size of the wastewater treatment facility is reduced by membrane separation treatment. Can do.
  • wastewater is treated with a pretreatment device having at least one of neutralization, agglomeration, precipitation, filtration, and biological treatment equipment, and after removing SS components and organic components in the wastewater.
  • a pretreatment device having at least one of neutralization, agglomeration, precipitation, filtration, and biological treatment equipment, and after removing SS components and organic components in the wastewater.
  • the organic component can be reduced by the SS content contained in the waste water, the separation membrane is not easily clogged, and the continuous use period of the separation membrane can be extended.
  • flocculant used in the water treatment apparatus examples include iron-based flocculants such as ferrous sulfate, ferric sulfate, and ferric chloride, and aluminum-based flocculants such as aluminum sulfate (sulfuric acid band) and polyaluminum chloride (PAC). Examples thereof include a flocculant and a mixture thereof. The amount of the flocculant added can be adjusted as appropriate.
  • polymer flocculant to be added to the water to be treated as a flocculant examples include poly (meth) acrylic acid, a copolymer of (meth) acrylic acid and (meth) acrylamide, and anions such as alkali metal salts thereof.
  • Organic polymer flocculants nonionic organic polymer flocculants such as poly (meth) acrylamide, dimethylaminoethyl (meth) acrylate or its quaternary ammonium salt, dimethylaminopropyl (meth) acrylamide or its 4 Homopolymers composed of cationic monomers such as quaternary ammonium salts, and cationic organic polymer flocculants such as copolymers of nonionic monomers copolymerizable with these cationic monomers, and the above anionic monomers, Copolymerization with cationic monomers and nonionic monomers copolymerizable with these monomers Organic polymer flocculant of amphoteric is united and the like.
  • nonionic organic polymer flocculants such as poly (meth) acrylamide, dimethylaminoethyl (meth) acrylate or its quaternary ammonium salt, dimethylaminopropyl (meth) acrylamide or
  • the amount of the polymer flocculant added is not particularly limited, and may be adjusted according to the properties of the water to be treated. However, the solid content is generally 0.01 to 10 mg / L with respect to the water to be treated. A phenol type flocculant described in International Publication WO2011 / 018978 can also be used.
  • examples of impurities removed by the RO membrane include ionic components and organic substances.
  • examples of ionic components include cationic substances, anionic substances, and the like. Specifically, calcium ions, magnesium ions, etc. that easily form scales that are ion-bonded to anions and are not easily dissolved in water. Illustrated.
  • drain are mentioned.
  • the MF membrane differential pressure increases due to adhesion of scale, turbidity, organic matter, etc. to the MF membrane surface.
  • back pressure cleaning and chemical cleaning of the MF membrane are performed.
  • MF membranes usually have pores with a pore size of about 50 nm to 10 ⁇ m.
  • a membrane unit in which a hollow fiber membrane, a spiral membrane, and a tubular membrane are held in a vessel can be used.
  • a hollow fiber membrane or a flat membrane can be used as it is by immersing it in the water to be treated.
  • a UF membrane having a pore diameter of about 2 to 200 nm can also be used.
  • the MF membrane is preferably PVDF
  • the UF membrane is polysulfone
  • the RO membrane is preferably made of polyamide, but is not limited thereto.
  • RO membrane examples include a composite membrane composed of a dense layer of an asymmetric membrane and a fine porous layer.
  • RO membrane unit a unit in which a filtration membrane installed in a state of a hollow fiber membrane, a spiral membrane, a tubular membrane or the like is held in a vessel can be used.
  • Dispersants used for cooling water treatment etc. include inorganic polyphosphoric acids such as sodium hexametaphosphate and sodium tripolyphosphate, phosphonic acids such as hydroxyethylidene diphosphonic acid and phosphonobutane tricarboxylic acid, maleic acid, acrylic acid, itaconic acid, etc.
  • Carboxyl group-containing material, and optionally combined with vinyl monomers having sulfonic acid groups such as vinyl sulfonic acid, allyl sulfonic acid, 2-methacrylamide-2-methylpropane sulfonic acid, and nonionic vinyl monomers such as acrylamide Copolymers and the like can be used, but materials other than those listed here can also be applied.
  • a terpolymer can be used by using other components.
  • N-tert-butylacrylamide is used as the third component.
  • the dispersant is most preferably a polymer containing HAPS, AMPS and acrylic acid and / or methacrylic acid.
  • HAPS is 3-allyloxy-2-hydroxy-1-propanesulfonic acid
  • AMPS is 2-acrylamido-2-methylpropanesulfonic acid.
  • the molecular weight of the dispersant is preferably 1,000 or more and 30,000 or less. If the molecular weight is less than 1,000, a sufficient dispersion effect cannot be obtained, and if it exceeds 30,000, it may be removed by the pretreatment film.
  • Slime control agents include hypochlorites such as sodium hypochlorite (NaClO), chlorine agents such as chlorine gas, chloramine, and chlorinated isocyanurates, chlorine such as monochlorosulfamic acid, amide sulfate, and amide sulfate. Bonded chlorine agent reacted with a compound having hydrogen, bromine agent such as dibromohydantoin, hypobromite such as sodium hypobromite, organic agent such as DBNPA (dibromonitrilopropionate), MIT (methylisothiazolone) .
  • hypochlorites such as sodium hypochlorite (NaClO)
  • chlorine agents such as chlorine gas, chloramine, and chlorinated isocyanurates
  • chlorine such as monochlorosulfamic acid, amide sulfate, and amide sulfate. Bonded chlorine agent reacted with a compound having hydrogen, bromine agent such as dibromohydantoin, hypo
  • Examples of the chlorine-based oxidizing agent that can be used in the present invention include the above chlorine gas, hypochlorous acid or a salt thereof, chlorous acid or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, chlorinated isocyanur.
  • An acid or a salt thereof can be used.
  • the salt include alkali metal salts such as sodium and potassium, alkaline earth metal salts such as barium, other metal salts such as nickel, ammonium salts, and the like. One or more of these can be used. Among these, sodium hypochlorite is preferable because of its excellent handleability.
  • Nitrogen compounds to which free chlorine is bound include ammonia or its compounds, melamine, urea, acetamide, sulfamide, cyclolamic acid, sulfamic acid, toluenesulfonamide, succinimide, phthalimide, isocyanuric acid, N-chloro Examples thereof include toluenesulfonamide, uric acid, saccharin, and salts thereof.
  • the bonded chlorine agent used in the present invention is a compound in which the above-mentioned free chlorine is bonded to these nitrogen compounds.
  • the combined chlorine agent used in the present invention those obtained by mixing and reacting the above nitrogen compound and free chlorine agent, particularly those obtained by mixing and reacting each in the state of an aqueous solution are preferable.
  • Examples of such bonded chlorinating agents include chloramine, chlorinated oxidant and sulfamic acid compound, chloramine-T (sodium salt of N-chloro-4-methylbenzenesulfonamide), chloramine-B. (Sodium salt of N-chloro-benzenesulfonamide), sodium salt of N-chloro-paranitrobenzenesulfonamide, trichloromelamine, sodium salt or potassium salt of mono- or di-chloromelamine, trichloro-isocyanurate, mono- or 5 such as sodium salt or potassium salt of di-chloroisocyanuric acid, sodium salt or potassium salt of mono- or di-chlorosulfamic acid, monochlorohydantoin or 1,3-dichlorohydantoin, 5,5-dimethylhydantoin 5-alkyl derivatives.
  • chloramine-T sodium salt of N-chloro-4-methylbenzenesulfonamide
  • chloramine-B
  • cleansing agents In boiler water treatment, cleansing agents, oxygen scavengers, and amines are used alone or in combination.
  • canning agent examples include phosphoric acid and / or salt thereof, polymerized phosphoric acid and / or salt thereof, phosphonic acid and / or salt thereof, chelating agent such as EDTA, poly (meth) acrylic acid and / or salt thereof, and AMPS. And a polymer containing acrylic acid and / or methacrylic acid can be applied.
  • oxygen scavenger examples include 1-amino-4-methylpiperazine, hydrazine, carbohydrazide, erythorbic acid and / or its salt, gluconic acid and / or its salt, N, N-diethylhydroxylamine, sulfurous acid and / or its salt Bisulfite and / or a salt thereof, tannic acid and / or a salt thereof, gallic acid and / or a salt thereof, isopropylhydroxylamine and the like can be applied.
  • amines include neutralizing amines such as monoisopropanolamine, 3-methoxy-propylamine, cyclohexylamine, 2-aminoethanol, 2-amino-2-methyl-1-propanol, morpholine, 2-diethylaminoethanol, and the like.
  • a film-forming amine such as octadecylamine can be applied.
  • a part of the MF membrane permeated water of the pretreatment device 8 can be used as car wash water.
  • the RO membrane permeated water of the membrane separation device 9 can be used as boiler raw water for waste heat boilers, equipment cooling water, plant water, and the like.
  • Permeated water such as the MF membrane permeated water and the RO membrane permeated water may be discharged to the sea, rivers, sewage, or the like.
  • a biological treatment device may be provided on the upstream side of the pretreatment device 8 to reduce ammonium ions and the like.
  • a biological treatment apparatus for example, a biological treatment provided with a nitrification tank that performs a nitrification process using aerobic microorganisms and a denitrification tank that performs a denitrification process using facultative anaerobic microorganisms. A device or the like can be used.
  • Example 1 The combustible waste incineration plant shown in FIG. 1 was operated under the following conditions. Heat recovery device 2 outlet temperature: 230 ° C Temperature reducing device 3 outlet temperature: 188 ° C Temperature difference between heat recovery device 2 outlet temperature and temperature reduction device 3 outlet temperature: 42 ° C
  • Boiler blow water, cooling tower blow water, miscellaneous waste water, domestic waste water, car wash waste water and floor washing waste water discharged from the incineration plant at the following flow rates were treated according to the flow of FIG. Boiler blow water: 9m 3 / day Cooling tower blow water: 9m 3 / day Miscellaneous drainage: 13m 3 / day Domestic wastewater: 11m 3 / day (Total above: 42 m 3 / day) Total of car wash wastewater and floor wash wastewater: 6.5 m 3 / day
  • Boiler blow water and cooling tower blow water were supplied as they were to the pretreatment (MF membrane separation device 11).
  • the miscellaneous wastewater was treated with the first pretreatment device (flocculation treatment device 13 and gravity two-layer sand filtration treatment device 14 by adding PAC 10 mg / L and high polymer 2 mg / L), and then supplied to the MF membrane separation device 11.
  • the permeated water (water recovery rate 95%) of the MF membrane separator 11 was supplied to the RO membrane separator 12, and the permeated water (water recovery rate 80%) was supplied to the cooling tower as make-up water.
  • RO concentrated water 0.33 m 3 / hr was supplied to the temperature reducing device 3 and sprayed.
  • the concentrated water of the MF membrane separation device 11 was supplied to the aggregation treatment device 13.
  • the domestic wastewater was treated with the biological treatment device 15 and then supplied to the first preliminary treatment device.
  • Car wash wastewater and floor washing wastewater are treated with the second pretreatment device (flocculation treatment device 16 with PAC 10 mg / L and high polymer 2 mg / L and gravity two-layer sand filtration treatment device 17), and then the temperature reduction device 3 And sprayed (0.27 m 3 / hr). All of the above amounts of drainage were average values, and actually varied within a range of ⁇ 20%. The same applies to Examples and Comparative Examples described later.
  • the boiler blow water contains a dispersant
  • the cooling water blow water contains a dispersant and a slime control agent.
  • the RO membrane separator 12 After the mixed waste water containing these is treated by the MF membrane separator 11, the RO membrane separator 12 performs the treatment.
  • the treatment can be stably performed without adding the slime control agent and the dispersant in the RO membrane treatment.
  • the water recovery rate of the RO membrane separation device 12 could be increased.
  • the permeated water of the RO membrane separation device 12 can be reused as the replenishing water for the cooling water, and the amount of the replenishing water is reduced accordingly.
  • the processing conditions in the dust collector 4 are as follows.
  • the acidic gas treatment was performed while maintaining the outlet temperature of the temperature reducing device 3 constant.
  • the exhaust gas (about 200 ° C.) after the dust removal treatment is fed to the catalyst denitration device 5 using a catalyst in which platinum is supported on a vanadium oxide honeycomb, and NOx is efficiently removed without heating. .
  • Example 2 In Example 1, acid gas treatment was performed by adding slaked lime under the following conditions instead of baking soda. ⁇ Addition amount of slaked lime (particle size 4-8 ⁇ m)> Amount added: 60 kg / hr, equivalence ratio: 2.52 (to inlet HCl, SOx)
  • the exhaust gas temperature is preferably 150 to 170 ° C., so that the water recovery rate of the RO membrane separation device 12 is 65%, the RO concentrated water amount is 0.58 m 3 / hr, and the water supply amount to the temperature reducing device is Example 1 except that it was controlled to 0.85 m 3 / hr and the temperature reducing device outlet temperature was 170 ° C. (temperature difference between the heat recovery device 2 outlet temperature and the temperature reducing device 3 outlet temperature: 60 ° C.). Processing was carried out in the same manner.
  • Example 1 the catalyst denitration apparatus required a little reheating, but otherwise, the same efficient treatment as in Example 1 was performed.
  • the amount of boiler steam used for reheating (about 200 ° C.) in the catalyst denitration apparatus was 2.4 t / day, and 72 t in one month. This amount of steam used corresponds to 69301 ( ⁇ T: 30 ° C. loss) kWh as a power generation loss.
  • Example 2 when the water recovery rate of the RO membrane separation device was not controlled and the water supply amount to the temperature reducing device was not controlled, the fluctuation of the drainage amount and the fluctuation of the water recovery rate of the RO membrane separation device were accompanied.
  • the amount of water supplied from the RO membrane separator varied between 0.47 and 0.67 m 3 / hr, and the amount of water delivered to the temperature reducing device varied within the range of 0.74 to 0.94 m 3 / hr.
  • the temperature reduction device outlet temperature fluctuated between 165 and 179 ° C. (temperature difference between the heat recovery device outlet temperature and the temperature reduction device outlet temperature: 51 to 65 ° C.).
  • Example 2 Each waste water of the incineration plant of Example 1 was treated according to the flow of FIG. 4 and performed in the same manner as in Example 1 except that control of water supply to the temperature reducing device 3 was not performed. That is, each of the above-mentioned wastewaters other than domestic wastewater (each flow rate is the same as in Example 1) was directly treated by the flocculation treatment device 21 by adding PAC 200 mg / L and high polymer 2 mg / L. About domestic wastewater, after processing with the biological treatment apparatus 25, it supplied to the coagulation treatment apparatus 21. FIG.
  • the treated water of the agglomeration treatment device 21 is processed by the gravity two-layer sand filtration treatment filtration device 22, and then supplied to the MF membrane separation device 23, the permeate is supplied to the RO membrane separation device 24, and the RO permeate is supplied to the cooling tower. Used as water.
  • the concentrated water of the MF membrane separator 23 and the concentrated water of the RO membrane separator 24 were sprayed by the temperature reducing device 3.
  • the temperature reducing device outlet temperature fluctuates greatly at 156 to 183 ° C. (temperature difference between the heat recovery device outlet temperature and the temperature reducing device outlet temperature: 47 to 74 ° C.).
  • the amount of PAC added was 200 mg / L because of the dispersant contained in the boiler blow water and cooling water blow water.
  • a slime control agent and a dispersant are necessary for stabilizing the membrane treatment.
  • a membrane treatment slime control agent Krivater EC-503 5 mg / L was used.
  • the membrane treatment dispersant Krivator N-500 5 mg / L was used.
  • Comparative Example 3 In Comparative Example 2, the same procedure was performed except that the MF membrane separation device 23 and the RO membrane separation device 24 were omitted. However, although the variation in the amount of water supplied to the temperature reducing device was small, the amount of water supplied was 1.9 m 3 / hr. Therefore, the heat recovery device outlet temperature is 305 ° C., whereas the temperature reducing device outlet temperature is 170 ° C. (temperature difference between the heat recovery device outlet temperature and the temperature reducing device outlet temperature: 135 ° C.), which is very low. Value.

Abstract

The present invention efficiently recovers heat from flue gas in an incineration plant and to achieve stable and efficient treatment of the flue gas. Waste water discharged from an incineration plant is subjected to water treatment by a water treatment device 6, the incineration plant being equipped with: an incineration device 1; a heat recovery device 2 for recovering heat from flue gas; a temperature lowering device 3 for further lowering the temperature of the flue gas having undergone heat recovery at the heat recovery device 2; a dust collector 4 for removing dust from the flue gas having undergone temperature-lowering; and a catalytic denitrification device 5. The treated water is delivered to the temperature lowering device 3 and injected into the flue gas so as to be evaporated to achieve lowering of the temperature of the flue gas. A control device 7 controls the amount of water to be delivered from the water treatment device 6 to the temperature lowering device 3 so that the temperature of the flue gas at the outlet of the temperature lowering device 3 is 150-200°C.

Description

焼却プラントの排水回収方法及び装置Wastewater recovery method and apparatus for incineration plant
 本発明は、焼却プラントから排出される排水の回収方法及び装置に関する。 The present invention relates to a method and apparatus for collecting wastewater discharged from an incineration plant.
 有機物を燃焼させる焼却装置と、該焼却装置から排出される燃焼排ガスの熱を回収する熱回収装置と、熱回収された燃焼排ガスをさらに減温させる減温装置とが備えられた焼却プラントから排出される排水の処理方法としては、該排水を凝集剤などによって凝集処理した後に濾過処理する排水処理方法などが知られている。 Emission from an incineration plant equipped with an incinerator for burning organic matter, a heat recovery device for recovering the heat of combustion exhaust gas discharged from the incinerator, and a temperature reducing device for further reducing the temperature of the exhaust gas recovered by heat recovery As a wastewater treatment method, a wastewater treatment method is known in which the wastewater is subjected to a coagulation treatment with a coagulant or the like and then filtered.
 焼却プラントから排出される排水を凝集剤などによって凝集処理した後に生物処理を行い、さらに砂濾過によって濾過処理する排水処理方法も知られている(特許文献1)。特許文献1には、この排水処理方法によって浄化された浄化水の大部分を放流できることが記載されている。 There is also known a wastewater treatment method in which wastewater discharged from an incineration plant is subjected to a biological treatment after being agglomerated with a flocculant or the like, and further subjected to a filtration treatment by sand filtration (Patent Document 1). Patent Document 1 describes that most of the purified water purified by this wastewater treatment method can be discharged.
 近年、施設内で発生した排水を当該施設内で再利用することで、排水を下水道や公共用水域へ放流しないようにする排水クローズドシステムが普及している。
 そのため、一般廃棄物や産業廃棄物などの固形物を燃焼させる焼却プラントでは、排水を前記排水処理方法などによって簡易に処理した後、燃焼排ガスを減温させる減温装置にて減温水として噴霧し、蒸発させる方法が採用されている。この場合、排水の一部は炉内への噴霧や飛灰への加湿水などに利用させている例もあるが、施設内で排出される排水の大部分ないしは全量が燃焼排ガスの減温水として使用される。
In recent years, drainage closed systems that prevent wastewater from being discharged into sewers and public water areas by reusing wastewater generated in the facility have become widespread.
Therefore, in an incineration plant that burns solids such as general waste and industrial waste, wastewater is simply treated by the wastewater treatment method, etc., and then sprayed as temperature-reduced water using a temperature-reducing device that reduces the temperature of combustion exhaust gas. The method of evaporating is adopted. In this case, some of the wastewater is used for spraying into the furnace or humidifying water for fly ash, but most or all of the wastewater discharged in the facility is used as dehumidified water for combustion exhaust gas. used.
 焼却プラントにおいて、施設内で発生する排水量は多く、その大半は上記の通り減温水として再利用されているため、熱回収装置(ボイラ)の出口温度は、減温水の噴霧水量に基づいて決められる。即ち、減温装置において大量の水を蒸発させるために、熱回収装置の出口温度(減温装置の入口温度)を高くするべく、熱回収装置における燃焼排ガスからの熱回収量を少なくすることが必要となる。 In the incineration plant, the amount of wastewater generated in the facility is large, and most of it is reused as temperature-reduced water as described above. Therefore, the outlet temperature of the heat recovery device (boiler) is determined based on the amount of spray water of the temperature-reduced water. . That is, in order to evaporate a large amount of water in the temperature reduction device, the amount of heat recovered from the combustion exhaust gas in the heat recovery device may be reduced in order to increase the outlet temperature of the heat recovery device (inlet temperature of the temperature reduction device). Necessary.
 このように、焼却プラントで排水クローズドシステムを採用しようとすると、減温装置に噴霧される排水量が多いために、その気化熱により減温する温度幅を大きく設定する必要があり、その分だけ、減温装置の上流側にある廃熱ボイラなどの熱回収装置において、燃焼排ガスから回収する熱量を少なく設定せざるを得なくなる。即ち、減温装置において減温させる温度幅を比較的大きくする(ΔTが大きい)ことに伴い、熱回収装置における燃焼排ガスからの熱回収量をより小さくすること(ΔTが小さい)となり、焼却プラントにおける燃焼排ガスからの熱回収効率が低くなる。熱回収装置での熱回収効率の低下は、発電量の低下、発電効率の低下につながる。 Thus, when trying to adopt a wastewater closed system in an incineration plant, since the amount of wastewater sprayed on the temperature reducing device is large, it is necessary to set a large temperature range to reduce the temperature by the heat of vaporization, and that much, In a heat recovery device such as a waste heat boiler on the upstream side of the temperature reducing device, the amount of heat recovered from the combustion exhaust gas has to be set small. That is, as the temperature range for reducing the temperature in the temperature reducing device is relatively large (ΔT is large), the amount of heat recovered from the combustion exhaust gas in the heat recovery device is further reduced (ΔT is small), and the incineration plant. The efficiency of heat recovery from the combustion exhaust gas at is reduced. A decrease in heat recovery efficiency in the heat recovery apparatus leads to a decrease in power generation amount and a decrease in power generation efficiency.
 減温装置への送水、噴霧量を低減することにより、熱回収装置の出口温度を低くすることができ、熱回収効率を高めることができる。特許文献2には、減温装置への送水量を減らすために、焼却プラント排水をMF膜で処理し、その透過水をRO膜処理し、MF膜の濃縮水とRO膜の濃縮水とを減温装置に供給することが記載されている。この方法であれば排水をMF膜及びRO膜で濃縮することにより、減温装置に噴霧する水量を減らすことが出来、熱回収効率の低下を抑えることができる。 By reducing the amount of water supplied to and sprayed to the temperature reducing device, the outlet temperature of the heat recovery device can be lowered, and the heat recovery efficiency can be increased. In Patent Document 2, in order to reduce the amount of water sent to the temperature reducing device, the incineration plant wastewater is treated with an MF membrane, the permeate is treated with an RO membrane, and MF membrane concentrated water and RO membrane concentrated water are used. It is described that it is supplied to a temperature reducing device. If this method is used, the amount of water sprayed on the temperature reducing device can be reduced by concentrating the wastewater with the MF membrane and the RO membrane, and the reduction in heat recovery efficiency can be suppressed.
 しかしながら、従来法では、焼却プラントから排出される排水はその殆ど全てが減温装置に送水されており、減温装置への送水量の制御は行われていないために、燃焼排ガスの温度管理を行えず、結果として熱回収効率を安定して高く維持することはできなかった。 However, in the conventional method, almost all of the wastewater discharged from the incineration plant is sent to the temperature reducing device, and the amount of water supplied to the temperature reducing device is not controlled. As a result, the heat recovery efficiency could not be stably maintained high.
 従来法では、減温装置以降の下流側の排ガス処理装置における処理効率についての考慮はなされていないために、減温された燃焼排ガスを効率的に処理し得ないという問題もあった。 In the conventional method, since the processing efficiency in the exhaust gas treatment device on the downstream side after the temperature reduction device is not taken into consideration, there is a problem in that the reduced temperature of the combustion exhaust gas cannot be efficiently treated.
 即ち、減温装置で減温された燃焼排ガスは、通常、重炭酸ナトリウム(重曹)又は水酸化カルシウム(消石灰)を添加して中和した後、集塵機で除塵し、更に、排ガスに含まれるNOxガスを除去するために、アンモニアを添加して脱硝触媒と接触させ、接触還元反応によりNOxを分解除去する処理が行われている。従って、減温装置で減温された排ガスの温度は、これらの排ガスの処理のために好適な温度である必要がある。 That is, the combustion exhaust gas reduced in temperature by the temperature reducing device is usually neutralized by adding sodium bicarbonate (sodium bicarbonate) or calcium hydroxide (slaked lime), then removed by a dust collector, and further NOx contained in the exhaust gas. In order to remove the gas, ammonia is added and brought into contact with a denitration catalyst, and NOx is decomposed and removed by a catalytic reduction reaction. Therefore, the temperature of the exhaust gas reduced in temperature by the temperature reducing device needs to be a temperature suitable for the treatment of these exhaust gases.
 しかし、従来法では、減温装置への送水量の制御が行われていないため、中和処理される減温装置からの排ガスの温度は一定とはならず、排水量、送水量の変動に応じて変動するため、排ガス処理も不安定なものとなっていた。特に、特許文献2のように、RO膜分離装置の濃縮水を減温装置に送水する場合、RO膜分離装置の濃縮水量はRO膜分離装置の原水(MF膜分離装置の処理水)の水質に応じて大きく変動するため、このRO膜分離装置の水回収率を制御せずに、得られた濃縮水を減温装置に送水した場合、減温装置への送水量は、排水量の変動に加えて更に大きなものとなる。 However, in the conventional method, since the amount of water supplied to the temperature reducing device is not controlled, the temperature of the exhaust gas from the temperature reducing device to be neutralized is not constant, depending on fluctuations in the amount of discharged water and the amount of water supplied. The exhaust gas treatment has become unstable. In particular, as in Patent Document 2, when the concentrated water of the RO membrane separator is sent to the temperature reducing device, the amount of concentrated water of the RO membrane separator is the quality of the raw water of the RO membrane separator (treated water of the MF membrane separator). Therefore, when the obtained concentrated water is sent to the temperature reducing device without controlling the water recovery rate of this RO membrane separation device, the amount of water supplied to the temperature reducing device will vary depending on the amount of drainage. In addition, it becomes even bigger.
 例えば、重曹による中和処理に好適な温度は、比較的高いため、減温装置への送水量が増加して、減温装置出口温度が低くなると、重曹による中和処理を十分に行えなくなる。重曹に比べて消石灰による中和温度は若干低いため、減温装置への送水量が増加して減温装置出口温度が低くなっても、消石灰を用いて中和処理を安定に行うことができるが、減温装置出口温度が低下しすぎると、集塵機以降の脱硝触媒装置での処理効率が悪化するもしくは処理できなくなる。そのため、脱硝触媒装置において、ボイラー蒸気や電気による加熱を行う必要がある。 For example, since the temperature suitable for the neutralization treatment with baking soda is relatively high, if the amount of water supplied to the temperature reduction device increases and the temperature at the outlet of the temperature reduction device decreases, neutralization treatment with sodium bicarbonate cannot be performed sufficiently. Since the neutralization temperature with slaked lime is slightly lower than with baking soda, neutralization can be performed stably using slaked lime even if the amount of water supplied to the temperature reducing device increases and the temperature at the outlet of the temperature reducing device decreases. However, if the temperature reducing device outlet temperature is too low, the processing efficiency in the denitration catalyst device after the dust collector deteriorates or cannot be processed. Therefore, it is necessary to perform heating with boiler steam or electricity in the denitration catalyst device.
 従来法では、減温装置以降の排ガス温度が不安定かつ予測不能であるため、排ガス処理のための薬注制御も困難であり、このことが排ガス処理に要する手間と安全サイドでの処理となるため、コストアップの原因となっていた。 In the conventional method, since the exhaust gas temperature after the temperature reducing device is unstable and unpredictable, it is difficult to control the chemical injection for the exhaust gas treatment, which is a troublesome and safety-side treatment required for the exhaust gas treatment. Therefore, the cost was increased.
 このように、従来法では、減温装置への送水量の制御が行われておらず、減温装置出口温度が変動するために、後段の排ガス処理装置で安定な処理を行えない、排ガスの再加熱が必要となり熱効率が悪い、といった問題があった。 As described above, in the conventional method, the amount of water supplied to the temperature reducing device is not controlled, and the temperature at the outlet of the temperature reducing device fluctuates. There was a problem that reheating was required and thermal efficiency was poor.
特開平10-99898号公報JP-A-10-99898 特許5636163号公報Japanese Patent No. 5636163
 本発明は、焼却プラントにおける燃焼排ガスの熱を効率よく回収できると共に、燃焼排ガスを安定して効率よく処理することができる焼却プラントの排水回収方法及び装置を提供することを目的とする。 An object of the present invention is to provide a wastewater recovery method and apparatus for an incineration plant that can efficiently recover the heat of the combustion exhaust gas in the incineration plant and that can stably and efficiently treat the combustion exhaust gas.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、減温装置出口温度が所定の範囲内となるように、減温装置への送水量を制御することにより、減温された燃焼排ガスの処理を安定かつ効率的に行うことができると共に、熱回収装置における熱回収も安定かつ効率的に行うことができるようになることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have reduced the temperature by controlling the amount of water supplied to the temperature reducing device so that the temperature reducing device outlet temperature is within a predetermined range. It has been found that the treatment of the combustion exhaust gas can be performed stably and efficiently, and the heat recovery in the heat recovery apparatus can be performed stably and efficiently.
 本発明は以下を要旨とする。 The gist of the present invention is as follows.
[1] 有機物を燃焼させる焼却装置と、該焼却装置から排出される燃焼排ガスの熱を回収する熱回収装置と、該熱回収装置で熱回収された燃焼排ガスを減温させる減温装置と、該減温装置で減温された燃焼排ガスを処理する排ガス処理装置とを備えた焼却プラントから排出される排水の排水回収方法であって、該焼却プラントから排出される排水を清澄化する水処理工程と、該水処理工程の処理水を前記減温装置に送水する送水工程と、送水された処理水を該減温装置内の前記燃焼排ガス中に吹き込んで蒸発させることにより該燃焼排ガスを減温させる減温工程とを有する焼却プラントの排水回収方法において、該水処理工程の処理水の減温装置への送水量を、該減温装置出口の燃焼排ガス温度が150~200℃となるように制御することを特徴とする焼却プラントの排水回収方法。 [1] An incinerator that combusts organic matter, a heat recovery device that recovers the heat of the combustion exhaust gas discharged from the incinerator, a temperature reduction device that reduces the temperature of the combustion exhaust gas recovered by the heat recovery device, A wastewater recovery method for wastewater discharged from an incineration plant comprising an exhaust gas treatment device for processing combustion exhaust gas reduced in temperature by the temperature reduction device, wherein the water treatment clarifies the wastewater discharged from the incineration plant A process for supplying the treated water of the water treatment process to the temperature reducing device, and reducing the combustion exhaust gas by blowing and evaporating the treated water fed into the combustion exhaust gas in the temperature reducing device. In the wastewater recovery method for an incineration plant having a temperature reducing step for heating, the amount of water sent to the temperature reducing device for the treated water in the water treatment step is set so that the flue gas temperature at the outlet of the temperature reducing device is 150 to 200 ° C. To control Waste water recovery method of incineration plants characterized by.
[2] [1]において、前記水処理工程が膜分離工程を含み、該膜分離工程における水回収率を調整することによって前記送水量を制御することを特徴とする焼却プラントの排水回収方法。 [2] A wastewater recovery method for an incineration plant according to [1], wherein the water treatment step includes a membrane separation step, and the water supply amount is controlled by adjusting a water recovery rate in the membrane separation step.
[3] [2]において、前記膜分離工程が逆浸透膜分離工程であることを特徴とする焼却プラントの排水回収方法。 [3] A wastewater recovery method for an incineration plant according to [2], wherein the membrane separation step is a reverse osmosis membrane separation step.
[4] [1]ないし[3]のいずれかにおいて、前記減温された燃焼排ガスに、重炭酸ナトリウム及び/または水酸化カルシウムを添加して前記排ガス処理装置で処理することを特徴とする焼却プラントの排水回収方法。 [4] Incineration according to any one of [1] to [3], wherein sodium bicarbonate and / or calcium hydroxide is added to the temperature-reduced combustion exhaust gas and treated with the exhaust gas treatment device. Wastewater recovery method for the plant.
[5] [1]ないし[4]のいずれかにおいて、前記排ガス処理装置は、集塵機と、該集塵機で除塵された排ガスを処理する触媒脱硝装置とを備え、該集塵機と触媒脱硝装置との間で該排ガスの温度調整を行わないことを特徴とする焼却プラントの排水回収方法。 [5] In any one of [1] to [4], the exhaust gas treatment device includes a dust collector and a catalyst denitration device that treats the exhaust gas removed by the dust collector, and between the dust collector and the catalyst denitration device. A wastewater recovery method for an incineration plant, wherein the temperature of the exhaust gas is not adjusted.
[6] [1]ないし[5]のいずれかにおいて、前記熱回収装置出口の燃焼排ガス温度が230℃以上であることを特徴とする焼却プラントの排水回収方法。 [6] The wastewater recovery method for an incineration plant according to any one of [1] to [5], wherein the flue gas temperature at the outlet of the heat recovery device is 230 ° C. or higher.
[7] 有機物を燃焼させる焼却装置と、該焼却装置から排出される燃焼排ガスの熱を回収する熱回収装置と、該熱回収装置で熱回収された燃焼排ガスを減温させる減温装置と、該減温装置で減温された燃焼排ガスを処理する排ガス処理装置とを備えた焼却プラントから排出される排水の排水回収装置であって、該焼却プラントから排出される排水を清澄化する水処理装置と、該水処理装置の処理水を前記減温装置に送水する送水手段と、送水された処理水を該減温装置内の前記燃焼排ガス中に吹き込んで蒸発させることにより該燃焼排ガスを減温させる吹込手段とを有する焼却プラントの排水回収装置において、該水処理装置から減温装置への送水量を、該減温装置出口の燃焼排ガス温度が150~200℃となるように制御する制御手段を有することを特徴とする焼却プラントの排水回収装置。 [7] An incinerator that burns organic matter, a heat recovery device that recovers the heat of the combustion exhaust gas discharged from the incineration device, a temperature reduction device that reduces the temperature of the combustion exhaust gas heat recovered by the heat recovery device, A wastewater recovery device for wastewater discharged from an incineration plant comprising an exhaust gas treatment device for processing combustion exhaust gas reduced in temperature by the temperature reduction device, wherein the water treatment clarifies the wastewater discharged from the incineration plant An apparatus, water supply means for supplying treated water from the water treatment device to the temperature reducing device, and reducing the combustion exhaust gas by blowing and evaporating the treated water fed into the combustion exhaust gas in the temperature reducing device. In a wastewater recovery apparatus of an incineration plant having a blowing means for heating, control for controlling the amount of water fed from the water treatment apparatus to the temperature reducing apparatus so that the combustion exhaust gas temperature at the outlet of the temperature reducing apparatus is 150 to 200 ° C means Waste water recovery system of incineration plants, characterized in that it comprises.
[8] [7]において、前記水処理装置が膜分離装置を含み、前記制御手段は、該膜分離装置における水回収率を調整することによって前記送水量を制御する手段であることを特徴とする焼却プラントの排水回収装置。 [8] In [7], the water treatment device includes a membrane separation device, and the control means is a means for controlling the water supply amount by adjusting a water recovery rate in the membrane separation device. Wastewater recovery equipment for incineration plants.
[9] [8]において、前記膜分離装置が逆浸透膜分離装置であることを特徴とする焼却プラントの排水回収装置。 [9] A waste water recovery device for an incineration plant according to [8], wherein the membrane separation device is a reverse osmosis membrane separation device.
[10] [7]ないし[9]のいずれかにおいて、前記減温された燃焼排ガスに、重炭酸ナトリウム及び/または水酸化カルシウムを添加する薬剤添加手段を有し、該重炭酸ナトリウム及び/または水酸化カルシウムが添加された排ガスが前記排ガス処理装置で処理されることを特徴とする焼却プラントの排水回収装置。 [10] In any one of [7] to [9], there is provided a chemical addition means for adding sodium bicarbonate and / or calcium hydroxide to the temperature-reduced combustion exhaust gas, and the sodium bicarbonate and / or A wastewater recovery apparatus for an incineration plant, wherein the exhaust gas to which calcium hydroxide is added is processed by the exhaust gas processing apparatus.
[11] [7]ないし[10]のいずれかにおいて、前記排ガス処理装置は、集塵機と、該集塵機で除塵された排ガスを処理する触媒脱硝装置とを備え、該集塵機と触媒脱硝装置との間で該排ガスの温度調整が行われないことを特徴とする焼却プラントの排水回収装置。 [11] In any one of [7] to [10], the exhaust gas treatment device includes a dust collector and a catalyst denitration device that treats the exhaust gas removed by the dust collector, and between the dust collector and the catalyst denitration device. A waste water recovery device for an incineration plant, wherein the temperature of the exhaust gas is not adjusted.
[12] [7]ないし[11]のいずれかにおいて、前記熱回収装置出口の燃焼排ガス温度が230℃以上であることを特徴とする焼却プラントの排水回収装置。 [12] The wastewater recovery apparatus for an incineration plant according to any one of [7] to [11], wherein the combustion exhaust gas temperature at the outlet of the heat recovery apparatus is 230 ° C. or higher.
 本発明によれば、減温装置出口温度が所定の範囲内となるように、減温装置への送水量を制御することにより、減温された燃焼排ガスの処理を安定かつ効率的に行うことができると共に、熱回収装置における熱回収も安定かつ効率的に行うことが可能となる。 According to the present invention, by controlling the amount of water supplied to the temperature reducing device so that the temperature at the outlet of the temperature reducing device is within a predetermined range, it is possible to stably and efficiently treat the reduced temperature combustion exhaust gas. In addition, heat recovery in the heat recovery apparatus can be performed stably and efficiently.
実施の形態に係る焼却プラントのブロック図である。It is a block diagram of the incineration plant concerning an embodiment. 実施の形態のフロー図である。It is a flowchart of an embodiment. 実施例のフロー図である。It is a flowchart of an Example. 比較例のフロー図である。It is a flowchart of a comparative example.
 以下、図面を参照して本発明の実施の形態について説明する。以下において、熱回収装置や減温装置等から排出される燃焼排ガスの温度を単に「出口温度」と称す場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Hereinafter, the temperature of the combustion exhaust gas discharged from the heat recovery device, the temperature reducing device, or the like may be simply referred to as “exit temperature”.
 本実施形態が適用される焼却プラントは、図1の通り、有機物を燃焼させる焼却装置1と、該焼却装置1から排出される燃焼排ガスの熱を回収する熱回収装置2と、該熱回収装置2で熱回収された燃焼排ガス(以下、熱回収燃焼排ガスともいう)をさらに減温させる減温装置3と、減温された燃焼排ガスを除塵する集塵機4と、除塵処理された燃焼排ガス中のNOxガスを分解除去する触媒脱硝装置5と、焼却プラント内で発生、排出される排水を処理する水処理装置6と、減温装置3の出口温度を測定する温度計Tの測定結果に基づいて、水処理装置6で処理された処理水のうち、減温装置3に送給する送水量を制御する制御装置7とを備える。ただし、図示した装置以外の他の装置を有していてもよい。 As shown in FIG. 1, the incineration plant to which the present embodiment is applied includes an incinerator 1 that combusts organic matter, a heat recovery device 2 that recovers heat of combustion exhaust gas discharged from the incinerator 1, and the heat recovery device. 2, a temperature reducing device 3 for further reducing the temperature of the combustion exhaust gas recovered in heat (hereinafter also referred to as heat recovery combustion exhaust gas), a dust collector 4 for removing dust from the reduced temperature combustion exhaust gas, Based on the measurement results of a catalytic denitration device 5 that decomposes and removes NOx gas, a water treatment device 6 that treats wastewater generated and discharged in the incineration plant, and a thermometer T that measures the outlet temperature of the temperature reducing device 3. A control device 7 that controls the amount of water supplied to the temperature reducing device 3 among the treated water treated by the water treatment device 6 is provided. However, you may have apparatuses other than the apparatus shown in figure.
 図1では、排ガス処理装置として集塵機4と触媒脱硝装置5を備えるが、排ガス処理装置は、何らこれらに限定されるものではない。例えば、集塵機4のみでも良いし、触媒脱硝装置5の後段に活性炭装置を備えてもよい。 In FIG. 1, the dust collector 4 and the catalyst denitration device 5 are provided as the exhaust gas treatment device, but the exhaust gas treatment device is not limited to these. For example, only the dust collector 4 may be used, or an activated carbon device may be provided after the catalyst denitration device 5.
 焼却装置1としては、ストーカ炉、流動床炉、ガス化溶融炉、灰溶融炉等、焼却プラント等を用いることができる。 As the incinerator 1, a stoker furnace, a fluidized bed furnace, a gasification melting furnace, an ash melting furnace, an incineration plant, or the like can be used.
 燃焼する有機物としては、特に限定されるものではないが、例えば、都市ごみ、産業廃棄物、下水汚泥、廃木材などが挙げられる。焼却装置1から排出される燃焼排ガスは、通常、800~1300℃程度の温度になっている。 The burning organic matter is not particularly limited, and examples thereof include municipal waste, industrial waste, sewage sludge, and waste wood. The combustion exhaust gas discharged from the incinerator 1 is usually at a temperature of about 800 to 1300 ° C.
 熱回収装置2は、焼却装置1から排出される燃焼排ガスの熱を回収するものである。熱回収装置2としては廃熱ボイラなどが挙げられる。熱回収装置2の出口温度は、通常230℃以上、特に250℃以上である。この温度が230℃未満であると腐食が生じることがある。熱回収装置2の出口温度の上限は、通常、熱回収効率の観点から400℃以下である。 The heat recovery device 2 recovers the heat of the combustion exhaust gas discharged from the incinerator 1. Examples of the heat recovery device 2 include a waste heat boiler. The outlet temperature of the heat recovery apparatus 2 is usually 230 ° C. or higher, particularly 250 ° C. or higher. If this temperature is less than 230 ° C., corrosion may occur. The upper limit of the outlet temperature of the heat recovery apparatus 2 is usually 400 ° C. or less from the viewpoint of heat recovery efficiency.
 減温装置3は、熱回収装置2で熱回収された燃焼排ガス(熱回収燃焼排ガス)をさらに減温させるものである。減温装置3は、熱回収装置2から導入される熱回収燃焼排ガスに水処理装置6からの処理水を噴霧(又は噴射)し、熱回収燃焼排ガスの温度を水の気化熱により低下させるよう構成されている。減温装置3に導入される熱回収燃焼排ガスの温度、即ち、熱回収装置2の出口温度は前述の通り、通常230~400℃程度である。 The temperature reducing device 3 further reduces the temperature of the combustion exhaust gas (heat recovery combustion exhaust gas) recovered by the heat recovery device 2. The temperature reducing device 3 sprays (or injects) the treated water from the water treatment device 6 onto the heat recovery combustion exhaust gas introduced from the heat recovery device 2 so that the temperature of the heat recovery combustion exhaust gas is reduced by the heat of vaporization of water. It is configured. As described above, the temperature of the heat recovery combustion exhaust gas introduced into the temperature reducing device 3, that is, the outlet temperature of the heat recovery device 2, is usually about 230 to 400 ° C.
 本発明においては、減温装置3の出口温度、即ち、減温装置3で減温された燃焼排ガスの温度が150~200℃、好ましくは160~190℃となるように、制御装置7で水処理装置6から減温装置3に送水されて噴霧(又は噴射)される送水量を制御する。減温装置3の出口温度が150℃より低いと後段の集塵機(バグフィルタ)4で、潮解(CaCl)による目詰まりや、集塵機の低温腐食等が発生する。この温度が230℃より高いとダイオキシンの再合成が起こり、ダイオキシン総量が増加してしまう。発生したダイオキシンは、後段の触媒脱硝装置5又は活性炭装置で処理する必要があり、後段の排ガス処理装置の負荷が大きくなったり、別途処理設備が必要となったりする。 In the present invention, the temperature of the outlet of the temperature reducing device 3, that is, the temperature of the combustion exhaust gas reduced in temperature by the temperature reducing device 3 is 150 to 200 ° C., preferably 160 to 190 ° C. The amount of water supplied from the processing device 6 to the temperature reducing device 3 and sprayed (or sprayed) is controlled. When the outlet temperature of the temperature reducing device 3 is lower than 150 ° C., clogging due to deliquescence (CaCl 2 ) or low temperature corrosion of the dust collector occurs in the dust collector (bag filter) 4 at the subsequent stage. When this temperature is higher than 230 ° C., re-synthesis of dioxins occurs and the total amount of dioxins increases. The generated dioxin needs to be processed by the catalyst denitration device 5 or the activated carbon device at the subsequent stage, which increases the load of the exhaust gas processing device at the subsequent stage or requires a separate processing facility.
 減温装置3で減温された排ガスは、重炭酸ナトリウム(重曹)や水酸化カルシウム(消石灰)等の酸性ガス処理薬剤を添加して中和した後、集塵機4で除塵される。 The exhaust gas reduced in temperature by the temperature reducing device 3 is neutralized by adding an acid gas treatment agent such as sodium bicarbonate (bicarbonate) or calcium hydroxide (slaked lime), and then removed by the dust collector 4.
 焼却プラントでごみを焼却すると、HCl、SOx等の有害ガス、ダイオキシン、重金属を含む飛灰等が発生するため、これらを処理する工程が必要となる。図1では、集塵機4の手前で酸性ガスの処理を行うために重曹や消石灰(水酸化ドロマイトであってもよい)を添加する。なお、減温装置3やスクラバーにおいて酸性ガス処理を行う場合にはNaOH等のアルカリを用いた中和処理等の公知の処理手段が適用される。ダイオキシン処理や飛灰処理においても公知の方法が適用される。 When garbage is incinerated at an incineration plant, toxic gases such as HCl and SOx, dioxins, fly ash containing heavy metals, etc. are generated, and a process for treating these is required. In FIG. 1, sodium bicarbonate or slaked lime (may be dolomite hydroxide) is added in order to treat the acidic gas before the dust collector 4. In addition, when performing an acidic gas process in the temperature reduction apparatus 3 or a scrubber, well-known process means, such as neutralization process using alkalis, such as NaOH, are applied. Known methods are also applied in the dioxin treatment and fly ash treatment.
 減温装置3の出口ガス、即ち、集塵機4の入口ガスのガス組成等と好適な処理条件との関係は以下の通りである。
 ガス組成:
  HCl(O:12%換算値)=100~800ppm、特に200~600ppm
  SOx=10~100ppm、特に30~50ppm
 排ガス量:1,000~200,000Nm-dry/hr
 排ガス中の水分量:10~40%
 酸性ガス処理薬剤添加量:
  重曹=1.0~1.2当量(対集塵機入口ガスのHCl、SOx濃度)
  消石灰=2.0~4.0当量(対集塵機入口ガスのHCl、SOx濃度)
The relationship between the outlet gas of the temperature reducing device 3, that is, the gas composition of the inlet gas of the dust collector 4, etc., and suitable processing conditions is as follows.
Gas composition:
HCl (O 2 : 12% conversion value) = 100 to 800 ppm, especially 200 to 600 ppm
SOx = 10-100ppm, especially 30-50ppm
Exhaust gas amount: 1,000 to 200,000 Nm 3 -dry / hr
Moisture content in exhaust gas: 10-40%
Acid gas treatment chemical addition amount:
Baking soda = 1.0 to 1.2 equivalents (HCl / SOx concentration of dust collector inlet gas)
Slaked lime = 2.0-4.0 equivalents (concentration of HCl and SOx in the dust collector inlet gas)
 酸性ガス処理に重曹を用いる場合、排ガス温度150~200℃、特には180~200℃で安定した処理が可能である。添加する重曹は粒径30μm以下、例えば5~20μmのものが好ましい。 When baking acid is used for acid gas treatment, stable treatment is possible at an exhaust gas temperature of 150 to 200 ° C., particularly 180 to 200 ° C. The baking soda to be added preferably has a particle size of 30 μm or less, for example, 5 to 20 μm.
 賦活(活性化、比表面積向上)処理を施した高反応性消石灰を用いる場合、排ガス温度150~170℃で安定した処理が可能である。添加する消石灰は粒径10μm以下、例えば4~8μmのものが好ましい。 When using highly reactive slaked lime that has been subjected to activation (activation, specific surface area improvement) treatment, stable treatment at an exhaust gas temperature of 150 to 170 ° C. is possible. The slaked lime added preferably has a particle size of 10 μm or less, for example, 4 to 8 μm.
 集塵機4で除塵された排ガスは、次いで触媒脱硝装置5で、アンモニアとの混合ガスとして脱硝触媒と接触させる接触還元反応により、ガス中のNOxが分解除去され、処理ガスは系外へ排出される。 The exhaust gas removed by the dust collector 4 is then decomposed and removed by NOx in the gas by a catalytic reduction reaction in which the exhaust gas is brought into contact with the denitration catalyst as a mixed gas with ammonia in the catalyst denitration device 5, and the processing gas is discharged out of the system. .
 この触媒脱硝装置5における入口ガス温度は180℃以上、好ましくは190℃以上、例えば190~230℃であることが必要とされ、これよりも温度が低いとNOxを分解除去できないため、排ガスを再加熱する必要が生じる。触媒脱硝装置5の入口ガス条件は通常以下の通りである。
 排ガスNOx濃度:50~300ppm
 排ガス量:1,000~200,000Nm-dry/hr
 排ガス中の水分量:10~40%
The inlet gas temperature in the catalyst denitration device 5 is required to be 180 ° C. or higher, preferably 190 ° C. or higher, for example, 190 to 230 ° C. If the temperature is lower than this, NOx cannot be decomposed and removed, so that the exhaust gas is recycled. It is necessary to heat. The inlet gas conditions of the catalyst denitration device 5 are usually as follows.
Exhaust gas NOx concentration: 50-300ppm
Exhaust gas amount: 1,000 to 200,000 Nm 3 -dry / hr
Moisture content in exhaust gas: 10-40%
 本発明に好適な焼却プラントの排水を処理するための水処理装置について図2を参照して説明するが、本発明に係る水処理装置は、何ら図2に示すものに限定されない。 A water treatment apparatus for treating wastewater of an incineration plant suitable for the present invention will be described with reference to FIG. 2, but the water treatment apparatus according to the present invention is not limited to that shown in FIG.
 本発明において、焼却プラントから排出される排水とは、焼却プラントの敷地内で生じる排水を意味している。焼却プラントの敷地内で生じる排水としては、例えば、廃熱ボイラなどの熱回収装置2からブローされるボイラブロー水、停止時に熱回収装置の缶内に満たされ、再起動前に排出されるボイラ保缶水、冷却塔ブロー水、焼却プラントにある床などを洗浄したときに発生する床洗浄排水、廃棄物収集車を洗浄したときに発生する洗車排水のほか、生活排水や雑排水が挙げられる。雑排水としては、焼却炉などの焼却装置1から発生する焼却残渣やスラグを冷却する残渣冷却排水や焼却プラント内で発生する界面活性剤や油分を含まない上記以外の排水が挙げられる。 In the present invention, the waste water discharged from the incineration plant means waste water generated within the site of the incineration plant. Examples of the waste water generated in the premises of the incineration plant include boiler blow water blown from the heat recovery device 2 such as a waste heat boiler, boiler maintenance filled in the can of the heat recovery device when stopped, and discharged before restarting In addition to canned water, cooling tower blow water, floor washing wastewater generated when washing floors in incineration plants, car wash wastewater generated when washing waste collection vehicles, domestic wastewater and miscellaneous wastewater are listed. Examples of miscellaneous wastewater include incineration residue generated from an incinerator 1 such as an incinerator, residue cooling wastewater that cools slag, and wastewater other than the above that does not contain a surfactant and oil generated in an incineration plant.
 図2では、ボイラ保缶水、ボイラブロー水及び冷却塔ブロー水(ただし、ボイラ保缶水は除外されてもよい。)を混合した混合排水を、前処理装置8で処理した後、膜分離装置9で膜分離処理する。 In FIG. 2, after treating the mixed waste water which mixed boiler canned water, boiler blow water, and cooling tower blow water (however, boiler canned water may be excluded) with the pre-processing apparatus 8, it is a membrane separation apparatus. In step 9, membrane separation is performed.
 雑排水については、第1の予備処理装置10Aで処理した後、ボイラ保缶水、ボイラブロー水及び冷却塔ブロー水と混合し、前処理装置8に供給する。このように雑排水を予備処理することにより、膜分離装置9の膜の閉塞が抑制される。 The miscellaneous wastewater is treated with the first pretreatment device 10A, then mixed with boiler canned water, boiler blow water, and cooling tower blow water, and supplied to the pretreatment device 8. Preliminary treatment of miscellaneous wastewater in this way suppresses the clogging of the membrane of the membrane separation device 9.
 前処理装置8としては、砂濾過器又は精密濾過(MF)膜、限外濾過(UF)膜分離装置などを用いることができる。混合排水をこのように前処理することにより、膜分離装置9の膜の閉塞が抑制される。膜分離装置9としては逆浸透(RO)膜分離装置が好適である。 As the pretreatment device 8, a sand filter, a microfiltration (MF) membrane, an ultrafiltration (UF) membrane separation device, or the like can be used. By pretreating the mixed waste water in this way, the membrane of the membrane separation device 9 is prevented from being blocked. As the membrane separation device 9, a reverse osmosis (RO) membrane separation device is suitable.
 雑排水を処理する第1の予備処理装置10Aとしては、中和、凝集、沈殿、濾過、生物処理装置の少なくとも1つが好ましい。 As the first pretreatment device 10A for treating miscellaneous wastewater, at least one of neutralization, aggregation, precipitation, filtration, and biological treatment device is preferable.
 洗車排水、床洗浄排水は、SS分、有機成分を除去する第2の予備処理装置10Bで処理される。第2の予備処理装置10Bとしては、中和、凝集、沈殿、濾過、生物処理装置の少なくとも1つが好ましい。 Car wash wastewater and floor wash wastewater are treated by the second pretreatment device 10B that removes organic components for SS. The second pretreatment device 10B is preferably at least one of neutralization, aggregation, precipitation, filtration, and biological treatment device.
 膜分離装置9の濃縮水と第2の予備処理装置10Bの処理水は、減温装置3に供給される。 The concentrated water of the membrane separation device 9 and the treated water of the second pretreatment device 10B are supplied to the temperature reducing device 3.
 本発明においては、この減温装置3に送給される水処理装置の処理水量(図2では、膜分離装置9の濃縮水と第2の予備処理装置10Bの処理水との混合水量)が、減温装置3の出口温度が150~200℃、好ましくは160~190℃となるように制御装置(図1の制御装置7)で制御される。 In the present invention, the amount of treated water supplied to the temperature reducing device 3 (the amount of mixed water of the concentrated water of the membrane separation device 9 and the treated water of the second pretreatment device 10B in FIG. 2) is The controller (the control device 7 in FIG. 1) controls the outlet temperature of the temperature reducing device 3 to be 150 to 200 ° C., preferably 160 to 190 ° C.
 この送水量の制御方法としては特に制限はないが、膜分離装置9の水回収率を制御して、減温装置3に送給する濃縮水量を制御するか、或いは、膜分離装置9の膜モジュールのユニット数や透過水量を調整して濃縮水量を制御する方法が好ましい。 Although there is no restriction | limiting in particular as this water supply amount control method, the water recovery rate of the membrane separation apparatus 9 is controlled, the amount of concentrated water supplied to the temperature reduction apparatus 3 is controlled, or the membrane of the membrane separation apparatus 9 is controlled. A method of controlling the amount of concentrated water by adjusting the number of modules and the amount of permeated water is preferable.
 水処理装置内の各装置において、一部の装置をバイパスさせたり、後段の装置の処理水を前段装置へ循環したり、後段装置への送水量や滞留時間を増減したりすることで、単位時間当たりに水処理装置から排出される処理水量を調整する方法も採用することができる。送水量を低減したい場合には、ピットに戻す水量や、飛灰の加湿や主灰の冷却装置の冷却水として用いる水量を増加させてもよい。逆に、送水量を増加させるために、工水や他工程からの水を混入させることも可能である。 In each device in the water treatment device, by bypassing some devices, circulating the treated water of the subsequent device to the previous device, increasing or decreasing the amount of water supplied to the subsequent device and the residence time, etc. A method of adjusting the amount of treated water discharged from the water treatment device per hour can also be adopted. When it is desired to reduce the amount of water supplied, the amount of water returned to the pit or the amount of water used as the cooling water for the fly ash humidification or main ash cooling device may be increased. Conversely, in order to increase the amount of water supplied, it is also possible to mix industrial water and water from other processes.
 本発明においては、減温装置3の出口ガス温度を測定する温度計Tを設け、この温度計Tの測定値に基づいて、温度計Tの測定値が150~200℃、好ましくは160~190℃となるように、制御装置7により、水処理装置6から減温装置3に送給される水量を制御することにより、減温された排ガスの温度を所定の温度に維持し、その後の酸性ガス処理、脱NOx処理等の排ガス処理を安定に行うことが可能となる。即ち、例えば、減温装置3の出口ガス温度を前述の酸性ガス処理に用いる薬剤に好適な温度に調整して、酸性ガス処理を安定かつ効率的に行うことが可能となる。 In the present invention, a thermometer T for measuring the outlet gas temperature of the temperature reducing device 3 is provided, and based on the measured value of the thermometer T, the measured value of the thermometer T is 150 to 200 ° C., preferably 160 to 190. By controlling the amount of water supplied from the water treatment device 6 to the temperature reducing device 3 by the control device 7 so that the temperature becomes 0 ° C., the temperature of the exhaust gas that has been reduced in temperature is maintained at a predetermined temperature, and then the acidity It is possible to stably perform exhaust gas treatment such as gas treatment and deNOx treatment. That is, for example, the outlet gas temperature of the temperature reducing device 3 can be adjusted to a temperature suitable for the chemical used in the aforementioned acidic gas treatment, and the acidic gas treatment can be performed stably and efficiently.
 更にその後段に触媒脱硝装置によるNOx除去処理を行う場合にも、触媒脱硝装置に流入する排ガス温度が安定することにより、安定かつ効率的な処理を行うことが可能となる。 Furthermore, even when the NOx removal process by the catalyst denitration apparatus is performed at the subsequent stage, the exhaust gas temperature flowing into the catalyst denitration apparatus is stabilized, so that a stable and efficient process can be performed.
 例えば、触媒脱硝装置におけるNOx除去処理に好適な温度は、前述の通り180℃以上、好ましくは190~230℃であるため、その前段の酸性ガス処理を、重曹を用いて180~200℃で行い、集塵機と触媒脱硝装置との間で加温等の温度調整を不要とすることができる。従って、この場合は、減温装置への送水量の制御で減温装置出口温度を180~200℃の範囲とすることが好ましい。 For example, the temperature suitable for the NOx removal treatment in the catalyst denitration apparatus is 180 ° C. or higher, preferably 190 to 230 ° C. as described above, so that the preceding acid gas treatment is performed at 180 to 200 ° C. using baking soda. Further, temperature adjustment such as heating can be eliminated between the dust collector and the catalyst denitration device. Therefore, in this case, it is preferable to set the outlet temperature of the temperature reducing device to a range of 180 to 200 ° C. by controlling the amount of water supplied to the temperature reducing device.
 前述の通り、消石灰による酸性ガス処理の好適温度は150~170℃で、触媒脱硝装置におけるNOx除去に好適な温度よりも低いため、消石灰を用いる場合は、集塵機と触媒脱硝装置との間でボイラ蒸気や電気による再加熱が必要となる場合がある。 As described above, the preferred temperature of the acid gas treatment with slaked lime is 150 to 170 ° C., which is lower than the temperature suitable for removing NOx in the catalytic denitration device. Therefore, when using slaked lime, the boiler is disposed between the dust collector and the catalytic denitration device. Reheating with steam or electricity may be required.
 この観点から、酸性ガス処理の後段で触媒脱硝装置によるNOx除去を行う場合には、重曹を用いて180~200℃で酸性ガス処理を行い、処理ガスを加温することなく触媒脱硝装置に送給することが好ましい。 From this point of view, when NOx removal by the catalytic denitration device is performed after the acidic gas treatment, the acidic gas treatment is performed at 180 to 200 ° C. using baking soda, and the treatment gas is sent to the catalytic denitration device without heating. It is preferable to supply.
 本発明においては、減温装置への送水量の制御で減温装置出口温度を一定の範囲内におさめることができるため、その前段の熱回収装置においては、焼却プラントで排出される排水量に基づいて熱回収量や熱回収装置出口温度を調整する必要がなくなり、熱回収装置においても、安定かつ効率的な熱回収を行える。前述の通り、この熱回収装置の出口温度は230℃以上、特に230~400℃であることが好ましい。 In the present invention, since the temperature at the outlet of the temperature reducing device can be kept within a certain range by controlling the amount of water supplied to the temperature reducing device, the heat recovery device at the preceding stage is based on the amount of waste water discharged from the incineration plant. Thus, there is no need to adjust the heat recovery amount or the heat recovery device outlet temperature, and the heat recovery device can also perform stable and efficient heat recovery. As described above, the outlet temperature of the heat recovery apparatus is preferably 230 ° C. or higher, particularly 230 to 400 ° C.
 以下に、図2に示す水処理装置についてより詳細に説明する。
 前処理装置8において、MF膜又はUF膜分離装置を用いた場合、MF又はUF膜濃縮水については第1の予備処理装置10Aで処理し、SS分、有機成分を除去することが好ましい。ただし、第2の予備処理装置10Bで処理してもかまわない。前処理装置8のMF又はUF膜濃縮水を減温装置3で噴霧しないことにより、噴霧ノズルの閉塞を防止し、安定的な減温処理が可能となる。
Below, it demonstrates in detail about the water treatment apparatus shown in FIG.
When the MF membrane or UF membrane separator is used in the pretreatment device 8, it is preferable to treat the MF or UF membrane concentrated water with the first pretreatment device 10A to remove the organic component from SS. However, the processing may be performed by the second preliminary processing apparatus 10B. By not spraying the MF or UF membrane concentrated water of the pretreatment device 8 with the temperature reducing device 3, the spray nozzle is prevented from being blocked and a stable temperature reduction treatment is possible.
 ボイラ保缶水、ボイラブロー水、及び冷却塔ブロー水中には、処理の安定化、効率化のために、防食剤、分散剤やスライムコントロール剤、復水アミン剤、脱酸素剤などの水処理薬品が含まれている。これらの薬品として、膜処理に悪影響を及ぼさず、膜処理の安定化に寄与するものを選択し、かつ、ボイラ保缶水、ボイラブロー水、及び冷却塔ブロー水を前処理装置8での前処理のみを行ってRO膜処理を行うことで、水処理薬品をRO膜処理のために新たに添加することなく、効率的な膜分離処理が可能となる。なお、薬品濃度が不足する場合には、必要な薬品を添加してもよい。 Water treatment chemicals such as anti-corrosion agents, dispersants and slime control agents, condensate amine agents, and oxygen scavengers in boiler canned water, boiler blow water, and cooling tower blow water for stabilization and efficiency of treatment. It is included. As these chemicals, those that do not adversely affect the membrane treatment and contribute to the stabilization of the membrane treatment are selected, and the boiler can water, the boiler blow water, and the cooling tower blow water are pretreated in the pretreatment device 8. By performing only the RO membrane treatment, efficient membrane separation treatment can be performed without newly adding a water treatment chemical for the RO membrane treatment. In addition, when the chemical concentration is insufficient, a necessary chemical may be added.
 ボイラブロー水、冷却水ブロー水に含まれる分散剤は凝集処理の阻害要因となる。そのため、ボイラブロー水、冷却水ブロー水を第1の予備処理装置10Aに流入させると、凝集剤の必要量が著しく増大する。また、スライムコントロール剤は生物処理に悪影響があり、生物活性が低下するケースがあり、排水処理する場合には別途無害化する必要がある。そこで、これらの水を第1の予備処理装置10Aに導入することなく前処理装置8に供給することで、予備処理装置10Aを小型化することができる。 Dispersant contained in boiler blow water and cooling water blow water becomes an impediment to the coagulation treatment. Therefore, when the boiler blow water and the cooling water blow water are caused to flow into the first pretreatment device 10A, the necessary amount of the flocculant is remarkably increased. In addition, the slime control agent has an adverse effect on the biological treatment, and there are cases where the biological activity is reduced. Therefore, by supplying these waters to the pretreatment device 8 without introducing them into the first pretreatment device 10A, the pretreatment device 10A can be reduced in size.
 洗車排水、床洗浄排水については、第2の予備処理装置10Bで予備処理した後、減温装置3にて噴霧する。洗車排水や床洗浄排水には油分、界面活性剤など、MF膜やRO膜を閉塞させる物質が含まれることがあり、またその濃度が一定でなく、安定して膜分離処理することが困難である。そこで、洗車排水、床洗浄排水については、中和、凝集、沈殿、濾過、生物処理装置の内の少なくとも1つを有する第2の予備処理装置10Bで処理し、SS分、有機成分の除去を行ったうえで、減温装置3にて噴霧する。 Car wash wastewater and floor washing wastewater are pretreated by the second pretreatment device 10B and then sprayed by the temperature reducing device 3. Car wash wastewater and floor wash wastewater may contain substances that block the MF membrane or RO membrane, such as oil and surfactant, and the concentration is not constant, making it difficult to perform membrane separation treatment stably. is there. Therefore, the car wash wastewater and the floor wash wastewater are treated by the second pretreatment device 10B having at least one of neutralization, aggregation, precipitation, filtration, and biological treatment equipment to remove SS components and organic components. After performing, it sprays with the temperature decreasing apparatus 3. FIG.
 第1及び第2の予備処理装置10A,10Bでは、被処理水に含まれるSS分、有機成分を減少させる目的で、前記排水に凝集剤を添加し、主に前記浮遊物を凝集させた後、砂濾過等の濾過処理を行うか、濾過の代りに沈殿工程を行なってもよい。また、負荷が高い場合は加圧浮上工程を追加することもできる。凝集処理を適切に行うために、pH調整工程を追加することもできる。第1及び第2の予備処理装置10A,10Bで一連の予備処理を実施することにより、凝集物を前記排水から除去し、前記洗車排水及び床洗浄排水等に含まれているSS分、有機成分を減少させることができる。 In the first and second pretreatment devices 10A and 10B, for the purpose of reducing the SS component and the organic component contained in the water to be treated, a flocculant is added to the waste water, and the suspended matter is mainly agglomerated. A filtration process such as sand filtration may be performed, or a precipitation step may be performed instead of filtration. Further, when the load is high, a pressure levitation process can be added. In order to appropriately perform the aggregation treatment, a pH adjustment step can be added. By carrying out a series of pretreatments in the first and second pretreatment devices 10A and 10B, aggregates are removed from the waste water, and SS components and organic components contained in the car wash wastewater and floor washing wastewater etc. Can be reduced.
 第1及び第2の予備処理装置10A,10Bでは、砂濾過装置の代わりに浸漬型MF膜分離装置を用いて膜分離活性汚泥法で処理することもできる。浸漬型MF膜分離装置にて捕捉された凝集物は、抜き出された後にごみピットに投入され、焼却装置1にて焼却処理される。 In the first and second pretreatment apparatuses 10A and 10B, the submerged MF membrane separation apparatus can be used instead of the sand filtration apparatus to perform the treatment by the membrane separation activated sludge method. Aggregates captured by the submerged MF membrane separation device are extracted and then put into a garbage pit and incinerated by the incinerator 1.
 図2に示す水処理装置では、以下のような効果が得られる。
 特許文献2と同様に、膜分離装置9において、焼却プラントから排出された排水を分離膜によって濃縮して容積が減じられた濃縮水とし、この濃縮水を減温装置3に供給するので、減温装置3への供給濃縮水量が少なく、減温装置3に導入する燃焼排ガスの温度を低くすることができる。この結果、減温装置の上流側に設置された熱回収装置において燃焼排ガスから回収する熱量を大きくすることができる。
In the water treatment apparatus shown in FIG. 2, the following effects are obtained.
Similarly to Patent Document 2, in the membrane separation device 9, the waste water discharged from the incineration plant is concentrated by the separation membrane to obtain concentrated water having a reduced volume, and this concentrated water is supplied to the temperature reducing device 3. The amount of concentrated water supplied to the temperature device 3 is small, and the temperature of the combustion exhaust gas introduced into the temperature reduction device 3 can be lowered. As a result, it is possible to increase the amount of heat recovered from the combustion exhaust gas in the heat recovery device installed on the upstream side of the temperature reducing device.
 図2に示す水処理装置では、混合排水をRO膜により膜分離処理するため、以下の効果が得られる。 In the water treatment apparatus shown in FIG. 2, since the mixed waste water is subjected to membrane separation treatment by the RO membrane, the following effects can be obtained.
 ボイラ保缶水、ボイラブロー水、冷却水ブロー水中には、処理の安定化、効率化のために、分散剤やスライムコントロール剤などの水処理薬品が含まれている。これらの薬品として、膜処理に悪影響を及ぼさず、膜処理の安定化に寄与するものを選択して使用することにより、RO膜処理に際して、水処理薬品を新たに全く又は殆ど添加することなく、安定して膜分離処理することが可能となる。 In boiler canned water, boiler blow water, and cooling water blow water, water treatment chemicals such as a dispersant and a slime control agent are contained in order to stabilize and increase the efficiency of the treatment. By selecting and using these chemicals that do not adversely affect the membrane treatment and contribute to stabilization of the membrane treatment, at the time of RO membrane treatment, without newly adding or almost no water treatment chemicals, A membrane separation process can be stably performed.
 特に、ボイラブロー水、冷却水ブロー水に含まれる分散剤は凝集処理の阻害要因となる。スライムコントロール剤は生物処理に悪影響があり、生物活性が低下するケースがある。図2に示すように、これらの水を砂濾過、MF膜又はUF膜分離装置よりなる簡単な前処理装置で処理した後、膜分離処理することで、排水処理設備の大きさを小さくすることができる。 Especially, the dispersant contained in the boiler blow water and the cooling water blow water becomes an impediment to the coagulation treatment. Slime control agents have an adverse effect on biological treatment and may reduce biological activity. As shown in FIG. 2, after treating these waters with a simple pretreatment device consisting of sand filtration, MF membrane or UF membrane separation device, the size of the wastewater treatment facility is reduced by membrane separation treatment. Can do.
 図2に示すように、雑排水を中和、凝集、沈殿、濾過、生物処理装置の内の少なくとも一つを有する予備処理装置で処理し、排水中のSS分、有機成分を除去した上で、膜処理で濃縮操作を行うことで、排水に含まれるSS分、有機成分を減少させることができ、分離膜の目詰まりが起こりにくく、分離膜の継続使用期間を長くすることができる。これにより、分離膜の交換頻度が低くなり、濃縮水を効率的に得ることができ、焼却プラントにおける燃焼排ガスの熱をより効率よく回収できる。 As shown in FIG. 2, wastewater is treated with a pretreatment device having at least one of neutralization, agglomeration, precipitation, filtration, and biological treatment equipment, and after removing SS components and organic components in the wastewater. By performing the concentration operation by membrane treatment, the organic component can be reduced by the SS content contained in the waste water, the separation membrane is not easily clogged, and the continuous use period of the separation membrane can be extended. Thereby, the exchange frequency of a separation membrane becomes low, concentrated water can be obtained efficiently, and the heat | fever of the combustion exhaust gas in an incineration plant can be collect | recovered more efficiently.
 水処理装置で用いる凝集剤としては、例えば、硫酸第一鉄、硫酸第二鉄、塩化第二鉄などの鉄系凝集剤、硫酸アルミニウム(硫酸バンド)、ポリ塩化アルミニウム(PAC)などのアルミニウム系凝集剤、これらの混合物等が例示される。なお、前記凝集剤の添加量は、適宜調整され得る。 Examples of the flocculant used in the water treatment apparatus include iron-based flocculants such as ferrous sulfate, ferric sulfate, and ferric chloride, and aluminum-based flocculants such as aluminum sulfate (sulfuric acid band) and polyaluminum chloride (PAC). Examples thereof include a flocculant and a mixture thereof. The amount of the flocculant added can be adjusted as appropriate.
 被処理水に凝集剤として添加する高分子凝集剤としては、例えば、ポリ(メタ)アクリル酸、(メタ)アクリル酸と(メタ)アクリルアミドの共重合物、及び、それらのアルカリ金属塩等のアニオン系の有機系高分子凝集剤、ポリ(メタ)アクリルアミド等のノニオン系の有機系高分子凝集剤、ジメチルアミノエチル(メタ)アクリレートもしくはその4級アンモニウム塩、ジメチルアミノプロピル(メタ)アクリルアミドもしくはその4級アンモニウム塩等のカチオン性モノマーからなるホモポリマー、及び、それらカチオン性モノマーと共重合可能なノニオン性モノマーとの共重合体等のカチオン系の有機系高分子凝集剤、及び上記アニオン性モノマー、カチオン性モノマーやこれらモノマーと共重合可能なノニオン性モノマーとの共重合体である両性の有機系高分子凝集剤が挙げられる。高分子凝集剤の添加量にも特に限定はなく、被処理水の性状に応じて調整すればよいが、被処理水に対して概ね固形分で0.01~10mg/Lである。国際公開WO2011/018978に記載のフェノール型凝集剤なども使用することができる。 Examples of the polymer flocculant to be added to the water to be treated as a flocculant include poly (meth) acrylic acid, a copolymer of (meth) acrylic acid and (meth) acrylamide, and anions such as alkali metal salts thereof. Organic polymer flocculants, nonionic organic polymer flocculants such as poly (meth) acrylamide, dimethylaminoethyl (meth) acrylate or its quaternary ammonium salt, dimethylaminopropyl (meth) acrylamide or its 4 Homopolymers composed of cationic monomers such as quaternary ammonium salts, and cationic organic polymer flocculants such as copolymers of nonionic monomers copolymerizable with these cationic monomers, and the above anionic monomers, Copolymerization with cationic monomers and nonionic monomers copolymerizable with these monomers Organic polymer flocculant of amphoteric is united and the like. The amount of the polymer flocculant added is not particularly limited, and may be adjusted according to the properties of the water to be treated. However, the solid content is generally 0.01 to 10 mg / L with respect to the water to be treated. A phenol type flocculant described in International Publication WO2011 / 018978 can also be used.
 膜分離装置9でRO膜を用いた場合、RO膜で除去される不純物としては、イオン成分、有機物などが挙げられる。イオン成分としては、例えば、陽イオン性物質、陰イオン性物質などが挙げられ、具体的には、陰イオンとイオン結合して水に溶解しにくいスケールを発生させやすいカルシウムイオン、マグネシウムイオンなどが例示される。また、有機物としては、排水に溶解している水溶性有機物などが挙げられる。 When the RO membrane is used in the membrane separation device 9, examples of impurities removed by the RO membrane include ionic components and organic substances. Examples of ionic components include cationic substances, anionic substances, and the like. Specifically, calcium ions, magnesium ions, etc. that easily form scales that are ion-bonded to anions and are not easily dissolved in water. Illustrated. Moreover, as an organic substance, the water-soluble organic substance etc. which are melt | dissolving in the waste_water | drain are mentioned.
 前処理装置8において、MF膜分離装置を用いた場合、MF膜表面にスケール、濁質、有機物などが付着することによりMF膜差圧が上昇する。この場合、MF膜の逆圧洗浄や薬品洗浄を行う。MF膜の逆圧洗浄においては、MF膜差圧の上昇をより抑制できる点で、定期的/不定期に次亜塩素酸ナトリウムなどの次亜塩素酸塩を含んだ水で洗浄することが好ましい。 When the MF membrane separation device is used in the pretreatment device 8, the MF membrane differential pressure increases due to adhesion of scale, turbidity, organic matter, etc. to the MF membrane surface. In this case, back pressure cleaning and chemical cleaning of the MF membrane are performed. In the back pressure cleaning of the MF membrane, it is preferable to periodically / irregularly wash with water containing hypochlorite such as sodium hypochlorite in that the increase in the MF membrane differential pressure can be further suppressed. .
 MF膜は、通常、50nm~10μm程度の孔径の孔を有している。MF膜としては、例えば、中空糸膜、スパイラル膜、チューブラー膜がベッセル内に保持された膜ユニットを用いることができる。中空糸膜あるいは平膜をそのまま被処理水中に浸漬して用いることもできる。MF膜の代わりに、2~200nm程度の孔径を有するUF膜を用いることもできる。 MF membranes usually have pores with a pore size of about 50 nm to 10 μm. As the MF membrane, for example, a membrane unit in which a hollow fiber membrane, a spiral membrane, and a tubular membrane are held in a vessel can be used. A hollow fiber membrane or a flat membrane can be used as it is by immersing it in the water to be treated. Instead of the MF membrane, a UF membrane having a pore diameter of about 2 to 200 nm can also be used.
 MF膜としてはPVDF、UF膜としてはポリサルホン、RO膜ではポリアミドを材質とするものが好適に使用されるがこれに限定されない。 The MF membrane is preferably PVDF, the UF membrane is polysulfone, and the RO membrane is preferably made of polyamide, but is not limited thereto.
 RO膜としては、例えば、非対称膜の緻密層と微細多孔層とで構成される複合膜が挙げられる。 Examples of the RO membrane include a composite membrane composed of a dense layer of an asymmetric membrane and a fine porous layer.
 RO膜ユニットとしては、中空糸膜、スパイラル膜、管状膜等の状態で設置された濾過膜が、ベッセル内に保持されたユニットを用いることができる。 As the RO membrane unit, a unit in which a filtration membrane installed in a state of a hollow fiber membrane, a spiral membrane, a tubular membrane or the like is held in a vessel can be used.
 冷却水処理等に用いられる分散剤としては、ヘキサメタリン酸ソーダやトリポリリン酸ソーダ等の無機ポリリン酸類、ヒドロキシエチリデンジホスホン酸やホスホノブタントリカルボン酸等のホスホン酸類、マレイン酸、アクリル酸、イタコン酸等のカルボキシル基含有素材、必要に応じてそれとビニルスルホン酸、アリルスルホン酸、2-メタクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸基を有するビニルモノマーや、アクリルアミド等のノニオン性ビニルモノマーを組み合わせたコポリマーなどを使用することができるが、ここに挙げた以外の素材も適用することができる。また、分散剤の第三の成分として、そのほかの成分を使用して、三元重合物を使用することもできる。たとえば第三の成分として、N-tert-ブチルアクリルアミドなどを使用する。分散剤としては、その中でも、HAPS、AMPSとアクリル酸および/あるいはメタクリル酸を含む重合物であることが最も好ましい。(なお、HAPSは3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸、AMPSは2-アクリルアミド-2-メチルプロパンスルホン酸である。) Dispersants used for cooling water treatment etc. include inorganic polyphosphoric acids such as sodium hexametaphosphate and sodium tripolyphosphate, phosphonic acids such as hydroxyethylidene diphosphonic acid and phosphonobutane tricarboxylic acid, maleic acid, acrylic acid, itaconic acid, etc. Carboxyl group-containing material, and optionally combined with vinyl monomers having sulfonic acid groups such as vinyl sulfonic acid, allyl sulfonic acid, 2-methacrylamide-2-methylpropane sulfonic acid, and nonionic vinyl monomers such as acrylamide Copolymers and the like can be used, but materials other than those listed here can also be applied. Further, as the third component of the dispersant, a terpolymer can be used by using other components. For example, N-tert-butylacrylamide is used as the third component. Among them, the dispersant is most preferably a polymer containing HAPS, AMPS and acrylic acid and / or methacrylic acid. (HAPS is 3-allyloxy-2-hydroxy-1-propanesulfonic acid, and AMPS is 2-acrylamido-2-methylpropanesulfonic acid.)
 分散剤の分子量としては1,000以上30,000以下であることが好ましい。分子量が1,000未満であると十分な分散効果が得られず、30,000超過であると前処理膜で除去される恐れが出てくる。 The molecular weight of the dispersant is preferably 1,000 or more and 30,000 or less. If the molecular weight is less than 1,000, a sufficient dispersion effect cannot be obtained, and if it exceeds 30,000, it may be removed by the pretreatment film.
 スライムコントロール剤としては、次亜塩素酸ナトリウム(NaClO)等の次亜塩素酸塩、塩素ガス、クロラミン、塩素化イソシアヌル酸塩などの塩素剤、モノクロルスルファミン酸などの塩素とアミド硫酸、アミド硫酸基を有する化合物の反応した結合塩素剤、ジブロモヒダントインなどの臭素剤、次亜臭素酸ナトリウムなどの次亜臭素酸塩、DBNPA(ジブロモニトリロプロピオンアシド)、MIT(メチルイソチアゾロン)などの有機剤が適用できる。本発明で使用できる塩素系酸化剤としては、上記塩素ガス、次亜塩素酸またはその塩のほか、亜塩素酸またはその塩、塩素酸またその塩、過塩素酸またはその塩、塩素化イソシアヌール酸またはその塩などを用いることができる。塩としては、ナトリウム、カリウム等のアルカリ金属塩、バリウム等のアルカリ土類金属塩、ニッケル等の他の金属塩、アンモニウム塩などが挙げられる。これらは1種以上を用いることができる。これらの中では次亜塩素酸ナトリウムが取扱性に優れるため好ましい。 Slime control agents include hypochlorites such as sodium hypochlorite (NaClO), chlorine agents such as chlorine gas, chloramine, and chlorinated isocyanurates, chlorine such as monochlorosulfamic acid, amide sulfate, and amide sulfate. Bonded chlorine agent reacted with a compound having hydrogen, bromine agent such as dibromohydantoin, hypobromite such as sodium hypobromite, organic agent such as DBNPA (dibromonitrilopropionate), MIT (methylisothiazolone) . Examples of the chlorine-based oxidizing agent that can be used in the present invention include the above chlorine gas, hypochlorous acid or a salt thereof, chlorous acid or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, chlorinated isocyanur. An acid or a salt thereof can be used. Examples of the salt include alkali metal salts such as sodium and potassium, alkaline earth metal salts such as barium, other metal salts such as nickel, ammonium salts, and the like. One or more of these can be used. Among these, sodium hypochlorite is preferable because of its excellent handleability.
 上記の遊離塩素が結合する窒素化合物としては、アンモニアまたはその化合物、メラミン、尿素、アセトアミド、スルファミド、サイクロラミン酸、スルファミン酸、トルエンスルホンアミド、コハク酸イミド、フタル酸イミド、イソシアヌル酸、N-クロロトルエンスルホンアミド、尿酸、サッカリンまたはこれらの塩などを挙げることができる。本発明で使用する結合塩素剤は、これらの窒素化合物に上記の遊離塩素が結合したものである。本発明で使用する結合塩素剤としては、上記の窒素化合物と遊離塩素剤とを混合して反応させたもの、特にそれぞれを水溶液の状態で混合して反応させたものが好ましい。 Nitrogen compounds to which free chlorine is bound include ammonia or its compounds, melamine, urea, acetamide, sulfamide, cyclolamic acid, sulfamic acid, toluenesulfonamide, succinimide, phthalimide, isocyanuric acid, N-chloro Examples thereof include toluenesulfonamide, uric acid, saccharin, and salts thereof. The bonded chlorine agent used in the present invention is a compound in which the above-mentioned free chlorine is bonded to these nitrogen compounds. As the combined chlorine agent used in the present invention, those obtained by mixing and reacting the above nitrogen compound and free chlorine agent, particularly those obtained by mixing and reacting each in the state of an aqueous solution are preferable.
 このような結合塩素剤としては、クロラミンや塩素系酸化剤とスルファミン酸化合物とからなる結合塩素剤のほか、クロラミン-T(N-クロロ-4-メチルベンゼンスルホンアミドのナトリウム塩)、クロラミン-B(N-クロロ-ベンゼンスルホンアミドのナトリウム塩)、N-クロロ-パラニトロベンゼンスルホンアミドのナトリウム塩、トリクロロメラミン、モノ-もしくはジ-クロロメラミンのナトリウム塩またはカリウム塩、トリクロロ-イソシアヌレート、モノ-もしくはジ-クロロイソシアヌール酸のナトリウム塩またはカリウム塩、モノ-もしくはジ-クロロスルファミン酸のナトリウム塩またはカリウム塩、モノクロロヒダントインもしくは1,3-ジクロロヒダントイン、5,5-ジメチルヒダントインのような5,5-アルキル誘導体等が挙げられる。 Examples of such bonded chlorinating agents include chloramine, chlorinated oxidant and sulfamic acid compound, chloramine-T (sodium salt of N-chloro-4-methylbenzenesulfonamide), chloramine-B. (Sodium salt of N-chloro-benzenesulfonamide), sodium salt of N-chloro-paranitrobenzenesulfonamide, trichloromelamine, sodium salt or potassium salt of mono- or di-chloromelamine, trichloro-isocyanurate, mono- or 5 such as sodium salt or potassium salt of di-chloroisocyanuric acid, sodium salt or potassium salt of mono- or di-chlorosulfamic acid, monochlorohydantoin or 1,3-dichlorohydantoin, 5,5-dimethylhydantoin 5-alkyl derivatives.
 ボイラ水処理においては、清缶剤、脱酸素剤、アミン類が単独、もしくは複合して用いられている。清缶剤としては、リン酸及び/又はその塩、重合リン酸及び/又はその塩、ホスホン酸及び/又はその塩、EDTA等のキレート剤、ポリ(メタ)アクリル酸及び/又はその塩、AMPSとアクリル酸及び/又はメタクリル酸を含む重合体などが適用できる。脱酸素剤としては、1-アミノ-4-メチルピペラジン、ヒドラジン、カルボヒドラジド、エリソルビン酸及び/又はその塩、グルコン酸及び/又はその塩、N,N-ジエチルヒドロキシルアミン、亜硫酸及び/又はその塩、重亜硫酸及び/又はその塩、タンニン酸及び/又はその塩、没食子酸及び/又はその塩、イソプロピルヒドロキシルアミン等が適用できる。アミン類としては、モノイソプロパノールアミン、3-メトキシ-プロピルアミン、シクロヘキシルアミン、2-アミノエタノール、2-アミノ-2-メチル-1-プロパノール、モルフォリン、2-ジエチルアミノエタノール等の中和性アミンやオクタデシルアミン等の皮膜性アミンを適用することができる。 In boiler water treatment, cleansing agents, oxygen scavengers, and amines are used alone or in combination. Examples of the canning agent include phosphoric acid and / or salt thereof, polymerized phosphoric acid and / or salt thereof, phosphonic acid and / or salt thereof, chelating agent such as EDTA, poly (meth) acrylic acid and / or salt thereof, and AMPS. And a polymer containing acrylic acid and / or methacrylic acid can be applied. Examples of the oxygen scavenger include 1-amino-4-methylpiperazine, hydrazine, carbohydrazide, erythorbic acid and / or its salt, gluconic acid and / or its salt, N, N-diethylhydroxylamine, sulfurous acid and / or its salt Bisulfite and / or a salt thereof, tannic acid and / or a salt thereof, gallic acid and / or a salt thereof, isopropylhydroxylamine and the like can be applied. Examples of amines include neutralizing amines such as monoisopropanolamine, 3-methoxy-propylamine, cyclohexylamine, 2-aminoethanol, 2-amino-2-methyl-1-propanol, morpholine, 2-diethylaminoethanol, and the like. A film-forming amine such as octadecylamine can be applied.
 前処理装置8のMF膜透過水の一部を洗車用水などとして用いることができる。膜分離装置9のRO膜透過水を廃熱ボイラのボイラ原水、機器冷却水、プラント用水などとして用いることができる。前記MF膜透過水、前記RO膜透過水などの透過水を海、河川、又は下水等へ放流してもよい。 A part of the MF membrane permeated water of the pretreatment device 8 can be used as car wash water. The RO membrane permeated water of the membrane separation device 9 can be used as boiler raw water for waste heat boilers, equipment cooling water, plant water, and the like. Permeated water such as the MF membrane permeated water and the RO membrane permeated water may be discharged to the sea, rivers, sewage, or the like.
 燃焼排ガス中のNOxガスを除去する触媒脱硝装置では、アンモニアを用いるため、処理後の排ガス中にはアンモニアが残存することから、焼却プラントから排出される排水には、アンモニア(アンモニウムイオン)が含まれることがある。そのため、前処理装置8の上流側に生物処理装置を設け、アンモニウムイオン等を減少させるようにしてもよい。この場合、生物処理装置としては、例えば、好気性微生物を利用して硝化工程を実施する硝化槽と、通性嫌気性微生物を利用して脱窒工程を実施する脱窒槽とを備えた生物処理装置等を用いることができる。 Since the catalyst denitration device that removes NOx gas from combustion exhaust gas uses ammonia, ammonia remains in the exhaust gas after treatment, so the waste water discharged from the incineration plant contains ammonia (ammonium ions). May be. Therefore, a biological treatment device may be provided on the upstream side of the pretreatment device 8 to reduce ammonium ions and the like. In this case, as the biological treatment apparatus, for example, a biological treatment provided with a nitrification tank that performs a nitrification process using aerobic microorganisms and a denitrification tank that performs a denitrification process using facultative anaerobic microorganisms. A device or the like can be used.
 以下に実施例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
[実施例1]
 図1に示す可燃ごみの焼却プラントにおいて、以下の条件で運転した。
 熱回収装置2出口温度:230℃
 減温装置3出口温度:188℃
 熱回収装置2出口温度と減温装置3出口温度の温度差:42℃
[Example 1]
The combustible waste incineration plant shown in FIG. 1 was operated under the following conditions.
Heat recovery device 2 outlet temperature: 230 ° C
Temperature reducing device 3 outlet temperature: 188 ° C
Temperature difference between heat recovery device 2 outlet temperature and temperature reduction device 3 outlet temperature: 42 ° C
 焼却プラントから以下の流量で排出されるボイラブロー水、冷却塔ブロー水、雑排水、生活排水、洗車排水及び床洗浄排水は図3のフローに従って処理した。
 ボイラブロー水:9m/day
 冷却塔ブロー水:9m/day
 雑排水:13m/day
 生活排水:11m/day
(上記の合計:42m/day)
 洗車排水と床洗浄排水の合計:6.5m/day
Boiler blow water, cooling tower blow water, miscellaneous waste water, domestic waste water, car wash waste water and floor washing waste water discharged from the incineration plant at the following flow rates were treated according to the flow of FIG.
Boiler blow water: 9m 3 / day
Cooling tower blow water: 9m 3 / day
Miscellaneous drainage: 13m 3 / day
Domestic wastewater: 11m 3 / day
(Total above: 42 m 3 / day)
Total of car wash wastewater and floor wash wastewater: 6.5 m 3 / day
 ボイラブロー水と冷却塔ブロー水はそのまま前処理(MF膜分離装置11)に供給した。 Boiler blow water and cooling tower blow water were supplied as they were to the pretreatment (MF membrane separation device 11).
 雑排水は第1の予備処理装置(PAC10mg/L及び高分子ポリマー2mg/L添加による凝集処理装置13と重力2層砂濾過処理装置14)で処理した後、MF膜分離装置11に供給した。MF膜分離装置11の透過水(水回収率95%)はRO膜分離装置12に供給し、その透過水(水回収率80%)は冷却塔に補給水として供給した。 The miscellaneous wastewater was treated with the first pretreatment device (flocculation treatment device 13 and gravity two-layer sand filtration treatment device 14 by adding PAC 10 mg / L and high polymer 2 mg / L), and then supplied to the MF membrane separation device 11. The permeated water (water recovery rate 95%) of the MF membrane separator 11 was supplied to the RO membrane separator 12, and the permeated water (water recovery rate 80%) was supplied to the cooling tower as make-up water.
 RO濃縮水0.33m/hrは、減温装置3に送水して噴霧した。MF膜分離装置11の濃縮水は、凝集処理装置13に供給した。 RO concentrated water 0.33 m 3 / hr was supplied to the temperature reducing device 3 and sprayed. The concentrated water of the MF membrane separation device 11 was supplied to the aggregation treatment device 13.
 生活排水は、生物処理装置15で処理した後、第1の予備処理装置に供給した。 The domestic wastewater was treated with the biological treatment device 15 and then supplied to the first preliminary treatment device.
 洗車排水及び床洗浄排水は、第2の予備処理装置(PAC10mg/L及び高分子ポリマー2mg/Lによる凝集処理装置16と、重力2層砂濾過処理装置17)で処理した後、減温装置3に送水して噴霧した(0.27m/hr)。
 上記いずれの排水量も平均値であり、実際には±20%の範囲で変動した。後掲の実施例及び比較例でも同様である。
Car wash wastewater and floor washing wastewater are treated with the second pretreatment device (flocculation treatment device 16 with PAC 10 mg / L and high polymer 2 mg / L and gravity two-layer sand filtration treatment device 17), and then the temperature reduction device 3 And sprayed (0.27 m 3 / hr).
All of the above amounts of drainage were average values, and actually varied within a range of ± 20%. The same applies to Examples and Comparative Examples described later.
 ボイラブロー水には分散剤、冷却水ブロー水には分散剤とスライムコントロール剤が含まれており、これらを含む混合排水をMF膜分離装置11で処理した後、RO膜分離装置12で処理を行うことにより、RO膜処理でスライムコントロール剤、分散剤を添加しなくても安定的に処理を行うことができる。床洗浄排水、洗車排水をこれらとは別系統で処理することにより、RO膜分離装置12の水回収率を高くすることができた。RO膜分離装置12の透過水は冷却水の補給水として再利用でき、その分補給水量が削減された。 The boiler blow water contains a dispersant, and the cooling water blow water contains a dispersant and a slime control agent. After the mixed waste water containing these is treated by the MF membrane separator 11, the RO membrane separator 12 performs the treatment. Thus, the treatment can be stably performed without adding the slime control agent and the dispersant in the RO membrane treatment. By treating floor washing wastewater and car washing wastewater separately from these systems, the water recovery rate of the RO membrane separation device 12 could be increased. The permeated water of the RO membrane separation device 12 can be reused as the replenishing water for the cooling water, and the amount of the replenishing water is reduced accordingly.
 この水処理装置におけるRO膜分離装置12の水回収率が常時80%となるように制御すると共に、各処理装置における処理水量の調整、総排水量の削減等(冷却塔ピットに戻す、飛灰の加湿水や主灰の冷却装置に適用)を行い、減温装置3への送水量が0.60m/hrで一定となるように制御し、減温装置出口温度を上記の通り188℃に維持した。 While controlling the water recovery rate of the RO membrane separation device 12 in this water treatment device to be always 80%, adjusting the amount of treated water in each treatment device, reducing the total drainage amount (returning to the cooling tower pit, (Applied to humidifier and main ash cooling device) and controlled so that the amount of water supplied to the temperature reducing device 3 is constant at 0.60 m 3 / hr, and the outlet temperature of the temperature reducing device is set to 188 ° C. as described above. Maintained.
 集塵機4における処理条件は、以下の通りである。 The processing conditions in the dust collector 4 are as follows.
<集塵機入口酸性ガス処理条件>
 排ガス量:30,000Nm-dry/hr
 入口HCl濃度:380ppm(O:12%換算値)
 入口SOx濃度:50ppm
 水分量:20%
<Dust collector inlet acid gas treatment conditions>
Exhaust gas amount: 30,000 Nm 3 -dry / hr
Inlet HCl concentration: 380 ppm (O 2 : 12% conversion value)
Inlet SOx concentration: 50ppm
Moisture content: 20%
<集塵機出口酸性ガス処理濃度(規制値)>
 出口HCl濃度:35ppm(O:12%換算値)
 出口SOx濃度:10ppm
<Dust collector outlet acid gas treatment concentration (regulated value)>
Outlet HCl concentration: 35 ppm (O 2 : 12% conversion value)
Outlet SOx concentration: 10ppm
<重曹(粒径7~13μm)の添加量>
 添加量:54kg/hr、当量比:1.00(対入口HCl、SOx)
<Additional amount of baking soda (particle size: 7 to 13 μm)>
Addition amount: 54 kg / hr, equivalence ratio: 1.00 (to inlet HCl, SOx)
 本実施例では減温装置3の出口温度を一定に維持して効率的な酸性ガス処理が行われた。
 除塵処理後の排ガス(約200℃)を、酸化バナジウム系ハニカムに白金を担持した触媒を用いた触媒脱硝装置5に送給して、加温を行うことなく、効率的にNOxが除去された。
In the present example, the acidic gas treatment was performed while maintaining the outlet temperature of the temperature reducing device 3 constant.
The exhaust gas (about 200 ° C.) after the dust removal treatment is fed to the catalyst denitration device 5 using a catalyst in which platinum is supported on a vanadium oxide honeycomb, and NOx is efficiently removed without heating. .
[実施例2]
 実施例1において、酸性ガス処理を重曹の代りに消石灰を以下の条件で添加して行った。
<消石灰(粒径4~8μm)の添加量>
 添加量:60kg/hr、当量比:2.52(対入口HCl、SOx)
 消石灰による処理の場合、排ガス温度は150~170℃が好ましいことから、RO膜分離装置12の水回収率を65%としてRO濃縮水量0.58m/hrとし、減温装置への送水量を0.85m/hrとし、減温装置出口温度が170℃(熱回収装置2出口温度と減温装置3出口温度の温度差:60℃)となるように制御したこと以外は実施例1と同様に処理を行った。
[Example 2]
In Example 1, acid gas treatment was performed by adding slaked lime under the following conditions instead of baking soda.
<Addition amount of slaked lime (particle size 4-8 μm)>
Amount added: 60 kg / hr, equivalence ratio: 2.52 (to inlet HCl, SOx)
In the case of treatment with slaked lime, the exhaust gas temperature is preferably 150 to 170 ° C., so that the water recovery rate of the RO membrane separation device 12 is 65%, the RO concentrated water amount is 0.58 m 3 / hr, and the water supply amount to the temperature reducing device is Example 1 except that it was controlled to 0.85 m 3 / hr and the temperature reducing device outlet temperature was 170 ° C. (temperature difference between the heat recovery device 2 outlet temperature and the temperature reducing device 3 outlet temperature: 60 ° C.). Processing was carried out in the same manner.
 その結果、触媒脱硝装置において、若干の再加熱を要したが、それ以外は実施例1と同様に効率的な処理が行われた。 As a result, the catalyst denitration apparatus required a little reheating, but otherwise, the same efficient treatment as in Example 1 was performed.
 触媒脱硝装置での再加熱(約200℃)に要したボイラー蒸気使用量は2.4t/日で、1ヶ月で72tであった。この蒸気使用量は、発電損失量として69301(ΔT:30℃の損失分)kWhに相当する。 The amount of boiler steam used for reheating (about 200 ° C.) in the catalyst denitration apparatus was 2.4 t / day, and 72 t in one month. This amount of steam used corresponds to 69301 (ΔT: 30 ° C. loss) kWh as a power generation loss.
[比較例1]
 実施例2において、RO膜分離装置の水回収率を制御せず、減温装置への送水量を制御せずに行ったところ、排水量の変動、RO膜分離装置の水回収率の変動に伴ってRO膜分離装置からの送水量は0.47~0.67m/hrで変動し、減温装置への送水量は0.74~0.94m/hrの範囲で変動した。
[Comparative Example 1]
In Example 2, when the water recovery rate of the RO membrane separation device was not controlled and the water supply amount to the temperature reducing device was not controlled, the fluctuation of the drainage amount and the fluctuation of the water recovery rate of the RO membrane separation device were accompanied. Thus, the amount of water supplied from the RO membrane separator varied between 0.47 and 0.67 m 3 / hr, and the amount of water delivered to the temperature reducing device varied within the range of 0.74 to 0.94 m 3 / hr.
 その結果、減温装置出口温度は165~179℃(熱回収装置出口温度と減温装置出口温度の温度差:51~65℃)で変動した。 As a result, the temperature reduction device outlet temperature fluctuated between 165 and 179 ° C. (temperature difference between the heat recovery device outlet temperature and the temperature reduction device outlet temperature: 51 to 65 ° C.).
 減温装置への送水量が少なすぎた場合は、減温装置出口温度が高くなりすぎ、適正な酸性ガス処理を行うために消石灰の添加量を以下の通り過剰に入れる必要があった。
<消石灰(粒径4~8μm)の添加量>
 添加量:74kg/hr、当量比:3.11(対入口HCl、SOx)
When the amount of water fed to the temperature reducing device was too small, the temperature at the outlet of the temperature reducing device became too high, and it was necessary to add an excessive amount of slaked lime as follows in order to perform an appropriate acid gas treatment.
<Addition amount of slaked lime (particle size 4-8 μm)>
Addition amount: 74 kg / hr, equivalence ratio: 3.11 (to inlet HCl, SOx)
 温度が高いことにより、ダイオキシンが再合成するため、別途ダイオキシンの処理(触媒脱硝装置での負荷増大、若しくは更なる活性炭処理)が必要となった。 Since the dioxins were re-synthesized due to the high temperature, it was necessary to treat dioxins separately (increase the load in the catalyst denitration equipment or further activated carbon treatment).
 減温装置への送水量が多すぎた場合は、集塵機手前の温度が低くなりすぎ、触媒脱硝装置入口で再加熱の温度調整を行う必要があった。この場合には、再加熱条件を常時制御する必要があることや、NOx処理も不安定であり、また昇温のためのエネルギーロスが生じる。 When the amount of water supplied to the temperature reducing device was too large, the temperature before the dust collector became too low, and it was necessary to adjust the reheating temperature at the catalyst denitration device inlet. In this case, it is necessary to constantly control the reheating conditions, the NOx treatment is also unstable, and energy loss for temperature rise occurs.
 特に、送水量が少なすぎて集塵機手前の温度が高くなる場合は、消石灰を過剰に入れる必要があるため、薬品を重曹へ変更する必要があった。 In particular, when the amount of water supplied is too small and the temperature in front of the dust collector becomes high, it is necessary to add slaked lime excessively, so the chemical must be changed to baking soda.
[比較例2]
 実施例1の焼却プラントの各排水を図4のフローに従って処理し、減温装置3への送水の制御を行わなかったこと以外は実施例1と同様に行った。即ち、生活排水以外の上記各排水(それぞれの流量は実施例1と同じ)をそのままPAC200mg/L、高分子ポリマー2mg/L添加による凝集処理装置21で処理した。生活排水については、生物処理装置25で処理した後、凝集処理装置21に供給した。凝集処理装置21の処理水を重力2層砂濾過処理濾過装置22で処理した後、MF膜分離装置23に供給し、透過水をRO膜分離装置24に供給し、RO透過水を冷却塔補給水として用いた。MF膜分離装置23の濃縮水及びRO膜分離装置24の濃縮水を減温装置3にて噴霧した。
[Comparative Example 2]
Each waste water of the incineration plant of Example 1 was treated according to the flow of FIG. 4 and performed in the same manner as in Example 1 except that control of water supply to the temperature reducing device 3 was not performed. That is, each of the above-mentioned wastewaters other than domestic wastewater (each flow rate is the same as in Example 1) was directly treated by the flocculation treatment device 21 by adding PAC 200 mg / L and high polymer 2 mg / L. About domestic wastewater, after processing with the biological treatment apparatus 25, it supplied to the coagulation treatment apparatus 21. FIG. The treated water of the agglomeration treatment device 21 is processed by the gravity two-layer sand filtration treatment filtration device 22, and then supplied to the MF membrane separation device 23, the permeate is supplied to the RO membrane separation device 24, and the RO permeate is supplied to the cooling tower. Used as water. The concentrated water of the MF membrane separator 23 and the concentrated water of the RO membrane separator 24 were sprayed by the temperature reducing device 3.
 この比較例2では、排水量の変動に加えてRO膜分離装置24の原水量が大きく変動すると共に水質も大きく変動するため、RO膜分離装置24の水回収率は45~65%の範囲で変動し、RO膜分離装置の水回収率を制御していないために、減温装置への送水量が1.07~0.68m/hrで大きく変動した。 In Comparative Example 2, since the raw water amount of the RO membrane separation device 24 greatly fluctuates and the water quality greatly fluctuates in addition to the fluctuation of the drainage amount, the water recovery rate of the RO membrane separation device 24 varies in the range of 45 to 65%. However, since the water recovery rate of the RO membrane separation device was not controlled, the amount of water supplied to the temperature reducing device varied greatly between 1.07 and 0.68 m 3 / hr.
 その結果、減温装置出口温度は、156~183℃(熱回収装置出口温度と減温装置出口温度の温度差:47~74℃)で大きく変動し、比較例1の場合よりも更に送水量の変動による問題が大きいものとなった。 As a result, the temperature reducing device outlet temperature fluctuates greatly at 156 to 183 ° C. (temperature difference between the heat recovery device outlet temperature and the temperature reducing device outlet temperature: 47 to 74 ° C.). The problem caused by fluctuations in
 この比較例2では、床洗浄排水、洗車排水から油分が混入したため、処理の継続にともない、RO膜分離装置24の水回収率は15~35%にまで低下した。また、凝集処理の水量が多くなり、巨大な前処理設備が必要であった。 In Comparative Example 2, since oil was mixed from the floor washing wastewater and the car washing wastewater, the water recovery rate of the RO membrane separation device 24 decreased to 15 to 35% as the treatment continued. In addition, the amount of water for the agglomeration treatment increased, and a huge pretreatment facility was required.
 ボイラブロー水、冷却水ブロー水に含まれる分散剤のため、PAC添加量は200mg/L必要であった。また、膜処理の安定化のためにスライムコントロール剤、分散剤が必要であった。膜処理スライムコントロール剤としては、クリバーターEC-503 5mg/Lを用いた。膜処理分散剤としては、クリバーター N-500 5mg/Lを用いた。 The amount of PAC added was 200 mg / L because of the dispersant contained in the boiler blow water and cooling water blow water. In addition, a slime control agent and a dispersant are necessary for stabilizing the membrane treatment. As a membrane treatment slime control agent, Krivater EC-503 5 mg / L was used. As the membrane treatment dispersant, Krivator N-500 5 mg / L was used.
[比較例3]
 比較例2において、MF膜分離装置23とRO膜分離装置24を省略したこと以外は同様に実施したところ、減温装置への送水量の変動は小さいものの送水量が1.9m/hrと多いために、熱回収装置出口温度は305℃であるのに対して、減温装置出口温度は170℃(熱回収装置出口温度と減温装置出口温度の温度差:135℃)と非常に低い値となった。
[Comparative Example 3]
In Comparative Example 2, the same procedure was performed except that the MF membrane separation device 23 and the RO membrane separation device 24 were omitted. However, although the variation in the amount of water supplied to the temperature reducing device was small, the amount of water supplied was 1.9 m 3 / hr. Therefore, the heat recovery device outlet temperature is 305 ° C., whereas the temperature reducing device outlet temperature is 170 ° C. (temperature difference between the heat recovery device outlet temperature and the temperature reducing device outlet temperature: 135 ° C.), which is very low. Value.
 このため、酸性ガス処理における薬剤添加量を多くするか、薬剤を変える必要があった。また、触媒脱硝装置における再加熱で発電損失が発生した。 For this reason, it was necessary to increase the amount of drug added in the acid gas treatment or to change the drug. In addition, power loss occurred due to reheating in the catalyst denitration equipment.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2016年9月16日付で出願された日本特許出願2016-181746に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2016-181746 filed on Sep. 16, 2016, which is incorporated by reference in its entirety.

Claims (12)

  1.  有機物を燃焼させる焼却装置と、該焼却装置から排出される燃焼排ガスの熱を回収する熱回収装置と、該熱回収装置で熱回収された燃焼排ガスを減温させる減温装置と、該減温装置で減温された燃焼排ガスを処理する排ガス処理装置とを備えた焼却プラントから排出される排水の排水回収方法であって、
     該焼却プラントから排出される排水を清澄化する水処理工程と、該水処理工程の処理水を前記減温装置に送水する送水工程と、送水された処理水を該減温装置内の前記燃焼排ガス中に吹き込んで蒸発させることにより該燃焼排ガスを減温させる減温工程とを有する焼却プラントの排水回収方法において、
     該水処理工程の処理水の減温装置への送水量を、該減温装置出口の燃焼排ガス温度が150~200℃となるように制御することを特徴とする焼却プラントの排水回収方法。
    An incinerator for burning organic matter, a heat recovery device for recovering the heat of the combustion exhaust gas discharged from the incineration device, a temperature reducing device for reducing the temperature of the combustion exhaust gas heat recovered by the heat recovery device, and the temperature reduction A wastewater recovery method for wastewater discharged from an incineration plant equipped with an exhaust gas treatment device for treating combustion exhaust gas reduced in temperature by the device,
    A water treatment step for clarifying waste water discharged from the incineration plant, a water supply step for sending treated water of the water treatment step to the temperature reducing device, and the combustion in the temperature reducing device In a wastewater recovery method for an incineration plant having a temperature reducing step for reducing the temperature of the combustion exhaust gas by blowing it into the exhaust gas and evaporating it,
    A method for recovering wastewater from an incineration plant, characterized in that the amount of water supplied to the temperature reducing device in the water treatment step is controlled so that the combustion exhaust gas temperature at the outlet of the temperature reducing device is 150 to 200 ° C.
  2.  請求項1において、前記水処理工程が膜分離工程を含み、該膜分離工程における水回収率を調整することによって前記送水量を制御することを特徴とする焼却プラントの排水回収方法。 The wastewater recovery method for an incineration plant according to claim 1, wherein the water treatment step includes a membrane separation step, and the water supply amount is controlled by adjusting a water recovery rate in the membrane separation step.
  3.  請求項2において、前記膜分離工程が逆浸透膜分離工程であることを特徴とする焼却プラントの排水回収方法。 3. The wastewater recovery method for an incineration plant according to claim 2, wherein the membrane separation step is a reverse osmosis membrane separation step.
  4.  請求項1ないし3のいずれか1項において、前記減温された燃焼排ガスに、重炭酸ナトリウム及び/または水酸化カルシウムを添加して前記排ガス処理装置で処理することを特徴とする焼却プラントの排水回収方法。 The wastewater of an incineration plant according to any one of claims 1 to 3, wherein sodium bicarbonate and / or calcium hydroxide is added to the reduced temperature of the combustion exhaust gas, and the exhaust gas treatment device treats the exhaust gas. Collection method.
  5.  請求項1ないし4のいずれか1項において、前記排ガス処理装置は、集塵機と、該集塵機で除塵された排ガスを処理する触媒脱硝装置とを備え、該集塵機と触媒脱硝装置との間で該排ガスの温度調整を行わないことを特徴とする焼却プラントの排水回収方法。 5. The exhaust gas treatment device according to claim 1, wherein the exhaust gas treatment device includes a dust collector and a catalyst denitration device that treats the exhaust gas removed by the dust collector, and the exhaust gas is disposed between the dust collector and the catalyst denitration device. The waste water recovery method of an incineration plant characterized by not adjusting the temperature of this.
  6.  請求項1ないし5のいずれか1項において、前記熱回収装置出口の燃焼排ガス温度が230℃以上であることを特徴とする焼却プラントの排水回収方法。 6. A method for recovering wastewater from an incineration plant according to any one of claims 1 to 5, wherein the flue gas temperature at the outlet of the heat recovery device is 230 ° C or higher.
  7.  有機物を燃焼させる焼却装置と、該焼却装置から排出される燃焼排ガスの熱を回収する熱回収装置と、該熱回収装置で熱回収された燃焼排ガスを減温させる減温装置と、該減温装置で減温された燃焼排ガスを処理する排ガス処理装置とを備えた焼却プラントから排出される排水の排水回収装置であって、
     該焼却プラントから排出される排水を清澄化する水処理装置と、該水処理装置の処理水を前記減温装置に送水する送水手段と、送水された処理水を該減温装置内の前記燃焼排ガス中に吹き込んで蒸発させることにより該燃焼排ガスを減温させる吹込手段とを有する焼却プラントの排水回収装置において、
     該水処理装置から減温装置への送水量を、該減温装置出口の燃焼排ガス温度が150~200℃となるように制御する制御手段を有することを特徴とする焼却プラントの排水回収装置。
    An incinerator for burning organic matter, a heat recovery device for recovering the heat of the combustion exhaust gas discharged from the incineration device, a temperature reducing device for reducing the temperature of the combustion exhaust gas heat recovered by the heat recovery device, and the temperature reduction A wastewater recovery device for wastewater discharged from an incineration plant equipped with an exhaust gas treatment device for treating combustion exhaust gas reduced in temperature by the device,
    A water treatment device for clarifying waste water discharged from the incineration plant, water supply means for supplying treated water of the water treatment device to the temperature reducing device, and the combustion in the temperature reducing device for supplying the treated water to the temperature reducing device In a wastewater recovery apparatus for an incineration plant having blowing means for reducing the temperature of the combustion exhaust gas by blowing it into the exhaust gas and evaporating it,
    A wastewater recovery apparatus for an incineration plant, comprising control means for controlling the amount of water fed from the water treatment apparatus to the temperature reducing apparatus so that the combustion exhaust gas temperature at the outlet of the temperature reducing apparatus is 150 to 200 ° C.
  8.  請求項7において、前記水処理装置が膜分離装置を含み、前記制御手段は、該膜分離装置における水回収率を調整することによって前記送水量を制御する手段であることを特徴とする焼却プラントの排水回収装置。 8. The incineration plant according to claim 7, wherein the water treatment device includes a membrane separation device, and the control means is a means for controlling the amount of water supplied by adjusting a water recovery rate in the membrane separation device. Wastewater recovery equipment.
  9.  請求項8において、前記膜分離装置が逆浸透膜分離装置であることを特徴とする焼却プラントの排水回収装置。 9. The wastewater recovery device for an incineration plant according to claim 8, wherein the membrane separation device is a reverse osmosis membrane separation device.
  10.  請求項7ないし9のいずれか1項において、前記減温された燃焼排ガスに、重炭酸ナトリウム及び/または水酸化カルシウムを添加する薬剤添加手段を有し、該重炭酸ナトリウム及び/または水酸化カルシウムが添加された排ガスが前記排ガス処理装置で処理されることを特徴とする焼却プラントの排水回収装置。 10. The method according to claim 7, further comprising chemical addition means for adding sodium bicarbonate and / or calcium hydroxide to the temperature-reduced combustion exhaust gas, the sodium bicarbonate and / or calcium hydroxide. A wastewater recovery device for an incineration plant, wherein the exhaust gas to which is added is treated by the exhaust gas treatment device.
  11.  請求項7ないし10のいずれか1項において、前記排ガス処理装置は、集塵機と、該集塵機で除塵された排ガスを処理する触媒脱硝装置とを備え、該集塵機と触媒脱硝装置との間で該排ガスの温度調整が行われないことを特徴とする焼却プラントの排水回収装置。 11. The exhaust gas treatment device according to claim 7, wherein the exhaust gas treatment device includes a dust collector and a catalyst denitration device that treats the exhaust gas removed by the dust collector, and the exhaust gas is disposed between the dust collector and the catalyst denitration device. Waste water recovery device for an incineration plant, characterized in that no temperature adjustment is performed.
  12.  請求項7ないし11のいずれか1項において、前記熱回収装置出口の燃焼排ガス温度が230℃以上であることを特徴とする焼却プラントの排水回収装置。 The wastewater recovery apparatus for an incineration plant according to any one of claims 7 to 11, wherein the exhaust gas temperature at the outlet of the heat recovery apparatus is 230 ° C or higher.
PCT/JP2017/011130 2016-09-16 2017-03-21 Method and device for recovering waste water from incineration plant WO2018051554A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780052562.2A CN109641765B (en) 2016-09-16 2017-03-21 Method and device for recovering drained water of incineration complete equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-181746 2016-09-16
JP2016181746A JP6241525B1 (en) 2016-09-16 2016-09-16 Wastewater recovery method and apparatus for incineration plant adopting wastewater closed system

Publications (1)

Publication Number Publication Date
WO2018051554A1 true WO2018051554A1 (en) 2018-03-22

Family

ID=60570317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011130 WO2018051554A1 (en) 2016-09-16 2017-03-21 Method and device for recovering waste water from incineration plant

Country Status (3)

Country Link
JP (1) JP6241525B1 (en)
CN (1) CN109641765B (en)
WO (1) WO2018051554A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102476990B1 (en) * 2019-05-28 2022-12-13 주식회사 엘지화학 Incineration method and equipment of wastewater
CN110451721B (en) * 2019-08-08 2021-03-26 同济大学 Carbon and nitrogen removal treatment device and method for leachate of waste incineration plant
JP7430517B2 (en) * 2019-11-14 2024-02-13 Jfe環境テクノロジー株式会社 Incineration plant wastewater treatment equipment and wastewater treatment method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347359A (en) * 1998-06-08 1999-12-21 Nkk Plant Engineering Corp Method for preventing formation of dioxines from waste incinerator
JP2001187317A (en) * 1999-12-28 2001-07-10 Arusutomu Power Kk Treating system for trash incinerator waste gas
JP2002361043A (en) * 2001-06-07 2002-12-17 Nkk Corp Waste gas treatment method and treatment equipment
JP2003033628A (en) * 2001-07-26 2003-02-04 Ebara Corp Method and device for reducing dioxins in waste gas
JP2010089071A (en) * 2008-09-11 2010-04-22 Kobelco Eco-Solutions Co Ltd Wastewater treatment method and wastewater treatment facility
JP2014030777A (en) * 2012-08-01 2014-02-20 Jfe Engineering Corp Method and device for processing wastewater from incineration plant
WO2014046286A1 (en) * 2012-09-24 2014-03-27 三菱重工環境・化学エンジニアリング株式会社 Exhaust gas treatment device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0150694A1 (en) * 1984-01-27 1985-08-07 Jacob Weitman Heat recovery device
US5347938A (en) * 1992-04-02 1994-09-20 Hidenao Takazawa Methods for processing wastes using potential heat of waste gas prior to incineration
JP2007253115A (en) * 2006-03-24 2007-10-04 Kurita Water Ind Ltd Organic matter-containing wastewater treatment method and apparatus
JP5787303B2 (en) * 2010-07-08 2015-09-30 株式会社タクマ Operation method of municipal waste incineration plant
JP6172712B2 (en) * 2013-07-05 2017-08-02 株式会社タクマ White smoke prevention method and apparatus for waste incineration equipment
CN104016564A (en) * 2014-06-23 2014-09-03 王子国 Sludge multi-effect drying incineration treatment system and application method thereof
CN204151178U (en) * 2014-09-19 2015-02-11 王惠生 In a kind of waste incineration, integrated wastewater utilizes device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347359A (en) * 1998-06-08 1999-12-21 Nkk Plant Engineering Corp Method for preventing formation of dioxines from waste incinerator
JP2001187317A (en) * 1999-12-28 2001-07-10 Arusutomu Power Kk Treating system for trash incinerator waste gas
JP2002361043A (en) * 2001-06-07 2002-12-17 Nkk Corp Waste gas treatment method and treatment equipment
JP2003033628A (en) * 2001-07-26 2003-02-04 Ebara Corp Method and device for reducing dioxins in waste gas
JP2010089071A (en) * 2008-09-11 2010-04-22 Kobelco Eco-Solutions Co Ltd Wastewater treatment method and wastewater treatment facility
JP2014030777A (en) * 2012-08-01 2014-02-20 Jfe Engineering Corp Method and device for processing wastewater from incineration plant
WO2014046286A1 (en) * 2012-09-24 2014-03-27 三菱重工環境・化学エンジニアリング株式会社 Exhaust gas treatment device

Also Published As

Publication number Publication date
JP2018043218A (en) 2018-03-22
CN109641765B (en) 2020-12-15
CN109641765A (en) 2019-04-16
JP6241525B1 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP5636163B2 (en) Wastewater treatment method and wastewater treatment facility
JP6123833B2 (en) Wastewater treatment method for incineration plant
WO2017022113A1 (en) Water treatment system, power generation plant, and method for controlling water treatment system
JP5874925B2 (en) Incineration plant wastewater treatment method and treatment equipment
US6652758B2 (en) Simultaneous ammonia and fluoride treatment for wastewater
CN101456635B (en) Process and system for treating electric power plant waste water
JP6191070B2 (en) Ammonia treatment system
JP6241525B1 (en) Wastewater recovery method and apparatus for incineration plant adopting wastewater closed system
JP5637713B2 (en) Wastewater treatment method and treatment apparatus
JPS5916515B2 (en) Treatment method for added water and generated wastewater for cooling water circulation system and steam circulation system of thermal power plant
JP5874924B2 (en) Incineration plant wastewater treatment method and treatment equipment
JP2006239578A (en) Ammonia nitrogen and soluble salt-containing water treatment apparatus and method
CN105948367A (en) Novel desulfurization waste water zero discharging process and system
JP5347664B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4862027B2 (en) Wastewater treatment method and wastewater treatment facility
JP7143333B2 (en) Wastewater treatment system
JP2012076058A (en) Method for treating wastewater containing persistent substance
JP2010155182A (en) Water treatment apparatus
KR100573186B1 (en) Wastewater Disposal Method in Flue Gas Desulfurization System by Using Scale Preventer
JP3879318B2 (en) Wastewater treatment method
JP5084130B2 (en) Waste liquid treatment method and waste liquid treatment system
RU2704193C1 (en) Oxidation by moist air at low temperatures
CN207811475U (en) The regeneration of desulfurization wastewater and zero-discharge treatment system
CN114735874B (en) Method for continuously treating high-salt desulfurization wastewater
JP3449247B2 (en) Water treatment method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850462

Country of ref document: EP

Kind code of ref document: A1