WO2018051490A1 - Disturbance arrangement device and disturbance arrangement method - Google Patents

Disturbance arrangement device and disturbance arrangement method Download PDF

Info

Publication number
WO2018051490A1
WO2018051490A1 PCT/JP2016/077484 JP2016077484W WO2018051490A1 WO 2018051490 A1 WO2018051490 A1 WO 2018051490A1 JP 2016077484 W JP2016077484 W JP 2016077484W WO 2018051490 A1 WO2018051490 A1 WO 2018051490A1
Authority
WO
WIPO (PCT)
Prior art keywords
disturbance
influence range
arrangement
node
ratio
Prior art date
Application number
PCT/JP2016/077484
Other languages
French (fr)
Japanese (ja)
Inventor
河東 晴子
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/077484 priority Critical patent/WO2018051490A1/en
Priority to JP2018516595A priority patent/JP6351920B1/en
Publication of WO2018051490A1 publication Critical patent/WO2018051490A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present invention relates to an obstruction arrangement device that determines arrangement of an obstruction element that causes a loss of network connection.
  • a wireless network such as a wireless ad hoc network or a mesh network
  • interference such as interference, or human interference
  • a situation in which a connection between communication devices is disconnected due to a change in propagation state interference such as interference, or human interference is likely to occur.
  • interference even if one link in the network is disconnected, since another detour path is connected, there are many cases where the influence on the connection of the entire network is small.
  • Non-Patent Document 1 the disturbance placement problem for efficient disturbance is positioned as a graph clustering problem for efficient network division, and an integer linear problem with the goal of minimizing the number of disturbances to achieve the remaining subnet specification value It is formulated as Since this is a NP (Non-deterministic Polynomial) difficult problem, a heuristic solution is proposed.
  • NP Non-deterministic Polynomial
  • Non-Patent Document 2 shows a method of interference in software radio dynamic channel allocation.
  • the state transition is modeled in a Markov decision process, and the disturber selects an optimal policy. Since this is also an NP difficult problem, a heuristic solution is proposed.
  • Patent Document 1 proposes a mobile jamming method in which a radio sensor network moves along a data flow to cause jamming and consumes node power.
  • Patent Document 2 proposes a method for monitoring a packet transmitted in a wireless network and blocking the reception when there is a signal blocked because harmful information such as spam is included. Yes.
  • Non-Patent Document 1 the conventional interference method disclosed in Non-Patent Document 1 described above has a problem that the analysis by the formulation is not flexible and it takes time to obtain an appropriate solution.
  • Non-Patent Document 2 has a problem that the analysis by the Markov model is idealized from the reality, and it takes time to obtain an appropriate solution.
  • Patent Document 1 the conventional interference method disclosed in Patent Document 1 described above has a problem that detailed information of the network to be disturbed needs to be acquired in real time, and this cannot always be acquired.
  • Patent Document 2 is a method of applying interference only by selecting harmful signals, and is targeted only when communication contents can be determined. For this reason, there has been a problem that when the contents of communication cannot be determined, interference cannot be applied.
  • the present invention has been made to solve the above-described problems, and an object thereof is to efficiently lose the connection of the entire network by a simple method reflecting the reality.
  • the disturbing placement apparatus is a disturbing placing apparatus that determines the placement of a disturbing element that loses connection in a network in which a plurality of nodes are connected via a link. Based on the interference influence range ratio calculated by the calculation unit that calculates the interference influence range ratio from the ratio of the interference influence range indicating the impossible range and the communication range indicating the range where the node can communicate And a disposing unit that determines the disposition of the disturbing elements.
  • the disturbing arrangement method is a disturbing placing method for determining the disposition of disturbing elements that cause a loss of connection in a network in which a plurality of nodes are connected via a link.
  • the present invention relates to a disturbing placement apparatus and a disturbing placement method for determining the placement of a disturbing element that causes a loss of network connection in a network in which a plurality of nodes are connected via a link.
  • the arrangement method of the disturbing element is selected based on the ratio of the disturbing influence range calculated from the ratio of the disturbing influence range that is the range in which communication is impossible and the communication range that is the range in which the node can communicate. It is what. Embodiments of the present invention will be described below with reference to the drawings. In addition, in each figure, the same code
  • Embodiment 1 FIG. First, a network model according to the first embodiment of the present invention will be described with reference to FIGS.
  • FIG. 1 is a diagram showing a network model according to the first embodiment of the present invention.
  • a network 10 is a network to be obstructed, and includes a plurality of nodes 11 and links 12 connecting them.
  • the node 11 indicates a communication transmitter / receiver
  • the link 12 indicates a communication line.
  • the network range 5 is a range in which the node 11 and the link 12 of the network 10 may be arranged, and the node 11 in the network range 5 communicates to configure the network 10 as a whole.
  • communication is performed from the source node 11 a to the destination node 11 z with the node 11 that is the source of communication being the source node 11 a and the node 11 that is the destination of communication being the destination node 11 z.
  • the source node 11a and the destination node 11z are connected by the link 12 and the node 11, it is called connectivity, and when it is not connected, it is called no connectivity.
  • the node 11 serving as a communication path between the transmission source node 11a and the destination node 11z is also referred to as a relay node 11.
  • the link 12 has no direction and is bidirectional.
  • the node 11 having the largest number of links 12 to be connected is referred to as Most Complex Node 11m.
  • FIG. 2 is a diagram showing a communication range of the node 11 according to the first embodiment of the present invention.
  • 50 nodes 11 are randomly arranged in a square network range 5.
  • Each node 11 is wirelessly connected to the node 11 whose radius is within the range of the communication range 13 (in the transmission source node 11a in the figure, an area surrounded by an arc indicated by a thick broken line and the outer periphery of the network range 5). Communication is possible and there is a link connection.
  • the communication range 13 indicates a distance where wireless communication between the nodes 11 is possible, that is, a distance where link connection is possible.
  • the communication range 13 is shown only for the source node 11 a, but the other nodes 11 have the communication range 13 in the same manner, and the link connection is established with the nodes 11 within the range of the communication range 13. There is.
  • the node 11 at the lower left of the network range 5 is the source node 11a, and the node 11 at the upper right is the destination node 11z. Further, the node 11 having the largest number of connected links 12 near the center of the network range 5 is the Most Complex Node 11m.
  • FIG. 3 is a diagram showing a state of link connection when the disturbing element 14c is arranged at the position of Most Complex Node 11m in the network range 5 of FIG.
  • the disturbing element 14c is a disturbing device that affects the communication of the peripheral device and loses the communication, for example, a device that emits a disturbing radio wave that disturbs the communication of the node 11.
  • the radius is arranged within the range of the disturbance influence range 15c (the area surrounded by a circle indicated by a thick broken line in the figure) centered on the Most Complex Node 11m (or the disturbance element 14c).
  • the link 12 connected to the node 11 becomes invalid due to the influence of the disturbing element 14c, and communication becomes impossible.
  • the jamming influence range 15c indicates a distance that the jamming element 14c affects, for example, a distance that the jamming radio wave reaches.
  • a thin broken line connecting the nodes 11 indicates a state in which the link 12 is invalid and the connection is lost.
  • FIG. 4 is a diagram showing the network 10 in which the node 11 and the link 12 that are not able to communicate with each other in FIG. 3 are removed.
  • FIG. 4 shows a state in which connectivity is lost because there is no link connection via the relay node 11 between the source node 11a and the destination node 11z.
  • FIG. 5 is a diagram showing a state of link connection when the disturbing elements 14r are randomly arranged in the network range 5 of FIG.
  • the radius around the disturbing element 14r is within the range of the disturbing influence range 15r (in the disturbing element 14r in the figure, the arc surrounded by a thick broken line and the outer periphery of the network range 5 are surrounded.
  • the link 12 connected to the node 11 arranged in the area) becomes invalid due to the influence of the disturbing element 14r, and communication becomes impossible.
  • the jamming influence range 15r indicates a distance that the jamming element 14r affects, for example, a distance that the jamming radio wave reaches.
  • the disturbing element 14c and the disturbing element 14r may be collectively referred to as the disturbing element 14, and the disturbing influence range 15c and the disturbing influence range 15r may be collectively referred to as the disturbing influence range 15.
  • FIG. 6 is a diagram illustrating the network 10 in which the node 11 and the link 12 that are not able to communicate with each other in FIG. 5 are removed.
  • FIG. 6 there is a link connection via the relay node 11 between the source node 11a and the destination node 11z, and the state in which the connectivity is maintained is shown.
  • the disturbing element 14c is arranged in the Most Complex Node 11m of the network 10 of FIG. 2 (first arrangement method) and a case where the disturbing element 14r is randomly arranged in the network range 5 (second arrangement).
  • the solid line C shows the result when the disturbing element 14c is arranged by the first arranging method
  • the broken line R shows the result when the disturbing element 14r is arranged by the second arranging method.
  • the communication range 13 represents a range in which the node 11 capable of wireless communication and link connection exists as in the communication range 13 of FIG. Therefore, each node 11 can wirelessly communicate with another node 11 located within a range having the communication range 13 as a radius, and link connection is possible.
  • the jamming influence range 15 is the same as the jamming influence range 15c shown in FIGS. 3 and 4 or the jamming influence range 15r shown in FIGS. This represents a range in which the connected link 12 becomes invalid and wireless communication cannot be performed. Therefore, the disturbing element 14 invalidates the link 12 of the node 11 located within a range having the disturbing influence range 15 as a radius, and loses the connection.
  • FIG. 7 shows that when the disturbance influence range ratio 16 is small, the connectivity of the network 10 is lost with a smaller number of disturbances when the disturbance element 14r is arranged at random in the Most Complex Node 11m rather than at random.
  • the interference influence range ratio 16 is large, there is almost no difference between the two.
  • a boundary between a region where there is a large difference between the number of disturbances arranged by the first and second arrangement methods and a region where there is almost no difference is indicated by a one-dot chain line.
  • the disturbance influence range ratio 16 that is the boundary is defined as a boundary value 17.
  • the boundary value 17 is about 0.5 in the case of FIG. 7, but is not limited to this, and an appropriate value may be set based on the result of simulation or the like.
  • FIG. 8 is a diagram illustrating a functional configuration of the disturbance placement device 40 according to the first embodiment.
  • FIG. 9 is a hardware configuration diagram illustrating a configuration of a device that implements the disturbance placement device 40.
  • the disturbance arrangement device 40 in FIG. 8 includes a calculation unit 41, a determination unit 42, and an arrangement unit 43.
  • the calculation result is passed to the determination unit 42.
  • the interference influence range 15 is determined according to the interference output of the interference element 14. It is assumed that the disturbance output of the disturbance element 14 is set to a predetermined value in advance.
  • the determination unit 42 determines whether or not the interference influence range ratio 16 is greater than the boundary value 17. The determination result is passed to the placement unit 43.
  • the boundary value 17 is set according to the arrangement and output of the node 11 and the disturbance output of the disturbance element 14 as shown in FIG. For example, by referring to a value corresponding to the situation at that time from a plurality of boundary values 17 stored in the memory, it is possible to cope with a change in the arrangement or output of the node 11.
  • the placement unit 43 determines the placement of the disturbing elements 14 based on the determination result of the determination unit 42.
  • the processing performed by the calculation unit 41, the determination unit 42, and the arrangement unit 43 of the disturbing arrangement device 40 of FIG. 8 is realized by the processor 101 reading and executing the program stored in the memory 102 of FIG.
  • the processing performed by the calculation unit 41, the determination unit 42, and the arrangement unit 43 of the disturbance arrangement device 40 is executed when a network disturbance instruction is received by the interface 103.
  • the arrangement of the disturbing elements 14 determined by the arrangement unit 43 is output from the interface 103 to the outside.
  • FIG. 10 is a flowchart showing the operation of the disturbance placement device 40 according to Embodiment 1 of the present invention.
  • the jamming influence range 15 is a radius of a range in which the communication of the node 11 can be made impossible due to the influence of the jamming element 14, and the communication range 13 is a radius of a range in which the node 11 can communicate.
  • step S102 the determination unit 42 determines whether or not the disturbance influence range ratio 16 calculated by the calculation unit 41 is greater than the boundary value 17, and if the disturbance influence range ratio 16 is less than the boundary value 17, The process proceeds to step S103. On the other hand, if the disturbance influence range ratio 16 is greater than or equal to the boundary value, the process proceeds to step S104. In FIG. 10, when the disturbance influence range ratio 16 is equal to the boundary value 17, the process proceeds to step S104. However, the process may proceed to step S103.
  • step S103 the placement unit 43 determines the placement of the disturbing element 14c by the first placement method of placing the disturbing element 14c on the Most Complex Node 11m.
  • the number of disturbing elements 14c to be arranged is the number necessary to lose the connection between the source node 11a and the destination node 11z. As shown in FIG. 7, when the disturbance influence range ratio 16 is less than the boundary value 17, the disturbance element 14c is efficiently arranged with a small number of disturbances by arranging the disturbance element 14c on the Most Complex Node 11m. Can do.
  • the placement unit 43 determines the placement of the disturbing elements 14c by either the first placement method or the second placement method of randomly placing the disturbing elements 14r.
  • the disturbing element 14c is arranged at the position of Most Complex Node 11m.
  • the disturbing element 14r is arranged at an arbitrary position within the network range 5.
  • the number of disturbing elements 14 to be arranged is the number necessary for losing the connection between the source node 11a and the destination node 11z. As shown in FIG. 7, when the disturbance influence range ratio 16 is equal to or greater than the boundary value 17, there is no significant difference in the number of disturbances, and therefore the arrangement unit 43 has the first arrangement method or the second arrangement method. Either may be selected.
  • the policy of the disturbance arrangement is determined using the disturbance influence range ratio 16 as an index.
  • Equation (1) shows the disturbance-to-signal ratio.
  • J / S jamming-to-signal ratio
  • ERP J effective radiated power of jamming device
  • ERP S effective radiating power of signal transmitter
  • L J propagation loss from jamming device to receiver
  • L S signal Propagation loss from transmitter to receiver
  • G RJ reception antenna gain in the direction of the jamming device
  • G RS reception antenna gain in the direction of the reception antenna gain in the target signal direction.
  • the jamming-to-signal ratio J / S indicates the ratio of the jamming signal to the target signal in the receiver that receives the jamming. If the jamming-to-signal ratio J / S is large, the jamming effect is large.
  • receive antenna gain G RS receiving antenna gain direction of the receiving antenna gain G RJ and target signal direction of jammers direction Equally, equation (1) is simplified.
  • the loss is a line-of-sight loss when the distance from the signal transmitter to the receiver or the distance from the jamming device to the receiver is smaller than the Fresnel zone distance, and is a flat ground (two-wave) loss when the distance is large.
  • Equation (2) shows the line-of-sight loss.
  • L 1 is line-of-sight loss
  • d transmission distance
  • F transmission frequency
  • c speed of light.
  • Equation (3) represents the planar ground (2 wave) loss.
  • L 2 plane ground (2 wave) loss
  • d transmission distance
  • h T transmitting antenna height
  • h R receiving antenna height.
  • Equation (4) represents the Fresnel zone distance.
  • FZ Fresnel zone distance
  • h T transmitting antenna height
  • h R receiving antenna height
  • F transmission frequency
  • c speed of light.
  • the interference influence range ratio 16 used in the present embodiment is the ratio of the interference influence range 15 / communication range 13 to the distance between the interference device and the receiver and the distance between the signal transmitter and the receiver. From the above formula, it can be obtained by selecting according to the situation. This will be specifically described below.
  • Equation (5) shows the disturbing influence range ratio when these two distances are both within the line-of-sight range (Fresnel zone distance or less) and follow line-of-sight loss.
  • J / S interference-to-signal ratio
  • ERP J effective radiated power of the jamming device
  • ERP S effective radiated power of the signal transmitter
  • d J distance from the jamming device to the receiver
  • d S signal transmission Distance from the receiver to the receiver
  • F J jamming transmission frequency
  • F S signal transmission frequency.
  • the interference-to-signal ratio J / S is set to a desired value.
  • Equation (6) shows the disturbing influence range ratio when these two distances are both outside the line-of-sight range (more than the Fresnel zone distance) and are subject to planar ground (2 wave) losses.
  • d J is the distance from the jamming device to the receiver
  • d S is the distance from the signal transmitter to the receiver
  • h TJ is the transmitting antenna height of the jamming device
  • h TS is the transmitting antenna height of the signal transmitter.
  • the interference-to-signal ratio J / S is set to a desired value.
  • the interference influence range 15 indicating the range in which communication of the node 11 is impossible due to the influence of the interference element 14 and the communication range indicating the range in which communication between the nodes 11 is possible.
  • 13 includes a calculation unit 41 that calculates the disturbance influence range ratio 16 from the ratio to 13, and an arrangement unit 43 that determines the arrangement of the disturbance element 14 based on the disturbance influence range ratio 16 calculated by the calculation unit 41.
  • the arrangement of the disturbing elements 14 that cause the connection to be lost is determined.
  • the arrangement of the disturbing elements 14 is determined based on the disturbing influence range ratio 16, the connection of the entire network can be efficiently lost by a simple method reflecting the reality.
  • the determination unit 42 that determines whether or not the disturbance influence range ratio 16 is larger than the boundary value 17 is further provided, and the arrangement unit 43 has the disturbance influence range ratio 16 smaller than the boundary value 17.
  • the arrangement of the disturbing elements 14 is determined by the first arranging method in which the disturbing elements 14c are arranged in the node 11m having the largest number of connected links 12, and the disturbing influence range ratio 16 is larger than the boundary value 17.
  • the arrangement of the disturbing elements 14 is determined by either the first arranging method or the second arranging method in which the disturbing elements 14 are arranged at random positions. As described above, an actual arrangement method can be selected by selecting one of the two arrangement methods based on the relationship between the interference influence range ratio 16 and the boundary value 17.
  • the determination unit 42 determines the first arrangement method and the first in the relationship between the interference influence range ratio 16 and the number of interference elements 14 necessary for losing the connection of the network 10.
  • a disturbance influence range ratio 16 that is a boundary between a region where there is no difference in the number of disturbance elements 14 arranged by the arrangement method 2 and a region where there is a difference is defined as a boundary value 17.
  • the arrangement method is selected by determining whether or not a condition for obtaining the same disturbance effect as that in the case where the disturbance element 14 is arranged in the node 11m having the largest number of connections is selected, the disturbance is efficiently performed. be able to. That is, the disturbing elements 14 can be arranged so as to lose the connection of the entire network 10 (connectivity from the source node 11a to the destination node 11z) with as few disturbing elements 14 as possible.
  • Embodiment 2 When the position of the node 11 of the network 10 to be disturbed is known, the disturbing element 14c can be disposed at the Most Complex Node 11m, but cannot be disposed when unknown. Therefore, the first embodiment is based on the premise that the position of the node 11 of the network 10 to be disturbed is known. On the other hand, in the second embodiment, the arrangement method of the disturbing element 14 is selected according to whether or not the position of the node 11 of the network 10 to be disturbed is known, and the disturbing output (radiated power) of the disturbing element 14 is selected. The point of being configured to set is different from that of the first embodiment. In the second embodiment, the description will focus on the different points.
  • FIG. 11 is a diagram illustrating a functional configuration of the disturbance placement device 50 according to the second embodiment.
  • the hardware configuration of the disturbance placement apparatus 50 of the second embodiment is the same as the configuration shown in FIG.
  • the 11 includes a calculation unit 51, a determination unit 52, an arrangement unit 53, and an output setting unit 54.
  • the calculation unit 51 calculates the interference influence range ratio 16 from the ratio between the interference influence range 15 of the interference element 14 and the communication range 13 of the node 11.
  • the calculation result is passed to the determination unit 52.
  • the determination unit 52 first determines whether or not the position of the node 11 of the network 10 to be disturbed is known. When the position of the node 11 is known, the determination unit 52 further determines whether or not the interference influence range ratio 16 is greater than the boundary value 17.
  • the determination result is passed to the placement unit 53 and the output setting unit 54.
  • the placement unit 53 determines the placement of the disturbing elements 14 based on the determination result of the determination unit 52.
  • the disposition of the disturbing element 14 is performed by the disposition method selected according to the disturbing influence range ratio 16 as described in the first embodiment. decide. If unknown, since the Most Complex Node 11m is unknown, the placement unit 53 places the disturbing element 14r at a random position.
  • the output setting unit 54 sets the disturbance output of the disturbance element 14 based on the determination result of the determination unit 52. Specifically, when the position of the node 11 of the network 10 to be disturbed is unknown, the output setting unit 54 sets a value at which the disturbance influence range ratio 16 is larger than the boundary value 17 as the disturbance output of the disturbance element 14r. To do. When the position of the node 11 of the network 10 to be disturbed is known, a predetermined value is set as the jamming output of the jamming element 14r, or no setting is performed, and the preset jamming output is maintained. .
  • the processing performed by the calculation unit 51, the determination unit 52, the arrangement unit 53, and the output setting unit 54 of the disturbing arrangement device 50 of FIG. 11 is executed by the processor 101 reading and executing the program stored in the memory 102 of FIG. Realized.
  • the processing performed by the calculation unit 51, the determination unit 52, the arrangement unit 53, and the output setting unit 54 of the disturbance arrangement device 50 is executed when a network disturbance instruction is received by the interface 103.
  • the arrangement of the disturbing elements 14 determined by the placement unit 53 and the value finally set as the disturbing output of the disturbing elements 14 are output from the interface 103 to the outside.
  • FIG. 12 is a flowchart showing the operation of the disturbance placement device 50 according to Embodiment 2 of the present invention.
  • step S201 the determination unit 52 determines whether the position of the node 11 of the network 10 to be obstructed is known. If the position of the node 11 is known, the determination unit 52 advances the process to step S202.
  • the processing in steps S202 to S205 is the same as steps S101 to S104 in the flowchart shown in FIG. If the position of the node 11 is unknown, the determination unit 52 advances the process to step S206.
  • the interference influence range ratio 16 is calculated only when the position of the node 11 in the network is known. However, the disturbance influence range ratio 16 is determined regardless of whether the position of the node 11 in the network is known.
  • the determination processing may be performed by referring to the calculation result of the interference influence range ratio 16 when the position of the node 11 of the network is known.
  • step S206 the placement unit 53 determines the placement of the disturbing element 14r by the second placement method in which the disturbing element 14r is placed at a random position in the network range 5.
  • the number of disturbing elements 14r to be arranged is the number necessary to lose the connection between the source node 11a and the destination node 11z.
  • step S207 the output setting unit 54 sets the disturbance output of the disturbance element 14 so that the disturbance influence range ratio 16 is larger than the boundary value 17.
  • the output setting unit 54 that sets the output of the disturbing element 14 is further provided, and the determination unit 52 determines whether or not the position of the node 11 of the network 10 is known and arranged.
  • the unit 53 determines the placement of the disturbing element 14 by the second placement method.
  • the unit 53 determines the placement of the disturbing element 14 by the processing described in the first embodiment.
  • the arrangement is determined, and the output setting unit 54 is configured to set a value at which the disturbance influence range ratio 16 is larger than the boundary value 17 as the output of the disturbance element 14 when the position of the node 11 of the network 10 is unknown.
  • the arrangement method of the disturbance element 14 is determined by the arrangement method selected according to the disturbance influence range ratio 16, or the disturbance element 14 is determined depending on whether or not the position of the node 11 of the network 10 is known. Or set the jamming output.
  • the disturbing element depends on the relationship between the disturbing influence range ratio 16 and the boundary value 17 when the disturbing output of the disturbing element 14 is maximized and the position of the node 11 is known. 14 is different from the first and second embodiments in that the arrangement of 14 is determined and the value of the interference output is set. In the third embodiment, the description will focus on the different points.
  • the configuration of the disturbance placement device 50 according to Embodiment 3 of the present invention is the same as the configuration shown in FIG.
  • the calculation unit 51 calculates the interference influence range ratio 16 from the ratio between the interference influence range 15 of the interference element 14 and the communication range 13 of the node 11. Further, the calculation unit 51 calculates the maximum disturbance influence range ratio 16max from the ratio between the maximum disturbance influence range 15max when the disturbance output of the disturbance element 14 is maximized and the communication range 13 of the node 11. The calculation result is passed to the determination unit 52.
  • the determination unit 52 first determines whether or not the position of the node 11 of the network 10 to be disturbed is known, and then determines whether or not the maximum interference influence range 15max is greater than the boundary value 17.
  • the determination unit 52 sets a value at which the disturbance influence range ratio 16 is larger than the boundary value 17 as the disturbance output of the disturbance element 14. Determine whether to set.
  • the determination result is passed to the placement unit 53 and the output setting unit 54.
  • the placement unit 53 determines the placement of the disturbing elements 14 based on the determination result of the determination unit 52.
  • the output setting unit 54 sets the disturbance output of the disturbance element 14 based on the determination result of the determination unit 52.
  • FIG. 13 is a flowchart showing the operation of the disturbance placement device 50 according to Embodiment 3 of the present invention.
  • the maximum disturbance influence range 15max is the disturbance influence range 15 when the disturbance output of the disturbance element 14 is the maximum value that can be output, that is, the maximum value of the disturbance influence range 15.
  • step S302 the determination unit 52 determines whether or not the position of the node 11 of the network 10 to be disturbed is known. If the position of the node 11 is known, the determination unit 52 advances the process to step S303. If the position of the node 11 is unknown, the determination unit 52 advances the process to step S304.
  • step S303 the determination unit 52 determines whether or not the maximum disturbance influence range ratio 16max is greater than the boundary value 17. If the interference influence range ratio 16 is smaller than the boundary value 17, the determination unit 52 advances the process to policy 1 in step S310. If the interference influence range ratio 16 is greater than the boundary value 17, the determination unit 52 advances the process to step S305.
  • step S305 the determination unit 52 determines whether or not to set a value at which the disturbance influence range ratio 16 is larger than the boundary value 17 as the disturbance output of the disturbance element 14c.
  • the determination unit 52 advances the process to policy 2 in step S320.
  • the determination unit 52 advances the process to policy 3 in step S330.
  • step S304 the determination unit 52 determines whether or not the maximum disturbance influence range ratio 16max is larger than the boundary value 17.
  • the determination unit 52 advances the process to the policy 4 in step S340.
  • the interference influence range ratio 16 is set to a value smaller than the boundary value 17, the determination unit 52 advances the process to policy 5 in step S350.
  • FIG. 14 is a flowchart showing the operation of policy 1 in step S310.
  • the arrangement unit 53 arranges the disturbing element 14c at the Most Complex Node 11m.
  • FIG. 15 is a flowchart showing the operation of policy 2 in step S320.
  • the arrangement unit 53 arranges the disturbing element 14c at the Most Complex Node 11m.
  • the output setting unit 54 sets an interference output that satisfies the interference influence range ratio 16 ⁇ boundary value 17.
  • FIG. 16 is a flowchart showing the operation of policy 3 in step S330.
  • the arrangement unit 53 arranges the Most Complex Node 11m or the disturbing elements 14 at random. In this case, it may be arranged in either Most Complex Node 11m or random.
  • FIG. 17 is a flowchart showing the operation of policy 4 in step S340.
  • the placement unit 53 places the disturbing element 14r at a random position in the network range 5.
  • the output setting unit 54 sets a disturbance output that satisfies the boundary value 17 ⁇ the disturbance influence range ratio 16 ⁇ the maximum disturbance influence range ratio 16max.
  • FIG. 18 is a flowchart showing the operation of policy 5 in step S350.
  • the placement unit 53 places the disturbing element 14r at a random position in the network range 5.
  • the disturbing elements 14 are arranged at random locations within the Most Complex Node 11m or the network range 5 based on the policies 1 to 5. If the position of the node 11 of the network 10 to be obstructed is known (step S302—Yes), the Most Complex Node 11m can be obtained, so that the obstruction element 14 can be arranged at the Most Complex Node 11m. In addition, when the maximum disturbance influence range ratio 16max is smaller than the boundary value 17 (step S303-No), a disturbance output in which the disturbance influence range ratio 16 becomes the maximum disturbance influence range ratio 16max is set so that the disturbance effect is maximized. (Policy 1).
  • step S303 If the position of the node 11 in the network 10 is known and the maximum disturbance influence range ratio 16max is larger than the boundary value 17 (Yes in step S303), whether or not to set a disturbance output in which the disturbance influence range ratio 16 is larger than the boundary value 17
  • the subsequent processing differs depending on whether an interference output smaller than the boundary value 17 is set.
  • a disturbance output in which the disturbance influence range ratio 16 is smaller than the boundary value 17 is set (step S305-No)
  • the disturbance element 14 is arranged in the Most Complex Node 11m, and the disturbance output has a disturbance influence range ratio 16 of the boundary value.
  • a value smaller than 17 is set (policy 2).
  • the arrangement of the disturbance element 14 may be either the Most Complex Node 11m or random, and the disturbance output is the disturbance influence.
  • the range ratio 16 is set to a value larger than the boundary value 17 (policy 3).
  • step S302-No When the position of the node 11 of the network 10 to be obstructed is unknown (step S302-No), since the Most Complex Node 11m is unknown, the obstruction elements 14 are randomly arranged.
  • the maximum disturbance influence range ratio 16max is larger than the boundary value 17 (step S304-Yes)
  • the disturbance output is larger than the boundary value 17 and smaller than the maximum disturbance influence range ratio 16max. Set to value (policy 4).
  • the disturbance output is a value at which the disturbance influence range ratio 16 becomes the maximum disturbance influence range ratio 16max so that the disturbance effect is maximized. (Policy 5).
  • the interference influence range 15 indicating the range in which the communication of the node 11 is impossible due to the influence of the interference element 14 and the communication range 13 indicating the range in which the node 11 can communicate are included.
  • a determination unit 52 that determines whether or not 16max is larger than the boundary value 17 and determines whether or not to set a value that causes the disturbance influence range ratio 16 to be larger than the boundary value 17 as an output of the disturbance element 14;
  • the influence range ratio 16max is smaller than the boundary value 17, the disturbing elements are arranged by the first arrangement method in which the disturbing elements 14 are arranged at the node having the largest number of connected links.
  • the arrangement unit 53 that determines the arrangement of the disturbance elements 14 based on the disturbance influence range ratio 16, and the maximum disturbance influence range ratio 16max Is smaller than the boundary value 17, the maximum value is set as the output of the disturbing element 14.
  • the maximum disturbing influence range ratio 16 max is larger than the boundary value 17, the disturbing element 14 is output based on the disturbing influence range ratio 16.
  • an output setting unit 54 for setting the output, and in the network 10 in which the plurality of nodes 11 are connected via the link 12, the arrangement of the disturbing elements 14 that cause the connection to be lost is determined.
  • the determination unit 52 determines whether or not the position of the node 11 in the network 10 is known, and the placement unit 53 determines that the disturbing element is present when the position of the node 11 in the network 10 is unknown.
  • the arrangement of the disturbing elements 14 is determined by the second arrangement method of arranging 14 at random positions, and if known, the arrangement of the disturbing elements 14 is determined from the relationship between the maximum disturbing influence range ratio 16max and the boundary value 17.
  • the output setting unit 54 sets the disturbance influence range ratio 16 as the boundary value 17 as the output of the disturbance element 14.
  • the interference influence range ratio 16 is smaller than the boundary value 17, it is better to arrange the interference element 14 in the Most Complex Node 11m, but when it is larger than the boundary value 17, even if it is random, the Most Complex Node 11m But you can get the same disturbing effect. Therefore, even if the position of the node 11 of the network 10 to be disturbed is unknown and the Most Complex Node 11m cannot be obtained, by adjusting the interference output so that the disturbance influence range ratio 16 is larger than the boundary value 17, Interference can be performed effectively.

Abstract

A disturbance arrangement device (40) according to the present invention determines arrangement of a disturbance element (14) for causing connections to be lost in a network (10) in which a plurality of nodes (11) are connected to one another via a link (12), and comprises: a calculating unit (41) that calculates a disturbance influence range ratio (16) from the ratio between a disturbance influence range (15) indicating a range within which the nodes (11) are unable to communicate due to the influence of the disturbance element (14) and a communication range (13) indicating a range within which the nodes (11) are able to communicate; and an arrangement unit (43) that determines the arrangement of the disturbance element (14) on the basis of the disturbance influence range ratio (16). Accordingly, connections in the entire network can be efficiently lost by a simple method reflecting reality.

Description

妨害配置装置および妨害配置方法Jamming arrangement device and jamming arrangement method
 この発明は、ネットワークの接続を失わせる妨害要素の配置を決定する妨害配置装置に関する。 The present invention relates to an obstruction arrangement device that determines arrangement of an obstruction element that causes a loss of network connection.
 無線アドホックネットワークやメッシュネットワーク等の無線ネットワークにおいては、伝搬状態の変化や干渉等の障害、あるいは人為的な妨害により、通信機間の接続が切断される事態が発生しやすい。しかしながら、ネットワーク内の一つのリンクが切断されても、別の迂回経路が接続していることから、ネットワーク全体の接続には影響が小さい場合も多い。 In a wireless network such as a wireless ad hoc network or a mesh network, a situation in which a connection between communication devices is disconnected due to a change in propagation state, interference such as interference, or human interference is likely to occur. However, even if one link in the network is disconnected, since another detour path is connected, there are many cases where the influence on the connection of the entire network is small.
 このような背景のもと、ネットワーク全体の接続へ影響を及ぼす妨害の配置方法が研究されている。 In this context, research has been conducted on how to arrange disturbances that affect the connection of the entire network.
 非特許文献1では、効率的な妨害を行う妨害配置問題を、ネットワークの効率的な分断を行うグラフクラスタリング問題と位置付け、残存サブネット規定値を達成する妨害数の最小化を目標とした整数線形問題として定式化している。これはNP(Non-deterministic Polynomial)困難な問題であるため、発見的な解を提案している。 In Non-Patent Document 1, the disturbance placement problem for efficient disturbance is positioned as a graph clustering problem for efficient network division, and an integer linear problem with the goal of minimizing the number of disturbances to achieve the remaining subnet specification value It is formulated as Since this is a NP (Non-deterministic Polynomial) difficult problem, a heuristic solution is proposed.
 非特許文献2では、ソフトウェア無線の動的チャネル割当における妨害の方法を示している。マルコフ・ディシジョン過程で状態遷移をモデル化し、妨害者は最適なポリシーを選択する。これについてもNP困難な問題であるため、発見的な解を提案している。 Non-Patent Document 2 shows a method of interference in software radio dynamic channel allocation. The state transition is modeled in a Markov decision process, and the disturber selects an optimal policy. Since this is also an NP difficult problem, a heuristic solution is proposed.
 特許文献1では、無線センサネットワークにおいて、データの流れに沿って移動して妨害を行い、ノードの電力を消耗させるモバイル妨害方法を提案している。 Patent Document 1 proposes a mobile jamming method in which a radio sensor network moves along a data flow to cause jamming and consumes node power.
 特許文献2では、無線ネットワークで伝送されるパケットをモニタし、スパム等の有害な情報が含まれるためにブロックされた信号があった場合に、妨害をかけてその受信を妨げる方法を提案している。 Patent Document 2 proposes a method for monitoring a packet transmitted in a wireless network and blocking the reception when there is a signal blocked because harmful information such as spam is included. Yes.
J. Feng et al.,「An Optimal Jamming Strategy to Partition a Wireless Network」, IEEE MILCOM 2015, Oct. 2015.J. et al. Feng et al. , “An Optimal Jamming Strategies to Partition a Wireless Network”, IEEE MILCOM 2015, Oct. 2015. A. Anwar et al.,「Stealthy Edge Decoy Attacks Against Dynamic Channel Assignment in Wireless Networks」,IEEE Milcom 2015, Oct. 2015.A. Anwar et al. , “Stealthy Edge Decoy Attacks Against Dynamic Channel Assignment in Wireless Networks”, IEEE Milcom 2015, Oct. 2015.
 しかしながら、上述した非特許文献1に示された従来の妨害方法は、定式化による解析に柔軟性がなく、また妥当な解を求めるのに時間がかかるという課題があった。 However, the conventional interference method disclosed in Non-Patent Document 1 described above has a problem that the analysis by the formulation is not flexible and it takes time to obtain an appropriate solution.
 また、上述した非特許文献2に示された従来の妨害方法は、マルコフモデルによる解析が現実より理想化されており、また妥当な解を求めるのに時間がかかるという課題があった。 In addition, the conventional interference method shown in Non-Patent Document 2 described above has a problem that the analysis by the Markov model is idealized from the reality, and it takes time to obtain an appropriate solution.
 また、上述した特許文献1に示された従来の妨害方法は、妨害対象のネットワークの詳細情報をリアルタイムに取得する必要があり、これを取得できるとは限らないという課題があった。 In addition, the conventional interference method disclosed in Patent Document 1 described above has a problem that detailed information of the network to be disturbed needs to be acquired in real time, and this cannot always be acquired.
 また、上述した特許文献2に示された従来の妨害方法は、有害な信号のみを選んで妨害をかける方法であり、通信内容が判断できる場合のみ対象としている。このため、通信内容が判断できない場合には妨害をかけることができないという課題があった。 Further, the conventional interference method disclosed in Patent Document 2 described above is a method of applying interference only by selecting harmful signals, and is targeted only when communication contents can be determined. For this reason, there has been a problem that when the contents of communication cannot be determined, interference cannot be applied.
 この発明は上記のような問題点を解決するためになされたもので、現実を反映したシンプルな方法で効率的にネットワーク全体の接続を失わせることを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to efficiently lose the connection of the entire network by a simple method reflecting the reality.
 この発明に係る妨害配置装置は、複数のノードがリンクを介して接続されたネットワークにおいて、接続を失わせる妨害要素の配置を決定する妨害配置装置であって、妨害要素の影響によってノードの通信が不可能となる範囲を示す妨害影響範囲と、ノードの通信が可能な範囲を示す通信範囲との比から妨害影響範囲比を算出する算出部と、算出部で算出された妨害影響範囲比に基づいて妨害要素の配置を決定する配置部とを備える妨害配置装置である。 The disturbing placement apparatus according to the present invention is a disturbing placing apparatus that determines the placement of a disturbing element that loses connection in a network in which a plurality of nodes are connected via a link. Based on the interference influence range ratio calculated by the calculation unit that calculates the interference influence range ratio from the ratio of the interference influence range indicating the impossible range and the communication range indicating the range where the node can communicate And a disposing unit that determines the disposition of the disturbing elements.
 また、この発明に係る妨害配置方法は、複数のノードがリンクを介して接続されたネットワークにおいて、接続を失わせる妨害要素の配置を決定する妨害配置方法であって、妨害要素の影響によってノードの通信が不可能となる範囲を示す妨害影響範囲と、ノードの通信が可能な範囲を示す通信範囲との比から妨害影響範囲比を算出する算出ステップと、算出ステップで算出された妨害影響範囲比に基づいて妨害要素の配置を決定する配置ステップとを備える妨害配置方法である。 The disturbing arrangement method according to the present invention is a disturbing placing method for determining the disposition of disturbing elements that cause a loss of connection in a network in which a plurality of nodes are connected via a link. A calculation step for calculating a disturbance influence range ratio from a ratio of a disturbance influence range indicating a range in which communication is impossible and a communication range indicating a range in which node communication is possible, and a disturbance influence range ratio calculated in the calculation step And a disposing step of determining the disposition of the disturbing element based on the method.
 この発明によれば、上記のように構成したことにより、現実を反映したシンプルな方法で効率的にネットワーク全体の接続を失わせることができる。 According to the present invention, by configuring as described above, it is possible to efficiently lose the connection of the entire network by a simple method reflecting the reality.
ネットワークモデルを示す図である。It is a figure which shows a network model. ノードの通信範囲を示す図である。It is a figure which shows the communication range of a node. Most Complex Nodeに妨害要素を配置したときの妨害影響範囲を示す図である。It is a figure which shows the disturbance influence range when arrange | positioning a disturbance element in Most Complex Node. ネットワークのコネクティビティが失われた状態を示す図である。It is a figure which shows the state from which the connectivity of the network was lost. ランダムに妨害要素を配置したときの妨害影響範囲を示す図である。It is a figure which shows the disturbance influence range when a disturbance element is arrange | positioned at random. ネットワークのコネクティビティが保たれた状態を示す図である。It is a figure which shows the state by which the connectivity of the network was maintained. 妨害影響範囲比と妨害数との関係を示す図である。It is a figure which shows the relationship between disturbance influence range ratio and the number of disturbances. この発明の実施の形態1における妨害配置装置の構成を示す機能構成図である。It is a functional block diagram which shows the structure of the disturbance arrangement | positioning apparatus in Embodiment 1 of this invention. この発明の実施の形態1における妨害配置装置のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the disturbance arrangement | positioning apparatus in Embodiment 1 of this invention. この発明の実施の形態1における妨害配置装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the disturbance arrangement | positioning apparatus in Embodiment 1 of this invention. この発明の実施の形態2における妨害配置装置の構成を示す機能構成図である。It is a functional block diagram which shows the structure of the disturbance arrangement | positioning apparatus in Embodiment 2 of this invention. この発明の実施の形態2における妨害配置装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the disturbance arrangement | positioning apparatus in Embodiment 2 of this invention. この発明の実施の形態3における妨害配置装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the disturbance arrangement | positioning apparatus in Embodiment 3 of this invention. この発明の実施の形態3におけるステップS310の動作を示すフローチャートである。It is a flowchart which shows operation | movement of step S310 in Embodiment 3 of this invention. この発明の実施の形態3におけるステップS320の動作を示すフローチャートである。It is a flowchart which shows operation | movement of step S320 in Embodiment 3 of this invention. この発明の実施の形態3におけるステップS330の動作を示すフローチャートである。It is a flowchart which shows operation | movement of step S330 in Embodiment 3 of this invention. この発明の実施の形態3におけるステップS340の動作を示すフローチャートである。It is a flowchart which shows operation | movement of step S340 in Embodiment 3 of this invention. この発明の実施の形態3におけるステップS350の動作を示すフローチャートである。It is a flowchart which shows operation | movement of step S350 in Embodiment 3 of this invention.
 この発明は、複数のノードがリンクを介して接続されたネットワークにおいて、ネットワークの接続を失わせる妨害要素の配置を決定する妨害配置装置および妨害配置方法であって、妨害要素の影響によってノードの通信が不可能となる範囲である妨害影響範囲と、ノードの通信が可能な範囲である通信範囲との比から算出された妨害影響範囲比に基づいて、妨害要素の配置方法を選択することを特徴とするものである。
 以下、この発明の実施の形態について、図を参照して説明する。なお、各図において、同一又は同様の構成部分については同じ符号を付している。
The present invention relates to a disturbing placement apparatus and a disturbing placement method for determining the placement of a disturbing element that causes a loss of network connection in a network in which a plurality of nodes are connected via a link. The arrangement method of the disturbing element is selected based on the ratio of the disturbing influence range calculated from the ratio of the disturbing influence range that is the range in which communication is impossible and the communication range that is the range in which the node can communicate. It is what.
Embodiments of the present invention will be described below with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected about the same or similar component.
実施の形態1.
 まず初めに、図1から図6を参照して、この発明の実施の形態1のネットワークモデルについて説明する。
Embodiment 1 FIG.
First, a network model according to the first embodiment of the present invention will be described with reference to FIGS.
 図1は、この発明の実施の形態1のネットワークモデルを示す図である。図1において、ネットワーク10は妨害対象となるネットワークであり、複数のノード11とそれらを接続するリンク12から構成される。ここで、ノード11は通信送受信装置、リンク12は通信回線を示す。ネットワーク範囲5は、ネットワーク10のノード11やリンク12が配置されている可能性のある範囲であり、ネットワーク範囲5内のノード11が通信を行い、全体としてネットワーク10を構成する。 FIG. 1 is a diagram showing a network model according to the first embodiment of the present invention. In FIG. 1, a network 10 is a network to be obstructed, and includes a plurality of nodes 11 and links 12 connecting them. Here, the node 11 indicates a communication transmitter / receiver, and the link 12 indicates a communication line. The network range 5 is a range in which the node 11 and the link 12 of the network 10 may be arranged, and the node 11 in the network range 5 communicates to configure the network 10 as a whole.
 ネットワーク10では、通信の発信元となるノード11を発信元ノード11a、通信の宛先となるノード11を宛先ノード11zとし、発信元ノード11aから宛先ノード11zに向けて通信が行われる。発信元ノード11aと宛先ノード11zとの間がリンク12とノード11で接続されている場合はコネクティビティあり、接続されていない場合はコネクティビティなしと呼ばれる。発信元ノード11aと宛先ノード11zとの間の通信経路となるノード11は、中継ノード11とも呼ばれる。リンク12は向きが無く、双方向とする。ネットワーク10のノード11の中で、接続されるリンク12の数が最も多いノード11をMost Complex Node 11mと呼ぶ。 In the network 10, communication is performed from the source node 11 a to the destination node 11 z with the node 11 that is the source of communication being the source node 11 a and the node 11 that is the destination of communication being the destination node 11 z. When the source node 11a and the destination node 11z are connected by the link 12 and the node 11, it is called connectivity, and when it is not connected, it is called no connectivity. The node 11 serving as a communication path between the transmission source node 11a and the destination node 11z is also referred to as a relay node 11. The link 12 has no direction and is bidirectional. Among the nodes 11 of the network 10, the node 11 having the largest number of links 12 to be connected is referred to as Most Complex Node 11m.
 図2は、この発明の実施の形態1のノード11の通信範囲を示す図である。図2に示すネットワーク10においては、正方形のネットワーク範囲5の中に50個のノード11がランダムに配置される。各ノード11は、半径が通信範囲13の範囲内(図中の発信元ノード11aにおいては、太い破線で示す円弧とネットワーク範囲5の外周とで囲まれた領域)に配置されたノード11と無線通信が可能であり、リンク接続がある。言い換えると、通信範囲13は、ノード11間の無線通信が可能な距離、つまり、リンク接続が可能な距離を示す。また、図2では、便宜上、発信元ノード11aについてのみ通信範囲13を示したが、他のノード11についても同様に通信範囲13があり、半径が通信範囲13の範囲内のノード11とリンク接続がある。 FIG. 2 is a diagram showing a communication range of the node 11 according to the first embodiment of the present invention. In the network 10 shown in FIG. 2, 50 nodes 11 are randomly arranged in a square network range 5. Each node 11 is wirelessly connected to the node 11 whose radius is within the range of the communication range 13 (in the transmission source node 11a in the figure, an area surrounded by an arc indicated by a thick broken line and the outer periphery of the network range 5). Communication is possible and there is a link connection. In other words, the communication range 13 indicates a distance where wireless communication between the nodes 11 is possible, that is, a distance where link connection is possible. In FIG. 2, for convenience, the communication range 13 is shown only for the source node 11 a, but the other nodes 11 have the communication range 13 in the same manner, and the link connection is established with the nodes 11 within the range of the communication range 13. There is.
 図2では、ネットワーク範囲5の最も左下にあるノード11が発信元ノード11a、最も右上にあるノード11が宛先ノード11zである。また、ネットワーク範囲5の中央付近にあり、接続されているリンク12の数が最も多いノード11がMost Complex Node 11mである。 In FIG. 2, the node 11 at the lower left of the network range 5 is the source node 11a, and the node 11 at the upper right is the destination node 11z. Further, the node 11 having the largest number of connected links 12 near the center of the network range 5 is the Most Complex Node 11m.
 図3は、図2のネットワーク範囲5において、Most Complex Node 11mの位置に妨害要素14cを配置したときのリンク接続の様子を示す図である。妨害要素14cとは、周辺装置の通信に影響を与えて通信を失わせる妨害装置、例えば、ノード11の通信を妨害する妨害電波を放射する装置である。図3に示すように、Most Complex Node 11m(または妨害要素14c)を中心とする、半径が妨害影響範囲15cの範囲内(図中に太い破線で示す円で囲まれた領域)に配置されたノード11に接続されるリンク12は、妨害要素14cの影響で無効となり、通信ができなくなる。言い換えると、妨害影響範囲15cは、妨害要素14cの影響が及ぶ距離、例えば、妨害電波が到達する距離を示す。図において、ノード11間を繋ぐ細い破線は、リンク12が無効となり、接続が失われた状態を示す。 FIG. 3 is a diagram showing a state of link connection when the disturbing element 14c is arranged at the position of Most Complex Node 11m in the network range 5 of FIG. The disturbing element 14c is a disturbing device that affects the communication of the peripheral device and loses the communication, for example, a device that emits a disturbing radio wave that disturbs the communication of the node 11. As shown in FIG. 3, the radius is arranged within the range of the disturbance influence range 15c (the area surrounded by a circle indicated by a thick broken line in the figure) centered on the Most Complex Node 11m (or the disturbance element 14c). The link 12 connected to the node 11 becomes invalid due to the influence of the disturbing element 14c, and communication becomes impossible. In other words, the jamming influence range 15c indicates a distance that the jamming element 14c affects, for example, a distance that the jamming radio wave reaches. In the figure, a thin broken line connecting the nodes 11 indicates a state in which the link 12 is invalid and the connection is lost.
 図4は、図3において、接続が失われて通信が出来なくなったノード11とリンク12を取り除いたネットワーク10を示す図である。図4では、発信元ノード11aと宛先ノード11zとの間に中継ノード11を介したリンク接続が無くなり、コネクティビティが失われた様子が示される。 FIG. 4 is a diagram showing the network 10 in which the node 11 and the link 12 that are not able to communicate with each other in FIG. 3 are removed. FIG. 4 shows a state in which connectivity is lost because there is no link connection via the relay node 11 between the source node 11a and the destination node 11z.
 図5は、図2のネットワーク範囲5において、ランダムに妨害要素14rを配置したときのリンク接続の様子を示す図である。図5に示すように、妨害要素14rを中心とする、半径が妨害影響範囲15rの範囲内(図中の妨害要素14rにおいては、太い破線で示す円弧とネットワーク範囲5の外周とで囲まれた領域)に配置されたノード11に接続されるリンク12は、妨害要素14rの影響で無効となり、通信ができなくなる。言い換えると、妨害影響範囲15rは、妨害要素14rの影響が及ぶ距離、例えば、妨害電波が到達する距離を示す。なお、以降の説明では、妨害要素14cと妨害要素14rをまとめて妨害要素14、妨害影響範囲15cと妨害影響範囲15rをまとめて妨害影響範囲15と呼ぶ場合がある。 FIG. 5 is a diagram showing a state of link connection when the disturbing elements 14r are randomly arranged in the network range 5 of FIG. As shown in FIG. 5, the radius around the disturbing element 14r is within the range of the disturbing influence range 15r (in the disturbing element 14r in the figure, the arc surrounded by a thick broken line and the outer periphery of the network range 5 are surrounded. The link 12 connected to the node 11 arranged in the area) becomes invalid due to the influence of the disturbing element 14r, and communication becomes impossible. In other words, the jamming influence range 15r indicates a distance that the jamming element 14r affects, for example, a distance that the jamming radio wave reaches. In the following description, the disturbing element 14c and the disturbing element 14r may be collectively referred to as the disturbing element 14, and the disturbing influence range 15c and the disturbing influence range 15r may be collectively referred to as the disturbing influence range 15.
 図6は、図5において、接続が失われて通信が出来なくなったノード11とリンク12を取り除いたネットワーク10を示す図である。図6では、発信元ノード11aと宛先ノード11zとの間に中継ノード11を介したリンク接続があり、コネクティビティが保たれた様子が示される。 FIG. 6 is a diagram illustrating the network 10 in which the node 11 and the link 12 that are not able to communicate with each other in FIG. 5 are removed. In FIG. 6, there is a link connection via the relay node 11 between the source node 11a and the destination node 11z, and the state in which the connectivity is maintained is shown.
 次に、図7を参照して、妨害要素14の配置数と妨害影響範囲比の関係について説明する。 Next, with reference to FIG. 7, the relationship between the number of the disturbing elements 14 and the disturbing influence range ratio will be described.
 図7は、図2のネットワーク10のMost Complex Node 11mに妨害要素14cを配置する場合(第1の配置方法)、および、ネットワーク範囲5にランダムに妨害要素14rを配置する場合(第2の配置方法)のそれぞれにおいて、発信元ノード11aと宛先ノード11zとの間のコネクティビティを失わせるために必要な妨害要素14c,14rの配置数を、妨害影響範囲比16=妨害影響範囲15/通信範囲13を変化させて調べた結果を示す。図において、実線Cは、第1の配置方法で妨害要素14cを配置したときの結果、破線Rは、第2の配置方法で妨害要素14rを配置したときの結果を示す。 7 shows a case where the disturbing element 14c is arranged in the Most Complex Node 11m of the network 10 of FIG. 2 (first arrangement method) and a case where the disturbing element 14r is randomly arranged in the network range 5 (second arrangement). In each of the methods, the number of the disturbing elements 14c and 14r necessary for losing the connectivity between the source node 11a and the destination node 11z is expressed by the interference influence range ratio 16 = disturbance influence range 15 / communication range 13 The result of having investigated by changing is shown. In the figure, the solid line C shows the result when the disturbing element 14c is arranged by the first arranging method, and the broken line R shows the result when the disturbing element 14r is arranged by the second arranging method.
 ここで、通信範囲13とは、図2の通信範囲13と同様、無線通信が可能でリンク接続が可能なノード11が存在する範囲を表す。よって、各ノード11は、通信範囲13を半径とする範囲内に位置する他のノード11と無線通信が可能で、リンク接続が可能である。
 また、妨害影響範囲15とは、図3および図4の妨害影響範囲15c、あるいは図5および図6の妨害影響範囲15rと同様、妨害要素14から放射される妨害電波の影響により、ノード11に接続されるリンク12が無効となり、無線通信ができなくなる範囲を表す。よって、妨害要素14は、妨害影響範囲15を半径とする範囲内に位置するノード11のリンク12を無効化し、接続を失わせる。
Here, the communication range 13 represents a range in which the node 11 capable of wireless communication and link connection exists as in the communication range 13 of FIG. Therefore, each node 11 can wirelessly communicate with another node 11 located within a range having the communication range 13 as a radius, and link connection is possible.
Further, the jamming influence range 15 is the same as the jamming influence range 15c shown in FIGS. 3 and 4 or the jamming influence range 15r shown in FIGS. This represents a range in which the connected link 12 becomes invalid and wireless communication cannot be performed. Therefore, the disturbing element 14 invalidates the link 12 of the node 11 located within a range having the disturbing influence range 15 as a radius, and loses the connection.
 図7から、妨害影響範囲比16が小さい場合は、妨害要素14rをランダムに配置するより、Most Complex Node 11mに配置した方が、少ない妨害数でネットワーク10のコネクティビティが失われることがわかる。一方、妨害影響範囲比16が大きい場合は、両者にほとんど差が無い。図7において、第1および第2の配置方法によって配置される妨害数の間に大きな差がある領域と、ほとんど差が無い領域との境界を一点鎖線で示す。この境界となる妨害影響範囲比16を境界値17とする。境界値17は、図7の場合は約0.5であるが、これに限定するものではなく、シミュレーション等の結果に基づいて適切な値を設定すればよい。 FIG. 7 shows that when the disturbance influence range ratio 16 is small, the connectivity of the network 10 is lost with a smaller number of disturbances when the disturbance element 14r is arranged at random in the Most Complex Node 11m rather than at random. On the other hand, when the interference influence range ratio 16 is large, there is almost no difference between the two. In FIG. 7, a boundary between a region where there is a large difference between the number of disturbances arranged by the first and second arrangement methods and a region where there is almost no difference is indicated by a one-dot chain line. The disturbance influence range ratio 16 that is the boundary is defined as a boundary value 17. The boundary value 17 is about 0.5 in the case of FIG. 7, but is not limited to this, and an appropriate value may be set based on the result of simulation or the like.
 次に、本実施の形態1の妨害配置方法を実現する装置の構成および動作について説明する。
 図8は、実施の形態1の妨害配置装置40の機能構成を示す図である。図9は、妨害配置装置40を実現する機器の構成を示すハードウェア構成図である。
Next, the configuration and operation of an apparatus that implements the disturbing arrangement method of the first embodiment will be described.
FIG. 8 is a diagram illustrating a functional configuration of the disturbance placement device 40 according to the first embodiment. FIG. 9 is a hardware configuration diagram illustrating a configuration of a device that implements the disturbance placement device 40.
 図8の妨害配置装置40は、算出部41、判定部42、配置部43から構成される。
 算出部41は、妨害影響範囲比16=妨害影響範囲15/通信範囲13、つまり、妨害要素14の妨害影響範囲15とノード11の通信範囲13との比から妨害影響範囲比16を算出する。算出結果は判定部42へ渡される。なお、妨害影響範囲15は、妨害要素14の妨害出力に応じて決まる。妨害要素14の妨害出力は、予め所定の値に設定されているものとする。
 判定部42は、妨害影響範囲比16が境界値17より大きいか否かを判定する。判定結果は配置部43へ渡される。なお、境界値17は、図7に示すように、ノード11の配置や出力、妨害要素14の妨害出力に応じて設定される。例えば、メモリに格納された複数の境界値17から、そのときの状況に対応する値を参照して設定することで、ノード11の配置や出力等が変化した場合にも対応することができる。
 配置部43は、判定部42の判定結果に基づいて妨害要素14の配置を決定する。
The disturbance arrangement device 40 in FIG. 8 includes a calculation unit 41, a determination unit 42, and an arrangement unit 43.
The calculation unit 41 calculates the interference influence range ratio 16 from the ratio of the interference influence range 15 = the interference influence range 15 / communication range 13, that is, the ratio between the interference influence range 15 of the interference element 14 and the communication range 13 of the node 11. The calculation result is passed to the determination unit 42. The interference influence range 15 is determined according to the interference output of the interference element 14. It is assumed that the disturbance output of the disturbance element 14 is set to a predetermined value in advance.
The determination unit 42 determines whether or not the interference influence range ratio 16 is greater than the boundary value 17. The determination result is passed to the placement unit 43. The boundary value 17 is set according to the arrangement and output of the node 11 and the disturbance output of the disturbance element 14 as shown in FIG. For example, by referring to a value corresponding to the situation at that time from a plurality of boundary values 17 stored in the memory, it is possible to cope with a change in the arrangement or output of the node 11.
The placement unit 43 determines the placement of the disturbing elements 14 based on the determination result of the determination unit 42.
 図9の妨害配置装置40は、プロセッサ101、メモリ102、インタフェース103から構成される。図8の妨害配置装置40の算出部41、判定部42、配置部43で行う処理は、図9のメモリ102に記憶されたプログラムをプロセッサ101が読みだして実行することにより実現される。また、妨害配置装置40の算出部41、判定部42、配置部43で行う処理は、ネットワークの妨害指示をインタフェース103で受け付けたときに実行される。配置部43で決定された妨害要素14の配置は、インタフェース103から外部に出力される。 9 includes a processor 101, a memory 102, and an interface 103. The processing performed by the calculation unit 41, the determination unit 42, and the arrangement unit 43 of the disturbing arrangement device 40 of FIG. 8 is realized by the processor 101 reading and executing the program stored in the memory 102 of FIG. The processing performed by the calculation unit 41, the determination unit 42, and the arrangement unit 43 of the disturbance arrangement device 40 is executed when a network disturbance instruction is received by the interface 103. The arrangement of the disturbing elements 14 determined by the arrangement unit 43 is output from the interface 103 to the outside.
 図10は、この発明の実施の形態1における妨害配置装置40の動作を示すフローチャートである。 FIG. 10 is a flowchart showing the operation of the disturbance placement device 40 according to Embodiment 1 of the present invention.
 ステップS101において、算出部41は、妨害影響範囲比16=妨害影響範囲15/通信範囲13を算出する。妨害影響範囲15は、妨害要素14の影響によってノード11の通信を不可能にすることが可能な範囲の半径、通信範囲13は、ノード11の通信が可能な範囲の半径である。 In step S101, the calculation unit 41 calculates the interference influence range ratio 16 = interference influence range 15 / communication range 13. The jamming influence range 15 is a radius of a range in which the communication of the node 11 can be made impossible due to the influence of the jamming element 14, and the communication range 13 is a radius of a range in which the node 11 can communicate.
 ステップS102において、判定部42は、算出部41で算出された妨害影響範囲比16が境界値17より大きいか否かを判定し、妨害影響範囲比16が境界値17未満となる場合には、ステップS103へ処理を進める。一方、妨害影響範囲比16が境界値以上となる場合には、ステップS104へ処理を進める。なお、図10においては、妨害影響範囲比16が境界値17と等しい場合は、ステップS104へ処理を進めるものとしたが、ステップS103へ処理を進めても差し支えない。 In step S102, the determination unit 42 determines whether or not the disturbance influence range ratio 16 calculated by the calculation unit 41 is greater than the boundary value 17, and if the disturbance influence range ratio 16 is less than the boundary value 17, The process proceeds to step S103. On the other hand, if the disturbance influence range ratio 16 is greater than or equal to the boundary value, the process proceeds to step S104. In FIG. 10, when the disturbance influence range ratio 16 is equal to the boundary value 17, the process proceeds to step S104. However, the process may proceed to step S103.
 ステップS103において、配置部43は、Most Complex Node 11mに妨害要素14cを配置する第1の配置方法によって、妨害要素14cの配置を決定する。配置する妨害要素14cの数は、発信元ノード11aと宛先ノード11zとの間の接続を失わせるために必要な数とする。図7に示すように、妨害影響範囲比16が境界値17未満となる場合には、Most Complex Node 11mに妨害要素14cを配置することで、少ない妨害数で効率よく妨害要素14cを配置することができる。 In step S103, the placement unit 43 determines the placement of the disturbing element 14c by the first placement method of placing the disturbing element 14c on the Most Complex Node 11m. The number of disturbing elements 14c to be arranged is the number necessary to lose the connection between the source node 11a and the destination node 11z. As shown in FIG. 7, when the disturbance influence range ratio 16 is less than the boundary value 17, the disturbance element 14c is efficiently arranged with a small number of disturbances by arranging the disturbance element 14c on the Most Complex Node 11m. Can do.
 ステップS104において、配置部43は、第1の配置方法、または妨害要素14rをランダムに配置する第2の配置方法のいずれか一方によって妨害要素14cの配置を決定する。第1の配置方法が選択される場合には、Most Complex Node 11mの位置に妨害要素14cが配置される。第2の配置方法が選択される場合には、ネットワーク範囲5内の任意の位置に妨害要素14rが配置される。配置する妨害要素14の数は、いずれも発信元ノード11aと宛先ノード11zとの間の接続を失わせるために必要な数とする。図7に示すように、妨害影響範囲比16が境界値17以上となる場合には、妨害数に大きな違いが無いため、配置部43は、第1の配置方法、または第2の配置方法のどちらを選択してもよい。 In step S104, the placement unit 43 determines the placement of the disturbing elements 14c by either the first placement method or the second placement method of randomly placing the disturbing elements 14r. When the first arrangement method is selected, the disturbing element 14c is arranged at the position of Most Complex Node 11m. When the second arrangement method is selected, the disturbing element 14r is arranged at an arbitrary position within the network range 5. The number of disturbing elements 14 to be arranged is the number necessary for losing the connection between the source node 11a and the destination node 11z. As shown in FIG. 7, when the disturbance influence range ratio 16 is equal to or greater than the boundary value 17, there is no significant difference in the number of disturbances, and therefore the arrangement unit 43 has the first arrangement method or the second arrangement method. Either may be selected.
 以上のように、本発明の実施の形態1では、妨害影響範囲比16を指標として妨害配置のポリシーを決定する。 As described above, in the first embodiment of the present invention, the policy of the disturbance arrangement is determined using the disturbance influence range ratio 16 as an index.
 次に、本発明の実施の形態1における妨害影響範囲比16の算出方法について説明する。 Next, a method for calculating the interference influence range ratio 16 in Embodiment 1 of the present invention will be described.
 式(1)は妨害対信号比を示す。ここで、J/S:妨害対信号比、ERP:妨害装置の実効放射電力、ERP:信号送信機の実効放射電力、L:妨害装置から受信機までの伝搬損失、L:信号送信機から受信機までの伝搬損失、GRJ:妨害装置方向の受信アンテナ利得、GRS:目的信号方向の受信アンテナ利得方向の受信アンテナ利得である。 Equation (1) shows the disturbance-to-signal ratio. Where, J / S: jamming-to-signal ratio, ERP J : effective radiated power of jamming device, ERP S : effective radiating power of signal transmitter, L J : propagation loss from jamming device to receiver, L S : signal Propagation loss from transmitter to receiver, G RJ : reception antenna gain in the direction of the jamming device, G RS : reception antenna gain in the direction of the reception antenna gain in the target signal direction.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 妨害対信号比J/Sは、妨害を受ける受信機内での妨害信号と目的信号との比を示す。妨害対信号比J/Sが大きければ、妨害効果が大きい。なお、受信機の受信アンテナが360度の方位覆域を有するホイップアンテナやモノポールアンテナの場合、妨害装置方向の受信アンテナ利得GRJと目的信号方向の受信アンテナ利得方向の受信アンテナ利得GRSが等しくなり、式(1)は簡略化される。 The jamming-to-signal ratio J / S indicates the ratio of the jamming signal to the target signal in the receiver that receives the jamming. If the jamming-to-signal ratio J / S is large, the jamming effect is large. In the case of the whip antenna or monopole antenna receiving antenna of a receiver having a 360 degree azimuth Coverage, receive antenna gain G RS receiving antenna gain direction of the receiving antenna gain G RJ and target signal direction of jammers direction Equally, equation (1) is simplified.
 次に、式(1)の損失LあるいはLの算出の方法を示す。損失は、信号送信機から受信機までの距離、あるいは妨害装置から受信機までの距離がフレネルゾーン距離より小さい場合には見通し線損失となり、大きい場合には平面大地(2波)損失となる。
 式(2)は見通し線損失を示す。ここで、L:見通し線損失、d:伝送距離、F:送信周波数、c:光速である。
 式(3)は平面大地(2波)損失を示す。ここで、L:平面大地(2波)損失、d:伝送距離、h:送信アンテナ高、h:受信アンテナ高である。
 式(4)はフレネルゾーン距離を示す。ここで、FZ:フレネルゾーン距離、h:送信アンテナ高、h:受信アンテナ高、F:送信周波数、c:光速である。
Next, a method for calculating the loss L S or L J in the equation (1) will be described. The loss is a line-of-sight loss when the distance from the signal transmitter to the receiver or the distance from the jamming device to the receiver is smaller than the Fresnel zone distance, and is a flat ground (two-wave) loss when the distance is large.
Equation (2) shows the line-of-sight loss. Here, L 1 is line-of-sight loss, d: transmission distance, F: transmission frequency, and c: speed of light.
Equation (3) represents the planar ground (2 wave) loss. Here, L 2 : plane ground (2 wave) loss, d: transmission distance, h T : transmitting antenna height, h R : receiving antenna height.
Equation (4) represents the Fresnel zone distance. Here, FZ: Fresnel zone distance, h T : transmitting antenna height, h R : receiving antenna height, F: transmission frequency, c: speed of light.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 本実施の形態で用いる妨害影響範囲比16=妨害影響範囲15/通信範囲13は、妨害装置と受信機との間の距離と、信号送信機と受信機との間の距離との比であり、上記の式から状況に応じて選択することにより求めることができる。以下、具体的に説明する。 The interference influence range ratio 16 used in the present embodiment is the ratio of the interference influence range 15 / communication range 13 to the distance between the interference device and the receiver and the distance between the signal transmitter and the receiver. From the above formula, it can be obtained by selecting according to the situation. This will be specifically described below.
 式(5)は、これらの二つの距離が両方とも見通し範囲内(フレネルゾーン距離以下)であり、見通し線損失に従う場合の妨害影響範囲比を示す。ここで、J/S:妨害対信号比、ERP:妨害装置の実効放射電力、ERP:信号送信機の実効放射電力、d:妨害装置から受信機までの距離、d:信号送信機から受信機までの距離、F:妨害送信周波数、F:信号送信周波数である。妨害影響範囲比の算出にあたり、妨害対信号比J/Sは所望の値に設定する。
 式(6)は、これらの二つの距離が両方とも見通し範囲外(フレネルゾーン距離以上)であり、平面大地(2波)損失に従う場合の妨害影響範囲比を示す。ここで、d:妨害装置から受信機までの距離、d:信号送信機から受信機までの距離、hTJ:妨害装置の送信アンテナ高、hTS:信号送信機の送信アンテナ高である。妨害影響範囲比の算出にあたり、妨害対信号比J/Sは所望の値に設定する。
Equation (5) shows the disturbing influence range ratio when these two distances are both within the line-of-sight range (Fresnel zone distance or less) and follow line-of-sight loss. Here, J / S: interference-to-signal ratio, ERP J : effective radiated power of the jamming device, ERP S : effective radiated power of the signal transmitter, d J : distance from the jamming device to the receiver, d S : signal transmission Distance from the receiver to the receiver, F J : jamming transmission frequency, F S : signal transmission frequency. In calculating the interference influence range ratio, the interference-to-signal ratio J / S is set to a desired value.
Equation (6) shows the disturbing influence range ratio when these two distances are both outside the line-of-sight range (more than the Fresnel zone distance) and are subject to planar ground (2 wave) losses. Where d J is the distance from the jamming device to the receiver, d S is the distance from the signal transmitter to the receiver, h TJ is the transmitting antenna height of the jamming device, and h TS is the transmitting antenna height of the signal transmitter. . In calculating the interference influence range ratio, the interference-to-signal ratio J / S is set to a desired value.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 これらの妨害に関する基本的なパラメータの式は、基礎技術として、例えば以下に示す非特許文献3に記載されている。 The basic parameter formulas related to these disturbances are described as non-patent documents 3 shown below as basic technologies.
 以上のように、本実施の形態によれば、妨害要素14の影響によってノード11の通信が不可能となる範囲を示す妨害影響範囲15と、ノード11間の通信が可能な範囲を示す通信範囲13との比から妨害影響範囲比16を算出する算出部41と、算出部41で算出された妨害影響範囲比16に基づいて妨害要素14の配置を決定する配置部43とを備え、複数のノード11がリンク12を介して接続されたネットワーク10において、接続を失わせる妨害要素14の配置を決定するように構成した。このように、妨害影響範囲比16に基づいて妨害要素14の配置を決定するので、現実を反映したシンプルな方法で効率的にネットワーク全体の接続を失わせることができる。 As described above, according to the present embodiment, the interference influence range 15 indicating the range in which communication of the node 11 is impossible due to the influence of the interference element 14 and the communication range indicating the range in which communication between the nodes 11 is possible. 13 includes a calculation unit 41 that calculates the disturbance influence range ratio 16 from the ratio to 13, and an arrangement unit 43 that determines the arrangement of the disturbance element 14 based on the disturbance influence range ratio 16 calculated by the calculation unit 41. In the network 10 in which the nodes 11 are connected via the links 12, the arrangement of the disturbing elements 14 that cause the connection to be lost is determined. Thus, since the arrangement of the disturbing elements 14 is determined based on the disturbing influence range ratio 16, the connection of the entire network can be efficiently lost by a simple method reflecting the reality.
 また、本実施の形態によれば、妨害影響範囲比16が境界値17より大きいか否かを判定する判定部42をさらに備え、配置部43は、妨害影響範囲比16が境界値17より小さい場合には、接続されたリンク12の数が最も多いノード11mに妨害要素14cを配置する第1の配置方法によって妨害要素14の配置を決定し、妨害影響範囲比16が境界値17より大きい場合には、第1の配置方法、または妨害要素14をランダムな位置に配置する第2の配置方法のいずれか一方によって妨害要素14の配置を決定する。このように、妨害影響範囲比16と境界値17との関係に基づいて、2つの配置方法のうち、いずれか一方を選択することにより、現実に即した配置方法を選択することができる。
 なお、妨害影響範囲比16が境界値17より大きい場合には、第1の配置方法および第2の配置方法の妨害数に大きな違いがないため、どちらの方法を選択してもよい。しかしながら、Most Complex Node 11mを求めていない場合には、第2の配置方法を選択することで、Most Complex Node 11mを求める手間を省くことができる。
Further, according to the present embodiment, the determination unit 42 that determines whether or not the disturbance influence range ratio 16 is larger than the boundary value 17 is further provided, and the arrangement unit 43 has the disturbance influence range ratio 16 smaller than the boundary value 17. In this case, the arrangement of the disturbing elements 14 is determined by the first arranging method in which the disturbing elements 14c are arranged in the node 11m having the largest number of connected links 12, and the disturbing influence range ratio 16 is larger than the boundary value 17. In this case, the arrangement of the disturbing elements 14 is determined by either the first arranging method or the second arranging method in which the disturbing elements 14 are arranged at random positions. As described above, an actual arrangement method can be selected by selecting one of the two arrangement methods based on the relationship between the interference influence range ratio 16 and the boundary value 17.
When the disturbance influence range ratio 16 is larger than the boundary value 17, since there is no significant difference in the number of disturbances between the first arrangement method and the second arrangement method, either method may be selected. However, when the Most Complex Node 11m is not obtained, it is possible to save the trouble of obtaining the Most Complex Node 11m by selecting the second arrangement method.
 また、本実施の形態によれば、判定部42は、妨害影響範囲比16と、ネットワーク10の接続を失わせるために必要な妨害要素14の数との関係において、第1の配置方法および第2の配置方法によって配置される妨害要素14の数に差がない領域と差がある領域との境界となる妨害影響範囲比16を境界値17とする。このように、最も接続数の多いノード11mに妨害要素14を配置する場合と同様の妨害効果が得られる条件を満たすか否かを判断して配置方法を選択するため、効率的に妨害を行うことができる。つまり、できるだけ少ない数の妨害要素14でネットワーク10全体の接続(発信元ノード11aから宛先ノード11zまでのコネクティビティ)を失わせるよう妨害要素14を配置することができる。 Further, according to the present embodiment, the determination unit 42 determines the first arrangement method and the first in the relationship between the interference influence range ratio 16 and the number of interference elements 14 necessary for losing the connection of the network 10. A disturbance influence range ratio 16 that is a boundary between a region where there is no difference in the number of disturbance elements 14 arranged by the arrangement method 2 and a region where there is a difference is defined as a boundary value 17. In this way, since the arrangement method is selected by determining whether or not a condition for obtaining the same disturbance effect as that in the case where the disturbance element 14 is arranged in the node 11m having the largest number of connections is selected, the disturbance is efficiently performed. be able to. That is, the disturbing elements 14 can be arranged so as to lose the connection of the entire network 10 (connectivity from the source node 11a to the destination node 11z) with as few disturbing elements 14 as possible.
実施の形態2.
 妨害対象となるネットワーク10のノード11の位置が既知の場合には、Most Complex Node 11mに妨害要素14cを配置できるが、未知の場合には配置できない。よって、実施の形態1は、妨害対象のネットワーク10のノード11位置が既知であることを前提としている。
 これに対して、実施の形態2は、妨害対象のネットワーク10のノード11位置が既知か否かに応じて、妨害要素14の配置方法を選択するとともに、妨害要素14の妨害出力(放射電力)を設定するように構成した点が実施の形態1と異なる。実施の形態2では、異なる点を中心に説明する。
Embodiment 2. FIG.
When the position of the node 11 of the network 10 to be disturbed is known, the disturbing element 14c can be disposed at the Most Complex Node 11m, but cannot be disposed when unknown. Therefore, the first embodiment is based on the premise that the position of the node 11 of the network 10 to be disturbed is known.
On the other hand, in the second embodiment, the arrangement method of the disturbing element 14 is selected according to whether or not the position of the node 11 of the network 10 to be disturbed is known, and the disturbing output (radiated power) of the disturbing element 14 is selected. The point of being configured to set is different from that of the first embodiment. In the second embodiment, the description will focus on the different points.
 まず、本実施の形態2の妨害配置装置50の構成および動作について説明する。
 図11は、実施の形態2の妨害配置装置50の機能構成を示す図である。実施の形態2の妨害配置装置50のハードウェア構成は、図9に示した構成と同様である。
First, the configuration and operation of the disturbance placement device 50 according to the second embodiment will be described.
FIG. 11 is a diagram illustrating a functional configuration of the disturbance placement device 50 according to the second embodiment. The hardware configuration of the disturbance placement apparatus 50 of the second embodiment is the same as the configuration shown in FIG.
 図11の妨害配置装置50は、算出部51、判定部52、配置部53、出力設定部54から構成される。
 算出部51は、妨害要素14の妨害影響範囲15とノード11の通信範囲13との比から妨害影響範囲比16を算出する。算出結果は判定部52へ渡される。
 判定部52は、まず、妨害対象のネットワーク10のノード11位置が既知か否かを判定する。ノード11位置が既知の場合には、判定部52は、さらに、妨害影響範囲比16が境界値17より大きいか否かを判定する。判定結果は、配置部53および出力設定部54へ渡される。
 配置部53は、判定部52の判定結果に基づいて妨害要素14の配置を決定する。具体的には、妨害対象のネットワーク10のノード11位置が既知の場合には、実施の形態1で説明したように、妨害影響範囲比16に応じて選択した配置方法によって妨害要素14の配置を決定する。未知の場合には、Most Complex Node 11mが不明なので、配置部53は、ランダムな位置に妨害要素14rを配置する。
 出力設定部54は、判定部52の判定結果に基づいて妨害要素14の妨害出力を設定する。具体的には、妨害対象のネットワーク10のノード11位置が未知の場合には、出力設定部54は、妨害要素14rの妨害出力として、妨害影響範囲比16が境界値17より大きくなる値を設定する。妨害対象のネットワーク10のノード11位置が既知の場合には、妨害要素14rの妨害出力として予め定められた値が設定される、もしくは、設定は行われず、予め設定された妨害出力が維持される。
11 includes a calculation unit 51, a determination unit 52, an arrangement unit 53, and an output setting unit 54.
The calculation unit 51 calculates the interference influence range ratio 16 from the ratio between the interference influence range 15 of the interference element 14 and the communication range 13 of the node 11. The calculation result is passed to the determination unit 52.
The determination unit 52 first determines whether or not the position of the node 11 of the network 10 to be disturbed is known. When the position of the node 11 is known, the determination unit 52 further determines whether or not the interference influence range ratio 16 is greater than the boundary value 17. The determination result is passed to the placement unit 53 and the output setting unit 54.
The placement unit 53 determines the placement of the disturbing elements 14 based on the determination result of the determination unit 52. Specifically, when the position of the node 11 of the network 10 to be disturbed is known, the disposition of the disturbing element 14 is performed by the disposition method selected according to the disturbing influence range ratio 16 as described in the first embodiment. decide. If unknown, since the Most Complex Node 11m is unknown, the placement unit 53 places the disturbing element 14r at a random position.
The output setting unit 54 sets the disturbance output of the disturbance element 14 based on the determination result of the determination unit 52. Specifically, when the position of the node 11 of the network 10 to be disturbed is unknown, the output setting unit 54 sets a value at which the disturbance influence range ratio 16 is larger than the boundary value 17 as the disturbance output of the disturbance element 14r. To do. When the position of the node 11 of the network 10 to be disturbed is known, a predetermined value is set as the jamming output of the jamming element 14r, or no setting is performed, and the preset jamming output is maintained. .
 図11の妨害配置装置50の算出部51、判定部52、配置部53、出力設定部54で行う処理は、図9のメモリ102に記憶されたプログラムをプロセッサ101が読みだして実行することにより実現される。また、妨害配置装置50の算出部51、判定部52、配置部53、出力設定部54で行う処理は、ネットワークの妨害指示をインタフェース103で受け付けたときに実行される。配置部53で決定された妨害要素14の配置、および、妨害要素14の妨害出力として最終的に設定された値は、インタフェース103から外部に出力される。 The processing performed by the calculation unit 51, the determination unit 52, the arrangement unit 53, and the output setting unit 54 of the disturbing arrangement device 50 of FIG. 11 is executed by the processor 101 reading and executing the program stored in the memory 102 of FIG. Realized. In addition, the processing performed by the calculation unit 51, the determination unit 52, the arrangement unit 53, and the output setting unit 54 of the disturbance arrangement device 50 is executed when a network disturbance instruction is received by the interface 103. The arrangement of the disturbing elements 14 determined by the placement unit 53 and the value finally set as the disturbing output of the disturbing elements 14 are output from the interface 103 to the outside.
 図12は、この発明の実施の形態2における妨害配置装置50の動作を示すフローチャートである。 FIG. 12 is a flowchart showing the operation of the disturbance placement device 50 according to Embodiment 2 of the present invention.
 ステップS201において、判定部52は、妨害対象となるネットワーク10のノード11の位置が既知か否かを判定する。ノード11位置が既知の場合には、判定部52は、ステップS202へ処理を進める。ステップS202~S205の処理は、図10に示したフローチャートのステップS101~S104と同じであるため、説明を省略する。ノード11位置が未知の場合には、判定部52は、ステップS206へ処理を進める。なお、図12のフローチャートでは、ネットワークのノード11位置が既知の場合のみ、妨害影響範囲比16を算出する構成としているが、ネットワークのノード11位置が既知か否かによらず妨害影響範囲比16を算出し、ネットワークのノード11位置が既知の場合に妨害影響範囲比16の算出結果を参照して判定処理を行う構成としても差し支えない。 In step S201, the determination unit 52 determines whether the position of the node 11 of the network 10 to be obstructed is known. If the position of the node 11 is known, the determination unit 52 advances the process to step S202. The processing in steps S202 to S205 is the same as steps S101 to S104 in the flowchart shown in FIG. If the position of the node 11 is unknown, the determination unit 52 advances the process to step S206. In the flowchart of FIG. 12, the interference influence range ratio 16 is calculated only when the position of the node 11 in the network is known. However, the disturbance influence range ratio 16 is determined regardless of whether the position of the node 11 in the network is known. The determination processing may be performed by referring to the calculation result of the interference influence range ratio 16 when the position of the node 11 of the network is known.
 ステップS206において、配置部53は、ネットワーク範囲5内のランダムな位置に妨害要素14rを配置する第2の配置方法によって、妨害要素14rの配置を決定する。配置する妨害要素14rの数は、発信元ノード11aと宛先ノード11zとの間の接続を失わせるために必要な数とする。 In step S206, the placement unit 53 determines the placement of the disturbing element 14r by the second placement method in which the disturbing element 14r is placed at a random position in the network range 5. The number of disturbing elements 14r to be arranged is the number necessary to lose the connection between the source node 11a and the destination node 11z.
 ステップS207において、出力設定部54は、妨害影響範囲比16が境界値17より大きくなるように妨害要素14の妨害出力を設定する。つまり、出力設定部54は、妨害影響範囲比16=境界値17とし、このときの妨害影響範囲比16に対応する妨害影響範囲15を与える妨害出力を計算し、これを超える妨害出力を設定する。 In step S207, the output setting unit 54 sets the disturbance output of the disturbance element 14 so that the disturbance influence range ratio 16 is larger than the boundary value 17. In other words, the output setting unit 54 sets the interference output range that gives the interference influence range 15 corresponding to the interference influence range ratio 16 at this time, and sets the interference output exceeding the interference influence range ratio 16 = the boundary value 17. .
 以上のように、本実施の形態によれば、妨害要素14の出力を設定する出力設定部54をさらに備え、判定部52は、ネットワーク10のノード11位置が既知か否かを判定し、配置部53は、ネットワーク10のノード11位置が未知の場合には、第2の配置方法によって妨害要素14の配置を決定し、既知の場合には実施の形態1に記載した処理によって妨害要素14の配置を決定し、出力設定部54は、ネットワーク10のノード11位置が未知の場合には、妨害要素14の出力として妨害影響範囲比16が境界値17より大きくなる値を設定するように構成した。
 妨害対象となるネットワーク10のノード11が移動する場合には、ネットワーク10のノード11の位置を継続的に把握することは難しいが、本実施の形態によれば、このような場合でも適応的に配置方法を切り替え、効果的に妨害を行うことが可能となる。つまり、妨害対象のネットワーク10のノード11位置が既知の場合、未知の場合のそれぞれにおいて、付与の条件下で効率的な妨害を行うことが可能となる。例えば、ノード11位置が不明なために妨害要素14をランダムに配置する場合であっても、妨害影響範囲比16が境界値17より大きくなるような妨害出力を設定することで、Most Complex Node 11mに妨害要素14を配置したときと同等の妨害効果を得ることができる。
As described above, according to the present embodiment, the output setting unit 54 that sets the output of the disturbing element 14 is further provided, and the determination unit 52 determines whether or not the position of the node 11 of the network 10 is known and arranged. When the position of the node 11 of the network 10 is unknown, the unit 53 determines the placement of the disturbing element 14 by the second placement method. When the position is known, the unit 53 determines the placement of the disturbing element 14 by the processing described in the first embodiment. The arrangement is determined, and the output setting unit 54 is configured to set a value at which the disturbance influence range ratio 16 is larger than the boundary value 17 as the output of the disturbance element 14 when the position of the node 11 of the network 10 is unknown. .
When the node 11 of the network 10 to be obstructed moves, it is difficult to keep track of the position of the node 11 of the network 10, but according to the present embodiment, it is adaptive even in such a case. It is possible to switch the arrangement method and effectively interfere. That is, in the case where the position of the node 11 of the network 10 to be disturbed is known and unknown, efficient interference can be performed under the given conditions. For example, even when the disturbing elements 14 are randomly arranged because the position of the node 11 is unknown, by setting a disturbing output such that the disturbing influence range ratio 16 is larger than the boundary value 17, the Most Complex Node 11m The same obstruction effect as that when the obstruction element 14 is arranged in the can be obtained.
実施の形態3.
 実施の形態1、2では、妨害影響範囲比16に応じて選択した配置方法によって妨害要素14の配置方法を決定したり、ネットワーク10のノード11位置が既知か否かに応じて、妨害要素14の妨害出力を設定したりした。これに対して、実施の形態3では、妨害要素14の妨害出力を最大にしたときの妨害影響範囲比16と境界値17との関係、およびノード11位置が既知か否かに応じて妨害要素14の配置を決定するとともに、妨害出力の値を設定する点が実施の形態1、2と異なる。実施の形態3では、異なる点を中心に説明する。
Embodiment 3 FIG.
In the first and second embodiments, the arrangement method of the disturbance element 14 is determined by the arrangement method selected according to the disturbance influence range ratio 16, or the disturbance element 14 is determined depending on whether or not the position of the node 11 of the network 10 is known. Or set the jamming output. On the other hand, in the third embodiment, the disturbing element depends on the relationship between the disturbing influence range ratio 16 and the boundary value 17 when the disturbing output of the disturbing element 14 is maximized and the position of the node 11 is known. 14 is different from the first and second embodiments in that the arrangement of 14 is determined and the value of the interference output is set. In the third embodiment, the description will focus on the different points.
 この発明の実施の形態3における妨害配置装置50の構成は、図11に示した構成と同様である。
 算出部51は、妨害要素14の妨害影響範囲15とノード11の通信範囲13との比から妨害影響範囲比16を算出する。また、算出部51は、妨害要素14の妨害出力を最大にしたときの最大妨害影響範囲15maxとノード11の通信範囲13との比から最大妨害影響範囲比16maxを算出する。算出結果は判定部52へ渡される。
 判定部52は、まず、妨害対象のネットワーク10のノード11位置が既知か否かを判定し、その後、最大妨害影響範囲15maxが境界値17より大きいか否かを判定する。ノード11位置が既知、かつ、最大妨害影響範囲15maxが境界値17より大きい場合には、判定部52は、妨害要素14の妨害出力として、妨害影響範囲比16が境界値17より大きくなる値を設定するか否かを判定する。判定結果は、配置部53および出力設定部54へ渡される。
 配置部53は、判定部52の判定結果に基づいて妨害要素14の配置を決定する。
 出力設定部54は、判定部52の判定結果に基づいて妨害要素14の妨害出力を設定する。
The configuration of the disturbance placement device 50 according to Embodiment 3 of the present invention is the same as the configuration shown in FIG.
The calculation unit 51 calculates the interference influence range ratio 16 from the ratio between the interference influence range 15 of the interference element 14 and the communication range 13 of the node 11. Further, the calculation unit 51 calculates the maximum disturbance influence range ratio 16max from the ratio between the maximum disturbance influence range 15max when the disturbance output of the disturbance element 14 is maximized and the communication range 13 of the node 11. The calculation result is passed to the determination unit 52.
The determination unit 52 first determines whether or not the position of the node 11 of the network 10 to be disturbed is known, and then determines whether or not the maximum interference influence range 15max is greater than the boundary value 17. When the position of the node 11 is known and the maximum disturbance influence range 15max is larger than the boundary value 17, the determination unit 52 sets a value at which the disturbance influence range ratio 16 is larger than the boundary value 17 as the disturbance output of the disturbance element 14. Determine whether to set. The determination result is passed to the placement unit 53 and the output setting unit 54.
The placement unit 53 determines the placement of the disturbing elements 14 based on the determination result of the determination unit 52.
The output setting unit 54 sets the disturbance output of the disturbance element 14 based on the determination result of the determination unit 52.
 図13は、この発明の実施の形態3における妨害配置装置50の動作を示すフローチャートである。 FIG. 13 is a flowchart showing the operation of the disturbance placement device 50 according to Embodiment 3 of the present invention.
 ステップS301において、算出部51は、最大妨害影響範囲比16max=最大妨害影響範囲15max/通信範囲13を算出する。最大妨害影響範囲15maxは、妨害要素14の妨害出力を出力可能な最大の値としたときの妨害影響範囲15、つまり、妨害影響範囲15の最大値である。 In step S301, the calculation unit 51 calculates the maximum disturbance influence range ratio 16max = maximum disturbance influence range 15max / communication range 13. The maximum disturbance influence range 15max is the disturbance influence range 15 when the disturbance output of the disturbance element 14 is the maximum value that can be output, that is, the maximum value of the disturbance influence range 15.
 ステップS302において、判定部52は、妨害対象のネットワーク10のノード11位置が既知か否かを判定する。ノード11位置が既知の場合には、判定部52は、ステップS303へ処理を進める。ノード11位置が未知の場合には、判定部52は、ステップS304へ処理を進める。 In step S302, the determination unit 52 determines whether or not the position of the node 11 of the network 10 to be disturbed is known. If the position of the node 11 is known, the determination unit 52 advances the process to step S303. If the position of the node 11 is unknown, the determination unit 52 advances the process to step S304.
 ステップS303において、判定部52は、最大妨害影響範囲比16maxが境界値17より大きいか否かを判定する。
 妨害影響範囲比16が境界値17より小さい場合には、判定部52は、ステップS310のポリシー1へ処理を進める。
 妨害影響範囲比16が境界値17より大きい場合には、判定部52は、ステップS305へ処理を進める。
In step S303, the determination unit 52 determines whether or not the maximum disturbance influence range ratio 16max is greater than the boundary value 17.
If the interference influence range ratio 16 is smaller than the boundary value 17, the determination unit 52 advances the process to policy 1 in step S310.
If the interference influence range ratio 16 is greater than the boundary value 17, the determination unit 52 advances the process to step S305.
 ステップS305において、判定部52は、妨害要素14cの妨害出力として、妨害影響範囲比16が境界値17より大きくなる値を設定するか否かを判定する。
 妨害影響範囲比16が境界値17より小さくなる値を設定する場合には、判定部52は、ステップS320のポリシー2へ処理を進める。
 妨害影響範囲比16が境界値17より大きくなる値を設定する場合には、判定部52は、ステップS330のポリシー3へ処理を進める。
In step S305, the determination unit 52 determines whether or not to set a value at which the disturbance influence range ratio 16 is larger than the boundary value 17 as the disturbance output of the disturbance element 14c.
When the interference influence range ratio 16 is set to a value smaller than the boundary value 17, the determination unit 52 advances the process to policy 2 in step S320.
When setting a value at which the interference influence range ratio 16 is larger than the boundary value 17, the determination unit 52 advances the process to policy 3 in step S330.
 ステップS304において、判定部52は、最大妨害影響範囲比16maxが境界値17より大きいか否かを判定する。
 妨害影響範囲比16が境界値17より大きくなる値を設定する場合には、判定部52は、ステップS340のポリシー4へ処理を進める。
 妨害影響範囲比16が境界値17より小さくなる値を設定する場合には、判定部52は、ステップS350のポリシー5へ処理を進める。
In step S304, the determination unit 52 determines whether or not the maximum disturbance influence range ratio 16max is larger than the boundary value 17.
When the value that makes the interference influence range ratio 16 larger than the boundary value 17 is set, the determination unit 52 advances the process to the policy 4 in step S340.
When the interference influence range ratio 16 is set to a value smaller than the boundary value 17, the determination unit 52 advances the process to policy 5 in step S350.
 図14は、ステップS310のポリシー1の動作を示すフローチャートである。
 ステップS311において、配置部53は、Most Complex Node 11mに妨害要素14cを配置する。
 ステップS312において、出力設定部54は、妨害影響範囲比16=最大妨害影響範囲比16maxとなる妨害出力を設定する。つまり、妨害要素14cの妨害出力として、最大値を選択する。
FIG. 14 is a flowchart showing the operation of policy 1 in step S310.
In step S311, the arrangement unit 53 arranges the disturbing element 14c at the Most Complex Node 11m.
In step S312, the output setting unit 54 sets a disturbance output such that the disturbance influence range ratio 16 = the maximum disturbance influence range ratio 16max. That is, the maximum value is selected as the disturbance output of the disturbance element 14c.
 図15は、ステップS320のポリシー2の動作を示すフローチャートである。
 ステップS321において、配置部53は、Most Complex Node 11mに妨害要素14cを配置する。
 ステップS322において、出力設定部54は、妨害影響範囲比16<境界値17となる妨害出力を設定する。つまり、出力設定部54は、妨害影響範囲比16=境界値17とし、この妨害影響範囲比16に対応する妨害影響範囲15を与える妨害出力を計算し、これより小さい妨害出力を設定する。
FIG. 15 is a flowchart showing the operation of policy 2 in step S320.
In step S321, the arrangement unit 53 arranges the disturbing element 14c at the Most Complex Node 11m.
In step S322, the output setting unit 54 sets an interference output that satisfies the interference influence range ratio 16 <boundary value 17. In other words, the output setting unit 54 sets the interference output range which is set to be the interference influence range ratio 16 = the boundary value 17, calculates the interference output which gives the interference influence range 15 corresponding to the interference influence range ratio 16, and sets a smaller interference output.
 図16は、ステップS330のポリシー3の動作を示すフローチャートである。
 ステップS331において、配置部53は、Most Complex Node 11m、またはランダムに妨害要素14を配置する。この場合は、Most Complex Node 11m、ランダムのどちらに配置してもよい。
 ステップS332において、出力設定部54は、境界値17≦妨害影響範囲比16≦最大妨害影響範囲比16maxとなる妨害出力を設定する。つまり、出力設定部54は、妨害影響範囲比16=境界値17とし、この妨害影響範囲比16に対応する妨害影響範囲15を与える妨害出力を計算し、これより大きい妨害出力を設定する。
FIG. 16 is a flowchart showing the operation of policy 3 in step S330.
In step S331, the arrangement unit 53 arranges the Most Complex Node 11m or the disturbing elements 14 at random. In this case, it may be arranged in either Most Complex Node 11m or random.
In step S332, the output setting unit 54 sets a disturbance output that satisfies the boundary value 17 ≦ the disturbance influence range ratio 16 ≦ the maximum disturbance influence range ratio 16max. In other words, the output setting unit 54 sets the interference output range which gives the interference influence range 15 corresponding to the interference influence range ratio 16 by setting the interference influence range ratio 16 = the boundary value 17 and sets a larger interference output.
 図17は、ステップS340のポリシー4の動作を示すフローチャートである。
 ステップS341において、配置部53は、ネットワーク範囲5の中のランダムな位置に妨害要素14rを配置する。
 ステップS342において、出力設定部54は、境界値17≦妨害影響範囲比16≦最大妨害影響範囲比16maxとなる妨害出力を設定する。つまり、出力設定部54は、妨害影響範囲比16=境界値17とし、この妨害影響範囲比16に対応する妨害影響範囲15を与える妨害出力を計算し、これより大きい妨害出力を設定する。
FIG. 17 is a flowchart showing the operation of policy 4 in step S340.
In step S341, the placement unit 53 places the disturbing element 14r at a random position in the network range 5.
In step S342, the output setting unit 54 sets a disturbance output that satisfies the boundary value 17 ≦ the disturbance influence range ratio 16 ≦ the maximum disturbance influence range ratio 16max. In other words, the output setting unit 54 sets the interference output range which gives the interference influence range 15 corresponding to the interference influence range ratio 16 by setting the interference influence range ratio 16 = the boundary value 17 and sets a larger interference output.
 図18は、ステップS350のポリシー5の動作を示すフローチャートである。
 ステップS351において、配置部53は、ネットワーク範囲5の中のランダムな位置に妨害要素14rを配置する。
 ステップS152において、出力設定部54は、妨害影響範囲比16=最大妨害影響範囲比16maxとなる妨害出力を設定する。つまり、妨害要素14cの妨害出力として、最大値を選択する。
FIG. 18 is a flowchart showing the operation of policy 5 in step S350.
In step S351, the placement unit 53 places the disturbing element 14r at a random position in the network range 5.
In step S152, the output setting unit 54 sets a disturbance output such that the disturbance influence range ratio 16 = the maximum disturbance influence range ratio 16max. That is, the maximum value is selected as the disturbance output of the disturbance element 14c.
 ポリシー1からポリシー5の処理について、さらに詳しく説明する。
 この実施の形態によれば、妨害要素14は、ポリシー1からポリシー5に基づいて、Most Complex Node 11m、またはネットワーク範囲5内のランダムな位置に配置される。妨害対象となるネットワーク10のノード11位置が既知であれば(ステップS302-Yes)、Most Complex Node 11mを求めることができるので、Most Complex Node 11mに妨害要素14を配置することが可能になる。そのうえで、最大妨害影響範囲比16maxが境界値17より小さい場合は(ステップS303-No)、妨害効果が最大となるように、妨害影響範囲比16が最大妨害影響範囲比16maxとなる妨害出力が設定される(ポリシー1)。
The processing from policy 1 to policy 5 will be described in more detail.
According to this embodiment, the disturbing elements 14 are arranged at random locations within the Most Complex Node 11m or the network range 5 based on the policies 1 to 5. If the position of the node 11 of the network 10 to be obstructed is known (step S302—Yes), the Most Complex Node 11m can be obtained, so that the obstruction element 14 can be arranged at the Most Complex Node 11m. In addition, when the maximum disturbance influence range ratio 16max is smaller than the boundary value 17 (step S303-No), a disturbance output in which the disturbance influence range ratio 16 becomes the maximum disturbance influence range ratio 16max is set so that the disturbance effect is maximized. (Policy 1).
 ネットワーク10のノード11位置が既知、かつ、最大妨害影響範囲比16maxが境界値17より大きい場合は(ステップS303-Yes)、妨害影響範囲比16が境界値17より大きくなる妨害出力を設定するか、境界値17より小さくなる妨害出力を設定するかによって以降の処理が異なる。
 妨害影響範囲比16が境界値17より小さくなる妨害出力を設定する場合には(ステップS305-No)、妨害要素14はMost Complex Node 11mに配置され、妨害出力は妨害影響範囲比16が境界値17より小さくなる値に設定される(ポリシー2)。
 妨害影響範囲比16が境界値17より大きくなる妨害出力を設定する場合には(ステップS305-Yes)、妨害要素14の配置は、Most Complex Node 11mまたはランダムのどちらでもよく、妨害出力は妨害影響範囲比16が境界値17より大きくなる値に設定される(ポリシー3)。
If the position of the node 11 in the network 10 is known and the maximum disturbance influence range ratio 16max is larger than the boundary value 17 (Yes in step S303), whether or not to set a disturbance output in which the disturbance influence range ratio 16 is larger than the boundary value 17 The subsequent processing differs depending on whether an interference output smaller than the boundary value 17 is set.
When a disturbance output in which the disturbance influence range ratio 16 is smaller than the boundary value 17 is set (step S305-No), the disturbance element 14 is arranged in the Most Complex Node 11m, and the disturbance output has a disturbance influence range ratio 16 of the boundary value. A value smaller than 17 is set (policy 2).
When the disturbance output in which the disturbance influence range ratio 16 is larger than the boundary value 17 is set (step S305-Yes), the arrangement of the disturbance element 14 may be either the Most Complex Node 11m or random, and the disturbance output is the disturbance influence. The range ratio 16 is set to a value larger than the boundary value 17 (policy 3).
 妨害対象のネットワーク10のノード11位置が未知の場合は(ステップS302-No)、Most Complex Node 11mが不明なため、妨害要素14はランダムに配置される。そのうえで、最大妨害影響範囲比16maxが境界値17より大きい場合には(ステップS304-Yes)、妨害出力は、妨害影響範囲比16が境界値17より大きく、かつ最大妨害影響範囲比16maxより小さくなる値に設定される(ポリシー4)。 When the position of the node 11 of the network 10 to be obstructed is unknown (step S302-No), since the Most Complex Node 11m is unknown, the obstruction elements 14 are randomly arranged. In addition, when the maximum disturbance influence range ratio 16max is larger than the boundary value 17 (step S304-Yes), the disturbance output is larger than the boundary value 17 and smaller than the maximum disturbance influence range ratio 16max. Set to value (policy 4).
 最大妨害影響範囲比16maxが境界値17より小さい場合には(ステップS304-No)、妨害効果が最大となるように、妨害出力は、妨害影響範囲比16が最大妨害影響範囲比16maxとなる値に設定される(ポリシー5)。 When the maximum disturbance influence range ratio 16max is smaller than the boundary value 17 (step S304-No), the disturbance output is a value at which the disturbance influence range ratio 16 becomes the maximum disturbance influence range ratio 16max so that the disturbance effect is maximized. (Policy 5).
 図7に示すように、妨害影響範囲比16が境界値17より大きい場合は、妨害要素14をMost Complex Node 11mに配置しても、ランダムに配置しても、ネットワーク10のコネクティビティへの影響に余り差がないので、ポリシー3とポリシー4の妨害効果はほぼ同じとなる。 As shown in FIG. 7, when the disturbance influence range ratio 16 is larger than the boundary value 17, whether the disturbance element 14 is arranged in the Most Complex Node 11 m or randomly, it affects the connectivity of the network 10. Since there is not much difference, the obstruction effects of policy 3 and policy 4 are almost the same.
 以上のように、本実施の形態によれば、妨害要素14の影響によってノード11の通信が不可能となる範囲を示す妨害影響範囲15と、ノード11の通信が可能な範囲を示す通信範囲13との比から妨害影響範囲比16を算出するとともに、妨害要素14の出力を最大にしたときの妨害影響範囲比16を最大妨害影響範囲比16maxとして算出する算出部51と、最大妨害影響範囲比16maxが境界値17より大きいか否かを判定するとともに、妨害要素14の出力として妨害影響範囲比16が境界値17より大きくなる値を設定するか否かを判定する判定部52と、最大妨害影響範囲比16maxが境界値17より小さい場合には、接続されたリンクの数が最も多いノードに妨害要素14を配置する第1の配置方法によって妨害要素14の配置を決定し、最大妨害影響範囲比16maxが境界値17より大きい場合には、妨害影響範囲比16に基づいて妨害要素14の配置を決定する配置部53と、最大妨害影響範囲比16maxが境界値17より小さい場合には、妨害要素14の出力として最大値を設定し、最大妨害影響範囲比16maxが境界値17より大きい場合には、妨害影響範囲比16に基づいて妨害要素14の出力を設定する出力設定部54とを備え、複数のノード11がリンク12を介して接続されたネットワーク10において、接続を失わせる妨害要素14の配置を決定するように構成した。このように、最大妨害影響範囲比16maxと境界値17との関係から、最も接続数の多いノード11mに妨害要素14を配置する場合と同様の妨害効果を得られる条件を判断し、妨害出力を調整するため、効果的に妨害を行うことができる。 As described above, according to the present embodiment, the interference influence range 15 indicating the range in which the communication of the node 11 is impossible due to the influence of the interference element 14 and the communication range 13 indicating the range in which the node 11 can communicate are included. And the calculation unit 51 for calculating the disturbance influence range ratio 16 when the output of the disturbance element 14 is maximized as the maximum disturbance influence range ratio 16max, and the maximum disturbance influence range ratio A determination unit 52 that determines whether or not 16max is larger than the boundary value 17 and determines whether or not to set a value that causes the disturbance influence range ratio 16 to be larger than the boundary value 17 as an output of the disturbance element 14; When the influence range ratio 16max is smaller than the boundary value 17, the disturbing elements are arranged by the first arrangement method in which the disturbing elements 14 are arranged at the node having the largest number of connected links. 4 is determined, and when the maximum disturbance influence range ratio 16max is larger than the boundary value 17, the arrangement unit 53 that determines the arrangement of the disturbance elements 14 based on the disturbance influence range ratio 16, and the maximum disturbance influence range ratio 16max Is smaller than the boundary value 17, the maximum value is set as the output of the disturbing element 14. When the maximum disturbing influence range ratio 16 max is larger than the boundary value 17, the disturbing element 14 is output based on the disturbing influence range ratio 16. And an output setting unit 54 for setting the output, and in the network 10 in which the plurality of nodes 11 are connected via the link 12, the arrangement of the disturbing elements 14 that cause the connection to be lost is determined. In this way, from the relationship between the maximum disturbance influence range ratio 16max and the boundary value 17, the conditions for obtaining the same disturbance effect as in the case where the disturbance element 14 is arranged at the node 11m with the largest number of connections are determined, and the disturbance output is determined. Because it adjusts, it can effectively interfere.
 また、本実施の形態によれば、判定部52は、ネットワーク10のノード11位置が既知か否かを判定し、配置部53は、ネットワーク10のノード11位置が未知の場合には、妨害要素14をランダムな位置に配置する第2の配置方法によって妨害要素14の配置を決定し、既知の場合には、最大妨害影響範囲比16maxと境界値17との関係から妨害要素14の配置を決定し、出力設定部54は、ネットワーク10のノード11位置が未知、かつ、最大妨害影響範囲比16maxが境界値17より大きい場合には、妨害要素14の出力として妨害影響範囲比16が境界値17より大きくなる値を設定し、ネットワーク10のノード11位置が未知、かつ、最大妨害影響範囲比16maxが境界値17より小さい場合には、妨害要素14の出力として最大値を設定するように構成した。妨害影響範囲比16が境界値17より小さい場合には、Most Complex Node 11mに妨害要素14を配置した方が妨害の効率がよいが、境界値17より大きい場合には、ランダムでもMost Complex Node 11mでも同様の妨害効果を得られる。よって、妨害対象のネットワーク10のノード11位置が未知でMost Complex Node 11mが求められない場合であっても、妨害影響範囲比16が境界値17より大きくなるように妨害出力を調整することで、効果的に妨害を行うことができる。 Further, according to the present embodiment, the determination unit 52 determines whether or not the position of the node 11 in the network 10 is known, and the placement unit 53 determines that the disturbing element is present when the position of the node 11 in the network 10 is unknown. The arrangement of the disturbing elements 14 is determined by the second arrangement method of arranging 14 at random positions, and if known, the arrangement of the disturbing elements 14 is determined from the relationship between the maximum disturbing influence range ratio 16max and the boundary value 17. When the node 11 position of the network 10 is unknown and the maximum disturbance influence range ratio 16max is larger than the boundary value 17, the output setting unit 54 sets the disturbance influence range ratio 16 as the boundary value 17 as the output of the disturbance element 14. When a larger value is set, the position of the node 11 of the network 10 is unknown, and the maximum disturbance influence range ratio 16max is smaller than the boundary value 17, the disturbance element 1 And configured to set the maximum value as an output. When the interference influence range ratio 16 is smaller than the boundary value 17, it is better to arrange the interference element 14 in the Most Complex Node 11m, but when it is larger than the boundary value 17, even if it is random, the Most Complex Node 11m But you can get the same disturbing effect. Therefore, even if the position of the node 11 of the network 10 to be disturbed is unknown and the Most Complex Node 11m cannot be obtained, by adjusting the interference output so that the disturbance influence range ratio 16 is larger than the boundary value 17, Interference can be performed effectively.
 5 ネットワーク範囲、10 ネットワーク、11 ノード、11a 発信元ノード、11z 宛先ノード、11m Most Complex Node、12 リンク、13 通信範囲、14 妨害要素、14c 妨害要素、14r 妨害要素、15 妨害影響範囲、15c 妨害影響範囲、15r 妨害影響範囲、15max 最大妨害影響範囲、16 妨害影響範囲比、16max 最大妨害影響範囲比、17 境界値、40 妨害配置装置、41 算出部、42 判定部、43 配置部、50 妨害配置装置、51 算出部、52 判定部、53 配置部、54 出力設定部、101 プロセッサ、102 メモリ、103 インタフェース。 5 network range, 10 network, 11 node, 11a source node, 11z destination node, 11m Most Complex Node, 12 link, 13 communication range, 14 obstruction element, 14c obstruction element, 14r obstruction element, 15 obstruction influence area, 15c obstruction Influence range, 15r jamming influence range, 15max max jamming influence range, 16 jamming influence range ratio, 16max max jamming influence range ratio, 17 boundary value, 40 jamming placement device, 41 calculation unit, 42 judgment unit, 43 placement unit, 50 jamming Placement device, 51 calculation unit, 52 determination unit, 53 placement unit, 54 output setting unit, 101 processor, 102 memory, 103 interface.

Claims (7)

  1.  複数のノードがリンクを介して接続されたネットワークにおいて、接続を失わせる妨害要素の配置を決定する妨害配置装置であって、
     前記妨害要素の影響によって前記ノードの通信が不可能となる範囲を示す妨害影響範囲と、前記ノードの通信が可能な範囲を示す通信範囲との比から妨害影響範囲比を算出する算出部と、
     前記妨害影響範囲比に基づいて前記妨害要素の配置を決定する配置部と
    を備える妨害配置装置。
    In a network in which a plurality of nodes are connected via a link, a disturbing arrangement device for determining an arrangement of disturbing elements that cause a connection to be lost,
    A calculation unit that calculates a disturbance influence range ratio from a ratio of a disturbance influence range indicating a range in which communication of the node is impossible due to the influence of the disturbance element and a communication range indicating a range in which the node can communicate;
    An interference arrangement device comprising: an arrangement unit that determines an arrangement of the disturbance elements based on the disturbance influence range ratio.
  2.  前記妨害配置装置は、さらに、
     前記妨害影響範囲比が境界値より大きいか否かを判定する判定部を備え、
     前記配置部は、
      前記妨害影響範囲比が前記境界値より小さい場合には、接続されたリンクの数が最も多いノードに前記妨害要素を配置する第1の配置方法によって前記妨害要素の配置を決定し、
      前記妨害影響範囲比が前記境界値より大きい場合には、前記第1の配置方法、または前記妨害要素をランダムな位置に配置する第2の配置方法のいずれか一方によって前記妨害要素の配置を決定することを特徴とする請求項1に記載の妨害配置装置。
    The jamming arrangement device further comprises:
    A determination unit for determining whether the interference influence range ratio is larger than a boundary value;
    The placement section is
    When the disturbance influence range ratio is smaller than the boundary value, the arrangement of the disturbance element is determined by a first arrangement method of arranging the disturbance element at a node having the largest number of connected links;
    When the disturbance influence range ratio is larger than the boundary value, the arrangement of the disturbance elements is determined by either the first arrangement method or the second arrangement method of arranging the disturbance elements at random positions. The obstruction placement device according to claim 1, wherein:
  3.  前記判定部は、前記妨害影響範囲比と、前記ネットワークの接続を失わせるために必要な前記妨害要素の数との関係において、前記第1の配置方法および前記第2の配置方法によって配置される前記妨害要素の数に差がない領域と差がある領域との境界となる前記妨害影響範囲比を前記境界値とすることを特徴とする請求項2に記載の妨害配置装置。 The determination unit is arranged by the first arrangement method and the second arrangement method in a relationship between the disturbance influence range ratio and the number of disturbance elements necessary for losing the network connection. The disturbance arrangement device according to claim 2, wherein the disturbance influence range ratio that becomes a boundary between a region where there is no difference in the number of disturbance elements and a region where there is a difference is used as the boundary value.
  4.  前記妨害配置装置は、さらに、
     前記妨害要素の出力を設定する出力設定部を備え、
     前記判定部は、前記ネットワークのノード位置が既知か否かを判定し、
     前記配置部は、前記ネットワークのノード位置が未知の場合には、前記第2の配置方法によって前記妨害要素の配置を決定し、既知の場合には請求項2または請求項3に記載した処理によって前記妨害要素の配置を決定し、
     前記出力設定部は、前記ネットワークのノード位置が未知の場合には、前記妨害要素の出力として前記妨害影響範囲比が前記境界値より大きくなる値を設定することを特徴とする妨害配置装置。
    The jamming arrangement device further comprises:
    An output setting unit for setting the output of the disturbing element;
    The determination unit determines whether or not a node position of the network is known;
    The placement unit determines the placement of the disturbing element by the second placement method when the node position of the network is unknown, and by the processing according to claim 2 or 3 when known. Determining the arrangement of the disturbing elements;
    When the node position of the network is unknown, the output setting unit sets a value at which the disturbance influence range ratio is larger than the boundary value as an output of the disturbance element.
  5.  複数のノードがリンクを介して接続されたネットワークにおいて、接続を失わせる妨害要素の配置を決定する妨害配置装置であって、
     前記妨害要素の影響によって前記ノードの通信が不可能となる範囲を示す妨害影響範囲と、前記ノードの通信が可能な範囲を示す通信範囲との比から妨害影響範囲比を算出するとともに、前記妨害要素の出力を最大にしたときの前記妨害影響範囲比を最大妨害影響範囲比として算出する算出部と、
     前記最大妨害影響範囲比が境界値より大きいか否かを判定するとともに、前記妨害要素の出力として前記妨害影響範囲比が境界値より大きくなる値を設定するか否かを判定する判定部と、
     前記最大妨害影響範囲比が前記境界値より小さい場合には、接続されたリンクの数が最も多いノードに前記妨害要素を配置する第1の配置方法によって前記妨害要素の配置を決定し、前記最大妨害影響範囲比が前記境界値より大きい場合には、前記妨害影響範囲比に基づいて前記妨害要素の配置を決定する配置部と、
     前記最大妨害影響範囲比が前記境界値より小さい場合には、前記妨害要素の出力として最大値を設定し、前記最大妨害影響範囲比が前記境界値より大きい場合には、前記妨害影響範囲比に基づいて前記妨害要素の出力を設定する出力設定部と
    を備える妨害配置装置。
    In a network in which a plurality of nodes are connected via a link, a disturbing arrangement device for determining an arrangement of disturbing elements that cause a connection to be lost,
    A disturbance influence range ratio is calculated from a ratio of a disturbance influence range indicating a range in which communication of the node is impossible due to the influence of the disturbance element and a communication range indicating a range in which communication of the node is possible. A calculation unit that calculates the disturbance influence range ratio when the output of the element is maximized as a maximum disturbance influence range ratio;
    A determination unit that determines whether or not the maximum disturbance influence range ratio is larger than a boundary value, and determines whether or not to set a value that makes the disturbance influence range ratio larger than the boundary value as an output of the disturbance element;
    When the maximum disturbance influence range ratio is smaller than the boundary value, the arrangement of the disturbance element is determined by a first arrangement method in which the disturbance element is arranged at a node having the largest number of connected links, and the maximum When the disturbance influence range ratio is larger than the boundary value, an arrangement unit that determines the arrangement of the disturbance elements based on the disturbance influence range ratio;
    When the maximum disturbance influence range ratio is smaller than the boundary value, a maximum value is set as the output of the disturbance element, and when the maximum disturbance influence range ratio is larger than the boundary value, the disturbance influence range ratio is set. An interference arrangement device comprising: an output setting unit configured to set an output of the interference element based on the output.
  6.  前記判定部は、
      前記ネットワークのノード位置が既知か否かを判定し、
     前記配置部は、前記ネットワークのノード位置が未知の場合には、前記妨害要素をランダムな位置に配置する第2の配置方法によって前記妨害要素の配置を決定し、既知の場合には、請求項5に記載の処理によって前記妨害要素の配置を決定し、
     前記出力設定部は、
      前記ネットワークのノード位置が未知、かつ、前記最大妨害影響範囲比が前記境界値より大きい場合には、前記妨害要素の出力として前記妨害影響範囲比が前記境界値より大きくなる値を設定し、
      前記ネットワークのノード位置が未知、かつ、前記最大妨害影響範囲比が前記境界値より小さい場合には、前記妨害要素の出力として最大値を設定することを特徴とする妨害配置装置。
    The determination unit
    Determine whether the node location of the network is known;
    When the node position of the network is unknown, the placement unit determines the placement of the disturbing element by a second placement method of placing the disturbing element at a random position. Determining the arrangement of the disturbing elements by the process according to claim 5;
    The output setting unit
    When the node position of the network is unknown and the maximum disturbance influence range ratio is larger than the boundary value, a value that makes the disturbance influence range ratio larger than the boundary value is set as an output of the disturbance element,
    An interference placement apparatus, wherein when a node position of the network is unknown and the maximum interference influence range ratio is smaller than the boundary value, a maximum value is set as an output of the interference element.
  7.  複数のノードがリンクを介して接続されたネットワークにおいて、接続を失わせる妨害要素の配置を決定する妨害配置方法であって、
     前記妨害要素の影響によって前記ノードの通信が不可能となる範囲を示す妨害影響範囲と、前記ノードの通信が可能な範囲を示す通信範囲との比から妨害影響範囲比を算出する算出ステップと、
     前記妨害影響範囲比に基づいて前記妨害要素の配置を決定する配置ステップと
    を備える妨害配置方法。
    In a network in which a plurality of nodes are connected via a link, a disturbing arrangement method for determining an arrangement of disturbing elements that cause a connection to be lost, comprising:
    A calculation step of calculating a disturbance influence range ratio from a ratio between a disturbance influence range indicating a range in which communication of the node is impossible due to the influence of the disturbance element and a communication range indicating a range in which the node can communicate;
    An arrangement step of determining an arrangement of the disturbing elements based on the interference influence range ratio.
PCT/JP2016/077484 2016-09-16 2016-09-16 Disturbance arrangement device and disturbance arrangement method WO2018051490A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/077484 WO2018051490A1 (en) 2016-09-16 2016-09-16 Disturbance arrangement device and disturbance arrangement method
JP2018516595A JP6351920B1 (en) 2016-09-16 2016-09-16 Jamming arrangement device and jamming arrangement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077484 WO2018051490A1 (en) 2016-09-16 2016-09-16 Disturbance arrangement device and disturbance arrangement method

Publications (1)

Publication Number Publication Date
WO2018051490A1 true WO2018051490A1 (en) 2018-03-22

Family

ID=61619488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077484 WO2018051490A1 (en) 2016-09-16 2016-09-16 Disturbance arrangement device and disturbance arrangement method

Country Status (2)

Country Link
JP (1) JP6351920B1 (en)
WO (1) WO2018051490A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156750A (en) * 1999-11-25 2001-06-08 Mitsubishi Electric Corp Jamming system and method
JP2013197631A (en) * 2012-03-15 2013-09-30 Fujitsu Ltd Communication jamming device and communication jamming method
WO2016013140A1 (en) * 2014-07-22 2016-01-28 日本電気株式会社 Radio wave interference system, radio wave interference apparatus, and radio wave interference method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4877989B2 (en) * 2007-03-05 2012-02-15 三菱電機株式会社 Network design method, network design support apparatus, and network design support program
US8559908B2 (en) * 2008-06-16 2013-10-15 Qualcomm Incorporated Jamming graph and its application in network resource assignment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156750A (en) * 1999-11-25 2001-06-08 Mitsubishi Electric Corp Jamming system and method
JP2013197631A (en) * 2012-03-15 2013-09-30 Fujitsu Ltd Communication jamming device and communication jamming method
WO2016013140A1 (en) * 2014-07-22 2016-01-28 日本電気株式会社 Radio wave interference system, radio wave interference apparatus, and radio wave interference method

Also Published As

Publication number Publication date
JPWO2018051490A1 (en) 2018-09-13
JP6351920B1 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
US10412738B2 (en) Narrow beam mesh network
US9491764B1 (en) Mesh network adjustment
Dai et al. An overview of using directional antennas in wireless networks
US8125917B2 (en) Optimisation of transmission parameters of access points in wireless networks
Liu et al. Localizing multiple jamming attackers in wireless networks
KR20220106768A (en) Adaptation of Interference Perception of Antenna Radiation Patterns
Vilzmann et al. A survey on MAC protocols for ad hoc networks with directional antennas
Venugopal et al. Location based performance model for indoor mmWave wearable communication
JP6949993B2 (en) Dynamic relay allocation for jamming mitigation in wireless networks
Qin et al. Accelerated coverage optimization with particle swarm in the quotient space characterizing antenna azimuths of cellular networks
Malon et al. Optimization of the MANET topology in urban area using redundant relay points
Bhunia et al. Distributed adaptive beam nulling to survive against jamming in 3d uav mesh networks
JP2023533001A (en) Coexistence between radar-capable user equipment and other user equipment
JP6351920B1 (en) Jamming arrangement device and jamming arrangement method
US8848598B2 (en) Method of analyzing interference between data communication terminals
ES2923653T3 (en) Communication network access point using wave-forming device and wireless communication method
Dham Link establishment in ad hoc networks using smart antennas
Vadlamani et al. A bi-level programming model for the wireless network jamming placement problem
Hriba et al. The impact of correlated blocking on millimeter-wave personal networks
US10750547B2 (en) Beamforming based on combined beams
CN110392406A (en) Method, equipment and computer-readable medium for switching in communication system
WO2022232265A1 (en) Apparatus, system, and method for adaptive beamforming in wireless networks
Ulukan et al. Angular MAC: a framework for directional antennas in wireless mesh networks
EP3320736B1 (en) Apparatus and method for full-duplex communication
Zarbouti et al. 4G multicell systems with in-band full duplex relays: Using beamforming to lower self-interference and/or transmitted powers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018516595

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916271

Country of ref document: EP

Kind code of ref document: A1