WO2019211906A1 - Wireless node, wireless link establishing method, and wireless link establishing program - Google Patents

Wireless node, wireless link establishing method, and wireless link establishing program Download PDF

Info

Publication number
WO2019211906A1
WO2019211906A1 PCT/JP2018/017526 JP2018017526W WO2019211906A1 WO 2019211906 A1 WO2019211906 A1 WO 2019211906A1 JP 2018017526 W JP2018017526 W JP 2018017526W WO 2019211906 A1 WO2019211906 A1 WO 2019211906A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
signal
wireless
response
transmission
Prior art date
Application number
PCT/JP2018/017526
Other languages
French (fr)
Japanese (ja)
Inventor
古川 浩
Original Assignee
PicoCELA株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PicoCELA株式会社 filed Critical PicoCELA株式会社
Priority to PCT/JP2018/017526 priority Critical patent/WO2019211906A1/en
Publication of WO2019211906A1 publication Critical patent/WO2019211906A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to a wireless node, a wireless link establishment method, and a wireless link establishment program.
  • a base station that provides a radio access line for user equipment and a backbone network (sometimes referred to as a core network) are connected by a wired backhaul (BH) network.
  • BH wired backhaul
  • a plurality of wireless nodes for example, base stations or access points
  • wireless multi-hop A system or network is under consideration.
  • the BH network which is one of the mobile communication infrastructures, wireless by multi-hop, it is possible to eliminate the need for laying a wired cable and to reduce the laying cost required for the introduction of the mobile communication system.
  • a network having a tree structure having a specific wireless node among a plurality of wireless nodes at the apex is considered.
  • a network having a tree structure it is considered that a wireless link with a mesh-like link up is constructed, and a wireless link having a tree structure is selected as a transmission path from the wireless link with the mesh-like link up.
  • the IBSS mode is considered to use the IBSS mode as a method for constructing a meshed link-up wireless link.
  • some wireless nodes do not support the IBSS mode, and a mesh-like link-up wireless link may not be established.
  • One of the objects of the present invention is to construct a mesh link even for a wireless node that does not support the IBSS mode.
  • the wireless node is one of a plurality of wireless nodes, and when the first association request signal for the first beacon signal is received after transmitting the first beacon signal, A transmission unit that transmits a first response signal to a transmission source of the first association request signal; and a second association request transmitted to the transmission source of the second beacon signal in response to reception of the second beacon signal; Radio between the receiving unit that receives the second response signal for the association request, the transmission source of the first beacon signal, and the transmission source of the first association request signal in response to the transmission of the first response signal Storing link information, and receiving the second response signal in response to receiving the second response signal. Comprising a source of the Activation request, the transmission source of the second beacon signal, and a management unit for managing information of the radio link between the.
  • the wireless link establishment method is configured such that, after transmitting the first beacon signal, when the first association request signal for the first beacon signal is received, the transmission source of the first association request signal is first A response signal is transmitted, a second association request is transmitted to the transmission source of the second beacon signal in response to the reception of the second beacon signal, and then a second response signal for the second association request is received; In response to the transmission of the response signal, information on the radio link between the transmission source of the first beacon signal and the transmission source of the first association request signal is managed, and in response to the reception of the second response signal , The source of the second association request and the transmission of the second beacon signal To management source and the information of the wireless link between the.
  • the wireless link establishment program is configured such that, when a first association request signal for the first beacon signal is received after the first beacon signal is transmitted to the processor, the transmission source of the first association request signal Transmitting a first response signal to the second beacon signal in response to receiving the second beacon signal, and then receiving a second response signal for the second association request after transmitting the second association request to the transmission source of the second beacon signal; In response to the transmission of the first response signal, the wireless link information between the transmission source of the first beacon signal and the transmission source of the first association request signal is managed, and the reception of the second response signal Depending on the source of the second association request, and It manages the source of the 2 beacon signal, information of the radio link between, to execute the process.
  • a mesh link can be established even for a wireless node that does not support the IBSS mode.
  • FIG. 5 is a block diagram illustrating a functional configuration example of a control unit illustrated in FIG. 4. It is a flowchart which shows an example of the link setup procedure between the nodes which concern on 1st Embodiment.
  • FIG. 7 is a diagram illustrating an example in which a mesh-like wireless link is linked up between nodes by the link setup procedure illustrated in FIG.
  • FIG. 8 is a diagram illustrating an example of peripheral node information managed in each of the nodes illustrated in FIG. 7. It is a figure which shows an example of the tree path
  • 10 is a flowchart for explaining an operation example of the CN when transmitting a data packet in the tree path constructed by the tree path control illustrated in FIG. 9.
  • 10 is a flowchart for explaining an operation example of an SN when a data packet is transmitted in the tree path constructed by the tree path control illustrated in FIG. 9.
  • FIG. 16 It is a figure explaining an example of the setup procedure of the mesh link between nodes using the combination of AP (Access point) mode and STA (Station) mode based on the modification of 1st Embodiment. It is a figure which shows the setup procedure of the mesh link illustrated in FIG. 16 together with the protocol stack of each node. It is a block diagram which shows the functional structural example of the control part which concerns on 2nd Embodiment. It is a flowchart which shows an example of the link setup procedure of the node which concerns on 2nd Embodiment. It is a flowchart which shows an example of the link setup procedure of the node which concerns on 2nd Embodiment.
  • FIG. 1 is a block diagram illustrating a configuration example of a wireless communication system according to the first embodiment.
  • the wireless communication system 1 illustrated in FIG. 1 includes a plurality of nodes 3 exemplarily.
  • 15 nodes 3 indicated by node numbers # 0 to # 14 are illustrated.
  • the number of nodes 3 may be 2 or more and less than 14, or 16 or more.
  • Each node 3 is an example of a wireless device capable of wireless communication. Therefore, each of the nodes 3 may be referred to as a “wireless node 3”.
  • a communication protocol based on (or based on) a wireless LAN (Local Area Network) related standard such as IEEE802.11b / g / a / n / ac / ad / ay may be applied.
  • Each node 3 forms an area where wireless communication is possible.
  • the “area where wireless communication is possible” may be referred to as “wireless communication area”, “wireless area”, “communication area”, “service area”, “coverage area”, “cover area”, or the like.
  • the wireless communication area formed by the node 3 based on or based on the wireless LAN related standard may be regarded as corresponding to a “cell” which is a name in cellular communication.
  • the wireless communication area formed by each node 3 may be regarded as corresponding to a “femto cell” classified as a “small cell”.
  • Each node 3 can wirelessly communicate with another node 3 when it is located in the service area of the other node 3.
  • the plurality of nodes 3 form a wireless backhaul (BH) network 9 that relays communication between the backbone network 5 and the terminal device 7 by radio, for example.
  • the “wireless BH network” may be referred to as a “BH network” by omitting “wireless”.
  • BH network may be referred to as “relay network”.
  • the individual nodes 3 that are entities of the BH network 9 may be referred to as “relay nodes”.
  • the backbone network 5 is illustratively a large-scale communication network such as the Internet.
  • the “backbone network” may be referred to as a “core network”, a “global network”, or the like.
  • a path or section in which a radio signal is transmitted in the BH network 9 is mutually connected with a “wireless BH communication path”, “wireless BH transmission path”, “wireless BH line”, “wireless BH connection”, or “wireless BH channel”. May be read as: In these terms, “wireless” may be omitted, and “BH” may be read as “relay”.
  • a section in which a wireless signal is transmitted between the terminal device 7 and the BH network 9 may be referred to as a “wireless access line” or a “wireless access channel”.
  • wireless may be omitted.
  • signal may be replaced with a term of a unit in which a signal is divided in time, such as “frame” or “packet”.
  • Different frequencies may be assigned to the wireless BH line and the wireless access line.
  • a frequency (channel) in the 5 GHz band (for example, 5.15 to 5.85 GHz) may be assigned to the BH line.
  • a frequency (channel) in the 2.4 GHz band (for example, 2.412 to 2.472 GHz) may be assigned to the access line. As long as the frequency is different from the frequency allocated to the BH line, a frequency in the 5 GHz band may be allocated to the access line.
  • the 5 GHz band includes, for example, at least one of a 5.2 GHz band (W52: 5150-5250 MHz), a 5.3 GHz band (W53: 5250-5350 MHz), and a 5.6 GHz band (W56: 5470-5725 MHz). May be included.
  • the number of channels that can be used in W52 is four channels of 36 ch, 40 ch, 44 ch, and 48 ch.
  • the number of channels available in W53 is 4 channels of 52ch, 56ch, 60ch and 64ch.
  • the number of channels that can be used in W56 is 11 channels of 100 ch, 104 ch, 108 ch, 112 ch, 116 ch, 120 ch, 124 ch, 128 ch, 132 ch, 136 ch, and 140 ch.
  • FIG. 1 illustrates a mode in which two nodes # 0 and # 8 are connected to the backbone network 5 by wire.
  • a LAN cable or an optical fiber cable may be applied for the wired connection.
  • the node # 0 and the node # 8 wired to the backbone network 5 may be referred to as “core nodes (CN)”.
  • the individual nodes 3 excluding CN # 0 and # 8 may be referred to as “slave nodes (SN)”.
  • SN slave nodes
  • nodes # 1 to # 7 and # 9 to # 14 are all SNs.
  • CN3 is an example of a “first wireless node”
  • each of SN3 is an example of a “second wireless node”.
  • # 0 to # 14 attached to each node 3 are examples of information used to identify each node 3 (hereinafter, may be abbreviated as “node identification information”).
  • the node identification information may be information that can uniquely identify each node 3 in the same BH network 9, and may be, for example, a node number, a device identifier, or address information.
  • a non-limiting example of the address information is a MAC (Media Access Control) address.
  • the BH network 9 may have one or more tree structures (may be referred to as “tree topology”) having one CN 3 (# 0 or # 8) as a root node.
  • tree topology may be referred to as “tree topology”
  • CN # 0 a first tree topology with CN # 0 as a root node
  • CN # 8 a second tree topology with CN # 8 as a root node
  • a “tree topology” may be constructed for each CN3.
  • One or more “tree topologies” constructed in the BH network 9 may be referred to as “tree clusters” or “tree subclusters”.
  • the number of CNs 3 is not limited to two, but may be one or three or more.
  • SN3 having no child node may be referred to as a “leaf node”, and SN3 having a child node may be referred to as an “internal node”.
  • SNs # 2, # 3, # 6, # 7, # 10, # 11, # 13, and # 14 all correspond to “leaf nodes”.
  • SNs # 1, # 4, # 5, # 9, and # 12 all correspond to “internal nodes”.
  • the wireless BH line may include a “downlink” in the direction from the core node 3 to the leaf node 3 and an “uplink” in the direction from the leaf node 3 to the core node 3.
  • Downlink and uplink may be referred to as “downlink (DL)” and “uplink (UL)”, respectively, following the names in cellular communication.
  • the flow of signals (downlink signals) in the “downlink” may be referred to as “downstream”, and the flow of signals (uplink signals) in the “uplink” may be referred to as “upstream”.
  • Each of the “downstream signal” and the “upstream signal” may include a control signal and a data signal.
  • the “control signal” may include a signal not corresponding to the “data signal”.
  • the “child node” may be considered to correspond to a node (downstream node) connected by a wireless link downstream of a certain node when attention is paid to the “downlink”.
  • a node connected by a radio link upstream of a certain node may be referred to as a “parent node” or an “upstream node”.
  • attention is paid to “uplink” the relationship between “child node” (downstream node) and “parent node” (upstream node) is reversed.
  • core node When focusing on “downlink”, “core node” may be referred to as “start node” or “start node”, and “leaf node” may be referred to as “end node” or “edge node”. May be.
  • the “internal node” may be referred to as an “intermediate node” or a “relay node”.
  • the tree-structured route (tree topology) in the BH network 9 may be constructed based on, for example, a metric (hereinafter sometimes abbreviated as “route metric”) of a route from the CN 3 to a specific SN 3.
  • route metric a metric of a route from the CN 3 to a specific SN 3.
  • path quality index an index indicating the quality or performance of radio wave propagation in a wireless section from CN 3 to a specific SN 3 may be used.
  • the propagation quality index there is a reception power or reception intensity (for example, RSSI; Received Signal Strength Indicator), radio wave propagation loss, propagation delay, and the like of a radio signal.
  • reception power or reception intensity for example, RSSI; Received Signal Strength Indicator
  • radio wave propagation loss may be read as “path loss”.
  • the propagation quality index one or a combination of two or more selected from the above index candidates may be used.
  • an index related to the distance of the route such as the number of hops may not be used as the propagation quality index.
  • a signal for example, a control signal
  • CN3 transmitting a signal (for example, a control signal) from CN3 as a starting point, for each wireless section between the transmission node 3 and the receiving node 3 of the control signal, radio wave propagation loss in the wireless section is received at the receiving node 3. Can be sought.
  • a signal for example, a control signal
  • each of the receiving nodes 3 transmits the obtained radio wave propagation loss information included in the control signal, thereby transmitting the accumulated radio wave propagation loss information (in other words, cumulative) of the radio section in which the control signal has propagated. Value) can be transmitted between the nodes 3.
  • each node 3 calculates a path metric based on a cumulative radio wave propagation loss for each upstream node candidate that is a transmission source of the control signal, and the path metric indicates, for example, the minimum among the upstream node candidates. Choose one node 3. As a result, a tree-structured path with a minimum radio wave propagation loss is constructed.
  • the tree-structured route (hereinafter sometimes referred to as “tree route”) can be updated dynamically or adaptively by transmitting a control signal from CN3 as a starting point or irregularly.
  • tree path control processing or control relating to construction and update of the tree path
  • dynamic tree path control processing or control relating to construction and update of the tree path
  • adaptive tree path control processing or control relating to construction and update of the tree path
  • the downlink signal (for example, the data signal) is periodically intermittently from CN3 toward the downstream of the tree path (in other words, waiting for an intentional transmission waiting time). May be sent.
  • Such periodic intermittent transmission may be referred to as “IPT” (Interminent Periodic Transmission).
  • the transmission period (in other words, transmission interval or transmission frequency) of a downlink signal transmitted by CN 3 toward the downstream is changed according to the frequency reuse interval.
  • the frequency reuse interval represents the length (distance) of a section in which occurrence of inter-node interference is suppressed on the same route and the same frequency can be reused repeatedly.
  • the throughput observed in the leaf node can be made independent of the number of hops even if a single frequency is used in the tree topology. , It can be kept above a certain value.
  • the SN 3 transmits an uplink signal upstream according to a transmission cycle linked to a transmission cycle according to the frequency reuse interval of the downlink, thereby improving the throughput observed in the CN 3. Can do.
  • TDMA Time Division Multiple Access
  • TDD Time Division Duplex
  • the node 3 can be downsized and / or cost reduced.
  • different frequencies may be assigned to the downlink and uplink of the wireless BH line.
  • the frequency resource consumption in the BH network 9 is sufficient for two channels of the downlink and uplink.
  • a part of the downlink and / or uplink of the BH line may include a wired line.
  • the route metric of the wired section may be calculated by a predetermined value (for example, the minimum value) smaller than the propagation loss of the wireless section.
  • the terminal device 7 communicates with the backbone network 5 via the BH line by connecting to any one of the plurality of SNs 3 forming the BH network 9 by a wireless access line when located in the service area of any SN 3. .
  • the terminal device 7 may be connected to any of SN3 (in FIG. 1, as an example, SN # 14) by a wired line (wired IF).
  • the terminal device 7 may be a mobile terminal such as a mobile phone, a smartphone, or a tablet terminal.
  • wireless access lines examples include CDMA (Code Division Multiple Access), FDMA (Frequency Division Multiple Access), TDMA (Time Division Multiple Access), OFDMA (Orthogonal Frequency Division Multiple Access), and SC-FDMA (Single Any one of Carrier Frequency Division Multiple Access) may be applied.
  • OFDMA may be implemented by a wireless technology such as IEEE 802.11, IEEE 802.16, LTE (Long Term Evolution), LTE-Advanced, or the like.
  • MIMO Multiple Input Multiple Output
  • an antenna array having a plurality of antenna elements may be applied to all or part of the downlink and / or uplink in the wireless BH line and / or wireless access line.
  • beam forming using an antenna array may be performed in the downlink and / or uplink in any one or more sections between CN3 and SN3, between SN3 and SN3, and between SN3 and terminal device 7. Good.
  • transmission of a signal is interchanged with other terms such as “relay”, “forwarding”, “propagation”, “transmission”, “routing”, or “forwarding” of the signal. May be.
  • the “relay” of the signal may be read as “bridge” of the signal.
  • transmission of a signal may include the meaning of “flooding”, “broadcast”, “multicast”, or “unicast” of the signal.
  • connection of a line may be taken to mean a state where a wired and / or wireless communication link is “established” or “linked up”.
  • circuit may be interchanged with the terms “circuit”, “device”, “unit”, or “module”.
  • interface may be interchanged with the terms “adapter”, “board”, “card”, or “module”, “chip”.
  • terminal equipment refers to mobile station, mobile terminal, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access
  • terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, or client may be used interchangeably.
  • the node 3 and / or the terminal device 7 may be an IoT (Internet of Things) device.
  • IoT Internet of Things
  • various “things” can be equipped with a wireless communication function.
  • Various “things” equipped with a wireless communication function can communicate by connecting to the backbone network 5 via a wireless access line and / or a wireless BH line.
  • the IoT device may include a sensor device or meter (measuring instrument) having a wireless communication function.
  • a device having a sensing function and / or a monitoring function such as a monitoring camera and / or a fire alarm equipped with a sensor device and / or meter may correspond to the node 3 and / or the terminal device 7. Therefore, the BH network 9 may correspond to, for example, a sensor network and / or a monitoring network.
  • MTC Machine Type Communication
  • the IoT device may be referred to as an “MTC device”.
  • FIG. 2 shows an example of a connection form between the nodes 3 together with a protocol stack of each node 3.
  • FIG. 2 shows CN3 connected to the backbone network 5 via a wired line, and two SN3s connected to CN3 via a multi-hop connection via a wireless BH line.
  • the terminal device 7 can be connected to the SN # 5 through a wireless access line.
  • each of the nodes 3 includes, for example, a physical (PHY) layer (layer 1: L1), a MAC layer (layer 2: L2), a relay layer, and an upper layer higher than the layer 3 (L3).
  • a protocol stack composed of The upper layer may include, for example, a TCP / IP layer and / or an application layer.
  • TCP / IP is an abbreviation for “Transmission Control Protocol / Internet Protocol”.
  • the processing of the relay layer may include the processing related to “adaptive tree path control” and / or the processing (or control) related to “IPT”.
  • the relay layer process may be implemented by one or more selected from software, middleware, firmware, and hardware.
  • the physical layer of the node 3 provides, for example, one wired connection (wired port) and two wireless connections (wireless ports).
  • wired port For convenience, in FIG. PHY "port. One of the two wireless ports is for a BH line, and the other of the two wireless ports is for an access line. “Port” may be read as “interface (IF)”.
  • the MAC layer is divided into three parts so that the correspondence with the three PHY ports of the physical layer can be easily understood visually.
  • the MAC layer processing may be common to each PHY port.
  • the downlink signal received from the backbone network 5 at CN # 0 is transmitted to the CN # 0 wired port (L1), MAC layer (L2), and relay layer (L2). .5) is transmitted from the radio port for the BH line to the downstream BH line.
  • the downlink signal transmitted by CN # 0 to the BH line is received by the wireless port for the BH line in SN # 1, which is the next hop, and is transmitted to the BH line via the MAC layer and the relay layer of SN # 1. It is transmitted from the wireless port to the downstream BH line.
  • the downlink signal transmitted by SN # 1 to the downstream BH line is received by the wireless port for the BH line in SN # 5, which is the next hop, and is wireless for the access line via the MAC layer of SN # 5. It is transmitted from the port to the terminal device 7.
  • the downlink signal transmitted from the BH line to the access line may not pass through the relay layer.
  • the uplink signal is transmitted to the backbone network 5 from the terminal device 7 via SN # 5, SN # 1, and CN # 0 along the path opposite to the path of the downlink signal described above.
  • the node 3 includes, for example, a processor 31, a memory 32, a storage 33, an input / output (I / O) device 34, wireless IFs 35 and 36, a wired IF 37, a wired IF 39, and a bus 38. Good.
  • the hardware may be increased or decreased as appropriate.
  • addition or deletion of an arbitrary hardware block, division, integration in an arbitrary combination, addition or deletion of the bus 38, and the like may be performed as appropriate.
  • the wireless IF 35, the wireless IF 36, and the wired IF 37 (or the wired IF 39) may be regarded as corresponding to the two wireless ports (PHY ports) and one wired port illustrated in the protocol stack of FIG. .
  • the processor 31, the memory 32, the storage 33, the input / output device 34, the wireless IFs 35 and 36, and the wired IFs 37 and 39 are connected to the bus 38 and can communicate with each other, for example.
  • the number of buses 38 may be one or plural.
  • a plurality of processors 31 may be provided in the node 3. Further, the processing in the node 3 may be executed by one processor 31 or may be executed by a plurality of processors 31. In one or a plurality of processors 31, a plurality of processes may be executed simultaneously, in parallel, or sequentially, or may be executed by other methods.
  • the processor 31 may be a single core processor or a multi-core processor.
  • the processor 31 may be implemented using one or more chips.
  • the one or more functions of the node 3 are realized by, for example, reading predetermined software into hardware such as the processor 31 and the memory 32.
  • software may be interchanged with other terms such as “program”, “application”, “engine”, or “software module”.
  • the processor 31 reads and executes a program by controlling one or both of reading and writing of data stored in one or both of the memory 32 and the storage 33.
  • the program may be provided to the node 3 by communication via an electric communication line using at least one of the wireless IF 35, the wireless IF 36, and the wired IF 37, for example.
  • the program may be a program that causes a computer to execute all or part of the processing in the node 3.
  • One or more functions of the node 3 are realized according to the execution of the program code included in the program. All or a part of the program code may be stored in the memory 32 or the storage 33, or may be described as a part of the operating system (OS).
  • OS operating system
  • the program may include a program code that implements a functional block described later with reference to FIGS. 4 and 5, and a program code that executes any one or more of the flowcharts described later with reference to FIGS. 6 and 12 to 15. May be included.
  • a program including such a program code may be referred to as a “wireless routing control program” for convenience.
  • the processor 31 is an example of a processing unit, and controls the entire computer by operating an OS, for example.
  • the processor 31 may be configured using a central processing unit (CPU) including a peripheral device interface, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the processor 31 reads out one or both of a program and data from the storage 33 to the memory 32 and executes various processes.
  • the memory 32 is an example of a computer-readable recording medium, and may be configured using at least one of ROM, EPROM, EEPROM, RAM, SSD, and the like, for example.
  • ROM is an abbreviation for “Read Only Memory”
  • EPROM is an abbreviation for “Erasable Programmable ROM”.
  • EEPROM is an abbreviation of “Electrically Erasable Programmable ROM”
  • RAM is an abbreviation of “Random Access Memory”
  • SSD is an abbreviation of “Solid State Drive”.
  • the memory 32 may be called a register, a cache, a main memory, a work memory, or a main storage device.
  • the storage 33 is an example of a computer-readable recording medium, such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disk drive (HDD), a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, (Blu-ray (registered trademark) disk), smart card, flash memory (for example, card, stick, key drive), flexible disk, magnetic strip, and the like.
  • the storage 33 may be called an auxiliary storage device.
  • the above-described recording medium may be, for example, a database including one or both of the memory 32 and the storage 33, a server, and other suitable media.
  • the input / output (I / O) device 34 is an example of an input device that receives a signal input from the outside of the node 3 and an output device that outputs a signal from the node 3 to the outside.
  • Input devices may illustratively include one or more of a keyboard, mouse, microphone, switch, button, and sensor.
  • the output device may illustratively include one or more of a light emitting device such as a display, a speaker, and an LED (Light Emitting Diode).
  • the button may include, for example, a power button and / or a reset button.
  • the power button is operated for starting and shutting down the node 3, for example.
  • the reset (or reroute) button is operated, for example, to indicate an intentional reset and / or rebuild (or reroute) of the tree path.
  • the input / output device 34 may be configured separately for input and output. Further, the input / output device 34 may have a configuration in which input and output are integrated, such as a touch panel display.
  • the wireless IF 35 exemplarily transmits and receives a wireless signal on the access line with the terminal device 7.
  • the wireless IF 35 may include, for example, one or more antennas 350, a baseband (BB) signal processing circuit, a MAC processing circuit, an up converter, a down converter, and an amplifier (not shown).
  • BB baseband
  • MAC media access control
  • the BB signal processing circuit of the wireless IF 35 illustratively includes an encoding circuit and a modulation circuit for encoding and modulating a transmission signal, and a demodulation circuit and a decoding circuit for demodulating and decoding a reception signal. It's okay.
  • the wireless IF 36 performs transmission / reception of a wireless signal on a BH line with another SN 3 exemplarily.
  • the wireless IF 36 may include one or more antennas 360, a BB signal processing circuit, a MAC processing circuit, an up converter, a down converter, and an amplifier that are not shown.
  • the BB signal processing circuit of the wireless IF 36 includes, for example, an encoding circuit and a modulation circuit for encoding and modulating a transmission signal, and a demodulation circuit and a decoding circuit for demodulating and decoding a reception signal. It's okay.
  • the antenna 350 of the wireless IF 35 and the antenna 360 of the wireless IF 36 may be referred to as “access line antenna 350” and “BH line antenna 360”, respectively.
  • One or both of the access line antenna 350 and the BH line antenna 360 may be an omnidirectional omni antenna or an antenna array in which directivity can be controlled. Beam forming may be performed by an antenna array having a plurality of directional antennas.
  • the plurality of directional antennas may be arranged in different directions, for example. For example, six directional antennas may be arranged so as to be shifted by 60 degrees.
  • the communication quality for example, gain or power
  • the antenna used for link-up may be different from the antenna used for tree path communication after link-up.
  • the wired IF 37 exemplarily transmits / receives a wired signal to / from the backbone network 5 and / or the upstream node 3.
  • the wired IF 39 exemplarily transmits and receives a signal with a wire between the terminal device 7 and / or the downstream node 3.
  • a network interface conforming to the Ethernet (registered trademark) standard may be used for the wired IFs 37 and 39.
  • the wired IFs 37 and 39 may be provided at least in the CN3 and may not be provided in the SN3 (in other words, the SN3 may be optional). However, when a part of the BH line is wired, the wired IFs 37 and 39 may be used for the wired connection.
  • the node 3 may be configured to include hardware such as a microprocessor, a DSP, an ASIC, a PLD, and an FPGA.
  • the processor 31 may be implemented including at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD is an abbreviation for “Programmable Logic Device”
  • FPGA is an abbreviation for “Field Programmable Gate Array”.
  • FIG. 4 is a block diagram illustrating a functional configuration example of the node 3 according to the first embodiment
  • FIG. 5 is a block diagram illustrating a functional configuration example of the control unit illustrated in FIG. 4.
  • the node 3 when focusing on the functional configuration, has a wireless communication unit 301 for a wireless access line, a wireless communication unit 302 for a wireless BH line, a wired communication unit 303, a control unit 304, and The storage unit 305 may be provided.
  • the wireless communication unit 301 for the wireless access line is a functional block including the wireless IF 35 and the access line antenna 350 illustrated in FIG.
  • the wireless communication unit 302 for the wireless BH line is a functional block including the wireless IF 36 and the BH line antenna 360 illustrated in FIG.
  • the wired communication unit 303 is a functional block including the wired IFs 37 and 39 illustrated in FIG.
  • the storage unit 305 is a functional block including one or both of the memory 32 and the storage 33 illustrated in FIG.
  • the wireless communication unit 301 includes, for example, a transmission unit that transmits a control signal and / or a data signal addressed to the terminal device 7, and a reception unit that receives a control signal and / or a data signal transmitted by the terminal device 7. Good.
  • the wireless communication unit 302 transmits a control signal and / or a data signal to a BH line linked up with another node 3, and a control signal and / or a data signal from the linked up wireless link.
  • a receiving unit for receiving.
  • the wired communication unit 303 may include, for example, a transmission unit that transmits control signals and / or data signals to the backbone network 5 and a reception unit that receives control signals and / or data signals from the backbone network 5.
  • the control unit 304 comprehensively controls the operation of the node 3.
  • the control unit 304 gives a control signal to any one or more of the wireless communication unit 301, the wireless communication unit 302, and the wired communication unit 303, so that the wireless access line, the wireless BH line, and the wired line Control communication via any one or more.
  • the control unit 304 is implemented by, for example, the processor 31 illustrated in FIG. 3 reading a program stored in the storage unit 305 and executing the read program.
  • the storage unit 305 stores, for example, the above-described node identification information and a route metric described later. As will be described later, when the transmission power value of the transmission source node 3 is not included in the path construction packet, the transmission power value of the transmission source node 3 may be stored in the storage unit 305.
  • control unit 304 may include a scan processing unit 341, a node management unit 342, a tree path control unit 343, and an IPT control unit 344, for example.
  • the scan processing unit 341 scans and discovers the presence of another node 3 located around (near) the node 3 in response to the activation of the node 3, for example.
  • the scan may be a passive scan or an active scan. Taking the passive scan as an example, the scan processing unit 341 generates a beacon signal and transmits it to the surrounding area through the wireless communication unit 302.
  • the node 3 existing at a position where the beacon signal can be received is referred to as a “neighboring node 3” or a “neighboring node 3”.
  • the beacon signal includes information that explicitly or implicitly indicates an SSID (Service Set Identifier) or BSSID (Basic SSID), a beacon signal transmission period, and a usable channel (frequency). It's okay.
  • SSID Service Set Identifier
  • BSSID Basic SSID
  • a beacon signal transmission period a beacon signal transmission period
  • a usable channel frequency
  • BSS Basic Service Set
  • a probe request signal may be generated in the scan processing unit 341 and transmitted to the surrounding area through the wireless communication unit 302.
  • the probe request signal is used, for example, to prompt the peripheral node 3 to transmit a beacon signal.
  • An active scan may be performed when a beacon signal is not received within a certain time in a passive scan.
  • the node management unit 342 stores, in the storage unit 305, information on the peripheral node 3 discovered by the scan by the scan processing unit 341 (for example, node identification information and BSS related information).
  • information on the peripheral node 3 (hereinafter, sometimes referred to as “peripheral node information”) is stored in the storage unit 305, so that a plurality of nodes 3 are connected in the BH network 9 as will be described later.
  • a mesh link linked in a mesh shape is constructed by the wireless links.
  • “Mesh link is established” may mean that a plurality of available wireless links are established or linked up between nodes 3 located in an area where wireless communication is possible with each other. Good. Therefore, the peripheral node information may be regarded as indicating information on a radio link that can be used between the nodes 3. “Radio link information” may be abbreviated as “link information” for convenience.
  • the tree path control unit 343 controls the construction and update of the tree path on the mesh link by transmitting a path control packet on the mesh link.
  • a path control packet on the mesh link.
  • “Registering” a wireless link in the tree path may be regarded as “selecting”, “validating”, “activating”, or “enabling” the link information registered in the tree path. Excluding a registered wireless link from the tree path is considered as “deselecting”, “invalidating”, “deactivating”, or “disabling” the link information registered in the tree path. Also good.
  • the IPT control unit 344 controls the packet transmission timing by the wireless communication unit 302 for the BH line, for example, according to the transmission cycle corresponding to the frequency reuse interval.
  • the tree route control unit 343 may include, for example, a route control packet generation unit 3431, a route metric calculation unit 3432, and a tree route update unit 3433.
  • the route control packet generator 3431 generates a route control packet.
  • the route control packet is an example of a control signal that is generated in the CN 3 in the BH network 9 and propagates to each node 3 starting from the CN 3.
  • CN3 floods a control signal to each of the radio links linked up in CN3.
  • SN3 receives a control signal from any of the radio links linked up in SN3
  • SN3 floods the control signal to each of the radio links linked up in SN3.
  • the control signal transmitted from the CN 3 propagates or transmits the mesh link sequentially or sequentially.
  • the CN 3 waits for the event while maintaining the link-up state of the radio link until an event that triggers transmission of the control signal occurs.
  • the event will be described later with reference to FIG.
  • CN3 transmits a control signal using a radio link in which the link-up state is maintained.
  • SN3 waits for the arrival (reception) of the control signal while maintaining the link-up state of the wireless link with CN3 or other SN3. Then, when a control signal is received from the radio link in the link up state, the control signal is transmitted to another radio link in which the link up state is maintained.
  • CN3 and SN3 wait for the occurrence of an event and / or reception of a control signal (for example, a path construction packet) while maintaining the link-up state of the wireless link forming the mesh link even after the construction of the tree path. It's okay.
  • a control signal for example, a path construction packet
  • SN3 may add information to be transmitted to another SN3 to a control signal transmitted to another radio link in which the link-up state is maintained.
  • a non-limiting example of information added to the control signal is a route metric calculated by the route metric calculation unit 3432.
  • SN3 may exclude the wireless link that has received the control signal from the control signal transmission destination candidates. Thereby, it can suppress that a control signal is transmitted to a mesh link unnecessarily or redundantly.
  • the route control packet may include a route construction packet and a reset packet.
  • These packet types may be identified by, for example, the type value of the packet header.
  • the route construction packet is, for example, a packet transmitted when constructing or updating a tree route.
  • the route construction packet may include cumulatively the route metrics calculated in each of the nodes 3 through which the route construction packet has propagated.
  • the node 3 may transmit the path metric including the path metric from the core node to the node immediately before the self node.
  • the SN 3 that has received the path construction packet selects radio link information to be registered in the tree path from among the radio links that form a mesh link and can be used with the neighboring nodes 3 based on the cumulative path metric. .
  • the reset packet is, for example, a packet that is transmitted when CN 3 requests SN 3 to clear the tree path constructed in the mesh link.
  • the SN 3 that has received the reset packet cancels the selection of the information on the radio link selected for the tree path.
  • the route metric calculation unit 3432 calculates, for example, a propagation quality indicator of a radio link with the peripheral node 3 that is a transmission source of the received route construction packet, and the route metric included in the received route construction packet includes A new path metric is obtained by adding the calculation result.
  • RSSI Receiveived Signal Signal Strength Indicator
  • Rn n is an integer of 1 or more
  • RSSI sequential average series
  • An [dB] is expressed by the following equation (1).
  • equation (1) is merely an example, and the RSSI sequential average may be obtained using another equation.
  • the sequential average An represented by the equation (1) converges to the average value of the stochastic process as the value of “n” increases. If “n” represents, for example, the number of transmissions (or the number of receptions) of the route construction packet after the transmission (or reception) of the reset packet, the RSSI sequential average between the nodes 3 according to the increase in the number n. An converges to a constant value. Therefore, the tree path constructed by transmitting the path construction packet converges asymptotically to a stable path.
  • the route metric calculation unit 3432 uses, for example, the radio wave propagation loss (“path loss”) of the wireless link with the transmission source node 3 of the route construction packet using the RSSI sequential average An calculated by the equation (1).
  • path loss radio wave propagation loss
  • [DB] may be calculated by the following equation (2).
  • TXPower represents the transmission power of the source node 3 of the path construction packet.
  • the transmission power value of the transmission source node 3 may be stored in advance in, for example, the storage unit 305 as a known value in each node 3, or may be included in the path construction packet in the transmission source node 3.
  • the route metric calculation unit 3432 obtains a new route metric by adding the path loss calculated by Expression (2) to the cumulative route metric included in the received route construction packet.
  • the path metric represents the sum of the path loss of the radio link between CN3 and one or more SN3.
  • the route metric calculated every time the route construction packet is received is stored in the storage unit 305, for example.
  • the path metric stored in the storage unit 305 may be initialized to a maximum value, for example, by receiving a reset packet.
  • the tree route update unit 3433 sets the upstream wireless link corresponding to the new route metric in the peripheral node information as an effective tree route.
  • the route metric of one or more wireless links propagated by each of the route construction packets is calculated by the route metric calculation unit 3432 separately for different routes. Is done.
  • the tree path update unit 3433 selects a radio link corresponding to one of the different paths that received the path construction packet from the radio links linked up in the SN. Select the route to be used for transmission.
  • the tree path update unit 3433 selects, for example, a radio link (link information) with the upstream node 3 in the mesh link as a radio link registered in the tree path, or cancels the selection.
  • a route can be constructed or updated.
  • the tree path update unit 3433 is an example of a selection unit that selects one of the radio links linked up in SN3 as a tree path, and is also an example of a cancellation unit that cancels the selection.
  • each of the SNs 3 selects a radio link with the upstream node 3
  • one of the radio links that are linked up in the SN 3 (form a mesh link) is transmitted to the data signal. It may be understood that this corresponds to selecting a transmission path.
  • each of the SNs 3 selects a radio link between the upstream node 3 and at least a part of a plurality of radio links linked up between the plurality of nodes 3 to a specific node (eg, CN3). It may be understood that this corresponds to selecting an element (element or component) of a radio link set that forms a tree path having as a vertex.
  • each SN 3 selection and cancellation of a radio link (in other words, update of a radio link selected as a tree path) is performed according to a change in path metric calculated every time a path construction packet is received. Therefore, the update frequency of the tree path can be changed by changing the number of transmissions per unit time of the path construction packet by CN3.
  • the follow-up performance to the radio wave propagation environment change of the BH network 9 can be improved by increasing the number of times the route construction packet is transmitted by the CN 3 per unit time. it can.
  • the radio link with the downstream node 3 can be grasped by, for example, an acknowledgment (ACK) signal received from the downstream node 3 after the downstream path is established.
  • ACK acknowledgment
  • the downstream node 3 transmits (unicasts) the ACK signal to the parent node 3 that is the transmission source of the route construction packet.
  • the ACK signal to be unicast may include, for example, information on a radio link in a link-up state that is stored and managed in the downstream node 3 that is the transmission source of the ACK signal.
  • the parent node 3 can determine the downlink radio link to be selected and registered in the tree path by receiving the ACK signal from the downstream node 3.
  • FIG. 6 is a flowchart illustrating an example of a link setup procedure between the nodes 3 according to the first embodiment (in other words, a wireless BH line in the BH network 9).
  • each of the nodes 3 including the CN and the SN 3 is a node existing in the vicinity (hereinafter, may be referred to as a “peripheral node”) 3 in accordance with, for example, the IBSS mode. Is scanned (S11).
  • IBSS Independent Basic Service Set
  • the IBSS mode may be referred to as an ad hoc mode.
  • Startup of the node 3 may include power-on of the node 3 and restart by resetting the node 3.
  • each of the nodes 3 starts transmitting a beacon signal to the peripheral area in response to the activation.
  • the beacon signal is generated in the scan processing unit 341 of the control unit 304 and transmitted from the BH line antenna 360 (wireless communication unit 302).
  • each of the activated nodes 3 transmits a beacon signal alternately (for example, at a timing managed in a pseudo-random manner in the node 3). You can do it.
  • the node 3 that has received the beacon signal transmitted by the other node 3 stores the information included in the received beacon signal, for example, in the storage unit 305 (S12).
  • the transmission / reception of the beacon signal may be performed for each channel (in other words, an available channel) on which the node 3 operates.
  • the scan process (S11) may be referred to as “channel scan”. Note that the node 3 that has received the beacon signal may stop transmitting the beacon signal for the channel that has received the beacon signal.
  • Each node 3 stores the BSS related information included in the beacon signal that can be received from the other nodes 3, so that information on the peripheral nodes 3 that can communicate with each other by wireless links (hereinafter referred to as “peripheral node information”). Can manage).
  • each node 3 stores and manages the peripheral node information, for example, as shown in FIG. 7, an available radio link (which may be read as “channel”) is managed in each node 3. Thereby, the link setup of the wireless BH line is completed, and the mesh link is linked up in the BH network 9.
  • an available radio link which may be read as “channel”
  • FIG. 8 shows an example of peripheral node information managed in each of the nodes # 0 to # 7 illustrated in FIG.
  • node IDs # 1 to # 3 are stored and managed in node (CN) # 0, and CN # 0 can use radio links with SNs # 1 to # 3, respectively. Indicates that it is in a state.
  • node IDs # 0, # 2, # 4, and # 5 are stored and managed, and SN # 1 is stored in nodes # 0, # 2, # 4, and # 5, respectively. It indicates that the wireless link between and can be used.
  • FIG. 8 shows that node IDs # 0, # 1, # 3, # 5, and # 7 are stored and managed in SN # 2, and SN # 2 is stored in nodes # 0, # 1, # 3, It shows that the wireless link between # 5 and # 7 can be used.
  • node IDs # 0 and # 2 are stored and managed in SN # 3, and SN # 3 is in a state in which a radio link between nodes # 0 and # 2 can be used. It shows that.
  • (E) in FIG. 8 shows that node IDs # 1, # 5, and # 6 are stored and managed in SN # 4, and the wireless communication between SN # 4 and nodes # 1, # 5, and # 6 is performed. Indicates that the link is available.
  • FIG. 8 shows that node IDs # 1, # 2, # 4, # 6, and # 7 are stored and managed in SN # 5, and SN # 5 has nodes # 1, # 2, # 4, It shows that the wireless link between # 6 and # 7 can be used.
  • the node IDs # 4 and # 5 are stored and managed in the SN # 6, and the SN # 6 is in a state where the wireless links between the nodes # 4 and # 5 can be used. It shows that.
  • (H) of FIG. 8 is in a state where the node IDs # 2 and # 5 are stored and managed in the SN # 7, and the SN # 7 can use the radio links between the nodes # 2 and # 5, respectively. It shows that.
  • a mesh-like wireless link using the IBSS mode is formed (or constructed) between the nodes 3.
  • a mesh-like wireless link constructed using the IBSS mode as described above may be referred to as an IBSS mesh link.
  • FIG. 9 is a diagram illustrating an example of tree path control on the IBSS mesh link according to the first embodiment.
  • FIG. 9A in the IBSS mesh link illustrated in FIG. 7, a tree topology indicated by a thick solid line is represented by CN # 0, SN # 1, SN # 4, SN # 5, and SN # 6. An example constructed by tree path control is shown.
  • FIG. 9B in the IBSS mesh link illustrated in FIG. 7, the tree topology indicated by the thick solid line by CN # 0, SN # 1, SN # 5, and SN # 6 is changed by tree path control. An example to be constructed is shown.
  • FIG. 9 may be taken to show that the tree topology implemented at different times shows the tree topology changing over time between (A) and (B) on the IBSS mesh link. .
  • FIGS. 10 and 11 show examples of selecting link information in each of CN # 0 and SN # 1 to # 7 corresponding to each of the tree paths illustrated in FIG. 10 and 11, information indicated by hatching corresponds to the link information selected for the tree path.
  • the information shown in FIGS. 10 and 11A to 11H corresponds to the information illustrated in FIGS. 8A to 8H, respectively.
  • the link information indicated by hatching in FIGS. 10A, 10B, 10E, and 10F is the nodes # 0, #, respectively. It is constructed by being selected in 1, # 4, # 5 and # 6.
  • the link information indicated by hatching in FIGS. 11A, 11B, and 11F is the nodes # 0, # 1, and # 5, respectively. And # 6 are selected.
  • control unit 304 for example, the tree route update unit 3433 of the tree route control unit 343.
  • the link information selected by each node 3 based on the path metric is changed (or switched), thereby constructing and updating the tree path. Can be speeded up. In other words, it is possible to improve the follow-up performance with respect to the change of the tree path according to the time change of the path metric.
  • time change of route metric is caused by “time change of wireless environment” in the BH network 9, in other words, “time change of BH channel quality”. Therefore, in the “adaptive tree path control” of the present embodiment, it is possible to improve the follow-up performance with respect to the time change of the BH channel quality. Therefore, it is possible to suppress the occurrence of communication disconnection due to the change of the tree path in the wireless BH line, and it is easy to realize uninterrupted communication.
  • FIG. 12 is a flowchart illustrating an operation example of the CN 3 including tree path control on the IBSS mesh link according to the first embodiment.
  • the flowchart of FIG. 12 may be understood as being executed by the control unit 304 (for example, the tree path control unit 343) of the CN3.
  • the control unit 304 of the CN 3 monitors, for example, whether or not a specific event is detected (S31; NO).
  • the “specific event” may include, for example, that the CN 3 has been activated, that the reset button has been operated, and that a specific timing has arrived.
  • An example of “specific timing” is, for example, transmission timing set to transmit a route control packet regularly or irregularly.
  • the transmission cycle when the path control packet is periodically transmitted may be constant, and the tree path constructed in the present embodiment is asymptotically stable, so that it depends on the number of times the flowchart of FIG. 12 is executed. It may be changed. Further, for example, the predetermined time may be set to “specific timing” so that the tree path is updated according to a time zone such as a weekend or a nighttime and daytime in a day.
  • the control unit 304 of the CN 3 When a specific event is detected (S31; YES), the control unit 304 of the CN 3 generates a route control packet, and passes the route control packet to the peripheral SN 3 identified based on the peripheral node information through the wireless communication unit 302, for example. Is transmitted (broadcast) (S32).
  • the route construction packet is transmitted to the peripheral SN3.
  • the reset packet is transmitted to the peripheral SN3.
  • the control unit 304 After transmitting the route control packet, the control unit 304 monitors, for example, whether or not a predetermined time has passed (timeout) (S33). When the timeout is not detected (S33; NO), the control unit 304 may shift the process to S31.
  • timeout a predetermined time has passed
  • control unit 304 may start transmitting a data packet (S34).
  • the data packet is transmitted according to the IPT, as will be described later with reference to FIGS. 14 and 15, for example.
  • the CN 3 transmits (broadcasts) a route control packet to each of a plurality of wireless links that are linked up with the peripheral node 3, so that the route control packet is transmitted to each SN 3 that configures the BH network 9. Is propagated.
  • the BH network 9 in which the mesh link is linked up it is possible to speed up the construction and update of the tree path based on the path metric. Therefore, it is possible to improve the follow-up performance with respect to the change of the tree path according to the time change of the path metric.
  • FIG. 13 is a flowchart showing an operation example of SN3 including tree path control on the IBSS mesh link according to the first embodiment.
  • the flowchart of FIG. 13 may be understood as being executed by the control unit 304 (for example, the tree path control unit 343) of SN3.
  • SN3 monitors, for example, whether the wireless communication unit 302 receives a route control packet (S51; NO).
  • the SN3 control unit 304 When reception of a route control packet is detected (S51; YES), the SN3 control unit 304 confirms the type of the route control packet. For example, the control unit 304 confirms whether the received route control packet is a reset packet or a route construction packet (S52 and S54).
  • the initialization process may include the following process, for example. -Deselecting a link selected as a valid tree route in the peripheral node information-Initializing a stored route metric to an initial value (for example, maximum value)
  • the control unit 304 transmits (floods) the received reset packet to the peripheral SN 3 (S53a).
  • the reset packet may include an identifier (ID).
  • Each of the nodes 3 may store an ID included in the received reset packet.
  • the control unit 304 confirms whether or not the route control packet is a route construction packet (S54).
  • the control unit 304 refers to the peripheral node information (S55), and the propagation quality index (for example, radio wave propagation loss) of the link that has received the route construction packet. Is calculated (S56).
  • the control unit 304 calculates a path metric (S57). For example, the control unit 304 calculates the cumulative radio wave propagation loss as a new path metric by adding the calculated radio wave propagation loss and the propagation quality index included in the received path construction packet.
  • control unit 304 compares the new route metric with the old route metric stored before the new route metric is calculated, and determines whether or not the route metric needs to be updated (S58).
  • the control unit 304 determines to update the old route metric to the new route metric (S58; YES). In response to the determination, the control unit 304 selects an upstream wireless link corresponding to the new route metric in the peripheral node information as a valid tree route (update of the selected link; S59).
  • control unit 304 transmits (broadcasts) the route construction packet including the new route metric to the neighboring SN 3 identified in the neighboring node information (S60).
  • control unit 304 monitors whether or not a predetermined time has elapsed (timeout) (S61). When the timeout is not detected (S61; NO), the control unit 304 may shift the process to the reception monitoring process (S51) of the route control packet. When a timeout is detected (S61; YES), the control unit 304 may start a data packet transmission process according to, for example, IPT (S62).
  • the control unit 304 may move the process to a route control packet reception monitoring process (S51).
  • control unit 304 moves the process to the route control packet reception monitoring process (S51). You may migrate.
  • the SN 3 selects one of a plurality of radio links linked up with the peripheral node 3 based on the path metric in response to reception of the path construction packet.
  • IPT in the tree path Next, with reference to FIG. 14 and FIG. 15, an operation example of the node 3 when a data packet is transmitted by IPT in the tree path constructed by the tree path control described above will be described.
  • the flowchart illustrated in FIG. 14 may be regarded as being executed in the process S34 of CN3 illustrated in FIG. 12, for example.
  • the flowchart illustrated in FIG. 15 may be considered to be executed in, for example, the process S62 of SN3 illustrated in FIG. 14 and 15 are executed by the control unit 304 (for example, the IPT control unit 344) of CN3 and SN3, respectively.
  • the CN 3 monitors, for example, whether there is a downlink packet in the transmission buffer (S81).
  • CN3 When there is a downstream packet in the transmission buffer (S81; YES), CN3 sets the timer TM to an initial value (for example, 0) (S82), and the packet is counted while the count value of the timer TM is less than the transmission cycle Ps. Waiting for transmission (S83; NO). On the other hand, when there is no downstream packet in the transmission buffer (S81; NO), the CN 3 may end the process related to packet transmission.
  • the timer TM may be provided in the IPT control unit 344, for example.
  • the transmission buffer is an example of a memory that temporarily stores a packet to be transmitted to the wireless BH line, and may be provided in the wireless communication unit 302 for the wireless BH line or may be embodied in the storage unit 305. . In any case, it is sufficient that the transmission buffer can be accessed by the control unit 304 and packets can be written and read by the access. These matters also apply to SN3.
  • the downlink packet in the transmission buffer is transmitted from the wireless communication unit 302 (S84).
  • the CN 3 may continuously transmit the plurality of downlink packets.
  • the CN 3 determines whether or not the transmission of the downlink packet is successful (S85). Whether or not the transmission of the packet is successful can be detected by whether or not an acknowledgment (ACK) signal is received within a predetermined time from the receiving party of the packet. In CN3, reception of an ACK signal may be determined as an event that indirectly (implicitly) indicates that the frequency reuse interval is satisfied.
  • ACK acknowledgment
  • the CN 3 determines that the transmission cycle Ps is not appropriate (for example, too short) and increases the transmission cycle Ps by, for example, ⁇ Pup. (S86).
  • detection of no reception of an ACK signal may include detection of reception of a negative acknowledgment (NACK) signal.
  • NACK negative acknowledgment
  • the CN 3 determines whether or not a specified time for which packet transmission is allowed has elapsed (whether or not a transmission timeout has been detected) (S87). When the transmission timeout is not detected (S87; NO), the CN 3 may retransmit the downlink packet that has not received the ACK signal in the process S84.
  • the CN 3 discards the packet that could not receive the ACK signal, returns the process to S81, and monitors the presence or absence of the downlink packet.
  • the CN 3 determines that the transmission cycle Ps may be shortened, and decreases the transmission cycle Ps by, for example, ⁇ Pdown (S88). Thereafter, the CN 3 returns the process to S81 and monitors the presence / absence of a downlink packet.
  • the transmission cycle Ps according to the appropriate frequency reuse interval is set in the CN 3 by dynamically adjusting the transmission cycle Ps according to whether or not the transmission of the downlink packet is successful.
  • the transmission cycle Ps is variable, but the transmission cycle Ps may be a fixed value. In other words, it is optional that the transmission period Ps is variable.
  • the processes indicated by S86 and S88 may be omitted.
  • the value of the transmission cycle Ps may be set to “0”.
  • the SN 3 monitors, for example, whether a route control packet is received (S90). Note that the flowchart of FIG. 15 may be common to packet transmission processing to the downlink and uplink.
  • SN3 When the data packet is received (S91; YES), SN3 transmits the received data packet from the wireless communication unit 302 (S92). When a plurality of data packets are received, the SN 3 may continuously transmit the received plurality of data packets.
  • the SN 3 determines whether or not the data packet has been successfully transmitted (S93). If reception of the ACK signal for the data packet is not detected within a certain time (S93; NO), SN3, for example, whether or not a specified time allowed to transmit the data packet has passed (whether or not a transmission timeout has been detected). (S94). When the transmission timeout is not detected (S94; NO), the SN 3 may retransmit the data packet that has not received the ACK signal in the process S92.
  • SN3 discards the data packet that has not received the ACK signal, returns the process to S91, and waits (monitors) reception of the data packet to be relayed. .
  • the SN 3 If the transmission of the data packet is successful (S93; YES), the SN 3 returns the process to S91 and waits for (monitors) reception of the data packet to be relayed.
  • the SN 3 may end the process. Alternatively, when the reception of the data packet is not detected in the process S91, the SN 3 may return the process to the process S90.
  • TDMA adaptive time division multiple access
  • TDD time division duplex
  • a mesh link equivalent to the IBSS mesh link illustrated in FIG. 7 is constructed by combining the AP (Access Point) mode and the STA (Station) mode. Is possible.
  • FIG. 16 shows an example in which a mesh link is constructed between nodes 3 using a combination of AP mode and STA mode (may be referred to as “hybrid”).
  • the combination of the AP mode and the STA mode is referred to as “pseudo IBSS mode” for convenience.
  • FIG. 16A to 16C exemplarily show three nodes A, B, and C.
  • FIG. 17 shows an example of a radio link setup procedure using the pseudo IBSS mode between the nodes A and B and between the nodes A and C together with the protocol stacks of the nodes A to C. .
  • the node A transmits a beacon signal to the surroundings according to the operation of the AP (mode) in response to the activation.
  • Each of the peripheral nodes B and C that have received the beacon signal transmits an association request to the node A according to the operation of the STA (mode).
  • the node A When the node A permits the association requests received from the peripheral nodes B and C, the node A transmits an association response to the peripheral nodes B and C according to the operation of the AP. As a result, multipoint (nodes B and C) radio links starting from node A (AP) are linked up.
  • the node B transmits a beacon signal to the surroundings according to the operation of the AP (mode) in response to the activation.
  • Each of the peripheral nodes A and C that have received the beacon signal transmits an association request to the node B according to the operation of the STA (mode).
  • multi-point (nodes A and C) radio links starting from node B are linked up.
  • node C transmits a beacon signal to the surroundings according to the operation of the AP (mode) in response to activation.
  • Each of the peripheral nodes A and B that have received the beacon signal transmits an association request to the node C according to the operation of the STA (mode).
  • the multipoint (nodes A and B) radio links starting from the node C (AP) are linked up.
  • each of the nodes A, B and C operates in the AP mode as a transmission source of the beacon signal, while when receiving a beacon signal transmission source from other peripheral nodes, Operates in STA mode in relation to peripheral nodes.
  • FIG. 17 schematically shows the above operation example together with the protocol stacks of the nodes A, B, and C, respectively.
  • the physical layer (L1) and the MAC layer (L2) in the same node 3 are visualized separately in the AP mode and the STA mode.
  • L1 and L2 may be common to the AP mode and the STA mode.
  • L1 and L2 may be realized by the same hardware, and AP mode and STA mode are applied to the same channel by using a multiplexing method such as time division, SDM (Space Division Division Multiplexing), or code division.
  • the wireless communication related to and may be multiplexed.
  • Processing or control in a hybrid mode (pseudo IBSS mode) of the AP mode and the STA mode may be included in the layer 2.5, for example.
  • Node A operates in the STA mode in relation to Node B by receiving a beacon signal whose source is Node B (AP mode). Therefore, the association procedure illustrated in FIG. 16B is executed between the node A (STA mode) and the node B (AP mode).
  • the node A operates in the STA mode in relation to the node C by receiving the beacon signal whose transmission source is the node C (AP mode). For this reason, the association procedure illustrated in FIG. 16C is executed between the node A (STA mode) and the node C (AP mode).
  • association procedure illustrated in FIG. 16 is executed between other nodes according to the AP mode and the STA mode.
  • the radio links are linked up between the nodes A and B, the nodes B and C, and the nodes C and A, respectively.
  • the plurality of radio links may be aggregated (or bonded) to one radio band.
  • FIG. 18 is a block diagram illustrating a functional configuration example of the control unit 304 according to the second embodiment.
  • the same functional blocks as the functional blocks illustrated in FIG. 18 are identical functional blocks as the functional blocks illustrated in FIG. 18
  • the scan processing unit 341 of the control unit 304 includes, for example, a beacon transmission unit 3411, a request reception unit 3412, a response transmission unit 3413, a beacon reception unit 3414, a request transmission unit 3415, and a response reception unit. 3416 may be provided.
  • the beacon transmission unit 3411, the request reception unit 3412, and the response transmission unit 3413 operate according to the AP mode, for example.
  • the request transmission unit 3415 and the response reception unit 3416 operate, for example, according to the STA mode.
  • beacon transmission unit 3411 the request reception unit 3412, and the response transmission unit 3413 that operate according to the AP mode will be described.
  • the beacon transmission unit 3411 generates a beacon signal and transmits it to the surrounding area through the wireless communication unit 302. Of the peripheral nodes 3 existing in the peripheral area, the peripheral node 3 that has received the beacon signal transmits an association request to the node 3 that has transmitted the beacon signal.
  • the request reception unit 3412 receives the association request transmitted from the peripheral node 3.
  • the response transmission unit 3413 transmits an association response to the peripheral node 3 that has transmitted the association request. Thereby, the association between the nodes 3 is completed.
  • the node management unit 342 stores (registers) the peripheral node information of the peripheral node 3 that has transmitted the association request in the storage unit 305. In other words, the node management unit 342 receives the beacon signal transmitted by the beacon transmission unit 3411 and registers the peripheral node 3 that transmitted the association request in the storage unit 305 as node information that has been linked up.
  • the peripheral node information may be included in an association request transmitted by the peripheral node 3, for example.
  • the node management unit 342 stores the peripheral node information included in the association request received by the request reception unit 3412, for example, in the storage unit 305.
  • beacon receiving unit 3414 the request transmitting unit 3415, and the response receiving unit 3416 that operate according to the STA mode will be described.
  • the beacon receiving unit 3414 receives a beacon signal transmitted from the peripheral node 3.
  • the request transmission unit 3415 transmits an association request to the peripheral node 3 that has transmitted the beacon signal.
  • the request transmission unit 3415 transmits an association request to the peripheral node 3 that has transmitted the beacon signal so that the peripheral node 3 that has transmitted the beacon signal is registered as a link-up node.
  • the peripheral node 3 that has received the association request (the peripheral node 3 that has transmitted the beacon signal) transmits an association response to the node 3 that has transmitted the association request.
  • the response receiving unit 3416 receives the association response transmitted from the peripheral node 3. Thereby, the association between the nodes 3 is completed.
  • a plurality of beacon receiving units 3414, request transmitting units 3415, and response receiving units 3416 may exist so as to cope with a plurality of beacon signals transmitted from a plurality of peripheral nodes 3.
  • a plurality of STA mode blocks surrounded by a dotted line in FIG. 18 may exist.
  • each of the beacon receiving unit 3414, the request transmitting unit 3415, and the response receiving unit 3416 may be one, and each unit may deal with a plurality of beacon signals transmitted from a plurality of peripheral nodes 3. That is, as in the STA mode surrounded by the dotted line in FIG. 18, each unit may cope with a plurality of beacon signals transmitted from a plurality of peripheral nodes 3.
  • the node management unit 342 stores the peripheral node information of the peripheral node 3 Store in 305.
  • the node management unit 342 stores the peripheral node information of the peripheral node 3 that has transmitted the association response in the storage unit 305 after transmitting the beacon signal.
  • the peripheral node information of the peripheral node 3 that has transmitted the association response after transmitting the beacon signal may be included in the beacon signal.
  • the tree path control unit 343 and the IPT control unit 344 may be the same as or similar to the tree path control unit 343 and the IPT control unit 344 described in FIG.
  • Each of the nodes 3 has the function shown in FIG. 18, and by storing and managing the peripheral node information, for example, as shown by the dotted line in FIG. 7, the available radio links are managed in the individual nodes 3.
  • peripheral node information is managed in the storage units 305 of the nodes # 0 to # 7.
  • FIG. 19 is a flowchart illustrating an example of a link setup procedure of the node 3 according to the second embodiment.
  • FIG. 19 an example of a link setup procedure when the node # 1 of FIG. 7 operates according to the AP mode will be described.
  • Node # 1 repeatedly executes the processing of the flowchart shown in FIG.
  • the node # 1 may repeatedly execute the process of the flowchart shown in FIG. 19 at a cycle shorter than the cycle at which the tree path control is executed.
  • the beacon transmission unit 3411 of the node # 1 generates a beacon signal and transmits it to the peripheral area through the wireless communication unit 302 (S101). Note that the beacon signal transmitted by the node # 1 is received by the node # 0, the node # 2, the node # 4, and the node # 5 in the example of FIG.
  • the request transmission unit 3415 of each of the node # 0, the node # 2, the node # 4, and the node # 5 receives the beacon signal transmitted from the node # 1, the request transmission unit 3415 transmits an association request to the node # 1.
  • the request reception unit 3412 of the node # 1 receives the association request transmitted from the peripheral node 3 that has received the beacon signal transmitted in S101 (S102). For example, the request reception unit 3412 of the node # 1 receives an association request transmitted by the node # 0, the node # 2, the node # 4, and the node # 5 that has received the beacon signal of S101.
  • the request transmission unit 3415 of the node # 1 transmits an association response to the peripheral node 3 that has transmitted the association request received in S102 (S103). For example, the request transmission unit 3415 of the node # 1 transmits an association response to each of the node # 0, the node # 2, the node # 4, and the node # 5 that transmitted the association request.
  • the node management unit 342 of the node # 1 stores the peripheral node information of the peripheral node 3 that has transmitted the association request received in S102 in the storage unit 305 (S104).
  • the node management unit 342 of the node # 1 stores the peripheral node information of the node # 0, the node # 2, the node # 4, and the node # 5 that transmitted the association request in the storage unit 305.
  • the node # 0, the node # 2, the node # 4, and the node # 5 are registered (managed) as nodes that are linked up (may be referred to as link-up nodes) in the node # 1.
  • the peripheral node information of the node # 0, the node # 2, the node # 4, and the node # 5 may be included in the association request received in S102.
  • the peripheral node information is included in the association request.
  • the peripheral node information may be transmitted from the peripheral node 3 to the node # 1 by a procedure different from the association procedure.
  • the peripheral node 3 may transmit the peripheral node information to the node # 1 after the node # 1 transmits the association response to the peripheral node 3 (S103) (after the association is completed).
  • node # 1 generates a beacon signal and transmits it to the peripheral area, and the peripheral node transmits a probe request according to the beacon.
  • the peripheral node 3 may spontaneously transmit a probe request when the beacon from the node # 1 cannot be detected, and the node # 1 may receive the probe request and return a probe response to the peripheral node 3.
  • FIG. 20 is a flowchart illustrating an example of a link setup procedure of the node 3 according to the second embodiment.
  • FIG. 20 illustrates an example of a link setup procedure when the node # 1 of FIG. 7 operates according to the STA mode.
  • Node # 1 repeatedly executes the processing of the flowchart shown in FIG.
  • the node # 1 may execute the flowchart shown in FIG. 20 at a cycle shorter than the cycle in which the process of the flowchart described in FIG. 19 is executed.
  • the beacon receiving unit 3414 of the node # 1 receives the beacon signal transmitted from the peripheral node 3 (S111). For example, in FIG. 7, it is assumed that node # 2 operates according to the AP mode and transmits a beacon signal. In this case, the beacon receiving unit 3414 of the node # 1 receives the beacon signal transmitted by the node # 2.
  • the request transmission unit 3415 of the node # 1 transmits an association request to the peripheral node 3 that transmitted the beacon signal (S112).
  • the request transmission unit 3415 of the node # 1 transmits an association request signal to the node # 2 that transmitted the beacon signal.
  • the node # 2 that has received the association request transmits an association response to the node # 1 that has transmitted the association request.
  • the response receiving unit 3416 of the node # 1 receives the association response transmitted from the peripheral node 3 that transmitted the beacon signal (S113). For example, the response reception unit 3416 of the node # 1 receives an association response transmitted from the node # 2 that transmitted the beacon signal.
  • the node management unit 342 of the node # 1 stores the peripheral node information of the peripheral node 3 that transmitted the beacon signal (the peripheral node 3 that transmitted the beacon signal received in S111). It is stored in 305 (S114). For example, the node management unit 342 of the node # 1 stores the peripheral node information of the node # 2 that transmitted the beacon signal in the storage unit 305. As a result, node # 2 is registered (managed) as a linked-up node in node # 1. Note that the peripheral node information of the node # 2 may be included in the transmitted beacon signal.
  • beacon signal received by the node # 1 in S111 is also received by the node # 0, the node # 3, the node # 5, and the node # 7 in addition to the node # 1 in the example of FIG. Node # 0, node # 3, node # 5, and node # 7 that have received the beacon signal register node # 2 as a linked-up node by executing the same processing as node # 1.
  • the peripheral node information is included in the beacon signal.
  • the peripheral node information may be transmitted to the node # 1 by the peripheral node 3 that transmits the beacon signal after the node # 1 receives the association response (S113) (after the association is completed).
  • the beacon transmission unit 3411 of the node 3 transmits a beacon signal.
  • the request receiving unit 3412 of the node 3 receives an association request transmitted from the peripheral node 3 that has received the beacon signal among the peripheral nodes 3.
  • the response transmission unit 3413 of the node 3 transmits the association response to the peripheral node 3 that has transmitted the association request.
  • the node management unit 342 of the node 3 stores information on the radio link between the transmission source of the beacon signal (node 3) and the transmission source of the association request (peripheral node 3). Managed by 305.
  • the beacon receiving unit 3414 of the node 3 receives a beacon signal transmitted from the peripheral node 3.
  • the request transmission unit 3415 of the node 3 transmits an association request to the peripheral node 3 that has transmitted the beacon signal.
  • the response receiving unit 3416 of the node 3 receives an association response transmitted from the peripheral node 3 that transmitted the beacon signal.
  • the node management unit 342 of the node 3 stores information on a radio link between the association request transmission source (node 3) and the beacon signal transmission source (peripheral node 3) in response to reception of the association response. Managed by 305.
  • the mesh link illustrated in FIG. 7 can be constructed.
  • the follow-up performance with respect to the path change according to the fluctuation of the radio wave propagation quality between the nodes can be improved, and the occurrence of the communication interruption accompanying the path change can be suppressed.

Abstract

This wireless node is provided with: a transmission unit that transmits, when a first association request signal for a first beacon signal is received after the first beacon signal has been transmitted, a first response signal to a transmission source of the first association request signal; a reception unit that receives a second response signal with respect to a second association request after the second association request has been transmitted to a transmission source of a second beacon signal in response to reception of the second beacon signal; and a management unit that manages information about a wireless link between a transmission source of the first beacon signal and the transmission source of the first association request signal in response to transmission of the first response signal, and manages information about a wireless link between a transmission source of the second association request and the transmission source of the second beacon signal in response to reception of the second response signal.

Description

無線ノード、無線リンク確立方法、及び、無線リンク確立プログラムWireless node, wireless link establishment method, and wireless link establishment program
 本発明は、無線ノード、無線リンク確立方法、及び、無線リンク確立プログラムに関する。 The present invention relates to a wireless node, a wireless link establishment method, and a wireless link establishment program.
 既存のセルラー通信システムでは、ユーザ装置向けの無線アクセス回線を提供する基地局と、バックボーンネットワーク(コアネットワークと称されることもある)と、を有線のバックホール(BH)ネットワークによって接続する形態が多い。 In an existing cellular communication system, a base station that provides a radio access line for user equipment and a backbone network (sometimes referred to as a core network) are connected by a wired backhaul (BH) network. Many.
 一方で、新世代のモバイル通信を実現する1つの形態として、半径が数十メートルの無線通信エリアを提供する複数の無線ノード(例えば、基地局又はアクセスポイント)の間を、無線マルチホップによって接続するシステム又はネットワークが検討されている。 On the other hand, as one form for realizing a new generation of mobile communication, a plurality of wireless nodes (for example, base stations or access points) providing a wireless communication area with a radius of several tens of meters are connected by wireless multi-hop. A system or network is under consideration.
 例えば、モバイル通信のインフラストラクチャの1つであるBHネットワークを無線マルチホップによって無線化することで、有線ケーブルの敷設を不要にでき、モバイル通信システムの導入に要する敷設コストを削減できる。 For example, by making the BH network, which is one of the mobile communication infrastructures, wireless by multi-hop, it is possible to eliminate the need for laying a wired cable and to reduce the laying cost required for the introduction of the mobile communication system.
特開2005-143046号公報JP 2005-143046 A 国際公開第2011/105371号International Publication No. 2011/105371
 無線マルチホップ接続の形態として、例えば、複数の無線ノードのうちの特定の無線ノードを頂点に有するツリー構造のネットワークが検討される。ツリー構造のネットワークでは、メッシュ状のリンクアップした無線リンクを構築し、メッシュ状のリンクアップした無線リンクから、ツリー構造となる無線リンクを選択して伝送経路とすることが検討される。 As a form of wireless multi-hop connection, for example, a network having a tree structure having a specific wireless node among a plurality of wireless nodes at the apex is considered. In a network having a tree structure, it is considered that a wireless link with a mesh-like link up is constructed, and a wireless link having a tree structure is selected as a transmission path from the wireless link with the mesh-like link up.
 メッシュ状のリンクアップした無線リンクを構築する方法として、IBSSモードを利用することが検討される。しかし、無線ノードによっては、IBSSモードをサポートしないものも存在し、メッシュ状のリンクアップした無線リンクを構築できない場合がある。 It is considered to use the IBSS mode as a method for constructing a meshed link-up wireless link. However, some wireless nodes do not support the IBSS mode, and a mesh-like link-up wireless link may not be established.
 本発明の目的の1つは、IBSSモードをサポートしない無線ノードであっても、メッシュリンクを構築することにある。 One of the objects of the present invention is to construct a mesh link even for a wireless node that does not support the IBSS mode.
 一態様に係る無線ノードは、複数の無線ノードのうちの1つの無線ノードであって、第1ビーコン信号を送信した後に、前記第1ビーコン信号に対する第1アソシエーションリクエスト信号を受信した場合に、前記第1アソシエーションリクエスト信号の送信元へ第1レスポンス信号を送信する送信部と、第2ビーコン信号の受信に応じて前記第2ビーコン信号の送信元へ第2アソシエーションリクエストを送信した後に、前記第2アソシエーションリクエストに対する第2レスポンス信号を受信する受信部と、前記第1レスポンス信号の送信に応じて、前記第1ビーコン信号の送信元と、前記第1アソシエーションリクエスト信号の送信元と、の間の無線リンクの情報を記憶し、前記第2レスポンス信号の受信に応じて、前記第2アソシエーションリクエストの送信元と、前記第2ビーコン信号の送信元と、の間の無線リンクの情報を管理する管理部と、を備える。 The wireless node according to an aspect is one of a plurality of wireless nodes, and when the first association request signal for the first beacon signal is received after transmitting the first beacon signal, A transmission unit that transmits a first response signal to a transmission source of the first association request signal; and a second association request transmitted to the transmission source of the second beacon signal in response to reception of the second beacon signal; Radio between the receiving unit that receives the second response signal for the association request, the transmission source of the first beacon signal, and the transmission source of the first association request signal in response to the transmission of the first response signal Storing link information, and receiving the second response signal in response to receiving the second response signal. Comprising a source of the Activation request, the transmission source of the second beacon signal, and a management unit for managing information of the radio link between the.
 また、一態様に係る無線リンク確立方法は、第1ビーコン信号を送信した後に、前記第1ビーコン信号に対する第1アソシエーションリクエスト信号を受信した場合に、前記第1アソシエーションリクエスト信号の送信元へ第1レスポンス信号を送信し、第2ビーコン信号の受信に応じて前記第2ビーコン信号の送信元へ第2アソシエーションリクエストを送信した後に、前記第2アソシエーションリクエストに対する第2レスポンス信号を受信し、前記第1レスポンス信号の送信に応じて、前記第1ビーコン信号の送信元と、前記第1アソシエーションリクエスト信号の送信元と、の間の無線リンクの情報を管理し、前記第2レスポンス信号の受信に応じて、前記第2アソシエーションリクエストの送信元と、前記第2ビーコン信号の送信元と、の間の無線リンクの情報を管理する。 Further, the wireless link establishment method according to one aspect is configured such that, after transmitting the first beacon signal, when the first association request signal for the first beacon signal is received, the transmission source of the first association request signal is first A response signal is transmitted, a second association request is transmitted to the transmission source of the second beacon signal in response to the reception of the second beacon signal, and then a second response signal for the second association request is received; In response to the transmission of the response signal, information on the radio link between the transmission source of the first beacon signal and the transmission source of the first association request signal is managed, and in response to the reception of the second response signal , The source of the second association request and the transmission of the second beacon signal To management source and the information of the wireless link between the.
 また、一態様に係る無線リンク確立プログラムは、プロセッサに、第1ビーコン信号を送信した後に、前記第1ビーコン信号に対する第1アソシエーションリクエスト信号を受信した場合に、前記第1アソシエーションリクエスト信号の送信元へ第1レスポンス信号を送信し、第2ビーコン信号の受信に応じて前記第2ビーコン信号の送信元へ第2アソシエーションリクエストを送信した後に、前記第2アソシエーションリクエストに対する第2レスポンス信号を受信し、前記第1レスポンス信号の送信に応じて、前記第1ビーコン信号の送信元と、前記第1アソシエーションリクエスト信号の送信元と、の間の無線リンクの情報を管理し、前記第2レスポンス信号の受信に応じて、前記第2アソシエーションリクエストの送信元と、前記第2ビーコン信号の送信元と、の間の無線リンクの情報を管理する、処理を実行させる。 In addition, the wireless link establishment program according to one aspect is configured such that, when a first association request signal for the first beacon signal is received after the first beacon signal is transmitted to the processor, the transmission source of the first association request signal Transmitting a first response signal to the second beacon signal in response to receiving the second beacon signal, and then receiving a second response signal for the second association request after transmitting the second association request to the transmission source of the second beacon signal; In response to the transmission of the first response signal, the wireless link information between the transmission source of the first beacon signal and the transmission source of the first association request signal is managed, and the reception of the second response signal Depending on the source of the second association request, and It manages the source of the 2 beacon signal, information of the radio link between, to execute the process.
 IBSSモードをサポートしない無線ノードであっても、メッシュリンクを構築できる。 A mesh link can be established even for a wireless node that does not support the IBSS mode.
第1の実施形態に係る無線通信システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the radio | wireless communications system which concerns on 1st Embodiment. 第1の実施形態に係るノード間の接続形態の一例を、個々のノードのプロトコル・スタックと併せて示す図である。It is a figure which shows an example of the connection form between the nodes which concerns on 1st Embodiment with the protocol stack of each node. 第1の実施形態に係るノードのハードウェア構成例を示すブロック図である。It is a block diagram which shows the hardware structural example of the node which concerns on 1st Embodiment. 第1の実施形態に係るノードの機能的な構成例を示すブロック図である。It is a block diagram which shows the functional structural example of the node which concerns on 1st Embodiment. 図4に例示した制御部の機能的な構成例を示すブロック図である。FIG. 5 is a block diagram illustrating a functional configuration example of a control unit illustrated in FIG. 4. 第1の実施形態に係るノード間のリンクセットアップ手順の一例を示すフローチャートである。It is a flowchart which shows an example of the link setup procedure between the nodes which concern on 1st Embodiment. 図6に例示したリンクセットアップ手順によってノード間にメッシュ状の無線リンクがリンクアップする例を示す図である。FIG. 7 is a diagram illustrating an example in which a mesh-like wireless link is linked up between nodes by the link setup procedure illustrated in FIG. 図7に例示したノードのそれぞれにおいて管理される周辺ノード情報の一例を示す図である。FIG. 8 is a diagram illustrating an example of peripheral node information managed in each of the nodes illustrated in FIG. 7. 第1の実施形態に係るメッシュリンク上のツリー経路制御の一例を示す図である。It is a figure which shows an example of the tree path | route control on the mesh link which concerns on 1st Embodiment. 図9の(A)に例示したツリー経路に対応して、ノードのそれぞれにおけるリンク情報の選択例を示す図である。It is a figure which shows the example of selection of the link information in each of a node corresponding to the tree path | route illustrated to (A) of FIG. 図9の(B)に例示したツリー経路に対応して、ノードのそれぞれにおけるリンク情報の選択例を示す図である。It is a figure which shows the selection example of the link information in each of a node corresponding to the tree path | route illustrated to (B) of FIG. 第1の実施形態に係るメッシュリンク上のツリー経路制御を含むコアノード(CN)の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the core node (CN) including the tree path control on the mesh link which concerns on 1st Embodiment. 第1の実施形態に係るメッシュリンク上のツリー経路制御を含むスレーブノード(SN)の動作例を示すフローチャートである。It is a flowchart which shows the operation example of a slave node (SN) including the tree path control on the mesh link which concerns on 1st Embodiment. 図9に例示したツリー経路制御によって構築されたツリー経路において、データパケットを送信する場合の、CNの動作例について説明するフローチャートである。10 is a flowchart for explaining an operation example of the CN when transmitting a data packet in the tree path constructed by the tree path control illustrated in FIG. 9. 図9に例示したツリー経路制御によって構築されたツリー経路において、データパケットを送信する場合の、SNの動作例について説明するフローチャートである。10 is a flowchart for explaining an operation example of an SN when a data packet is transmitted in the tree path constructed by the tree path control illustrated in FIG. 9. 第1の実施形態の変形例に係る、AP(Access Point)モードとSTA(Station)モードとの組み合わせを用いた、ノード間のメッシュリンクのセットアップ手順の一例を説明する図である。It is a figure explaining an example of the setup procedure of the mesh link between nodes using the combination of AP (Access point) mode and STA (Station) mode based on the modification of 1st Embodiment. 図16に例示したメッシュリンクのセットアップ手順をノードそれぞれのプロトコル・スタックと併せて示す図である。It is a figure which shows the setup procedure of the mesh link illustrated in FIG. 16 together with the protocol stack of each node. 第2の実施形態に係る制御部の機能的な構成例を示すブロック図である。It is a block diagram which shows the functional structural example of the control part which concerns on 2nd Embodiment. 第2の実施形態に係るノードのリンクセットアップ手順の一例を示すフローチャートである。It is a flowchart which shows an example of the link setup procedure of the node which concerns on 2nd Embodiment. 第2の実施形態に係るノードのリンクセットアップ手順の一例を示すフローチャートである。It is a flowchart which shows an example of the link setup procedure of the node which concerns on 2nd Embodiment.
 (第1の実施形態)
 以下、図面を適宜参照して、実施の形態について説明する。本明細書の全体を通じて同一要素には、特に断らない限り、同一符号を付す。添付の図面と共に以下に記載される事項は、例示的な実施の形態を説明するためのものであり、唯一の実施の形態を示すためのものではない。例えば、実施の形態において動作の順序が示された場合、動作の順序は、全体的な動作として矛盾が生じない範囲で、適宜に変更されてもよい。
(First embodiment)
Embodiments will be described below with reference to the drawings as appropriate. Throughout this specification, the same elements are denoted by the same reference symbols unless otherwise specified. The following description in conjunction with the accompanying drawings is intended to illustrate exemplary embodiments and not to show the only embodiments. For example, when the order of operations is shown in the embodiment, the order of operations may be changed as appropriate as long as there is no contradiction as an overall operation.
 複数の実施形態及び/又は変形例を例示した場合、或る実施形態及び/又は変形例における一部の構成、機能及び/又は動作は、矛盾の生じない範囲で、他の実施形態及び/又は変形例に含まれてもよいし、他の実施形態及び/又は変形例の対応する構成、機能及び/又は動作に置き換えられてもよい。 In the case where a plurality of embodiments and / or modifications are illustrated, some configurations, functions, and / or operations in one embodiment and / or modification may be limited to other embodiments and / or operations as long as no contradiction arises. It may be included in the modification, and may be replaced with a corresponding configuration, function, and / or operation of another embodiment and / or modification.
 また、実施の形態において、必要以上に詳細な説明は省略する場合がある。例えば、説明が不必要に冗長になること、及び/又は、技術的な事項又は概念が曖昧になることを回避して当業者の理解を容易にするために、公知又は周知の技術的な事項の詳細説明を省略する場合がある。また、実質的に同一の構成、機能及び/又は動作についての重複説明を省略する場合がある。 In the embodiment, more detailed description than necessary may be omitted. For example, in order to avoid unnecessarily redundant explanations and / or to obscure technical matters or concepts, and to facilitate understanding of those skilled in the art, known or well-known technical matters The detailed description of may be omitted. In addition, redundant description of substantially the same configuration, function, and / or operation may be omitted.
 添付図面および以下の説明は、実施の形態の理解を助けるために提供されるものであって、これらによって特許請求の範囲に記載の主題を限定することは意図されていない。また、以下の説明で使われる用語は、当業者の理解を助けるために他の用語に適宜に読み替えられてもよい。 The accompanying drawings and the following description are provided to assist the understanding of the embodiments and are not intended to limit the subject matter described in the claims. In addition, the terms used in the following description may be appropriately replaced with other terms in order to assist those skilled in the art.
 <システム構成例>
 図1は、第1の実施形態に係る無線通信システムの構成例を示すブロック図である。図1に示す無線通信システム1は、例示的に、複数のノード3を備える。図1には、非限定的な一例として、ノード番号#0~#14を付して示す15台のノード3が例示されている。ノード3の数は、2以上かつ14未満でもよいし16以上でもよい。
<System configuration example>
FIG. 1 is a block diagram illustrating a configuration example of a wireless communication system according to the first embodiment. The wireless communication system 1 illustrated in FIG. 1 includes a plurality of nodes 3 exemplarily. In FIG. 1, as a non-limiting example, 15 nodes 3 indicated by node numbers # 0 to # 14 are illustrated. The number of nodes 3 may be 2 or more and less than 14, or 16 or more.
 個々のノード3は、無線通信が可能な無線機器の一例である。そのため、ノード3のそれぞれは、「無線ノード3」と称されてもよい。無線通信には、IEEE802.11b/g/a/n/ac/ad/ayといった無線LAN(Local Area Network)関連規格に準拠した(あるいは、ベースとした)通信プロトコルが適用されてよい。 Each node 3 is an example of a wireless device capable of wireless communication. Therefore, each of the nodes 3 may be referred to as a “wireless node 3”. For wireless communication, a communication protocol based on (or based on) a wireless LAN (Local Area Network) related standard such as IEEE802.11b / g / a / n / ac / ad / ay may be applied.
 個々のノード3は、無線通信が可能なエリアを形成する。「無線通信が可能なエリア」は、「無線通信エリア」、「無線エリア」、「通信エリア」、「サービスエリア」、「カバレッジエリア」、又は、「カバーエリア」等と称されてもよい。無線LAN関連規格に準拠した、あるいはベースとしたノード3が形成する無線通信エリアは、セルラー通信での呼称である「セル」に対応すると捉えてもよい。例えば、個々のノード3が形成する無線通信エリアは、「スモールセル」に分類される「フェムトセル」に相当すると捉えてもよい。 Each node 3 forms an area where wireless communication is possible. The “area where wireless communication is possible” may be referred to as “wireless communication area”, “wireless area”, “communication area”, “service area”, “coverage area”, “cover area”, or the like. The wireless communication area formed by the node 3 based on or based on the wireless LAN related standard may be regarded as corresponding to a “cell” which is a name in cellular communication. For example, the wireless communication area formed by each node 3 may be regarded as corresponding to a “femto cell” classified as a “small cell”.
 ノード3のそれぞれは、他のノード3のサービスエリアに位置する場合に、当該他のノード3と無線通信することが可能である。複数のノード3は、例えば、バックボーンネットワーク5と端末装置7との間の通信を無線によって中継する無線バックホール(BH)ネットワーク9を形成する。「無線BHネットワーク」は、「無線」を省略して「BHネットワーク」と称されてもよい。 Each node 3 can wirelessly communicate with another node 3 when it is located in the service area of the other node 3. The plurality of nodes 3 form a wireless backhaul (BH) network 9 that relays communication between the backbone network 5 and the terminal device 7 by radio, for example. The “wireless BH network” may be referred to as a “BH network” by omitting “wireless”.
 「BHネットワーク」は、「中継ネットワーク」と称されてもよい。BHネットワーク9のエンティティである個々のノード3は、「中継ノード」と称されてもよい。 “BH network” may be referred to as “relay network”. The individual nodes 3 that are entities of the BH network 9 may be referred to as “relay nodes”.
 バックボーンネットワーク5は、例示的に、インターネット等の大規模な通信ネットワークである。「バックボーンネットワーク」は、「コアネットワーク」、又は、「グローバルネットワーク」等と称されてもよい。 The backbone network 5 is illustratively a large-scale communication network such as the Internet. The “backbone network” may be referred to as a “core network”, a “global network”, or the like.
 BHネットワーク9において無線信号が伝送される経路又は区間は、「無線BH通信路」、「無線BH伝送路」、「無線BH回線」、「無線BH接続」、又は、「無線BHチャネル」と相互に読み替えられてもよい。これらの用語において、「無線」は省略されてもよく、また、「BH」は「中継(Relay)」に読み替えられてもよい。 A path or section in which a radio signal is transmitted in the BH network 9 is mutually connected with a “wireless BH communication path”, “wireless BH transmission path”, “wireless BH line”, “wireless BH connection”, or “wireless BH channel”. May be read as: In these terms, “wireless” may be omitted, and “BH” may be read as “relay”.
 これに対し、例えば、端末装置7とBHネットワーク9との間において無線信号が伝送される区間は、「無線アクセス回線」、又は、「無線アクセスチャネル」と称されてよい。これらの用語において、「無線」は省略されてもよい。 On the other hand, for example, a section in which a wireless signal is transmitted between the terminal device 7 and the BH network 9 may be referred to as a “wireless access line” or a “wireless access channel”. In these terms, “wireless” may be omitted.
 なお、以下の説明において、「信号」という用語は、「フレーム」又は「パケット」といった、信号が時間的に区切られた単位の用語に読み替えられてもよい。 In the following description, the term “signal” may be replaced with a term of a unit in which a signal is divided in time, such as “frame” or “packet”.
 無線BH回線及び無線アクセス回線には、互いに異なる周波数(チャネル)が割り当てられてよい。非限定的な一例として、BH回線には、5GHz帯(例えば、5.15~5.85GHz)の周波数(チャネル)が割り当てられてよい。 Different frequencies (channels) may be assigned to the wireless BH line and the wireless access line. As a non-limiting example, a frequency (channel) in the 5 GHz band (for example, 5.15 to 5.85 GHz) may be assigned to the BH line.
 アクセス回線には、2.4GHz帯(例えば、2.412~2.472GHz)の周波数(チャネル)が割り当てられてよい。BH回線に割り当てられる周波数とは異なる周波数であれば、アクセス回線に5GHz帯の周波数が割り当てられてもよい。 A frequency (channel) in the 2.4 GHz band (for example, 2.412 to 2.472 GHz) may be assigned to the access line. As long as the frequency is different from the frequency allocated to the BH line, a frequency in the 5 GHz band may be allocated to the access line.
 5GHz帯には、例えば、5.2GHz帯(W52:5150~5250MHz)、5.3GHz帯(W53:5250~5350MHz)、及び、5.6GHz帯(W56:5470~5725MHz)のうちの少なくとも1つが含まれてよい。 The 5 GHz band includes, for example, at least one of a 5.2 GHz band (W52: 5150-5250 MHz), a 5.3 GHz band (W53: 5250-5350 MHz), and a 5.6 GHz band (W56: 5470-5725 MHz). May be included.
 W52において利用可能なチャネル数は、36ch、40ch、44ch及び48chの4チャネルである。W53において利用可能なチャネル数は、52ch、56ch、60ch及び64chの4チャネルである。W56において利用可能なチャネル数は、100ch、104ch、108ch、112ch、116ch、120ch、124ch、128ch、132ch、136ch及び140chの11チャネルである。 The number of channels that can be used in W52 is four channels of 36 ch, 40 ch, 44 ch, and 48 ch. The number of channels available in W53 is 4 channels of 52ch, 56ch, 60ch and 64ch. The number of channels that can be used in W56 is 11 channels of 100 ch, 104 ch, 108 ch, 112 ch, 116 ch, 120 ch, 124 ch, 128 ch, 132 ch, 136 ch, and 140 ch.
 したがって、例えば、アクセス回線に、W52、W53及びW56のうちの1つ又は2つの周波数帯を割り当てる場合、BH回線には、W52、W53及びW56のうち、アクセス回線に割り当てられない残りの1つ又は2つの周波数帯が割り当てられてよい。 Therefore, for example, when one or two frequency bands of W52, W53, and W56 are assigned to the access line, the remaining one of W52, W53, and W56 that is not assigned to the access line is assigned to the BH line. Or two frequency bands may be assigned.
 複数のノード3のうちの一部のノード3は、バックボーンネットワーク5に有線接続されてよい。図1には、2つのノード#0及びノード#8が、バックボーンネットワーク5に有線接続された態様が例示されている。有線接続には、例えば、LANケーブル、又は光ファイバケーブルが適用されてよい。 Some of the nodes 3 may be connected to the backbone network 5 by wire. FIG. 1 illustrates a mode in which two nodes # 0 and # 8 are connected to the backbone network 5 by wire. For the wired connection, for example, a LAN cable or an optical fiber cable may be applied.
 バックボーンネットワーク5に有線接続されたノード#0及びノード#8は、「コアノード(CN)」と称されてよい。BHネットワーク9を形成する複数のノード3のうち、CN#0及び#8を除いた個々のノード3は、「スレーブノード(SN)」と称されてよい。例えば図1において、ノード#1~#7及び#9~#14は、いずれもSNである。CN3は、「第1無線ノード」の一例であり、SN3のそれぞれは、「第2無線ノード」の一例である。 The node # 0 and the node # 8 wired to the backbone network 5 may be referred to as “core nodes (CN)”. Among the plurality of nodes 3 forming the BH network 9, the individual nodes 3 excluding CN # 0 and # 8 may be referred to as “slave nodes (SN)”. For example, in FIG. 1, nodes # 1 to # 7 and # 9 to # 14 are all SNs. CN3 is an example of a “first wireless node”, and each of SN3 is an example of a “second wireless node”.
 なお、図1において、個々のノード3に付した#0~#14は、個々のノード3の識別に用いられる情報(以下「ノード識別情報」と略称することがある)の一例である。ノード識別情報は、同じBHネットワーク9において個々のノード3を一意に識別可能な情報であればよく、例えば、ノード番号、機器の識別子、又は、アドレス情報等であってよい。アドレス情報の非限定的な一例は、MAC(Media Access Control)アドレスである。 In FIG. 1, # 0 to # 14 attached to each node 3 are examples of information used to identify each node 3 (hereinafter, may be abbreviated as “node identification information”). The node identification information may be information that can uniquely identify each node 3 in the same BH network 9, and may be, for example, a node number, a device identifier, or address information. A non-limiting example of the address information is a MAC (Media Access Control) address.
 BHネットワーク9は、1つのCN3(#0又は#8)をルート(根)ノードとした1つ以上のツリー構造(「ツリートポロジ」と称されてもよい)を有してよい。例えば図1に示すように、BHネットワーク9において、CN#0をルートノードとした第1のツリートポロジと、CN#8をルートノードとした第2のツリートポロジと、が構築されてよい。 The BH network 9 may have one or more tree structures (may be referred to as “tree topology”) having one CN 3 (# 0 or # 8) as a root node. For example, as shown in FIG. 1, in the BH network 9, a first tree topology with CN # 0 as a root node and a second tree topology with CN # 8 as a root node may be constructed.
 別言すると、BHネットワーク9において、CN3毎に「ツリートポロジ」が構築されてよい。BHネットワーク9において構築される1つ以上の「ツリートポロジ」は、「ツリークラスタ」又は「ツリーサブクラスタ」等と称されてもよい。なお、BHネットワーク9において、CN3の数は、2つに限られず、1つでもよいし、3つ以上でもよい。 In other words, in the BH network 9, a “tree topology” may be constructed for each CN3. One or more “tree topologies” constructed in the BH network 9 may be referred to as “tree clusters” or “tree subclusters”. In the BH network 9, the number of CNs 3 is not limited to two, but may be one or three or more.
 ツリートポロジにおいて、子ノードを有さないSN3は「葉(リーフ)ノード」と称されてよく、子ノードを有するSN3は「内部ノード」と称されてよい。例えば図1において、SN#2、#3、#6、#7、#10、#11、#13、及び、#14は、いずれも「リーフノード」に相当する。また、SN#1、#4、#5、#9、及び、#12は、いずれも「内部ノード」に相当する。 In the tree topology, SN3 having no child node may be referred to as a “leaf node”, and SN3 having a child node may be referred to as an “internal node”. For example, in FIG. 1, SNs # 2, # 3, # 6, # 7, # 10, # 11, # 13, and # 14 all correspond to “leaf nodes”. Also, SNs # 1, # 4, # 5, # 9, and # 12 all correspond to “internal nodes”.
 無線BH回線には、コアノード3からリーフノード3へ向かう方向の「下り回線」と、リーフノード3からコアノード3へ向かう方向の「上り回線」と、が含まれてよい。「下り回線」及び「上り回線」は、それぞれ、セルラー通信における呼称に倣って「ダウンリンク(DL)」及び「アップリンク(UL)」と称されてもよい。 The wireless BH line may include a “downlink” in the direction from the core node 3 to the leaf node 3 and an “uplink” in the direction from the leaf node 3 to the core node 3. “Downlink” and “uplink” may be referred to as “downlink (DL)” and “uplink (UL)”, respectively, following the names in cellular communication.
 「下り回線」における信号(下り信号)の流れは、「ダウンストリーム」と称されてよく、「上り回線」における信号(上り信号)の流れは、「アップストリーム」と称されてよい。「下り信号」及び「上り信号」のそれぞれには、制御信号及びデータ信号が含まれてよい。「制御信号」には、「データ信号」には該当しない信号が含まれてよい。 The flow of signals (downlink signals) in the “downlink” may be referred to as “downstream”, and the flow of signals (uplink signals) in the “uplink” may be referred to as “upstream”. Each of the “downstream signal” and the “upstream signal” may include a control signal and a data signal. The “control signal” may include a signal not corresponding to the “data signal”.
 なお、「子ノード」は、「下り回線」に着目した場合の、或るノードの下流に無線リンクによって接続されたノード(下流ノード)に相当すると捉えてもよい。下り回線に着目した場合の、或るノードの上流に無線リンクによって接続されたノードは、「親ノード」又は「上流ノード」と称されてもよい。「上り回線」に着目した場合、「子ノード」(下流ノード)と「親ノード」(上流ノード)との関係は、逆転する。 Note that the “child node” may be considered to correspond to a node (downstream node) connected by a wireless link downstream of a certain node when attention is paid to the “downlink”. When attention is paid to the downlink, a node connected by a radio link upstream of a certain node may be referred to as a “parent node” or an “upstream node”. When attention is paid to “uplink”, the relationship between “child node” (downstream node) and “parent node” (upstream node) is reversed.
 また、「下り回線」に着目した場合、「コアノード」は、「始点ノード」又は「起点ノード」と称されてもよく、「リーフノード」は、「終点ノード」あるいは「エッジノード」と称されてもよい。「内部ノード」は、「中間ノード」又は「中継ノード」と称されてもよい。 When focusing on “downlink”, “core node” may be referred to as “start node” or “start node”, and “leaf node” may be referred to as “end node” or “edge node”. May be. The “internal node” may be referred to as an “intermediate node” or a “relay node”.
 BHネットワーク9におけるツリー構造の経路(ツリートポロジ)は、例えば、CN3から特定のSN3に至る経路のメトリック(以下「経路メトリック」と略称することがある)に基づいて構築されてよい。経路メトリックには、CN3から特定のSN3に至る無線区間の電波伝搬の品質又は性能を示す指標(以下「伝搬品質指標」と称する)が用いられてよい。 The tree-structured route (tree topology) in the BH network 9 may be constructed based on, for example, a metric (hereinafter sometimes abbreviated as “route metric”) of a route from the CN 3 to a specific SN 3. For the path metric, an index (hereinafter referred to as “propagation quality index”) indicating the quality or performance of radio wave propagation in a wireless section from CN 3 to a specific SN 3 may be used.
 伝搬品質指標の非限定的な一例としては、無線信号の受信電力又は受信強度(例えば、RSSI;Received Signal Strength Indicator)、電波伝搬損失、及び、伝搬遅延等が挙げられる。「電波伝搬損失」は、「パスロス」に読み替えられてもよい。 As a non-limiting example of the propagation quality index, there is a reception power or reception intensity (for example, RSSI; Received Signal Strength Indicator), radio wave propagation loss, propagation delay, and the like of a radio signal. “Radio wave propagation loss” may be read as “path loss”.
 伝搬品質指標には、以上の指標候補の中から選択された1つ又は2つ以上の組み合わせが用いられてよい。なお、本実施形態において、伝搬品質指標には、ホップ数といった経路の距離に関する指標は用いられなくてよい。 As the propagation quality index, one or a combination of two or more selected from the above index candidates may be used. In the present embodiment, an index related to the distance of the route such as the number of hops may not be used as the propagation quality index.
 例えば、CN3を起点に信号(例えば、制御信号)を送信することで、制御信号の送信ノード3と受信ノード3との間の無線区間毎に、当該無線区間の電波伝搬損失を受信ノード3において求めることができる。 For example, by transmitting a signal (for example, a control signal) from CN3 as a starting point, for each wireless section between the transmission node 3 and the receiving node 3 of the control signal, radio wave propagation loss in the wireless section is received at the receiving node 3. Can be sought.
 そして、受信ノード3のそれぞれが、求めた電波伝搬損失の情報を、制御信号に含めて送信することで、制御信号が伝搬した無線区間の累積的な電波伝搬損失の情報(別言すると、累積値)を、ノード3間で伝達できる。 Then, each of the receiving nodes 3 transmits the obtained radio wave propagation loss information included in the control signal, thereby transmitting the accumulated radio wave propagation loss information (in other words, cumulative) of the radio section in which the control signal has propagated. Value) can be transmitted between the nodes 3.
 個々のノード3は、例えば、制御信号の送信元である上流ノード候補毎に、累積的な電波伝搬損失に基づいて経路メトリックを計算し、上流ノード候補の中から、経路メトリックが例えば最小を示すノード3を1つ選ぶ。これにより、電波伝搬損失が最小となるツリー構造の経路が構築される。 For example, each node 3 calculates a path metric based on a cumulative radio wave propagation loss for each upstream node candidate that is a transmission source of the control signal, and the path metric indicates, for example, the minimum among the upstream node candidates. Choose one node 3. As a result, a tree-structured path with a minimum radio wave propagation loss is constructed.
 ツリー構造の経路(以下「ツリー経路」と称することがある)は、CN3を起点に制御信号を定期又は不定期に送信することで、ダイナミックに、あるいは、アダプティブに更新することができる。 The tree-structured route (hereinafter sometimes referred to as “tree route”) can be updated dynamically or adaptively by transmitting a control signal from CN3 as a starting point or irregularly.
 以下、このようなツリー経路の構築及び更新に関わる処理又は制御を、便宜的に、「ツリー経路制御」、あるいは「ダイナミックツリー経路制御」又は「アダプティブツリー経路制御」と称することがある。 Hereinafter, such processing or control relating to construction and update of the tree path may be referred to as “tree path control”, “dynamic tree path control”, or “adaptive tree path control” for convenience.
 また、本実施形態の無線BH回線において、下り信号(例えば、データ信号)は、CN3からツリー経路の下流へ向けて周期的間欠的に(別言すると、意図的な送信待機時間を待って)送信されてよい。このような周期的間欠的な送信を「IPT」(Interminent Periodic Transmittion)と称することがある。 Further, in the wireless BH line of the present embodiment, the downlink signal (for example, the data signal) is periodically intermittently from CN3 toward the downstream of the tree path (in other words, waiting for an intentional transmission waiting time). May be sent. Such periodic intermittent transmission may be referred to as “IPT” (Interminent Periodic Transmission).
 IPTでは、前掲の特許文献1に記載されるように、CN3が下流へ向けて送信する下り信号の送信周期(別言すると、送信間隔又は送信頻度)を周波数リユース間隔に応じて変化させる。周波数リユース間隔とは、同じ経路においてノード間干渉の発生が抑制されて同じ周波数を繰り返し再利用できる区間の長さ(距離)を表す。 In IPT, as described in the above-mentioned Patent Document 1, the transmission period (in other words, transmission interval or transmission frequency) of a downlink signal transmitted by CN 3 toward the downstream is changed according to the frequency reuse interval. The frequency reuse interval represents the length (distance) of a section in which occurrence of inter-node interference is suppressed on the same route and the same frequency can be reused repeatedly.
 周波数リユース間隔に応じた送信周期をCN3に設定することで、例えば、複雑な輻輳制御を必要とせずに、無線BH回線におけるスループットの向上、別言すると、中継伝送効率の向上を図ることが可能となる。また、BHネットワーク9における周波数リソースの利用効率を向上できる。 By setting the transmission cycle according to the frequency reuse interval to CN3, for example, it is possible to improve the throughput in the wireless BH line without requiring complicated congestion control, in other words, to improve the relay transmission efficiency. It becomes. In addition, the use efficiency of frequency resources in the BH network 9 can be improved.
 例えば、ノード間干渉の発生が抑制される周波数リユース間隔をCN3に設定することにより、ツリートポロジにおいて単一の周波数を用いても、リーフノードにおいて観測されるスループットを、ホップ数に依存せずに、或る一定値以上に保つことができる。 For example, by setting the frequency reuse interval in which the occurrence of inter-node interference is suppressed to CN3, the throughput observed in the leaf node can be made independent of the number of hops even if a single frequency is used in the tree topology. , It can be kept above a certain value.
 上り回線については、例えば、SN3が、下り回線の周波数リユース間隔に応じた送信周期に連動した送信周期に従って上流へ向けて上り信号を送信することで、CN3において観測されるスループットの向上を図ることができる。 For the uplink, for example, the SN 3 transmits an uplink signal upstream according to a transmission cycle linked to a transmission cycle according to the frequency reuse interval of the downlink, thereby improving the throughput observed in the CN 3. Can do.
 したがって、例えば、無線BH回線の下り回線と上り回線とに、同じ周波数(チャネル)を割り当ててTDMA又はTDDを実現することも容易である。なお、「TDMA」は、時分割多元アクセス(Time Division Multiple Access)の略称であり、「TDD」は、時分割複信(Time Division Duplex)の略称である。 Therefore, for example, it is also easy to realize TDMA or TDD by assigning the same frequency (channel) to the downlink and uplink of the wireless BH line. “TDMA” is an abbreviation for Time Division Multiple Access, and “TDD” is an abbreviation for Time Division Duplex.
 そのため、無線BH回線の下り回線と上り回線とに、異なる周波数の無線IFを個別的に用いる必要がなく、共通の無線IFを用いることが許容される。共通の無線IFを用いることで、ノード3のコンパクト化及び/又は低コスト化を図ることができる。 Therefore, it is not necessary to individually use radio IFs of different frequencies for the downlink and uplink of the wireless BH line, and it is allowed to use a common radio IF. By using a common wireless IF, the node 3 can be downsized and / or cost reduced.
 ただし、無線BH回線の下り回線と上り回線とには、異なる周波数が割り当てられてもよい。無線BH回線の下り回線と上り回線とに異なる周波数を割り当てることで、例えばTDMA又はTDDを実現するIPT制御の簡易化を図ることができる。下り回線と上り回線とに異なる周波数を割り当てる場合であっても、BHネットワーク9における周波数リソースの消費は、下り回線と上り回線との2チャネル分で足りる。 However, different frequencies may be assigned to the downlink and uplink of the wireless BH line. By assigning different frequencies to the downlink and uplink of the wireless BH line, it is possible to simplify IPT control for realizing, for example, TDMA or TDD. Even when different frequencies are assigned to the downlink and uplink, the frequency resource consumption in the BH network 9 is sufficient for two channels of the downlink and uplink.
 なお、BH回線の下り回線及び/又は上り回線の一部には、有線回線が含まれてもよい。BH回線の下り回線及び/又は上り回線の一部に有線回線が含まれる場合、有線区間の経路メトリックは、無線区間の伝搬損失よりも小さい所定値(例えば、最小値)によって計算されてよい。 A part of the downlink and / or uplink of the BH line may include a wired line. When a wired line is included in a part of the downlink and / or uplink of the BH line, the route metric of the wired section may be calculated by a predetermined value (for example, the minimum value) smaller than the propagation loss of the wireless section.
 端末装置7は、いずれかのSN3のサービスエリアに位置する場合に、BHネットワーク9を形成する複数のSN3のいずれかに無線アクセス回線によって接続することで、BH回線経由でバックボーンネットワーク5と通信する。なお、端末装置7は、SN3の何れか(図1では、一例として、SN#14)に、有線回線(有線IF)によって接続されてもよい。非限定的な一例として、端末装置7は、携帯電話やスマートフォン、タブレット端末等の移動可能な端末であってよい。 The terminal device 7 communicates with the backbone network 5 via the BH line by connecting to any one of the plurality of SNs 3 forming the BH network 9 by a wireless access line when located in the service area of any SN 3. . The terminal device 7 may be connected to any of SN3 (in FIG. 1, as an example, SN # 14) by a wired line (wired IF). As a non-limiting example, the terminal device 7 may be a mobile terminal such as a mobile phone, a smartphone, or a tablet terminal.
 無線アクセス回線には、例示的に、CDMA(Code Division Multiple Access)、FDMA(Frequency Division Multiple Access)、TDMA(Time Division Multiple Access)、OFDMA(Orthogonal Frequency Division Multiple Access)、及び、SC-FDMA(Single Carrier Frequency Division Multiple Access)等のうちのいずれかが適用されてもよい。OFDMAは、例えば、IEEE802.11、IEEE802.16、LTE(Long Term Evolution)、LTE-Advanced等の無線技術によって具現されてよい。 Examples of wireless access lines include CDMA (Code Division Multiple Access), FDMA (Frequency Division Multiple Access), TDMA (Time Division Multiple Access), OFDMA (Orthogonal Frequency Division Multiple Access), and SC-FDMA (Single Any one of Carrier Frequency Division Multiple Access) may be applied. OFDMA may be implemented by a wireless technology such as IEEE 802.11, IEEE 802.16, LTE (Long Term Evolution), LTE-Advanced, or the like.
 無線BH回線及び/又は無線アクセス回線における下り回線及び/又は上り回線の全部又は一部には、複数のアンテナ素子を有するアンテナアレイによるMIMO(Multiple Input Multiple Output)技術が適用されてもよい。 MIMO (Multiple Input Multiple Output) technology using an antenna array having a plurality of antenna elements may be applied to all or part of the downlink and / or uplink in the wireless BH line and / or wireless access line.
 例えば、CN3-SN3間、SN3-SN3間、及び、SN3-端末装置7間のいずれか1つ以上の区間の下り回線及び/又は上り回線において、アンテナアレイを用いたビームフォーミングが行われてもよい。 For example, beam forming using an antenna array may be performed in the downlink and / or uplink in any one or more sections between CN3 and SN3, between SN3 and SN3, and between SN3 and terminal device 7. Good.
 なお、以下において、信号の「伝送」という用語は、信号の「中継」、「転送」、「伝搬」、「伝達」、「ルーティング」、又は、「フォワーディング」といった他の用語に相互に読み替えられてもよい。信号の「中継」は、信号の「ブリッジ」に読み替えられてもよい。 In the following, the term “transmission” of a signal is interchanged with other terms such as “relay”, “forwarding”, “propagation”, “transmission”, “routing”, or “forwarding” of the signal. May be. The “relay” of the signal may be read as “bridge” of the signal.
 また、信号の「送信」という用語には、信号の「フラッディング」、「ブロードキャスト」、「マルチキャスト」、又は、「ユニキャスト」等の意味が含まれてよい。回線の「接続」という用語は、有線及び/又は無線の通信リンクが「確立」又は「リンクアップ」した状態を意味する、と捉えてもよい。 Also, the term “transmission” of a signal may include the meaning of “flooding”, “broadcast”, “multicast”, or “unicast” of the signal. The term “connection” of a line may be taken to mean a state where a wired and / or wireless communication link is “established” or “linked up”.
 「装置」という用語は、「回路」、「デバイス」、「ユニット」、又は、「モジュール」といった用語に相互に読み替えられてもよい。「インタフェース(IF)」という用語は、「アダプタ」、「ボード」、「カード」、又は、「モジュール」、「チップ」といった用語に相互に読み替えられてもよい。 The term “apparatus” may be interchanged with the terms “circuit”, “device”, “unit”, or “module”. The term “interface (IF)” may be interchanged with the terms “adapter”, “board”, “card”, or “module”, “chip”.
 「端末装置」という用語は、移動局、移動端末、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、又は、クライアントといった用語に相互に読み替えられてもよい。 The term “terminal equipment” refers to mobile station, mobile terminal, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access The terms terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, or client may be used interchangeably.
 ノード3及び/又は端末装置7は、IoT(Internet of Things)機器であってもよい。IoTによって、様々な「物」に無線通信機能が搭載され得る。無線通信機能を搭載した様々な「物」は、無線アクセス回線及び/又は無線BH回線を介してバックボーンネットワーク5に接続して通信を行なうことができる。 The node 3 and / or the terminal device 7 may be an IoT (Internet of Things) device. With IoT, various “things” can be equipped with a wireless communication function. Various “things” equipped with a wireless communication function can communicate by connecting to the backbone network 5 via a wireless access line and / or a wireless BH line.
 例えば、IoT機器には、無線通信機能を具備したセンサデバイスやメータ(測定器)等が含まれてよい。センサデバイス及び/又はメータを搭載した監視カメラ及び/又は火災報知器のような、センシング機能及び/又はモニタ機能を有する機器がノード3及び/又は端末装置7に該当してもよい。したがって、BHネットワーク9は、例えば、センサネットワーク及び/又は監視ネットワークに該当してもよい。なお、IoT機器による無線通信は、MTC(Machine Type Communications)と称されることがある。そのため、IoT機器は、「MTCデバイス」と称されることがある。 For example, the IoT device may include a sensor device or meter (measuring instrument) having a wireless communication function. A device having a sensing function and / or a monitoring function such as a monitoring camera and / or a fire alarm equipped with a sensor device and / or meter may correspond to the node 3 and / or the terminal device 7. Therefore, the BH network 9 may correspond to, for example, a sensor network and / or a monitoring network. Note that wireless communication by an IoT device may be referred to as MTC (Machine Type Communication). For this reason, the IoT device may be referred to as an “MTC device”.
 <ノード3のプロトコル・スタックの一例>
 図2に、ノード3間の接続形態の一例を、個々のノード3のプロトコル・スタックと併せて示す。図2には、バックボーンネットワーク5に有線回線によって接続されたCN3と、CN3に対して、無線BH回線によってマルチホップ接続された2つのSN3と、が示されている。
<Example of protocol stack of node 3>
FIG. 2 shows an example of a connection form between the nodes 3 together with a protocol stack of each node 3. FIG. 2 shows CN3 connected to the backbone network 5 via a wired line, and two SN3s connected to CN3 via a multi-hop connection via a wireless BH line.
 なお、図2のCN3は、例えば図1のCN#0に対応し、図2の2つのSN3は、それぞれ、図1のSN#1及びSN#5に対応すると捉えてよい。また、SN#5には、無線アクセス回線によって端末装置7が接続され得る。 2 may correspond to, for example, CN # 0 in FIG. 1, and two SN3 in FIG. 2 may correspond to SN # 1 and SN # 5 in FIG. 1, respectively. Further, the terminal device 7 can be connected to the SN # 5 through a wireless access line.
 図2に示すように、ノード3のそれぞれは、例えば、物理(PHY)レイヤ(レイヤ1:L1)、MACレイヤ(レイヤ2:L2)、中継レイヤ、及び、レイヤ3(L3)以上の上位レイヤから構成されたプロトコル・スタックを有する。上位レイヤには、例えば、TCP/IPレイヤ、及び/又は、アプリケーションレイヤが含まれてよい。「TCP/IP」は、「Transmission Control Protocol/Internet Protocol」の略記である。 As shown in FIG. 2, each of the nodes 3 includes, for example, a physical (PHY) layer (layer 1: L1), a MAC layer (layer 2: L2), a relay layer, and an upper layer higher than the layer 3 (L3). A protocol stack composed of The upper layer may include, for example, a TCP / IP layer and / or an application layer. “TCP / IP” is an abbreviation for “Transmission Control Protocol / Internet Protocol”.
 「中継レイヤ」は、プロトコル・スタックにおいて、レイヤ2とレイヤ3との中間レイヤに位置するため、便宜的に「レイヤ2.5(L2.5)」と表記されてもよい。中継レイヤの処理に、既述の「アダプティブツリー経路制御」に関する処理、及び/又は、「IPT」に関する処理(又は制御)が含まれてよい。 Since the “relay layer” is located in an intermediate layer between the layer 2 and the layer 3 in the protocol stack, it may be expressed as “layer 2.5 (L2.5)” for convenience. The processing of the relay layer may include the processing related to “adaptive tree path control” and / or the processing (or control) related to “IPT”.
 「中継レイヤ」をレイヤ2とレイヤ3との中間レイヤに位置付けることで、既存のMACレイヤの処理を改変しなくてもよいため、「中継レイヤ」処理の実装が容易である。中継レイヤ処理は、ソフトウェア、ミドルウェア、ファームウェア、及び、ハードウェアの中から選択された1つ以上によって具現されてもよい。 Since the “relay layer” is positioned as an intermediate layer between the layer 2 and the layer 3, it is not necessary to modify the existing MAC layer process, so the “relay layer” process can be easily implemented. The relay layer process may be implemented by one or more selected from software, middleware, firmware, and hardware.
 ノード3の物理レイヤは、例えば、1つの有線接続(有線ポート)と、2つの無線接続(無線ポート)と、を提供し、図2には、便宜的に、これら3つのポートが3つの「PHY」ポートとして表されている。2つの無線ポートのうちの一方はBH回線用であり、2つの無線ポートのうちの他方はアクセス回線用である。「ポート」は、「インタフェース(IF)」に読み替えられてもよい。 The physical layer of the node 3 provides, for example, one wired connection (wired port) and two wireless connections (wireless ports). For convenience, in FIG. PHY "port. One of the two wireless ports is for a BH line, and the other of the two wireless ports is for an access line. “Port” may be read as “interface (IF)”.
 なお、図2においては、物理レイヤの3つのPHYポートとの対応関係が視覚的に理解し易いように、便宜的に、MACレイヤを3つに分割して示している。ただし、MACレイヤの処理は、各PHYポートに共通でよい。 In FIG. 2, for convenience, the MAC layer is divided into three parts so that the correspondence with the three PHY ports of the physical layer can be easily understood visually. However, the MAC layer processing may be common to each PHY port.
 図2において、下り信号の流れに着目した場合、バックボーンネットワーク5からCN#0において受信された下り信号は、CN#0の有線ポート(L1)、MACレイヤ(L2)、及び、中継レイヤ(L2.5)を経由して、BH回線用の無線ポートから下流のBH回線へ送信される。 In FIG. 2, when attention is paid to the flow of the downlink signal, the downlink signal received from the backbone network 5 at CN # 0 is transmitted to the CN # 0 wired port (L1), MAC layer (L2), and relay layer (L2). .5) is transmitted from the radio port for the BH line to the downstream BH line.
 CN#0がBH回線へ送信した下り信号は、次ホップであるSN#1におけるBH回線用の無線ポートにて受信され、SN#1のMACレイヤ及び中継レイヤを経由して、BH回線用の無線ポートから下流のBH回線へ送信される。 The downlink signal transmitted by CN # 0 to the BH line is received by the wireless port for the BH line in SN # 1, which is the next hop, and is transmitted to the BH line via the MAC layer and the relay layer of SN # 1. It is transmitted from the wireless port to the downstream BH line.
 SN#1が下流のBH回線へ送信した下り信号は、次ホップであるSN#5におけるBH回線用の無線ポートにて受信され、SN#5のMACレイヤを経由して、アクセス回線用の無線ポートから端末装置7へ送信される。BH回線からアクセス回線へ送信される下り信号は、中継レイヤを経由しなくてもよい。 The downlink signal transmitted by SN # 1 to the downstream BH line is received by the wireless port for the BH line in SN # 5, which is the next hop, and is wireless for the access line via the MAC layer of SN # 5. It is transmitted from the port to the terminal device 7. The downlink signal transmitted from the BH line to the access line may not pass through the relay layer.
 上り信号については、上述した下り信号の経路とは逆の経路を辿って、端末装置7からSN#5、SN#1、及び、CN#0を経由してバックボーンネットワーク5へ送信される。 The uplink signal is transmitted to the backbone network 5 from the terminal device 7 via SN # 5, SN # 1, and CN # 0 along the path opposite to the path of the downlink signal described above.
 <ノード3の構成例>
 (ノード3のハードウェア構成例)
 次に、図3を参照して、ノード3のハードウェア構成例について説明する。なお、図3に例示した構成例は、CN3及びSN3に共通でよい。図3に示すように、ノード3は、例えば、プロセッサ31、メモリ32、ストレージ33、入出力(I/O)装置34、無線IF35及び36、有線IF37、有線IF39、並びに、バス38を備えてよい。
<Configuration example of node 3>
(Example of hardware configuration of node 3)
Next, a hardware configuration example of the node 3 will be described with reference to FIG. The configuration example illustrated in FIG. 3 may be common to CN3 and SN3. As illustrated in FIG. 3, the node 3 includes, for example, a processor 31, a memory 32, a storage 33, an input / output (I / O) device 34, wireless IFs 35 and 36, a wired IF 37, a wired IF 39, and a bus 38. Good.
 なお、図3に例示したハードウェア構成例において、ハードウェアの増減が適宜に行なわれてもよい。例えば、任意のハードウェアブロックの追加や削除、分割、任意の組み合わせでの統合、バス38の追加又は削除等が、適宜に行なわれてよい。 Note that in the hardware configuration example illustrated in FIG. 3, the hardware may be increased or decreased as appropriate. For example, addition or deletion of an arbitrary hardware block, division, integration in an arbitrary combination, addition or deletion of the bus 38, and the like may be performed as appropriate.
 無線IF35、無線IF36、及び、有線IF37(又は、有線IF39)は、それぞれ、図2のプロトコル・スタックにおいて例示した2つの無線ポート(PHYポート)、及び、1つの有線ポートに対応すると捉えてよい。 The wireless IF 35, the wireless IF 36, and the wired IF 37 (or the wired IF 39) may be regarded as corresponding to the two wireless ports (PHY ports) and one wired port illustrated in the protocol stack of FIG. .
 プロセッサ31、メモリ32、ストレージ33、入出力装置34、無線IF35及び36、並びに、有線IF37及び39は、例えば、バス38に接続されて相互に通信することが可能である。バス38の数は、1つでもよいし複数でもよい。 The processor 31, the memory 32, the storage 33, the input / output device 34, the wireless IFs 35 and 36, and the wired IFs 37 and 39 are connected to the bus 38 and can communicate with each other, for example. The number of buses 38 may be one or plural.
 プロセッサ31は、ノード3に複数備えられてもよい。また、ノード3における処理は、1つのプロセッサ31によって実行されてもよいし、複数のプロセッサ31によって実行されてもよい。1つ又は複数のプロセッサ31において、複数の処理が、同時に、並列に、又は、逐次に実行されてもよいし、その他の手法によって実行されてもよい。なお、プロセッサ31は、シングルコアプロセッサでもよいし、マルチコアプロセッサでもよい。プロセッサ31は、1つ以上のチップを用いて実装されてよい。 A plurality of processors 31 may be provided in the node 3. Further, the processing in the node 3 may be executed by one processor 31 or may be executed by a plurality of processors 31. In one or a plurality of processors 31, a plurality of processes may be executed simultaneously, in parallel, or sequentially, or may be executed by other methods. The processor 31 may be a single core processor or a multi-core processor. The processor 31 may be implemented using one or more chips.
 ノード3が有する1つ又は複数の機能は、例示的に、プロセッサ31及びメモリ32等のハードウェアに、所定のソフトウェアを読み込ませることで実現される。なお、「ソフトウェア」は、「プログラム」、「アプリケーション」、「エンジン」、又は「ソフトウェアモジュール」といった他の用語に相互に読み替えられてもよい。 The one or more functions of the node 3 are realized by, for example, reading predetermined software into hardware such as the processor 31 and the memory 32. Note that “software” may be interchanged with other terms such as “program”, “application”, “engine”, or “software module”.
 例えば、プロセッサ31は、メモリ32及びストレージ33の一方又は双方に記憶されたデータの読み出し及び書き込みの一方又は双方を制御することで、プログラムを読み込んで実行する。なお、プログラムは、例えば、無線IF35、無線IF36、及び、有線IF37の少なくとも1つによる電気通信回線を介した通信によって、ノード3に提供されてもよい。 For example, the processor 31 reads and executes a program by controlling one or both of reading and writing of data stored in one or both of the memory 32 and the storage 33. Note that the program may be provided to the node 3 by communication via an electric communication line using at least one of the wireless IF 35, the wireless IF 36, and the wired IF 37, for example.
 プログラムは、ノード3における処理の全部又は一部をコンピュータに実行させるプログラムであってよい。プログラムに含まれるプログラムコードの実行に応じて、ノード3の1つ以上の機能が実現される。プログラムコードの全部又は一部は、メモリ32又はストレージ33に記憶されてもよいし、オペレーティングシステム(OS)の一部として記述されてもよい。 The program may be a program that causes a computer to execute all or part of the processing in the node 3. One or more functions of the node 3 are realized according to the execution of the program code included in the program. All or a part of the program code may be stored in the memory 32 or the storage 33, or may be described as a part of the operating system (OS).
 例えば、プログラムは、図4及び図5により後述する機能ブロックを具現するプログラムコードを含んでよく、また、図6及び図12~図15により後述するフローチャートのいずれか1つ以上を実行するプログラムコードを含んでもよい。そのようなプログラムコードを含むプログラムは、便宜的に、「無線経路制御プログラム」と称されてよい。 For example, the program may include a program code that implements a functional block described later with reference to FIGS. 4 and 5, and a program code that executes any one or more of the flowcharts described later with reference to FIGS. 6 and 12 to 15. May be included. A program including such a program code may be referred to as a “wireless routing control program” for convenience.
 プロセッサ31は、処理部の一例であり、例えば、OSを動作させてコンピュータ全体を制御する。プロセッサ31は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)を用いて構成されてもよい。 The processor 31 is an example of a processing unit, and controls the entire computer by operating an OS, for example. The processor 31 may be configured using a central processing unit (CPU) including a peripheral device interface, a control device, an arithmetic device, a register, and the like.
 また、プロセッサ31は、例えば、プログラム及びデータの一方又は双方を、ストレージ33からメモリ32に読み出して各種の処理を実行する。 Further, for example, the processor 31 reads out one or both of a program and data from the storage 33 to the memory 32 and executes various processes.
 メモリ32は、コンピュータ読み取り可能な記録媒体の一例であり、例えば、ROM、EPROM、EEPROM、RAM、SSDなどの少なくとも1つを用いて構成されてよい。なお、「ROM」は、「Read Only Memory」の略称であり、「EPROM」は、「Erasable Programmable ROM」の略称である。「EEPROM」は、「Electrically Erasable Programmable ROM」の略称であり、「RAM」は、「Random Access Memory」の略称であり、「SSD」は、「Solid State Drive」の略称である。 The memory 32 is an example of a computer-readable recording medium, and may be configured using at least one of ROM, EPROM, EEPROM, RAM, SSD, and the like, for example. “ROM” is an abbreviation for “Read Only Memory”, and “EPROM” is an abbreviation for “Erasable Programmable ROM”. “EEPROM” is an abbreviation of “Electrically Erasable Programmable ROM”, “RAM” is an abbreviation of “Random Access Memory”, and “SSD” is an abbreviation of “Solid State Drive”.
 メモリ32は、レジスタ、キャッシュ、メインメモリ、ワークメモリ、又は、主記憶装置と呼ばれてもよい。 The memory 32 may be called a register, a cache, a main memory, a work memory, or a main storage device.
 ストレージ33は、コンピュータ読み取り可能な記録媒体の一例であり、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ(HDD)、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フレキシブルディスク、磁気ストリップ等の少なくとも1つを用いて構成されてもよい。ストレージ33は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ32及びストレージ33の一方又は双方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 33 is an example of a computer-readable recording medium, such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disk drive (HDD), a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, (Blu-ray (registered trademark) disk), smart card, flash memory (for example, card, stick, key drive), flexible disk, magnetic strip, and the like. The storage 33 may be called an auxiliary storage device. The above-described recording medium may be, for example, a database including one or both of the memory 32 and the storage 33, a server, and other suitable media.
 入出力(I/O)装置34は、ノード3の外部から信号の入力を受け付ける入力デバイス、及び、ノード3から外部へ信号を出力する出力デバイスの一例である。入力デバイスには、例示的に、キーボード、マウス、マイクロフォン、スイッチ、ボタン、及び、センサの1つ以上が含まれてよい。出力デバイスには、例示的に、ディスプレイ、スピーカ、及び、LED(Light Emitting Diode)のような発光デバイスの1つ以上が含まれてよい。 The input / output (I / O) device 34 is an example of an input device that receives a signal input from the outside of the node 3 and an output device that outputs a signal from the node 3 to the outside. Input devices may illustratively include one or more of a keyboard, mouse, microphone, switch, button, and sensor. The output device may illustratively include one or more of a light emitting device such as a display, a speaker, and an LED (Light Emitting Diode).
 ボタンには、例えば、電源ボタン及び/又はリセットボタンが含まれてよい。電源ボタンは、例えば、ノード3の起動及びシャットダウンのために操作される。リセット(又はリルート)ボタンは、例えば、ツリー経路の意図的なリセット、及び/又は、再構築(又は、リルート)を指示するために操作される。 The button may include, for example, a power button and / or a reset button. The power button is operated for starting and shutting down the node 3, for example. The reset (or reroute) button is operated, for example, to indicate an intentional reset and / or rebuild (or reroute) of the tree path.
 なお、入出力装置34は、入力と出力とで個別の構成でもよい。また、入出力装置34は、例えば、タッチパネル式のディスプレイのように、入力と出力とが一体の構成であってもよい。 The input / output device 34 may be configured separately for input and output. Further, the input / output device 34 may have a configuration in which input and output are integrated, such as a touch panel display.
 無線IF35は、例示的に、端末装置7との間のアクセス回線における無線信号の送受信を行う。無線IF35には、例えば、1つ以上のアンテナ350、図示を省略した、ベースバンド(BB)信号処理回路、MAC処理回路、アップコンバータ、ダウンコンバータ、及び、増幅器が含まれてよい。 The wireless IF 35 exemplarily transmits and receives a wireless signal on the access line with the terminal device 7. The wireless IF 35 may include, for example, one or more antennas 350, a baseband (BB) signal processing circuit, a MAC processing circuit, an up converter, a down converter, and an amplifier (not shown).
 無線IF35のBB信号処理回路には、例示的に、送信信号を符号化及び変調するための符号化回路及び変調回路、並びに、受信信号を復調及び復号するための復調回路及び復号回路が含まれてよい。 The BB signal processing circuit of the wireless IF 35 illustratively includes an encoding circuit and a modulation circuit for encoding and modulating a transmission signal, and a demodulation circuit and a decoding circuit for demodulating and decoding a reception signal. It's okay.
 無線IF36は、例示的に、他のSN3との間のBH回線における無線信号の送受信を行う。無線IF36には、無線IF35と同様に、1つ以上のアンテナ360、図示を省略した、BB信号処理回路、MAC処理回路、アップコンバータ、ダウンコンバータ、及び、増幅器が含まれてよい。 The wireless IF 36 performs transmission / reception of a wireless signal on a BH line with another SN 3 exemplarily. Similarly to the wireless IF 35, the wireless IF 36 may include one or more antennas 360, a BB signal processing circuit, a MAC processing circuit, an up converter, a down converter, and an amplifier that are not shown.
 無線IF36のBB信号処理回路には、例示的に、送信信号を符号化及び変調するための符号化回路及び変調回路、並びに、受信信号を復調及び復号するための復調回路及び復号回路が含まれてよい。 The BB signal processing circuit of the wireless IF 36 includes, for example, an encoding circuit and a modulation circuit for encoding and modulating a transmission signal, and a demodulation circuit and a decoding circuit for demodulating and decoding a reception signal. It's okay.
 なお、無線IF35のアンテナ350及び無線IF36のアンテナ360を、それぞれ、「アクセス回線アンテナ350」及び「BH回線アンテナ360」と称することがある。アクセス回線アンテナ350及びBH回線アンテナ360の一方又は双方は、無指向性のオムニアンテナであってもよいし、指向性を制御可能なアンテナアレイであってもよい。複数の指向性アンテナを有するアンテナアレイによって、ビームフォーミングが実施されてもよい。 The antenna 350 of the wireless IF 35 and the antenna 360 of the wireless IF 36 may be referred to as “access line antenna 350” and “BH line antenna 360”, respectively. One or both of the access line antenna 350 and the BH line antenna 360 may be an omnidirectional omni antenna or an antenna array in which directivity can be controlled. Beam forming may be performed by an antenna array having a plurality of directional antennas.
 複数の指向性アンテナは、例えば、それぞれ異なる方向に向けて配置されていてもよい。例えば、6本の指向性アンテナが、60度ずつずらして配置されてもよい。BHネットワーク9において後述のメッシュリンクを形成する際に、ノード3において、通信相手の他のノード3と通信が可能なアンテナが複数存在した場合、通信品質(一例として、利得又は電力)が最良を示すアンテナによって他のノード3とリンクアップし、リンクアップ後のツリー経路の通信においても、当該アンテナの使用を継続することとしてもよい。ただし、リンクアップに使用するアンテナと、リンクアップ後のツリー経路の通信に使用するアンテナと、は、異なってもよい。 The plurality of directional antennas may be arranged in different directions, for example. For example, six directional antennas may be arranged so as to be shifted by 60 degrees. When forming a mesh link to be described later in the BH network 9, if there are a plurality of antennas that can communicate with the other node 3 of the communication partner in the node 3, the communication quality (for example, gain or power) is the best. It is also possible to link up with another node 3 using the indicated antenna and continue using the antenna even in the communication of the tree path after the link up. However, the antenna used for link-up may be different from the antenna used for tree path communication after link-up.
 有線IF37は、例示的に、バックボーンネットワーク5、及び/又は、上流ノード3との間で有線による信号の送受信を行う。また、有線IF39は、例示的に、端末装置7、及び/又は、下流ノード3との間で有線による信号の送受信を行う。有線IF37及び39には、例えば、イーサネット(登録商標)規格に準拠したネットワークインタフェースが用いられてよい。なお、有線IF37及び39は、少なくともCN3に備えられていればよく、SN3には備えられなくてもよい(別言すると、SN3にとってはオプションであってもよい)。ただし、BH回線の一部が有線接続される場合、有線IF37及び39が当該有線接続に用いられてよい。 The wired IF 37 exemplarily transmits / receives a wired signal to / from the backbone network 5 and / or the upstream node 3. In addition, the wired IF 39 exemplarily transmits and receives a signal with a wire between the terminal device 7 and / or the downstream node 3. For the wired IFs 37 and 39, for example, a network interface conforming to the Ethernet (registered trademark) standard may be used. The wired IFs 37 and 39 may be provided at least in the CN3 and may not be provided in the SN3 (in other words, the SN3 may be optional). However, when a part of the BH line is wired, the wired IFs 37 and 39 may be used for the wired connection.
 ノード3は、マイクロプロセッサ、DSP、ASIC、PLD、FPGAなどのハードウェアを含んで構成されてもよい。例えば、プロセッサ31は、これらのハードウェアの少なくとも1つを含んで実装されてよい。当該ハードウェアにより、図4及び図5にて後述する各機能ブロックの一部又は全てが実現されてよい。 The node 3 may be configured to include hardware such as a microprocessor, a DSP, an ASIC, a PLD, and an FPGA. For example, the processor 31 may be implemented including at least one of these hardware. Some or all of the functional blocks described later with reference to FIGS. 4 and 5 may be realized by the hardware.
 なお、「DSP」は、「Digital Signal Processor」の略称であり、「ASIC」は、「Application Specific Integrated Circuit」の略称である。「PLD」は、「Programmable Logic Device」の略称であり、「FPGA」は、「Field Programmable Gate Array」の略称である。 “DSP” is an abbreviation for “Digital Signal Processor”, and “ASIC” is an abbreviation for “Application Specific Integrated Circuit”. “PLD” is an abbreviation for “Programmable Logic Device”, and “FPGA” is an abbreviation for “Field Programmable Gate Array”.
 (ノード3の機能構成例)
 次に、図4及び図5を参照して、ノード3の機能的な構成例について説明する。図4は、第1の実施形態に係るノード3の機能的な構成例を示すブロック図であり、図5は、図4に例示した制御部の機能的な構成例を示すブロック図である。
(Example of functional configuration of node 3)
Next, a functional configuration example of the node 3 will be described with reference to FIGS. 4 and 5. FIG. 4 is a block diagram illustrating a functional configuration example of the node 3 according to the first embodiment, and FIG. 5 is a block diagram illustrating a functional configuration example of the control unit illustrated in FIG. 4.
 図4に示すように、ノード3は、機能的な構成に着目した場合、無線アクセス回線用の無線通信部301、無線BH回線用の無線通信部302、有線通信部303、制御部304、及び、記憶部305を備えてよい。 As shown in FIG. 4, when focusing on the functional configuration, the node 3 has a wireless communication unit 301 for a wireless access line, a wireless communication unit 302 for a wireless BH line, a wired communication unit 303, a control unit 304, and The storage unit 305 may be provided.
 無線アクセス回線用の無線通信部301は、図3に例示した無線IF35及びアクセス回線アンテナ350を含む機能ブロックである。無線BH回線用の無線通信部302は、図3に例示した無線IF36及びBH回線アンテナ360を含む機能ブロックである。 The wireless communication unit 301 for the wireless access line is a functional block including the wireless IF 35 and the access line antenna 350 illustrated in FIG. The wireless communication unit 302 for the wireless BH line is a functional block including the wireless IF 36 and the BH line antenna 360 illustrated in FIG.
 有線通信部303は、図3に例示した有線IF37及び39を含む機能ブロックである。また、記憶部305は、図3に例示した、メモリ32及びストレージ33の一方又は双方を含む機能ブロックである。 The wired communication unit 303 is a functional block including the wired IFs 37 and 39 illustrated in FIG. The storage unit 305 is a functional block including one or both of the memory 32 and the storage 33 illustrated in FIG.
 無線通信部301は、例えば、端末装置7宛の制御信号及び/又はデータ信号を送信する送信部と、端末装置7が送信した制御信号及び/又はデータ信号を受信する受信部と、を備えてよい。 The wireless communication unit 301 includes, for example, a transmission unit that transmits a control signal and / or a data signal addressed to the terminal device 7, and a reception unit that receives a control signal and / or a data signal transmitted by the terminal device 7. Good.
 無線通信部302は、例えば、他のノード3との間においてリンクアップしたBH回線へ制御信号及び/又はデータ信号を送信する送信部と、リンクアップした無線リンクから制御信号及び/又はデータ信号を受信する受信部と、を備えてよい。 The wireless communication unit 302, for example, transmits a control signal and / or a data signal to a BH line linked up with another node 3, and a control signal and / or a data signal from the linked up wireless link. And a receiving unit for receiving.
 有線通信部303は、例えば、バックボーンネットワーク5へ制御信号及び/又はデータ信号を送信する送信部と、バックボーンネットワーク5から制御信号及び/又はデータ信号を受信する受信部と、を備えてよい。 The wired communication unit 303 may include, for example, a transmission unit that transmits control signals and / or data signals to the backbone network 5 and a reception unit that receives control signals and / or data signals from the backbone network 5.
 制御部304は、ノード3の動作を統括的に制御する。例えば、制御部304は、無線通信部301、無線通信部302、及び、有線通信部303のいずれか1つ以上に制御信号を与えることによって、無線アクセス回線、無線BH回線、及び、有線回線のいずれか1つ以上を介した通信を制御する。 The control unit 304 comprehensively controls the operation of the node 3. For example, the control unit 304 gives a control signal to any one or more of the wireless communication unit 301, the wireless communication unit 302, and the wired communication unit 303, so that the wireless access line, the wireless BH line, and the wired line Control communication via any one or more.
 制御部304は、例えば図3に示したプロセッサ31が記憶部305に記憶されたプログラムを読み取り、読み取ったプログラムを実行することによって具現される。 The control unit 304 is implemented by, for example, the processor 31 illustrated in FIG. 3 reading a program stored in the storage unit 305 and executing the read program.
 記憶部305は、例えば、上述したノード識別情報、及び、後述の経路メトリックを記憶する。後述のように、経路構築パケットに送信元ノード3の送信電力値が含められない場合には、送信元ノード3の送信電力値が記憶部305に記憶されてよい。 The storage unit 305 stores, for example, the above-described node identification information and a route metric described later. As will be described later, when the transmission power value of the transmission source node 3 is not included in the path construction packet, the transmission power value of the transmission source node 3 may be stored in the storage unit 305.
 (制御部304の構成例)
 図5に示すように、制御部304は、例示的に、スキャン処理部341と、ノード管理部342と、ツリー経路制御部343と、IPT制御部344と、を備えてよい。
(Configuration example of control unit 304)
As illustrated in FIG. 5, the control unit 304 may include a scan processing unit 341, a node management unit 342, a tree path control unit 343, and an IPT control unit 344, for example.
 スキャン処理部341は、例えば、ノード3の起動に応じて当該ノード3の周辺(近傍)に位置する他のノード3の存在をスキャンして発見する。スキャンは、パッシブスキャンでもよいしアクティブスキャンでもよい。パッシブスキャンを例にすると、スキャン処理部341において、ビーコン信号が生成され、無線通信部302を通じて周辺エリアに送信される。 The scan processing unit 341 scans and discovers the presence of another node 3 located around (near) the node 3 in response to the activation of the node 3, for example. The scan may be a passive scan or an active scan. Taking the passive scan as an example, the scan processing unit 341 generates a beacon signal and transmits it to the surrounding area through the wireless communication unit 302.
 なお、ビーコン信号を受信可能な位置に存在するノード3を、「周辺ノード3」又は「近傍(neighboring)ノード3」と称する。 Note that the node 3 existing at a position where the beacon signal can be received is referred to as a “neighboring node 3” or a “neighboring node 3”.
 ビーコン信号には、例示的に、SSID(Service Set Identifier)又はBSSID(Basic SSID)、ビーコン信号の送信周期、及び、使用可能なチャネル(周波数)をそれぞれ明示的又は暗示的に示す情報が含まれてよい。これらの情報は、便宜的に、「BSS(Basic Service Set)関連情報と称されてよい。 For example, the beacon signal includes information that explicitly or implicitly indicates an SSID (Service Set Identifier) or BSSID (Basic SSID), a beacon signal transmission period, and a usable channel (frequency). It's okay. For convenience, these pieces of information may be referred to as “BSS (Basic Service Set) related information.
 なお、アクティブスキャンの場合には、プローブリクエスト信号が、スキャン処理部341において生成されて、無線通信部302を通じて周辺エリアに送信されてよい。プローブリクエスト信号は、例えば、周辺ノード3にビーコン信号の送信を促すために用いられる。パッシブスキャンにおいてビーコン信号が一定時間内に受信されない場合に、アクティブスキャンが実行されてもよい。 In the case of active scanning, a probe request signal may be generated in the scan processing unit 341 and transmitted to the surrounding area through the wireless communication unit 302. The probe request signal is used, for example, to prompt the peripheral node 3 to transmit a beacon signal. An active scan may be performed when a beacon signal is not received within a certain time in a passive scan.
 ノード管理部342は、例えば、スキャン処理部341によるスキャンによって発見された周辺ノード3の情報(例えば、ノード識別情報及びBSS関連情報)を記憶部305に記憶する。個々のノード3において、周辺ノード3の情報(以下「周辺ノード情報」と略称することがある)が記憶部305に記憶されることによって、後述するように、BHネットワーク9においてノード3間を複数の無線リンクによってメッシュ状にリンクするメッシュリンクが構築される。 For example, the node management unit 342 stores, in the storage unit 305, information on the peripheral node 3 discovered by the scan by the scan processing unit 341 (for example, node identification information and BSS related information). In each node 3, information on the peripheral node 3 (hereinafter, sometimes referred to as “peripheral node information”) is stored in the storage unit 305, so that a plurality of nodes 3 are connected in the BH network 9 as will be described later. A mesh link linked in a mesh shape is constructed by the wireless links.
 「メッシュリンクが構築」されることは、相互に無線通信が可能なエリア内に位置するノード3間に利用可能な複数の無線リンクが確立する、又はリンクアップする、ことを意味すると捉えてもよい。そのため、周辺ノード情報は、ノード3間において利用可能な無線リンクの情報を示すと捉えてもよい。「無線リンクの情報」は、便宜的に、「リンク情報」と略称されてもよい。 “Mesh link is established” may mean that a plurality of available wireless links are established or linked up between nodes 3 located in an area where wireless communication is possible with each other. Good. Therefore, the peripheral node information may be regarded as indicating information on a radio link that can be used between the nodes 3. “Radio link information” may be abbreviated as “link information” for convenience.
 ツリー経路制御部343は、メッシュリンクにおいて経路制御パケットを伝送することによって、メッシュリンク上でのツリー経路の構築及び更新を制御する。ツリー経路の構築及び更新は、例えば後述するように、メッシュリンクを成す複数の無線リンクのうち、ツリー経路に登録する(又はツリー経路から除外する)無線リンクの情報を選択する(又は当該選択を解除する)ことによって行われてよい。 The tree path control unit 343 controls the construction and update of the tree path on the mesh link by transmitting a path control packet on the mesh link. For the construction and update of the tree path, for example, as will be described later, out of a plurality of radio links forming a mesh link, information on a radio link registered in the tree path (or excluded from the tree path) is selected (or the selection is performed). (Cancel).
 ツリー経路に無線リンクを「登録」することは、ツリー経路に登録するリンク情報を「選択」、「有効化」、「アクティベイト」、又は、「イネーブル」すること、と捉えてもよい。登録された無線リンクをツリー経路から除外することは、ツリー経路に登録されたリンク情報を「選択解除」、「無効化」、「ディアクティベイト」、又は、「ディゼーブル」すること、と捉えてもよい。 “Registering” a wireless link in the tree path may be regarded as “selecting”, “validating”, “activating”, or “enabling” the link information registered in the tree path. Excluding a registered wireless link from the tree path is considered as “deselecting”, “invalidating”, “deactivating”, or “disabling” the link information registered in the tree path. Also good.
 IPT制御部344は、例えば、周波数リユース間隔に応じた送信周期に従ってBH回線用の無線通信部302によるパケット送信タイミングを制御する。 The IPT control unit 344 controls the packet transmission timing by the wireless communication unit 302 for the BH line, for example, according to the transmission cycle corresponding to the frequency reuse interval.
 (ツリー経路制御部343の構成例)
 図5に例示したように、ツリー経路制御部343には、例えば、経路制御パケット生成部3431、経路メトリック計算部3432、及び、ツリー経路更新部3433が備えられてよい。
(Configuration Example of Tree Path Control Unit 343)
As illustrated in FIG. 5, the tree route control unit 343 may include, for example, a route control packet generation unit 3431, a route metric calculation unit 3432, and a tree route update unit 3433.
 経路制御パケット生成部3431は、経路制御パケットを生成する。経路制御パケットは、BHネットワーク9において、CN3において生成されてCN3を起点に各ノード3に伝搬させる制御信号の一例である。 The route control packet generator 3431 generates a route control packet. The route control packet is an example of a control signal that is generated in the CN 3 in the BH network 9 and propagates to each node 3 starting from the CN 3.
 例えば、CN3は、当該CN3においてリンクアップしている無線リンクのそれぞれへ制御信号をフラッディングする。SN3は、当該SN3においてリンクアップしている無線リンクの何れかから制御信号を受信した場合、当該制御信号を当該SN3においてリンクアップしている無線リンクのそれぞれへフラッディングする。このように、CN3から送信された制御信号は、メッシュリンクを、順次、あるいは連鎖的に、伝搬又は伝達する。 For example, CN3 floods a control signal to each of the radio links linked up in CN3. When SN3 receives a control signal from any of the radio links linked up in SN3, SN3 floods the control signal to each of the radio links linked up in SN3. As described above, the control signal transmitted from the CN 3 propagates or transmits the mesh link sequentially or sequentially.
 なお、CN3は、制御信号の送信のトリガとなるイベントが発生するまで無線リンクのリンクアップ状態を維持したまま当該イベントを待ち受ける。イベントについては図12等で後述する。そして、イベントが発生すると、CN3は、リンクアップ状態が維持された無線リンクを用いて制御信号を送信する。 The CN 3 waits for the event while maintaining the link-up state of the radio link until an event that triggers transmission of the control signal occurs. The event will be described later with reference to FIG. When an event occurs, CN3 transmits a control signal using a radio link in which the link-up state is maintained.
 同様に、SN3は、CN3又は他のSN3との無線リンクのリンクアップ状態を維持したまま制御信号の到来(受信)を待ち受ける。そして、リンクアップ状態の無線リンクから制御信号を受信すると、リンクアップ状態が維持された他の無線リンクに制御信号を送信する。 Similarly, SN3 waits for the arrival (reception) of the control signal while maintaining the link-up state of the wireless link with CN3 or other SN3. Then, when a control signal is received from the radio link in the link up state, the control signal is transmitted to another radio link in which the link up state is maintained.
 なお、CN3及びSN3は、ツリー経路の構築後においても、メッシュリンクを成す無線リンクのリンクアップ状態を維持した状態で、イベントの発生及び/又は制御信号(例えば、経路構築パケット)の受信を待ち受けてよい。 Note that CN3 and SN3 wait for the occurrence of an event and / or reception of a control signal (for example, a path construction packet) while maintaining the link-up state of the wireless link forming the mesh link even after the construction of the tree path. It's okay.
 SN3は、リンクアップ状態が維持された他の無線リンクへ送信する制御信号に、他のSN3に伝達する情報を付加してよい。制御信号に付加される情報の非限定的な一例は、経路メトリック計算部3432によって計算された経路メトリックである。また、SN3は、当該SN3においてリンクアップしている無線リンクのうち、制御信号を受信した無線リンクについては制御信号の送信先候補から除外してもよい。これにより、制御信号が、不必要に、あるいは冗長に、メッシュリンクを伝達されることを抑制できる。 SN3 may add information to be transmitted to another SN3 to a control signal transmitted to another radio link in which the link-up state is maintained. A non-limiting example of information added to the control signal is a route metric calculated by the route metric calculation unit 3432. Further, among the wireless links that are linked up in SN3, SN3 may exclude the wireless link that has received the control signal from the control signal transmission destination candidates. Thereby, it can suppress that a control signal is transmitted to a mesh link unnecessarily or redundantly.
 経路制御パケットには、例示的に、経路構築パケットと、リセットパケットと、が含まれてよい。これらのパケットの種別は、例えば、パケットヘッダのタイプ値によって識別されてよい。 For example, the route control packet may include a route construction packet and a reset packet. These packet types may be identified by, for example, the type value of the packet header.
 経路構築パケットは、例えば、ツリー経路を構築又は更新する際に送信されるパケットである。経路構築パケットには、当該経路構築パケットが伝搬したノード3のそれぞれにおいて計算された経路メトリックが累積的に含められてよい。例えば、ノード3は、コアノードから自ノードの直前のノードまでの経路メトリックを経路構築パケットに含めて送信してもよい。 The route construction packet is, for example, a packet transmitted when constructing or updating a tree route. The route construction packet may include cumulatively the route metrics calculated in each of the nodes 3 through which the route construction packet has propagated. For example, the node 3 may transmit the path metric including the path metric from the core node to the node immediately before the self node.
 経路構築パケットを受信したSN3は、累積的な経路メトリックを基に、メッシュリンクを成す、周辺ノード3との間で利用可能な無線リンクのうち、ツリー経路に登録する無線リンクの情報を選択する。 The SN 3 that has received the path construction packet selects radio link information to be registered in the tree path from among the radio links that form a mesh link and can be used with the neighboring nodes 3 based on the cumulative path metric. .
 リセットパケットは、例えば、CN3がSN3に対して、メッシュリンクにおいて構築されたツリー経路のクリアを要求する際に送信されるパケットである。リセットパケットを受信したSN3は、ツリー経路に選択している無線リンクの情報の選択を解除する。 The reset packet is, for example, a packet that is transmitted when CN 3 requests SN 3 to clear the tree path constructed in the mesh link. The SN 3 that has received the reset packet cancels the selection of the information on the radio link selected for the tree path.
 経路メトリック計算部3432は、例えば、受信した経路構築パケットの送信元である周辺ノード3との間の無線リンクの伝搬品質指標を計算し、受信した経路構築パケットに含められている経路メトリックに、計算結果を加えることで新経路メトリックを求める。 The route metric calculation unit 3432 calculates, for example, a propagation quality indicator of a radio link with the peripheral node 3 that is a transmission source of the received route construction packet, and the route metric included in the received route construction packet includes A new path metric is obtained by adding the calculation result.
 ノード3間の無線リンクの伝搬品質指標には、例示的に、RSSI(Received Signal Strength Indicator)が用いられてよい。例えば、ノード3間のRSSIを一定時間間隔で均一サンプリングした値の系列をRn(nは1以上の整数)と表し、下記の式(1)によって、RSSIの逐次平均(系列)An[dB]を求める。なお、式(1)は、あくまでも例示であって、他の数式を用いてRSSIの逐次平均が求められてもよい。 For example, RSSI (Received Signal Signal Strength Indicator) may be used as the propagation quality indicator of the radio link between the nodes 3. For example, a series of values obtained by uniformly sampling RSSI between nodes 3 at a constant time interval is represented as Rn (n is an integer of 1 or more), and the RSSI sequential average (series) An [dB] is expressed by the following equation (1). Ask for. Note that equation (1) is merely an example, and the RSSI sequential average may be obtained using another equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)によって表される逐次平均Anは、「n」の値が大きくなるにつれて当該確率過程の平均値に収束する。「n」が、例えば、リセットパケットの送信(又は受信)後の経路構築パケットの送信回数(又は受信回数)を表すと捉えれば、回数nの増加に応じて、ノード3間のRSSIの逐次平均Anは一定値に収束する。したがって、経路構築パケットの送信によって構築されるツリー経路は、漸近的に安定した経路に収束する。 The sequential average An represented by the equation (1) converges to the average value of the stochastic process as the value of “n” increases. If “n” represents, for example, the number of transmissions (or the number of receptions) of the route construction packet after the transmission (or reception) of the reset packet, the RSSI sequential average between the nodes 3 according to the increase in the number n. An converges to a constant value. Therefore, the tree path constructed by transmitting the path construction packet converges asymptotically to a stable path.
 また、経路メトリック計算部3432は、式(1)によって計算したRSSIの逐次平均Anを用いて、例えば、経路構築パケットの送信元ノード3との間の無線リンクの電波伝搬損失(「パスロス」と称されてもよい)[dB]を下記の式(2)によって計算してよい。 Further, the route metric calculation unit 3432 uses, for example, the radio wave propagation loss (“path loss”) of the wireless link with the transmission source node 3 of the route construction packet using the RSSI sequential average An calculated by the equation (1). [DB] may be calculated by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、式(2)において、「TXPower」は、経路構築パケットの送信元ノード3の送信電力を表す。送信元ノード3の送信電力値は、個々のノード3において既知の値として例えば記憶部305に予め記憶されていてもよいし、送信元ノード3において経路構築パケットに含められてもよい。 In Expression (2), “TXPower” represents the transmission power of the source node 3 of the path construction packet. The transmission power value of the transmission source node 3 may be stored in advance in, for example, the storage unit 305 as a known value in each node 3, or may be included in the path construction packet in the transmission source node 3.
 そして、経路メトリック計算部3432は、式(2)によって計算したパスロスを、受信した経路構築パケットに含まれる累積的な経路メトリックに加算することで、新たな経路メトリックを求める。 Then, the route metric calculation unit 3432 obtains a new route metric by adding the path loss calculated by Expression (2) to the cumulative route metric included in the received route construction packet.
 したがって、経路メトリックは、CN3と1つ以上のSN3との間の無線リンクのパスロスの和を表す。経路構築パケットの受信毎に計算された経路メトリックは、例えば、記憶部305に記憶される。記憶部305に記憶された経路メトリックは、リセットパケットの受信によって例えば最大値に初期化されてよい。 Therefore, the path metric represents the sum of the path loss of the radio link between CN3 and one or more SN3. The route metric calculated every time the route construction packet is received is stored in the storage unit 305, for example. The path metric stored in the storage unit 305 may be initialized to a maximum value, for example, by receiving a reset packet.
 ツリー経路更新部3433は、例えば、経路メトリック計算部3432によって計算された新経路メトリックが旧経路メトリックよりも小さい場合に、周辺ノード情報において新経路メトリックに対応する上流の無線リンクを有効なツリー経路に選択する。 For example, when the new route metric calculated by the route metric calculation unit 3432 is smaller than the old route metric, the tree route update unit 3433 sets the upstream wireless link corresponding to the new route metric in the peripheral node information as an effective tree route. Select
 例えば、SN3において、異なる経路のそれぞれから経路構築パケットが受信された場合、経路構築パケットのそれぞれが伝搬した1つ以上の無線リンクの経路メトリックが、異なる経路の別に、経路メトリック計算部3432において計算される。 For example, in SN3, when a route construction packet is received from each of different routes, the route metric of one or more wireless links propagated by each of the route construction packets is calculated by the route metric calculation unit 3432 separately for different routes. Is done.
 ツリー経路更新部3433は、異なる経路の別に計算された経路メトリックに基づいて、当該SNにおいてリンクアップした無線リンクのうち、経路構築パケットを受信した異なる経路の1つに対応する無線リンクをデータ信号の伝送に用いる経路に選択する。 Based on the path metric calculated separately for different paths, the tree path update unit 3433 selects a radio link corresponding to one of the different paths that received the path construction packet from the radio links linked up in the SN. Select the route to be used for transmission.
 メッシュリンクにおいて構築されるツリー経路は、ツリー構造であるため、個々のSN3に対する上流ノード3は必ず1つである。したがって、ツリー経路更新部3433は、例えば、メッシュリンクにおいて上流ノード3との間の無線リンク(リンク情報)を、ツリー経路に登録する無線リンクに選択するか、あるいは選択を解除するかによって、ツリー経路を構築又は更新できる。 Since the tree path constructed in the mesh link has a tree structure, there is always one upstream node 3 for each SN3. Therefore, the tree path update unit 3433 selects, for example, a radio link (link information) with the upstream node 3 in the mesh link as a radio link registered in the tree path, or cancels the selection. A route can be constructed or updated.
 そのため、ツリー経路更新部3433は、SN3においてリンクアップした無線リンクの1つをツリー経路に選択する選択部の一例であり、また、当該選択を解除する解除部の一例でもある。 Therefore, the tree path update unit 3433 is an example of a selection unit that selects one of the radio links linked up in SN3 as a tree path, and is also an example of a cancellation unit that cancels the selection.
 上述のように、SN3のそれぞれが、上流ノード3との間の無線リンクを選択することは、当該SN3においてリンクアップしている(メッシュリンクを成す)無線リンクのうちの1つをデータ信号の伝送経路に選択することに相当する、と捉えてもよい。 As described above, when each of the SNs 3 selects a radio link with the upstream node 3, one of the radio links that are linked up in the SN 3 (form a mesh link) is transmitted to the data signal. It may be understood that this corresponds to selecting a transmission path.
 あるいは、SN3のそれぞれが、上流ノード3との間の無線リンクを選択することは、複数のノード3の間にリンクアップした複数の無線リンクの少なくとも一部を、特定のノード(例えば、CN3)を頂点に有するツリー経路を成す無線リンクセットの要素(エレメント又はコンポーネント)に選択することに相当する、と捉えてもよい。 Alternatively, each of the SNs 3 selects a radio link between the upstream node 3 and at least a part of a plurality of radio links linked up between the plurality of nodes 3 to a specific node (eg, CN3). It may be understood that this corresponds to selecting an element (element or component) of a radio link set that forms a tree path having as a vertex.
 また、SN3のそれぞれにおいて、無線リンクの選択及び解除(別言すると、ツリー経路に選択する無線リンクの更新)は、経路構築パケットの受信毎に計算された経路メトリックの変化に応じて行われる。そのため、CN3による経路構築パケットの単位時間あたりの送信回数を変化させることで、ツリー経路の更新頻度を変更できる。 In each SN 3, selection and cancellation of a radio link (in other words, update of a radio link selected as a tree path) is performed according to a change in path metric calculated every time a path construction packet is received. Therefore, the update frequency of the tree path can be changed by changing the number of transmissions per unit time of the path construction packet by CN3.
 例えば、BHネットワーク9の電波伝搬環境が変化し易い環境であるほど、CN3による経路構築パケットの単位時間あたりの送信回数を増やすことで、BHネットワーク9の電波伝搬環境変化に対する追従性能を高めることができる。 For example, as the radio wave propagation environment of the BH network 9 is more likely to change, the follow-up performance to the radio wave propagation environment change of the BH network 9 can be improved by increasing the number of times the route construction packet is transmitted by the CN 3 per unit time. it can.
 なお、下流ノード3との間の無線リンクについては、例えば、下り経路が構築された後に、下流ノード3から受信される肯定応答(ACK)信号によって把握することができる。例えば、下流ノード3は、経路構築パケットを受信することによって経路メトリックを更新した場合、ACK信号を経路構築パケットの送信元である親ノード3へ送信(ユニキャスト)する。ユニキャストするACK信号には、例えば、当該ACK信号の送信元である下流ノード3において記憶、管理されている、リンクアップ状態の無線リンクの情報が含められてよい。親ノード3は、下流ノード3からACK信号を受信することによって、ツリー経路に選択及び登録する下り無線リンクを決定できる。 Note that the radio link with the downstream node 3 can be grasped by, for example, an acknowledgment (ACK) signal received from the downstream node 3 after the downstream path is established. For example, when the downstream node 3 updates the route metric by receiving the route construction packet, the downstream node 3 transmits (unicasts) the ACK signal to the parent node 3 that is the transmission source of the route construction packet. The ACK signal to be unicast may include, for example, information on a radio link in a link-up state that is stored and managed in the downstream node 3 that is the transmission source of the ACK signal. The parent node 3 can determine the downlink radio link to be selected and registered in the tree path by receiving the ACK signal from the downstream node 3.
 <動作例>
 以下、上述した無線通信システム1の動作例について説明する。
<Operation example>
Hereinafter, an operation example of the above-described wireless communication system 1 will be described.
 (リンクセットアップ手順)
 図6は、第1の実施形態に係るノード3間(別言すると、BHネットワーク9における無線BH回線)のリンクセットアップ手順の一例を示すフローチャートである。
(Link setup procedure)
FIG. 6 is a flowchart illustrating an example of a link setup procedure between the nodes 3 according to the first embodiment (in other words, a wireless BH line in the BH network 9).
 図6に例示するように、BHネットワーク9において、CN及びSNを含むノード3のそれぞれは、起動に応じて例えばIBSSモードによって周辺に存在するノード(以下「周辺ノード」と称することがある)3をスキャンする(S11)。 As illustrated in FIG. 6, in the BH network 9, each of the nodes 3 including the CN and the SN 3 is a node existing in the vicinity (hereinafter, may be referred to as a “peripheral node”) 3 in accordance with, for example, the IBSS mode. Is scanned (S11).
 「IBSS」は、「Independent Basic Service Set」の略称である。IBSSモードは、アドホックモードと称されることもある。ノード3の「起動」には、ノード3の電源ON、及び、ノード3のリセットによる再起動が含まれてよい。 “IBSS” is an abbreviation for “Independent Basic Service Set”. The IBSS mode may be referred to as an ad hoc mode. “Startup” of the node 3 may include power-on of the node 3 and restart by resetting the node 3.
 例えば、スキャン処理S11において、ノード3のそれぞれは、起動に応じてビーコン信号の周辺エリアへの送信を開始する。ビーコン信号は、例えば、制御部304のスキャン処理部341において生成されて、BH回線アンテナ360(無線通信部302)から送信される。 For example, in the scanning process S11, each of the nodes 3 starts transmitting a beacon signal to the peripheral area in response to the activation. For example, the beacon signal is generated in the scan processing unit 341 of the control unit 304 and transmitted from the BH line antenna 360 (wireless communication unit 302).
 IBSSモードでのスキャン処理S11では、ビーコン信号どうしの衝突を回避するために、起動したノード3のそれぞれが、交替で(例えば、ノード3において擬似乱数的に管理されるタイミングで)ビーコン信号を送信してよい。 In the scan processing S11 in the IBSS mode, in order to avoid collision between beacon signals, each of the activated nodes 3 transmits a beacon signal alternately (for example, at a timing managed in a pseudo-random manner in the node 3). You can do it.
 他のノード3が送信したビーコン信号を受信したノード3は、受信したビーコン信号に含まれる情報を例えば記憶部305に記憶する(S12)。ビーコン信号の送受信は、ノード3が動作するチャネル(別言すると、利用可能なチャネル)毎に行われてよい。 The node 3 that has received the beacon signal transmitted by the other node 3 stores the information included in the received beacon signal, for example, in the storage unit 305 (S12). The transmission / reception of the beacon signal may be performed for each channel (in other words, an available channel) on which the node 3 operates.
 したがって、スキャン処理(S11)は、「チャネルスキャン」と称されてもよい。なお、ビーコン信号を受信したノード3は、ビーコン信号を受信したチャネルについてのビーコン信号の送信を停止してよい。 Therefore, the scan process (S11) may be referred to as “channel scan”. Note that the node 3 that has received the beacon signal may stop transmitting the beacon signal for the channel that has received the beacon signal.
 ノード3のそれぞれが、他のノード3から受信できたビーコン信号に含まれるBSS関連情報を記憶することによって、無線リンクによって通信が可能な周辺ノード3の情報(以下「周辺ノード情報」と称することがある)を管理できる。 Each node 3 stores the BSS related information included in the beacon signal that can be received from the other nodes 3, so that information on the peripheral nodes 3 that can communicate with each other by wireless links (hereinafter referred to as “peripheral node information”). Can manage).
 個々のノード3が、周辺ノード情報を記憶及び管理することによって、例えば図7に示すように、利用可能な無線リンク(「チャネル」と読み替えてもよい)が個々のノード3において管理される。これにより、無線BH回線のリンクセットアップが完了し、BHネットワーク9においてメッシュリンクがリンクアップする。 As each node 3 stores and manages the peripheral node information, for example, as shown in FIG. 7, an available radio link (which may be read as “channel”) is managed in each node 3. Thereby, the link setup of the wireless BH line is completed, and the mesh link is linked up in the BH network 9.
 図8に、図7に例示したノード#0~#7のそれぞれにおいて管理される周辺ノード情報の一例を示す。 FIG. 8 shows an example of peripheral node information managed in each of the nodes # 0 to # 7 illustrated in FIG.
 図8の(A)は、ノード(CN)#0において、ノードID#1~#3が記憶及び管理され、CN#0が、SN#1~#3それぞれとの間の無線リンクを利用できる状態にあることを示す。 In FIG. 8A, node IDs # 1 to # 3 are stored and managed in node (CN) # 0, and CN # 0 can use radio links with SNs # 1 to # 3, respectively. Indicates that it is in a state.
 図8の(B)は、SN#1において、ノードID#0、#2、#4及び#5が記憶及び管理され、SN#1が、ノード#0、#2、#4及び#5それぞれとの間の無線リンクを利用できる状態にあることを示す。 In FIG. 8B, in SN # 1, node IDs # 0, # 2, # 4, and # 5 are stored and managed, and SN # 1 is stored in nodes # 0, # 2, # 4, and # 5, respectively. It indicates that the wireless link between and can be used.
 図8の(C)は、SN#2において、ノードID#0、#1、#3、#5及び#7が記憶及び管理され、SN#2が、ノード#0、#1、#3、#5及び#7それぞれとの間の無線リンクを利用できる状態にあることを示す。 (C) in FIG. 8 shows that node IDs # 0, # 1, # 3, # 5, and # 7 are stored and managed in SN # 2, and SN # 2 is stored in nodes # 0, # 1, # 3, It shows that the wireless link between # 5 and # 7 can be used.
 図8の(D)は、SN#3において、ノードID#0及び#2が記憶及び管理され、SN#3が、ノード#0及び#2それぞれとの間の無線リンクを利用できる状態にあることを示す。 In FIG. 8D, node IDs # 0 and # 2 are stored and managed in SN # 3, and SN # 3 is in a state in which a radio link between nodes # 0 and # 2 can be used. It shows that.
 図8の(E)は、SN#4において、ノードID#1、#5、及び#6が記憶及び管理され、SN#4が、ノード#1、#5及び#6それぞれとの間の無線リンクを利用できる状態にあることを示す。 (E) in FIG. 8 shows that node IDs # 1, # 5, and # 6 are stored and managed in SN # 4, and the wireless communication between SN # 4 and nodes # 1, # 5, and # 6 is performed. Indicates that the link is available.
 図8の(F)は、SN#5において、ノードID#1、#2、#4、#6及び#7が記憶及び管理され、SN#5が、ノード#1、#2、#4、#6及び#7それぞれとの間の無線リンクを利用できる状態にあることを示す。 (F) in FIG. 8 shows that node IDs # 1, # 2, # 4, # 6, and # 7 are stored and managed in SN # 5, and SN # 5 has nodes # 1, # 2, # 4, It shows that the wireless link between # 6 and # 7 can be used.
 図8の(G)は、SN#6において、ノードID#4及び#5が記憶及び管理され、SN#6が、ノード#4及び#5それぞれとの間の無線リンクを利用できる状態にあることを示す。 In FIG. 8G, the node IDs # 4 and # 5 are stored and managed in the SN # 6, and the SN # 6 is in a state where the wireless links between the nodes # 4 and # 5 can be used. It shows that.
 図8の(H)は、SN#7において、ノードID#2及び#5が記憶及び管理され、SN#7が、ノード#2及び#5それぞれとの間の無線リンクを利用できる状態にあることを示す。 (H) of FIG. 8 is in a state where the node IDs # 2 and # 5 are stored and managed in the SN # 7, and the SN # 7 can use the radio links between the nodes # 2 and # 5, respectively. It shows that.
 以上のようにして、ノード3間においてIBSSモードを利用したメッシュ状の無線リンクが形成(又は構築)される。上述のごとくIBSSモードを利用して構築されたメッシュ状の無線リンクは、IBSSメッシュリンクと称されてもよい。 As described above, a mesh-like wireless link using the IBSS mode is formed (or constructed) between the nodes 3. A mesh-like wireless link constructed using the IBSS mode as described above may be referred to as an IBSS mesh link.
 (ツリー経路制御 over IBSSメッシュリンク)
 次に、IBSSメッシュリンク上のツリー経路制御について説明する。
 図9は、第1の実施形態に係るIBSSメッシュリンク上のツリー経路制御の一例を示す図である。
(Tree path control over IBSS mesh link)
Next, tree path control on the IBSS mesh link will be described.
FIG. 9 is a diagram illustrating an example of tree path control on the IBSS mesh link according to the first embodiment.
 図9の(A)には、図7に例示したIBSSメッシュリンクにおいて、CN#0、SN#1、SN#4、SN#5、及び、SN#6によって、太実線で示されるツリートポロジが、ツリー経路制御によって構築される例が示されている。 In FIG. 9A, in the IBSS mesh link illustrated in FIG. 7, a tree topology indicated by a thick solid line is represented by CN # 0, SN # 1, SN # 4, SN # 5, and SN # 6. An example constructed by tree path control is shown.
 図9の(B)には、図7に例示したIBSSメッシュリンクにおいて、CN#0、SN#1、SN#5、及び、SN#6によって、太実線で示すツリートポロジが、ツリー経路制御によって構築される例が示されている。 In FIG. 9B, in the IBSS mesh link illustrated in FIG. 7, the tree topology indicated by the thick solid line by CN # 0, SN # 1, SN # 5, and SN # 6 is changed by tree path control. An example to be constructed is shown.
 図9は、異なる時間において実施されたツリー経路制御によって、IBSSメッシュリンク上でツリートポロジが、(A)及び(B)の間で時間的に変化する様子を示している、と捉えてもよい。 FIG. 9 may be taken to show that the tree topology implemented at different times shows the tree topology changing over time between (A) and (B) on the IBSS mesh link. .
 ここで、図9に例示したようなツリー経路制御は、IBSSメッシュリンクが既にリンクアップしているため、例えば図8に示した周辺ノード情報において、ツリー経路として有効化する無線リンクに対応するリンク情報を選択することで実現可能である。 Here, in the tree path control as illustrated in FIG. 9, since the IBSS mesh link is already linked up, for example, in the peripheral node information illustrated in FIG. This can be realized by selecting information.
 非限定的な一例として、図10及び図11に、図9に例示したツリー経路のそれぞれに対応して、CN#0及びSN#1~#7のそれぞれにおけるリンク情報の選択例を示す。図10及び図11において、ハッチングを付して示す情報が、ツリー経路に選択されたリンク情報に対応する。なお、図10及び図11の(A)~(H)に示す情報は、それぞれ、図8の(A)~(H)に例示した情報に対応する。 As a non-limiting example, FIGS. 10 and 11 show examples of selecting link information in each of CN # 0 and SN # 1 to # 7 corresponding to each of the tree paths illustrated in FIG. 10 and 11, information indicated by hatching corresponds to the link information selected for the tree path. The information shown in FIGS. 10 and 11A to 11H corresponds to the information illustrated in FIGS. 8A to 8H, respectively.
 例えば、図9の(A)に示すツリー経路は、図10の(A)、(B)、(E)及び(F)においてハッチングを付して示すリンク情報が、それぞれ、ノード#0、#1、#4、#5及び#6において選択されることで構築される。 For example, in the tree path shown in FIG. 9A, the link information indicated by hatching in FIGS. 10A, 10B, 10E, and 10F is the nodes # 0, #, respectively. It is constructed by being selected in 1, # 4, # 5 and # 6.
 一方、図9の(B)に示すツリー経路は、図11の(A)、(B)及び(F)においてハッチングを付して示すリンク情報が、それぞれ、ノード#0、#1、#5及び#6において選択されることで構築される。 On the other hand, in the tree path shown in FIG. 9B, the link information indicated by hatching in FIGS. 11A, 11B, and 11F is the nodes # 0, # 1, and # 5, respectively. And # 6 are selected.
 なお、リンク情報の選択は、制御部304(例えば、ツリー経路制御部343のツリー経路更新部3433)によって行われる。 Note that the selection of link information is performed by the control unit 304 (for example, the tree route update unit 3433 of the tree route control unit 343).
 このように、ノード3間において予めリンクアップしているメッシュリンクにおいて、個々のノード3が、経路メトリックに基づいて選択するリンク情報を変更する(又は、切り替える)ことによって、ツリー経路の構築及び更新を高速化できる。別言すると、経路メトリックの時間変化に応じたツリー経路の変化に対する追従性能を高めることができる。 As described above, in the mesh link that is linked up in advance between the nodes 3, the link information selected by each node 3 based on the path metric is changed (or switched), thereby constructing and updating the tree path. Can be speeded up. In other words, it is possible to improve the follow-up performance with respect to the change of the tree path according to the time change of the path metric.
 例えば、ツリー経路が変化する毎に、ノード3間において連携(association)及び/又は認証(authentication)に関わる処理(例えば、数秒を要する)を行わなくてよいので、ツリー経路の時間変化に対する追従性能を向上できる。 For example, every time the tree path changes, it is not necessary to perform processing (for example, several seconds) related to association and / or authentication between the nodes 3, so that the tracking performance with respect to the time change of the tree path is not necessary. Can be improved.
 ここで、「経路メトリックの時間変化」は、BHネットワーク9における「無線環境の時間変化」、別言すると、「BH回線品質の時間変化」に起因する。したがって、本実施形態の「アダプティブツリー経路制御」では、BH回線品質の時間変化に対する追従性能を高めることができる。よって、無線BH回線においてツリー経路の変更に伴う通信断の発生を抑制でき、無瞬断通信の実現が容易である。 Here, “time change of route metric” is caused by “time change of wireless environment” in the BH network 9, in other words, “time change of BH channel quality”. Therefore, in the “adaptive tree path control” of the present embodiment, it is possible to improve the follow-up performance with respect to the time change of the BH channel quality. Therefore, it is possible to suppress the occurrence of communication disconnection due to the change of the tree path in the wireless BH line, and it is easy to realize uninterrupted communication.
 (CNの動作例)
 図12は、第1の実施形態に係るIBSSメッシュリンク上のツリー経路制御を含むCN3の動作例を示すフローチャートである。図12のフローチャートは、CN3の制御部304(例えば、ツリー経路制御部343)において実行されると捉えてよい。
(Operation example of CN)
FIG. 12 is a flowchart illustrating an operation example of the CN 3 including tree path control on the IBSS mesh link according to the first embodiment. The flowchart of FIG. 12 may be understood as being executed by the control unit 304 (for example, the tree path control unit 343) of the CN3.
 図12に示すように、CN3の制御部304は、例えば、特定のイベントが検出されたか否かを監視する(S31;NO)。「特定のイベント」には、例えば、CN3が起動されたこと、リセットボタンが操作されたこと、及び、特定のタイミングが到来したこと、が含まれてよい。「特定のタイミング」の一例は、例えば、経路制御パケットを定期又は不定期に送信するために設定された送信タイミングである。 As shown in FIG. 12, the control unit 304 of the CN 3 monitors, for example, whether or not a specific event is detected (S31; NO). The “specific event” may include, for example, that the CN 3 has been activated, that the reset button has been operated, and that a specific timing has arrived. An example of “specific timing” is, for example, transmission timing set to transmit a route control packet regularly or irregularly.
 定期的に経路制御パケットを送信する場合の送信周期は一定でもよいし、本実施形態において構築されるツリー経路は、漸近的に安定することから、図12のフローチャートが実行される回数に応じて変更されてもよい。また、例えば週末や、一日のうちの夜間と昼間などの時間帯に応じてツリー経路が更新されるように、所定の時刻が「特定のタイミング」に設定されてもよい。 The transmission cycle when the path control packet is periodically transmitted may be constant, and the tree path constructed in the present embodiment is asymptotically stable, so that it depends on the number of times the flowchart of FIG. 12 is executed. It may be changed. Further, for example, the predetermined time may be set to “specific timing” so that the tree path is updated according to a time zone such as a weekend or a nighttime and daytime in a day.
 特定のイベントが検出された場合(S31;YES)、CN3の制御部304は、経路制御パケットを生成し、例えば無線通信部302を通じて、周辺ノード情報を基に識別される周辺SN3に経路制御パケットを送信(ブロードキャスト)する(S32)。 When a specific event is detected (S31; YES), the control unit 304 of the CN 3 generates a route control packet, and passes the route control packet to the peripheral SN 3 identified based on the peripheral node information through the wireless communication unit 302, for example. Is transmitted (broadcast) (S32).
 例えば、CN3の起動が検出された場合、及び、経路構築パケットの送信タイミングが検出された場合には、経路構築パケットが周辺SN3に送信される。リセットボタンの操作が検出された場合、及び、リセットパケットの送信タイミングが検出された場合には、リセットパケットが周辺SN3に送信される。 For example, when the activation of CN3 is detected and when the transmission timing of the route construction packet is detected, the route construction packet is transmitted to the peripheral SN3. When the operation of the reset button is detected and when the transmission timing of the reset packet is detected, the reset packet is transmitted to the peripheral SN3.
 経路制御パケットの送信後、制御部304は、例えば、一定時間が経過(タイムアウト)したか否かを監視する(S33)。タイムアウトが検出されない場合(S33;NO)、制御部304は、処理をS31に移行してよい。 After transmitting the route control packet, the control unit 304 monitors, for example, whether or not a predetermined time has passed (timeout) (S33). When the timeout is not detected (S33; NO), the control unit 304 may shift the process to S31.
 一方、一定時間の経過が検出された場合(S33;YES)、制御部304は、データパケットの送信を開始してよい(S34)。データパケットの送信は、例えば図14及び図15にて後述するように、IPTに従って行われる。 On the other hand, when the elapse of a certain time is detected (S33; YES), the control unit 304 may start transmitting a data packet (S34). The data packet is transmitted according to the IPT, as will be described later with reference to FIGS. 14 and 15, for example.
 以上のように、CN3は、周辺ノード3との間においてリンクアップした複数の無線リンクのそれぞれに経路制御パケットを送信(ブロードキャスト)することで、BHネットワーク9を構成するSN3のそれぞれに経路制御パケットを伝搬させる。これにより、メッシュリンクがリンクアップしたBHネットワーク9において、経路メトリックに基づいたツリー経路の構築及び更新を高速化できる。したがって、経路メトリックの時間変化に応じたツリー経路の変化に対する追従性能を高めることができる。 As described above, the CN 3 transmits (broadcasts) a route control packet to each of a plurality of wireless links that are linked up with the peripheral node 3, so that the route control packet is transmitted to each SN 3 that configures the BH network 9. Is propagated. Thereby, in the BH network 9 in which the mesh link is linked up, it is possible to speed up the construction and update of the tree path based on the path metric. Therefore, it is possible to improve the follow-up performance with respect to the change of the tree path according to the time change of the path metric.
 (SNの動作例)
 次に、図13を参照して、SN3の動作例について説明する。図13は、第1の実施形態に係るIBSSメッシュリンク上のツリー経路制御を含むSN3の動作例を示すフローチャートである。図13のフローチャートは、SN3の制御部304(例えば、ツリー経路制御部343)において実行されると捉えてよい。
(Operation example of SN)
Next, an operation example of SN3 will be described with reference to FIG. FIG. 13 is a flowchart showing an operation example of SN3 including tree path control on the IBSS mesh link according to the first embodiment. The flowchart of FIG. 13 may be understood as being executed by the control unit 304 (for example, the tree path control unit 343) of SN3.
 SN3は、例えば無線通信部302において経路制御パケットが受信されるか否かを監視する(S51;NO)。 SN3 monitors, for example, whether the wireless communication unit 302 receives a route control packet (S51; NO).
 経路制御パケットの受信が検出された場合(S51;YES)、SN3の制御部304は、経路制御パケットの種別を確認する。例えば、制御部304は、受信した経路制御パケットが、リセットパケットであるか経路構築パケットであるかを確認する(S52及びS54)。 When reception of a route control packet is detected (S51; YES), the SN3 control unit 304 confirms the type of the route control packet. For example, the control unit 304 confirms whether the received route control packet is a reset packet or a route construction packet (S52 and S54).
 受信した経路制御パケットが、リセットパケットの場合(S52;YES)、制御部304は、初期化処理を行う(S53)。初期化処理には、例えば、以下の処理が含まれてよい。
 ・周辺ノード情報において有効なツリー経路に選択しているリンクの選択解除
 ・記憶している経路メトリックの初期値(例えば、最大値)への初期化
When the received route control packet is a reset packet (S52; YES), the control unit 304 performs an initialization process (S53). The initialization process may include the following process, for example.
-Deselecting a link selected as a valid tree route in the peripheral node information-Initializing a stored route metric to an initial value (for example, maximum value)
 初期化処理の後、制御部304は、例えば、受信したリセットパケットを周辺SN3へ送信(フラッディング)する(S53a)。なお、リセットパケットには、識別子(ID)が含められてよい。ノード3のそれぞれは、受信したリセットパケットに含まれるIDを記憶しておいてよい。 After the initialization processing, for example, the control unit 304 transmits (floods) the received reset packet to the peripheral SN 3 (S53a). The reset packet may include an identifier (ID). Each of the nodes 3 may store an ID included in the received reset packet.
 ノード3のそれぞれは、受信したリセットパケットのIDが、記憶したIDと一致する場合、別言すると、過去に送信(転送)したリセットパケットであることを示す場合、当該リセットパケットの更なる送信は行わない。これにより、リセットパケットがBHネットワーク9においてループすることを防止できる。 When each of the nodes 3 indicates that the received ID of the reset packet matches the stored ID, in other words, when indicating that the reset packet has been transmitted (transferred) in the past, the further transmission of the reset packet is not performed. Not performed. Thereby, it is possible to prevent the reset packet from looping in the BH network 9.
 一方、受信した経路制御パケットがリセットパケットでない場合(S52;NO)、制御部304は、当該経路制御パケットが経路構築パケットであるか否かを確認する(S54)。 On the other hand, when the received route control packet is not a reset packet (S52; NO), the control unit 304 confirms whether or not the route control packet is a route construction packet (S54).
 受信した経路制御パケットが経路構築パケットの場合(S54;YES)、制御部304は、周辺ノード情報を参照し(S55)、経路構築パケットを受信したリンクの伝搬品質指標(例えば、電波伝搬損失)を計算する(S56)。 When the received route control packet is a route construction packet (S54; YES), the control unit 304 refers to the peripheral node information (S55), and the propagation quality index (for example, radio wave propagation loss) of the link that has received the route construction packet. Is calculated (S56).
 計算した電波伝搬損失を基に、制御部304は、経路メトリックを計算する(S57)。例えば、制御部304は、計算した電波伝搬損失と、受信した経路構築パケットに含められている伝搬品質指標と、を加算することによって、累積的な電波伝搬損失を新経路メトリックとして計算する。 Based on the calculated radio wave propagation loss, the control unit 304 calculates a path metric (S57). For example, the control unit 304 calculates the cumulative radio wave propagation loss as a new path metric by adding the calculated radio wave propagation loss and the propagation quality index included in the received path construction packet.
 そして、制御部304は、新経路メトリックと、新経路メトリックが計算される前に記憶していた旧経路メトリックと、を比較して、経路メトリックの更新要否を判断する(S58)。 Then, the control unit 304 compares the new route metric with the old route metric stored before the new route metric is calculated, and determines whether or not the route metric needs to be updated (S58).
 例えば、制御部304は、旧経路メトリックよりも新経路メトリックの方が小さい場合に、旧経路メトリックを新経路メトリックに更新すると判断する(S58;YES)。当該判断に応じて、制御部304は、周辺ノード情報において新経路メトリックに対応する上流の無線リンクを有効なツリー経路に選択する(選択リンクの更新;S59)。 For example, when the new route metric is smaller than the old route metric, the control unit 304 determines to update the old route metric to the new route metric (S58; YES). In response to the determination, the control unit 304 selects an upstream wireless link corresponding to the new route metric in the peripheral node information as a valid tree route (update of the selected link; S59).
 選択リンクの更新に応じて、制御部304は、例えば、新経路メトリックを含む経路構築パケットを、周辺ノード情報において識別される周辺SN3へ送信(ブロードキャスト)する(S60)。 In response to the update of the selected link, for example, the control unit 304 transmits (broadcasts) the route construction packet including the new route metric to the neighboring SN 3 identified in the neighboring node information (S60).
 その後、制御部304は、一定時間が経過(タイムアウト)したか否かを監視する(S61)。タイムアウトが検出されない場合(S61;NO)、制御部304は、処理を経路制御パケットの受信監視処理(S51)に移行してよい。タイムアウトが検出された場合(S61;YES)、制御部304は、例えばIPTに従ったデータパケットの送信処理を開始してよい(S62)。 Thereafter, the control unit 304 monitors whether or not a predetermined time has elapsed (timeout) (S61). When the timeout is not detected (S61; NO), the control unit 304 may shift the process to the reception monitoring process (S51) of the route control packet. When a timeout is detected (S61; YES), the control unit 304 may start a data packet transmission process according to, for example, IPT (S62).
 なお、受信した経路制御パケットがリセットパケット及び経路構築パケットのいずれでもない場合(S52及びS54;NO)、制御部304は、処理を経路制御パケットの受信監視処理(S51)に移行してよい。 If the received route control packet is neither a reset packet nor a route construction packet (S52 and S54; NO), the control unit 304 may move the process to a route control packet reception monitoring process (S51).
 また、計算した新経路メトリックが旧経路メトリック以上であり、選択リンクの更新が不要と判断した場合(S58;NO)も、制御部304は、処理を経路制御パケットの受信監視処理(S51)に移行してよい。 Also, when the calculated new route metric is greater than or equal to the old route metric and it is determined that the selected link does not need to be updated (S58; NO), the control unit 304 moves the process to the route control packet reception monitoring process (S51). You may migrate.
 以上のように、SN3は、経路構築パケットの受信に応じて、周辺ノード3との間においてリンクアップした複数の無線リンクの1つを経路メトリックに基づいて選択する。これにより、メッシュリンクがリンクアップしたBHネットワーク9において、経路メトリックに基づいたツリー経路の構築及び更新を高速化できる。したがって、経路メトリックの時間変化に応じたツリー経路の変化に対する追従性能を高めることができる。 As described above, the SN 3 selects one of a plurality of radio links linked up with the peripheral node 3 based on the path metric in response to reception of the path construction packet. Thereby, in the BH network 9 in which the mesh link is linked up, it is possible to speed up the construction and update of the tree path based on the path metric. Therefore, it is possible to improve the follow-up performance with respect to the change of the tree path according to the time change of the path metric.
 (ツリー経路におけるIPT)
 次に、図14及び図15を参照して、上述したツリー経路制御によって構築されたツリー経路において、データパケットをIPTによって送信する場合の、ノード3の動作例について説明する。
(IPT in the tree path)
Next, with reference to FIG. 14 and FIG. 15, an operation example of the node 3 when a data packet is transmitted by IPT in the tree path constructed by the tree path control described above will be described.
 図14に例示したフローチャートは、例えば、図12に示した、CN3の処理S34において実行されると捉えてよい。一方、図15に例示したフローチャートは、例えば、図13に示した、SN3の処理S62において実行されると捉えてよい。また、図14及び図15のフローチャートは、それぞれ、CN3及びSN3の制御部304(例えば、IPT制御部344)において実行される。 The flowchart illustrated in FIG. 14 may be regarded as being executed in the process S34 of CN3 illustrated in FIG. 12, for example. On the other hand, the flowchart illustrated in FIG. 15 may be considered to be executed in, for example, the process S62 of SN3 illustrated in FIG. 14 and 15 are executed by the control unit 304 (for example, the IPT control unit 344) of CN3 and SN3, respectively.
 (CNの動作例)
 図14に例示するように、CN3は、例えば、送信バッファに下りパケットが存在するか否かを監視する(S81)。
(Operation example of CN)
As illustrated in FIG. 14, the CN 3 monitors, for example, whether there is a downlink packet in the transmission buffer (S81).
 送信バッファに下りパケットが存在する場合(S81;YES)、CN3は、タイマTMを初期値(例えば、0)に設定し(S82)、タイマTMのカウント値が、送信周期Ps未満の間はパケット送信を待機する(S83;NO)。一方、送信バッファに下りパケットが存在しない場合(S81;NO)、CN3は、パケット送信に関わる処理を終了してよい。 When there is a downstream packet in the transmission buffer (S81; YES), CN3 sets the timer TM to an initial value (for example, 0) (S82), and the packet is counted while the count value of the timer TM is less than the transmission cycle Ps. Waiting for transmission (S83; NO). On the other hand, when there is no downstream packet in the transmission buffer (S81; NO), the CN 3 may end the process related to packet transmission.
 なお、タイマTMは、例えば、IPT制御部344に備えられていてよい。送信バッファは、無線BH回線へ送信するパケットを一時的に記憶するメモリの一例であり、無線BH回線用の無線通信部302に備えられていてもよいし、記憶部305において具現されてもよい。いずれにしても、送信バッファは、制御部304によるアクセスが可能であり、当該アクセスによってパケットの書き込み及び読み出しが可能であればよい。これらの事項は、SN3にも当てはまる。 Note that the timer TM may be provided in the IPT control unit 344, for example. The transmission buffer is an example of a memory that temporarily stores a packet to be transmitted to the wireless BH line, and may be provided in the wireless communication unit 302 for the wireless BH line or may be embodied in the storage unit 305. . In any case, it is sufficient that the transmission buffer can be accessed by the control unit 304 and packets can be written and read by the access. These matters also apply to SN3.
 タイマTMのカウント値が送信周期Ps以上になれば(S83;YES)、送信バッファにおける下りパケットを無線通信部302から送信する(S84)。複数の下りパケットが存在する場合、CN3は、複数の下りパケットを連続して送信してもよい。 If the count value of the timer TM is equal to or greater than the transmission cycle Ps (S83; YES), the downlink packet in the transmission buffer is transmitted from the wireless communication unit 302 (S84). When there are a plurality of downlink packets, the CN 3 may continuously transmit the plurality of downlink packets.
 下りパケットの送信後、CN3は、当該下りパケットの送信が成功したか否かを判断する(S85)。パケットの送信が成功したか否かは、当該パケットの受信相手から一定時間内に肯定応答(ACK)信号が受信されるか否かによって検出できる。CN3において、ACK信号の受信は、周波数リユース間隔が満たされていることを間接的(暗示的)に示すイベントと判断してよい。 After transmitting the downlink packet, the CN 3 determines whether or not the transmission of the downlink packet is successful (S85). Whether or not the transmission of the packet is successful can be detected by whether or not an acknowledgment (ACK) signal is received within a predetermined time from the receiving party of the packet. In CN3, reception of an ACK signal may be determined as an event that indirectly (implicitly) indicates that the frequency reuse interval is satisfied.
 下りパケットに対するACK信号の受信が一定時間内に検出されない場合(S85;NO)、CN3は、送信周期Psが適切でない(例えば、短すぎる)と判断して、送信周期Psを例えばΔPupだけ増加する(S86)。なお、ACK信号の未受信検出には、否定応答(NACK)信号の受信検出が含まれてよい。 When reception of the ACK signal for the downlink packet is not detected within a certain time (S85; NO), the CN 3 determines that the transmission cycle Ps is not appropriate (for example, too short) and increases the transmission cycle Ps by, for example, ΔPup. (S86). Note that detection of no reception of an ACK signal may include detection of reception of a negative acknowledgment (NACK) signal.
 その後、CN3は、パケット送信が許容される規定時間が経過したか否か(送信タイムアウトが検出されたか否か)を判断する(S87)。送信タイムアウトが検出されない場合(S87;NO)、CN3は、ACK信号を受信できなかった下りパケットの再送を、処理S84において行ってよい。 Thereafter, the CN 3 determines whether or not a specified time for which packet transmission is allowed has elapsed (whether or not a transmission timeout has been detected) (S87). When the transmission timeout is not detected (S87; NO), the CN 3 may retransmit the downlink packet that has not received the ACK signal in the process S84.
 一方、送信タイムアウトが検出された場合(S87;YES)、CN3は、ACK信号を受信できなかったパケットを廃棄して処理をS81に戻し、下りパケットの有無を監視する。 On the other hand, when a transmission timeout is detected (S87; YES), the CN 3 discards the packet that could not receive the ACK signal, returns the process to S81, and monitors the presence or absence of the downlink packet.
 下りパケットの送信に成功した場合(S85;YES)には、CN3は、送信周期Psを短くしてもよいと判断して、送信周期Psを例えばΔPdownだけ減少する(S88)。その後、CN3は、処理をS81に戻して、下りパケットの有無を監視する。 If the downlink packet has been successfully transmitted (S85; YES), the CN 3 determines that the transmission cycle Ps may be shortened, and decreases the transmission cycle Ps by, for example, ΔPdown (S88). Thereafter, the CN 3 returns the process to S81 and monitors the presence / absence of a downlink packet.
 このように、下りパケットの送信が成功したか否かに応じて送信周期Psが動的に調整されることで、適切な周波数リユース間隔に応じた送信周期Psが、CN3において設定される。 As described above, the transmission cycle Ps according to the appropriate frequency reuse interval is set in the CN 3 by dynamically adjusting the transmission cycle Ps according to whether or not the transmission of the downlink packet is successful.
 なお、上述した例では、送信周期Psを可変としているが、送信周期Psは固定値でもよい。別言すると、送信周期Psが可変であることはオプションであってよい。例えば、図14において、S86及びS88で示す処理は、省略されてよい。 In the above example, the transmission cycle Ps is variable, but the transmission cycle Ps may be a fixed value. In other words, it is optional that the transmission period Ps is variable. For example, in FIG. 14, the processes indicated by S86 and S88 may be omitted.
 また、送信周期Psの値は、「0」に設定されてもよい。例えば、数ホップ程度の低ホップ数のネットワークでは、CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)といったレイヤ2以下のパケット衝突回避機能によって、特別なパケット伝送制御を用いなくても、効率的なパケット伝送が可能である。そのため、例えば、各ノード3に、CSMA/CAといったレイヤ2以下のパケット衝突回避機能が備わっている場合、「Ps=0」に設定されてもよい。 Further, the value of the transmission cycle Ps may be set to “0”. For example, in a network with a low number of hops, such as several hops, a packet collision avoidance function of layer 2 or lower such as CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance) is effective without using special packet transmission control. Packet transmission is possible. Therefore, for example, when each node 3 has a layer 2 or lower packet collision avoidance function such as CSMA / CA, “Ps = 0” may be set.
 (SNの動作例)
 図15に例示するように、SN3は、例えば、経路制御パケットが受信されるか否かを監視する(S90)。なお、図15のフローチャートは、下り回線及び上り回線へのパケット送信処理に共通でよい。
(Operation example of SN)
As illustrated in FIG. 15, the SN 3 monitors, for example, whether a route control packet is received (S90). Note that the flowchart of FIG. 15 may be common to packet transmission processing to the downlink and uplink.
 経路制御パケットが受信された場合(S90;YES)、SN3は、図13の処理S52に処理を移行する。一方、経路制御パケットの受信が検出されない場合(S90;NO)、SN3は、下り回線及び/又は上り回線へ送信(中継)するデータパケットが受信されるか否かを監視する(S91)。 When the route control packet is received (S90; YES), SN3 shifts the process to the process S52 of FIG. On the other hand, when reception of a route control packet is not detected (S90; NO), SN3 monitors whether a data packet to be transmitted (relayed) to the downlink and / or uplink is received (S91).
 データパケットが受信された場合(S91;YES)、SN3は、受信したデータパケットを無線通信部302から送信する(S92)。複数のデータパケットが受信された場合、SN3は、受信した複数のデータパケットを連続して送信してもよい。 When the data packet is received (S91; YES), SN3 transmits the received data packet from the wireless communication unit 302 (S92). When a plurality of data packets are received, the SN 3 may continuously transmit the received plurality of data packets.
 データパケットの送信後、SN3は、当該データパケットの送信が成功したか否かを判断する(S93)。データパケットに対するACK信号の受信が一定時間内に検出されない場合(S93;NO)、SN3は、例えば、データパケットの送信が許容される規定時間が経過したか否か(送信タイムアウトが検出されたか否か)を判断する(S94)。送信タイムアウトが検出されない場合(S94;NO)、SN3は、ACK信号を受信しなかったデータパケットの再送を、処理S92において行ってよい。 After transmitting the data packet, the SN 3 determines whether or not the data packet has been successfully transmitted (S93). If reception of the ACK signal for the data packet is not detected within a certain time (S93; NO), SN3, for example, whether or not a specified time allowed to transmit the data packet has passed (whether or not a transmission timeout has been detected). (S94). When the transmission timeout is not detected (S94; NO), the SN 3 may retransmit the data packet that has not received the ACK signal in the process S92.
 一方、送信タイムアウトが検出された場合(S94;YES)、SN3は、ACK信号を受信しなかったデータパケットを廃棄して処理をS91に戻し、中継送信するデータパケットの受信を待機(監視)する。 On the other hand, when a transmission timeout is detected (S94; YES), SN3 discards the data packet that has not received the ACK signal, returns the process to S91, and waits (monitors) reception of the data packet to be relayed. .
 データパケットの送信に成功した場合(S93;YES)には、SN3は、処理をS91に戻し、中継送信するデータパケットの受信を待機(監視)する。 If the transmission of the data packet is successful (S93; YES), the SN 3 returns the process to S91 and waits for (monitors) reception of the data packet to be relayed.
 なお、処理S91において、データパケットの受信が検出されない場合、SN3は、処理を終了してよい。あるいは、処理S91において、データパケットの受信が検出されない場合、SN3は、処理を処理S90に戻してもよい。 Note that if reception of a data packet is not detected in the process S91, the SN 3 may end the process. Alternatively, when the reception of the data packet is not detected in the process S91, the SN 3 may return the process to the process S90.
 上述した「アダプティブツリー経路制御」と「IPT制御」との組み合わせによって、無線環境の変化にアダプティブに追従して変化するツリー経路において、周波数リユース間隔に応じた周期で時分割にデータパケットが送受信される。 By combining the “adaptive tree path control” and “IPT control” described above, data packets are transmitted and received in a time-sharing manner with a period corresponding to the frequency reuse interval in the tree path that changes following the change in the wireless environment adaptively. The
 したがって、無線BH回線の品質変化に対して追従性能の高いアダプティブな時分割多元アクセス(TDMA;Time Division Multiple Access)又は時分割複信(TDD;Time Division Duplex)を実現できる。 Therefore, it is possible to realize adaptive time division multiple access (TDMA) or time division duplex (TDD) with high tracking performance with respect to changes in the quality of the wireless BH line.
 (第2の実施形態)
 第1の実施形態においては、図7に例示したようなIBSSメッシュリンクが、ノード3のIBSSモードを利用して形成される例について説明した。しかし、ノード3がIBSSモードをサポートしていない場合もあり得る。
(Second Embodiment)
In the first embodiment, the example in which the IBSS mesh link as illustrated in FIG. 7 is formed using the IBSS mode of the node 3 has been described. However, there may be a case where the node 3 does not support the IBSS mode.
 ノード3がIBSSモードをサポートしていない場合、例えば、AP(Access Point)モードとSTA(Station)モードとの組み合わせによって、図7に例示したようなIBSSメッシュリンクと同等のメッシュリンクを構築することが可能である。 When the node 3 does not support the IBSS mode, for example, a mesh link equivalent to the IBSS mesh link illustrated in FIG. 7 is constructed by combining the AP (Access Point) mode and the STA (Station) mode. Is possible.
 図16に、APモードとSTAモードとの組み合わせ(「ハイブリッド」と称してもよい)を用いて、ノード3間にメッシュリンクが構築される例を示す。なお、APモードとSTAモードとの組み合わせを、便宜的に、「擬似IBSSモード」と称する。 FIG. 16 shows an example in which a mesh link is constructed between nodes 3 using a combination of AP mode and STA mode (may be referred to as “hybrid”). The combination of the AP mode and the STA mode is referred to as “pseudo IBSS mode” for convenience.
 図16の(A)~(C)には、例示的に、3つのノードA、B及びCが示されている。図17には、ノードA-B間及びノードA-C間のそれぞれについて擬似IBSSモードを用いた無線リンクのセットアップ手順の一例が、ノードA~Cそれぞれのプロトコル・スタックと併せて示されている。 16A to 16C exemplarily show three nodes A, B, and C. FIG. 17 shows an example of a radio link setup procedure using the pseudo IBSS mode between the nodes A and B and between the nodes A and C together with the protocol stacks of the nodes A to C. .
 例えば、図16の(A)に示すように、ノードAは、起動に応じて、AP(モード)の動作に従って、ビーコン信号を周囲に送信する。当該ビーコン信号を受信した周辺ノードB及びCのそれぞれは、STA(モード)の動作に従って、アソシエーションリクエストをノードAへ送信する。 For example, as shown in FIG. 16A, the node A transmits a beacon signal to the surroundings according to the operation of the AP (mode) in response to the activation. Each of the peripheral nodes B and C that have received the beacon signal transmits an association request to the node A according to the operation of the STA (mode).
 ノードAは、周辺ノードB及びCから受信したアソシエーションリクエストをそれぞれ許可する場合、APの動作に従って、周辺ノードB及びC宛にアソシエーションレスポンスを送信する。これにより、ノードAを起点(AP)としたマルチポイント(ノードB及びC)の無線リンクがリンクアップする。 When the node A permits the association requests received from the peripheral nodes B and C, the node A transmits an association response to the peripheral nodes B and C according to the operation of the AP. As a result, multipoint (nodes B and C) radio links starting from node A (AP) are linked up.
 同様に、例えば図16の(B)に示すように、ノードBは、起動に応じて、AP(モード)の動作に従って、ビーコン信号を周囲に送信する。当該ビーコン信号を受信した周辺ノードA及びCのそれぞれは、STA(モード)の動作に従って、アソシエーションリクエストをノードBへ送信する。これにより、ノードBを起点(AP)としたマルチポイント(ノードA及びC)の無線リンクがリンクアップする。 Similarly, as shown in FIG. 16B, for example, the node B transmits a beacon signal to the surroundings according to the operation of the AP (mode) in response to the activation. Each of the peripheral nodes A and C that have received the beacon signal transmits an association request to the node B according to the operation of the STA (mode). As a result, multi-point (nodes A and C) radio links starting from node B are linked up.
 ノードCに着目すると、図16の(C)に示すように、ノードCは、起動に応じて、AP(モード)の動作に従って、ビーコン信号を周囲に送信する。当該ビーコン信号を受信した周辺ノードA及びBのそれぞれは、STA(モード)の動作に従って、アソシエーションリクエストをノードCへ送信する。これにより、ノードCを起点(AP)としたマルチポイント(ノードA及びB)の無線リンクがリンクアップする。 Focusing on node C, as shown in FIG. 16C, node C transmits a beacon signal to the surroundings according to the operation of the AP (mode) in response to activation. Each of the peripheral nodes A and B that have received the beacon signal transmits an association request to the node C according to the operation of the STA (mode). As a result, the multipoint (nodes A and B) radio links starting from the node C (AP) are linked up.
 以上の動作例を要約すると、ノードA、B及びCのそれぞれは、ビーコン信号の送信元としてAPモードで動作する一方、他の周辺ノードを送信元とするビーコン信号を受信した場合には、当該周辺ノードとの関係においてSTAモードで動作する。 To summarize the above operation example, each of the nodes A, B and C operates in the AP mode as a transmission source of the beacon signal, while when receiving a beacon signal transmission source from other peripheral nodes, Operates in STA mode in relation to peripheral nodes.
 図17に、以上の動作例を、ノードA、B及びCそれぞれのプロトコル・スタックと併せて模式的に示す。図17では、説明の便宜のために、同一ノード3における物理レイヤ(L1)及びMACレイヤ(L2)のそれぞれを、APモードとSTAモードとの別に区分して視覚化している。 FIG. 17 schematically shows the above operation example together with the protocol stacks of the nodes A, B, and C, respectively. In FIG. 17, for convenience of explanation, the physical layer (L1) and the MAC layer (L2) in the same node 3 are visualized separately in the AP mode and the STA mode.
 ただし、L1及びL2は、APモードとSTAモードとに共通でよい。例えば、L1及びL2は、同一のハードウェアで実現されてもよく、時分割、SDM(Space Division Multiplexing)、あるいは符号分割等の多重化手法を用いて、同じチャネルに対し、APモードとSTAモードとに係る無線通信を多重化してもよい。APモードとSTAモードとのハイブリッドモード(擬似IBSSモード)による処理又は制御は、例えば、レイヤ2.5に含まれてよい。 However, L1 and L2 may be common to the AP mode and the STA mode. For example, L1 and L2 may be realized by the same hardware, and AP mode and STA mode are applied to the same channel by using a multiplexing method such as time division, SDM (Space Division Division Multiplexing), or code division. The wireless communication related to and may be multiplexed. Processing or control in a hybrid mode (pseudo IBSS mode) of the AP mode and the STA mode may be included in the layer 2.5, for example.
 図17において、ノードAに着目すると、ノードA(APモード)と、ノードAを送信元とするビーコン信号を受信したノードB(STAモード)及びノードC(STAモード)と、の間において、図16の(A)に例示したアソシエーション手順が実行される。 In FIG. 17, when attention is paid to the node A, between the node A (AP mode) and the node B (STA mode) and the node C (STA mode) that have received the beacon signal transmitted from the node A, The association procedure illustrated in 16 (A) is executed.
 また、ノードAは、ノードB(APモード)を送信元とするビーコン信号の受信によって、ノードBとの関係ではSTAモードで動作する。そのため、ノードA(STAモード)と、ノードB(APモード)と、の間において、図16の(B)に例示したアソシエーション手順が実行される。 Node A operates in the STA mode in relation to Node B by receiving a beacon signal whose source is Node B (AP mode). Therefore, the association procedure illustrated in FIG. 16B is executed between the node A (STA mode) and the node B (AP mode).
 同様に、ノードAは、ノードC(APモード)を送信元とするビーコン信号の受信によって、ノードCとの関係ではSTAモードで動作する。そのため、ノードA(STAモード)と、ノードC(APモード)と、の間において、図16の(C)に例示したアソシエーション手順が実行される。 Similarly, the node A operates in the STA mode in relation to the node C by receiving the beacon signal whose transmission source is the node C (AP mode). For this reason, the association procedure illustrated in FIG. 16C is executed between the node A (STA mode) and the node C (AP mode).
 なお、ノードB及びCについても、それぞれ、ノードAと同様に、APモードとSTAモードとに従って他の周辺ノードとの間において、図16に例示したようなアソシエーション手順が実行される。 For nodes B and C, as in node A, the association procedure illustrated in FIG. 16 is executed between other nodes according to the AP mode and the STA mode.
 以上のようにして、ノードA-B間、ノードB-C間、及び、ノードC-A間のそれぞれに無線リンクがリンクアップする。異なるチャネルの複数の無線リンクがリンクアップする場合、これら複数の無線リンクは、1つの無線帯域にアグリゲーション(又は、ボンディング)されてよい。 As described above, the radio links are linked up between the nodes A and B, the nodes B and C, and the nodes C and A, respectively. When a plurality of radio links of different channels are linked up, the plurality of radio links may be aggregated (or bonded) to one radio band.
 図18は、第2の実施形態に係る制御部304の機能的な構成例を示すブロック図である。図18において、図5に例示した機能ブロックと同じ機能ブロックには同じ符号が付してある。 FIG. 18 is a block diagram illustrating a functional configuration example of the control unit 304 according to the second embodiment. In FIG. 18, the same functional blocks as the functional blocks illustrated in FIG.
 図18に示すように、制御部304のスキャン処理部341には、例えば、ビーコン送信部3411、リクエスト受信部3412、レスポンス送信部3413、ビーコン受信部3414、リクエスト送信部3415、及び、レスポンス受信部3416が備えられてよい。 As illustrated in FIG. 18, the scan processing unit 341 of the control unit 304 includes, for example, a beacon transmission unit 3411, a request reception unit 3412, a response transmission unit 3413, a beacon reception unit 3414, a request transmission unit 3415, and a response reception unit. 3416 may be provided.
 ビーコン送信部3411、リクエスト受信部3412、及び、レスポンス送信部3413は、例えば、APモードに従って動作する。リクエスト送信部3415及びレスポンス受信部3416は、例えば、STAモードに従って動作する。 The beacon transmission unit 3411, the request reception unit 3412, and the response transmission unit 3413 operate according to the AP mode, for example. The request transmission unit 3415 and the response reception unit 3416 operate, for example, according to the STA mode.
 まず、APモードに従って動作するビーコン送信部3411、リクエスト受信部3412、及び、レスポンス送信部3413について説明する。 First, the beacon transmission unit 3411, the request reception unit 3412, and the response transmission unit 3413 that operate according to the AP mode will be described.
 ビーコン送信部3411は、ビーコン信号を生成し、無線通信部302を通じて周辺エリアに送信する。なお、周辺エリアに存在する周辺ノード3のうち、ビーコン信号を受信した周辺ノード3は、当該ビーコン信号を送信したノード3に対し、アソシエーションリクエストを送信する。 The beacon transmission unit 3411 generates a beacon signal and transmits it to the surrounding area through the wireless communication unit 302. Of the peripheral nodes 3 existing in the peripheral area, the peripheral node 3 that has received the beacon signal transmits an association request to the node 3 that has transmitted the beacon signal.
 リクエスト受信部3412は、周辺ノード3から送信されたアソシエーションリクエストを受信する。 The request reception unit 3412 receives the association request transmitted from the peripheral node 3.
 レスポンス送信部3413は、リクエスト受信部3412が周辺ノード3から送信されたアソシエーションリクエストを受信した場合、アソシエーションリクエストを送信した周辺ノード3に対し、アソシエーションレスポンスを送信する。これにより、ノード3間のアソシエーションが完了する。 When the request reception unit 3412 receives the association request transmitted from the peripheral node 3, the response transmission unit 3413 transmits an association response to the peripheral node 3 that has transmitted the association request. Thereby, the association between the nodes 3 is completed.
 ノード管理部342は、アソシエーションリクエストを送信した周辺ノード3の周辺ノード情報を記憶部305に記憶(登録)する。別言すると、ノード管理部342は、ビーコン送信部3411が送信したビーコン信号を受信して、アソシエーションリクエストを送信した周辺ノード3を、リンクアップしたノード情報として記憶部305に登録する。 The node management unit 342 stores (registers) the peripheral node information of the peripheral node 3 that has transmitted the association request in the storage unit 305. In other words, the node management unit 342 receives the beacon signal transmitted by the beacon transmission unit 3411 and registers the peripheral node 3 that transmitted the association request in the storage unit 305 as node information that has been linked up.
 なお、周辺ノード情報は、例えば、周辺ノード3が送信するアソシエーションリクエストに含まれてもよい。ノード管理部342は、リクエスト受信部3412が受信したアソシエーションリクエストに含まれる周辺ノード情報を、例えば、記憶部305に記憶する。 The peripheral node information may be included in an association request transmitted by the peripheral node 3, for example. The node management unit 342 stores the peripheral node information included in the association request received by the request reception unit 3412, for example, in the storage unit 305.
 次に、STAモードに従って動作するビーコン受信部3414、リクエスト送信部3415、及び、レスポンス受信部3416について説明する。 Next, the beacon receiving unit 3414, the request transmitting unit 3415, and the response receiving unit 3416 that operate according to the STA mode will be described.
 ビーコン受信部3414は、周辺ノード3から送信されるビーコン信号を受信する。 The beacon receiving unit 3414 receives a beacon signal transmitted from the peripheral node 3.
 リクエスト送信部3415は、周辺ノード3から送信されたビーコン信号をビーコン受信部3414が受信した場合、ビーコン信号を送信した周辺ノード3に対し、アソシエーションリクエストを送信する。別言すると、リクエスト送信部3415は、ビーコン信号を送信した周辺ノード3おいて、リンクアップしたノードとして登録されるよう、ビーコン信号を送信した周辺ノード3に対し、アソシエーションリクエストを送信する。なお、アソシエーションリクエストを受信した周辺ノード3(ビーコン信号を送信した周辺ノード3)は、アソシエーションリクエストを送信したノード3に対し、アソシエーションレスポンスを送信する。 When the beacon receiving unit 3414 receives the beacon signal transmitted from the peripheral node 3, the request transmission unit 3415 transmits an association request to the peripheral node 3 that has transmitted the beacon signal. In other words, the request transmission unit 3415 transmits an association request to the peripheral node 3 that has transmitted the beacon signal so that the peripheral node 3 that has transmitted the beacon signal is registered as a link-up node. The peripheral node 3 that has received the association request (the peripheral node 3 that has transmitted the beacon signal) transmits an association response to the node 3 that has transmitted the association request.
 レスポンス受信部3416は、周辺ノード3から送信されたアソシエーションレスポンスを受信する。これにより、ノード3間のアソシエーションが完了する。 The response receiving unit 3416 receives the association response transmitted from the peripheral node 3. Thereby, the association between the nodes 3 is completed.
 なお、ビーコン受信部3414、リクエスト送信部3415、及び、レスポンス受信部3416は、複数の周辺ノード3から送信される複数のビーコン信号に対処できるように複数存在してもよい。例えば、図18の点線で囲むSTAモードのブロックは、複数存在してもよい。または、ビーコン受信部3414、リクエスト送信部3415、及び、レスポンス受信部3416のそれぞれは1つで、各部が複数の周辺ノード3から送信される複数のビーコン信号に対処してもよい。すなわち、図18の点線で囲むSTAモードのように、各部は1つで複数の周辺ノード3から送信される複数のビーコン信号に対処してもよい。 A plurality of beacon receiving units 3414, request transmitting units 3415, and response receiving units 3416 may exist so as to cope with a plurality of beacon signals transmitted from a plurality of peripheral nodes 3. For example, a plurality of STA mode blocks surrounded by a dotted line in FIG. 18 may exist. Alternatively, each of the beacon receiving unit 3414, the request transmitting unit 3415, and the response receiving unit 3416 may be one, and each unit may deal with a plurality of beacon signals transmitted from a plurality of peripheral nodes 3. That is, as in the STA mode surrounded by the dotted line in FIG. 18, each unit may cope with a plurality of beacon signals transmitted from a plurality of peripheral nodes 3.
 ノード管理部342は、レスポンス受信部3416によって、周辺ノード3(別言すると、ビーコン信号を送信した周辺ノード3)が送信したアソシエーションレスポンスが受信されると、周辺ノード3の周辺ノード情報を記憶部305に記憶する。例えば、ノード管理部342は、ビーコン信号を送信した後、アソシエーションレスポンスを送信した周辺ノード3の周辺ノード情報を記憶部305に記憶する。なお、ビーコン信号を送信した後、アソシエーションレスポンスを送信した周辺ノード3の周辺ノード情報は、ビーコン信号に含まれてもよい。 When the response reception unit 3416 receives the association response transmitted by the peripheral node 3 (in other words, the peripheral node 3 that transmitted the beacon signal) by the response reception unit 3416, the node management unit 342 stores the peripheral node information of the peripheral node 3 Store in 305. For example, the node management unit 342 stores the peripheral node information of the peripheral node 3 that has transmitted the association response in the storage unit 305 after transmitting the beacon signal. Note that the peripheral node information of the peripheral node 3 that has transmitted the association response after transmitting the beacon signal may be included in the beacon signal.
 なお、ツリー経路制御部343及びIPT制御部344は、図5において説明したツリー経路制御部343及びIPT制御部344と同一若しくは同様でよい。 The tree path control unit 343 and the IPT control unit 344 may be the same as or similar to the tree path control unit 343 and the IPT control unit 344 described in FIG.
 ノード3のそれぞれが、図18に示す機能を有し、周辺ノード情報を記憶及び管理することによって、例えば図7において点線で示したように、利用可能な無線リンクが個々のノード3において管理される。例えば図8に示したように、ノード#0~#7のそれぞれの記憶部305において、周辺ノード情報が管理される。 Each of the nodes 3 has the function shown in FIG. 18, and by storing and managing the peripheral node information, for example, as shown by the dotted line in FIG. 7, the available radio links are managed in the individual nodes 3. The For example, as shown in FIG. 8, peripheral node information is managed in the storage units 305 of the nodes # 0 to # 7.
 図19は、第2の実施形態に係るノード3のリンクセットアップ手順の一例を示すフローチャートである。以下では、図7のノード#1がAPモードに従って動作するときのリンクセットアップ手順の一例について説明する。 FIG. 19 is a flowchart illustrating an example of a link setup procedure of the node 3 according to the second embodiment. Hereinafter, an example of a link setup procedure when the node # 1 of FIG. 7 operates according to the AP mode will be described.
 ノード#1は、図19に示すフローチャートの処理を繰り返し実行する。例えば、ノード#1は、ツリー経路制御が実行される周期よりも短い周期で図19に示すフローチャートの処理を繰り返し実行してよい。 Node # 1 repeatedly executes the processing of the flowchart shown in FIG. For example, the node # 1 may repeatedly execute the process of the flowchart shown in FIG. 19 at a cycle shorter than the cycle at which the tree path control is executed.
 ノード#1のビーコン送信部3411は、ビーコン信号を生成し、無線通信部302を通じて周辺エリアに送信する(S101)。なお、ノード#1が送信したビーコン信号は、図7の例では、ノード#0、ノード#2、ノード#4、及び、ノード#5によって受信される。ノード#0、ノード#2、ノード#4、及び、ノード#5のそれぞれのリクエスト送信部3415は、ノード#1から送信されたビーコン信号を受信すると、アソシエーションリクエストをノード#1に送信する。 The beacon transmission unit 3411 of the node # 1 generates a beacon signal and transmits it to the peripheral area through the wireless communication unit 302 (S101). Note that the beacon signal transmitted by the node # 1 is received by the node # 0, the node # 2, the node # 4, and the node # 5 in the example of FIG. When the request transmission unit 3415 of each of the node # 0, the node # 2, the node # 4, and the node # 5 receives the beacon signal transmitted from the node # 1, the request transmission unit 3415 transmits an association request to the node # 1.
 ノード#1のリクエスト受信部3412は、S101で送信したビーコン信号を受信した周辺ノード3から送信されたアソシエーションリクエストを受信する(S102)。例えば、ノード#1のリクエスト受信部3412は、S101のビーコン信号を受信したノード#0、ノード#2、ノード#4、及び、ノード#5が送信するアソシエーションリクエストを受信する。 The request reception unit 3412 of the node # 1 receives the association request transmitted from the peripheral node 3 that has received the beacon signal transmitted in S101 (S102). For example, the request reception unit 3412 of the node # 1 receives an association request transmitted by the node # 0, the node # 2, the node # 4, and the node # 5 that has received the beacon signal of S101.
 ノード#1のリクエスト送信部3415は、S102で受信したアソシエーションリクエストを送信した周辺ノード3に対し、アソシエーションレスポンスを送信する(S103)。例えば、ノード#1のリクエスト送信部3415は、アソシエーションリクエストを送信したノード#0、ノード#2、ノード#4、ノード#5のそれぞれに、アソシエーションレスポンスを送信する。 The request transmission unit 3415 of the node # 1 transmits an association response to the peripheral node 3 that has transmitted the association request received in S102 (S103). For example, the request transmission unit 3415 of the node # 1 transmits an association response to each of the node # 0, the node # 2, the node # 4, and the node # 5 that transmitted the association request.
 ノード#1のノード管理部342は、S102で受信したアソシエーションリクエストを送信した周辺ノード3の周辺ノード情報を記憶部305に記憶する(S104)。例えば、ノード#1のノード管理部342は、アソシエーションリクエストを送信したノード#0、ノード#2、ノード#4、ノード#5の周辺ノード情報を記憶部305に記憶する。これにより、ノード#0、ノード#2、ノード#4、及び、ノード#5は、ノード#1において、リンクアップしたノード(リンクアップノードと称されてもよい)として登録(管理)される。なお、ノード#0、ノード#2、ノード#4、及び、ノード#5の周辺ノード情報は、S102で受信したアソシエーションリクエストに含まれてもよい。 The node management unit 342 of the node # 1 stores the peripheral node information of the peripheral node 3 that has transmitted the association request received in S102 in the storage unit 305 (S104). For example, the node management unit 342 of the node # 1 stores the peripheral node information of the node # 0, the node # 2, the node # 4, and the node # 5 that transmitted the association request in the storage unit 305. Thereby, the node # 0, the node # 2, the node # 4, and the node # 5 are registered (managed) as nodes that are linked up (may be referred to as link-up nodes) in the node # 1. Note that the peripheral node information of the node # 0, the node # 2, the node # 4, and the node # 5 may be included in the association request received in S102.
 なお、上記では、周辺ノード情報は、アソシエーションリクエストに含まれるとしたが、これに限られない。周辺ノード情報は、アソシエーション手順とは別の手順で、周辺ノード3からノード#1に送信されてもよい。例えば、ノード#1がアソシエーションレスポンスを周辺ノード3に送信(S103)した後に(アソシエーションが完了した後に)、周辺ノード3が周辺ノード情報をノード#1に送信してもよい。 In the above description, the peripheral node information is included in the association request. However, the present invention is not limited to this. The peripheral node information may be transmitted from the peripheral node 3 to the node # 1 by a procedure different from the association procedure. For example, the peripheral node 3 may transmit the peripheral node information to the node # 1 after the node # 1 transmits the association response to the peripheral node 3 (S103) (after the association is completed).
 また、上記では、ノード#1がビーコン信号を生成して周辺エリアに送信し、そのビーコンに応じて周辺ノードがプローブリクエストを送信したがこれに限られない。例えば、周辺ノード3はノード#1からのビーコンを検出できない場合に自発的にプローブリクエストを送信し、ノード#1は、そのプローブリクエストを受信してプローブレスポンスを周辺ノード3に返してもよい。 In the above, node # 1 generates a beacon signal and transmits it to the peripheral area, and the peripheral node transmits a probe request according to the beacon. However, the present invention is not limited to this. For example, the peripheral node 3 may spontaneously transmit a probe request when the beacon from the node # 1 cannot be detected, and the node # 1 may receive the probe request and return a probe response to the peripheral node 3.
 図20は、第2の実施形態に係るノード3のリンクセットアップ手順の一例を示すフローチャートである。以下では、図7のノード#1がSTAモードに従って動作するときのリンクセットアップ手順の一例について説明する。 FIG. 20 is a flowchart illustrating an example of a link setup procedure of the node 3 according to the second embodiment. Hereinafter, an example of a link setup procedure when the node # 1 of FIG. 7 operates according to the STA mode will be described.
 ノード#1は、図20に示すフローチャートの処理を繰り返し実行する。例えば、ノード#1は、図19で説明したフローチャートの処理が実行される周期よりも短い周期で図20に示すフローチャートを実行してもよい。 Node # 1 repeatedly executes the processing of the flowchart shown in FIG. For example, the node # 1 may execute the flowchart shown in FIG. 20 at a cycle shorter than the cycle in which the process of the flowchart described in FIG. 19 is executed.
 ノード#1のビーコン受信部3414は、周辺ノード3から送信されるビーコン信号を受信する(S111)。例えば、図7において、ノード#2がAPモードに従って動作し、ビーコン信号を送信とする。この場合、ノード#1のビーコン受信部3414は、ノード#2が送信したビーコン信号を受信する。 The beacon receiving unit 3414 of the node # 1 receives the beacon signal transmitted from the peripheral node 3 (S111). For example, in FIG. 7, it is assumed that node # 2 operates according to the AP mode and transmits a beacon signal. In this case, the beacon receiving unit 3414 of the node # 1 receives the beacon signal transmitted by the node # 2.
 ノード#1のリクエスト送信部3415は、S111でのビーコン信号の受信に応じて、ビーコン信号を送信した周辺ノード3に対し、アソシエーションリクエストを送信する(S112)。例えば、ノード#1のリクエスト送信部3415は、ビーコン信号を送信したノード#2に対し、アソシエーションリクエスト信号を送信する。なお、アソシエーションリクエストを受信したノード#2は、アソシエーションリクエストを送信したノード#1に対し、アソシエーションレスポンスを送信する。 In response to the reception of the beacon signal in S111, the request transmission unit 3415 of the node # 1 transmits an association request to the peripheral node 3 that transmitted the beacon signal (S112). For example, the request transmission unit 3415 of the node # 1 transmits an association request signal to the node # 2 that transmitted the beacon signal. The node # 2 that has received the association request transmits an association response to the node # 1 that has transmitted the association request.
 ノード#1のレスポンス受信部3416は、ビーコン信号を送信した周辺ノード3から送信されるアソシエーションレスポンスを受信する(S113)。例えば、ノード#1のレスポンス受信部3416は、ビーコン信号を送信したノード#2から送信されるアソシエーションレスポンスを受信する。 The response receiving unit 3416 of the node # 1 receives the association response transmitted from the peripheral node 3 that transmitted the beacon signal (S113). For example, the response reception unit 3416 of the node # 1 receives an association response transmitted from the node # 2 that transmitted the beacon signal.
 ノード#1のノード管理部342は、S113にてアソシエーションレスポンスが受信されると、ビーコン信号を送信した周辺ノード3(S111で受信したビーコン信号を送信した周辺ノード3)の周辺ノード情報を記憶部305に記憶する(S114)。例えば、ノード#1のノード管理部342は、ビーコン信号を送信したノード#2の周辺ノード情報を記憶部305に記憶する。これにより、ノード#2は、ノード#1において、リンクアップしたノードとして登録(管理)される。なお、ノード#2の周辺ノード情報は、送信されるビーコン信号に含まれてもよい。 When the association response is received in S113, the node management unit 342 of the node # 1 stores the peripheral node information of the peripheral node 3 that transmitted the beacon signal (the peripheral node 3 that transmitted the beacon signal received in S111). It is stored in 305 (S114). For example, the node management unit 342 of the node # 1 stores the peripheral node information of the node # 2 that transmitted the beacon signal in the storage unit 305. As a result, node # 2 is registered (managed) as a linked-up node in node # 1. Note that the peripheral node information of the node # 2 may be included in the transmitted beacon signal.
 なお、S111にてノード#1が受信したビーコン信号は、図7の例では、ノード#1の他にノード#0、ノード#3、ノード#5、及び、ノード#7にも受信される。ビーコン信号を受信したノード#0、ノード#3、ノード#5、及び、ノード#7は、ノード#1と同様の処理を実行することによって、ノード#2をリンクアップしたノードとして登録する。 Note that the beacon signal received by the node # 1 in S111 is also received by the node # 0, the node # 3, the node # 5, and the node # 7 in addition to the node # 1 in the example of FIG. Node # 0, node # 3, node # 5, and node # 7 that have received the beacon signal register node # 2 as a linked-up node by executing the same processing as node # 1.
 また、上記では、周辺ノード情報は、ビーコン信号に含まれるとしたが、これに限られない。例えば、周辺ノード情報は、ノード#1がアソシエーションレスポンスを受信(S113)した後(アソシエーションが完了した後)、ビーコン信号を送信する周辺ノード3がノード#1に送信してもよい。 In the above description, the peripheral node information is included in the beacon signal. However, the present invention is not limited to this. For example, the peripheral node information may be transmitted to the node # 1 by the peripheral node 3 that transmits the beacon signal after the node # 1 receives the association response (S113) (after the association is completed).
 以上説明したように、ノード3のビーコン送信部3411は、ビーコン信号を送信する。ノード3のリクエスト受信部3412は、周辺ノード3のうち、ビーコン信号を受信した周辺ノード3から送信される、アソシエーションリクエストを受信する。ノード3のレスポンス送信部3413は、アソシエーションレスポンスを、アソシエーションリクエストを送信した周辺ノード3に送信する。ノード3のノード管理部342は、アソシエーションレスポンスの送信に応じて、ビーコン信号の送信元(ノード3)と、アソシエーションリクエストの送信元(周辺ノード3)と、の間の無線リンクの情報を記憶部305で管理する。 As described above, the beacon transmission unit 3411 of the node 3 transmits a beacon signal. The request receiving unit 3412 of the node 3 receives an association request transmitted from the peripheral node 3 that has received the beacon signal among the peripheral nodes 3. The response transmission unit 3413 of the node 3 transmits the association response to the peripheral node 3 that has transmitted the association request. In response to the transmission of the association response, the node management unit 342 of the node 3 stores information on the radio link between the transmission source of the beacon signal (node 3) and the transmission source of the association request (peripheral node 3). Managed by 305.
 また、ノード3のビーコン受信部3414は、周辺ノード3から送信されるビーコン信号を受信する。ノード3のリクエスト送信部3415は、ビーコン信号を送信した周辺ノード3にアソシエーションリクエストを送信する。ノード3のレスポンス受信部3416は、ビーコン信号を送信した周辺ノード3から送信されるアソシエーションレスポンスを受信する。ノード3のノード管理部342は、アソシエーションレスポンスの受信に応じて、アソシエーションリクエストの送信元(ノード3)と、ビーコン信号の送信元(周辺ノード3)と、の間の無線リンクの情報を記憶部305で管理する。 Further, the beacon receiving unit 3414 of the node 3 receives a beacon signal transmitted from the peripheral node 3. The request transmission unit 3415 of the node 3 transmits an association request to the peripheral node 3 that has transmitted the beacon signal. The response receiving unit 3416 of the node 3 receives an association response transmitted from the peripheral node 3 that transmitted the beacon signal. The node management unit 342 of the node 3 stores information on a radio link between the association request transmission source (node 3) and the beacon signal transmission source (peripheral node 3) in response to reception of the association response. Managed by 305.
 これにより、ノード3は、IBSSモードをサポートしない場合であっても、図7に例示したようなメッシュリンクを構築できる。 Thereby, even if the node 3 does not support the IBSS mode, the mesh link illustrated in FIG. 7 can be constructed.
 また、ノード3は、IBSSモードをサポートしない場合であっても、ノード間の電波伝搬品質の変動に応じた経路変更に対する追従性能を高めて、経路変更に伴う通信断の発生を抑制できる。 In addition, even when the node 3 does not support the IBSS mode, the follow-up performance with respect to the path change according to the fluctuation of the radio wave propagation quality between the nodes can be improved, and the occurrence of the communication interruption accompanying the path change can be suppressed.
 1 無線通信システム
 3 無線ノード
 5 バックボーンネットワーク
 7 端末装置
 9 バックホール(BH)ネットワーク
 31 プロセッサ
 32 メモリ
 33 ストレージ
 34 入出力(I/O)装置
 35,36 無線インタフェース(IF)
 37,39 有線インタフェース(IF)
 38 バス
 301,302 無線通信部
 303 有線通信部
 304 制御部
 305 記憶部
 341 スキャン処理部
 342 ノード管理部
 343 ツリー経路制御部
 344 IPT制御部
 350,360 アンテナ
 3431 経路制御パケット生成部
 3432 経路メトリック計算部
 3433 ツリー経路更新部
 3411 ビーコン送信部
 3412 リクエスト受信部
 3413 レスポンス送信部
 3414 ビーコン受信部
 3415 リクエスト送信部
 3416 レスポンス受信部
DESCRIPTION OF SYMBOLS 1 Wireless communication system 3 Wireless node 5 Backbone network 7 Terminal device 9 Backhaul (BH) network 31 Processor 32 Memory 33 Storage 34 Input / output (I / O) device 35, 36 Wireless interface (IF)
37,39 Wired interface (IF)
38 Bus 301, 302 Wireless communication unit 303 Wired communication unit 304 Control unit 305 Storage unit 341 Scan processing unit 342 Node management unit 343 Tree path control unit 344 IPT control unit 350, 360 Antenna 3431 Route control packet generation unit 3432 Path metric calculation unit 3433 Tree path update unit 3411 Beacon transmission unit 3412 Request reception unit 3413 Response transmission unit 3414 Beacon reception unit 3415 Request transmission unit 3416 Response reception unit

Claims (4)

  1.  複数の無線ノードのうちの1つの無線ノードであって、
     第1ビーコン信号を送信した後に、前記第1ビーコン信号に対する第1アソシエーションリクエスト信号を受信した場合に、前記第1アソシエーションリクエスト信号の送信元へ第1レスポンス信号を送信する送信部と、
     第2ビーコン信号の受信に応じて前記第2ビーコン信号の送信元へ第2アソシエーションリクエストを送信した後に、前記第2アソシエーションリクエストに対する第2レスポンス信号を受信する受信部と、
     前記第1レスポンス信号の送信に応じて、前記第1ビーコン信号の送信元と、前記第1アソシエーションリクエスト信号の送信元と、の間の無線リンクの情報を管理し、前記第2レスポンス信号の受信に応じて、前記第2アソシエーションリクエストの送信元と、前記第2ビーコン信号の送信元と、の間の無線リンクの情報を管理する管理部と、
     を備えた、無線ノード。
    One wireless node of a plurality of wireless nodes,
    A transmission unit that transmits a first response signal to a transmission source of the first association request signal when receiving a first association request signal for the first beacon signal after transmitting the first beacon signal;
    A receiving unit for receiving a second response signal for the second association request after transmitting a second association request to a transmission source of the second beacon signal in response to reception of the second beacon signal;
    In response to the transmission of the first response signal, the wireless link information between the transmission source of the first beacon signal and the transmission source of the first association request signal is managed, and the reception of the second response signal And a management unit that manages information on a radio link between the transmission source of the second association request and the transmission source of the second beacon signal,
    A wireless node comprising:
  2.  前記送信部は、
     アクセスポイントモードに従って、前記第1ビーコン信号の送信、及び、前記第1レスポンス信号の送信を行い、
     前記受信部は、
     ステーションモードに従って、前記第2ビーコン信号の受信、及び、前記第2レスポンス信号の受信を行う、
     請求項1に記載の無線ノード。
    The transmitter is
    According to the access point mode, transmitting the first beacon signal and transmitting the first response signal,
    The receiver is
    According to the station mode, the second beacon signal is received and the second response signal is received.
    The wireless node according to claim 1.
  3.  第1ビーコン信号を送信した後に、前記第1ビーコン信号に対する第1アソシエーションリクエスト信号を受信した場合に、前記第1アソシエーションリクエスト信号の送信元へ第1レスポンス信号を送信し、
     第2ビーコン信号の受信に応じて前記第2ビーコン信号の送信元へ第2アソシエーションリクエストを送信した後に、前記第2アソシエーションリクエストに対する第2レスポンス信号を受信し、
     前記第1レスポンス信号の送信に応じて、前記第1ビーコン信号の送信元と、前記第1アソシエーションリクエスト信号の送信元と、の間の無線リンクの情報を管理し、
     前記第2レスポンス信号の受信に応じて、前記第2アソシエーションリクエストの送信元と、前記第2ビーコン信号の送信元と、の間の無線リンクの情報を管理する、
     無線リンク確立方法。
    When the first association request signal for the first beacon signal is received after transmitting the first beacon signal, the first response signal is transmitted to the transmission source of the first association request signal,
    In response to receiving the second beacon signal, after transmitting the second association request to the transmission source of the second beacon signal, receiving a second response signal for the second association request,
    In response to the transmission of the first response signal, information on a radio link between the transmission source of the first beacon signal and the transmission source of the first association request signal is managed,
    In response to reception of the second response signal, information on a radio link between the transmission source of the second association request and the transmission source of the second beacon signal is managed.
    Wireless link establishment method.
  4.  プロセッサに、
     第1ビーコン信号を送信した後に、前記第1ビーコン信号に対する第1アソシエーションリクエスト信号を受信した場合に、前記第1アソシエーションリクエスト信号の送信元へ第1レスポンス信号を送信し、
     第2ビーコン信号の受信に応じて前記第2ビーコン信号の送信元へ第2アソシエーションリクエストを送信した後に、前記第2アソシエーションリクエストに対する第2レスポンス信号を受信し、
     前記第1レスポンス信号の送信に応じて、前記第1ビーコン信号の送信元と、前記第1アソシエーションリクエスト信号の送信元と、の間の無線リンクの情報を管理し、
     前記第2レスポンス信号の受信に応じて、前記第2アソシエーションリクエストの送信元と、前記第2ビーコン信号の送信元と、の間の無線リンクの情報を管理する、
     処理を実行させる、無線リンク確立プログラム。
    To the processor,
    When the first association request signal for the first beacon signal is received after transmitting the first beacon signal, the first response signal is transmitted to the transmission source of the first association request signal,
    In response to receiving the second beacon signal, after transmitting the second association request to the transmission source of the second beacon signal, receiving a second response signal for the second association request,
    In response to the transmission of the first response signal, information on a radio link between the transmission source of the first beacon signal and the transmission source of the first association request signal is managed,
    In response to reception of the second response signal, information on a radio link between the transmission source of the second association request and the transmission source of the second beacon signal is managed.
    A wireless link establishment program that executes processing.
PCT/JP2018/017526 2018-05-02 2018-05-02 Wireless node, wireless link establishing method, and wireless link establishing program WO2019211906A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017526 WO2019211906A1 (en) 2018-05-02 2018-05-02 Wireless node, wireless link establishing method, and wireless link establishing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017526 WO2019211906A1 (en) 2018-05-02 2018-05-02 Wireless node, wireless link establishing method, and wireless link establishing program

Publications (1)

Publication Number Publication Date
WO2019211906A1 true WO2019211906A1 (en) 2019-11-07

Family

ID=68386424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017526 WO2019211906A1 (en) 2018-05-02 2018-05-02 Wireless node, wireless link establishing method, and wireless link establishing program

Country Status (1)

Country Link
WO (1) WO2019211906A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4198935A1 (en) * 2021-12-16 2023-06-21 Panasonic Intellectual Property Management Co., Ltd. Alarm system, relay device, channel determination method, program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296435A (en) * 2008-06-06 2009-12-17 Oki Electric Ind Co Ltd Wireless communication connection control method
JP2011193341A (en) * 2010-03-16 2011-09-29 Oki Electric Industry Co Ltd Wireless communication apparatus, method and computer program for constituting network
JP2012500573A (en) * 2008-08-20 2012-01-05 インテル コーポレイション Apparatus, method and medium for dynamically handing over a master function

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296435A (en) * 2008-06-06 2009-12-17 Oki Electric Ind Co Ltd Wireless communication connection control method
JP2012500573A (en) * 2008-08-20 2012-01-05 インテル コーポレイション Apparatus, method and medium for dynamically handing over a master function
JP2011193341A (en) * 2010-03-16 2011-09-29 Oki Electric Industry Co Ltd Wireless communication apparatus, method and computer program for constituting network

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4198935A1 (en) * 2021-12-16 2023-06-21 Panasonic Intellectual Property Management Co., Ltd. Alarm system, relay device, channel determination method, program

Similar Documents

Publication Publication Date Title
Dai et al. An overview of using directional antennas in wireless networks
US11765639B2 (en) Controlling tree topology over mesh topology based on autonomous decentralized control
CA2854599C (en) Routing communications based on link quality
Liu et al. Topology control for multi-channel multi-radio wireless mesh networks using directional antennas
CA2854636C (en) Routing communications based on node availability
CN101971565A (en) Discovering neighbors in wireless personal area networks
He et al. On link scheduling in dual-hop 60-GHz mmwave networks
Zhao et al. Approximation algorithms for broadcasting in duty cycled wireless sensor networks
US20240064604A1 (en) Wireless route control method, wireless communication system, and wireless node
Lim et al. Design and implementation of multicasting for multi-channel multi-interface wireless mesh networks
Zhao et al. Exploiting link correlation for core-based dissemination in wireless sensor networks
He et al. A decomposition principle for link and relay selection in dual-hop 60 GHz networks
WO2019211906A1 (en) Wireless node, wireless link establishing method, and wireless link establishing program
CN107534979B (en) Wireless communication device and method
JP2021087193A (en) Wireless communication system, wireless communication method, and wireless node
JP7307909B2 (en) Wireless node, wireless communication system, and wireless communication method
Chu et al. Enforcing high-performance operation of multi-hop wireless networks with MIMO relays
Ang et al. iMST: A bandwidth-guaranteed topology control algorithm for TDMA-based ad hoc networks with sectorized antennas
JP2022061891A (en) Transmission node
Sattu et al. An Optimal Selection Approach for Mitigating User Time in Cognitive Radio Networks Using Multiple Channels.
Engel et al. An energy-efficient wireless routing protocol for distributed structural health monitoring
Kumar et al. Design of Novel, Cross Layer Neighbor Discovery Scheme for Directional Mesh Networks
Yang et al. On the maximum throughput of multiple-path transmission via irreducible and neighbor-disjoint paths in multiple-hop wireless networks
Yamini et al. Improved Location-Free Topology control Protocol in MANET
Suetsugu et al. Effective data collection scheme by mobile agent over wireless sensor network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/01/2021)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 18917288

Country of ref document: EP

Kind code of ref document: A1