WO2018050109A1 - 一种用于三维打印的液态原料喷射方法及其装置 - Google Patents

一种用于三维打印的液态原料喷射方法及其装置 Download PDF

Info

Publication number
WO2018050109A1
WO2018050109A1 PCT/CN2017/102041 CN2017102041W WO2018050109A1 WO 2018050109 A1 WO2018050109 A1 WO 2018050109A1 CN 2017102041 W CN2017102041 W CN 2017102041W WO 2018050109 A1 WO2018050109 A1 WO 2018050109A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
liquid
flow channel
liquid raw
gasification
Prior art date
Application number
PCT/CN2017/102041
Other languages
English (en)
French (fr)
Inventor
梁福鹏
Original Assignee
梁福鹏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 梁福鹏 filed Critical 梁福鹏
Priority to US16/333,477 priority Critical patent/US20190255615A1/en
Publication of WO2018050109A1 publication Critical patent/WO2018050109A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a liquid material injection technology in a three-dimensional printing technology, in particular to a liquid material injection method and a device thereof for three-dimensional printing, and belongs to the technical field of additive manufacturing.
  • 3D printing technology originated in the United States at the end of the 19th century and was refined and gradually commercialized in Japan and the United States in the 1970s and 1980s.
  • Common mainstream 3D printing technologies such as Stereo Lithography Apparatus (SLA), Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS), 3D powder bonding ( Three Dimensional Printing and Gluing (3DP) was commercialized in the United States in the 1980s and 1990s.
  • SLA Stereo Lithography Apparatus
  • FDM Fused Deposition Modeling
  • SLS Selective Laser Sintering
  • 3DP Three Dimensional Printing and Gluing
  • the ratio of the inner diameter of the nozzle to the inner diameter of the liquid material storage chamber or the main flow path is too small (for example, the inner diameter of the liquid raw material storage tank or the main flow path connected to the nozzle is 2 mm, and the inner diameter of the nozzle is 50 ⁇ m)
  • the inner diameter of the liquid raw material storage tank or the main flow path connected to the nozzle is 2 mm, and the inner diameter of the nozzle is 50 ⁇ m
  • the jetting technology commonly used in 2D printing technology can quickly generate droplets, such as the jetting technology of inkjet printers developed by companies such as Hewlett Packard and Epson in the United States, based on flow path deformation extrusion (electrodeformation is provided on the nozzle flow path wall). Material) or local heating evaporation (heating elements are provided on the nozzle flow path wall) to achieve liquid ejection, but these techniques are not suitable for the injection of melts of high melting point materials (eg aerospace aluminum alloy, copper, stainless steel, etc.), and also Not suitable for spraying high viscosity liquid materials.
  • high melting point materials eg aerospace aluminum alloy, copper, stainless steel, etc.
  • liquid material injection methods based on electric field force such as “electric field injection” technology (see the book “Electrical Field Injection” by Li Jianlin, Shanghai Jiaotong University Press, 2012), and the application number is 201610224283.7 (named “a liquid state” Chinese patent applications with metal printing equipment”), application number 201310618953.X (named “a high-voltage electrostatically driven and variable-diameter 3D printer”) also use electric field drive technology; these are all used in nozzles (nozzles must be used)
  • a non-conductive material is made to establish a high-voltage electrostatic field or a pulsed high-voltage electrostatic field with an external electrode (printing support platform as an electrode) to achieve injection of liquid material; however, “electric field injection” has limitations, for example: due to liquid state The raw material has viscosity, especially liquid metal with large surface tension.
  • High-voltage electrostatic field and even ultra-high voltage electrostatic field must be applied to generate the tensile force required to overcome the viscous force and surface tension of the liquid material and generate a certain flow velocity; the high-voltage electric field exists. Dangerous, easy to produce electrical breakdown, low controllability; low controllability due to high voltage electric field A controllable electric field results in the injection process is not high, and the controllability of the droplets produced is not high.
  • the object of the present invention is to provide a high-speed injection method of liquid material for three-dimensional printing and a device thereof, and the controllability of the injection is high, and is particularly suitable for an application environment in which a liquid material to be sprayed has conductivity.
  • Another object of the present invention is to provide a high-speed, high-controllable injection method and apparatus for high-temperature liquid raw materials such as molten metal for three-dimensional printing.
  • a liquid material injection method for three-dimensional printing which comprises a liquid material or a liquid droplet formed outside a flow path by ejecting a liquid material in a flow path outside a flow path, and the injection process is controlled by a control circuit, and is characterized in that:
  • the liquid raw material is completely or partially connected to the gasification circuit in the flow channel; the liquid raw material connected to the gasification circuit has a region of higher resistance; and a current of a certain intensity is applied to the liquid raw material connected to the gasification circuit, The entire material having a high resistance value of the liquid raw material is vaporized in whole or in part, and the liquid raw material is pushed out of the flow channel by the impact force generated by the gasification, thereby realizing the ejection of the liquid raw material;
  • the liquid raw material has electrical conductivity; some types of liquid raw materials have electrical conductivity at low voltage, and some types of liquid raw materials do not have electrical conductivity at low voltage, but have electrical conductivity at high voltage or ultra high voltage, both Belong to conductive liquid raw materials;
  • the gasification circuit is configured to apply a current to a liquid raw material connected thereto and generate a resistance heating effect
  • the higher resistance region the higher resistance region having a higher resistance value than other regions of the liquid material that are connected to the gasification circuit;
  • the method applies a current of a certain intensity to the liquid material to be connected to the gasification circuit, and the intensity of the current satisfies at least the strength required for all or part of the region where the resistance value of the liquid material is vaporized.
  • the liquid raw material is completely or partially connected to the gasification circuit in the flow channel, and the liquid raw material is connected to the gasification circuit in series;
  • the region of higher resistance is formed by providing a region having a smaller radial cross-sectional area to the liquid material to be connected to the gasification circuit to form a region of higher resistance, wherein: a gasification current (ie, a current required for gasification)
  • a gasification current ie, a current required for gasification
  • the general direction of flow in the liquid feedstock is axial, and the normal to the radial cross section coincides or is parallel to the axial direction;
  • the flow path refers to a structure in which a liquid raw material is accommodated and a liquid raw material can flow therein.
  • the liquid raw material is a raw material in a molten state, or a semi-molten raw material, or a solution, or a suspension;
  • the gasification circuit is part of a control circuit.
  • the main steps in spraying liquid raw materials are:
  • Step S1 the control circuit controls the flow of the liquid raw material in the flow channel;
  • the force for driving the liquid raw material to flow in the flow channel is one or more of the pressure, the capillary pressure, the gravity force, the electric field force, the centrifugal force, and the electromagnetic force;
  • Step S2 the liquid raw material forms a region with a high resistance value in the flow channel; a region with a higher resistance value of the liquid raw material is connected to the gasification circuit;
  • Step S3 applying a current of a certain intensity, generating a resistance heating effect in a region where the resistance value of the liquid raw material is high, and vaporizing all or part of the liquid raw material in a region having a high resistance value; the intensity of the current satisfies at least the gasification All or part of the required strength of the region where the resistance of the liquid material is high;
  • step S4 the impact force generated by the gasification pushes the liquid material between the region where the liquid material resistance value is high and the flow channel outlet to the outside of the flow channel.
  • the present invention provides an apparatus for applying the above-described liquid material ejection method for three-dimensional printing: a liquid material ejection device for three-dimensional printing, mainly composed of a casing and a control circuit, wherein: in the casing The raw material inlet and the raw material outlet are arranged, the flow path is arranged inside the casing, the raw material inlet and the raw material outlet are connected with the internal flow channel, and the control circuit controls the working process; the characteristic is:
  • a narrow zone is arranged in the flow channel, and the two sides (or both sides) of the narrow zone are electrical access zones, and the electrical access zone is used to guide the gasification current into the liquid raw material in the flow channel; the current is from one side (or one side)
  • the electrical access zone flows in, flows through the narrow zone, and then flows into the electrical access zone on the other side (or the other side); when the current flows through the narrow zone, the liquid material in the narrow zone is heated or vaporized in whole or in part;
  • the impact force generated by gasification pushes the liquid material in the flow channel to be ejected from the raw material outlet;
  • the gasification current is used to heat and vaporize the liquid raw material
  • the electrical access zone is actually an area within the flow channel that provides a connection between the liquid feedstock and the gasification current generating circuit.
  • the number of the flow channels is at least two, and there is an intersection between the flow channels, and the narrow area is disposed at the intersection.
  • the number of the flow channels is one, one end of the flow channel is connected to the raw material inlet, the other end of the flow channel is connected to the raw material outlet, and the narrow area is between the raw material inlet and the raw material outlet.
  • a solid raw material conveying unit and a heating unit are provided; a solid raw material conveying unit is used for feeding the solid raw material into the flow channel; a heating unit is used for heating the solid raw material to generate the liquid raw material, and maintaining the molten state of the liquid raw material;
  • a heating unit is provided, and no solid material delivery unit is provided; the heating unit is used to maintain the molten state of the liquid material.
  • the heating unit is used to maintain the molten state of the liquid material.
  • various heating methods for the heating unit such as electromagnetic induction heating, resistance heating (resistance heating), arc heating, plasma heating, and laser heating.
  • An electrode is provided at the raw material outlet.
  • a raw material bin or a raw material cavity is provided for storing a liquid raw material or a solid raw material; the flow path is connected to the raw material bin or the raw material cavity.
  • a cooling unit is provided for cooling an area that does not need to be heated or cannot withstand high temperatures.
  • a liquid material located in a flow path is connected to a control circuit, and a region having a high resistance value is formed in a region where a liquid material to be connected to the control circuit forms a high resistance value, and a region having a high resistance value is vaporized at a high speed using a strong current.
  • the core structure of the liquid material injection device of the present invention is based on a simple flow path structure and electrodes, has a simple structure, high stability, and high maintainability.
  • the liquid material injection device of the present invention can establish an electric field between the raw material outlet and the liquid material in the flow path, use the electric field force to change the surface tension of the liquid material in the narrow region in the flow channel, or use the electric field force to pull the liquid material.
  • the flow to obtain flexible control of the fluidity of the liquid material; especially when using liquid materials with high surface tension and high viscous force (such as molten metal materials), the surface tension can be greatly reduced by the electric field force.
  • the liquid feedstock is easily driven through a small diameter flow path (eg, a 10 micron diameter flow path) driven by a lower pressure; and the required electric field strength due to the short distance between the electrode at the outlet of the flow path and the liquid feedstock in the flow path Far lower than the high-voltage electric field used in the existing electric field injection technology, the required electric field voltage is low and the power is low, and the safety and controllability are higher than the prior art; therefore, the present invention can obtain fluidity to the liquid material.
  • Flexible control enables the injection of liquid materials with high surface tension and high viscous force, and can produce small volume droplets of raw materials.
  • the present invention integrates a liquid raw material into a control circuit and utilizes an impact force generated by gasification to promote the ejection of a liquid raw material.
  • a high melting point material such as stainless steel melt, glass melting.
  • Liquid, ceramic melt most types of glass and ceramic melts also have electrical conductivity; therefore, the present invention can be used for 3D printing of high melting point materials such as metals and glass, which realizes high melting point materials in the field of 3D printing.
  • the invention has the beneficial effects of realizing high-speed injection of liquid raw materials in the field of 3D printing, and has high controllability; flexible control of fluidity of liquid raw materials can be obtained, and high surface tension and high viscous force can be realized.
  • the injection of liquid raw materials and can produce small volume of raw material droplets; realizes the technical breakthrough of high-speed and high-controllable injection of high-melting material in the field of 3D printing; simple structure, high stability, high safety and maintainability Strong.
  • the present invention has substantial progress.
  • Figure 1 is a schematic view for explaining the constitution principle of a first embodiment of a liquid material ejection device for three-dimensional printing of the present invention
  • FIGS. 2 to 6 are schematic views for explaining a process of spraying a liquid raw material in a first embodiment of a liquid material spraying method for three-dimensional printing of the present invention, in which an arrow P1 in the figure indicates a direction of action of pressure;
  • Figure 7 is a schematic view for explaining the first concrete embodiment of the liquid material ejection device for three-dimensional printing shown in Figure 1.
  • the embodiment adopts a solid raw material, and the solid raw material is melted in the flow channel to obtain a liquid raw material, and an arrow D1 in the figure indicates a driving direction of the driving force;
  • Figure 8 is a schematic view for explaining the composition principle of a second embodiment of a liquid material ejection device for three-dimensional printing of the present invention.
  • 9 to 12 are schematic views for explaining a process of spraying a liquid raw material in a second embodiment of a liquid material spraying method for three-dimensional printing of the present invention.
  • a first embodiment of a liquid material injection method for three-dimensional printing of the present invention forms a liquid section outside the flow path by ejecting the liquid material in the flow path to the outside of the flow path.
  • the injection process is controlled by the control circuit (ie, control circuit 1); the key is:
  • the liquid raw material (ie, liquid raw material 8) is completely connected to the gasification circuit in the flow channel (the gasification circuit belongs to a part of the control circuit 7); the liquid material that is connected to the gasification circuit has a region of higher resistance ( That is, the region with a high resistance value is 14); a current of a certain intensity is applied to the liquid material to be connected to the gasification circuit, and a region having a high resistance value of the liquid material is completely vaporized, and the impact force generated by the gasification is partially used.
  • the liquid material is pushed out of the flow channel to achieve the injection of the liquid material (as shown in Figure 6);
  • the liquid raw material has electrical conductivity; the gasification circuit is configured to apply a current to a liquid raw material connected thereto and generate a resistance heating effect; the higher resistance region, the resistance value of the higher resistance region The other region of the liquid material that is connected to the gasification circuit; the current is applied to the liquid material that is connected to the gasification circuit, and the current intensity is at least higher than the gas material resistance of the liquid material.
  • the required strength of all or part of the area is configured to apply a current to a liquid raw material connected thereto and generate a resistance heating effect; the higher resistance region, the resistance value of the higher resistance region The other region of the liquid material that is connected to the gasification circuit; the current is applied to the liquid material that is connected to the gasification circuit, and the current intensity is at least higher than the gas material resistance of the liquid material. The required strength of all or part of the area.
  • the liquid raw material is completely connected to the gasification circuit in the flow channel, and the liquid raw material is connected to the gasification circuit in series; the higher resistance region is connected through the pair
  • the liquid raw material of the gasification circuit is provided with a region having a small radial cross-sectional area to form a region of higher resistance, wherein: the general direction of the gasification current (ie, the current required for gasification) flowing in the liquid raw material is the axial direction, the diameter The normal to the cross section coincides or is parallel to the axial direction.
  • a liquid material is present between the region where the resistance value is high and the outlet of the flow channel.
  • the liquid raw material is an aeronautical aluminum alloy in a molten state.
  • a liquid material spraying device for three-dimensional printing mainly composed of a casing (ie, a casing 1), a control circuit (ie, a control circuit 7), and a heating unit (not shown in the drawings);
  • the casing 1 is provided with a raw material inlet (ie, raw material inlet 5) and a raw material outlet (ie, raw material outlet 6), and an electrode (ie, electrode 2) is disposed at the raw material outlet;
  • 1 is internally provided with a flow passage, the number of flow passages is one, the flow passage penetrates through the casing 1 and the electrode 2;
  • the raw material inlet 5, the raw material outlet 6 is connected to the internal flow passage;
  • the narrow passage is provided in the flow passage ( That is, the narrow zone is 4), one end of the flow channel is connected to the raw material inlet 5, the other end of the flow channel is connected to the raw material outlet 6 , and the narrow zone 4 is located between the raw material inlet 5 and the raw material outlet 6;
  • the two sides ie, both
  • the area of the track, the electrical access area is used to direct the gasification current into the liquid material in the flow channel; the current flows from the electrical access zone on one side/side, flows through the narrow zone 4, and then flows into the electrical side of the other side/side Access zone; when the current flows through the narrow zone 1-4, all or part of the liquid material in the stenosis zone 4 is heated and vaporized.
  • the electrical access zone 2 is connected to the control circuit 7 through the electrodes 2 to 3.
  • the control circuit-7 includes a gasification circuit, a logic circuit, a detection circuit, an electric field generation circuit and a drive circuit; the gasification circuit is connected to the logic circuit through the drive circuit, and the gasification circuit is used to extend to both sides of the narrow region 4 (ie, both sides)
  • the electrical access zone ie, the electrical access zone 12 and the electrical access zone 2 13
  • the detection circuit is connected to the logic circuit, and the detection circuit is used for monitoring Whether the liquid material is in contact with the electrode 2;
  • the electric field generating circuit is connected to the logic circuit through the driving circuit, and the electric field generating circuit is used to establish an electric field between the liquid material before the contact with the electrode 2, in order to reduce the liquid material.
  • the logic circuit drives the gasification circuit through the drive circuit when setting the liquid material in the narrow zone 4
  • a strong current is output during the time, for example, a current of 200 amps is output and maintained for a period of one in fifty thousandths of a second.
  • the cross-sectional area of the electrical access zone 213 is greater than or equal to the cross-sectional area of the narrow zone 1-4, and the cross section of the electrical access zone 213 and the narrow zone 4-1 takes a radial section of the flow channel.
  • the cross-sectional area of the electrical access zone 213 is greater than the cross-sectional area of the narrow zone 1-4, because the cross-sectional area of the narrow zone 1-4 is small (less than the electrical access zone 12 and the electrical access zone 2 13), the stenosis zone 1
  • the liquid material of 4 has the largest resistance value, resulting in the liquid material in this region being vaporized, and the degree of gasification depends on the intensity and duration of the applied current.
  • the diameter of the radial section of the narrow zone 4 is 30 ⁇ m
  • the diameter of the electrical access zone 12 of the flow channel is 800 ⁇ m
  • the diameter of the electrical access zone 23 of the flow channel is 100 ⁇ m.
  • the liquid material is aeronautical aluminum alloy in a molten state, that is, an aerospace aluminum alloy melt.
  • the heating unit is mainly composed of a high-temperature resistance wire which is wound around the casing 1 and heats the casing 1 and the electrode 2 by means of resistance heating (ie, resistance heating), and generates a high temperature of 800 ° C.
  • the casing 1 is made of high-purity corundum, and the electrode 2 is made of special tungsten alloy.
  • the heating unit is controlled by a control circuit 7.
  • the electrode 2 Since the electrode 2 is disposed in the housing 1 and the distance between the electrode 2 and the narrow region 4 is short (for example, 120 ⁇ m), it is established between the liquid material and the electrode 2 before the contact occurs.
  • the electric field requires only low voltage and low power (for example, voltage of 100V and power of 0.1W).
  • the liquid raw material in the flow channel may be derived from a raw material storage tank that stores the liquid raw material or produces the liquid raw material, or may directly heat the solid raw material inside the flow path to produce a liquid raw material. If the liquid material is from a raw material storage tank that stores the liquid raw material or produces a liquid raw material, the electrical access zone 12 is connected to the control circuit 7 through the electrode one.
  • the solid raw material i.e., the solid raw material 15
  • a solid raw material conveying unit (not shown in the drawings) and a heating unit (not shown in the drawing);
  • the raw material conveying unit is used to feed the solid raw material into the flow path; the heating unit heats the solid raw material to produce the liquid raw material, and maintains the molten state of the liquid raw material.
  • the electrical access zone 12 is connected to the control circuit 7 via the solid state material 15.
  • the solid raw material 15 is made of aviation aluminum alloy wire.
  • the solid material conveying unit is mainly composed of a wire feeding wheel and an electric motor; the wire feeding wheel drives the solid material 15 to move, and moves along the direction D1 shown in FIG.
  • the solid raw material 15 is heated to produce a liquid raw material 17 in the flow path, and a transition zone is formed between the solid raw material 15 and the liquid raw material 17 17, that is, the softened zone 16, and the softened zone 16 is subjected to a pressing force.
  • the deformation, the softening zone 16 and the flow channel wall are closely attached to each other to seal, thereby preventing the liquid raw material 17 from leaking into the raw material inlet 5 direction (provided that the supply rate of the solid raw material is lower than or equal to the liquid raw material in the The amount of injection per unit time).
  • a first embodiment of a liquid material ejection method for three-dimensional printing of the present invention and a first embodiment of a liquid material ejection apparatus for three-dimensional printing of the present invention, injecting a liquid material The main steps are:
  • Step S1 the control circuit controls the liquid material 8 to flow in the flow channel: the liquid material in the flow channel (ie, liquid material-8, aerospace aluminum alloy melt) is narrowed in the flow channel ( The interface between the electrical access zone 12 and the narrow zone 4 is affected by the surface tension and the non-wetting property of the inner surface of the liquid material 8 pairs of flow channels, and the self-gravity cannot cause the liquid material 8 to flow from the electrical access zone 12 to the electrical
  • the access area 23 is as shown in FIG.
  • control circuit 7 activates an electric field generating circuit (which is a component of the control circuit 7), and establishes a voltage of 100 V and a power of 0.1 W between the liquid material 8 and the electrode 2
  • the electric field (which may create an arc between the two), while applying a pressure of 1 standard atmosphere to the liquid material 8 (as indicated by the arrow P1 in Figures 2 to 6), allowing the liquid material to flow 8 to the electrical access.
  • District 2 as shown in Figure 3.
  • Step S2 as shown in FIG. 3 and FIG. 4, the liquid material 8 forms a region with a high resistance value in the flow channel: after the liquid material 8 contacts the electrode 2 (as shown in FIG. 3), the control circuit 7 Turn off the electric field generating circuit, set the duration of the delay (according to the parameters such as the pressure and the diameter of the runner, or use the empirical value, such as a delay of 20 microseconds) to make the liquid material 8 in the electrical access zone
  • the contact area of the striker with the electrode 2 3 exceeds the radial cross-sectional area of the narrow zone 4 (as shown in FIG. 4).
  • the region of the liquid material having a high resistance value is connected to the gasification circuit: the liquid material 8 is connected to the electrical access region 12 and the electrical access region 2, that is, the liquid material 8 is simultaneously connected to the electrode.
  • the liquid material 8 is connected to the electrical access region 12 and the electrical access region 2, that is, the liquid material 8 is simultaneously connected to the electrode.
  • One 2 and the electrode two 3 are in full contact.
  • step S3 as shown in FIG. 5, a current of a certain intensity is applied, and a resistance heating effect is generated in a region where the resistance value of the liquid material is high, and the liquid material in a region having a high resistance value is completely vaporized: the control circuit 7 starts the gas.
  • the circuit (which is part of the control circuit 7) applies a current of 200 A to the liquid material 8 for a duration of one-hundred thousandth of a second, so that the liquid material in the narrow zone is 8 in the 500,000 It is vaporized in one second, and a gasification zone is produced in the flow channel.
  • Step S4 as shown in FIG. 5 and FIG. 6, the impact force generated by the gasification pushes the liquid raw material between the region where the resistance value of the liquid material is high and the outlet of the flow channel to the outside of the flow channel: the impact generated by the instantaneous gasification The force cuts off the liquid material 10 between the narrow zone 4 and the material outlet 6 into the flow channel in a very short time to form a droplet 11.
  • a second embodiment of the liquid material injection method for three-dimensional printing of the present invention forms a liquid section outside the flow path by ejecting the liquid material in the flow path to the outside of the flow path. Or droplets, the injection process is controlled by a control circuit (ie, control circuit 2 25);
  • the liquid raw material (ie liquid raw material three 27 and liquid raw material four 28) is locally connected to the gasification circuit in the flow channel (the gasification circuit is part of the control circuit); the liquid raw material connected to the gasification circuit has a higher resistance
  • the area ie, the narrow area at the intersection of liquid raw material three 27 and liquid raw material four 28; applying a certain intensity of current to the liquid raw material that is connected to the gasification circuit, and the area where the resistance value of the liquid raw material is high is all Gasification, using the impact force generated by gasification to push part of the liquid material outside the flow channel, thereby achieving the injection of liquid material (as shown in Figure 12);
  • the liquid raw material has electrical conductivity; the gasification circuit is configured to apply a current to a liquid raw material connected thereto and generate a resistance heating effect; the higher resistance region, the resistance value of the higher resistance region The other region of the liquid material that is connected to the gasification circuit; the current is applied to the liquid material that is connected to the gasification circuit, and the current intensity is at least higher than the gas material resistance of the liquid material.
  • the required strength of all or part of the area is configured to apply a current to a liquid raw material connected thereto and generate a resistance heating effect; the higher resistance region, the resistance value of the higher resistance region The other region of the liquid material that is connected to the gasification circuit; the current is applied to the liquid material that is connected to the gasification circuit, and the current intensity is at least higher than the gas material resistance of the liquid material. The required strength of all or part of the area.
  • the liquid raw material is locally connected to the gasification circuit in the flow channel, and the liquid raw material is connected to the gasification circuit in series; the higher resistance region is connected through the pair
  • the liquid raw material of the gasification circuit is provided with a region having a small radial cross-sectional area to form a region of higher resistance, wherein: the general direction of the gasification current (ie, the current required for gasification) flowing in the liquid raw material is the axial direction, the diameter The normal to the cross section coincides or is parallel to the axial direction.
  • a liquid material is present between the region where the resistance value is high and the outlet of the flow channel.
  • the liquid raw material is an aeronautical aluminum alloy in a molten state.
  • a second embodiment of a printed liquid material ejection method a liquid material ejection device for three-dimensional printing, mainly composed of a casing (ie, housing 2 18), a control circuit (ie, control circuit 2), and a heating unit (not shown in the drawings); wherein: two inlets (i.e., raw material inlet 23 and raw material inlet 3) and a raw material outlet (i.e., raw material outlet 22) are disposed in the casing 2
  • the raw material outlet is provided with an electrode (ie, electrode three 19);
  • the housing 2 is internally provided with a flow channel, and the number of flow channels is two; wherein the first flow channel is a main flow channel, and the main flow channel penetrates the housing two 18 and the electrode three 19, and the flow path is connected with the raw material inlet 23 and the raw material outlet 22
  • the control circuit 25 has the same composition as the control circuit 7, including a gasification circuit, a logic circuit, a detection circuit, an electric field generation circuit, and a drive circuit; the gasification circuit is connected to the logic circuit through a drive circuit, and the gasification circuit is used to narrow the region.
  • the electrical access areas (ie, the main channel and the secondary flow path) on both sides (ie, both sides) of the second 26 output current required for the liquid material in the gasification narrow zone 26;
  • the detecting circuit is connected to the logic circuit, and the detecting circuit is used for Monitoring whether the liquid raw material is in contact with the electrode 3 19;
  • the electric field generating circuit is connected to the logic circuit through the driving circuit, and the electric field generating circuit is used to establish an electric field between the liquid raw material in the main flow channel and the liquid raw material in the auxiliary flow path before the contact occurs
  • the purpose is to reduce the surface tension of the liquid raw material and pull the two to move to each other;
  • the logic circuit drives the gasification circuit to drive the gas current to output a strong current within a set time when the liquid material in the narrow region 26 is required to be vaporized, For example, a current of 200 amps is output and maintained for a period of one in fifty thousandths of a second.
  • the liquid material is aeronautical aluminum alloy in a molten state, that is, an aerospace aluminum alloy melt.
  • the heating unit is mainly composed of a high temperature resistance wire, and the resistance wire is wound around the outer casing 18, and the casing 2 18 and the electrode 39 are heated by resistance heating (ie, resistance heating), and a high temperature of 800 ° C is generated. It is made of shell 2 18 high purity corundum, and electrode 3 19 is made of special tungsten alloy.
  • the heating unit is controlled by a control circuit 2-25.
  • a second embodiment of a liquid material ejection method for three-dimensional printing according to the present invention described above and a second embodiment of a liquid material ejection apparatus for three-dimensional printing of the present invention, ejecting a liquid material The main steps are:
  • Step S101 as shown in FIG. 9 and FIG. 10, the control circuit 25 controls the liquid raw material three 27 and the liquid raw material four 28 to flow in the flow channel: the liquid raw material in the flow channel (ie, the liquid raw material three 27 and the liquid raw material four 28, aviation aluminum
  • the alloy melt is affected by the surface tension and the non-wetting property of the liquid material on the inner surface of the flow channel in the narrow region at the intersection of the main flow path and the secondary flow path, and the self-gravity cannot make the liquid raw material 37 and the liquid raw material 4 28 flow through the intersection.
  • the narrow zone ie, the narrow zone 2
  • the liquid raw material three 27 and the liquid raw material four 28 cannot contact each other, and the lower front end of the liquid raw material four 28 in the main flow channel is in contact with the electrode three 19 by gravity, but cannot pass through the raw material outlet 22, as shown in FIG.
  • control circuit 25 determines whether the position of the lower front end of the liquid material material 48 28 is determined by the contact of the lower end of the liquid material material 28 28 with the electrode 3 19; the control circuit 2 25 activates the electric field generating circuit (belongs to control)
  • the circuit part 25) establishes an electric field of 500V and a power of 0.1W between the liquid raw material three 27 and the liquid raw material four 28 (an arc may be generated between the two), and the electric field force is used to change Three and four 27 28 surface tension at the two narrow region 26, and the electric field forces pulling liquid raw material liquid close to each other and in contact with both.
  • Step S102 as shown in FIG. 10, the liquid raw material three 27 and the liquid raw material four 28 form a region having a high resistance value in the flow channel: after the liquid raw material three 27 and the liquid raw material four 28 are in contact with each other (as shown in FIG. 10).
  • the control circuit 2 25 closes the electric field generating circuit, and the liquid raw material 3 27 and the liquid raw material 4 28 form a region having a high resistance value at the junction of the narrow region 26 (for liquid raw materials in all flow paths). Both sides of the region where the resistance value of the liquid material is high pass through the electrode four 20 And the electrode 5 21 is connected to the gasification circuit (sub-module belonging to the control circuit 2 25).
  • step S103 as shown in FIG. 11, a current of a certain intensity is applied, and a resistance heating effect is generated in a region where the resistance value of the liquid material is high, and the liquid material in a region having a high resistance value is completely vaporized: the control circuit 2 25 starts gas.
  • the circuit (which is part of the control circuit 2) applies a current of 200 A and a duration of one hundred thousandth of a second to the liquid material in the narrow zone 26, so that the liquid material in the narrow zone 26 is in the fifth It is vaporized within one tenth of a second, and a gasification zone is produced in the flow channel.
  • Step S104 as shown in FIG. 11 and FIG. 12, the impact force generated by the gasification pushes the liquid material between the region where the resistance value of the liquid material is high and the outlet of the channel to the outside of the channel: the instantaneous gasification
  • the impact force will cause the truncated liquid material ternary 30 between the narrow zone 26 and the material outlet 22 to be pushed out of the flow channel in a very short time to form the droplets 31.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Powder Metallurgy (AREA)
  • Nozzles (AREA)

Abstract

一种用于三维打印的液态原料喷射方法,通过将流道内的液态原料向流道外喷出,在流道外形成流段或液滴,喷射过程中受到控制电路的控制,液态原料在流道内被全部或局部接入气化电路中,被接入气化电路的液态原料存在电阻值较高的区域(14),对被接入气化电路的液态原料施加一定强度的电流,将液体原料的电阻值较高的区域全部或局部气化,利用气化产生的冲击力将液态原料推至流道外,从而实现液态原料的喷射。一种用于三维打印的液态原料喷射装置,主要由壳体、控制电路组成,壳体上设置原料入口和原料出口,壳体内部设置流道,控制电路对工作过程进行控制,流道内设置有狭窄区,狭窄区两边为电气接入区。该方法和装置能够实现3D打印领域液态原料的高速喷射,获得对液态原料流动性的灵活控制,可以产生体积微小的原料液滴,结构简单,稳定性高。

Description

一种用于三维打印的液态原料喷射方法及其装置 技术领域
本发明涉及三维打印技术中的液态原料喷射技术,尤其是涉及一种用于三维打印的液态原料喷射方法及其装置,属于增材制造技术领域。
背景技术
三维打印技术最早起源于19世纪末的美国,直到20世纪七八十年代在日本和美国得到完善并逐步商业化。现在常见的主流三维打印技术,例如立体光固化成型法(Stereo Lithography Apparatus,SLA)、熔融沉积制造(Fused Deposition Modeling,FDM)、选择性激光烧结(Selecting Laser Sintering,SLS)、三维粉末粘接(Three Dimensional Printing and Gluing,3DP),于20世纪八九十年代在美国获得商业化。通过堆叠熔化原料实现三维打印的技术中,例如常见的FDM塑料打印和其它类似原理的金属打印,其中重要核心组件之一就是产生熔融原料的熔炉/挤出头/发生装置;又如喷射熔化原料的打印技术也属于堆叠熔化原料,其熔化原料喷射装置也是核心组件。目前有不少关于产生熔融金属原料的发生装置的专利申请,例如申请号为201410513433.7、名称为“一种用于金属熔融挤出成型的3D打印头”的中国专利申请,又如申请号为201520533246.5、名称为“一种用于半固态金属挤出沉积成型的装置”的中国专利申请,这些专利申请无法产生液滴,可以产生连续的金属流。也有采用气压作为喷射动力的方式,可以产生金属液滴,例如文献Experiments on remelting and solidification of molten metal droplets deposited in vertical columns(来源:期刊名《Journal of Manufacturing Science and Engineering-Transactions of the Asme》,2007年第129卷第2期311-318页)中记载的装置及方法,主要原理是采用脉冲气流在微型熔炉/坩埚内产生脉冲式的压强振动就可以在喷嘴出口处形成金属液滴;申请号为201520561484.7、名称为“一种液态金属打印墨盒”的中国专利申请使用的方法与该文献中记载的技术类似;又如申请号为201520644682.X、名称为“一种金属3D打印加支撑结构的装置”的中国专利申请,也是采用脉冲气流/气压来实现金属液滴生成。这些产生金属液滴的方法都是通过施加脉冲压力和利用流体的特性来产生金属液滴,也可以产生连续液态金属流;但这些技术不能在工作过程中连续添加固态原料,这对一些打印情形会带来不便(例如打印大型金属零件),并且这类技术由于气体是可压缩的物质形态,存在压力传导延滞,金属液滴的生成速度不高,更严重的是可控性差。在现有技术中,如果喷嘴的内径与液态原料储存仓或主流道的内径之比过小(例如与喷嘴连接的液态原料储存仓或主流道的内径为2毫米、喷嘴内径为50微米),特别是当原料为液态金属时,液态原料的表面张力和粘度较大,要施加大压力才能克服表面张力和流阻以实现喷射。
在2D打印技术中常用的喷射技术可以快速产生液滴,例如美国惠普和日本爱普生等企业开发的喷墨打印机的喷射技术,基于流道形变挤压(在喷嘴流道壁上设置有电致形变材料)或局部加热蒸发(在喷嘴流道壁上设置有发热元件)实现液体喷射,但这些技术不适用于高熔点材料的熔液的喷射(例如航空铝合金、铜、不锈钢等),并且也不适用于高粘度液态材料的喷射。美国惠普公司2015年公开的多射流(MJF,Multi-Jet-Fusion)塑料3D打印技术,虽然用到了2D喷墨打印的喷射技术,但所喷射的液体只是一些高流动性的辅助性的试剂(所 喷射的试剂在常温下处于液态),主体材料仍然是固态塑料粉末(采用类似SLS铺粉技术的方式实现铺塑料粉层)。
也有基于电场力的液态原料喷射方法,例如“电场喷射”技术(参见书籍《电场喷射》,作者李建林,上海交通大学出版社,2012年),又如申请号为201610224283.7(名称为“一种液态金属打印设备”)、申请号为201310618953.X(名称为“一种高压静电驱动且可变直径3D打印机”)等中国专利申请也使用了电场驱动技术;这些技术都是在喷嘴(喷嘴须采用非导电性材料制造)与外界的电极(打印支撑平台作为电极)之间建立高压静电场或脉冲式高压静电场,以实现液态原料的喷射;但“电场喷射”也有局限性,例如:由于液态原料具有粘性,尤其是表面张力大的液态金属,必须施加高压静电场、甚至超高压静电场,以产生克服液态原料粘滞力和表面张力所需的拉力并产生一定的流动速度;高压电场存在危险性、容易产生电击穿、可控性不高;由于高压电场的可控性不高,导致电场喷射过程的可控性不高,以及对所产生的液滴的控制性不高。
发明内容
本发明的目的在于提供一种用于三维打印的液态原料高速喷射方法及其装置,且喷射的可控性高,尤其适用于所要喷射的液态原料具有导电性的应用环境。
本发明的另一个目的在于提供一种用于三维打印的熔融金属等高温液态原料的高速高可控性喷射方法及其装置。
为了实现上述的发明目的,本发明采用的技术方案是:
一种用于三维打印的液态原料喷射方法,通过将流道内的液态原料向流道外喷出,在流道外形成液段或液滴,喷射过程受到控制电路的控制,其特征在于:
液态原料在流道内被全部地或局部地接入气化电路中;被接入气化电路的液态原料存在较高电阻的区域;对被接入气化电路的液态原料施加一定强度的电流,将液态原料的电阻值较高的区域全部或局部气化,利用气化所产生的冲击力将液态原料推至流道外,从而实现液态原料的喷射;
所述的液态原料具有导电性;有些类型的液态原料在低电压下具有导电性,有些类型的液态原料在低电压下不具备导电性、但在高电压或超高电压下具有导电性,都属于导电性液态原料;
所述的气化电路,用于对与其连接的液态原料施加电流并产生电阻加热作用;
所述的较高电阻的区域,该较高电阻的区域的电阻值高于被接入气化电路的液态原料的其它区域;
所述的对被接入气化电路的液态原料施加一定强度的电流,电流的强度至少满足气化所述的液态原料电阻值较高区域的全部或局部所需的强度。
可选地:
所述的液态原料在流道内被全部地或局部地接入气化电路中,液态原料以串联的方式被接入气化电路;
所述的较高电阻的区域,通过对被接入气化电路的液态原料设置径向截面积较小的区域以形成较高电阻的区域,其中:气化电流(即气化所需的电流)在液态原料中流动的总方向为轴向,径向截面的法线与轴向重合或平行;
所述的流道,是指容纳液态原料且液态原料可在其中流动的结构。
可选地:
在所述的电阻值较高的区域被气化的起始时刻,在所述的电阻值较高的区域与流道的出口之间存在液态原料。
可选地:
所述的液态原料为熔融状态的原料,或者为半熔化的原料,或者为溶液,或者为悬浊液;
所述的气化电路属于控制电路的一部分。
可选地:
喷射液态原料的主要步骤为:
步骤S1,控制电路控制液态原料在流道内流动;驱动液态原料在流道内流动的力,为压力、毛细压力、重力、电场力、离心力、电磁力这些力当中的一种或多种;
步骤S2,液态原料在流道内形成电阻值较高的区域;液态原料的电阻值较高的区域被接入气化电路;
步骤S3,施加一定强度的电流,在液态原料的电阻值较高的区域产生电阻加热作用,将电阻值较高的区域的液态原料全部或部分气化;电流的强度至少满足气化所述的液态原料电阻值较高区域的全部或局部所需的强度;
步骤S4,气化产生的冲击力将介于液态原料电阻值较高的区域与流道出口之间的液态原料推至流道外。
进一步地,本发明提供了一种应用上述的用于三维打印的液态原料喷射方法的装置:一种用于三维打印的液态原料喷射装置,主要由壳体、控制电路组成,其中:在壳体上设置有原料入口和原料出口,壳体内部设置有流道,原料入口、原料出口与内部的流道连接,控制电路对工作过程进行控制;其特征在于:
在流道内设置有狭窄区,狭窄区的两边(或两侧)为电气接入区,电气接入区用于将气化电流引导至流道内的液态原料中;电流从一边(或一侧)的电气接入区流入,流经狭窄区,然后流入另一边(或另一侧)的电气接入区;电流在流经狭窄区时,将位于狭窄区的液态原料全部或部分加热气化;气化所产生的冲击力推动流道内的液态原料从原料出口喷出;
所述的气化电流用于将液态原料加热气化;
所述的电气接入区实际上是流道内的提供给液态原料与气化电流发生电路相连接的区域。
可选地:
所述的流道的数量至少为两条,并且流道之间存在交汇处,所述的狭窄区设置于该交汇处。
可选地:
所述的流道的数量为一条,流道的一端连接原料入口,流道的另一端连接原料出口,狭窄区介于原料入口与原料出口之间。
可选地:
设置有固态原料输送单元和加热单元;固态原料输送单元用于将固态原料送入流道内;加热单元用于对固态原料进行加热,以产生液态原料,以及维持液态原料的熔融状态;
或者,设置有加热单元,不设置固态原料输送单元;加热单元用于维持液态原料的熔融状态。加热单元的加热方式有多种,例如:电磁感应加热,电阻加热(电阻发热),电弧加热,等离子体加热,激光加热。
可选地:
在所述的原料出口设置有电极。
可选地:
设置有原料仓或原料腔,用于储存液态原料或固态原料;所述的流道与原料仓或原料腔连接。
可选地:
设置有冷却单元,用于对不需要被加热或不能承受高温的区域进行冷却。
本发明的有益效果如下:
(1)本发明通过将位于流道内的液态原料接入控制电路,并且在被接入控制电路的液态原料形成电阻值较高的区域,使用强电流将电阻值较高的区域高速气化,在流道内产生“微型爆炸”效果,利用流道对“微型爆炸”的约束作用而实现将流道内的部分液态原料快速喷出,过程类似发射子弹,实现“电子式”喷射;因此,本发明实现了在3D打印领域的液态原料的高速喷射(尤其是喷射液态金属),可控性极高。
(2)本发明的液态原料喷射装置的核心结构基于简单的流道结构和电极,结构简单,稳定性高、可维护性强。
(3)本发明的液态原料喷射装置,可以通过在原料出口与流道内的液态原料之间建立电场,利用电场力改变液态原料在流道内的狭窄区的表面张力,或者利用电场力拉动液态原料的流动,以获得对液态原料流动性的灵活控制;尤其是在使用高表面张力和高粘滞力的液态原料(例如熔化的金属原料)时,通过电场力大幅度降低其表面张力,可以使液态原料在较低的压力驱动下轻易通过小口径的流道(例如直径10微米的流道);并且由于流道出口处的电极与流道内液态原料之间的距离短,所需的电场强度远低于现有的电场喷射技术使用的高压电场,所需的电场的电压低且功率低,安全性和可控性都高于现有技术;因此,本发明可以获得对液态原料流动性的灵活控制,可以实现高表面张力高粘滞力的液态原料的喷射,并且可以产生体积微小的原料液滴。
(4)本发明将液态原料接入控制电路和利用气化产生的冲击力来推动液态原料的喷射,这样的原理决定了本发明可以实现对高熔点材料的喷射,例如不锈钢熔液、玻璃熔液、陶瓷熔液(多数类型玻璃和陶瓷的熔液也具有导电性);因此,本发明可以用于金属和玻璃等高熔点材料的3D打印,这实现了在3D打印领域的高熔点材料的高速高可控性喷射的技术突破。
综上所述,本发明的有益效果:实现了在3D打印领域的液态原料的高速喷射,可控性极高;可以获得对液态原料流动性的灵活控制,可以实现高表面张力高粘滞力的液态原料的喷射,并且可以产生体积微小的原料液滴;实现了在3D打印领域的高熔点材料的高速高可控性喷射的技术突破;结构简单,稳定性高,安全性高,可维护性强。本发明具有实质性进步。
附图说明
图1是示意图,用于说明本发明的一种用于三维打印的液态原料喷射装置的第一个具体实施例的组成原理;
图2至图6是示意图,用于说明本发明的一种用于三维打印的液态原料喷射方法的第一个具体实施例喷射液态原料的过程,图中的箭头P1表示压力的作用方向;
图7是示意图,用于说明图1所示的用于三维打印的液态原料喷射装置的第一个具体实 施例采用固态原料、在流道内将固态原料熔化获得液态原料的情形,图中的箭头D1表示驱动力的作用方向;
图8是示意图,用于说明本发明的一种用于三维打印的液态原料喷射装置的第二个具体实施例的组成原理;
图9至图12是示意图,用于说明本发明的一种用于三维打印的液态原料喷射方法的第二个具体实施例喷射液态原料的过程;
其中的标号:1-壳体一,2-电极一,3-电极二,4-狭窄区一,5-原料入口一,6-原料出口一,7-控制电路一,8-液态原料一,9-气化区一,10-被截断的液态原料一,11-液滴一,12-电气接入区一,13-电气接入区二,14-电阻值较高的区域,15-固态原料,16-软化区,17-液态原料二,18-壳体二,19-电极三,20-电极四,21-电极五,22-原料出口二,23-原料入口二,24-原料入口三,25-控制电路二,26-狭窄区二,27-液态原料三,28-液态原料四,29-气化区二,30-被截断的液态原料二,31-液滴二。
具体实施方式
下面列举本发明的较佳具体实施例并结合附图对本发明进行详细描述。
如图2至图6所示的本发明的一种用于三维打印的液态原料喷射方法的第一个具体实施例,通过将流道内的液态原料向流道外喷出,在流道外形成液段或液滴,喷射过程受到控制电路(即控制电路一7)的控制;关键在于:
液态原料(即液态原料一8)在流道内被全部地接入气化电路中(气化电路属于控制电路一7的一部分);被接入气化电路的液态原料存在较高电阻的区域(即电阻值较高的区域14);对被接入气化电路的液态原料施加一定强度的电流,将液态原料的电阻值较高的区域全部气化,利用气化所产生的冲击力将部分液态原料推至流道外,从而实现液态原料的喷射(如图6所示);
所述的液态原料具有导电性;所述的气化电路,用于对与其连接的液态原料施加电流并产生电阻加热作用;所述的较高电阻的区域,该较高电阻的区域的电阻值高于被接入气化电路的液态原料的其它区域;所述的对被接入气化电路的液态原料施加一定强度的电流,电流的强度至少满足气化所述的液态原料电阻值较高区域的全部或局部所需的强度。
在本具体实施例中,上述的液态原料在流道内被全部地接入气化电路中,液态原料以串联的方式被接入气化电路;上述的较高电阻的区域,通过对被接入气化电路的液态原料设置径向截面积较小的区域以形成较高电阻的区域,其中:气化电流(即气化所需的电流)在液态原料中流动的总方向为轴向,径向截面的法线与轴向重合或平行。
在本具体实施例中,在所述的电阻值较高的区域被气化的起始时刻,在所述的电阻值较高的区域与流道的出口之间存在液态原料。
在本具体实施例中,所述的液态原料为熔融状态的航空铝合金。
如图1和图7所示的本发明的一种用于三维打印的液态原料喷射装置的第一个具体实施例,该具体实施例应用图2至图6所示的本发明的一种用于三维打印的液态原料喷射方法的第一个具体实施例:
一种用于三维打印的液态原料喷射装置,主要由壳体(即壳体一1)、控制电路(即控制电路一7)和加热单元(未在附图中示出)组成;其中:在壳体一1设置有原料入口(即原料入口一5)和原料出口(即原料出口一6),在原料出口设置有电极(即电极二3);壳体一 1内部设置有流道,流道的数量为一条,流道贯穿壳体一1和电极二3;原料入口一5、原料出口一6与内部的流道连接;在流道内设置有狭窄区(即狭窄区一4),流道的一端连接原料入口一5,流道的另一端连接原料出口一6,狭窄区一4位于原料入口一5与原料出口一6之间;狭窄区一4的两边(即两侧)为电气接入区(即电气接入区一12和电气接入区二13),电气接入区用于将电流引入流道内,电气接入区为电流被接入流道的区域,电气接入区用于将气化电流引导至流道内的液态原料中;电流从一边/侧的电气接入区流入,流经狭窄区一4,然后流入另一边/侧的电气接入区;电流在流经狭窄区一4时,将狭窄区一4内的液态原料全部或部分加热气化。电气接入区二13通过电极二3接入控制电路一7。
控制电路一7,包括气化电路、逻辑电路、探测电路、电场发生电路和驱动电路;气化电路通过驱动电路与逻辑电路连接,气化电路用于向狭窄区一4的两边(即两侧)的电气接入区(即电气接入区一12和电气接入区二13)输出气化狭窄区一4内的液态原料所需的电流;探测电路与逻辑电路连接,探测电路用于监测液态原料是否与电极二3接触;电场发生电路通过驱动电路与逻辑电路连接,电场发生电路用于在液态原料与电极二3发生接触前、在两者之间建立电场,目的是降低液态原料的表面张力,以降低液态原料在狭窄区一4和电气接入区二13的流阻;逻辑电路在需要气化狭窄区一4内的液态原料的时候通过驱动电路驱动气化电路在设定的时间内输出强电流,例如输出200安培强度的电流并且维持五十万分之一秒的时间。
电气接入区二13的截面积大于或等于狭窄区一4的截面积,电气接入区二13和狭窄区一4的截面取流道径向的截面。当电气接入区二13的截面积大于狭窄区一4的截面积时,因为狭窄区一4的截面积较小(小于电气接入区一12和电气接入区二13),狭窄区一4的液态原料的电阻值是最大的,导致该区域的液态原料被气化,气化的程度取决于所施加的电流强度及持续时间。
在本具体实施例中,狭窄区一4的径向截面的直径为30μm,流道的电气接入区一12的直径为800μm,流道的电气接入区二13的直径为100μm。
在本具体实施例中,液态原料采用熔融状态的航空铝合金,即航空铝合金熔液。加热单元主要由高温电阻丝组成,电阻丝缠绕在壳体一1外,通过电阻加热(即电阻发热)的方式对壳体一1和电极二3进行加热,并产生800℃的高温。壳体一1采用高纯度刚玉制造,电极二3采用特种钨合金制造。加热单元受到控制电路一7的控制。
由于电极二3设置于壳体一1内,电极二3与狭窄区一4之间的距离短(例如120μm),所以,在液态原料与电极二3发生接触前、在两者之间所建立的电场只需低压低功率(例如电压100V、功率0.1W)。
流道内的液态原料(如图2所示的液态原料一8)可以来自储存液态原料或产生液态原料的原料仓,也可以在流道内部直接将固态原料加热产生液态原料。如果液态原料来自储存液态原料或产生液态原料的原料仓,则电气接入区一12通过电极一2接入控制电路一7。
如果在流道内部直接将固态原料(即固态原料15)加热产生液态原料,需要额外设置固态原料输送单元(在附图中未示出)和加热单元(在附图中未示出);固态原料输送单元用于将固态原料送入流道内;加热单元对固态原料进行加热,以产生液态原料,以及维持液态原料的熔融状态。电气接入区一12则通过固态原料15接入控制电路一7。固态原料15采用航空铝合金线材。固态原料输送单元主要由送丝轮和电动机组成;送丝轮带动固态原料15移动,沿着图7中所示的方向D1移动。如图7所示,固态原料15受到加热而在流道内产生液态原料二17,在固态原料15与液态原料二17之间产生过渡区,即软化区16,软化区16受挤压力作用发生形变,软化区16与流道壁紧密贴合并起到密封作用,因而起到防止液态原料二17往原料入口一5方向渗漏的作用(前提是固态原料的供给速率低于或等于液态原料在单位时间内的喷射量)。
具体应用方案:
结合上述的本发明的一种用于三维打印的液态原料喷射方法的第一个具体实施例和本发明的一种用于三维打印的液态原料喷射装置的第一个具体实施例,喷射液态原料的主要步骤为:
步骤S1,如图2和图3所示,控制电路控制液态原料一8在流道内流动:流道内的液态原料(即液态原料一8,航空铝合金熔液)在流道的变窄处(电气接入区一12与狭窄区一4的交界处)受表面张力作用和液态原料一8对流道内表面的非浸润性影响,自身重力无法使液态原料一8从电气接入区一12流向电气接入区二13,如图2所示;控制电路一7启动电场发生电路(属于控制电路一7的组成部分),在液态原料一8与电极二3之间建立电压100V、功率0.1W的电场(在两者之间可能产生电弧),同时对液态原料一8施加1个标准大气压的压强(如图2至图6中的箭头P1所示),使液态原料一8流到电气接入区二13,如图3所示。
步骤S2,如图3和图4所示,液态原料一8在流道内形成电阻值较高的区域:当液态原料一8接触到电极二3之后(如图3所示),控制电路一7关闭电场发生电路,延时设定的时长(根据压强和流道的直径等参数计算获得,或者使用经验值,例如延时20微秒),使液态原料一8在电气接入区二13内的前锋与电极二3的接触面积超过狭窄区一4的径向截面积(如图4所示)。
如图4所示,液态原料的电阻值较高的区域被接入气化电路:液态原料一8跨接电气接入区一12和电气接入区二13,即液态原料一8同时与电极一2和电极二3充分接触。
步骤S3,如图5所示,施加一定强度的电流,在液态原料的电阻值较高的区域产生电阻加热作用,将电阻值较高的区域的液态原料全部气化:控制电路一7启动气化电路(属于控制电路一7的组成部分),对液态原料一8施加强度200A、持续时间为五十万分之一秒的电流,使狭窄区一4内的液态原料一8在五十万分之一秒内被气化,在流道内产生气化区一9。
步骤S4,如图5和图6所示,气化产生的冲击力将介于液态原料电阻值较高的区域与流道出口之间的液态原料推至流道外:瞬间气化所产生的冲击力将介于狭窄区一4与原料出口一6之间的被截断的液态原料一10在极短时间内从流道内推出,形成液滴一11。
如图9至图12所示,本发明的一种用于三维打印的液态原料喷射方法的第二个具体实施例,通过将流道内的液态原料向流道外喷出,在流道外形成液段或液滴,喷射过程受到控制电路(即控制电路二25)的控制;
液态原料(即液态原料三27和液态原料四28)在流道内被局部地接入气化电路中(气化电路属于控制电路的一部分);被接入气化电路的液态原料存在较高电阻的区域(即液态原料三27与液态原料四28之间的交汇处的狭窄区域);对被接入气化电路的液态原料施加一定强度的电流,将液态原料的电阻值较高的区域全部气化,利用气化所产生的冲击力将部分液态原料推至流道外,从而实现液态原料的喷射(如图12所示);
所述的液态原料具有导电性;所述的气化电路,用于对与其连接的液态原料施加电流并产生电阻加热作用;所述的较高电阻的区域,该较高电阻的区域的电阻值高于被接入气化电路的液态原料的其它区域;所述的对被接入气化电路的液态原料施加一定强度的电流,电流的强度至少满足气化所述的液态原料电阻值较高区域的全部或局部所需的强度。
在本具体实施例中,上述的液态原料在流道内被局部地接入气化电路中,液态原料以串联的方式被接入气化电路;上述的较高电阻的区域,通过对被接入气化电路的液态原料设置径向截面积较小的区域以形成较高电阻的区域,其中:气化电流(即气化所需的电流)在液态原料中流动的总方向为轴向,径向截面的法线与轴向重合或平行。
在本具体实施例中,在所述的电阻值较高的区域被气化的起始时刻,在所述的电阻值较高的区域与流道的出口之间存在液态原料。
在本具体实施例中,所述的液态原料为熔融状态的航空铝合金。
如图8所示的本发明的一种用于三维打印的液态原料喷射装置的第二个具体实施例,该具体实施例是应用图9至图12所示的本发明的一种用于三维打印的液态原料喷射方法的第二个具体实施例:一种用于三维打印的液态原料喷射装置,主要由壳体(即壳体二18)、控制电路(即控制电路二25)和加热单元(未在附图中示出)组成;其中:在壳体二18内设置有两个原料入口(即原料入口二23和原料入口三24)和一个原料出口(即原料出口二22),在原料出口设置有电极(即电极三19);壳体二18内部设置有流道,流道的数量为两条;其中第一条流道为主流道,主流道贯穿壳体二18和电极三19,并且该流道与原料入口二23、原料出口二22连接;第二条流道为副流道,副流道的一端与原料入口三24连接,另一端与主流道交汇,在交汇处设置有狭窄区(即狭窄区二26);狭窄区二26两边(即两侧)的主流道和副流道均为电气接入区,电气接入区用于将气化电流引导至流道内的液态原料中;电气接入区通过电极四20和电极五21接入气化电路(属于控制电路二25的子模块);电极三19被接入控制电路二25。
控制电路二25的组成与控制电路一7相同,包括气化电路、逻辑电路、探测电路、电场发生电路和驱动电路;气化电路通过驱动电路与逻辑电路连接,气化电路用于向狭窄区二26的两边(即两侧)的电气接入区(即主流道和副流道)输出气化狭窄区二26内的液态原料所需的电流;探测电路与逻辑电路连接,探测电路用于监测液态原料是否与电极三19接触;电场发生电路通过驱动电路与逻辑电路连接,电场发生电路用于在主流道内的液态原料和副流道内的液态原料发生接触前、在两者之间建立电场,目的是降低液态原料的表面张力和拉动两者向彼此移动;逻辑电路在需要气化狭窄区二26内的液态原料的时候通过驱动电路驱动气化电路在设定的时间内输出强电流,例如输出200安培强度的电流并且维持五十万分之一秒的时间。
在本具体实施例中,液态原料采用熔融状态的航空铝合金,即航空铝合金熔液。加热单元主要由高温电阻丝组成,电阻丝缠绕在壳体二18外,通过电阻加热(即电阻发热)的方式对壳体二18和电极三19进行加热,并产生800℃的高温。采用壳体二18高纯度刚玉制造,电极三19采用特种钨合金制造。加热单元受到控制电路二25的控制。
具体应用方案:
结合上述的本发明的一种用于三维打印的液态原料喷射方法的第二个具体实施例和本发明的一种用于三维打印的液态原料喷射装置的第二个具体实施例,喷射液态原料的主要步骤为:
步骤S101,如图9和图10所示,控制电路二25控制液态原料三27和液态原料四28在流道内流动:流道内的液态原料(即液态原料三27和液态原料四28,航空铝合金熔液)在主流道和副流道的交汇处的狭窄区受表面张力作用和液态原料对流道内表面的非浸润性影响,自身重力无法使液态原料三27和液态原料四28流过交汇处的狭窄区(即狭窄区二26),液态原料三27和液态原料四28无法相互接触,主流道内的液态原料四28的下端前锋受重力作用而与电极三19接触、但无法通过原料出口二22,如图9所示;控制电路二25通过液态原料四28的下端前锋是否与电极三19的接触来判断液态原料四28的下端前锋的位置;控制电路二25启动电场发生电路(属于控制电路二25的组成部分),在液态原料三27和液态原料四28之间建立电压500V、功率0.1W的电场(在两者之间可能产生电弧),利用电场力改变液态原料三27和液态原料四28在狭窄区二26处的表面张力,以及利用电场力拉动两者相互靠近和接触。
步骤S102,如图10所示,液态原料三27和液态原料四28在流道内形成电阻值较高的区域:当在液态原料三27和液态原料四28相互接触之后(如图10所示),控制电路二25关闭电场发生电路,液态原料三27和液态原料四28在狭窄区二26的连接处形成电阻值较高的区域(对于所有流道内的液态原料而言)。液态原料的电阻值较高的区域的两侧通过电极四20 和电极五21接入气化电路(属于控制电路二25的子模块)。
步骤S103,如图11所示,施加一定强度的电流,在液态原料的电阻值较高的区域产生电阻加热作用,将电阻值较高的区域的液态原料全部气化:控制电路二25启动气化电路(属于控制电路二25的组成部分),对狭窄区二26处的液态原料施加强度200A、持续时间为五十万分之一秒的电流,使狭窄区二26内的液态原料在五十万分之一秒内被气化,在流道内产生气化区二29。
步骤S104,如图11和图12所示,气化产生的冲击力将介于液态原料的电阻值较高的区域与流道出口之间的液态原料推至流道外:瞬间气化所产生的冲击力将介于狭窄区二26与原料出口二22之间的被截断的液态原料二30在极短时间内从流道内推出,形成液滴二31。
以上所述,仅作为本发明的较佳具体实施例,不能以此限定本发明的实施范围,即依据本发明权利要求书及说明书内容所做的等效变换与修饰,皆仍属于本发明涵盖的范围。

Claims (10)

  1. 一种用于三维打印的液态原料喷射方法,通过将流道内的液态原料向流道外喷出,在流道外形成液段或液滴,喷射过程受到控制电路的控制,其特征在于:
    液态原料在流道内被全部地或局部地接入气化电路中;被接入气化电路的液态原料存在较高电阻的区域;对被接入气化电路的液态原料施加一定强度的电流,将液态原料的电阻值较高的区域全部或局部气化,利用气化所产生的冲击力将液态原料推至流道外,从而实现液态原料的喷射;
    所述的液态原料具有导电性;
    所述的气化电路,用于对与其连接的液态原料施加电流并产生电阻加热作用;
    所述的较高电阻的区域,该区域的电阻值高于被接入气化电路的液态原料的其它区域;
    所述的对被接入气化电路的液态原料施加一定强度的电流,电流的强度至少满足气化所述的液态原料电阻值较高区域的全部或局部所需的强度。
  2. 根据权利要求1所述的用于三维打印的液态原料喷射方法,其特征在于:
    所述的液态原料在流道内被全部地或局部地接入气化电路中,液态原料以串联的方式被接入气化电路;
    所述的较高电阻的区域,通过对被接入气化电路的液态原料设置径向截面积较小的区域以形成较高电阻的区域,其中:气化电流在液态原料中流动的总方向为轴向,径向截面的法线与轴向重合或平行;
    所述的流道,是指容纳液态原料且液态原料可在其中流动的结构。
  3. 根据权利要求1所述的用于三维打印的液态原料喷射方法,其特征在于:
    在所述的电阻值较高的区域被气化的起始时刻,在所述的电阻值较高的区域与流道的出口之间存在液态原料。
  4. 根据权利要求1所述的用于三维打印的液态原料喷射方法,其特征在于:
    所述的液态原料为熔融状态的原料,或者为半熔化的原料,或者为溶液,或者为悬浊液;
    所述的气化电路属于控制电路的一部分。
  5. 根据权利要求1所述的用于三维打印的液态原料喷射方法,其特征在于:
    喷射液态原料的主要步骤为:
    步骤S1,控制电路控制液态原料在流道内流动;
    步骤S2,液态原料在流道内形成电阻值较高的区域;液态原料的电阻值较高的区域被接入气化电路;
    步骤S3,施加一定强度的电流,在液态原料的电阻值较高的区域产生电阻加热作用,将电阻值较高的区域内的液态原料全部或部分气化;
    步骤S4,气化产生的冲击力将介于液态原料的电阻值较高的区域与流道出口之间的液态原料推至流道外。
  6. 一种用于三维打印的液态原料喷射装置,主要由壳体、控制电路组成,其中:在壳体上设置有原料入口和原料出口,壳体内部设置有流道,原料入口、原料出口与内部的流道连接,控制电路对工作过程进行控制;其特征在于:
    在流道内设置有狭窄区,狭窄区的两边为电气接入区,电气接入区用于将气化电流引导至流道内的液态原料中;电流从一边的电气接入区流入,流经狭窄区,然后流入另一边的电气接入区;电流在流经狭窄区时,将位于狭窄区的液态原料全部或部分加热气化;气化所产生 的冲击力推动流道内的液态原料从原料出口喷出;
    所述的气化电流用于将液态原料加热气化。
  7. 根据权利要求6所述的用于三维打印的液态原料喷射装置,其特征在于:
    所述的流道的数量至少为两条,并且流道之间存在交汇处,所述的狭窄区设置于该交汇处。
  8. 根据权利要求6所述的用于三维打印的液态原料喷射装置,其特征在于:
    所述的流道的数量为一条,流道的一端连接原料入口,流道的另一端连接原料出口,狭窄区位于原料入口与原料出口之间。
  9. 根据权利要求6所述的用于三维打印的液态原料喷射装置,其特征在于:
    设置有固态原料输送单元和加热单元;固态原料输送单元用于将固态原料送入流道内;加热单元用于对固态原料进行加热,以产生液态原料,以及维持液态原料的熔融状态;
    或者,设置有加热单元,不设置固态原料输送单元;加热单元用于维持液态原料的熔融状态。
  10. 根据权利要求6所述的用于三维打印的液态原料喷射装置,其特征在于:
    在所述的原料出口设置有电极。
PCT/CN2017/102041 2016-09-19 2017-09-18 一种用于三维打印的液态原料喷射方法及其装置 WO2018050109A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/333,477 US20190255615A1 (en) 2016-09-19 2017-09-18 Method and device for spraying a liquid raw material for three-dimensional printing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610835045.XA CN106513682B (zh) 2016-09-19 2016-09-19 一种用于三维打印的液态原料喷射方法及其装置
CN201610835045.X 2016-09-19

Publications (1)

Publication Number Publication Date
WO2018050109A1 true WO2018050109A1 (zh) 2018-03-22

Family

ID=58343915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102041 WO2018050109A1 (zh) 2016-09-19 2017-09-18 一种用于三维打印的液态原料喷射方法及其装置

Country Status (3)

Country Link
US (1) US20190255615A1 (zh)
CN (1) CN106513682B (zh)
WO (1) WO2018050109A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106513682B (zh) * 2016-09-19 2019-02-15 南京钛陶智能系统有限责任公司 一种用于三维打印的液态原料喷射方法及其装置
CN108405864B (zh) * 2018-05-03 2020-12-01 温州大学激光与光电智能制造研究院 一种基于感应熔炼的直写式金属三维打印成型方法
CN110523990A (zh) * 2019-10-18 2019-12-03 南京钛陶智能系统有限责任公司 一种三维打印方法
CN113088864B (zh) * 2021-04-13 2022-11-29 宁波大学 一种电场辅助电弧喷涂装置及方法
US11679439B2 (en) * 2021-08-06 2023-06-20 Goodrich Corporation Systems and methods for direct deposition of thixotropic alloys

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102416472A (zh) * 2011-12-08 2012-04-18 沈阳工业大学 一种金属液中加静电的喷射成形雾化装置及其雾化方法
US20130000861A1 (en) * 2011-06-30 2013-01-03 Martin Hosek System and method for making structured magnetic material from insulated particles
CN104028761A (zh) * 2014-06-18 2014-09-10 西安交通大学 一种金属微喷熔滴电磁约束沉积成型系统
CN105618756A (zh) * 2015-08-25 2016-06-01 国家电网公司 一种金属3d打印加支撑结构的装置
CN106513682A (zh) * 2016-09-19 2017-03-22 梁福鹏 一种用于三维打印的液态原料喷射方法及其装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4092296A (en) * 1995-01-13 1996-08-08 Canon Kabushiki Kaisha Liquid ejecting head, liquid ejecting device and liquid ejecting method
US5649993A (en) * 1995-10-02 1997-07-22 General Electric Company Methods of recycling oversray powder during spray forming
DE69824370T2 (de) * 1997-11-25 2004-10-07 Xerox Corp Verfahren zur Herstellung von dreidimensionalen Teilen mit Inertgas
WO2004087352A1 (ja) * 2003-03-28 2004-10-14 Japan Science And Technology Agency 金属噴射装置および噴射方法
US7504008B2 (en) * 2004-03-12 2009-03-17 Applied Materials, Inc. Refurbishment of sputtering targets
GB0709517D0 (en) * 2007-05-17 2007-06-27 Queen Mary & Westfield College An electrostatic spraying device and a method of electrostatic spraying
CN105415688B (zh) * 2015-12-22 2017-10-20 珠海天威飞马打印耗材有限公司 三维打印机和三维打印方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130000861A1 (en) * 2011-06-30 2013-01-03 Martin Hosek System and method for making structured magnetic material from insulated particles
CN102416472A (zh) * 2011-12-08 2012-04-18 沈阳工业大学 一种金属液中加静电的喷射成形雾化装置及其雾化方法
CN104028761A (zh) * 2014-06-18 2014-09-10 西安交通大学 一种金属微喷熔滴电磁约束沉积成型系统
CN105618756A (zh) * 2015-08-25 2016-06-01 国家电网公司 一种金属3d打印加支撑结构的装置
CN106513682A (zh) * 2016-09-19 2017-03-22 梁福鹏 一种用于三维打印的液态原料喷射方法及其装置

Also Published As

Publication number Publication date
CN106513682A (zh) 2017-03-22
CN106513682B (zh) 2019-02-15
US20190255615A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
WO2018050109A1 (zh) 一种用于三维打印的液态原料喷射方法及其装置
WO2019205508A1 (zh) 一种三维打印方法
CN110918996B (zh) 一种三维打印方法及三维打印设备
WO2018095404A1 (zh) 一种用于三维打印的熔融原料生成方法及其设备
JP6629748B2 (ja) 細長い部材の形をした供給材料を噴霧化することによって粉末粒子を生成するための方法及び装置
US20180141151A1 (en) Method and apparatus for metal three-dimensional printing
WO2018041259A1 (zh) 一种用于金属三维打印的液滴生成方法
JP3784404B1 (ja) 溶射ノズル装置およびそれを用いた溶射装置
US6372298B1 (en) High deposition rate thermal spray using plasma transferred wire arc
CN110621476A (zh) 将电磁能施加于3d打印部件的大气等离子体传导通路
CN111014677B (zh) 一种基于磁力搅拌的三维打印锻造方法
CN109153251A (zh) 制造中金属的磁流体动力沉积
CN104941833B (zh) 一种等离子喷嘴、喷枪以及喷涂方法
CN107971492B (zh) 一种用于三维打印的熔融原料生成方法
CN110860691A (zh) 等离子体炬熔融金属丝耗材沉积挤出3d打印喷头
KR20210075004A (ko) 가스 팽창 재료 분사 액추에이터
TWM519023U (zh) 圓球形金屬粉末製造裝置
TWI618589B (zh) 製造材料粉末的方法及裝置
JP2001003151A (ja) プラズマ溶射装置
CN114505502B (zh) 一种适用金属丝材的3d打印喷头
JP2017043791A (ja) 溶射皮膜形成装置
US20230098918A1 (en) Printer jetting mechanism and printer employing the printer jetting mechanism
Saleh Direct write technologies for fabricating patterned metals and glasses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850311

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC