WO2018050105A1 - 传输数据的方法和装置 - Google Patents

传输数据的方法和装置 Download PDF

Info

Publication number
WO2018050105A1
WO2018050105A1 PCT/CN2017/101937 CN2017101937W WO2018050105A1 WO 2018050105 A1 WO2018050105 A1 WO 2018050105A1 CN 2017101937 W CN2017101937 W CN 2017101937W WO 2018050105 A1 WO2018050105 A1 WO 2018050105A1
Authority
WO
WIPO (PCT)
Prior art keywords
constellation
dimensional modulation
information bits
codebook
bit
Prior art date
Application number
PCT/CN2017/101937
Other languages
English (en)
French (fr)
Inventor
程猛
吴艺群
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17850307.4A priority Critical patent/EP3509264B1/en
Publication of WO2018050105A1 publication Critical patent/WO2018050105A1/zh
Priority to US16/356,712 priority patent/US10547486B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/003Interference mitigation or co-ordination of multi-user interference at the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for transmitting data.
  • Multiple access is one of the core technologies of the wireless communication physical layer, which enables the wireless base station to distinguish and simultaneously serve multiple end users and reduce multiple access interference.
  • Most existing wireless communication systems use a simple orthogonal multiple access method. Orthogonal multiple access technology is proportional to the orthogonal resources due to the number of access users it can accommodate, and the number of orthogonal resources is limited by the orthogonality requirement. Therefore, it cannot meet the wide-area continuous coverage in the future 5G (Fifth Generation) era. High-capacity, mass connection, low-latency access and other business needs. Therefore, non-orthogonal multiple access has gradually become the focus of the current high-profile 5G multiple access.
  • SCMA Sparse Code Multiple Access
  • the SCMA technique uses the SCMA codebook to modulate the information bits to be transmitted to achieve sparse spread spectrum.
  • the prior art can generate a series of constellations according to the multi-dimensional modulation mother constellation, and then use the constellation as a codebook.
  • the required solution is complicated.
  • the present application provides a method and apparatus for transmitting data such that the complexity of the scheme for demodulating modulation symbols is reduced.
  • a method for transmitting data comprising: modulating, according to a codebook, each N-bit information bit of data to be transmitted into an M-dimensional modulation symbol; wherein the codebook is generated according to an M-dimensional modulation constellation
  • the M-dimensional modulation constellation includes M modulation constellations, and the constellation points of the m-th constellation in the M constellations are obtained by mapping N-bit information bits according to the m-th information bit subset, and the m-th information bit subset is obtained by N-bit information.
  • the information bits at a partial position in the bit are composed, and the union of the M information bit subsets corresponding to the M constellations respectively is an N-bit information bit, and M and N are integers greater than or equal to 2, and m is 1, 2, ..., M; transmitting the generated M-dimensional modulation symbol.
  • the constellation points of the M constellations are respectively mapped to the M information bit subsets of the N-bit information bits, and the union of the M information bit subsets is the N-bit information bits, and each information bit subset includes the N-bit information.
  • Information bits at certain locations in the information bits are composed, and the union of the M information bit subsets corresponding to the M constellations respectively is an N-bit information bit, and M and N are integers greater than or equal to 2, and m is 1, 2, ..., M; transmitting the generated M-dimensional modulation symbol.
  • the constellation points of the M constellations are respectively mapped to the M information bit subsets of the N-bit information bits, and the union of the M information bit subset
  • a codebook for generating an M-dimensional modulation symbol is generated according to an M-dimensional modulation constellation
  • the M-dimensional modulation constellation includes M modulation constellations, and constellation points of the m-th constellation of the M constellations are N
  • the bit information bits are obtained according to the mth information bit subset mapping, and the mth information bit subset is a letter at a partial position among the N bits of information bits.
  • the information bit is composed, and the union of the M information bit subsets corresponding to the M constellations respectively is an N-bit information bit. Since the embodiment of the present application determines the M-dimensional modulation mother constellation by directly selecting the information bit subset from the N-bit information bits, the demodulation complexity of the modulation symbols is reduced.
  • a method for transmitting data comprising: receiving an M-dimensional modulation symbol; and demodulating an M-dimensional modulation symbol according to a codebook to obtain transmitted data, wherein the codebook is generated according to an M-dimensional modulation constellation
  • the M-dimensional modulation constellation includes M modulation constellations, and the constellation points of the mth constellation in the M constellations are obtained by mapping N bits of information bits according to the mth information bit subset, and the mth information bit subset is N bits.
  • the information bits in a partial position of the information bits are composed, and the union of the M information bit subsets corresponding to the M constellations respectively is an N-bit information bit, and M and N are integers greater than or equal to 2, m is 1, 2, ... , M.
  • a codebook for demodulating an M-dimensional modulation symbol is generated according to an M-dimensional modulation constellation
  • the M-dimensional modulation constellation includes M modulation constellations, and constellation points of the m-th constellation in the M constellations are
  • the N-bit information bits are obtained according to the m-th information bit subset mapping, and the m-th information bit subset is composed of information bits at a partial position of the N-bit information bits, and the M constellations respectively correspond to the M information bit subsets.
  • the set is an N-bit information bit. Since the embodiment of the present application determines the M-dimensional modulation mother constellation by directly selecting the information bit subset from the N-bit information bits, the demodulation complexity of the modulation symbols is reduced.
  • the present application provides an apparatus for transmitting data, the apparatus comprising means for performing the method of the first aspect.
  • the present application provides an apparatus for transmitting data, the apparatus comprising means for performing the method of the second aspect.
  • the present application provides an apparatus for transmitting data, including: a memory, a processor, and a bus system.
  • the memory and the processor are coupled by a bus system for storing instructions for executing instructions stored by the memory, and when the processor executes the instructions stored by the memory, the executing causes the processor to perform the first Aspect method.
  • the present application provides an apparatus for transmitting data, including: a memory, a processor, and a bus system. Wherein the memory and the processor are connected by a bus system, the memory is for storing instructions, the processor is configured to execute the instructions stored by the memory, and when the processor executes the instructions stored by the memory, the executing causes the processor to execute the second Aspect method.
  • a computer storage medium for storing a computer program comprising instructions for obtaining a method of the first aspect or any of the possible implementations of the first aspect.
  • a computer storage medium for storing a computer program comprising instructions for obtaining a method of any of the second aspect or any of the possible implementations of the second aspect.
  • any two subsets of information bits in the subset of information bits are different.
  • each subset of information bits in the subset of information bits may also contain at least one information bit that is identical to the information bits contained in another subset of information bits.
  • one information bit can be protected on different constellations, thereby further improving transmission reliability without additional overhead.
  • the codebook is specifically generated by adjusting the power of the real part and/or the imaginary part of the constellation point of the M-dimensional modulation mother constellation. Obtain an adjusted M-dimensional modulation constellation, and generate a codebook according to the adjusted M-dimensional modulation constellation. Therefore, by generating an M-dimensional modulation mother The constellation further simplifies the generation process of the codebook by simply adjusting the power of the real part and/or the imaginary part of the constellation point of the M-dimensional modulation mother constellation to obtain a plurality of M-dimensional modulation constellations as codebooks.
  • the codebook is specifically generated by performing an angular rotation on a constellation point of the M-dimensional modulation mother constellation to obtain a rotated M-dimensional modulation constellation.
  • a codebook is generated based on the rotated M-dimensional modulation mother constellation. Therefore, by generating a multi-dimensional modulation mother constellation, and by simply angularly rotating the constellation points of the multi-dimensional modulation mother constellation, a plurality of multi-dimensional modulation constellations are obtained as codebooks, and the multi-dimensional modulation mother constellation is reduced in the codebook generation process. The number, which simplifies the process of generating the codebook.
  • the codebook is a set of M-dimensional modulation symbols, and the codebook is used to indicate a mapping relationship between information bits and modulation symbols.
  • the M-dimensional modulation constellation may also have the following feature: if two labels of the N-bit information bits are mapped to the same constellation point in a constellation of the M-dimensional modulation constellation, The values are mapped to different constellation points in another constellation so that one constellation point can be selected in each of the M constellations to uniquely indicate a value of the N-bit information bits.
  • each subset of information bits in the subset of M information bits contains at least one bit that is different from the bits contained in another subset of information bits.
  • each information bit subset to contain bits that are not included in other information bit subsets, that is, information bits at different positions can be mapped to different constellations, so that each constellation protects information bits at different positions as much as possible, thereby ensuring The reliability of information bit transmission at each location.
  • the M information bit subsets comprise a first information bit subset and a second information bit subset, the first information bit subset comprising at least one different information bit than the second information bit subset Information bits.
  • the intersection of the first subset of information bits and the second subset of information bits comprises at least one information bit.
  • the M first information bit subset does not intersect with the second information bit subset. Therefore, by designing different subsets of information bits without intersections, the constellation points of each constellation are mapped to different information bits, further simplifying the constellation.
  • the information bit may be an X-ary information bit, X is an integer greater than or equal to 2, and the number of constellation points of the m-th constellation is Where k m is the number of bits contained in the mth information bit subset, and k m is a positive integer less than or equal to N.
  • X 2
  • the information bits are binary information bits.
  • the constellation may be a Gray constellation, for example, a QPSK Gray constellation, but the present application is not limited thereto, and different M-dimensional modulation mother constellations may be generated by changing the form of the Gray constellation.
  • the constellation may also be other forms of constellation, such as a BPSK modulation constellation or the like.
  • the dimensional modulation symbol is a sparse code division multiple access SCMA dimension modulation symbol
  • the codebook is an SCMA codebook
  • FIG. 1 is a schematic diagram of a communication system using the method of transmitting data of the present application.
  • FIG. 2 shows a schematic diagram of bit mapping processing of SCMA.
  • FIG. 3 is a schematic flowchart of a method of transmitting data according to an embodiment of the present application.
  • FIG. 4 is a schematic flow chart of a method of transmitting data according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a two-dimensional modulation mother constellation in accordance with an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a two-dimensional modulation mother constellation according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram of a two-dimensional modulation mother constellation according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of a two-dimensional modulation mother constellation according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of a two-dimensional modulation mother constellation according to another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus for transmitting data according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an apparatus for transmitting data according to another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a device according to an embodiment of the present application.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • a terminal device may also be called a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user.
  • Agent or user device may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), and a wireless communication.
  • the network device may be, for example, a base station or the like, and the base station may be used to communicate with the mobile device.
  • the base station may be a BTS in GSM (Global System of Mobile communication) or CDMA (Code Division Multiple Access).
  • (Base Transceiver Station, base station) may be an NB (NodeB, base station) in WCDMA (Wideband Code Division Multiple Access), or may be an eNB in LTE (Long Term Evolution) or eNodeB (Evolutional Node B), or a relay station or access point, Or in-vehicle devices, wearable devices, and base station devices in future 5G networks.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape), and an optical disk (for example, a CD (Compact Disk), a DVD (Digital Versatile Disk). Etc.), smart cards and flash memory devices (eg, EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the communication system 100 includes a base station 102 that can include multiple antenna groups.
  • Each antenna group may include one or more antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 108 and 110, and an additional group may include antennas 112 and 114.
  • Two antennas are shown in Figure 1 for each antenna group, although more or fewer antennas may be used for each group.
  • Base station 102 can additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which can include multiple components associated with signal transmission and reception (e.g., processor, modulator, multiplexer, demodulation) , demultiplexer or antenna, etc.).
  • a transmitter chain and a receiver chain can include multiple components associated with signal transmission and reception (e.g., processor, modulator, multiplexer, demodulation) , demultiplexer or antenna, etc.).
  • Base station 102 can communicate with a plurality of user equipments, such as user equipment 116 and user equipment 122. However, it will be appreciated that base station 102 can communicate with any number of user devices similar to user equipment 116 or 122.
  • User devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • user equipment 116 is in communication with antennas 112 and 114, with antennas 112 and 114 transmitting information to user equipment 116 over forward link 118 and receiving information from user equipment 116 over reverse link 120.
  • user equipment 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to user equipment 122 over forward link 124 and information from user equipment 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each set of antennas and/or regions designed for communication is referred to as a sector of base station 102.
  • the antenna group can be designed to communicate with user equipment in sectors of the coverage area of base station 102.
  • the transmit antennas of base station 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the mobile device in the neighboring cell is transmitted when the base station 102 uses beamforming to transmit signals to the randomly dispersed user equipments 116 and 122 in the relevant coverage area, as compared to the manner in which the base station transmits signals to all of its user equipments through a single antenna. Will be less interfered.
  • base station 102, user equipment 116, or user equipment 122 may be a wireless communication transmitting device and/or Or a wireless communication receiving device.
  • the wireless communication transmitting device can modulate the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • multiple terminal devices may multiplex the same time-frequency resource with the base station for data transmission, and, as the same time-frequency resource.
  • the time-frequency resource may be a time-frequency resource block (also referred to as a time-frequency resource group) composed of multiple REs, and
  • the multiple REs may be the same in the time domain (ie, corresponding to the same symbol) and the locations in the frequency domain are different (ie, corresponding to different subcarriers), or the multiple REs may be in The positions on the time domain are different (ie, corresponding to different symbols) and the positions in the frequency domain are the same (ie, corresponding to the same subcarrier), and the present application is not particularly limited.
  • An example of the communication system 100 is a sparse code division multiple access (SCMA) system in which a plurality of users multiplex the same time-frequency resource block for data transmission.
  • SCMA sparse code division multiple access
  • Each resource block is composed of a number of resource REs, where the REs may be subcarrier-symbol units in OFDM technology, or may be resource units in the time domain or frequency domain of other air interface technologies.
  • the available resources are divided into a number of orthogonal time-frequency resource blocks, each resource block containing L REs, wherein the L REs may be the same location in the time domain.
  • SCMA system is only an example of a communication system for applying the method and apparatus for adjusting the modulation coding order of the present application, and the present application is not limited thereto, and any device related to the transmitting end device and the receiving end device is configured according to the transmission state. Communication systems for data transmission are all within the scope of this application.
  • the base station may perform data transmission with multiple user equipments at the same time, because the process of transmitting data by the base station and each user equipment is similar.
  • the flow of transmitting data by the base station and the UE #1 (that is, an example of the first user equipment) among the plurality of UEs will be described as an example.
  • FIG. 2 is a schematic diagram showing bit mapping processing (or encoding processing) of SCMA exemplified by 6 resource units multiplexed by 6 data streams.
  • 6 data streams form a packet
  • 4 Resource units form a coding unit.
  • a resource unit can be a subcarrier, either an RE or an antenna port.
  • there is a line between the data stream and the resource unit indicating that at least one data combination of the data stream is transmitted through the codeword, and a non-zero modulation symbol is transmitted on the resource unit, and the data stream and the resource unit are The absence of a connection between them means that all possible data combinations of the data stream are zero coded on the resource unit after the codeword mapping.
  • the data combination of the data stream can be understood as follows, for example, in a binary bit data stream, 00, 01, 10, 11 Combine all possible two-bit data.
  • the data of each data stream is represented as s1 to s6, respectively, and the symbols transmitted by each resource unit are represented as x1 to x4, respectively, and the connection between the data stream and the resource unit indicates that the data of the data stream is expanded.
  • the modulation symbol is then transmitted on the resource unit, wherein the modulation symbol can be a zero symbol (corresponding to a zero element) or a non-zero symbol (corresponding to a non-zero element) between the data stream and the resource unit If there is no connection, it means that the data of the data stream is expanded and the modulation symbol is not sent on the resource unit.
  • the data of each data stream is expanded and transmitted on multiple resource units, and the symbol sent by each resource unit is an extended non-zero symbol of data from multiple data streams.
  • Superposition For example, the data s3 of the data stream 3 is expanded to transmit non-zero symbols on the resource unit 1 and the resource unit 2, and the data x2 transmitted by the resource unit 3 is the data s2, s4 of the data stream 2, the data stream 4, and the data stream 6.
  • the codewords in the codebook usually have the following form:
  • the corresponding codebook usually has the following form:
  • N is a positive integer greater than 1, and can be expressed as the number of resource units included in one coding unit, and can also be understood as the length of the codeword;
  • Q m is a positive integer greater than 1, indicating the number of codewords included in the codebook.
  • the modulation order corresponding to, for example, when the sampling quadrature phase shift keying (Quadrature phase shift keying, QPSK), or 4-ary modulation Q m is 4;
  • Q a positive integer, and 1 ⁇ q ⁇ Q m;
  • codebook contains c n,q is a complex number, c n,q can be expressed mathematically as:
  • can be any real number, ⁇ can be any value, and N and Q m can be positive integers.
  • the codeword in the codebook can form a certain mapping relationship with the data.
  • the codeword in the codebook can form a mapping relationship with the 2-bit data.
  • the codebook corresponding to the data stream and the codeword in the codebook should have the following characteristics: at least one codeword exists in the codebook on the corresponding resource unit. Sending a non-zero modulation symbol, for example, there is a connection between the data stream 3 and the resource unit 1, and at least one codeword corresponding to the data stream 3 satisfies c 1, q ⁇ 0, 1 ⁇ q ⁇ Q m ;
  • the codebook corresponding to the data stream 3 in FIG. 2 above may have the following forms and features:
  • SCMA system is only an example of a communication system to which the data processing method and apparatus of the present application are applied.
  • present application is not limited thereto, and other methods enable the terminal device to multiplex the same time-frequency resource in the same period. Communication systems that perform data transmission are all within the scope of the present application.
  • a codebook can be derived from one or more multidimensional complex constellations.
  • the application in the SCMA system is taken as an example, A method of applying data processing of the embodiment will be described.
  • the process of the mapping process may be similar to the mapping process in the existing SCMA system.
  • detailed description thereof is omitted.
  • FIG. 3 is a schematic flowchart of a method of transmitting data according to an embodiment of the present application.
  • the method of Figure 3 can be performed by the transmitting end.
  • the transmitting end may be the base station or UE of FIG.
  • the method of Figure 3 includes the following.
  • each N-bit information bit of the data to be transmitted into an M-dimensional modulation symbol where the codebook is generated according to the M-dimensional modulation constellation, and the M-dimensional modulation constellation includes M modulation constellations, M constellations
  • the constellation points of the mth constellation are obtained by mapping N bits of information bits according to the mth information bit subset, and the mth information bit subset is composed of information bits at partial positions of N bits of information bits, and M constellations are respectively
  • the union of the corresponding M information bit subsets is an N-bit information bit, M and N are integers greater than or equal to 2, and m is 1, 2, ..., M.
  • a codebook for generating an M-dimensional modulation symbol is generated according to an M-dimensional modulation constellation
  • the M-dimensional modulation constellation includes M modulation constellations, and constellation points of the m-th constellation of the M constellations are N
  • the bit information bits are obtained according to the mth information bit subset mapping, and the mth information bit subset is composed of information bits at partial positions of the N-bit information bits, and the M information constellations respectively correspond to the M information bit subsets. It is an N-bit information bit. Since the embodiment of the present application determines the M-dimensional modulation mother constellation by directly selecting the information bit subset from the N-bit information bits, the demodulation complexity of the modulation symbols is reduced.
  • the above constellation may be a Gray constellation, for example, a QPSK Gray constellation, a QAM Gray constellation, but embodiments of the present application are not limited thereto, and different M-dimensional modulation mother constellations may also be generated by changing the form of the Gray constellation.
  • the constellation may also be other forms of constellation, such as a BPSK modulation constellation or the like.
  • the M-dimensional modulation constellation in step 310 may be referred to as an M-dimensional modulation mother constellation, which is used to map N-bit information bits to constellation points of M constellations, ie, from M constellations.
  • Each constellation selects a constellation point to jointly indicate a value of the N-bit information bits, and the constellation points of each of the M constellations can be determined by a subset of the N-bit information bits, and the M constellations correspond
  • the union of the M information bit subsets is an N-bit information bit.
  • the M information bit subsets correspond to the M constellations, each of which contains bits of some of the N-bit information bits, and ensures that the M information bit subsets can cover the N-bit information bits.
  • the two-dimensional modulation mother constellation may include the first constellation and the second constellation, assuming that the constellation points of the first constellation are from the positions of b2 and b1.
  • the bits are determined, and the constellation points of the second constellation are determined by the information bits at the b2 and b0 positions. That is, when the 3-bit information bits are mapped to the constellation points of the first constellation, only the values of the information bits at the positions b2 and b1 are viewed, and when the 3-bit information bits are mapped to the constellation points of the second constellation, only the positions of b2 and b0 are observed.
  • the value of the information bits is, when the 3-bit information bits are mapped to the constellation points of the first constellation, only the values of the information bits at the positions b2 and b1 are viewed, and when the 3-bit information bits are mapped to the constellation points of the second constellation, only the positions of b2 and b0 are observed. The value of the information bits.
  • the values 001 and 000 of the 3-bit information bits can be mapped to the constellation points (a, b) of the first constellation, and the values 000 and 010 of the 3-bit information bits are mapped to the constellation points (a, b) of the second constellation. Then, the value of 000 of the 3-bit information bit can be jointly indicated by the constellation point (a, b) of the first constellation and the constellation point (a, b) of the second constellation.
  • the values 011 and 101 of the 3-bit information bits are mapped to the constellation points of the first constellation. (-a, b), therefore, the constellation point (-a, b) of the first constellation and the constellation point (a, b) of the second constellation can be used to jointly indicate the value 010 of the 3-bit information bit, and so on.
  • the M-dimensional modulation mother constellation can also be designed such that if two labels representing N-bit information bits are mapped to the same constellation point in a constellation of the M-dimensional modulation mother constellation, then the two The values are mapped to different constellation points in another constellation so that one constellation point can be selected in each of the M constellations to uniquely indicate a value of the N-bit information bits.
  • the value of the N-bit information bit corresponding to each constellation point is indicated by a label.
  • the values of 000 and 010 of the 3-bit information bits are mapped to the constellation points (a, b) in the second constellation, and
  • the two values on a constellation can be mapped to constellation points (a, b) and (-a, b), respectively, so that (a, b) and (-a, b) can be used to uniquely indicate the value of the 3-bit information bit. 010.
  • any two subsets of information bits in the subset of M information bits are different.
  • each subset of information bits in the subset of M information bits contains at least one information bit that is different from the information bits contained in another subset of information bits.
  • the M information bit subsets may include a first information bit subset and a second information bit subset, the first information bit subset including at least one information bit different from the information bits included in the second information bit subset.
  • each information bit subset is designed to contain information bits not included in other information bit subsets, that is, information bits at different positions can be mapped to different constellations, so that each constellation protects different positions as much as possible.
  • the information bits thus ensure the reliability of information bit transmission at various locations.
  • each subset of information bits in the subset of M information bits may also include at least one information bit that is identical to the information bits contained in another subset of information bits.
  • the M information bit subsets may include a first information bit subset and a second information bit subset, the first information bit subset including at least one information bit identical to the information bits included in the second information bit subset, ie The intersection of the first subset of information bits and the subset of second information bits comprises at least one information bit.
  • one information bit can be protected on different constellations, thereby further improving without additional overhead. Transmission reliability.
  • each subset of information bits in the subset of information bits includes information bits that are different from information bits contained in another subset of information bits.
  • the M information bit subsets may include a first information bit subset and a second information bit subset, and the M first information bit subset and the second information bit subset have no intersection.
  • the constellation is simplified by designing different subsets of information bits without intersection so that the constellation points of each constellation correspond to different information bits.
  • the codebook is specifically generated by adjusting power of a real part and/or an imaginary part of a constellation point of the M-dimensional modulation mother constellation to obtain an adjusted M-dimensional modulation. a constellation that generates the codebook according to the adjusted M-dimensional modulation constellation.
  • the power of the real part and/or the imaginary part of the constellation point of the M-dimensional modulation mother constellation can be enlarged and reduced in different proportions to generate a plurality of M-dimensional modulation constellations.
  • the power of the real part and/or the imaginary part of the constellation points of each M-dimensional modulation constellation may be the same or different.
  • a plurality of M-dimensional modulation constellations are obtained by generating an M-dimensional modulation mother constellation and by simply adjusting the power of the real part and/or the imaginary part of the constellation point of the M-dimensional modulation mother constellation As a codebook, from The simplification of the codebook generation process is further simplified.
  • the codebook is specifically generated by performing angular rotation on a constellation point of the M-dimensional modulation constellation to obtain a rotated M-dimensional modulation constellation according to the rotation.
  • the M-dimensional modulation mother constellation generates the codebook.
  • the M-dimensional modulation mother constellation can be rotated at different angles to generate a plurality of M-dimensional modulation constellations, and a plurality of M-dimensional modulation constellations are used as the codebook.
  • the M-dimensional modulation mother constellation is rotated by a first angle to generate an M-dimensional modulation constellation
  • the M-dimensional modulation mother constellation is rotated by a second angle to generate another M-dimensional modulation constellation.
  • a multi-dimensional modulation mother constellation by generating a multi-dimensional modulation mother constellation, and by simply angularly rotating the constellation points of the multi-dimensional modulation mother constellation, a plurality of multi-dimensional modulation constellations are obtained as codebooks, which are reduced in the codebook generation process.
  • the number of multi-dimensional modulation mother constellations simplifies the generation process of the codebook.
  • different angular rotations and power adjustments may be performed on the M-dimensional modulation mother constellation to generate a plurality of M-dimensional modulation constellations.
  • the M-dimensional modulation mother constellation may be rotated at different angles, and then the M-dimensional modulation mother constellation may be power-adjusted to generate a plurality of M-dimensional modulation constellations.
  • the codebook in the foregoing embodiment can be applied to data transmission of a single data layer, and can also be applied to transmission of multiple data layers.
  • the codebooks used by each data layer are different, but they are all obtained according to the same M-dimensional modulation mother constellation.
  • the codebook in step 310 may be referred to as a first codebook, which is used to transmit data of the first data layer
  • FIG. 3 The method further includes: modulating data to be transmitted on the second data layer according to the second codebook to generate an M-dimensional modulation symbol of the second data layer, wherein the second codebook is obtained according to the second M-dimensional modulation mother constellation a method for determining a second M-dimensional modulation mother constellation is the same as the method for determining the M-dimensional modulation mother constellation, wherein the M-dimensional modulation mother constellation is different from the second M-dimensional modulation mother constellation; and the second M-dimensional modulation mother constellation generates a second Codebook.
  • the embodiment of the present application may determine a plurality of different M-dimensional modulation mother constellations according to the above method, and respectively serve as a plurality of codebooks according to the plurality of M-dimensional modulation mother constellations.
  • the embodiment of the present application may also perform time-operation or processing on a plurality of M-dimensional modulation mother constellations to obtain more M-dimensional modulation constellations as a plurality of codebooks, respectively.
  • the method of FIG. 3 may further include: obtaining the stored at least one codebook from the memory.
  • a commonly agreed codebook may be pre-stored at the transmitting end or the receiving end, and these codebooks may be determined based on the above method, or determined by one party and then transmitted to the other party.
  • the codebook may be stored in the storage medium of both parties, and when the information bits need to be transmitted, the pre-stored codebook may be read from the storage medium and modulated or solved using the read codebook. Tune to speed up the efficiency of modulation or demodulation.
  • the M-dimensional modulation mother constellation is determined by the above method, and the codebook is thus determined.
  • a mother codebook may be first determined to obtain a modulation symbol corresponding to the mother codebook, and then the power and angle of the modulation symbol are adjusted and transmitted.
  • the method for transmitting data provided by the embodiment of the present application is described in detail with reference to FIG. 3 from the perspective of the transmitting end.
  • the method for transmitting data provided by the embodiment of the present application is described in detail below with reference to FIG.
  • FIG. 4 is a schematic flow chart of a method of transmitting data according to an embodiment of the present application.
  • the method of Figure 4 can be performed by the receiving end.
  • the receiving end may be the base station or UE of FIG.
  • the method of Figure 4 includes the following.
  • Figure 4 The embodiment corresponds to the method of FIG. 3, and a detailed description is omitted as appropriate.
  • the codebook is generated according to an M-dimensional modulation constellation, where the M-dimensional modulation constellation includes M modulation constellations.
  • the constellation points of the mth constellation of the M constellations are obtained by mapping N bits of information bits according to the mth information bit subset, and the mth information bit subset is located at a partial position of the N bits of information bits
  • the information bits are composed.
  • the union of the M information bit subsets corresponding to the M constellations respectively is the N-bit information bits, M and N are integers greater than or equal to 2, and m is 1, 2, ..., M.
  • the codebook in this step is the same as the codebook used by the transmitting end to generate the M-dimensional modulation symbol.
  • the M-dimensional modulation constellation in this step is also the same as the M-dimensional modulation constellation in step 310, and may also be referred to as an M-dimensional modulation mother constellation.
  • a codebook for demodulating an M-dimensional modulation symbol is generated according to an M-dimensional modulation constellation
  • the M-dimensional modulation constellation includes M modulation constellations, and constellation points of the m-th constellation in the M constellations are
  • the N-bit information bits are obtained according to the m-th information bit subset mapping, and the m-th information bit subset is composed of information bits at a partial position of the N-bit information bits, and the M constellations respectively correspond to the M information bit subsets.
  • the set is an N-bit information bit. Since the embodiment of the present application determines the M-dimensional modulation mother constellation by directly selecting the information bit subset from the N-bit information bits, the demodulation complexity of the modulation symbols is reduced.
  • any two subsets of information bits in the M information bit subset are different.
  • the codebook is specifically generated by adjusting the power of the real part and/or the imaginary part of the constellation point of the M-dimensional modulation mother constellation to obtain an adjusted M-dimensional modulation constellation according to the adjustment.
  • the latter M-dimensional modulation constellation generates the codebook.
  • the codebook is specifically generated by: performing angular rotation on a constellation point of the M-dimensional modulation mother constellation to obtain a rotated M-dimensional modulation constellation, and generating a code according to the rotated M-dimensional modulation mother constellation.
  • the codebook is a set of M-dimensional modulation symbols, and the codebook is used to indicate a mapping relationship between information bits and modulation symbols.
  • the method of FIG. 4 may further include: acquiring the stored at least one codebook from the memory.
  • FIG. 5 is a schematic diagram of a two-dimensional modulation mother constellation in accordance with an embodiment of the present application.
  • a two-dimensional modulation mother constellation scheme for generating a codebook including 8 codewords (ie, an 8-point codebook) is designed, wherein the 8-point codebook can be used to perform 3-bit information bits.
  • Modulation to generate two-dimensional modulation symbols the following three bits of information bits are represented by b2b1b0.
  • a two-dimensional modulation mother constellation includes constellations of two dimensions: a first constellation and a second constellation. Each constellation is used to generate a symbol of one of the two bit modulation symbols.
  • the symbol of the first dimension of the two-bit modulation symbol is generated according to the first constellation diagram
  • the symbol of the second dimension of the two-bit modulation symbol is generated according to the second constellation diagram.
  • the symbols for each dimension can be transmitted on one tone, for example, the symbols of the first dimension can be transmitted on tone 1 and the symbols of the second dimension can be transmitted on tone 2.
  • the constellation points of the two-dimensional modulation mother constellation may be symmetric about the x-axis and the y-axis.
  • the coordinates of the constellation points are ( ⁇ a, ⁇ b), respectively, where a and b are positive real numbers.
  • the first constellation can be a 4-point QPSK cell determined by b2b1
  • the lightning modulation constellation the second constellation may be a 4-point QPSK Gray modulation constellation determined by b2b0.
  • the first constellation may be determined by the information bits of the b2 and b1 positions, and the information bits of the b0 position are indistinguishable, that is, the information bits of the b2 and b1 positions of each constellation point may be 1 or 0, and the b0 position
  • the value of the information bits is 1 and 0.
  • the constellation points (a, b) correspond to the values 001 and 000 of the 3-bit information bits where b2 is 0 and b1 is 0, and the constellation points (a, -b) correspond to b2 is 1.
  • b1 is the value of 100-bit information bits of 100 and 101
  • the constellation point (-a, b) corresponds to the value of 011 and 010 of the 3-bit information bit where b2 is 0 and b1 is 0, and the constellation point (-a, -b)
  • the second constellation may be determined by the information bits of the b2 and b0 positions, and the b1 position bits are indistinguishable, that is, the value of the information bits of the b2 and b0 positions of each constellation point may be 1 or 0, and the information bits of the b1 position The values may be 1 and 0.
  • the constellation points (a, b) correspond to the values of 000 and 010 of the 3-bit information bits where b2 is 0 and b0 is 0, and the constellation points (a, -b) correspond to b2 being 1 and b0 is
  • the values of the 3-bit information bits of 0 are 110 and 100
  • the constellation points (-a, b) correspond to the values 110 and 100 of the 3-bit information bits where b2 is 1 and b0 is
  • the constellation points (-a, -b) correspond to b2
  • the values 111 and 101 of the 3-bit information bits of 1 and b0 are 1.
  • Table 1 is an 8-point SCMA codebook obtained from the two-dimensional modulation mother constellation described above.
  • the value of the information bit corresponds to the constellation point (a, b) of the first constellation and the constellation point (a, b) of the second constellation, that is, the value 000 of the 3-bit information bit is mapped to the
  • the constellation points (a, b) of a constellation are also mapped to the constellation points (a, b) of the second constellation. Therefore, the constellation points (a, b) of the first constellation and the constellation points of the second constellation (a) can be used. , b) to jointly represent the value 000 of the information bits.
  • the value 001 of the information bit may correspond to the constellation point (a, b) of the first constellation and the constellation point (a, -b) of the second constellation, that is, the value 001 of the information bit is mapped to the constellation of the first constellation.
  • Point (a, b) also mapped to the constellation points (a, -b) of the second constellation, therefore, the constellation points (a, b) of the first constellation and the constellation points (a, -b) of the second constellation can be used To jointly represent the value 001 of the information bits, and so on.
  • the 8-point information bits can be mapped to two 4-point QPSK Gray constellations included in the two-dimensional modulation mother constellation.
  • FIG. 6 is a schematic diagram of a two-dimensional modulation mother constellation according to another embodiment of the present application.
  • This embodiment is similar to the first embodiment in that a two-dimensional modulation mother constellation scheme for generating a codebook including eight codewords (ie, an 8-point codebook) is designed.
  • the two-dimensional modulation mother constellation is similar to that of the embodiment of FIG. 5. To avoid repetition, no further details are provided herein.
  • the first constellation may be a 4-point QPSK Gray modulation constellation determined by b2b1
  • the second constellation may be a 4-point QPSK Gray modulation constellation determined by b1b0.
  • the first constellation may be determined by the information bits of the b2 and b1 positions, and the information bits of the b0 position cannot be distinguished, that is, the value of the information bits of the b2 and b1 positions of each constellation point may be 1 or 0, and
  • the information bits of the b0 position have values of 1 and 0.
  • the constellation points (a, b) correspond to the values 001 and 000 of the 3-bit information bits where b2 is 0 and b1 is 0, and the constellation points (a, -b) correspond to b2.
  • the constellation points (-a, b) correspond to the values 100 and 101 of the 3-bit information bits where b2 is 1 and b1 is 0, and the constellation point (-a, -b)
  • the second constellation may be determined by the information bits of the positions b1 and b0, and the information bits of the b2 position are indistinguishable, that is, the information bits of the b1 and b0 positions of each constellation point may be 1 or 0, and the information bits of the b2 position
  • the constellation points (-a, b) correspond to the values of 110 and 010 of the 3-bit information bits where b1 is 1 and b0 is 0, and the constellation points (-a, -b) correspond to b1
  • the values of 111 and 011 of the 3-bit information bits of 1 and b0 are 1.
  • Table 2 is an 8-point SCMA codebook obtained from the two-dimensional modulation mother constellation shown in Fig. 6.
  • the value of the information bit corresponds to the constellation point (a, b) of the first constellation and the constellation point (a, b) of the second constellation, that is, the value 000 of the information bit is mapped to the first constellation.
  • the constellation points (a, b) are also mapped to the constellation points (a, b) of the second constellation. Therefore, the constellation points (a, b) of the first constellation and the constellation points of the second constellation (a, b) can be used. ) to jointly represent the value 000 of the information bits.
  • the value 001 of the information bit may correspond to the constellation point (a, b) of the first constellation and the constellation point (a, -b) of the second constellation, that is, the value 001 of the information bit is mapped to the constellation of the first constellation.
  • Point (a, b) also mapped to the constellation points (a, -b) of the second constellation, therefore, the constellation points (a, b) of the first constellation and the constellation points (a, -b) of the second constellation can be used To jointly represent the value 001 of the information bits, and so on.
  • the 8-point information bits can be mapped to two 4-point QPSK Gray constellations included in the two-dimensional modulation mother constellation.
  • FIG. 7 is a schematic diagram of a two-dimensional modulation mother constellation according to another embodiment of the present application.
  • a two-dimensional modulation mother constellation scheme for generating a codebook including 8 codewords ie, an 8-point codebook
  • the 8-point codebook can be used to perform 3-bit information bits.
  • Modulation to generate two-dimensional modulation symbols below
  • the b-bit information bits are represented by b2b1b0.
  • the two-dimensional modulation mother constellation includes two dimensional constellations: a first constellation and a second constellation, each constellation for generating a symbol of one of the two-bit modulation symbols.
  • the symbol of the first dimension of the two-bit modulation symbol is generated according to the first constellation diagram
  • the symbol of the second dimension of the two-bit modulation symbol is generated according to the second constellation diagram.
  • the symbols for each dimension can be transmitted on one tone, for example, the symbols of the first dimension can be transmitted on tone 1 and the symbols of the second dimension can be transmitted on tone 2.
  • the first constellation point may be symmetric about the x-axis and the y-axis, for example, the coordinates are ( ⁇ a, ⁇ b), respectively, where a and b are positive real numbers.
  • the constellation points of the second constellation may be symmetric about the y-axis, for example, the coordinates are ( ⁇ c, 0), respectively, the first constellation may be a 4-point QPSK Gray modulation constellation determined by b1b0, and the second constellation may be determined by b2. 2 point BPSK modulation constellation.
  • the first constellation may be a QPSK Gray constellation determined by the information bits of the b1 position and the information bits of the b0 position, and the information bits of the b2 position are indistinguishable, that is, the information bits of the b1 and b0 positions of each constellation point.
  • the value may be 1 or 0, and the value of the information bit at the b2 position may be 1 and 0.
  • the constellation point (a, b) corresponds to the value of 001 and 000 of the 3-bit information bit where b1 is 0 and b0 is 0, the constellation The point (a, -b) corresponds to the values 001 and 101 of the 3-bit information bits where b1 is 0 and b0 is 1, and the constellation point (-a, b) corresponds to the value 010 of the 3-bit information bit where b1 is 1 and b0 is 0. And 110, the constellation points (-a, -b) correspond to the values 011 and 111 of the 3-bit information bits where b1 is 1 and b0 is 1.
  • the second constellation may be a BPSK modulation constellation determined by the information bits of the b2 position, and the information bits of the b1 and b0 positions cannot be distinguished, that is, the value of the information bits of the b2 position of each constellation point may be 1 or 0, and the b1 position
  • the information bits have values of 1 and 0, and the information bits at the b0 position may also be 1 and 0.
  • the constellation points (c, 0) correspond to the values of 000, 001, 010, and 011 of the 3-bit information bits where b2 is 0.
  • the constellation point (-c, 0) corresponds to the values 100, 101, 110, and 111 of the 3-bit information bits whose b2 is 1.
  • Table 3 is an 8-point SCMA codebook obtained from the two-dimensional modulation mother constellation shown in FIG. Referring to Table 3 and FIG. 7, the value of the information bit corresponds to the constellation point (a, b) of the first constellation and the constellation point (c, 0) of the second constellation, that is, the value 000 of the information bit is mapped to the first constellation.
  • the constellation points (a, b) are also mapped to the constellation points (c, 0) of the second constellation, so the constellation points (a, b) of the first constellation and the constellation points of the second constellation (c, 0) can be used. ) to jointly represent the value 000 of the information bits.
  • the value 001 of the information bit may correspond to the constellation point (a, -b) of the first constellation and the constellation point (c, 0) of the second constellation, that is, the value 001 of the information bit is mapped to the constellation of the first constellation.
  • the points (a, -b) are also mapped to the constellation points (c, 0) of the second constellation. Therefore, the constellation points (a, -b) of the first constellation and the constellation points (c, 0) of the second constellation can be used.
  • the 8-point information bits can be mapped to a 4-point QPSK Gray constellation and a BPSK modulation constellation included in the two-dimensional modulation mother constellation.
  • FIG. 8 is a schematic diagram of a two-dimensional modulation mother constellation according to another embodiment of the present application.
  • a two-dimensional modulation mother constellation scheme for generating a codebook including 16 codewords ie, a 16-point codebook
  • a 16-point codebook can be used to perform 4-bit information bits.
  • Modulation the following uses b3b2b1b0 to represent 4-bit information bits.
  • the constellation points of the two-dimensional modulation mother constellation may be symmetric about the x-axis and the y-axis.
  • the coordinates of the constellation points of each constellation are respectively ( ⁇ a, ⁇ b), where a and b are positive real numbers.
  • the first constellation may be a 4-point QPSK Gray modulation constellation determined by b3b2
  • the second constellation may be a 4-point QPSK Gray modulation constellation determined by b1b0.
  • the first constellation can be determined by the information bits of the b3 and b2 positions, and the information bits of the b1 and b0 positions cannot be distinguished, that is, the value of the information bits of the b3 and b2 positions of each constellation point can be 1 or 0.
  • the values of the information bits at the b1 and b0 positions may be 1 and 0.
  • the constellation points (a, b) correspond to 4-bit information bits 0000, 0001, 0010, and 0011 where b3 is 0 and b2 is 0, and constellation points (a , -b) 4-bit information bits 0100, 0101, 0110, and 0111, where b3 is 0 and b2 is 1, and constellation points (-a, b) correspond to 4-bit information bits 1000, 1001 where b3 is 1 and b2 is 0. 1010 and 1011, the constellation points (-a, -b) correspond to 4-bit information bits 1100, 1101, 1110, and 1111 where b3 is 1 and b2 is 1.
  • the second constellation can be determined by the information bits of the b1 and b0 positions, and the information bits of the b3 and b2 positions cannot be distinguished, that is, the value of the information bits of the b1 and b0 positions of each constellation point can be 1 or 0, and b3 and b2.
  • the value of the information bits of the location is 1 and 0.
  • Table 4 is a 16-point SCMA codebook obtained from the two-dimensional modulation mother constellation shown in FIG. Referring to Table 4 and Figure 8, the value 0000 of the information bits can be jointly represented by the constellation points (a, b) of the first constellation and the constellation points (a, b) of the second constellation. Similarly, the constellation points (a, b) of the first constellation and the constellation points (a, -b) of the second constellation can be used to jointly represent the value 0001 of the information bits, and so on.
  • the 16-point information bits can be mapped to two 4-point QPSK Gray constellations included in the two-dimensional modulation mother constellation.
  • FIG. 9 is a schematic diagram of a two-dimensional modulation mother constellation according to another embodiment of the present application.
  • a two-dimensional modulation mother constellation scheme for generating a codebook including 64 codewords ie, a 64-point codebook
  • a 64-point codebook can be used to perform 6-bit information bits.
  • Modulation to generate a two-dimensional modulation symbol the following 6 bits are represented by b5b4b3b2b1b0.
  • the constellation points of the two-dimensional modulation mother constellation may be symmetric about the x-axis and the y-axis.
  • the coordinates of the constellation points of each constellation are respectively ( ⁇ a, ⁇ b), where a and b are positive real numbers.
  • the first constellation may be a 16QAM Gray modulation constellation determined by b5b3b2b0
  • the second constellation may be a 16QAM Gray modulation constellation determined by b4b3b1b0.
  • the first constellation may be determined by the information bits of the b5, b3, b2, and b0 positions, and the information bits of the b4 and b1 positions are indistinguishable, that is, the information of the b5, b3, b2, and b0 positions of each constellation point.
  • the value of the bit can be 1 or 0, and the values of the information bits at the b4 and b1 positions are 1 and 0.
  • FIG. 9 For details of the 6-bit information bits corresponding to the respective constellation points, refer to FIG. 9 , and details are not described herein again.
  • the first constellation may be determined by information bits at positions b4, b3, b1, and b0, and information bits at positions b5 and b2 cannot be distinguished, that is, values of information bits at positions b4, b3, b1, and b0 of each constellation point may be It is 1 or 0, and the information bits of the b5 and b2 positions have values of 1 and 0.
  • the 6-bit information bits corresponding to the respective constellation points refer to FIG. 9 , and details are not described herein again.
  • Table 5 is a 64-point SCMA codebook obtained from the two-dimensional modulation mother constellation shown in FIG. Referring to Table 5 and Figure 9, the value 000000 of the information bits can be jointly represented by the constellation points (a1, b1) of the first constellation and the constellation points (a1, b1) of the second constellation. Similarly, the constellation points (a1, b2) of the first constellation and the constellation points (a1, b2) of the second constellation can be used to jointly represent the value of the information bits 000001, and so on.
  • the 64-point information bits can be mapped to two 16QAM Gray modulation constellations included in the two-dimensional modulation mother constellation.
  • the above two-dimensional modulation mother constellation can be directly used as a codebook.
  • the two-dimensional modulation mother constellation of the embodiment may be operated to obtain a two-dimensional modulation constellation, and the obtained two-dimensional modulation constellation is used as a codebook.
  • the multi-dimensional modulation symbols of each data layer in the SCMA codebook can be obtained by: each data layer can use the same multi-dimensional modulation mother constellation to generate respective multi-dimensional modulation symbols; each data layer can pass Different angle rotation and power adjustment are performed on the same multi-dimensional modulation mother constellation to generate respective multi-dimensional modulation symbols; each data layer can select different multi-dimensional modulation mother constellations and perform certain rotation angles and power adjustments to generate respective multi-dimensional modulation symbols.
  • each constellation point may also be scaled (a ⁇ b) in different proportions, for example, 000 is mapped to the constellation points (a, 2b) of the first constellation and the constellation points of the second constellation (a, 2b), 001 maps to the constellation points (a, 2b) of the first constellation and constellation points (a, -2b) of the second constellation, and so on.
  • Another operation is to obtain the above two-dimensional modulation mother constellation by using other forms of QPSK Gray constellation, for example, changing the mapping relationship between the value of the information bits of each constellation and the constellation points to generate a two-dimensional modulation mother constellation, and the resulting two
  • the dimension modulation mother constellation is used as the codebook.
  • the constellation points (a, b) of the first constellation in FIG. 5 and the information bits corresponding to the constellation points (a, -b) may be interchanged, and the information bits corresponding to the constellation points (a, b) may be The value of the information is changed to 100 and 101, and the value of the information bit corresponding to the constellation point (-a, b) is changed to 001 and 000.
  • the value 000 of the information bit is mapped to the constellation point (-a, b) of the first constellation and the constellation point (a, b) of the second constellation, and therefore, the constellation point of the first constellation can be used ( -a, b) and the constellation points (a, b) of the second constellation jointly represent the value 000 of the information bits, in turn analogy.
  • Another operation is to rotate the entire constellation of the two-dimensional modulation mother constellation at a certain angle (for example, by rotating 45 degrees or by 90 degrees) to obtain a corresponding two-dimensional modulation constellation, and different angles correspond to different two-dimensional modulation constellations. And the obtained two-dimensional modulation constellation is used as a codebook.
  • the embodiment of the present application does not limit the angle of rotation as long as it can distinguish different two-dimensional modulation constellations.
  • the embodiment of the present application is not limited to the above method when generating the codebook according to the multi-dimensional modulation mother constellation, and other methods for generating the codebook according to the multi-dimensional modulation mother constellation can also be applied to the embodiments of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus 1000 for transmitting data at a transmitting end according to an embodiment of the present application.
  • the apparatus 1000 includes a modulation module 1010 and a transmission module 1020.
  • the determining module 1010 is configured to modulate, according to the codebook, each N-bit information bit of the data to be transmitted into an M-dimensional modulation symbol, where the codebook is generated according to an M-dimensional modulation constellation, where the M-dimensional modulation constellation includes M modulation constellations, the constellation points of the mth constellation of the M constellations are obtained by mapping N bits of information bits according to the mth information bit subset, and the mth information bit subset is represented by the N bits of information
  • the information bits in the partial position of the bit are composed, the union of the M information bit subsets corresponding to the M constellations respectively is the N-bit information bits, M and N are integers greater than or equal to 2, and m is 1, 2,...,M.
  • the sending module 1020 is configured to send the generated M-dimensional modulation symbol.
  • a codebook for generating an M-dimensional modulation symbol is generated according to an M-dimensional modulation constellation
  • the M-dimensional modulation constellation includes M modulation constellations, and constellation points of the m-th constellation of the M constellations are N
  • the bit information bits are obtained according to the mth information bit subset mapping, and the mth information bit subset is composed of information bits at partial positions of the N-bit information bits, and the M information constellations respectively correspond to the M information bit subsets. It is an N-bit information bit. Since the embodiment of the present application determines the M-dimensional modulation mother constellation by directly selecting the information bit subset from the N-bit information bits, the demodulation complexity of the modulation symbols is reduced.
  • any two subsets of information bits in the M information bit subset are different.
  • the codebook is specifically generated by adjusting power of a real part and/or an imaginary part of a constellation point of the M-dimensional modulation mother constellation to obtain an adjusted M-dimensional modulation. a constellation that generates the codebook according to the adjusted M-dimensional modulation constellation.
  • the codebook is specifically generated by performing an angular rotation on a constellation point of the M-dimensional modulation mother constellation to obtain a rotated M-dimensional modulation constellation according to the rotated M.
  • the dimension modulation mother constellation generates the codebook.
  • the codebook is a set of dimensional modulation symbols, and the codebook is used to indicate a mapping relationship between information bits and modulation symbols.
  • FIG. 11 is a schematic structural diagram of an apparatus 1100 for transmitting data at a receiving end according to an embodiment of the present application.
  • the device 1100 includes a receiving module 1110 and a demodulation module 1120.
  • the receiving module 1110 is configured to receive the M-dimensional modulation symbol.
  • the demodulation module 1120 is configured to demodulate the M-dimensional modulation symbol according to a codebook to generate transmitted data, where the codebook is generated according to an M-dimensional modulation constellation.
  • the M-dimensional modulation constellation includes M modulation constellations, and constellation points of the mth constellation of the M constellations are obtained by mapping N bits of information bits according to the mth information bit subset, the mth information bit subset And consisting of information bits at a partial position of the N-bit information bits, wherein a union of the M information bit subsets corresponding to the M constellations respectively is the N-bit information bits, and M and N are greater than or equal to 2.
  • m is 1, 2, ..., M.
  • a codebook for demodulating an M-dimensional modulation symbol is generated according to an M-dimensional modulation constellation
  • the M-dimensional modulation constellation includes M modulation constellations, and constellation points of the m-th constellation in the M constellations are
  • the N-bit information bits are obtained according to the m-th information bit subset mapping, and the m-th information bit subset is composed of information bits at a partial position of the N-bit information bits, and the M constellations respectively correspond to the M information bit subsets.
  • the set is an N-bit information bit. Since the embodiment of the present application determines the M-dimensional modulation mother constellation by directly selecting the information bit subset from the N-bit information bits, the demodulation complexity of the modulation symbols is reduced.
  • any two subsets of information bits in the subset of M information bits are different.
  • the codebook is specifically generated by adjusting power of a real part and/or an imaginary part of a constellation point of the M-dimensional modulation mother constellation to obtain an adjusted M-dimensional modulation. a constellation that generates the codebook according to the adjusted M-dimensional modulation constellation.
  • the codebook is specifically generated by angularly rotating a constellation point of the M-dimensional modulation mother constellation to obtain a rotated M-dimensional modulation constellation according to the rotated M.
  • the dimension modulation mother constellation generates the codebook.
  • the codebook is a set of dimensional modulation symbols used to indicate a mapping relationship between information bits and modulation symbols.
  • FIG. 12 is a schematic structural diagram of a device 1200 according to an embodiment of the present application. As shown in FIG. 12, the device 1200 includes:
  • Memory 1210, processor 1220, and bus system 1230 The memory 1210 and the processor 1220 are connected by a bus system 1230 for storing instructions, and the processor 1220 is configured to execute the instructions stored by the memory 1210 to perform the methods of the embodiments of FIGS. 3 and 4.
  • the processor 1220 may be a central processing unit (Central Processing Unit (CPU), and the processor 1220 may also be another general-purpose processor, a digital signal processor (DSP). ), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 1210 can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the bus system 1230 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for the sake of clarity, the various buses are labeled as bus systems in the figure.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

提供了一种传输数据的方法和装置。该方法包括:根据码本,将待传输数据的每N位信息比特调制成一个M维调制符号;其中,所述码本是根据M维调制星座生成的,所述M维调制星座包括M个调制星座,所述M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,所述第m个信息比特子集由所述N位信息比特中部分位置上的信息比特组成,所述M个星座分别对应的M个信息比特子集的并集为所述N位信息比特,M和N为大于或等于2的整数,m为1,2,…,M;发送生成的所述M维调制符号。本技术方案能够使得在解调调制信号时的复杂度降低。

Description

传输数据的方法和装置
本申请要求于2016年9月19日提交中国专利局、申请号为201610830093.X、发明名称为“传输数据的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输数据的方法和装置。
背景技术
多址接入是无线通信物理层核心的技术之一,它使得无线基站能区分且同时服务多个终端用户,并减小多址干扰。现有无线通信系统大多采用简单的正交多址接入方式。正交多址技术由于其可容纳的接入用户数与正交资源成正比,而正交资源数量受限于正交性要求,因此不能满足未来5G(Fifth Generation)时代广域连续覆盖,热点高容量、海量连接、低延时接入等业务需求。于是,非正交多址接入逐渐成为当下备受瞩目的5G多址接入的研究重点。
稀疏码多址接入(Sparse Code Multiple Access,SCMA)技术就是一种典型的非正交多址接入和传输技术,该类技术可以有效地提升网络容量,包括系统可接入用户数和频谱效率等。
SCMA技术采用SCMA码本对要传输的信息比特进行调制,以实现稀疏扩频。现有技术可以根据多维调制母星座生成一系列星座,然后将星座作为码本。然而,在对利用现有SCMA技术生成的调制符号进行解调时,需要的方案很复杂。
发明内容
本申请提供了一种传输数据的方法和装置,使得解调调制符号的方案的复杂度降低。
在第一方面,提供了一种传输数据的方法,包括:根据码本,将待传输数据的每N位信息比特调制成一个M维调制符号;其中,码本是根据M维调制星座生成的,M维调制星座包括M个调制星座,M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,第m个信息比特子集由N位信息比特中部分位置上的信息比特组成,M个星座分别对应的M个信息比特子集的并集为N位信息比特,M和N为大于或等于2的整数,m为1,2,…,M;发送生成的M维调制符号。换句话说,M个星座的星座点分别映射到N位信息比特的M个信息比特子集,而M个信息比特子集的并集为N位信息比特,每个信息比特子集包含N位信息比特中某些位置的信息比特。
根据本申请的实施例,用于生成M维调制符号的码本是根据M维调制星座生成的,M维调制星座包括M个调制星座,M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,第m个信息比特子集由N位信息比特中部分位置上的信 息比特组成,M个星座分别对应的M个信息比特子集的并集为N位信息比特。由于本申请的实施例采用直接从N位信息比特中选择信息比特子集方式来确定M维调制母星座,使得调制符号的解调复杂度降低。
第二方面,提供了一种传输数据的方法,包括:接收M维调制符号;根据码本,对M维调制符号进行解调以得到被传输的数据,其中码本是根据M维调制星座生成的,M维调制星座包括M个调制星座,M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,第m个信息比特子集由N位信息比特中部分位置上的信息比特组成,M个星座分别对应的M个信息比特子集的并集为N位信息比特,M和N为大于或等于2的整数,m为1,2,…,M。
根据本申请的实施例,用于解调M维调制符号的码本是根据M维调制星座生成的,M维调制星座包括M个调制星座,M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,第m个信息比特子集由N位信息比特中部分位置上的信息比特组成,M个星座分别对应的M个信息比特子集的并集为N位信息比特。由于本申请的实施例采用直接从N位信息比特中选择信息比特子集方式来确定M维调制母星座,使得调制符号的解调复杂度降低。
在第三方面,本申请提供了一种用于传输数据的装置,该装置包括用于执行第一方面的方法的模块。
在第四方面,本申请提供了一种用于传输数据的装置,该装置包括用于执行第二方面的方法的模块。
在第五方面,本申请提供了一种用于传输数据的装置,包括:存储器、处理器和总线系统。其中,存储器和处理器通过总线系统相连,存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面的方法。
在第六方面,本申请提供了一种用于传输数据的装置,包括:存储器、处理器和总线系统。其中,存储器和处理器通过总线系统相连,存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面的方法。
在第七方面,提供了一种计算机存储介质,用于存储计算机程序,该计算机程序包括用于获取第一方面或第一方面的任意可能的实现方式中的方法的指令。
在第八方面,提供了一种计算机存储介质,用于存储计算机程序,该计算机程序包括用于获取第二方面或第二方面的任意可能的实现方式中的方法的指令。
在上述各个方面的第一实施方式中,M个信息比特子集中的任意两个信息比特子集都不相同。具体而言,M个信息比特子集中的每个信息比特子集还可以包含至少一个与另一信息比特子集包含的信息比特相同的信息比特。此时,通过设计一个信息比特子集包含其它信息比特子集包含的信息比特,使得一个信息比特能够在不同的星座上得到保护,从而在不增加额外开销的情况下进一步提高传输可靠性。
结合各个上述方面或其第一的实施方式,在第二实施方式中,码本具体是通过如下方式生成的:对M维调制母星座的星座点的实部和/或虚部的功率进行调整,得到调整后的M维调制星座,根据调整后的M维调制星座生成码本。因此,通过生成一个M维调制母 星座,并通过简单地对该M维调制母星座的星座点的实部和/或虚部的功率进行调整,得到多个M维调制星座作为码本,从而进一步简化了码本的生成过程。
结合上述各个方面或者其第一实施方式,在第三实施方式中,码本具体是通过如下方式生成的:对M维调制母星座的星座点进行角度旋转,得到旋转后的M维调制星座,根据旋转后的M维调制母星座生成码本。因此,通过生成一个多维调制母星座,并通过简单地对该多维调制母星座的星座点进行角度旋转,得到多个多维调制星座作为码本,在码本的生成过程中减少了多维调制母星座的数目,从而简化了码本的生成过程。
结合上述各个方面或前述的任意一个实施方式,在第四实施方式中,码本为M维调制符号的集合,码本用于指示信息比特与调制符号之间的映射关系。
在上述各个方面的进一步实施方式中,M维调制星座还可以具有如下特点:如果N位信息比特的两个标号(labeling)在M维调制星座的一个星座被映射到同一星座点,则这两个值在另一星座中被映射到不同的星座点,以便能够在M个星座中各选择一个星座点来唯一指示N位信息比特的一个值。具体而言,M个信息比特子集中的每个信息比特子集包含至少一个与另一信息比特子集包含的比特不同的比特。因此,通过设计每个信息比特子集包含其它信息比特子集所没有的比特,即不同位置的信息比特能够被映射到不同的星座,使得每个星座尽可能保护不同位置的信息比特,从而保证了各个位置的信息比特传输的可靠性。
在某些实施实施方式中,M个信息比特子集包括第一信息比特子集和第二信息比特子集,第一信息比特子集包含至少一个与第二信息比特子集包含的信息比特不同的信息比特。
在另一些实施方式中,第一信息比特子集与第二信息比特子集的交集包含至少一个信息比特。通过设计一个信息比特子集包含其它信息比特子集所包含的信息比特,使得一个信息比特能够在不同的星座上得到保护,从而在不增加额外开销的情况下进一步提高传输可靠性。
在另一些实施方式中,M第一信息比特子集与第二信息比特子集没有交集。因此,通过设计不同信息比特子集没交集,使得每个星座的星座点映射到不同的信息比特,进一步简化了星座图。
在上述实施方式中,上述信息比特可以为X进制信息比特,X为大于或等于2的整数,第m个星座的星座点的数目为
Figure PCTCN2017101937-appb-000001
其中km为第m个信息比特子集包含的比特数,km为小于或等于N的正整数。例如,X=2时,信息比特为二进制信息比特。
在某些实施方式中,上述星座可以为格雷星座,例如,QPSK格雷星座,但本申请并不限于此,可以通过改变格雷星座的形式来生成不同的M维调制母星座。可选地,在某些实施例中,上述星座也可以为其它形式的星座,例如,BPSK调制星座等。
在某些实施方式中,上述维调制符号为稀疏码分多址SCMA维调制符号,码本为SCMA码本。
本申请的这些和其它方面在以下多个实施例的描述中会更加简明易懂。
附图说明
图1是使用本申请的传输数据的方法的通信系统的示意图。
图2示出SCMA的比特映射处理的示意图。
图3是根据本申请的一个实施例的传输数据的方法的示意性流程图。
图4是根据本申请的一个实施例的传输数据的方法的示意性流程图。
图5是根据本申请一个实施例的二维调制母星座的示意图。
图6是根据本申请另一实施例的二维调制母星座的示意图。
图7是根据本申请另一实施例的二维调制母星座的示意图。
图8是根据本申请另一实施例的二维调制母星座的示意图。
图9是根据本申请另一实施例的二维调制母星座的示意图。
图10是根据本申请的一个实施例的用于传输数据的装置的结构示意图。
图11是根据本申请的另一实施例的用于传输数据的装置的结构示意图。
图12是根据本申请实施例的设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本申请结合终端设备描述了各个实施例。终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。
此外,本申请结合网络设备描述了各个实施例。该网络设备可以是例如,基站等设备,基站可用于与移动设备通信,基站可以是GSM(Global System of Mobile communication,全球移动通讯)或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点, 或者车载设备、可穿戴设备以及未来5G网络中的基站设备。
此外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是使用本申请的传输数据的方法的通信系统的示意图。如图1所示,该通信系统100包括基站102,基站102可包括多个天线组。每个天线组可以包括一个或多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。基站102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
基站102可以与多个用户设备(例如用户设备116和用户设备122)通信。然而,可以理解,基站102可以与类似于用户设备116或122的任意数目的用户设备通信。用户设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,用户设备116与天线112和114通信,其中天线112和114通过前向链路118向用户设备116发送信息,并通过反向链路120从用户设备116接收信息。此外,用户设备122与天线104和106通信,其中天线104和106通过前向链路124向用户设备122发送信息,并通过反向链路126从用户设备122接收信息。
例如,在频分双工(Frequency Division Duplex,FDD)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(Time Division Duplex,TDD)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为基站102的扇区。例如,可将天线组设计为与基站102覆盖区域的扇区中的用户设备通信。在基站102通过前向链路118和124分别与用户设备116和122进行通信的过程中,基站102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与基站通过单个天线向它所有的用户设备发送信号的方式相比,在基站102利用波束成形向相关覆盖区域中随机分散的用户设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,基站102、用户设备116或用户设备122可以是无线通信发送装置和/ 或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行调制以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
需要说明的是,在使用本申请实施例的传输数据的方法和装置的通信系统100中,多个终端设备可以复用同一时频资源与基站进行数据传输,并且,作为上述同一时频资源,例如,在以资源单元(Resource Element,RE)为单位的时频资源划分方式下,上述时频资源可以是由多个RE组成的时频资源块(也可以称为时频资源组),并且,该多个RE可以是在时域上的位置相同(即,对应相同的符号)且在频域上的位置相异(即,对应不同子的载波),或者,该多个RE可以是在时域上的位置相异(即,对应不同的符号)且在频域上的位置相同(即,对应相同的子载波),本申请并未特别限定。
作为上述通信系统100的一例,可以列举稀疏码分多址(Sparse Code Multiple Access,SCMA)系统,在该系统中,多个用户复用同一个时频资源块进行数据传输。每个资源块由若干资源RE组成,这里的RE可以是OFDM技术中的子载波-符号单元,也可以是其它空口技术中时域或频域的资源单元。例如,在一个包含K个UE的SCMA系统中,可用资源分成若干正交的时频资源块,每个资源块含有L个RE,其中,该L个RE可以是在时域上的位置相同。当UE#k发送数据时,首先将待发送数据分成S比特大小的数据块,通过查找码本(由基站确定并下发给该UE)将每个数据块映射成一组调制符号X#k={X#k1,X#k2,…,X#kL},每个调制符号对应资源块中一个RE,然后根据调制符号生成信号波形。
另外,在SCMA中,每个终端设备所对应的一组调制符号X#k={X#k1,X#k2,…,X#kL}中,至少一个符号为零符号,并且,至少一个符号为非零符号。即,针对一个终端设备的数据,在L个RE中,只有部分RE(至少一个RE)承载有该终端设备的数据。
应理解,以上列举的SCMA系统仅为适用本申请的调整调制编码阶数的方法和装置的通信系统的一例,本申请并不限定于此,任何涉及发送端设备与接收端设备根据传输状态进行数据传输的通信系统均落入本申请的保护范围内。
为了便于理解和说明,在以下实施例中,在未特别说明的情况下,以在该SCMA系统中的应用为例,对本申请实施例的传输数据的方法进行说明。
并且,由于在SCMA系统中,多个用户设备复用同一时频资源与基站进行传输,因此,基站在同一时刻可能与多个用户设备进行数据传输,由于基站与各用户设备传输数据的过程类似,为了便于理解和说明,以下,以基站与多个UE中的UE#1(即,第一用户设备的一例)传输数据的流程为例进行说明。
图2示出了以6个数据流复用4个资源单元作为举例的SCMA的比特映射处理(或者说,编码处理)的示意图,如图2所示,6个数据流组成一个分组,4个资源单元组成一个编码单元。一个资源单元可以为一个子载波,或者为一个RE,或者为一个天线端口。在图2中,数据流和资源单元之间有连线表示至少存在该数据流的一种数据组合经码字映射后会在该资源单元上发送非零的调制符号,而数据流和资源单元之间没有连线则表示该数据流的所有可能的数据组合经码字映射后在该资源单元上发送的调制符号都为零。数据流的数据组合可以按照如下阐述进行理解,例如,二进制比特数据流中,00、01、10、11 为所有可能的两比特数据组合。为了描述方便,每个数据流的数据分别表示为s1至s6,每个资源单元发送的符号分别表示为x1至x4,并且数据流和资源单元之间的连线表示该数据流的数据经扩展后会在该资源单元上发送调制符号,其中,该调制符号可以为零符号(与零元素相对应),也可以为非零符号(与非零元素相对应),数据流和资源单元之间没有连线则表示该数据流的数据经扩展后不会在该资源单元上发送调制符号。
从图2中可以看出,每个数据流的数据经扩展后会在多个资源单元上发送,同时,每个资源单元发送的符号是来自多个数据流的数据经扩展后的非零符号的叠加。例如数据流3的数据s3经扩展后会在资源单元1和资源单元2上发送非零符号,而资源单元3发送的数据x2是数据流2、数据流4和数据流6的数据s2、s4和s6分别经扩展后得到的非零符号的叠加。由于数据流的数量可以大于资源单元的数量,因而该SCMA系统可以有效地提升网络容量,包括系统的可接入用户数和频谱效率等。
码本中的码字通常具有如下形式:
Figure PCTCN2017101937-appb-000002
而且,相对应的码本通常具有如下形式:
Figure PCTCN2017101937-appb-000003
其中,N为大于1的正整数,可以表示为一个编码单元所包含的资源单元数量,也可以理解为码字的长度;Qm为大于1的正整数,表示码本中包含的码字数量,与调制阶数对应,例如,在采样四相相移键控(Quadrature Phase Shift Keying,QPSK)或4阶调制时Qm为4;q正整数,且1≤q≤Qm;码本和码字所包含的元素cn,q为复数,cn,q数学上可以表示为:
cn,q∈{0,α*exp(j*β)},1≤n≤N,1≤q≤Qm
α可以为任意实数,β可以为任意值,N和Qm可以为正整数。
并且,码本中的码字可以和数据形成一定映射关系,例如码本中的码字可以与2比特数据形成一种映射关系。
例如,“00”可以对应码字1,即
Figure PCTCN2017101937-appb-000004
“01”可以对应码字2,即
Figure PCTCN2017101937-appb-000005
“10”可以对应码字3,即
Figure PCTCN2017101937-appb-000006
“11”可以对应码字4,即
Figure PCTCN2017101937-appb-000007
结合上述图2,当数据流与资源单元之间有连线时,数据流对应的码本和码本中的码字应具有如下特点:码本中至少存在一个码字在相应的资源单元上发送非零的调制符号,例如,数据流3和资源单元1之间有连线,则数据流3对应的码本至少有一个码字满足c1,q≠0,1≤q≤Qm
当数据流与资源单元之间没有连线时,数据流对应的码本和码本中的码字应具有如下特征:码本中所有码字在相应的资源单元上发送为零的调制符号,例如,数据流3和资源单元3之间没有连线,则数据流3对应的码本中的任意码字满足c3,q=0,1≤q≤Qm
综上所述,当调制阶数为QPSK时,上述图2中数据流3对应的码本可以具有如下形式和特征:
Figure PCTCN2017101937-appb-000008
其中,cn,q=α*exp(j*β),1≤n≤2,1≤q≤4,α和β可以为任意实数,对任意q,1≤q≤4,c1,q和c2,q不同时为零,且至少存在一组q1和q2,1≤q1,q2≤4,使得
Figure PCTCN2017101937-appb-000009
[根据细则26改正15.11.2017] 
Figure WO-DOC-TABLE-1
应理解,以上列举的SCMA系统仅为适用本申请的数据处理的方法和装置的通信系统的一例,本申请并不限定于此,其他的能够使终端设备在同一时段复用相同的时频资源进行数据传输的通信系统均落入本申请的保护范围内。
一般情况下,码本可以从一个或多个多维复星座推导出来。例如,为了便于理解和说明,在以下实施例中,在未特别说明的情况下,以在该SCMA系统中的应用为例,对本 申请实施例的数据处理的方法进行说明。
另外,在本申请实施例中,上述映射处理的过程可以和现有的SCMA系统中的映射处理过程类似,这里,为了避免赘述,省略其详细说明。
以上结合图2对SCMA比特映射处理进行了说明。下面结合图3对本申请实施例提供的生成码本的方法进行了详细描述。
图3是根据本申请的一个实施例的传输数据的方法的示意性流程图。图3的方法可以由发送端执行。例如,发送端可以是图1的基站或UE。图3的方法包括如下内容。
310,根据码本,将待传输数据的每N位信息比特调制成一个M维调制符号;其中,码本是根据M维调制星座生成的,M维调制星座包括M个调制星座,M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,第m个信息比特子集由N位信息比特中部分位置上的信息比特组成,M个星座分别对应的M个信息比特子集的并集为N位信息比特,M和N为大于或等于2的整数,m为1,2,…,M。
320,发送生成的M维调制符号。
根据本申请的实施例,用于生成M维调制符号的码本是根据M维调制星座生成的,M维调制星座包括M个调制星座,M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,第m个信息比特子集由N位信息比特中部分位置上的信息比特组成,M个星座分别对应的M个信息比特子集的并集为N位信息比特。由于本申请的实施例采用直接从N位信息比特中选择信息比特子集方式来确定M维调制母星座,使得调制符号的解调复杂度降低。
上述信息比特可以为X进制信息比特,X为大于或等于2的整数,第m个星座的星座点的数目为
Figure PCTCN2017101937-appb-000011
其中km为第m个信息比特子集包含的比特数,km为小于或等于N的正整数。例如,X=2时,信息比特为二进制信息比特。
上述星座可以为格雷星座,例如,QPSK格雷星座、QAM格雷星座,但本申请的实施例并不限于此,还可以通过改变格雷星座的形式来生成不同的M维调制母星座。可选地,在某些实施例中,上述星座也可以为其它形式的星座,例如,BPSK调制星座等。
在本申请的实施例中,步骤310中的M维调制星座又可以被称为M维调制母星座,其用于将N位信息比特映射到M个星座的星座点,即从M个星座中的每个星座选择一个星座点来联合指示N位信息比特的一个值,而M个星座中的每个星座的星座点可以由这N位信息比特的子集来决定,并且M个星座对应的M个信息比特子集的并集为N位信息比特。换句话说,M个信息比特子集与M个星座分别对应,每个信息比特子集包含N位信息比特中某些位置的比特,并且保证M个信息比特子集能够涵盖N位信息比特。
以3位信息比特(b2b1b0)与二维调制母星座之间的映射为例,二维调制母星座可以包括第一星座和第二星座,假设第一星座的星座点由b2和b1位置的信息比特决定,而第二星座的星座点由b2和b0位置的信息比特决定。也即,3位信息比特映射到第一星座的星座点时,只看b2和b1位置的信息比特的取值,3位信息比特映射到第二星座的星座点时,只看b2和b0位置的信息比特的取值。例如,3位信息比特的值001和000可以映射到第一星座的星座点(a,b),而3位信息比特的值000和010则映射到第二星座的星座点(a,b),那么可以用第一星座的星座点(a,b)和第二星座的星座点(a,b)来联合指示3位信息比特的值000。再例如,3位信息比特的值011和101映射到第一星座的星座点 (-a,b),因此,可以用第一星座的星座点(-a,b)和第二星座的星座点(a,b)来联合指示3位信息比特的值010,依次类推。
在某些实施例中,M维调制母星座还可以设计成:如果表示N位信息比特的两个标号(labeling)在M维调制母星座的一个星座被映射到同一星座点,则这两个值在另一星座中被映射到不同的星座点,以便能够在M个星座中各选择一个星座点来唯一指示N位信息比特的一个值。这里,用标号来表示每个星座点所对应的N位信息比特的值。仍以上述3位信息比特(b2b1b0)与二维调制母星座之间的映射为例,3位信息比特的值000和010在第二星座中映射到星座点(a,b),而在第一星座上这两个值可以分别映射到星座点(a,b)和(-a,b),以便可以用(a,b)和(-a,b)来唯一指示3位信息比特的值010。
在某些实施例中,所述M个信息比特子集中的任意两个信息比特子集都不相同。具体而言,M个信息比特子集中的每个信息比特子集包含至少一个与另一信息比特子集包含的信息比特不同的信息比特。例如,M个信息比特子集可以包括第一信息比特子集和第二信息比特子集,第一信息比特子集包含至少一个与第二信息比特子集包含的信息比特不同的信息比特。
根据本申请的实施例,通过设计每个信息比特子集包含其它信息比特子集所没有的信息比特,即不同位置的信息比特能够被映射到不同的星座,使得每个星座尽可能保护不同位置的信息比特,从而保证了各个位置的信息比特传输的可靠性。
在某些实施例中,M个信息比特子集中的每个信息比特子集还可以包含至少一个与另一信息比特子集包含的信息比特相同的信息比特。例如,M个信息比特子集可以包括第一信息比特子集和第二信息比特子集,第一信息比特子集包含至少一个与第二信息比特子集包含的信息比特相同的信息比特,即第一信息比特子集与第二信息比特子集的交集包含至少一个信息比特。
根据本申请的实施例,通过设计一个信息比特子集包含其它信息比特子集所包含的信息比特,使得一个信息比特能够在不同的星座上得到保护,从而在不增加额外开销的情况下进一步提高传输可靠性。
可替代地,作为另一实施例,在某些实施例中,M个信息比特子集中的每个信息比特子集包含的信息比特与另一信息比特子集包含的信息比特不同。例如,M个信息比特子集可以包括第一信息比特子集和第二信息比特子集,M第一信息比特子集与第二信息比特子集没有交集。
根据本申请的实施例,通过设计不同信息比特子集没交集,使得每个星座的星座点对应不同的信息比特,从而简化了星座图。
在某些实施例中,所述码本具体是通过如下方式生成的:对所述M维调制母星座的星座点的实部和/或虚部的功率进行调整,得到调整后的M维调制星座,根据所述调整后的M维调制星座生成所述码本。
具体地,可以对M维调制母星座的星座点的实部和/或虚部的功率按不同的比例进行放大和缩小生成多个M维调制星座。各M维调制星座的星座点的实部和/或虚部的功率可以相同也可不同。
根据本申请的实施例,通过生成一个M维调制母星座,并通过简单地对该M维调制母星座的星座点的实部和/或虚部的功率进行调整,得到多个M维调制星座作为码本,从 而进一步简化了码本的生成过程。
可替代地,作为另一实施例,所述码本具体是通过如下方式生成的:对所述M维调制星座的星座点进行角度旋转,得到旋转后的M维调制星座,根据所述旋转后的M维调制母星座生成所述码本。
具体地,可以对M维调制母星座进行不同角度旋转来生成多个M维调制星座,并将多个M维调制星座作为码本。例如,对M维调制母星座整体旋转第一角度生成一个M维调制星座,对M维调制母星座整体旋转第二角度生成另一M维调制星座。
根据本申请的实施例,通过生成一个多维调制母星座,并通过简单地对该多维调制母星座的星座点进行角度旋转,得到多个多维调制星座作为码本,在码本的生成过程中减少了多维调制母星座的数目,从而简化了码本的生成过程。
可替代地,作为另一实施例,可以对M维调制母星座进行不同角度旋转和功率调整来生成多个M维调制星座。例如,可以是先对M维调制母星座进行不同角度的旋转,再对M维调制母星座进行功率调整来生成多个M维调制星座。再如,也可以是对M维调制母星座进行旋转得到一个M维调制星座,并且对M维调制母星座进行功率调整得到另一M维调制星座。
前述实施例中的码本可以应用于单一数据层的数据传输,也可以应用于多个数据层的传输。在应用到多个数据层的数据传输时,每个数据层所使用的码本不相同,但都是根据同一个M维调制母星座获得的。
可替代地,作为另一实施例,在传输多个数据层的数据时,步骤310中的码本可以被称之为第一码本,其用于传输第一数据层的数据,图3的方法还包括:根据第二码本对第二数据层上待传输的数据进行调制以生成第二数据层的M维调制符号,其中,第二码本是根据第二M维调制母星座得到的,第二M维调制母星座的确定方法与上述M维调制母星座的确定方法相同,上述M维调制母星座不同于第二M维调制母星座;根据第二M维调制母星座生成第二码本。
具体地,本申请的实施例可以按照上述方法确定多个不同的M维调制母星座,并且根据多个M维调制母星座分别作为多个码本。可替代地,本申请的实施例也可以对多个M维调制母星座分别时行运算或处理得到更多个M维调制星座分别作为多个码本。
根据本申请的实施例,图3的方法还可以包括:从存储器中获取存储的至少一个码本。
例如,可以在发送端或接收端预先存储共同约定的码本,而这些码本可以基于上述方法确定,或者由一方确定后发送给另一方。根据本申请的实施例,码本可以存储在双方的存储介质中,并在需要传输信息比特时,可以从存储介质中读取预先存储的码本,并使用读取的码本进行调制或解调,从而加快调制或解调的效率。
例如,也可以在需要使用码本进行调制或解调时,采用上述方法确定M维调制母星座,并由此确定码本。例如,可以先确定一个母码本,以得到母码本对应的调制符号,再对调制符号进行功率和角度的调整后传输。
上文结合图3从发送端的角度,对本申请实施例提供的传输数据的方法进行了描述,下面结合图4从接收端的角度,对本申请实施例提供的传输数据的方法进行详细描述。
图4是根据本申请的一个实施例的传输数据的方法的示意性流程图。图4的方法可以由接收端执行。例如,接收端可以是图1的基站或UE。图4的方法包括如下内容。图4 的实施例与图3的方法对应,在此适当省略详细的描述。
410,接收M维调制符号。
420,根据码本,对所述M维调制符号进行解调以得到被传输的数据,其中所述码本是根据M维调制星座生成的,所述M维调制星座包括M个调制星座,所述M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,所述第m个信息比特子集由所述N位信息比特中部分位置上的信息比特组成,所述M个星座分别对应的M个信息比特子集的并集为所述N位信息比特,M和N为大于或等于2的整数,m为1,2,…,M。本步骤中的码本跟发送端生成所述M维调制符号时所使用的码本相同。相应地,本步骤中的M维调制星座与步骤310的M维调制星座也相同,也可以被称为M维调制母星座。
根据本申请的实施例,用于解调M维调制符号的码本是根据M维调制星座生成的,M维调制星座包括M个调制星座,M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,第m个信息比特子集由N位信息比特中部分位置上的信息比特组成,M个星座分别对应的M个信息比特子集的并集为N位信息比特。由于本申请的实施例采用直接从N位信息比特中选择信息比特子集方式来确定M维调制母星座,使得调制符号的解调复杂度降低。
根据本申请的实施例,M个信息比特子集中的任意两个信息比特子集都不相同。
根据本申请的实施例,码本具体是通过如下方式生成的:对M维调制母星座的星座点的实部和/或虚部的功率进行调整,得到调整后的M维调制星座,根据调整后的M维调制星座生成所述码本。
根据本申请的实施例,码本具体是通过如下方式生成的:对M维调制母星座的星座点进行角度旋转,得到旋转后的M维调制星座,根据旋转后的M维调制母星座生成码本。
根据本申请的实施例,码本为M维调制符号的集合,码本用于指示信息比特与调制符号之间的映射关系。
根据本申请的实施例,图4的方法还可以包括:从存储器获取存储的至少一个码本。
下面结合具体例子,更加详细地描述本申请的实施例。为了方便说明,下面以二维调制母星座为例进行说明,其它M维(M大2)调制母星座的设计方案与二维调制母星座的设计方案类似。应理解,以下确定二维调制母星座的方法也可以类似地应用于确定各种多维调制母星座,为了避免重复,在此不再赘述。
图5是根据本申请一个实施例的二维调制母星座的示意图。
在本实施例中,设计了一种用于生成包括8个码字的码本(即8点码本)的二维调制母星座方案,其中8点码本可以用于对3位信息比特进行调制以生成二维调制符号,以下用b2b1b0来表示3位信息比特。例如,二维调制母星座包括两个维度的星座:第一星座和第二星座。每个星座用于生成所述二位调制符号中的一个维度的符号。例如,所述二位调制符号中的第一个维度的符号是根据第一星座图生成的,所述二位调制符号中的第二个维度的符号是根据第二星座图生成的。每个维度的符号可以在一个音调上传输,例如,第一个维度的符号可以在音调(tone)1上传输,第二个维度的符号可以在音调2上传输。
在本实施例中,二维调制母星座的星座点可以关于x轴和y轴对称,例如,星座点的坐标分别为(±a,±b),其中a和b为正实数。第一星座可以是由b2b1决定的4点QPSK格 雷调制星座,第二星座可以是由b2b0决定的4点QPSK格雷调制星座。
参见图5,第一星座可以是由b2和b1位置的信息比特决定,而b0位置的信息比特无法区分,即每个星座点的b2和b1位置的信息比特可以是1或0,而b0位置的信息比特的值为1和0,例如,星座点(a,b)对应b2为0且b1为0的3位信息比特的值001和000,星座点(a,-b)对应b2为1且b1为0的3位信息比特的值100和101,星座点(-a,b)对应b2为0且b1为0的3位信息比特的值011和010,星座点(-a,-b)对应b2为1且b1为1的3位信息比特的值111和110。
第二星座可以是由b2和b0位置的信息比特决定,而b1位置比特无法区分,即每个星座点的b2和b0位置的信息比特的值可以是1或0,而b1位置的信息比特的值可以是1和0,例如,星座点(a,b)对应b2为0且b0为0的3位信息比特的值000和010,星座点(a,-b)对应b2为1且b0为0的3位信息比特的值110和100,星座点(-a,b)对应b2为1且b0为0的3位信息比特的值110和100,星座点(-a,-b)对应b2为1且b0为1的3位信息比特的值111和101。
表1是根据上述二维调制母星座得到的8点SCMA码本。参见表1和图5,信息比特的值000对应于第一星座的星座点(a,b)和第二星座的星座点(a,b),即3位信息比特的值000既映射到第一星座的星座点(a,b),也映射到第二星座的星座点(a,b),因此,可以用第一星座的星座点(a,b)和第二星座的星座点(a,b)来联合表示信息比特的值000。同理,信息比特的值001可以对应于第一星座的星座点(a,b)和第二星座的星座点(a,-b),即信息比特的值001既映射到第一星座的星座点(a,b),也映射到第二星座的星座点(a,-b)因此,可以用第一星座的星座点(a,b)和第二星座的星座点(a,-b)来联合表示信息比特的值001,依次类推。
通过以上设计,8点信息比特可以被映射到二维调制母星座包括的两个4点QPSK格雷星座上。
表1
Bit I1 Q1 I2 Q2
000 a b a b
001 a b a -b
010 a -b a b
011 a -b a -b
100 -a b -a b
101 -a b -a -b
110 -a -b -a b
111 -a -b -a -b
图6是根据本申请另一实施例的二维调制母星座的示意图。
本实施例与实施例一类似,设计了一种用于生成包括8个码字的码本(即8点码本)的二维调制母星座方案。二维调制母星座与图5的实施例的类似,为避免重复,在此不再赘述。
与图5的实施例不同的是,在本实施例中,第一星座可以分别是由b2b1决定的4点QPSK格雷调制星座,第二星座可以是由b1b0决定的4点QPSK格雷调制星座。
参见图6,第一星座可以是由b2和b1位置的信息比特决定,而b0位置的信息比特无法区分,即每个星座点的b2和b1位置的信息比特的值可以是1或0,而b0位置的信息比特的值为1和0,例如,星座点(a,b)对应b2为0且b1为0的3位信息比特的值001和000,星座点(a,-b)对应b2为0且b1为1的3位信息比特的值010和011,星座点(-a,b)对应b2为1且b1为0的3位信息比特的值100和101,星座点(-a,-b)对应b2为1且b1为1的3位信息比特的值111和110。
第二星座可以是由位置b1和b0位置的信息比特决定,而b2位置的信息比特无法区分,即每个星座点的b1和b0位置的信息比特可以是1或0,而b2位置的信息比特的值为1和0,例如,星座点(a,b)对应b1为0且b0为0的3位信息比特的值000和100,星座点(a,-b)对应b1为0且b0为1的3位信息比特的值001和101,星座点(-a,b)对应b1为1且b0为0的3位信息比特的值110和010,星座点(-a,-b)对应b1为1且b0为1的3位信息比特的值111和011。
表2是根据图6所示的二维调制母星座得到的8点SCMA码本。参见表2和图6,信息比特的值000对应于第一星座的星座点(a,b)和第二星座的星座点(a,b),即信息比特的值000既映射到第一星座的星座点(a,b),也映射到第二星座的星座点(a,b),因此,可以用第一星座的星座点(a,b)和第二星座的星座点(a,b)来联合表示信息比特的值000。同理,信息比特的值001可以对应于第一星座的星座点(a,b)和第二星座的星座点(a,-b),即信息比特的值001既映射到第一星座的星座点(a,b),也映射到第二星座的星座点(a,-b)因此,可以用第一星座的星座点(a,b)和第二星座的星座点(a,-b)来联合表示信息比特的值001,依次类推。
通过以上设计,8点信息比特可以被映射到二维调制母星座包括的两个4点QPSK格雷星座上。
表2
Bit I1 Q1 I2 Q2
000 a b a b
001 a b a -b
010 a -b -a b
011 a -b -a -b
100 -a b a b
101 -a b a -b
110 -a -b -a b
111 -a -b -a -b
图7是根据本申请另一实施例的二维调制母星座的示意图。
在本实施例中,设计了一种用于生成包括8个码字的码本(即8点码本)的二维调制母星座方案,其中8点码本可以用于对3位信息比特进行调制以生成二维调制符号,以下 用b2b1b0来表示3位信息比特。例如,二维调制母星座包括的两个维度的星座:第一星座和第二星座,每个星座用于生成所述二位调制符号中的一个维度的符号。例如,所述二位调制符号中的第一个维度的符号是根据第一星座图生成的,所述二位调制符号中的第二个维度的符号是根据第二星座图生成的。每个维度的符号可以在一个音调上传输,例如,第一个维度的符号可以在音调(tone)1上传输,第二个维度的符号可以在音调2上传输。
在本实施例中,第一星座点可以关于x轴和y轴对称,例如,坐标分别为(±a,±b),其中a和b为正实数。第二星座的星座点可以关于y轴对称,例如,坐标分别为(±c,0),第一星座可以分别是由b1b0决定的4点QPSK格雷调制星座,第二星座可以是由b2决定的2点BPSK调制星座。
参见图7,第一星座可以是由b1位置的信息比特和b0位置的信息比特决定的QPSK格雷星座,而b2位置的信息比特无法区分,即每个星座点的b1和b0位置的信息比特的值可以是1或0,而b2位置的信息比特的值可以是1和0,例如,星座点(a,b)对应b1为0且b0为0的3位信息比特的值001和000,星座点(a,-b)对应b1为0且b0为1的3位信息比特的值001和101,星座点(-a,b)对应b1为1且b0为0的3位信息比特的值010和110,星座点(-a,-b)对应b1为1且b0为1的3位信息比特的值011和111。
第二星座可以是由b2位置的信息比特决定的BPSK调制星座,而b1和b0位置的信息比特无法区分,即每个星座点的b2位置的信息比特的值可以是1或0,而b1位置的信息比特的值为1和0,而b0位置的信息比特也可以为1和0,例如,星座点(c,0)对应b2为0的3位信息比特的值000、001、010和011,星座点(-c,0)对应b2为1的3位信息比特的值100、101、110和111。
表3是根据图7所示的二维调制母星座得到的8点SCMA码本。参见表3和图7,信息比特的值000对应于第一星座的星座点(a,b)和第二星座的星座点(c,0),即信息比特的值000既映射到第一星座的星座点(a,b),也映射到第二星座的星座点(c,0),因此,可以用第一星座的星座点(a,b)和第二星座的星座点(c,0)来联合表示信息比特的值000。同理,信息比特的值001可以对应于第一星座的星座点(a,-b)和第二星座的星座点(c,0),即信息比特的值001既映射到第一星座的星座点(a,-b),也映射到第二星座的星座点(c,0)因此,可以用第一星座的星座点(a,-b)和第二星座的星座点(c,0)来联合表示信息比特的值001,依次类推。
通过以上设计,8点信息比特可以被映射到二维调制母星座包括的1个4点QPSK格雷星座和1个BPSK调制星座上。
表3
Bit I1 Q1 I2 Q2
000 a b c 0
001 a -b c 0
010 -a b c 0
011 -a -b c 0
100 a b -c 0
101 a -b -c 0
110 -a b -c 0
111 -a -b -c 0
图8是根据本申请另一实施例的二维调制母星座的示意图。
在本实施例中,设计了一种用于生成包括16个码字的码本(即16点码本)的二维调制母星座方案,其中16点码本可以用于对4位信息比特进行调制,以下用b3b2b1b0来表示4位信息比特。
在本实施例中,二维调制母星座的星座点可以关于x轴和y轴对称,例如,每个星座的星座点的坐标分别为(±a,±b),其中a和b为正实数。第一星座可以分别是由b3b2决定的4点QPSK格雷调制星座,第二星座可以是由b1b0决定的4点QPSK格雷调制星座。
参见图8,第一星座可以由b3和b2位置的信息比特决定,而b1和b0位置的信息比特无法区分,即每个星座点的b3和b2位置的信息比特的值可以是1或0,而b1和b0位置的信息比特的值可以是1和0,例如,星座点(a,b)对应b3为0且b2为0的4位信息比特0000、0001、0010和0011,星座点(a,-b)对应b3为0且b2为1的4位信息比特0100、0101、0110和0111,星座点(-a,b)对应b3为1且b2为0的4位信息比特1000、1001、1010和1011,星座点(-a,-b)对应b3为1且b2为1的4位信息比特1100、1101、1110和1111。
第二星座可以由b1和b0位置的信息比特决定,而b3和b2位置的信息比特无法区分,即每个星座点的b1和b0位置的信息比特的值可以是1或0,而b3和b2位置的信息比特的值为1和0。各个星座点对应的4位信息比特具体可参见图8,在此不再赘述。
表4是根据图8所示的二维调制母星座得到的16点SCMA码本。参见表4和图8,可以用第一星座的星座点(a,b)和第二星座的星座点(a,b)来联合表示信息比特的值0000。同理,可以用第一星座的星座点(a,b)和第二星座的星座点(a,-b)来联合表示信息比特的值0001,依次类推。
通过以上设计,16点信息比特可以被映射到二维调制母星座包括的两个4点QPSK格雷星座上。
表4
Bit I1 Q1 I2 Q2
0000 a b a b
0001 a b a -b
0010 a b -a b
0011 a b -a -b
0100 a -b a b
0101 a -b a -b
0110 a -b -a b
0111 a -b -a -b
1000 -a b a b
1001 -a b a -b
1010 -a b -a b
1011 -a b -a -b
1100 -a -b a b
1101 -a -b a -b
1110 -a -b -a b
1111 -a -b -a -b
图9是根据本申请另一实施例的二维调制母星座的示意图。
在本实施例中,设计了一种用于生成包括64个码字的码本(即64点码本)的二维调制母星座方案,其中64点码本可以用于对6位信息比特进行调制以生成二维调制符号,以下用b5b4b3b2b1b0来表示6位信息比特。
在本实施例中,二维调制母星座的星座点可以关于x轴和y轴对称,例如,每个星座的星座点的坐标分别为(±a,±b),其中a和b为正实数。第一星座可以分别是由b5b3b2b0决定的16QAM格雷调制星座,第二星座可以是由b4b3b1b0决定的16QAM格雷调制星座。
参见图9,第一星座可以是由b5、b3、b2和b0位置的信息比特决定,而b4和b1位置的信息比特无法区分,即每个星座点的b5、b3、b2和b0位置的信息比特的值可以是1或0,而b4和b1位置的信息比特的值为1和0。各个星座点对应的6位信息比特具体可参见图9,在此不再赘述。
第一星座可以是由b4、b3、b1和b0位置的信息比特决定,而b5和b2位置的信息比特无法区分,即每个星座点的b4、b3、b1和b0位置的信息比特的值可以是1或0,而b5和b2位置的信息比特的值为1和0。各个星座点对应的6位信息比特具体可参见图9,在此不再赘述。
表5是根据图9所示的二维调制母星座得到的64点SCMA码本。参见表5和图9,可以用第一星座的星座点(a1,b1)和第二星座的星座点(a1,b1)来联合表示信息比特的值000000。同理,可以用第一星座的星座点(a1,b2)和第二星座的星座点(a1,b2)来联合表示信息比特的值000001,依次类推。
通过以上设计,64点信息比特可以被映射到二维调制母星座包括的两个16QAM格雷调制星座。
表5
Bit I1 Q1 I2 Q2
000000 a1 b1 a1 b1
000001 a1 b2 a1 b2
000010 a1 b1 a2 b1
000011 a1 b2 a2 b2
000100 a2 b1 a1 b1
000101 a2 b2 a1 b2
000110 a2 b1 a2 b1
000111 a2 b2 a2 b2
001000 a1 -b1 a1 -b1
001001 a1 -b2 a1 -b2
001010 a1 -b1 a2 -b1
001011 a1 -b2 a2 -b2
001100 a2 -b1 a1 -b1
001101 a2 -b2 a1 -b2
001110 a2 -b1 a2 -b1
001111 a2 -b2 a2 -b2
010000 a1 b1 -a1 b1
010001 a1 b2 -a1 b2
010010 a1 b1 -a2 b1
010011 a1 b2 -a2 b2
010100 a2 b1 -a1 b1
010101 a2 b2 -a1 b2
010110 a2 b1 -a2 b1
010111 a2 b2 -a2 b2
011000 a1 -b1 -a1 -b1
011001 a1 -b2 -a1 -b2
011010 a1 -b1 -a2 -b1
011011 a1 -b2 -a2 -b2
011100 a2 -b1 -a1 -b1
011101 a2 -b2 -a1 -b2
011110 a2 -b1 -a2 -b1
011111 a2 -b2 -a2 -b2
100000 -a1 b1 a1 b1
100001 -a1 b2 a1 b2
100010 -a1 b1 a2 b1
100011 -a1 b2 a2 b2
100100 -a2 b1 a1 b1
100101 -a2 b2 a1 b2
100110 -a2 b1 a2 b1
100111 -a2 b2 a2 b2
101000 -a1 -b1 a1 -b1
101001 -a1 -b2 a1 -b2
101010 -a1 -b1 a2 -b1
101011 -a1 -b2 a2 -b2
101100 -a2 b1 a1 -b1
101101 -a2 -b2 a1 -b2
101110 -a2 b1 a2 -b1
101111 -a2 -b2 a2 -b2
110000 -a1 b1 -a1 b1
110001 -a1 b2 -a1 b2
110010 -a1 b1 -a2 b1
110011 -a1 b2 -a2 b2
110100 -a2 b1 -a1 b1
110101 -a2 b2 -a1 b2
110110 -a2 b1 -a2 b1
110111 -a2 b2 -a2 b2
111000 -a1 -b1 -a1 -b1
111001 -a1 -b2 -a1 -b2
111010 -a1 -b1 -a2 -b1
111011 -a1 -b2 -a2 -b2
111100 -a2 -b1 -a1 -b1
111101 -a2 -b2 -a1 -b2
111110 -a2 -b1 -a2 -b1
111111 -a2 -b2 -a2 -b2
应理解,可以直接将上述二维调制母星座作为码本。作为另一实施例,还可以对本实施例的二维调制母星座进行运算得到二维调制星座,并将得到的二维调制星座作为码本。即基于一定的资源映射规则,SCMA码本中的各数据层的多维调制符号可通过以下方式得到:各数据层可以使用同一个多维调制母星座来生成各自的多维调制符号;各数据层可以通过对同一个多维调制母星座进行不同的角度旋转和功率调整,生成各自多维调制符号;各数据层可以选择不同的多维调制母星座并进行一定的旋转角度和功率调整来生成各自的多维调制符号。
具体地,以3位信息比特为例,一种运算是给上述二维调制母星座的各个星座点分配相同的功率,即使得各个星座点的实部和虚部相等(a=b),例如,000映射到星座点(a,a)和(a,a),001映射到星座点(a,a)和(a,-a),依次类推。可替代地,还可以将各个星座点的实部和虚部按不同比例放缩(a≠b),例如,000映射到第一星座的星座点(a,2b)和第二星座的星座点(a,2b),001映射到第一星座的星座点(a,2b)和第二星座的星座点(a,-2b),依次类推。
另一种运算是采用其他形式的QPSK格雷星座得到上述二维调制母星座,例如,改变各个星座的信息比特的值与星座点的映射关系,来产生二维调制母星座,并将产生的二维调制母星座作为码本。例如,可以将图5中的第一星座的星座点(a,b)和星座点(a,-b)对应的信息比特的值互换一下,将星座点(a,b)对应的信息比特的值改成为100和101,而将星座点(-a,b)对应的信息比特的值改成为001和000。在这种情况下,信息比特的值000被映射到第一星座的星座点(-a,b)和第二星座的星座点(a,b),因此,可以用第一星座的星座点(-a,b)和第二星座的星座点(a,b)来联合表示信息比特的值000,依次 类推。
还有一种运算是对上述二维调制母星座的各个星座整体进行一定角度的旋转(例如,旋转45度或旋转90度)得到相应的二维调制星座,不同的角度对应不同的二维调制星座,并将得到的二维调制星座作为码本。本申请的实施例对旋转的角度不作限定,只要能够区分不同的二维调制星座即可。
应理解,本申请的实施例在根据多维调制母星座生成码本时,并不限于上述方法,其它根据多维调制母星座生成码本的方法也可以应用于本申请的实施例。
上面描述了根据本申请实施例的生成码本的方法和传输数据的方法,下面分别结合图10至图12描述根据本申请实施例的用于传输数据的装置。
图10是根据本申请的一个实施例的位于发送端的用于传输数据的装置1000的结构示意图。装置1000包括:调制模块1010和发送模块1020。
确定模块1010,用于根据码本,将待传输数据的每N位信息比特调制成一个M维调制符号;其中,所述码本是根据M维调制星座生成的,所述M维调制星座包括M个调制星座,所述M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,所述第m个信息比特子集由所述N位信息比特中部分位置上的信息比特组成,所述M个星座分别对应的M个信息比特子集的并集为所述N位信息比特,M和N为大于或等于2的整数,m为1,2,…,M。发送模块1020,用于发送生成的所述M维调制符号。
根据本申请的实施例,用于生成M维调制符号的码本是根据M维调制星座生成的,M维调制星座包括M个调制星座,M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,第m个信息比特子集由N位信息比特中部分位置上的信息比特组成,M个星座分别对应的M个信息比特子集的并集为N位信息比特。由于本申请的实施例采用直接从N位信息比特中选择信息比特子集方式来确定M维调制母星座,使得调制符号的解调复杂度降低。
根据本申请的实施例,所述M个信息比特子集中的任意两个信息比特子集都不相同。
根据本申请的实施例,所述码本具体是通过如下方式生成的:对所述M维调制母星座的星座点的实部和/或虚部的功率进行调整,得到调整后的M维调制星座,根据所述调整后的M维调制星座生成所述码本。
根据本申请的实施例,所述码本具体是通过如下方式生成的:对所述M维调制母星座的星座点进行角度旋转,得到旋转后的M维调制星座,根据所述旋转后的M维调制母星座生成所述码本。
根据本申请的实施例,所述码本为维调制符号的集合,所述码本用于指示信息比特与调制符号之间的映射关系
发送端1000的模块的操作和功能可以参考上述图3的方法,为了避免重复,在此不再赘述。
图11是根据本申请的一个实施例的位于接收端的用于传输数据的装置1100的结构示意图。装置1100包括:接收模块1110和解调模块1120。
接收模块1110用于接收M维调制符号。解调模块1120用于用于根据码本,对所述M维调制符号进行解调以生成被传输的数据,其中所述码本是根据M维调制星座生成的,所 述M维调制星座包括M个调制星座,所述M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,所述第m个信息比特子集由所述N位信息比特中部分位置上的信息比特组成,所述M个星座分别对应的M个信息比特子集的并集为所述N位信息比特,M和N为大于或等于2的整数,m为1,2,…,M。
根据本申请的实施例,用于解调M维调制符号的码本是根据M维调制星座生成的,M维调制星座包括M个调制星座,M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,第m个信息比特子集由N位信息比特中部分位置上的信息比特组成,M个星座分别对应的M个信息比特子集的并集为N位信息比特。由于本申请的实施例采用直接从N位信息比特中选择信息比特子集方式来确定M维调制母星座,使得调制符号的解调复杂度降低。
在某些实施例中,所述M个信息比特子集中的任意两个信息比特子集都不相同。
在某些实施例中,所述码本具体是通过如下方式生成的:对所述M维调制母星座的星座点的实部和/或虚部的功率进行调整,得到调整后的M维调制星座,根据所述调整后的M维调制星座生成所述码本。
在某些实施例中,所述码本具体是通过如下方式生成的:对所述M维调制母星座的星座点进行角度旋转,得到旋转后的M维调制星座,根据所述旋转后的M维调制母星座生成所述码本。
在某些实施例中,所述码本为维调制符号的集合,所述码本用于指示信息比特与调制符号之间的映射关系。
接收端1100的模块的操作和功能可以参考上述图4的方法,为了避免重复,在此不再赘述。
图12是根据本申请实施例的设备1200的结构示意图。如图12所示,该设备1200包括:
存储器1210、处理器1220和总线系统1230。其中,存储器1210和处理器1220通过总线系统1230相连,存储器1210用于存储指令,该处理器1220用于执行该存储器1210存储的指令,以执行图3和图4的实施例的方法。
还应理解,在本申请实施例中,该处理器1220可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器1220还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器1210可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
该总线系统1230除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可 以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (16)

  1. 一种传输数据的方法,其特征在于,包括:
    根据码本,将待传输数据的每N位信息比特调制成一个M维调制符号;其中,所述码本是根据M维调制星座生成的,所述M维调制星座包括M个调制星座,所述M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,所述第m个信息比特子集由所述N位信息比特中部分位置上的信息比特组成,所述M个星座分别对应的M个信息比特子集的并集为所述N位信息比特,M和N为大于或等于2的整数,m为1,2,…,M;
    发送生成的所述M维调制符号。
  2. 根据权利要求1所述的方法,其特征在于,所述M个信息比特子集中的任意两个信息比特子集都不相同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述码本具体是通过如下方式生成的:
    对所述M维调制母星座的星座点的实部和/或虚部的功率进行调整,得到调整后的M维调制星座,
    根据所述调整后的M维调制星座生成所述码本。
  4. 根据权利要求1或2所述的方法,其特征在于,所述码本具体是通过如下方式生成的:
    对所述M维调制母星座的星座点进行角度旋转,得到旋转后的M维调制星座,
    根据所述旋转后的M维调制母星座生成所述码本。
  5. 一种传输数据的方法,其特征在于,包括:
    接收M维调制符号;
    根据码本,对所述M维调制符号进行解调以得到被传输的数据,其中所述码本是根据M维调制星座生成的,所述M维调制星座包括M个调制星座,所述M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,所述第m个信息比特子集由所述N位信息比特中部分位置上的信息比特组成,所述M个星座分别对应的M个信息比特子集的并集为所述N位信息比特,M和N为大于或等于2的整数,m为1,2,…,M。
  6. 根据权利要求5所述的方法,其特征在于,所述M个信息比特子集中的任意两个信息比特子集都不相同。
  7. 根据权利要求5或6所述的方法,其特征在于,所述码本具体是通过如下方式生成的:
    对所述M维调制母星座的星座点的实部和/或虚部的功率进行调整,得到调整后的M维调制星座,
    根据所述调整后的M维调制星座生成所述码本。
  8. 根据权利要求5或6所述的方法,其特征在于,所述码本具体是通过如下方式生成的:
    对所述M维调制母星座的星座点进行角度旋转,得到旋转后的M维调制星座,
    根据所述旋转后的M维调制母星座生成所述码本。
  9. 一种用于传输数据的装置,其特征在于,包括:
    调制模块,用于根据码本,将待传输数据的每N位信息比特调制成一个M维调制符号;其中,所述码本是根据M维调制星座生成的,所述M维调制星座包括M个调制星座,所述M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,所述第m个信息比特子集由所述N位信息比特中部分位置上的信息比特组成,所述M个星座分别对应的M个信息比特子集的并集为所述N位信息比特,M和N为大于或等于2的整数,m为1,2,…,M;
    发送模块,用于发送生成的所述M维调制符号。
  10. 根据权利要求9所述的装置,其特征在于,所述M个信息比特子集中的任意两个信息比特子集都不相同。
  11. 根据权利要求9或10所述的装置,其特征在于,所述码本具体是通过如下方式生成的:对所述M维调制母星座的星座点的实部和/或虚部的功率进行调整,得到调整后的M维调制星座,根据所述调整后的M维调制星座生成所述码本。
  12. 根据权利要求9或10所述的装置,其特征在于,所述码本具体是通过如下方式生成的:
    对所述M维调制母星座的星座点进行角度旋转,得到旋转后的M维调制星座,
    根据所述旋转后的M维调制母星座生成所述码本。
  13. 一种用于传输数据的装置,其特征在于,包括:
    接收模块,用于接收M维调制符号;
    解调模块,用于根据码本,对所述M维调制符号进行解调以得到被传输的数据,其中所述码本是根据M维调制星座生成的,所述M维调制星座包括M个调制星座,所述M个星座中的第m个星座的星座点由N位信息比特根据第m个信息比特子集映射得到,所述第m个信息比特子集由所述N位信息比特中部分位置上的信息比特组成,所述M个星座分别对应的M个信息比特子集的并集为所述N位信息比特,M和N为大于或等于2的整数,m为1,2,…,M。
  14. 根据权利要求13所述的装置,其特征在于,所述M个信息比特子集中的任意两个信息比特子集都不相同。
  15. 根据权利要求13或14所述的装置,其特征在于,所述码本具体是通过如下方式生成的:对所述M维调制母星座的星座点的实部和/或虚部的功率进行调整,得到调整后的M维调制星座,根据所述调整后的M维调制星座生成所述码本。
  16. 根据权利要求13或14所述的装置,其特征在于,所述码本具体是通过如下方式生成的:对所述M维调制母星座的星座点进行角度旋转,得到旋转后的M维调制星座,根据所述旋转后的M维调制母星座生成所述码本。
PCT/CN2017/101937 2016-09-19 2017-09-15 传输数据的方法和装置 WO2018050105A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17850307.4A EP3509264B1 (en) 2016-09-19 2017-09-15 Method and apparatus for transmitting data
US16/356,712 US10547486B2 (en) 2016-09-19 2019-03-18 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610830093.X 2016-09-19
CN201610830093.XA CN107846377B (zh) 2016-09-19 2016-09-19 传输数据的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/356,712 Continuation US10547486B2 (en) 2016-09-19 2019-03-18 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018050105A1 true WO2018050105A1 (zh) 2018-03-22

Family

ID=61619336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101937 WO2018050105A1 (zh) 2016-09-19 2017-09-15 传输数据的方法和装置

Country Status (4)

Country Link
US (1) US10547486B2 (zh)
EP (1) EP3509264B1 (zh)
CN (1) CN107846377B (zh)
WO (1) WO2018050105A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11140018B2 (en) * 2014-01-07 2021-10-05 Quantumsine Acquisitions Inc. Method and apparatus for intra-symbol multi-dimensional modulation
CN111726194B (zh) * 2019-03-19 2021-10-22 华为技术有限公司 传输数据的方法和通信装置
CN111817995B (zh) * 2019-04-11 2021-12-28 华为技术有限公司 数据的非相干传输方法
WO2020223949A1 (en) * 2019-05-09 2020-11-12 Qualcomm Incorporated Unequal protection (uep) design for high-order modulation
US11641269B2 (en) 2020-06-30 2023-05-02 Rampart Communications, Inc. Modulation-agnostic transformations using unitary braid divisional multiplexing (UBDM)
US11050604B2 (en) * 2019-07-01 2021-06-29 Rampart Communications, Inc. Systems, methods and apparatuses for modulation-agnostic unitary braid division multiplexing signal transformation
US10951442B2 (en) 2019-07-31 2021-03-16 Rampart Communications, Inc. Communication system and method using unitary braid divisional multiplexing (UBDM) with physical layer security
US10735062B1 (en) 2019-09-04 2020-08-04 Rampart Communications, Inc. Communication system and method for achieving high data rates using modified nearly-equiangular tight frame (NETF) matrices
US10965352B1 (en) 2019-09-24 2021-03-30 Rampart Communications, Inc. Communication system and methods using very large multiple-in multiple-out (MIMO) antenna systems with extremely large class of fast unitary transformations
US11159220B2 (en) 2020-02-11 2021-10-26 Rampart Communications, Inc. Single input single output (SISO) physical layer key exchange
CN111901276A (zh) * 2020-06-22 2020-11-06 中兴通讯股份有限公司 数据调制方法、装置、设备和存储介质
CN112350814B (zh) * 2020-10-20 2023-10-31 新疆大学 一种高效的上行链路scma码本设计方法
CN115086133B (zh) * 2022-04-29 2024-03-05 深圳市国电科技通信有限公司 自适应调制scma码本设计方法、装置以及介质、设备
CN114978315B (zh) * 2022-07-28 2022-11-01 南昌大学 基于拟合法的scma辅助可见光通信编解码方法及系统
CN115296737B (zh) * 2022-09-29 2022-12-23 广东工业大学 基于自由空间光通信的adm-gsmppm星座构建方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230119A1 (en) * 2011-07-25 2013-09-05 Sagar Dhakal Multi-level coding and iterative decoding using sparse space codes
CN105634712A (zh) * 2016-03-25 2016-06-01 重庆邮电大学 高斯信道下scma简易码本设计方法
CN105656833A (zh) * 2014-11-14 2016-06-08 中国科学院上海高等研究院 Ngb-w系统中的非均匀星座图及非均匀调制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6584144B2 (en) * 1997-02-24 2003-06-24 At&T Wireless Services, Inc. Vertical adaptive antenna array for a discrete multitone spread spectrum communications system
CA2813769C (en) * 2010-10-07 2016-09-27 Research In Motion Limited Sparse codes for mimo channel and detector alternatives for sparse code
CN102857437A (zh) * 2012-09-14 2013-01-02 重庆大学 一种链路QoS限制下的MIMO MAC接入协议
US9240853B2 (en) * 2012-11-16 2016-01-19 Huawei Technologies Co., Ltd. Systems and methods for sparse code multiple access
US9166663B2 (en) * 2012-12-14 2015-10-20 Futurewei Technologies, Inc. System and method for open-loop MIMO communications in a SCMA communications system
US9509379B2 (en) 2013-06-17 2016-11-29 Huawei Technologies Co., Ltd. System and method for designing and using multidimensional constellations
US10700803B2 (en) * 2014-08-15 2020-06-30 Huawei Technologies Co., Ltd. System and method for generating codebooks with small projections per complex dimension and utilization thereof
EP3186898B1 (en) * 2014-09-19 2019-04-03 Huawei Technologies Co. Ltd. System and method for downlink open-loop multi-user coordinated multipoint transmission using sparse code multiple access
WO2016049909A1 (zh) * 2014-09-30 2016-04-07 华为技术有限公司 数据传输方法和相关设备
US9780990B2 (en) * 2014-10-31 2017-10-03 Tyco Electronics Subsea Communications Llc System and method for multi-dimensional modulation using multiple constellations
EP3245745B1 (en) * 2015-01-15 2019-06-12 Huawei Technologies Co. Ltd. System and method for a message passing algorithm

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230119A1 (en) * 2011-07-25 2013-09-05 Sagar Dhakal Multi-level coding and iterative decoding using sparse space codes
CN105656833A (zh) * 2014-11-14 2016-06-08 中国科学院上海高等研究院 Ngb-w系统中的非均匀星座图及非均匀调制方法
CN105634712A (zh) * 2016-03-25 2016-06-01 重庆邮电大学 高斯信道下scma简易码本设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3509264A4

Also Published As

Publication number Publication date
EP3509264A4 (en) 2019-08-28
EP3509264A1 (en) 2019-07-10
US20190215222A1 (en) 2019-07-11
CN107846377B (zh) 2021-08-03
US10547486B2 (en) 2020-01-28
EP3509264B1 (en) 2023-08-09
CN107846377A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
WO2018050105A1 (zh) 传输数据的方法和装置
JP6552128B2 (ja) 複素次元あたりの投影が少ないコードブックを生成するためのシステムおよび方法ならびにその利用
WO2016138632A1 (zh) 用于上行数据传输的方法和装置
WO2018153307A1 (zh) 传输数据的方法和装置
US10158404B2 (en) Data transmission method, transmit end device, and receive end device
JP2007074618A (ja) 無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
WO2016101107A1 (zh) 传输指示信息的方法和装置
WO2017000291A1 (zh) 传输上行数据的方法和设备
RU2384960C2 (ru) Способ модуляции и демодуляции, устройство модуляции и устройство демодуляции
CN107078853B (zh) 数据处理的方法、装置和设备
WO2016101461A1 (zh) 传输指示信息的方法和装置
WO2016145664A1 (zh) 传输信息的方法、终端设备、网络设备和装置
US20180254934A1 (en) Transmitter and receiver
WO2016172875A1 (zh) 传输信息的方法、网络设备和终端设备
JP7301168B2 (ja) コーディングおよび変調方法、復調および復号方法、装置、ならびにデバイス
JP6929852B2 (ja) 受信装置および受信方法
WO2018030204A1 (ja) 送信装置、受信装置、送信方法および受信方法
EP3190817B1 (en) Data transmission method and related device
CN108463957A (zh) 适用于非正交多址接入的信息传输方法、装置以及通信系统
CN113473457B (zh) 一种基于隐私保护的非正交安全编码方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017850307

Country of ref document: EP

Effective date: 20190401