WO2018050074A1 - 太阳能集热器 - Google Patents

太阳能集热器 Download PDF

Info

Publication number
WO2018050074A1
WO2018050074A1 PCT/CN2017/101645 CN2017101645W WO2018050074A1 WO 2018050074 A1 WO2018050074 A1 WO 2018050074A1 CN 2017101645 W CN2017101645 W CN 2017101645W WO 2018050074 A1 WO2018050074 A1 WO 2018050074A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
main flow
disposed
flow tube
tube
Prior art date
Application number
PCT/CN2017/101645
Other languages
English (en)
French (fr)
Inventor
曾智勇
崔小敏
陈武忠
黄贝
Original Assignee
深圳市爱能森科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市爱能森科技有限公司 filed Critical 深圳市爱能森科技有限公司
Publication of WO2018050074A1 publication Critical patent/WO2018050074A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/74Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other
    • F24S10/744Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other the conduits being helically coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the present disclosure relates to the field of solar thermal power generation technology, for example, to a solar thermal collector.
  • New renewable energy refers to energy that is utilized by converting traditional fossil fuels or utilizing renewable energy sources such as sunlight, water, geothermal, and biological organisms.
  • the new renewable energy source is the future energy source for sustainable energy supply systems. Due to the instability of oil prices and the restrictions of climate change agreements, the importance of new renewable energy sources has increased.
  • Renewable energy includes solar heat, sunlight, biomass, wind, small hydro, geothermal, ocean energy and waste energy, while new energy sources include fuel cells, liquefied coal, gasified coal and hydrogen.
  • new energy sources include fuel cells, liquefied coal, gasified coal and hydrogen.
  • the problem is that the cost of generating electricity from new renewable sources, especially sunlight, does not reach the grid parity equivalent to the cost of traditional thermal power generation using fossil fuels.
  • solar thermal power generation from solar thermal power generation in new renewable energy sources continues to decrease in power generation costs, and power generation efficiency is gradually increasing.
  • the liquid medium in the solar collector is heated, and then thermally converted with an external power generating device.
  • the solar collector designed by this method has low heat generation efficiency, poor heat preservation effect, and the liquid medium is easily consolidated due to the influence of daytime and nighttime temperature differences, and the heat collecting tubes in the collector are unevenly heated, and the heat receiving area is small.
  • the present disclosure provides a solar collector, which has high heat collecting efficiency and an environmentally friendly and pollution-free solar collector.
  • a solar collector comprising a heat insulating device provided with a sunlight entrance port, a heat absorbing device disposed in a casing of the heat insulating device, and a heat absorbing device connected to the heat absorbing device a central flow guiding device of the heat absorbing device; wherein the heat absorbing device is a plurality of heat collecting coils arranged in a hollow cylindrical shape uniformly disposed in the heat insulating device case; the flow guiding device comprises a main flow tube, And a branch pipe symmetrically disposed on two sides of the main flow pipe, the branch pipe being respectively connected to the input end and the output end of the heat collecting coil.
  • the heat collecting coil is spirally wound by a plurality of heat collecting tubes, and the ends of the plurality of heat collecting tubes are respectively provided with a plurality of first joint flanges for connecting with the branch pipes.
  • a plurality of the first joint flanges are respectively located at the same end of the heat collecting coil.
  • a gap for compensating for the thermal deformation margin of the heat collecting tube is disposed between the adjacent heat collecting tubes.
  • the flow guiding device further includes an inlet pipe and an outlet pipe disposed perpendicularly to the main pipe, and the inlet pipe and the outlet pipe are disposed to penetrate the heat preservation device and the external heat exchange device Connected.
  • the main flow tube includes a first main flow tube disposed laterally at a lower end of the intake tube, a second main flow tube disposed under the first main flow tube and disposed in parallel with the first main flow tube, and a longitudinal direction a third main flow tube disposed above the two ends of the second main flow tube, a fourth main flow tube disposed laterally above the two ends of the third main flow tube, and a longitudinally disposed between the adjacent fourth main flow tubes
  • the fifth mainstream tube is disposed in an ⁇ -shaped shape, and the outlet tube is vertically disposed in a middle portion of the fifth main tube.
  • an auxiliary U-shaped branch pipe is respectively disposed along a length direction of the second main flow tube and the third main flow tube, and an end portion of the branch flow tube is disposed for the first The second joint flange of the joint flange.
  • the heat preservation device includes a vacuum casing, an outer casing covering the periphery of the vacuum casing and disposed in a gap with the vacuum casing, and filling between the outer casing and the vacuum casing
  • the insulation layer is composed of a plurality of vacuum plates.
  • the vacuum panel includes a first radiation shield and a second radiation shield, and a first mesh bracket sandwiched between the first radiation shield and the second radiation shield.
  • a second mesh bracket is disposed between the heat insulating layer and the outer casing.
  • a leakage preventing storage box is disposed in the casing of the heat preservation device, and the leakage prevention storage box is located below the heat absorption device and the flow guiding device.
  • the embodiment provides a solar thermal collector including a heat insulating device provided with a sunlight entrance port, a heat absorbing device disposed in the casing of the heat insulating device, and a heat absorbing device connected thereto a flow guiding device for flowing a heat transfer medium from a central portion of the heat absorbing device to a circumference; wherein the heat absorbing device is a plurality of heat collecting coils disposed in a hollow cylindrical shape uniformly disposed in the heat insulating device case;
  • the flow guiding device includes a main flow tube, and a branch pipe symmetrically disposed on two sides of the main flow tube, and the branch flow tube is respectively connected to an input end and an output end of the heat collecting coil.
  • the heat transfer medium flows from the central portion of the heat absorbing device to the periphery through the arrangement of the flow guiding device, so that the temperature of the heat transfer medium in the heat collecting coil flows in and out uniformly, thereby making the heat absorbing device highly efficient.
  • the heat transfer is carried out, and at the same time, the heat loss is effectively prevented by the action of the heat insulating device.
  • FIG. 1 is a perspective view of the heat absorbing device and the flow guiding device provided in the embodiment
  • Figure 2 is a perspective view of the flow guiding device of Figure 1;
  • FIG. 3 is an isometric view of the heat collecting coil of Figure 1;
  • FIG. 4 is a schematic structural view of a heat preservation device provided by the embodiment.
  • FIG. 5 is a perspective view of the vacuum housing of Figure 4.
  • Figure 6 is an exploded view of the vacuum panel of Figure 5.
  • Fig. 7 is a perspective view showing a combination of a vacuum casing, a heat absorbing device, and a flow guiding device.
  • a solar collector can be a coiled honeycomb cavity liquid working solar collector, including a heat preservation device provided with a solar inlet.
  • a heat absorbing device 2 disposed in the casing of the heat insulating device, and a flow guiding device 3 connected to the heat absorbing device 2 for flowing the heat transfer medium from the central portion of the heat absorbing device 2 to the periphery; optionally, the heat absorbing device 2 4*4 heat collecting coils 21 arranged in a hollow cylindrical shape uniformly arranged in the heat insulating device box;
  • the flow guiding device 3 comprises a main flow tube, and a branch pipe symmetrically disposed on both sides of the main flow tube, and the branch pipes are respectively set The input end and the output end of the heat coil 21 are connected.
  • the heat collecting coil 21 in the embodiment is spirally wound by two heat collecting tubes 211, and the ends of the two heat collecting tubes 211 may be respectively provided for being connected with the branching tubes.
  • the four first joint flanges 212 and the four first joint flanges 212 are respectively located at the same end of the heat collecting coil 21, and the heat collecting allowance for the heat collecting tube 211 is compensated between the adjacent heat collecting tubes 211. gap.
  • the heat collecting coil 21 designed in this way after the two heat collecting tubes 211 are spirally wound in parallel, the four ports are bent at the same end of the heat collecting coil 21, and then, as shown in FIG.
  • the heat collecting coil 21 is evenly and horizontally distributed into the vacuum casing 11 through the support frame 6, and the heat collecting coil 21 is bent with one end of the four ports being disposed toward the inner bottom surface of the vacuum casing 11, and each port is made Through the first
  • the joint flange 212 is connected to the branch pipe on the flow guiding device. In this way, through the concentrated illumination of the ground solar mirror group, the heated molten salt in the heat collecting coil can effectively absorb heat, and through the action of the flow guiding device, the heat is evaporated through the heated molten salt, and then cooled. The heated molten salt is re-introduced into the collecting coil, and the steam boiler is continuously circulated and heated.
  • the flow guiding device 3 further includes an inlet pipe 33 and an outlet pipe 34 which are vertically disposed through the main pipe, and the inlet pipe 33 and the outlet pipe 34 pass through the heat insulating device and external heat exchange.
  • the devices are connected.
  • the main flow tube includes a first main flow tube 311 disposed laterally at a lower end of the inlet tube 33, a second main flow tube 312 disposed under the first main flow tube 311 and disposed in parallel with the first main flow tube 311, and longitudinally disposed on the second main flow tube 312.
  • the main flow tube 315 is a bent structure, and may be arranged in a zigzag shape (also referred to as an ⁇ font). Referring to FIG. 2, the middle portion of the fifth main flow tube 315 is defined as a first direction, and the fifth direction is defined.
  • Both ends of the main flow tube 315 extend a first predetermined length in a second direction perpendicular to the first direction, and then extend a second length along the first direction; and a central portion of the fifth main flow tube 315 is vertically disposed Flow tube 34.
  • An inverted U-shaped branch pipe 32 is respectively disposed along the longitudinal direction of the second main pipe 312 and the third main pipe 313, and the end of the branch pipe 32 is provided with a second joint for cooperating with the first joint flange 212. Flange 321.
  • the flow guiding device is designed by the above scheme.
  • the lower temperature molten molten salt flows into the central four heat collecting coils through the inlet pipe, the first main flow pipe 311 and the branch pipe simultaneously, and then flows out through the branch pipe and the second main pipe 312 to flow into the middle portion.
  • a sealing cover is further disposed at the sunlight entrance of the heat insulating device. Avoid melting the molten salt quickly when there is no light.
  • the heat retaining device in this embodiment includes a vacuum housing 11 , an outer casing 13 that is disposed on the periphery of the vacuum casing 11 and is disposed in a gap with the vacuum casing 11 , and is filled in the outer casing 13 .
  • the insulating layer 12 between the vacuum housing 11 and the vacuum housing 11 is composed of a plurality of vacuum plates 111 including a first radiation shielding plate 1111 and a second radiation shielding plate 1112, and a first radiation shielding layer.
  • a first mesh bracket 1113 in the vacuum chamber between the plate 1111 and the second radiation preventing plate 1112, and a second mesh bracket 14 are disposed between the heat insulating layer 12 and the outer casing 13.
  • the structural design can not only make the thermal insulation device have a certain structural strength, but also form an effective isolation from the external temperature through the arrangement of the vacuum casing and the thermal insulation layer, thereby further functioning on the heat absorption device in the vacuum casing. Very good insulation effect to avoid heat loss.
  • a leakage preventing storage box 8 is disposed in the casing of the thermal insulation device, and the leakage preventing storage box 8 is located in the heat absorption device 2 and the guide. Below the flow device 3. In this way, it is possible to effectively collect the molten molten salt for the overflow and prevent Surrounded by overflow.
  • the embodiment provides a solar collector, wherein the heat transfer medium flows from the central portion of the heat absorbing device to the periphery through the arrangement of the flow guiding device, so that the temperature of the heat transfer medium in each heat collecting coil is uniformly flowed in and out. Therefore, the heat absorbing device can efficiently perform heat transfer, and at the same time, the heat loss device can effectively prevent heat loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

一种太阳能集热器,包括设置有太阳光入射口的保温装置、设置于保温装置的箱体内的吸热装置(2)、以及与吸热装置(2)相连接用于使传热介质从吸热装置(2)的中部流向四周的导流装置(3);其中吸热装置(2)为均布于保温装置箱体内的多个呈空心圆柱形设置的集热盘管(21);导流装置(3)包括主流管,以及对称设置于主流管两侧的支流管,支流管分别与集热盘管(21)的输入端和输出端相连接。

Description

太阳能集热器 技术领域
本公开涉及太阳能光热发电技术领域,例如涉及一种太阳能集热器。
背景技术
随着文明的发展,化石燃料的使用急剧增加,导致了严重的环境污染问题和全球变暖,该问题已成为国际社会的热门话题,但是由于发达国家、发展中国家和欠发达国家之间的与本国利益相关的不同意见而正走向一个不期望的方向。相应地,做出了对开发新的可再生能源的多种尝试,以积极地应对全球变暖和环境问题。新的可再生能源是指通过转换传统的化石燃料进行利用或对包括阳光、水、地热和生物有机体等可再生能源而进行利用的能量。新的可再生能源是面向可持续能源供给系统的未来能源。由于油价不稳定和气候变化协议的限制等,新的可再生能源的重要性变大。可再生能源包括太阳热、太阳光、生物质能、风力、小水电、地热、海洋能和废弃物能源等,而新能源包括燃料电池、液化煤炭、气化煤炭和氢能。问题是,从新的可再生能源、特别是太阳光发电的成本未达到等于利用化石燃料的传统火力发电的成本的电网平价。但是,随着技术的发展进步,从新的可再生能源中的太阳热发电的太阳热发电在发电成本上持续降低,而在发电效率正在逐渐提高。
相关技术下有采用通过追踪太阳的同时以高效率的聚光器在短焦距内对太阳能进行聚集,进而对太阳能集热器中的液体介质进行加热,之后在与外部发电装置进行热转换,而采用此方式设计的太阳能集热器存在发热效率低、保温效果差、液体介质受白天和黑夜温差影响容易固结,且集热器中的集热管受热不均,受热面积小等诸多问题。
发明内容
本公开提供一种太阳能集热器,集热效率高以及环保无污染太阳能集热器。
本实施例采用以下技术方案:
一种太阳能集热器,包括设置有太阳光入射口的保温装置、设置于所述保温装置的箱体内的吸热装置、以及与所述吸热装置相连接用于使传热介质从所述吸热装置的中部流向四周的导流装置;其中,所述吸热装置为均布于保温装置箱体内的多个呈空心圆柱形设置的集热盘管;所述导流装置包括主流管,以及对称设置于所述主流管两侧的支流管,所述支流管分别与所述集热盘管的输入端和输出端相连接。
可选的,所述集热盘管由多根集热管并行螺旋缠绕而成,所述多根集热管的端部分别设置有用于和所述支流管相连接的多个第一接头法兰,多个所述第一接头法兰分别位于所述集热盘管的同一端。
可选的,相邻所述集热管之间设置有用于补偿集热管热变形余量的间隙。
可选的,所述导流装置还包括与所述主流管垂直贯通设置的进流管和出流管,所述进流管和出流管设置为贯穿所述保温装置并与外部热交换装置相连接。
可选的,所述主流管包括横向设置于所述进流管下端的第一主流管、设置于所述第一主流管下方且与所述第一主流管平行设置的第二主流管、纵向设置于所述第二主流管两端上方的第三主流管、横向设置于所述第三主流管两端上方的第四主流管、以及纵向设置于相邻所述第四主流管之间的第五主流管,所述第五主流管呈Ω字型设置,且所述第五主流管的中部垂直设置有所述出流管。
可选的,沿所述第二主流管和所述第三主流管的长度方向分别均布有倒U字型的所述支流管,所述支流管的端部设置有用于和所述第一接头法兰相配合的第二接头法兰。
可选的,所述保温装置包括真空壳体、包覆于所述真空壳体外围且与所述真空壳体间隙设置的外壳体、以及填充于所述外壳体与所述真空壳体之间的保温层,所述真空壳体由多片真空板组成。
可选的,所述真空板包括第一防辐射板和第二防辐射板,以及夹设于所述第一防辐射板和第二防辐射板之间真空腔体内的第一网状支架。
可选的,所述保温层与所述外壳体之间设置有第二网状支架。
可选的,所述保温装置的箱体内设置有防漏收纳盒,所述防漏收纳盒位于所述吸热装置和所述导流装置的下方。
本实施例提供一种太阳能集热器,该太阳能集热器包括设置有太阳光入射口的保温装置、设置于所述保温装置的箱体内的吸热装置、以及与所述吸热装置相连接用于使传热介质从所述吸热装置的中部流向四周的导流装置;其中,所述吸热装置为均布于保温装置箱体内的多个呈空心圆柱形设置的集热盘管;所述导流装置包括主流管,以及对称设置于所述主流管两侧的支流管,所述支流管分别与所述集热盘管的输入端和输出端相连接。以此结构设计,通过导流装置的设置,使得传热介质从吸热装置的中部向四周流动,进而使得集热盘管中的传热介质温度均等的流入流出,从而使得吸热装置高效的进行热量传递,同时,通过保温装置的作用,有效防止热量流失。
附图说明
图1是本实施例提供的吸热装置与导流装置组合后的轴测图;
图2是图1中导流装置的轴测图;
图3是图1中集热盘管的轴测图;
图4是本实施例提供的保温装置的结构示意图;
图5是图4中真空壳体的轴测图;
图6是图5中真空板的分解图;和
图7是真空壳体、吸热装置及导流装置组合后的轴测图。
具体实施方式
下面结合附图并通过可选实施方式来说明本公开的技术方案。
结合图1至图4所示,本实施例中一种太阳能集热器,该太阳能集热器可以为盘管蜂窝腔式液体工质太阳能集热器,包括设置有太阳光入射口的保温装置、设置于保温装置的箱体内的吸热装置2、以及与吸热装置2相连接用于传热介质从吸热装置2的中部流向四周的导流装置3;可选的,吸热装置2为均布于保温装置箱体内的4*4个呈空心圆柱形设置的集热盘管21;导流装置3包括主流管,以及对称设置于主流管两侧的支流管,支流管分别与集热盘管21的输入端和输出端相连接。
可选的,结合图3所示,本实施例中的集热盘管21由2根集热管211并行螺旋缠绕而成,2根集热管211的端部可以是分别设置有用于和支流管相连接的4个第一接头法兰212,4个第一接头法兰212分别位于集热盘管21的同一端,且相邻集热管211之间设置有用于补偿集热管211热变形余量的间隙。以此方式设计的集热盘管21,两根集热管211经并行螺旋缠绕后四个端口均折弯于集热盘管21的同一端,之后,如图7所示,将4*4个集热盘管21通过支撑架6纵横均布到真空壳体11内,且使得集热盘管21折弯有四个端口的一端均朝向真空壳体11内底面方向设置,并使得每个端口通过第一 接头法兰212与导流装置上的支流管贯通连接。以此方式设置,能够通过地面太阳能镜群的集中照射,使得集热盘管中的加热熔盐有效吸热,并通过导流装置的作用,将热量通过加热熔盐导出,之后再将冷却后的加热熔盐重新倒入集热盘管,依此循环并源源不断的对蒸汽锅炉进行加热。
本实施例中,结合图2所示,导流装置3还包括与主流管垂直贯通设置的进流管33和出流管34,进流管33和出流管34贯穿保温装置与外部热交换装置相连接。主流管包括横向设置于进流管33下端的第一主流管311、设置于第一主流管311下方且与第一主流管311平行设置的第二主流管312、纵向设置于第二主流管312两端上方的第三主流管313、横向设置于第三主流管313两端上方的第四主流管314、以及纵向设置于相邻第四主流管314之间的第五主流管315,第五主流管315为弯折结构,可以是呈几字形(也可以称为Ω字型)设置,即参见图2,定义所述第五主流管315中间部分延伸方向为第一方向,所述第五主流管315的两端沿垂直于所述第一方向的第二方向延伸第一预设长度,然后再沿所述第一方向延伸第二长度;且第五主流管315的中部垂直设置有出流管34。沿第二主流管312和第三主流管313的长度方向分别均布有倒U字型的支流管32,支流管32的端部设置有用于和第一接头法兰212相配合的第二接头法兰321。以此结构设计,能够方便高效的使得加热熔盐依次沿多个集热盘管流进流出,进而循环流动,快速高效的进行热量的收集和传递。
本实施例中,在地面太阳能镜群透过真空壳体11上的太阳光入射口对多个集热盘管21进行照射时,由于位于中部的集热盘管采光面积较大,而位于中部集热盘管四周的集热盘管采光面积相对较小,因此为了防止流入中部集热盘管中的加热熔盐的温度过高,对集热盘管造成损伤,本实施例中加热熔 盐的流动通过导流装置的使用,采用“先中部后四周”的方式进行流动,以此均衡各处集热盘管中的加热熔盐的温度,故采用上述方案对导流装置进行设计,以此使得温度较低的加热熔盐通过进流管、第一主流管311及支流管同时流入中部四个集热盘管中,之后再通过支流管及第二主流管312流出后流入与中部四个集热盘管左右两边的四个集热盘管中,之后再通过支流管和第三主流管流出后流入4*4个集热盘管的四角,然后再通过支流管和第四主流管流出后流入中部四个集热盘管上下两边的四个集热盘管中,最后通过第五主流管315中部的出流管34流出,依此完成加热熔盐的依次循环流动。
为了防止位于真空壳体11中部的吸热装置吸收到的热量流失,防止加热熔盐因温差造成固化,可选的,本实施例中在保温装置的太阳光入射口处还设置有密封盖,避免无光照时,熔盐快速冷却。
此外如图4至图6所示,本实施例中的保温装置包括真空壳体11、包覆于真空壳体11外围且与真空壳体11间隙设置的外壳体13、以及填充于外壳体13与真空壳体11之间的保温层12,真空壳体11由多片真空板111组成,真空板111包括第一防辐射板1111和第二防辐射板1112,以及夹设于第一防辐射板1111和第二防辐射板1112之间真空腔体内的第一网状支架1113,保温层12与外壳体13之间设置有第二网状支架14。以此结构设计,除了能够使得该保温装置具有一定的结构强度,同时,还能够通过真空壳体及保温层的设置,与外界温度形成有效隔离,进而对真空壳体中的吸热装置起到很好的保温效果,避免热量的流失。
为了防止加热熔盐溢漏等异常情况的发生,对保温装置造成污染,本实施例中,在保温装置的箱体内设置有防漏收纳盒8,防漏收纳盒8位于吸热装置2和导流装置3的下方。以此能够对溢漏对加热熔盐进行有效收集,防 止四处外溢。
工业实用性
本实施例提供一种太阳能集热器,通过导流装置的设置,使得传热介质从吸热装置的中部向四周流动,进而使得每个集热盘管中的传热介质温度均等的流入流出,从而使得吸热装置高效的进行热量传递,同时,通过保温装置的作用,有效防止热量流失。

Claims (10)

  1. 一种太阳能集热器,包括设置有太阳光入射口的保温装置、设置于所述保温装置的箱体内的吸热装置、以及与所述吸热装置相连接用于使传热介质从所述吸热装置的中部流向四周的导流装置;其中,所述吸热装置为均布于保温装置箱体内的多个呈空心圆柱形设置的集热盘管;所述导流装置包括主流管,以及对称设置于所述主流管两侧的支流管,所述支流管分别与所述集热盘管的输入端和输出端相连接。
  2. 根据权利要求1所述的一种太阳能集热器,其中,所述集热盘管由多根集热管并行螺旋缠绕而成,所述多根集热管的端部分别设置有用于和所述支流管相连接的多个第一接头法兰,多个所述第一接头法兰分别位于所述集热盘管的同一端。
  3. 根据权利要求2所述的一种太阳能集热器,其中,相邻所述集热管之间设置有用于补偿集热管热变形余量的间隙。
  4. 根据权利要求2所述的一种太阳能集热器,其中,所述导流装置还包括与所述主流管垂直贯通设置的进流管和出流管,所述进流管和出流管设置为贯穿所述保温装置并与外部热交换装置相连接。
  5. 根据权利要求4所述的一种太阳能集热器,其中,所述主流管包括横向设置于所述进流管下端的第一主流管、设置于所述第一主流管下方且与所述第一主流管平行设置的第二主流管、纵向设置于所述第二主流管两端上方的第三主流管、横向设置于所述第三主流管两端上方的第四主流管、以及纵向设置于相邻所述第四主流管之间的第五主流管,所述第五主流管呈Ω字型设置,且所述第五主流管的中部垂直设置有所述出流管。
  6. 根据权利要求5所述的一种太阳能集热器,其中,沿所述第二主流管和所述第三主流管的长度方向分别均布有倒U字型的所述支流管,所述支流管的端部设置有用于和所述第一接头法兰相配合的第二接头法兰。
  7. 根据权利要求1所述的一种太阳能集热器,其中,所述保温装置包括真空壳体、包覆于所述真空壳体外围且与所述真空壳体间隙设置的外壳体、以及填充于所述外壳体与所述真空壳体之间的保温层,所述真空壳体由多片真空板组 成。
  8. 根据权利要求7所述的一种太阳能集热器,其中,所述真空板包括第一防辐射板和第二防辐射板,以及夹设于所述第一防辐射板和第二防辐射板之间真空腔体内的第一网状支架。
  9. 根据权利要求8所述的一种太阳能集热器,其中,所述保温层与所述外壳体之间设置有第二网状支架。
  10. 根据权利要求1所述的一种太阳能集热器,其中,所述保温装置的箱体内设置有防漏收纳盒,所述防漏收纳盒位于所述吸热装置和所述导流装置的下方。
PCT/CN2017/101645 2016-09-13 2017-09-13 太阳能集热器 WO2018050074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610820946.1A CN106225263B (zh) 2016-09-13 2016-09-13 一种盘管蜂窝腔式液体工质太阳能集热器
CN201610820946.1 2016-09-13

Publications (1)

Publication Number Publication Date
WO2018050074A1 true WO2018050074A1 (zh) 2018-03-22

Family

ID=58074134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101645 WO2018050074A1 (zh) 2016-09-13 2017-09-13 太阳能集热器

Country Status (2)

Country Link
CN (1) CN106225263B (zh)
WO (1) WO2018050074A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106225263B (zh) * 2016-09-13 2018-09-21 深圳市爱能森科技有限公司 一种盘管蜂窝腔式液体工质太阳能集热器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000065336A (ko) * 1999-04-01 2000-11-15 박화랑 진공관식집열관 및 집광집열판넬
CN201262442Y (zh) * 2008-09-08 2009-06-24 山东力诺瑞特新能源有限公司 太阳能采暖系统
CN105318572A (zh) * 2014-07-23 2016-02-10 北京索乐阳光能源科技有限公司 模块化太阳能热水器和由其形成的太阳能热水器阵列
CN106225263A (zh) * 2016-09-13 2016-12-14 深圳市爱能森科技有限公司 一种盘管蜂窝腔式液体工质太阳能集热器
CN206176776U (zh) * 2016-09-13 2017-05-17 深圳市爱能森科技有限公司 一种盘管蜂窝腔式液体工质太阳能集热器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010118276A2 (en) * 2009-04-10 2010-10-14 Victory Energy Operations LLC Generation of steam from solar energy
CN202267053U (zh) * 2011-09-28 2012-06-06 东方电气集团东方锅炉股份有限公司 一种产生过热蒸汽的太阳能腔式吸热器
CN203642527U (zh) * 2013-11-26 2014-06-11 万斌 斯特林热机太阳能集热器
CN105066478B (zh) * 2015-08-31 2017-06-06 华南理工大学 含双排多管的圆台形腔式太阳能吸热器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000065336A (ko) * 1999-04-01 2000-11-15 박화랑 진공관식집열관 및 집광집열판넬
CN201262442Y (zh) * 2008-09-08 2009-06-24 山东力诺瑞特新能源有限公司 太阳能采暖系统
CN105318572A (zh) * 2014-07-23 2016-02-10 北京索乐阳光能源科技有限公司 模块化太阳能热水器和由其形成的太阳能热水器阵列
CN106225263A (zh) * 2016-09-13 2016-12-14 深圳市爱能森科技有限公司 一种盘管蜂窝腔式液体工质太阳能集热器
CN206176776U (zh) * 2016-09-13 2017-05-17 深圳市爱能森科技有限公司 一种盘管蜂窝腔式液体工质太阳能集热器

Also Published As

Publication number Publication date
CN106225263B (zh) 2018-09-21
CN106225263A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
AU2009312347B2 (en) Solar thermal power plant and dual-purpose pipe for use therewith
US8544273B2 (en) Solar thermal power plant
Wen et al. Comparison analysis of two different concentrated photovoltaic/thermal-TEG hybrid systems
CN103512224B (zh) 一种太阳能光热接收装置
US11431289B2 (en) Combination photovoltaic and thermal energy system
CN102087049A (zh) 一种槽式太阳能集热装置
CN102141301B (zh) 管腔一体化碟式太阳能热接收器
WO2018050074A1 (zh) 太阳能集热器
CN104048421B (zh) 太阳能发电供水综合系统
WO2018050075A1 (zh) 太阳能集热器
CN209541198U (zh) 一种中高温型太阳能光热光伏装置
CN206176776U (zh) 一种盘管蜂窝腔式液体工质太阳能集热器
CN102927546B (zh) 线性菲涅尔直接产生蒸汽的系统
CN105066476A (zh) 一种具有强化传热和降低热变形的波节管式太阳能吸热器
Collares-Pereira et al. Linear Fresnel reflector (LFR) plants using superheated steam, molten salts, and other heat transfer fluids
CN105004073B (zh) 一种太阳能热发电集热储热系统
WO2018050076A1 (zh) 用于太阳能集热器的集热装置
CN201973900U (zh) 一种管腔一体化碟式太阳能热接收器
KR101019352B1 (ko) 투광성 집열조 및 보조 집광렌즈가 구비된 집광형 태양열 및 태양광 복합발전 장치
CN202734300U (zh) 一种太阳能光热接收装置
CN206988033U (zh) 一种蝶式熔盐光热发电系统
CN204462833U (zh) 一种光煤互补太阳能热发电系统
CN204458232U (zh) 塔式太阳能光热发电系统
CN104919253A (zh) 基于氮的热存储介质
Karthikeyan et al. Experimental investigation of flat plate and V-trough solar water heater by using thermal analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850276

Country of ref document: EP

Kind code of ref document: A1