WO2018049988A1 - 一种用户设备、基站中的发射功率调整的方法和装置 - Google Patents

一种用户设备、基站中的发射功率调整的方法和装置 Download PDF

Info

Publication number
WO2018049988A1
WO2018049988A1 PCT/CN2017/099881 CN2017099881W WO2018049988A1 WO 2018049988 A1 WO2018049988 A1 WO 2018049988A1 CN 2017099881 W CN2017099881 W CN 2017099881W WO 2018049988 A1 WO2018049988 A1 WO 2018049988A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
sub
energy
frequency
Prior art date
Application number
PCT/CN2017/099881
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2018049988A1 publication Critical patent/WO2018049988A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences

Definitions

  • the present application relates to transmission schemes in wireless communication systems, and more particularly to methods and apparatus for transmit power adjustment.
  • the application scenarios of future wireless communication systems are increasingly diversified, and different application scenarios impose different performance requirements on the system.
  • the new air interface technology was decided at the #72 (3rd Generation Partnership Project) RAN (Radio Access Network) #72 plenary meeting. , New Radio) for research.
  • future wireless communication systems can support a variety of mathematical structures (Numerology), a variety of mathematical structures refer to a variety of subcarrier spacing, a variety of symbol time lengths, a variety of CP (Cyclic Prefix) length, etc.
  • Different subcarrier spacings destroy the orthogonality between subcarriers, which in turn causes interference between subcarriers within the system.
  • the sub-carrier spacing used by the new air interface technology may be different from the sub-carrier spacing of LTE (Long Term Evolution), so that there may be more strong interference between the new air interface and LTE than between LTE and LTE.
  • LTE Long Term Evolution
  • the transmit power of uplink and downlink transmissions can generally be adjusted, but due to the hardware limitations of the transmitter/receiver, the influence of signaling overhead, the limitation of modulation mode, etc.
  • the PSD Power Spectrum Density
  • transmitted at different frequencies at any one time is statistically constant.
  • the next generation communication system due to the advancement of hardware and the introduction of various mathematical structures, it is possible to adopt different PSDs at different frequencies.
  • the interference between the frequency regions of different mathematical structures (Numerology) in the above system and the interference between different systems (such as NR and LTE) the spectrum efficiency of the system using the new air interface is greatly limited.
  • the present application provides a solution to the problem of interference between frequency regions employing different mathematical structures (Numerology) within the system and/or interference between different systems (such as NR and LTE).
  • Numerology mathematical structures
  • NR and LTE different systems
  • the PSD of different frequencies interference within the system and/or between systems can be greatly alleviated, and spectrum utilization can be improved.
  • the features in the embodiments and embodiments in the UE (User Equipment) of the present application can be applied to the base station, and vice versa. Further, the features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the present application discloses a method in a UE supporting power adjustment, which includes the following steps:
  • the first time-frequency resource includes a first sub-time-frequency resource and a second sub-time-frequency resource, where the first sub-time-frequency resource is different from the second sub-time-frequency resource, the first sub-time-frequency The resource and the second sub-time-frequency resource occupy the same time interval in the time domain.
  • the normalized transmit energy of the first radio signal in each of the first sub-time-frequency resources is a first energy
  • the first radio signal is in each of the second sub-time-frequency resources
  • the normalized emission energy of the RU is the second energy.
  • the first energy and the second energy are not equal.
  • the normalization is the averaging of the energy of all constellation points in a modulation scheme.
  • the RU occupies one subcarrier in the frequency domain, and the RU occupies a duration of a wideband symbol in the time domain.
  • the first wireless signal includes at least one of ⁇ a first data signal, a first auxiliary signal ⁇ , the first bit block is used to generate the first data signal, and the second bit block is used to generate the first An auxiliary signal; or the first block of bits is used to generate the first data signal, the first sequence being used to generate the first auxiliary signal.
  • the first energy and the second energy are not equal to reduce the interference to the adjacent frequency band to provide scheduling flexibility in the power/energy dimension, thereby effectively reducing the internal difference of the same system.
  • Interference between the Numerology regions can also reduce interference between different systems, while also reducing the bandwidth of the guard band and improving spectrum utilization.
  • the wideband symbol is an OFDM symbol.
  • the wideband symbol is an SC-FDMA symbol.
  • the wideband symbol is an SCMA symbol.
  • the first energy does not include the energy of the sender of the first wireless signal to transmit a CP (Cyclic Prefix).
  • the second energy does not include the energy of the sender of the first wireless signal to transmit a CP (Cyclic Prefix).
  • the first energy is an average of energy of all constellation points in a first modulation scheme in the first sub-time-frequency resource, and the first modulation manner is the first A modulation scheme employed by the wireless signal in the first sub-time-frequency resource.
  • the first energy is independent of the first bit block; or the first energy is independent of the second bit block; or the first energy is related to the first A sequence is irrelevant.
  • the second energy is an average of energy of all constellation points in a second modulation scheme in the second sub-time-frequency resource, and the second modulation manner is the A modulation scheme employed by the wireless signal in the second sub-time-frequency resource.
  • the second energy is independent of the first bit block; or the second energy is independent of the second bit block; or the second energy is related to the first A sequence is irrelevant.
  • the UE receives the first wireless signal on the first time-frequency resource, and the modulation mode adopted by the first wireless signal is ⁇ 64QAM (Quadrature Amplitude Modulation). One of 256QAM, 1024QAM ⁇ .
  • the subcarriers of the first time-frequency resource are continuous in the frequency domain.
  • the subcarriers of the first time-frequency resource are discrete in the frequency domain.
  • the first time-frequency resource is contiguous in the time domain.
  • the first time-frequency resource is discrete in the time domain.
  • the frequency domain resources at any time in the first time-frequency resource are the same.
  • the frequency domain resources that exist in the first time-frequency resource at two moments are different.
  • the subcarrier spacings in the first time-frequency resource are equal.
  • the subcarrier spacing of the two subcarriers in the first time-frequency resource is unequal.
  • the first time-frequency resource belongs to one carrier in the frequency domain.
  • the first time-frequency resource is continuous in a frequency domain
  • the first wireless signal occupies all sub-carriers in the first time-frequency resource, or the first wireless signal is equally spaced The occupied subcarriers in the first time-frequency resource.
  • the first time-frequency resource further includes X first time-frequency resources other than the first sub-time-frequency resource and the second sub-time-frequency resource, where X is a positive integer.
  • the lengths of time of all the wideband symbols in the first time-frequency resource are equal.
  • the length of time in which two broadband symbols exist in the first time-frequency resource is unequal.
  • the first sub-time-frequency resource is orthogonal to the second sub-time-frequency resource, where the orthogonal means that there is no frequency and belongs to the first sub-time-frequency resource and the The second sub-time-frequency resource is described.
  • the first sub-time-frequency resource and the second sub-time-frequency resource are non-orthogonal.
  • the subcarrier spacing of each subcarrier in the first sub-time-frequency resource is equal.
  • the subcarrier spacing of each subcarrier in the second sub-time-frequency resource is equal.
  • a subcarrier spacing of each subcarrier in the first sub-time-frequency resource is equal to a sub-carrier spacing of each subcarrier in the second sub-time-frequency resource.
  • the subcarrier spacing of each subcarrier in the first sub-time-frequency resource is equal, and the sub-carrier spacing of each subcarrier in the second sub-time-frequency resource is equal,
  • the subcarrier spacing of any one of the sub-time-frequency resources and the sub-carrier spacing of any one of the second sub-time-frequency resources are not equal.
  • the subcarriers in the first sub-time-frequency resource are continuous in the frequency domain.
  • the subcarriers in the first sub-time-frequency resource are discrete in the frequency domain.
  • the subcarriers in the second sub-time-frequency resource are continuous in the frequency domain.
  • the subcarriers in the second sub-time-frequency resource are discrete in the frequency domain.
  • the first bit block is a TB (Transport Block).
  • the second bit block is a payload of DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the second bit block is a payload of UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the first sequence is a sequence generated based on a ZC (Zadoff-Chu) sequence.
  • the first sequence is a sequence generated based on a Gold sequence.
  • the first sequence is a sequence generated based on an m sequence.
  • the transport channel corresponding to the first data signal is a downlink shared channel (DL-SCH, Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the transport channel corresponding to the first data signal is an uplink shared channel (UL-SCH).
  • UL-SCH uplink shared channel
  • the first data signal is the first bit block sequentially passes through a modulation mapper, a layer mapper, a precoding, and a resource element mapper. ), generated after the signal generation (Generation).
  • the first auxiliary signal is a reference signal (RS, Reference Signal).
  • the first auxiliary signal is a Sounding Reference Signal (SRS).
  • SRS Sounding Reference Signal
  • the first auxiliary signal is generated after the first sequence is modulated by a mapping.
  • the physical channel corresponding to the first auxiliary signal is a physical downlink control channel (PDCCH, Physical Downlink Control CHannel).
  • PDCCH Physical Downlink Control CHannel
  • the physical channel corresponding to the first auxiliary signal is an Enhanced Physical Downlink Control CHC (Enhanced Physical Downlink Control CHannel).
  • Enhanced Physical Downlink Control CHC Enhanced Physical Downlink Control CHannel
  • the physical channel corresponding to the first auxiliary signal is a physical uplink control channel (PUCCH, Physical Uplink Control CHannel).
  • PUCCH Physical Uplink Control CHannel
  • the first auxiliary signal is that the second bit block sequentially passes through a modulation mapper, a layer mapper, a precoding, and a resource element mapper. ), generated after the signal generation (Generation).
  • the foregoing method is characterized in that the first energy is related to a frequency domain position of the first sub-time-frequency resource in a target time-frequency resource pool, the first sub- The time-frequency resource belongs to the target time-frequency resource pool, and the target time-frequency resource pool is configurable Or the target time-frequency resource pool is predefined.
  • the first energy by associating the first energy with a frequency domain location of the first sub-time-frequency resource in the target time-frequency resource pool, according to the first sub-time-frequency resource Adjusting the first energy by adjusting the first energy of the other mathematical structure (Numerology) area other than the target time-frequency resource pool or the interference of the other system, and achieving the coverage performance of the first wireless signal and the first The balance between interference caused by wireless signals.
  • the first energy of the other mathematical structure (Numerology) area other than the target time-frequency resource pool or the interference of the other system and achieving the coverage performance of the first wireless signal and the first The balance between interference caused by wireless signals.
  • the target time-frequency resource pool is predefined, meaning that the target time-frequency resource pool is not configured through the network.
  • subcarrier spacings of all subcarriers in the target time-frequency resource pool are equal.
  • the subcarrier spacing of two subcarriers in the target time-frequency resource pool is unequal.
  • the frequency domain resource of the target time-frequency resource pool is a transmission bandwidth of the system.
  • all subcarriers in the target time-frequency resource pool are consecutive in the frequency domain.
  • two subcarriers in the target time-frequency resource pool are discrete in the frequency domain.
  • the target time-frequency resource pool is composed of sub-carriers with equal sub-carrier spacing in the frequency domain.
  • the upper limit of the first energy is related to a frequency domain position of the first sub-time-frequency resource in a target time-frequency resource pool.
  • the first energy is linearly related to a location index of the first sub-time-frequency resource in the target time-frequency resource pool.
  • the location index of the first sub-time-frequency resource in the target time-frequency resource pool refers to the lowest frequency sub-carrier of the first sub-time-frequency resource in the a subcarrier index in the target time-frequency resource pool; or a location index of the first sub-time-frequency resource in the target time-frequency resource pool refers to a highest frequency domain of the first sub-time-frequency resource The subcarrier index of the frequency subcarrier in the target time-frequency resource pool.
  • the location index of the first sub-time-frequency resource in the target time-frequency resource pool is arranged in ascending order from the center frequency of the target time-frequency resource pool to both ends.
  • the first energy is nonlinearly related to a location index of the first sub-time-frequency resource in the target time-frequency resource pool.
  • the location index of the first energy and the first sub-time-frequency resource in the target time-frequency resource pool is logarithmically related.
  • the method is characterized in that the time interval occupied by the first sub-time-frequency resource in the time domain is a first time interval, and the target time-frequency resource pool is in the first time.
  • the center frequency of the interval is a first center frequency, an absolute value of a difference between a center frequency of the first subcarrier and the first center frequency, and an absolute value of a difference between a center frequency of the second subcarrier and the first center frequency
  • the values are not equal.
  • the first subcarrier is any one of the first sub-time-frequency resources
  • the second sub-carrier is any one of the second sub-time-frequency resources.
  • an absolute value of a difference between a center frequency of the first subcarrier and the first center frequency is greater than an absolute value of a difference between a center frequency of the second subcarrier and the first center frequency .
  • a center frequency of one subcarrier in the first sub-time-frequency resource is smaller than the first center frequency, and a center frequency of one sub-carrier in the first sub-time-frequency resource is greater than the first A center frequency.
  • a center frequency of one subcarrier in the first sub time-frequency resource is equal to the first center frequency, and a center frequency of any subcarrier in the second sub-time-frequency resource is smaller than the first Center frequency.
  • a center frequency of one subcarrier in the first sub time-frequency resource is equal to the first center frequency, and a center frequency of any subcarrier in the second sub-time-frequency resource is greater than the first Center frequency.
  • a center frequency of one subcarrier in the first sub-time-frequency resource is greater than the first center frequency, and a center frequency of one sub-carrier in the first sub-time-frequency resource is smaller than the first a center frequency, a center frequency of any of the second sub-time-frequency resources is smaller than the first center frequency.
  • a center frequency of one subcarrier in the first sub-time-frequency resource is greater than the first center frequency, and a center frequency of one sub-carrier in the first sub-time-frequency resource is smaller than the first A center frequency, a center frequency of any of the second sub-time-frequency resources is greater than the first center frequency.
  • the above method is characterized in that:
  • the first signaling is used to determine a reference time-frequency resource.
  • the normalized maximum transmit energy of each of the reference time-frequency resources of the sender of the first wireless signal is a third energy, the first energy being equal to or smaller than the third energy,
  • the reference time-frequency resource belongs to the target time-frequency resource pool, the first sub-time-frequency resource belongs to the reference time-frequency resource, and the second sub-time-frequency resource is orthogonal to the reference time-frequency resource.
  • the second sub-time-frequency resource is orthogonal to the reference time-frequency resource, where the orthogonal means that there is no frequency and belongs to the second sub-time-frequency resource and the reference time-frequency. Resources.
  • the reference time-frequency resources are continuous in the frequency domain.
  • subcarrier spacings of all subcarriers in the reference time-frequency resource are equal.
  • the subcarrier spacing of the two subcarriers in the reference time-frequency resource is unequal.
  • the third energy is configurable.
  • the third energy is predefined.
  • the third energy is different from the fourth energy, wherein the fourth energy is the reference time-frequency resource of the sender of the first wireless signal in the target time-frequency resource pool.
  • a difference between the third energy and the first energy is equal to a difference between the fourth energy and the second energy.
  • the subcarriers in the reference time-frequency resource are distributed on both sides of the first center frequency and are symmetric in the frequency domain with respect to the first center frequency, wherein two different subcarriers are related to
  • the fact that the first center frequency is symmetric in the frequency domain means that the center frequencies of the two different subcarriers are equal to the absolute value of the frequency difference of the first center frequency.
  • the first signaling is high layer signaling.
  • the first signaling is physical layer signaling.
  • the first signaling is physical layer signaling, and the first signaling includes scheduling information of the first wireless signal, where the scheduling information includes ⁇ occupied time-frequency resources, MCS, RV At least one of , NDI, HARQ process number ⁇ .
  • the first signaling explicitly indicates the reference time-frequency resource.
  • the first signaling includes the reference time-frequency resource default configuration.
  • the first signaling implicitly indicates the reference frequency domain resource.
  • the foregoing method is characterized in that: the frequency domain resource occupied by the reference time-frequency resource and the frequency domain location of the target time-frequency resource pool, in the reference time-frequency resource At least one of the subcarrier spacings of the subcarriers is related.
  • the number of subcarriers in the reference time-frequency resource is inversely proportional to the subcarrier spacing of the subcarriers in the reference time-frequency resource.
  • the bandwidth of the frequency domain resource occupied by the reference time-frequency resource is linearly related to the sub-carrier spacing of the reference time-frequency resource, where the bandwidth of the frequency domain resource refers to The sum of the subcarrier spacings of all subcarriers in the frequency domain resource.
  • the frequency domain location of the target time-frequency resource pool refers to a frequency domain location of the target time-frequency resource pool in a transmission bandwidth of the system.
  • the above method is characterized in that the method further comprises the following steps:
  • the second signaling is used to determine at least one of ⁇ the first energy, the second energy, a difference between the first energy and the second energy ⁇ .
  • the transmit energy of the sender of the first wireless signal on the first sub-time-frequency resource and the second sub-time-frequency resource may be configured. Power provides maximum flexibility.
  • the second signaling is high layer signaling.
  • the second signaling is physical layer signaling.
  • the second signaling is physical layer signaling, and the second signaling includes scheduling information of the first wireless signal, where the scheduling information includes ⁇ occupied time-frequency resources, MCS, RV At least one of , NDI, HARQ process number ⁇ .
  • the second signaling explicitly indicates at least one of ⁇ the first energy, the second energy, a difference between the first energy and the second energy ⁇ .
  • the second signaling includes a default configuration of at least one of ⁇ the first energy, the second energy, a difference between the first energy and the second energy ⁇ .
  • the second signaling implicitly indicates ⁇ the first energy, the second At least one of energy, a difference between the first energy and the second energy.
  • the above method is characterized in that:
  • the third signaling includes configuration information of the first wireless signal, where the configuration information includes: ⁇ Time-frequency resources occupied, generation sequence, MCS, NDI, RV, HARQ process number, and transmit antenna port ⁇ At least one of them.
  • the third signaling is physical layer signaling.
  • the third signaling is DCI (Downlink Control Information).
  • the third signaling is MAC (Media Access Control) layer signaling.
  • the third signaling is high layer signaling.
  • the third signaling is RRC (Radio Resource Control) signaling.
  • the third signaling is a MIB (Master Information Block).
  • the third signaling is an SIB (System Information Block).
  • the third signaling explicitly indicates at least one of ⁇ time-frequency resources, generation sequence, MCS, NDI, RV, HARQ process number, transmission antenna port ⁇ .
  • the third signaling implicitly indicates at least one of ⁇ time-frequency resource, generation sequence, MCS, NDI, RV, HARQ process number, transmit antenna port ⁇ .
  • the present application discloses a method in a base station supporting power adjustment, which includes:
  • the first time-frequency resource includes a first sub-time-frequency resource and a second sub-time-frequency resource, where the first sub-time-frequency resource is different from the second sub-time-frequency resource, the first sub-time-frequency The resource and the second sub-time-frequency resource occupy the same time interval in the time domain.
  • the normalized transmit energy of the first radio signal in each of the first sub-time-frequency resources is a first energy
  • the first radio signal is in each of the second sub-time-frequency resources
  • the normalized emission energy of the RU is the second energy.
  • the first energy and the second energy are not equal.
  • the normalization is a modulation method The average of the energy of all constellation points in .
  • the RU occupies one subcarrier in the frequency domain, and the RU occupies a duration of a wideband symbol in the time domain.
  • the first wireless signal includes at least one of ⁇ a first data signal, a first auxiliary signal ⁇ , the first bit block is used to generate the first data signal, and the second bit block is used to generate the first An auxiliary signal; or the first block of bits is used to generate the first data signal, the first sequence being used to generate the first auxiliary signal.
  • the foregoing method is characterized in that the first energy is related to a frequency domain position of the first sub-time-frequency resource in a target time-frequency resource pool, the first sub- The time-frequency resource belongs to the target time-frequency resource pool, the target time-frequency resource pool is configurable; or the target time-frequency resource pool is predefined.
  • the method is characterized in that the time interval occupied by the first sub-time-frequency resource in the time domain is a first time interval, and the target time-frequency resource pool is in the first time.
  • the center frequency of the interval is a first center frequency, an absolute value of a difference between a center frequency of the first subcarrier and the first center frequency, and an absolute value of a difference between a center frequency of the second subcarrier and the first center frequency
  • the values are not equal.
  • the first subcarrier is any one of the first sub-time-frequency resources
  • the second sub-carrier is any one of the second sub-time-frequency resources.
  • the above method is characterized in that the method further comprises the following steps:
  • the first signaling is used to determine a reference time-frequency resource.
  • the normalized maximum transmit energy of each of the reference time-frequency resources of the sender of the first wireless signal is a third energy, the first energy being equal to or smaller than the third energy,
  • the reference time-frequency resource belongs to the target time-frequency resource pool, the first sub-time-frequency resource belongs to the reference time-frequency resource, and the second sub-time-frequency resource is orthogonal to the reference time-frequency resource.
  • the foregoing method is characterized in that: the frequency domain resource occupied by the reference time-frequency resource and the frequency domain location of the target time-frequency resource pool, in the reference time-frequency resource At least one of the subcarrier spacings of the subcarriers is related.
  • the above method is characterized in that it further includes the following:
  • the second signaling is used to determine at least one of ⁇ the first energy, the second energy, a difference between the first energy and the second energy ⁇ .
  • the above method is characterized in that:
  • the third signaling includes configuration information of the first wireless signal, where the configuration information includes: ⁇ Time-frequency resources occupied, generation sequence, MCS, NDI, RV, HARQ process number, and transmit antenna port ⁇ At least one of them.
  • the present application discloses a user equipment supporting power adjustment, which includes the following modules:
  • a first processing module for transmitting the first wireless signal on the first time-frequency resource; or receiving the first wireless signal on the first time-frequency resource.
  • the first time-frequency resource includes a first sub-time-frequency resource and a second sub-time-frequency resource, where the first sub-time-frequency resource is different from the second sub-time-frequency resource, the first sub-time-frequency The resource and the second sub-time-frequency resource occupy the same time interval in the time domain.
  • the normalized transmit energy of the first radio signal in each of the first sub-time-frequency resources is a first energy
  • the first radio signal is in each of the second sub-time-frequency resources
  • the normalized emission energy of the RU is the second energy.
  • the first energy and the second energy are not equal.
  • the normalization is the averaging of the energy of all constellation points in a modulation scheme.
  • the RU occupies one subcarrier in the frequency domain, and the RU occupies a duration of a wideband symbol in the time domain.
  • the first wireless signal includes at least one of ⁇ a first data signal, a first auxiliary signal ⁇ , the first bit block is used to generate the first data signal, and the second bit block is used to generate the first An auxiliary signal; or the first block of bits is used to generate the first data signal, the first sequence being used to generate the first auxiliary signal.
  • the foregoing user equipment is characterized in that the first energy is related to a frequency domain position of the first sub-time-frequency resource in a target time-frequency resource pool, where the first The sub-time-frequency resource belongs to the target time-frequency resource pool, and the target time-frequency resource pool is configurable; or the target time-frequency resource pool is predefined.
  • the user equipment is characterized in that the time interval occupied by the first sub-time-frequency resource in the time domain is a first time interval, and the target time-frequency resource pool is in the first
  • the center frequency of the time interval is a first center frequency, an absolute value of a difference between a center frequency of the first subcarrier and the first center frequency, and a difference between a center frequency of the second subcarrier and the first center frequency Absolute values are not equal.
  • the first subcarrier is any one of the first sub-time-frequency resources
  • the second sub-carrier is any one of the second sub-time-frequency resources.
  • a processing module is further configured to receive first signaling, where the first signaling is used to determine a reference time-frequency resource.
  • the normalized maximum transmit energy of each of the reference time-frequency resources of the sender of the first wireless signal is a third energy, the first energy being equal to or smaller than the third energy
  • the reference time-frequency resource belongs to the target time-frequency resource pool, the first sub-time-frequency resource belongs to the reference time-frequency resource, and the second sub-time-frequency resource is orthogonal to the reference time-frequency resource.
  • the foregoing user equipment is characterized in that: the frequency domain resource occupied by the reference time-frequency resource and the frequency domain location of the target time-frequency resource pool, in the reference time-frequency resource At least one of the subcarrier spacings of the subcarriers is related.
  • the foregoing user equipment is characterized in that the first processing module is further configured to receive second signaling, where the second signaling is used to determine ⁇ the first energy, Determining at least one of a second energy, a difference between the first energy and the second energy.
  • the foregoing user equipment is characterized in that the first processing module is further configured to receive third signaling, where the third signaling includes configuration information of the first wireless signal, where The configuration information includes at least one of ⁇ occurring time-frequency resources, generation sequence, MCS, NDI, RV, HARQ process number, and transmission antenna port ⁇ .
  • the present application discloses a base station device supporting power adjustment, which includes the following modules:
  • a second processing module for receiving the first wireless signal on the first time-frequency resource; or transmitting the first wireless signal on the first time-frequency resource.
  • the first time-frequency resource includes a first sub-time-frequency resource and a second sub-time-frequency resource, where the first sub-time-frequency resource is different from the second sub-time-frequency resource, the first sub-time-frequency The resource and the second sub-time-frequency resource occupy the same time interval in the time domain.
  • the normalized transmit energy of the first radio signal in each of the first sub-time-frequency resources is a first energy
  • the first radio signal is in each of the second sub-time-frequency resources
  • the normalized emission energy of the RU is the second energy.
  • the first energy and the second energy are not equal.
  • the normalization is the averaging of the energy of all constellation points in a modulation scheme.
  • the RU occupies one subcarrier in the frequency domain, and the RU occupies a duration of a wideband symbol in the time domain.
  • the first wireless signal includes at least one of ⁇ a first data signal, a first auxiliary signal ⁇ , the first bit block is used to generate the first data signal, and the second bit block is used to generate the first An auxiliary signal; or the first block of bits is used to generate the first data signal, the first sequence being used to generate the first auxiliary signal.
  • the foregoing base station device is characterized in that the first energy is related to a frequency domain position of the first sub-time-frequency resource in a target time-frequency resource pool,
  • the first sub-time-frequency resource belongs to the target time-frequency resource pool, and the target time-frequency resource pool is configurable; or the target time-frequency resource pool is predefined.
  • the foregoing base station device is characterized in that the time interval occupied by the first sub-time-frequency resource in the time domain is a first time interval, and the target time-frequency resource pool is at the first time.
  • the center frequency of the time interval is a first center frequency, an absolute value of a difference between a center frequency of the first subcarrier and the first center frequency, and a difference between a center frequency of the second subcarrier and the first center frequency Absolute values are not equal.
  • the first subcarrier is any one of the first sub-time-frequency resources
  • the second sub-carrier is any one of the second sub-time-frequency resources.
  • the foregoing base station device is characterized in that the second processing module is further configured to send first signaling, where the first signaling is used to determine a reference time-frequency resource.
  • the normalized maximum transmit energy of each of the reference time-frequency resources of the sender of the first wireless signal is a third energy, the first energy being equal to or smaller than the third energy,
  • the reference time-frequency resource belongs to the target time-frequency resource pool, the first sub-time-frequency resource belongs to the reference time-frequency resource, and the second sub-time-frequency resource is orthogonal to the reference time-frequency resource.
  • the foregoing base station device is characterized in that: the frequency domain resource occupied by the reference time-frequency resource and the frequency domain location of the target time-frequency resource pool, in the reference time-frequency resource At least one of the subcarrier spacings of the subcarriers is related.
  • the foregoing base station device is characterized in that the second processing module is further configured to send second signaling, where the second signaling is used to determine ⁇ the first energy, Determining at least one of a second energy, a difference between the first energy and the second energy.
  • the foregoing base station device is characterized in that the second processing module is further configured to send third signaling, where the third signaling includes configuration information of the first wireless signal, where The configuration information includes at least one of ⁇ occurring time-frequency resources, generation sequence, MCS, NDI, RV, HARQ process number, and transmission antenna port ⁇ .
  • FIG. 1 is a flowchart of downlink transmission of a wireless signal according to an embodiment of the present application
  • FIG. 2 shows a flow chart of wireless signal uplink transmission according to an embodiment of the present application
  • FIG. 3 is a schematic diagram showing a relationship between a first sub-time-frequency resource and a second sub-time-frequency resource according to an embodiment of the present application;
  • FIG. 4 is a schematic diagram showing a relationship between a first sub-time-frequency resource and a target time-frequency resource pool according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a reference time-frequency resource according to an embodiment of the present application.
  • Figure 6 shows a first energy schematic diagram in accordance with one embodiment of the present application
  • FIG. 7 is a block diagram showing the structure of a processing device in a User Equipment (UE) according to an embodiment of the present application
  • FIG. 8 is a block diagram showing the structure of a processing device in a base station device according to an embodiment of the present application.
  • Embodiment 1 exemplifies a wireless signal downlink transmission flow chart, as shown in FIG.
  • base station N1 is the maintenance base station of the serving cell of UE U2, and the steps identified in block F1 are optional.
  • the first signaling is sent in step S11
  • the second signaling is sent in step S12
  • the third signaling is sent in step S13
  • the first wireless signal is transmitted on the first time-frequency resource in step S14.
  • the first signaling is received in step S21
  • the second signaling is received in step S22
  • the third signaling is received in step S23
  • the first wireless signal is received on the first time-frequency source in step S24.
  • the first time-frequency resource includes a first sub-time-frequency resource and a second sub-time-frequency resource.
  • the normalized transmit energy of the first radio signal in each of the first sub-time-frequency resources is a first energy
  • the first radio signal is in each of the second sub-time-frequency resources
  • the normalized emission energy of the RU is the second energy.
  • the first energy and the second energy are not equal.
  • the normalization is the averaging of the energy of all constellation points in a modulation scheme.
  • the RU occupies one subcarrier in the frequency domain, and the RU occupies a duration of a wideband symbol in the time domain.
  • the first wireless signal includes at least one of ⁇ a first data signal, a first auxiliary signal ⁇ , the first bit block is used to generate the first data signal, and the second bit block is used to generate the first An auxiliary signal; or the first block of bits is used to generate the first data signal, the first sequence being used to generate the first auxiliary signal.
  • the first signaling is used to determine a reference time-frequency resource, and the second signaling is used to determine ⁇ the first energy, the second energy, the first energy, and the second energy At least one of the difference values, the third signaling includes configuration information of the first wireless signal.
  • the wideband symbol is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the first bit block is a TB (Transport Block).
  • the second bit block is a payload of DCI (Downlink Control Information).
  • the first sequence is a sequence generated based on a ZC (Zadoff-Chu) sequence.
  • the first sequence is a sequence generated based on a Gold sequence.
  • the transport channel corresponding to the first data signal is a downlink shared channel (DL-SCH, Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the first data signal is that the first bit block sequentially passes through a modulation mapper, a layer mapper, a precoding, and a resource particle.
  • Resource Element Mapper generated after signal generation.
  • the first auxiliary signal is a reference signal (RS, Reference Signal).
  • the first signaling is higher layer signaling.
  • the first signaling is RRC (Radio Resource Control).
  • the second signaling is physical layer signaling, and the second signaling includes scheduling information of the first wireless signal, where the scheduling information includes ⁇ when occupied At least one of frequency resources, MCS, RV, NDI, HARQ process number ⁇ .
  • the third signaling is physical layer signaling.
  • Embodiment 2 illustrates a first time window schematic, as shown in FIG.
  • base station N3 is the maintenance base station of the serving cell of UE U4, and the steps identified in block F2 are optional.
  • the first signaling is sent in step S31
  • the third signaling is sent in step S32
  • the second signaling is transmitted in step S33
  • the first wireless signal is received on the first time-frequency resource in step S14.
  • the first signaling is received in step S41
  • the third signaling is received in step S42
  • the second signaling is received in step S43
  • the first wireless signal is transmitted on the first time-frequency source in step S44.
  • the first time-frequency resource includes a first sub-time-frequency resource and a second sub-time-frequency resource.
  • the normalized transmit energy of the first radio signal in each of the first sub-time-frequency resources is a first energy
  • the first radio signal is in each of the second sub-time-frequency resources
  • the normalized emission energy of the RU is the second energy.
  • the first energy and the second energy are not equal.
  • the normalization is the averaging of the energy of all constellation points in a modulation scheme.
  • the RU occupies one subcarrier in the frequency domain, and the RU occupies a duration of a wideband symbol in the time domain.
  • the first wireless signal includes at least one of ⁇ a first data signal, a first auxiliary signal ⁇ , the first bit block is used to generate the first data signal, and the second bit block is used to generate the first An auxiliary signal; or the first block of bits is used to generate the first data signal, the first sequence being used to generate the first auxiliary signal.
  • the first signaling is used to determine a reference time-frequency resource, and the second signaling is used to determine ⁇ the first energy, the second energy, the first energy, and the second energy At least one of the difference values, the third signaling includes configuration information of the first wireless signal.
  • the wideband symbol is OFDM (Orthogonal) Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the wideband symbol is an SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbol.
  • the first bit block is a TB (Transport Block).
  • the second bit block is a payload of UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the first sequence is a sequence generated based on a ZC (Zadoff-Chu) sequence.
  • the first sequence is a sequence generated based on a Gold sequence.
  • the transport channel corresponding to the first data signal is an uplink shared channel (UL-SCH).
  • UL-SCH uplink shared channel
  • the first data signal is that the first bit block sequentially passes through a modulation mapper, a layer mapper, a precoding, and a resource particle.
  • Resource Element Mapper generated after signal generation.
  • the first auxiliary signal is a reference signal (RS, Reference Signal).
  • the first signaling is higher layer signaling.
  • the first signaling is RRC (Radio Resource Control).
  • the second signaling is physical layer signaling, and the second signaling includes scheduling information of the first wireless signal, where the scheduling information includes ⁇ when occupied At least one of frequency resources, MCS, RV, NDI, HARQ process number ⁇ .
  • the third signaling is physical layer signaling.
  • the third signaling is an SIB (System Information Block).
  • Embodiment 3 illustrates a schematic diagram of the relationship between the first sub-time-frequency resource and the second sub-time-frequency resource, as shown in FIG.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • the obliquely filled region represents the first sub-time-frequency resource
  • the vertical-line filled region represents the second sub-time-frequency source.
  • the first time-frequency resource includes a first sub-time-frequency resource and a second sub-time-frequency resource, where the first sub-time-frequency resource is different from the second sub-time-frequency resource, the first sub- The time-frequency resource and the second sub-time-frequency resource occupy the same time interval in the time domain.
  • the subcarrier spacings in the first time-frequency resource are equal.
  • the subcarrier spacing of the two subcarriers in the first time-frequency resource is unequal.
  • the first time-frequency resource belongs to one carrier in the frequency domain.
  • the first time-frequency resource further includes the X sub-time-frequency resources and the X sub-time-frequency resources except the second sub-time-frequency resource, where the X is positive Integer.
  • the first sub-time-frequency resource and the second sub-time-frequency resource are orthogonal, wherein the orthogonal means that there is no frequency and belongs to the first a sub-time-frequency resource and the second sub-time-frequency resource.
  • the sub-carrier spacing of each sub-carrier in the first sub-time-frequency resource is equal to the sub-carrier spacing of each sub-carrier in the second sub-time-frequency resource.
  • the subcarrier spacing of each subcarrier in the first sub-time-frequency resource is equal, and the sub-carrier spacing of each subcarrier in the second sub-time-frequency resource is The sub-carrier spacing of any one of the first sub-time-frequency resources and the sub-carrier spacing of any one of the second sub-time-frequency resources are not equal.
  • Embodiment 4 illustrates a schematic diagram of the relationship between the first sub-time-frequency resource and the target time-frequency resource pool, as shown in FIG.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • the unfilled large rectangular area represents the target time-frequency resource pool
  • the obliquely filled area represents the first sub-time-frequency resource, wherein each oblique line is filled with a small rectangle.
  • Representing one of the first sub-time-frequency resources the first sub-time-frequency The time interval occupied by the resource in the time domain is a first time interval
  • the target time-frequency resource pool is a first center frequency at a center frequency of the first time interval.
  • the first sub-time-frequency resource belongs to the target time-frequency resource pool, the target time-frequency resource pool is configurable; or the target time-frequency resource pool is predefined.
  • the target time-frequency resource pool is predefined, meaning that the target time-frequency resource pool is not configured through the network.
  • the subcarrier spacings of all the subcarriers in the target time-frequency resource pool are equal.
  • the frequency domain resource of the target time-frequency resource pool is the transmission bandwidth of the system.
  • the location of the first sub-time-frequency resource in the target time-frequency resource pool refers to that the lowest frequency sub-carrier of the first sub-time-frequency resource is at the target The location of the subcarrier in the frequency resource pool; or the location of the first sub-time-frequency resource in the target time-frequency resource pool refers to the highest frequency sub-carrier in the frequency domain of the first sub-time-frequency resource The subcarrier location in the target time-frequency resource pool.
  • Embodiment 5 exemplifies a reference time-frequency resource diagram, as shown in FIG.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • the unfilled thin wire frame identifies the target time-frequency resource pool
  • the two unfilled thick wire frame rectangles respectively identify the reference time-frequency resource
  • the slant-filled area identifier The first sub-time-frequency resource, the area filled by the vertical line identifies the second sub-time-frequency resource.
  • the reference time-frequency resource belongs to the target time-frequency resource pool
  • the first sub-time-frequency resource belongs to the reference time-frequency resource
  • the frequency resources are orthogonal.
  • the second sub-time-frequency resource is orthogonal to the reference time-frequency resource, where the orthogonal means that there is no frequency and belongs to the second sub-time-frequency resource. And the reference time-frequency resource.
  • the reference time-frequency resources are continuous in the frequency domain.
  • the subcarrier spacing of the two subcarriers in the reference time-frequency resource is unequal.
  • the subcarriers in the reference time-frequency resource are distributed on both sides of the first center frequency and are symmetric in the frequency domain with respect to the first center frequency, wherein two different The fact that the subcarriers are symmetric in the frequency domain with respect to the first center frequency means that the center frequencies of the two different subcarriers are equal to the absolute value of the frequency difference of the first center frequency.
  • the center frequency of the target time-frequency resource pool is the first center frequency.
  • an absolute value of a difference between a center frequency of the first subcarrier and the first center frequency is greater than a difference between a center frequency of the second subcarrier and the first center frequency Absolute value.
  • the first subcarrier is any one of the first sub-time-frequency resources
  • the second sub-carrier is any one of the second sub-time-frequency resources.
  • Embodiment 6 illustrates a first energy schematic, as shown in FIG.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • the maximum rectangular area without filling represents the target time-frequency resource pool
  • the large rectangular area filled with oblique lines is the first sub-time-frequency resource, wherein the oblique line is filled small.
  • the rectangle represents one RU of the first sub-time-frequency resource
  • the dot in the box on the upper right side represents a constellation point of 64QAM modulation
  • the radius of the circle represents the first energy.
  • the normalized transmit energy of the first radio signal in each of the first sub-time-frequency resources is a first energy
  • the RU occupies one sub-carrier in the frequency domain
  • the normalization is the averaging of the energy of all constellation points in a modulation scheme.
  • the first energy is related to a frequency domain location of the first sub-time-frequency resource in a target time-frequency resource pool, where the first sub-time-frequency resource belongs to the target time-frequency resource pool.
  • the first wireless signal includes at least one of ⁇ a first data signal, a first control signal ⁇ , the first bit block is used to generate the first data signal, and the second bit block is used to generate the first a control signal; or the first block of bits is used to generate the first data signal, the first sequence being used to generate the first control signal.
  • the first energy does not include the energy of the sender of the first wireless signal to transmit a CP (Cyclic Prefix).
  • the first energy is an average of energy of all constellation points in a first modulation scheme in the first sub-time-frequency resource
  • the first The modulation method is a modulation method adopted by the first wireless signal.
  • the first energy is independent of the first bit block; or The first energy is independent of the second bit block; or the first energy is independent of the first sequence.
  • the first wireless signal is a downlink transmission
  • the modulation mode of the first wireless signal is ⁇ 64QAM (Quadrature Amplitude Modulation), 256QAM, 1024QAM ⁇ One of them.
  • the maximum value of the first energy is related to the frequency domain position of the first sub-time-frequency resource in the target time-frequency resource pool.
  • the first energy is linearly related to the location index of the first sub-time-frequency resource in the target time-frequency resource pool.
  • the location index of the first sub-time-frequency resource in the target time-frequency resource pool refers to the lowest-frequency sub-carrier of the first sub-time-frequency resource.
  • a subcarrier index in the target time-frequency resource pool; or a location index of the first sub-time-frequency resource in the target time-frequency resource pool refers to a frequency domain of the first sub-time-frequency resource The subcarrier index of the highest frequency subcarrier in the target time-frequency resource pool.
  • the location index of the first sub-time-frequency resource in the target time-frequency resource pool is arranged in ascending order from the center frequency of the target time-frequency resource pool to both ends.
  • the first energy is nonlinearly related to the location index of the first sub-time-frequency resource in the target time-frequency resource pool.
  • the first energy and the location index of the first sub-time-frequency resource in the target time-frequency resource pool are logarithmically related.
  • Embodiment 7 exemplifies a structural block diagram of a processing device in a user equipment, as shown in FIG.
  • the user equipment processing apparatus 100 is mainly composed of a first processing module 101.
  • the first processing module 101 is configured to send the first wireless signal on the first time-frequency resource; or receive the first wireless signal on the first time-frequency resource.
  • the first time-frequency resource includes a first sub-time-frequency resource and a second sub-time-frequency resource, where the first sub-time-frequency resource is different from the second sub-time-frequency resource, and the first sub-time-frequency resource is The second sub-time-frequency resource occupies the same time interval in the time domain.
  • the normalized transmit energy of the first radio signal in each of the first sub-time-frequency resources is a first energy
  • the first radio signal is in the second sub-time-frequency
  • the normalized emission energy of each RU in the resource is the second energy. The first energy and the second energy are not equal.
  • the normalization is the averaging of the energy of all constellation points in a modulation scheme.
  • the RU occupies one subcarrier in the frequency domain, and the RU occupies a duration of a wideband symbol in the time domain.
  • the first wireless signal includes at least one of ⁇ a first data signal, a first auxiliary signal ⁇ , the first bit block is used to generate the first data signal, and the second bit block is used to generate the first An auxiliary signal; or the first block of bits is used to generate the first data signal, the first sequence being used to generate the first auxiliary signal.
  • the first processing module 101 is further configured to receive the first signaling, receive the second signaling, and receive the third signaling, where the first signaling, the second signaling, and the third signaling are used to determine Referring to the time-frequency resource, determining at least one of ⁇ the first energy, the second energy, a difference between the first energy and the second energy ⁇ , and configuration information of the first wireless signal.
  • the first energy is related to a frequency domain location of the first sub-time-frequency resource in a target time-frequency resource pool, where the first sub-time-frequency resource belongs to the The target time-frequency resource pool is configurable; or the target time-frequency resource pool is predefined.
  • the time interval occupied by the first sub-time-frequency resource in the time domain is a first time interval
  • the target time-frequency resource pool is at a center frequency of the first time interval.
  • the absolute value of the difference between the center frequency of the first subcarrier and the first center frequency is not equal to the absolute value of the difference between the center frequency of the second subcarrier and the first center frequency.
  • the first subcarrier is any one of the first sub-time-frequency resources
  • the second sub-carrier is any one of the second sub-time-frequency resources.
  • the first processing module 101 is further configured to determine the target time-frequency resource pool.
  • the normalized maximum transmit energy of each of the reference time-frequency resources of the sender of the first wireless signal is a third energy, the first energy Equal to or smaller than the third energy, the reference time-frequency resource belongs to the target time-frequency resource pool, the first sub-time-frequency resource belongs to the reference time-frequency resource, and the second sub-time-frequency resource and The reference time-frequency resource is orthogonal.
  • the frequency domain resource occupied by the reference time-frequency resource and the frequency domain location of the target time-frequency resource pool, the sub-carrier in the reference time-frequency resource At least one of the subcarrier spacings of the waves is related.
  • the first processing module 101 is further configured to determine the third energy.
  • the configuration information of the first wireless signal includes: a time-frequency resource occupied by the first wireless signal, a sequence of generating the first wireless signal, and the At least one of a MCS of a wireless signal, an NDI, an RV of the first wireless signal, a HARQ process number, and a transmit antenna port of the first wireless signal.
  • Embodiment 8 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the base station device processing apparatus 200 is mainly composed of a second processing module 201.
  • the second processing module 201 is configured to receive the first wireless signal on the first time-frequency resource; or send the first wireless signal on the first time-frequency resource.
  • the first time-frequency resource includes a first sub-time-frequency resource and a second sub-time-frequency resource, where the first sub-time-frequency resource is different from the second sub-time-frequency resource, and the first sub-time-frequency resource is The second sub-time-frequency resource occupies the same time interval in the time domain.
  • the normalized transmit energy of the first radio signal in each of the first sub-time-frequency resources is a first energy
  • the first radio signal is in each of the second sub-time-frequency resources
  • the normalized emission energy of the RU is the second energy. The first energy and the second energy are not equal.
  • the normalization is the averaging of the energy of all constellation points in a modulation scheme.
  • the RU occupies one subcarrier in the frequency domain, and the RU occupies a duration of a wideband symbol in the time domain.
  • the first wireless signal includes at least one of ⁇ a first data signal, a first auxiliary signal ⁇ , the first bit block is used to generate the first data signal, and the second bit block is used to generate the first An auxiliary signal; or the first block of bits is used to generate the first data signal, the first sequence being used to generate the first auxiliary signal.
  • the second processing module 201 is further configured to send the first signaling, send the second signaling, and send the third signaling, where the first signaling, the second signaling, and the third signaling are used to determine Referring to the time-frequency resource, determining at least one of ⁇ the first energy, the second energy, a difference between the first energy and the second energy ⁇ , and configuration information of the first wireless signal.
  • the first energy is related to a frequency domain position of the first sub-time-frequency resource in a target time-frequency resource pool, and the first sub-time-frequency resource belongs to the a target time-frequency resource pool, the target time-frequency resource pool is configurable; or the target time The frequency resource pool is predefined.
  • the time interval occupied by the first sub-time-frequency resource in the time domain is a first time interval
  • the target time-frequency resource pool is at a center frequency of the first time interval.
  • the absolute value of the difference between the center frequency of the first subcarrier and the first center frequency is not equal to the absolute value of the difference between the center frequency of the second subcarrier and the first center frequency.
  • the first subcarrier is any one of the first sub-time-frequency resources
  • the second sub-carrier is any one of the second sub-time-frequency resources.
  • the second processing module 201 is further configured to configure the target time-frequency resource pool.
  • the normalized maximum transmit energy of each of the reference time-frequency resources of the sender of the first wireless signal is a third energy, the first energy Equal to or smaller than the third energy, the reference time-frequency resource belongs to the target time-frequency resource pool, the first sub-time-frequency resource belongs to the reference time-frequency resource, and the second sub-time-frequency resource and The reference time-frequency resource is orthogonal.
  • the frequency domain resource occupied by the reference time-frequency resource and the frequency domain location of the target time-frequency resource pool, and the sub-carrier of the reference time-frequency resource At least one of the carrier spacings ⁇ is related.
  • the second processing module 201 is further configured to configure the third energy.
  • the configuration information of the first wireless signal includes: a time-frequency resource occupied by the first wireless signal, a sequence of generating the first wireless signal, and the At least one of a MCS of a wireless signal, an NDI, an RV of the first wireless signal, a HARQ process number, and a transmit antenna port of the first wireless signal.
  • the UE or the terminal includes, but is not limited to, a mobile communication device such as a mobile phone, a tablet computer, a notebook computer, an internet card, a low power consumption device, an MTC device, an NB-IoT device, and an in-vehicle communication device.
  • the base station or network side device in this application includes but is not limited to a wireless communication device such as a macro cell base station, a micro cell base station, a home base station, and a relay base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种用户设备、基站中的发射功率调整的方法和装置。UE在第一时频资源上发送第一无线信号;或者在所述第一时频资源上接收第一无线信号。其中,所述第一时频资源包括第一子时频资源与第二子时频资源,所述第一子时频资源与所述第二子时频资源不同,所述第一子时频资源与所述第二子时频资源在时域上占用相同的时间间隔。所述第一无线信号在所述第一子时频资源中的每个RU的归一化的发射能量是第一能量,所述第一无线信号在所述第二子时频资源中每个RU的归一化的发射能量是第二能量。所述第一能量和所述第二能量不相等。本发明公开的方法能够在降低系统内部不同数理结构区域间的干扰和不同系统间的干扰,提高频谱利用率。

Description

一种用户设备、基站中的发射功率调整的方法和装置 技术领域
本申请涉及无线通信系统中的传输方案,特别是涉及发射功率调整的方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)进行研究。
为了能够灵活适应多种不同的应用场景,未来的无线通信系统,特别是NR将可以支持多种数理结构(Numerology),多种数理结构是指多种子载波间隔,多种符号时间长度,多种CP(Cyclic Prefix,循环前缀)长度等。不同的子载波间隔破坏了子载波之间的正交性,进而造成了系统内的子载波间的干扰。同时,由于新空口技术所采用的子载波间隔有可能和LTE(Long Term Evolution,长期演进)的子载波间隔不同,因而新空口和LTE之间有可能经受比LTE与LTE间更强烈的干扰。
发明内容
在现有无线通信系统中(比如LTE),上下行传输的发射功率一般都是可以调整的,但是由于发射机/接收机的硬件限制,信令开销的影响,调制方式的限制等,上下行传输在任意一个时刻不同的频率上的PSD(Power Spectrum Density,功率谱密度)在统计意义上是不变的。但是在下一代通信系统之,由于硬件的进步和多种数理结构(Numerology)的引入,使得在不同的频率上采用不同的PSD变为可能。同时,由于上述系统内不同的数理结构(Numerology)的频率区域之间的干扰和不同系统(比如NR和LTE)间的干扰的存在,采用新空口的系统的频谱效率会受到极大的限制。
针对系统内采用不同的数理结构(Numerology)的频率区域之间干扰和/或不同系统(比如NR和LTE)间干扰的问题,本申请提供了解决方案。采用本申请的解决方案,通过对不同频率的PSD的调整,可以大大缓解系统内和/或系统间的干扰,提高频谱利用率。需要说明的是,在不冲突的情况下,本申请的UE(User Equipment,用户设备)中的实施例和实施例中的特征可以应用到基站中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种支持功率调整的UE中的方法,其中,包括如下步骤:
-在第一时频资源上发送第一无线信号;或者在所述第一时频资源上接收第一无线信号。
其中,所述第一时频资源包括第一子时频资源与第二子时频资源,所述第一子时频资源与所述第二子时频资源不同,所述第一子时频资源与所述第二子时频资源在时域上占用相同的时间间隔。所述第一无线信号在所述第一子时频资源中的每个RU的归一化的发射能量是第一能量,所述第一无线信号在所述第二子时频资源中每个RU的归一化的发射能量是第二能量。所述第一能量和所述第二能量不相等。所述归一化是对一个调制方式中的所有星座点的能量的平均。所述RU在频域上占用一个子载波,所述RU在时域上占用一个宽带符号的持续时间。所述第一无线信号包括{第一数据信号,第一辅助信号}中的至少之一,第一比特块被用于生成所述第一数据信号,第二比特块被用于生成所述第一辅助信号;或者所述第一比特块被用于生成所述第一数据信号,第一序列被用于生成所述第一辅助信号。
作为一个实施例,所述第一能量与所述第二能量不相等为降低对相邻的频带的干扰提供了在功率/能量维度上的调度灵活性,从而可以有效地降低同一个系统内部不同的数理结构(Numerology)区域之间的干扰,也可以降低不同系统之间的干扰,同时也可以减小保护频带的带宽,提高频谱利用率。
作为一个实施例,所述宽带符号是OFDM符号。
作为一个实施例,所述宽带符号是SC-FDMA符号。
作为一个实施例,所述宽带符号是SCMA符号。
作为一个实施例,所述第一能量不包括所述第一无线信号的发送者发送CP(Cyclic Prefix,循环前缀)的能量。
作为一个实施例,所述第二能量不包括所述第一无线信号的发送者发送CP(Cyclic Prefix,循环前缀)的能量。
作为一个实施例,所述第一能量是在第一子时频资源中第一调制方式(Modulation Scheme)中所有星座点(Constellation Point)的能量的平均,所述第一调制方式是所述第一无线信号在所述第一子时频资源中所采用的调制方式。作为一个子实施例,所述第一能量是与所述第一比特块无关的;或者所述第一能量是与所述第二比特块无关的;或者所述第一能量是与所述第一序列无关的。
作为一个实施例,所述第二能量是在第二子时频资源中第二调制方式(Modulation Scheme)中所有星座点(Constellation Point)的能量的平均,所述第二调制方式是所述第一无线信号在所述第二子时频资源中所采用的调制方式。作为一个子实施例,所述第二能量是与所述第一比特块无关的;或者所述第二能量是与所述第二比特块无关的;或者所述第二能量是与所述第一序列无关的。
作为一个实施例,所述UE在所述第一时频资源上接收所述第一无线信号,所述第一无线信号所采用的调制方式为{64QAM(Quadrature Amplitude Modulation,正交振幅调制),256QAM,1024QAM}中之一。
作为一个实施例,所述第一时频资源的子载波在频域上是连续的。
作为一个实施例,所述第一时频资源的子载波在频域上是离散的。
作为一个实施例,所述第一时频资源在时域上是连续的。
作为一个实施例,所述第一时频资源在时域上是离散的。
作为一个实施例,所述第一时频资源中任意时刻的频域资源是相同的。
作为一个实施例,所述第一时频资源中存在两个时刻的频域资源是不同的。
作为一个实施例,所述第一时频资源中的子载波间距是相等的。
作为一个实施例,所述第一时频资源中存在两个子载波的子载波间距是不等的。
作为一个实施例,所述第一时频资源在频域属于一个载波。
作为一个实施例,所述第一时频资源在频域上是连续的,所述第一无线信号占用所述第一时频资源中的所有的子载波,或者所述第一无线信号等间隔的占用所述第一时频资源中的子载波。
作为一个实施例,所述第一时频资源还包括所述第一子时频资源与所述第二子时频资源之外的X个子时频资源,所述X是正整数。
作为一个实施例,所述第一时频资源中的所有宽带符号的时间长度是相等的。
作为一个实施例,所述第一时频资源中存在两个宽带符号的时间长度是不等的。
作为一个实施例,所述第一子时频资源与所述第二子时频资源是正交的,其中所述正交是指不存在一个频率同时属于所述第一子时频资源和所述第二子时频资源。
作为一个实施例,所述第一子时频资源与所述第二子时频资源是非正交的。
作为一个实施例,所述第一子时频资源中的每个子载波的子载波间距是相等的。
作为一个实施例,所述第二子时频资源中的每个子载波的子载波间距是相等的。
作为一个实施例,所述第一子时频资源中的每个子载波的子载波间距和所述第二子时频资源中的每个子载波的子载波间距相等。
作为一个实施例,所述第一子时频资源中的每个子载波的子载波间距是相等的,所述第二子时频资源中的每个子载波的子载波间距是相等的,所述第一子时频资源中的任意一个子载波的子载波间距和所述第二子时频资源中的任意一个子载波的子载波间距不等。
作为一个实施例,所述第一子时频资源中的子载波在频域是连续的。
作为一个实施例,所述第一子时频资源中的子载波在频域是离散的。
作为一个实施例,所述第二子时频资源中的子载波在频域是连续的。
作为一个实施例,所述第二子时频资源中的子载波在频域是离散的。
作为一个实施例,所述第一比特块是一个TB(Transport Block,传输块)。
作为一个实施例,所述第二比特块是一个DCI(Downlink Control Information,下行控制信息)的承载(payload)。
作为一个实施例,所述第二比特块是一个UCI(Uplink Control Information,上行控制信息)的承载(payload)。
作为一个实施例,所述第一序列是一个基于ZC(Zadoff-Chu)序列生成的序列。
作为一个实施例,所述第一序列是一个基于Gold序列生成的序列。
作为一个实施例,所述第一序列是一个基于m序列生成的序列。
作为一个实施例,所述第一数据信号对应的传输信道是下行共享信道(DL-SCH,Downlink Shared Channel)。
作为一个实施例,所述第一数据信号对应的传输信道是上行共享信道(UL-SCH,Uplink Shared Channel)。
作为一个实施例,所述第一数据信号是所述第一比特块依次经过调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),信号发生(Generation)之后生成的。
作为一个实施例,所述第一辅助信号是参考信号(RS,Reference Signal)。
作为一个实施例,所述第一辅助信号是探测参考信号(SRS,Sounding Reference Signal)。
作为一个实施例,所述第一辅助信号是所述第一序列经过调制映射之后生成的。
作为一个实施例,所述第一辅助信号对应的物理信道是物理下行控制信道(PDCCH,Physical Downlink Control CHannel)。
作为一个实施例,所述第一辅助信号对应的物理信道是增强的物理下行控制信道(EPDCCH,Enhanced Physical Downlink Control CHannel)。
作为一个实施例,所述第一辅助信号对应的物理信道是物理上行控制信道(PUCCH,Physical Uplink Control CHannel)。
作为一个实施例,所述第一辅助信号是所述第二比特块依次经过调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),信号发生(Generation)之后生成的。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一能量与所述第一子时频资源在目标时频资源池中的频域位置是相关的,所述第一子时频资源属于所述目标时频资源池,所述目标时频资源池是可配置 的;或者所述目标时频资源池是预先定义的。
作为一个实施例,通过将所述第一能量与所述所述第一子时频资源在所述目标时频资源池中的频域位置相关联,可以根据所述第一子时频资源对于所述目标时频资源池之外的其它数理结构(Numerology)区域或对其它系统的干扰的强弱对所述第一能量进行调整,可以实现所述第一无线信号的覆盖性能与所述第一无线信号带来的干扰之间的平衡。
作为一个实施例,所述目标时频资源池是预先定义的是指所述目标时频资源池没有通过网络配置。
作为一个实施例,所述目标时频资源池中的所有的子载波的子载波间距相等。
作为一个实施例,所述目标时频资源池中存在两个子载波的子载波间距是不等的。
作为一个实施例,所述目标时频资源池的频域资源是系统的传输带宽。
作为一个实施例,所述目标时频资源池中的所有子载波在频域是连续的。
作为一个实施例,所述目标时频资源池中存在两个子载波在频域是离散的。
作为一个实施例,所述目标时频资源池在频域由所有子载波间距相等的子载波组成。
作为一个实施例,所述第一能量的上限与所述第一子时频资源在目标时频资源池中的频域位置是相关的。
作为一个实施例,所述第一能量与所述第一子时频资源在所述目标时频资源池中的位置索引是线性相关的。
作为上述实施例的一个子实施例,所述所述第一子时频资源在所述目标时频资源池中的位置索引是指所述第一子时频资源的最低频率子载波在所述目标时频资源池中的子载波索引;或者所述所述第一子时频资源在所述目标时频资源池中的位置索引是指所述第一子时频资源的在频域的最高频率子载波在所述目标时频资源池中的子载波索引。
作为上述实施例的另一个子实施例,所述所述第一子时频资源在所述目标时频资源池中的位置索引以所述目标时频资源池的中心频率向两端升序排列。
作为一个实施例,所述第一能量与所述第一子时频资源在所述目标时频资源池中的位置索引是非线性相关的。
作为一个实施例,所述第一能量与所述第一子时频资源在所述目标时频资源池中的位置索引是对数相关的。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一子时频资源在时域占用的时间间隔为第一时间间隔,所述目标时频资源池在所述第一时间间隔的中心频率为第一中心频率,第一子载波的中心频率与所述第一中心频率的差值的绝对值与第二子载波的中心频率与所述第一中心频率的差值的绝对值不相等。所述第一子载波是所述第一子时频资源中的任意一个子载波,所述第二子载波是所述第二子时频资源中的任意一个子载波。
作为一个实施例,所述第一子载波的中心频率与所述第一中心频率的差值的绝对值大于所述第二子载波的中心频率与所述第一中心频率的差值的绝对值。
作为一个实施例,所述第一子时频资源中存在一个子载波的中心频率小于所述第一中心频率,同时所述第一子时频资源中存在一个子载波的中心频率大于所述第一中心频率。
作为一个实施例,所述第一子时频资源中存在一个子载波的中心频率等于所述第一中心频率,所述第二子时频资源中的任意子载波的中心频率小于所述第一中心频率。
作为一个实施例,所述第一子时频资源中存在一个子载波的中心频率等于所述第一中心频率,所述第二子时频资源中的任意子载波的中心频率大于所述第一中心频率。。
作为一个实施例,所述第一子时频资源中存在一个子载波的中心频率大于所述第一中心频率,同时所述第一子时频资源中存在一个子载波的中心频率小于所述第一中心频率,所述第二子时频资源中的任意子载波的中心频率小于所述第一中心频率。
作为一个实施例,所述第一子时频资源中存在一个子载波的中心频率大于所述第一中心频率,同时所述第一子时频资源中存在一个子载波的中心频率小于所述第一中心频率,所述第二子时频资源中的任意子载波的中心频率大于所述第一中心频率。
具体的,根据本申请的一个方面,上述方法的特征在于,还包括:
-接收第一信令。
其中,所述第一信令被用于确定参考时频资源。所述第一无线信号的发送者在所述参考时频资源中的每个RU的归一化的最大发射能量为第三能量,所述第一能量等于或者小于所述第三能量,所述参考时频资源属于所述目标时频资源池,所述第一子时频资源属于所述参考时频资源,所述第二子时频资源与所述参考时频资源正交。
作为一个实施例,所述第二子时频资源与所述参考时频资源正交,其中所述正交是指不存在一个频率同时属于所述第二子时频资源和所述参考时频资源。
作为一个实施例,所述参考时频资源在频域是连续的。
作为一个实施例,所述参考时频资源中的所有子载波的子载波间距是相等的。
作为一个实施例,所述参考时频资源中存在两个子载波的子载波间距是不等的。
作为一个实施例,所述第三能量是可配置的。
作为一个实施例,所述第三能量是预先定义的。
作为一个实施例,所述第三能量与第四能量不等,其中所述第四能量为所述第一无线信号的发送者在所述目标时频资源池中的所述参考时频资源之外的每个RU的归一化的最大发射能量。
作为上述实施例的一个子实施例,所述第三能量与所述第一能量的差值等于所述第四能量与所述第二能量的差值。
作为一个实施例,所述参考时频资源中的子载波分布在所述第一中心频率的两侧且关于所述第一中心频率在频域两两对称,其中两个不同的子载波关于所述第一中心频率在频域对称是指所述两个不同的子载波的中心频率与所述第一中心频率的频率差值的绝对值相等。
作为一个实施例,所述第一信令是高层信令。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是物理层信令,所述第一信令包括所述第一无线信号的调度信息,所述调度信息包括{所占用的时频资源,MCS,RV,NDI,HARQ进程号}中的至少之一。
作为一个实施例,所述第一信令显式地指示所述参考时频资源。
作为一个实施例,所述第一信令包含所述参考时频资源缺省配置。
作为一个实施例,所述第一信令隐式地指示所述参考频域资源。
具体的,根据本申请的一个方面,上述方法的特征在于,所述参考时频资源所占用的频域资源和{所述目标时频资源池的频域位置,所述参考时频资源中的子载波的子载波间距}中至少之一是相关的。
作为一个实施例,所述参考时频资源中的子载波数量与所述所述参考时频资源中的子载波的子载波间距成反比。
作为一个实施例,所述所述参考时频资源所占用的频域资源的带宽与所述所述参考时频资源的子载波间距是线性相关的,其中所述频域资源的带宽是指所述频域资源中所有子载波的子载波间距之和。
作为一个实施例,所述所述目标时频资源池在的频域位置是指所述目标时频资源池在系统的传输带宽中的频域位置。
具体的,根据本申请的一个方面,上述方法的特征在于,还包括如下步骤:
-接收第二信令。
其中,所述第二信令被用于确定{所述第一能量,所述第二能量,所述第一能量和所述第二能量的差值}中至少之一。
作为一个实施例,通过所述第二信令的引入,可以为配置所述第一无线信号的发送者在所述第一子时频资源和所述第二子时频资源上的发射能量/功率提供最大的灵活性。
作为一个实施例,所述第二信令是高层信令。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是物理层信令,所述第二信令包括所述第一无线信号的调度信息,所述调度信息包括{所占用的时频资源,MCS,RV,NDI,HARQ进程号}中的至少之一。
作为一个实施例,所述第二信令显式地指示{所述第一能量,所述第二能量,所述第一能量和所述第二能量的差值}中至少之一。
作为一个实施例,所述第二信令包含{所述第一能量,所述第二能量,所述第一能量和所述第二能量的差值}中至少之一的缺省配置。
作为一个实施例,所述第二信令隐式地指示{所述第一能量,所述第二 能量,所述第一能量和所述第二能量的差值}中至少之一。
具体的,根据本申请的一个方面,上述方法的特征在于,还包括:
-接收第三信令。
其中,所述第三信令包括所述第一无线信号的配置信息,所述配置信息包括{所占用的时频资源,生成序列,MCS,NDI,RV,HARQ进程号,发送天线端口}中的至少之一。
作为一个实施例,所述第三信令是物理层信令。
作为一个实施例,所述第三信令是DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第三信令是MAC(Media Access Control,介质访问控制)层信令。
作为一个实施例,所述第三信令是高层信令。
作为一个实施例,所述第三信令是RRC(Radio Resource Control,无线资源控制)信令。
作为一个实施例,所述第三信令是MIB(Master Information Block,主信息块)。
作为一个实施例,所述第三信令是SIB(System Information Block,系统信息块)。
作为一个实施例,所述第三信令显式地指示{时频资源,生成序列,MCS,NDI,RV,HARQ进程号,发送天线端口}中的至少之一。
作为一个实施例,所述第三信令隐式地指示{时频资源,生成序列,MCS,NDI,RV,HARQ进程号,发送天线端口}中的至少之一。
本申请公开了一种支持功率调整的基站中的方法,其中,包括:
-在第一时频资源上接收第一无线信号;或者在所述第一时频资源上发送第一无线信号。
其中,所述第一时频资源包括第一子时频资源与第二子时频资源,所述第一子时频资源与所述第二子时频资源不同,所述第一子时频资源与所述第二子时频资源在时域上占用相同的时间间隔。所述第一无线信号在所述第一子时频资源中的每个RU的归一化的发射能量是第一能量,所述第一无线信号在所述第二子时频资源中每个RU的归一化的发射能量是第二能量。所述第一能量和所述第二能量不相等。所述归一化是对一个调制方式 中的所有星座点的能量的平均。所述RU在频域上占用一个子载波,所述RU在时域上占用一个宽带符号的持续时间。所述第一无线信号包括{第一数据信号,第一辅助信号}中的至少之一,第一比特块被用于生成所述第一数据信号,第二比特块被用于生成所述第一辅助信号;或者所述第一比特块被用于生成所述第一数据信号,第一序列被用于生成所述第一辅助信号。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一能量与所述第一子时频资源在目标时频资源池中的频域位置是相关的,所述第一子时频资源属于所述目标时频资源池,所述目标时频资源池是可配置的;或者所述目标时频资源池是预先定义的。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一子时频资源在时域占用的时间间隔为第一时间间隔,所述目标时频资源池在所述第一时间间隔的中心频率为第一中心频率,第一子载波的中心频率与所述第一中心频率的差值的绝对值与第二子载波的中心频率与所述第一中心频率的差值的绝对值不相等。所述第一子载波是所述第一子时频资源中的任意一个子载波,所述第二子载波是所述第二子时频资源中的任意一个子载波。
具体的,根据本申请的一个方面,上述方法的特征在于,还包括如下步骤:
-发送第一信令。
其中,所述第一信令被用于确定参考时频资源。所述第一无线信号的发送者在所述参考时频资源中的每个RU的归一化的最大发射能量为第三能量,所述第一能量等于或者小于所述第三能量,所述参考时频资源属于所述目标时频资源池,所述第一子时频资源属于所述参考时频资源,所述第二子时频资源与所述参考时频资源正交。
具体的,根据本申请的一个方面,上述方法的特征在于,所述参考时频资源所占用的频域资源和{所述目标时频资源池的频域位置,所述参考时频资源中的子载波的子载波间距}中至少之一是相关的。
具体的,根据本申请的一个方面,上述方法的特征在于,还包括如下:
-发送第二信令。
其中,所述第二信令被用于确定{所述第一能量,所述第二能量,所述第一能量和所述第二能量的差值}中至少之一。
具体的,根据本申请的一个方面,上述方法的特征在于,还包括:
-发送第三信令。
其中,所述第三信令包括所述第一无线信号的配置信息,所述配置信息包括{所占用的时频资源,生成序列,MCS,NDI,RV,HARQ进程号,发送天线端口}中的至少之一。
本申请公开了一种支持功率调整的用户设备,其中,包括如下模块:
-第一处理模块:用于在第一时频资源上发送第一无线信号;或者在所述第一时频资源上接收第一无线信号。
其中,所述第一时频资源包括第一子时频资源与第二子时频资源,所述第一子时频资源与所述第二子时频资源不同,所述第一子时频资源与所述第二子时频资源在时域上占用相同的时间间隔。所述第一无线信号在所述第一子时频资源中的每个RU的归一化的发射能量是第一能量,所述第一无线信号在所述第二子时频资源中每个RU的归一化的发射能量是第二能量。所述第一能量和所述第二能量不相等。所述归一化是对一个调制方式中的所有星座点的能量的平均。所述RU在频域上占用一个子载波,所述RU在时域上占用一个宽带符号的持续时间。所述第一无线信号包括{第一数据信号,第一辅助信号}中的至少之一,第一比特块被用于生成所述第一数据信号,第二比特块被用于生成所述第一辅助信号;或者所述第一比特块被用于生成所述第一数据信号,第一序列被用于生成所述第一辅助信号。
具体的,根据本申请的一个方面,上述用户设备的特征在于,所述第一能量与所述第一子时频资源在目标时频资源池中的频域位置是相关的,所述第一子时频资源属于所述目标时频资源池,所述目标时频资源池是可配置的;或者所述目标时频资源池是预先定义的。
具体的,根据本申请的一个方面,上述用户设备的特征在于,所述第一子时频资源在时域占用的时间间隔为第一时间间隔,所述目标时频资源池在所述第一时间间隔的中心频率为第一中心频率,第一子载波的中心频率与所述第一中心频率的差值的绝对值与第二子载波的中心频率与所述第一中心频率的差值的绝对值不相等。所述第一子载波是所述第一子时频资源中的任意一个子载波,所述第二子载波是所述第二子时频资源中的任意一个子载波。
具体的,根据本申请的一个方面,上述用户设备的特征在于,所述第 一处理模块还用于接收第一信令,所述第一信令被用于确定参考时频资源。所述第一无线信号的发送者在所述参考时频资源中的每个RU的归一化的最大发射能量为第三能量,所述第一能量等于或者小于所述第三能量,所述参考时频资源属于所述目标时频资源池,所述第一子时频资源属于所述参考时频资源,所述第二子时频资源与所述参考时频资源正交。
具体的,根据本申请的一个方面,上述用户设备的特征在于,所述参考时频资源所占用的频域资源和{所述目标时频资源池的频域位置,所述参考时频资源中的子载波的子载波间距}中至少之一是相关的。
具体的,根据本申请的一个方面,上述用户设备的特征在于,所述第一处理模块还用于接收第二信令,所述第二信令被用于确定{所述第一能量,所述第二能量,所述第一能量和所述第二能量的差值}中至少之一。
具体的,根据本申请的一个方面,上述用户设备的特征在于,所述第一处理模块还用于接收第三信令,所述第三信令包括所述第一无线信号的配置信息,所述配置信息包括{所占用的时频资源,生成序列,MCS,NDI,RV,HARQ进程号,发送天线端口}中的至少之一。
本申请公开了一种支持功率调整的基站设备,其中,包括如下模块:
-第二处理模块:用于在第一时频资源上接收第一无线信号;或者在所述第一时频资源上发送第一无线信号。
其中,所述第一时频资源包括第一子时频资源与第二子时频资源,所述第一子时频资源与所述第二子时频资源不同,所述第一子时频资源与所述第二子时频资源在时域上占用相同的时间间隔。所述第一无线信号在所述第一子时频资源中的每个RU的归一化的发射能量是第一能量,所述第一无线信号在所述第二子时频资源中每个RU的归一化的发射能量是第二能量。所述第一能量和所述第二能量不相等。所述归一化是对一个调制方式中的所有星座点的能量的平均。所述RU在频域上占用一个子载波,所述RU在时域上占用一个宽带符号的持续时间。所述第一无线信号包括{第一数据信号,第一辅助信号}中的至少之一,第一比特块被用于生成所述第一数据信号,第二比特块被用于生成所述第一辅助信号;或者所述第一比特块被用于生成所述第一数据信号,第一序列被用于生成所述第一辅助信号。
具体的,根据本申请的一个方面,上述基站设备的特征在于,所述第一能量与所述第一子时频资源在目标时频资源池中的频域位置是相关的, 所述第一子时频资源属于所述目标时频资源池,所述目标时频资源池是可配置的;或者所述目标时频资源池是预先定义的。
具体的,根据本申请的一个方面,上述基站设备的特征在于,所述第一子时频资源在时域占用的时间间隔为第一时间间隔,所述目标时频资源池在所述第一时间间隔的中心频率为第一中心频率,第一子载波的中心频率与所述第一中心频率的差值的绝对值与第二子载波的中心频率与所述第一中心频率的差值的绝对值不相等。所述第一子载波是所述第一子时频资源中的任意一个子载波,所述第二子载波是所述第二子时频资源中的任意一个子载波。
具体的,根据本申请的一个方面,上述基站设备的特征在于,所述第二处理模块还用于发送第一信令,所述第一信令被用于确定参考时频资源。所述第一无线信号的发送者在所述参考时频资源中的每个RU的归一化的最大发射能量为第三能量,所述第一能量等于或者小于所述第三能量,所述参考时频资源属于所述目标时频资源池,所述第一子时频资源属于所述参考时频资源,所述第二子时频资源与所述参考时频资源正交。
具体的,根据本申请的一个方面,上述基站设备的特征在于,所述参考时频资源所占用的频域资源和{所述目标时频资源池的频域位置,所述参考时频资源中的子载波的子载波间距}中至少之一是相关的。
具体的,根据本申请的一个方面,上述基站设备的特征在于,所述第二处理模块还用于发送第二信令,所述第二信令被用于确定{所述第一能量,所述第二能量,所述第一能量和所述第二能量的差值}中至少之一。
具体的,根据本申请的一个方面,上述基站设备的特征在于,所述第二处理模块还用于发送第三信令,所述第三信令包括所述第一无线信号的配置信息,所述配置信息包括{所占用的时频资源,生成序列,MCS,NDI,RV,HARQ进程号,发送天线端口}中的至少之一。
和现有技术相比,本申请的主要技术优势总结如下:
-降低对相邻的频带的干扰提供了在功率/能量维度上的调度灵活性,从而可以有效地降低同一个系统内部不同的数理结构(Numerology)区域之间的干扰,从而可以减小保护频带的带宽,提高频谱利用率。
-降低不同系统之间的干扰和系统的带外泄露,减小对其它系统的 影响。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的无线信号下行传输流程图;
图2示出了根据本申请的一个实施例的无线信号上行传输流程图;
图3示出了根据本申请的一个实施例的第一子时频资源与第二子时频资源关系示意图;
图4示出了根据本申请的一个实施例的第一子时频资源与目标时频资源池关系示意图;
图5示出了根据本申请的一个实施例的参考时频资源示意图;
图6示出了根据本申请的一个实施例的第一能量示意图;
图7示出了根据本申请的一个实施例的用户设备(UE)中的处理装置的结构框图;
图8示出了根据本申请的一个实施例的基站设备中的处理装置的结构框图;
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了无线信号下行传输流程图,如附图1所示。附图1中,基站N1是UE U2的服务小区的维持基站,方框F1中标识的步骤是可选的。
对于基站N1,在步骤S11中发送第一信令,在步骤S12中发送第二信令,在步骤S13中发送第三信令,在步骤S14中在第一时频资源上发送第一无线信号。
对于UE U2,在步骤S21中接收第一信令,在步骤S22中接收第二信令,在步骤S23中接收第三信令,在步骤S24中在第一时频源上接收第一无线信号。
在实施例1中,所述第一时频资源包括第一子时频资源与第二子时频资源。所述第一无线信号在所述第一子时频资源中的每个RU的归一化的发射能量是第一能量,所述第一无线信号在所述第二子时频资源中每个RU的归一化的发射能量是第二能量。所述第一能量和所述第二能量不相等。所述归一化是对一个调制方式中的所有星座点的能量的平均。所述RU在频域上占用一个子载波,所述RU在时域上占用一个宽带符号的持续时间。所述第一无线信号包括{第一数据信号,第一辅助信号}中的至少之一,第一比特块被用于生成所述第一数据信号,第二比特块被用于生成所述第一辅助信号;或者所述第一比特块被用于生成所述第一数据信号,第一序列被用于生成所述第一辅助信号。所述第一信令被用于确定参考时频资源,所述第二信令被用于确定{所述第一能量,所述第二能量,所述第一能量和所述第二能量的差值}中至少之一,所述第三信令包括所述第一无线信号的配置信息。
在实施例1的子实施例1中,所述宽带符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
在实施例1的子实施例2中,所述第一比特块是一个TB(Transport Block,传输块)。
在实施例1的子实施例3中,所述第二比特块是一个DCI(Downlink Control Information,下行控制信息)的承载(payload)。
在实施例1的子实施例4中,所述第一序列是一个基于ZC(Zadoff-Chu)序列生成的序列。
在实施例1的子实施例5中,所述第一序列是一个基于Gold序列生成的序列。
在实施例1的子实施例6中,所述第一数据信号对应的传输信道是下行共享信道(DL-SCH,Downlink Shared Channel)。
在实施例1的子实施例7中,所述第一数据信号是所述第一比特块依次经过调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),信号发生(Generation)之后生成的。
在实施例1的子实施例8中,所述第一辅助信号是参考信号(RS,Reference Signal)。
在实施例1的子实施例9中,所述第一信令是高层信令。作为子实施例10的一个子实施例,所述第一信令是RRC(Radio Resource Control,无线资源控制)。
在实施例1的子实施例10中,所述第二信令是物理层信令,所述第二信令包括所述第一无线信号的调度信息,所述调度信息包括{所占用的时频资源,MCS,RV,NDI,HARQ进程号}中的至少之一。
在实施例1的子实施例11中,所述第三信令是物理层信令。
实施例2
实施例2示例了第一时间窗示意图,如附图2所示。在附图2中,基站N3是UE U4的服务小区的维持基站,方框F2中标识的步骤是可选的。
对于基站N3,在步骤S31中发送第一信令,在步骤S32中发送第三信令,在步骤S33中发送第二信令,在步骤S14中在第一时频资源上接收第一无线信号。
对于UE U4,在步骤S41中接收第一信令,在步骤S42中接收第三信令,在步骤S43中接收第二信令,在步骤S44中在第一时频源上发送第一无线信号。
在实施例2中,其中,所述第一时频资源包括第一子时频资源与第二子时频资源。所述第一无线信号在所述第一子时频资源中的每个RU的归一化的发射能量是第一能量,所述第一无线信号在所述第二子时频资源中每个RU的归一化的发射能量是第二能量。所述第一能量和所述第二能量不相等。所述归一化是对一个调制方式中的所有星座点的能量的平均。所述RU在频域上占用一个子载波,所述RU在时域上占用一个宽带符号的持续时间。所述第一无线信号包括{第一数据信号,第一辅助信号}中的至少之一,第一比特块被用于生成所述第一数据信号,第二比特块被用于生成所述第一辅助信号;或者所述第一比特块被用于生成所述第一数据信号,第一序列被用于生成所述第一辅助信号。所述第一信令被用于确定参考时频资源,所述第二信令被用于确定{所述第一能量,所述第二能量,所述第一能量和所述第二能量的差值}中至少之一,所述第三信令包括所述第一无线信号的配置信息。
在实施例2的子实施例1中,所述宽带符号是OFDM(Orthogonal  Frequency Division Multiplexing,正交频分复用)符号。
在实施例2的子实施例2中,所述宽带符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
在实施例2的子实施例3中,所述第一比特块是一个TB(Transport Block,传输块)。
在实施例2的子实施例4中,所述第二比特块是一个UCI(Uplink Control Information,上行控制信息)的承载(payload)。
在实施例2的子实施例5中,所述第一序列是一个基于ZC(Zadoff-Chu)序列生成的序列。
在实施例2的子实施例6中,所述第一序列是一个基于Gold序列生成的序列。
在实施例2的子实施例7中,所述第一数据信号对应的传输信道是上行共享信道(UL-SCH,Uplink Shared Channel)。
在实施例2的子实施例8中,所述第一数据信号是所述第一比特块依次经过调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),信号发生(Generation)之后生成的。
在实施例2的子实施例9中,所述第一辅助信号是参考信号(RS,Reference Signal)。
在实施例2的子实施例10中,所述第一信令是高层信令。作为子实施例10的一个子实施例,所述第一信令是RRC(Radio Resource Control,无线资源控制)。
在实施例2的子实施例11中,所述第二信令是物理层信令,所述第二信令包括所述第一无线信号的调度信息,所述调度信息包括{所占用的时频资源,MCS,RV,NDI,HARQ进程号}中的至少之一。
在实施例2的子实施例12中,所述第三信令是物理层信令。
在实施例2的子实施例13中,所述第三信令是SIB(System Information Block,系统信息块)。
实施例3
实施例3示例了第一子时频资源与第二子时频资源关系示意图,如附图3所示。在附图3中,横轴代表时间,纵轴代表频率,斜线填充的区域代表第一子时频资源,竖线填充的区域代表第二子时频源。在实施例3中,第一时频资源包括第一子时频资源与第二子时频资源,所述第一子时频资源与所述第二子时频资源不同,所述第一子时频资源与所述第二子时频资源在时域上占用相同的时间间隔。
在实施例3的子实施例1中,所述第一时频资源中的子载波间距是相等的。
在实施例3的子实施例2中,所述第一时频资源中存在两个子载波的子载波间距是不等的。
在实施例3的子实施例3中,所述第一时频资源在频域属于一个载波。
在实施例3的子实施例4中,所述第一时频资源还包括所述第一子时频资源与所述第二子时频资源之外的X个子时频资源,所述X是正整数。
在实施例3的子实施例5中,所述第一子时频资源与所述第二子时频资源是正交的,其中所述正交是指不存在一个频率同时属于所述第一子时频资源和所述第二子时频资源。
在实施例3的子实施例6中,所述第一子时频资源中的每个子载波的子载波间距和所述第二子时频资源中的每个子载波的子载波间距相等。
在实施例3的子实施例7中,所述第一子时频资源中的每个子载波的子载波间距是相等的,所述第二子时频资源中的每个子载波的子载波间距是相等的,所述第一子时频资源中的任意一个子载波的子载波间距和所述第二子时频资源中的任意一个子载波的子载波间距不等。
实施例4
实施例4示例了第一子时频资源与目标时频资源池的关系示意图,如附图4所示。附图4中,横轴代表时间,纵轴代表频率,无填充的大矩形区域代表目标时频资源池,斜线填充的区域代表第一子时频资源,其中每一个斜线填充的小矩形代表第一子时频资源中的一个RU,所述第一子时频 资源在时域占用的时间间隔为第一时间间隔,所述目标时频资源池在所述第一时间间隔的中心频率为第一中心频率。在实施例4中,所述第一子时频资源属于所述目标时频资源池,所述目标时频资源池是可配置的;或者所述目标时频资源池是预先定义的。
在实施例4的子实施例1中,所述目标时频资源池是预先定义的是指所述目标时频资源池没有通过网络配置。
在实施例4的子实施例2中,所述目标时频资源池中的所有的子载波的子载波间距相等。
在实施例4的子实施例3中,所述目标时频资源池的频域资源是系统的传输带宽。
在实施例4的子实施例4中,所述目标时频资源池中的所有子载波在频域是连续的。
在实施例4的子实施例5中,所述第一子时频资源在所述目标时频资源池中的位置是指所述第一子时频资源的最低频率子载波在所述目标时频资源池中的子载波位置;或者所述第一子时频资源在所述目标时频资源池中的位置是指所述第一子时频资源的在频域的最高频率子载波在所述目标时频资源池中的子载波位置。
实施例5
实施例5示例了参考时频资源示意图,如附图5所示。附图5中,横轴代表时间,纵轴代表频率,无填充的细线框标识目标时频资源池,两个无填充的粗线框矩形分别标识参考时频资源,斜线填充的区域标识第一子时频资源,竖线填充的区域标识第二子时频资源。在实施例5中,所述参考时频资源属于所述目标时频资源池,所述第一子时频资源属于所述参考时频资源,所述第二子时频资源与所述参考时频资源正交。
在实施例5的子实施例1中,所述第二子时频资源与所述参考时频资源正交,其中所述正交是指不存在一个频率同时属于所述第二子时频资源和所述参考时频资源。
在实施例5的子实施例2中,所述参考时频资源在频域是连续的。
在实施例5的子实施例3中,所述参考时频资源中存在两个子载波的子载波间距是不等的。
在实施例5的子实施例4中,所述参考时频资源中的子载波分布在第一中心频率的两侧且关于所述第一中心频率在频域两两对称,其中两个不同的子载波关于所述第一中心频率在频域对称是指所述两个不同的子载波的中心频率与所述第一中心频率的频率差值的绝对值相等。所述目标时频资源池的中心频率为所述第一中心频率。
在实施例5的子实施例5中,第一子载波的中心频率与所述第一中心频率的差值的绝对值大于第二子载波的中心频率与所述第一中心频率的差值的绝对值。所述第一子载波是所述第一子时频资源中的任意一个子载波,所述第二子载波是所述第二子时频资源中的任意一个子载波。
实施例6
实施例6示例了第一能量示意图,如附图6所示。附图6中,横轴代表时间,纵轴代表频率,无填充的最大矩形区域代表目标时频资源池,斜线填充的大矩形区域为第一子时频资源,其中的斜线填充的小矩形代表所述第一子时频资源的一个RU,在右上侧的方框中的圆点代表了64QAM调制的星座点,圆圈的半径长度代表了第一能量。
在实施例6中,第一无线信号在所述第一子时频资源中的每个RU的归一化的发射能量是第一能量,所述RU在频域上占用一个子载波,所述RU在时域上占用一个宽带符号的持续时间。所述归一化是对一个调制方式中的所有星座点的能量的平均。所述第一能量与所述第一子时频资源在目标时频资源池中的频域位置是相关的,所述第一子时频资源属于所述目标时频资源池。所述第一无线信号包括{第一数据信号,第一控制信号}中的至少之一,第一比特块被用于生成所述第一数据信号,第二比特块被用于生成所述第一控制信号;或者所述第一比特块被用于生成所述第一数据信号,第一序列被用于生成所述第一控制信号。
在实施例6的子实施例1中,所述第一能量不包括所述第一无线信号的发送者发送CP(Cyclic Prefix,循环前缀)的能量。
在实施例6的子实施例2中,所述第一能量是在第一子时频资源中第一调制方式(Modulation Scheme)中所有星座点(Constellation Point)的能量的平均,所述第一调制方式是所述第一无线信号所采用的调制方式。作为一个子实施例,所述第一能量是与所述第一比特块无关的;或者所述 第一能量是与所述第二比特块无关的;或者所述第一能量是与所述第一序列无关的。
在实施例6的子实施例3中,所述第一无线信号是下行传输,所述第一无线信号所采用的调制方式为{64QAM(Quadrature Amplitude Modulation,正交振幅调制),256QAM,1024QAM}中之一。
在实施例6的子实施例4中,所述第一能量的最大值与所述第一子时频资源在目标时频资源池中的频域位置是相关的。
在实施例6的子实施例5中,所述第一能量与所述第一子时频资源在所述目标时频资源池中的位置索引是线性相关的。
作为子实施例5的一个子实施例,所述所述第一子时频资源在所述目标时频资源池中的位置索引是指所述第一子时频资源的最低频率子载波在所述目标时频资源池中的子载波索引;或者所述所述第一子时频资源在所述目标时频资源池中的位置索引是指所述第一子时频资源的在频域的最高频率子载波在所述目标时频资源池中的子载波索引。
作为子实施例5的另一个子实施例,所述所述第一子时频资源在所述目标时频资源池中的位置索引以所述目标时频资源池的中心频率向两端升序排列。
在实施例6的子实施例6中,所述第一能量与所述第一子时频资源在所述目标时频资源池中的位置索引是非线性相关的。
在实施例6的子实施例7中,所述第一能量与所述第一子时频资源在所述目标时频资源池中的位置索引是对数相关的。
实施例7
实施例7示例了一个用户设备中的处理装置的结构框图,如附图7所示。在附图7中,用户设备处理装置100主要由第一处理模块101组成。
在实施例7中,第一处理模块101用于在第一时频资源上发送第一无线信号;或者在所述第一时频资源上接收第一无线信号。所述第一时频资源包括第一子时频资源与第二子时频资源,所述第一子时频资源与所述第二子时频资源不同,所述第一子时频资源与所述第二子时频资源在时域上占用相同的时间间隔。所述第一无线信号在所述第一子时频资源中的每个RU的归一化的发射能量是第一能量,所述第一无线信号在所述第二子时频 资源中每个RU的归一化的发射能量是第二能量。所述第一能量和所述第二能量不相等。所述归一化是对一个调制方式中的所有星座点的能量的平均。所述RU在频域上占用一个子载波,所述RU在时域上占用一个宽带符号的持续时间。所述第一无线信号包括{第一数据信号,第一辅助信号}中的至少之一,第一比特块被用于生成所述第一数据信号,第二比特块被用于生成所述第一辅助信号;或者所述第一比特块被用于生成所述第一数据信号,第一序列被用于生成所述第一辅助信号。第一处理模块101还用于接收第一信令,接收第二信令和接收第三信令,所述第一信令,所述第二信令和所述第三信令分别用于确定参考时频资源,确定{所述第一能量,所述第二能量,所述第一能量和所述第二能量的差值}中至少之一,和所述第一无线信号的配置信息。
在实施例7的子实施例1中,所述第一能量与所述第一子时频资源在目标时频资源池中的频域位置是相关的,所述第一子时频资源属于所述目标时频资源池,所述目标时频资源池是可配置的;或者所述目标时频资源池是预先定义的。
在子实施例1的一个子实施例中,所述第一子时频资源在时域占用的时间间隔为第一时间间隔,所述目标时频资源池在所述第一时间间隔的中心频率为第一中心频率,第一子载波的中心频率与所述第一中心频率的差值的绝对值与第二子载波的中心频率与所述第一中心频率的差值的绝对值不相等。所述第一子载波是所述第一子时频资源中的任意一个子载波,所述第二子载波是所述第二子时频资源中的任意一个子载波。
在子实施例1的另一个子实施例中,第一处理模块101还用于确定所述目标时频资源池。
在实施例7的子实施例2中,所述第一无线信号的发送者在所述参考时频资源中的每个RU的归一化的最大发射能量为第三能量,所述第一能量等于或者小于所述第三能量,所述参考时频资源属于所述目标时频资源池,所述第一子时频资源属于所述参考时频资源,所述第二子时频资源与所述参考时频资源正交。
在子实施例2的一个子实施例中,所述参考时频资源所占用的频域资源和{所述目标时频资源池的频域位置,所述参考时频资源中的子载 波的子载波间距}中至少之一是相关的。
在子实施例2的另一个子实施例中,第一处理模块101还用于确定所述第三能量。
在实施例7的子实施例3中,所述所述第一无线信号的配置信息包括{所述第一无线信号所占用的时频资源,所述第一无线信号的生成序列,所述第一无线信号的MCS,NDI,所述第一无线信号的RV,HARQ进程号,所述第一无线信号的发送天线端口}中的至少之一。
实施例8
实施例8示例了一个基站设备中的处理装置的结构框图,如附图8所示。附图8中,基站设备处理装置200主要由第二处理模块201组成。
在实施例8中,第二处理模块201用于在第一时频资源上接收第一无线信号;或者在所述第一时频资源上发送第一无线信号。所述第一时频资源包括第一子时频资源与第二子时频资源,所述第一子时频资源与所述第二子时频资源不同,所述第一子时频资源与所述第二子时频资源在时域上占用相同的时间间隔。所述第一无线信号在所述第一子时频资源中的每个RU的归一化的发射能量是第一能量,所述第一无线信号在所述第二子时频资源中每个RU的归一化的发射能量是第二能量。所述第一能量和所述第二能量不相等。所述归一化是对一个调制方式中的所有星座点的能量的平均。所述RU在频域上占用一个子载波,所述RU在时域上占用一个宽带符号的持续时间。所述第一无线信号包括{第一数据信号,第一辅助信号}中的至少之一,第一比特块被用于生成所述第一数据信号,第二比特块被用于生成所述第一辅助信号;或者所述第一比特块被用于生成所述第一数据信号,第一序列被用于生成所述第一辅助信号。第二处理模块201还用于发送第一信令,发送第二信令和发送第三信令,所述第一信令,所述第二信令和所述第三信令分别用于确定参考时频资源,确定{所述第一能量,所述第二能量,所述第一能量和所述第二能量的差值}中至少之一,和所述第一无线信号的配置信息。
在实施例8的子实施例1中,所述第一能量与所述第一子时频资源在目标时频资源池中的频域位置是相关的,所述第一子时频资源属于所述目标时频资源池,所述目标时频资源池是可配置的;或者所述目标时 频资源池是预先定义的。
在子实施例1的一个子实施例中,所述第一子时频资源在时域占用的时间间隔为第一时间间隔,所述目标时频资源池在所述第一时间间隔的中心频率为第一中心频率,第一子载波的中心频率与所述第一中心频率的差值的绝对值与第二子载波的中心频率与所述第一中心频率的差值的绝对值不相等。所述第一子载波是所述第一子时频资源中的任意一个子载波,所述第二子载波是所述第二子时频资源中的任意一个子载波。
在子实施例1的另一个子实施例中,第二处理模块201还用于配置所述目标时频资源池。
在实施例8的子实施例2中,所述第一无线信号的发送者在所述参考时频资源中的每个RU的归一化的最大发射能量为第三能量,所述第一能量等于或者小于所述第三能量,所述参考时频资源属于所述目标时频资源池,所述第一子时频资源属于所述参考时频资源,所述第二子时频资源与所述参考时频资源正交。
在子实施例2的一个子实施例中,所述参考时频资源所占用的频域资源和{所述目标时频资源池的频域位置,所述参考时频资源中的子载波的子载波间距}中至少之一是相关的。
在子实施例2的另一个子实施例中,第二处理模块201还用于配置所述第三能量。
在实施例8的子实施例3中,所述所述第一无线信号的配置信息包括{所述第一无线信号所占用的时频资源,所述第一无线信号的生成序列,所述第一无线信号的MCS,NDI,所述第一无线信号的RV,HARQ进程号,所述第一无线信号的发送天线端口}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中 的UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,MTC设备,NB-IoT设备,车载通信设备等无线通信设备。本申请中的基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种支持功率调整的UE中的方法,其中,包括:
    -在第一时频资源上发送第一无线信号;或者在所述第一时频资源上接收第一无线信号;
    其中,所述第一时频资源包括第一子时频资源与第二子时频资源,所述第一子时频资源与所述第二子时频资源不同,所述第一子时频资源与所述第二子时频资源在时域上占用相同的时间间隔;所述第一无线信号在所述第一子时频资源中的每个RU的归一化的发射能量是第一能量,所述第一无线信号在所述第二子时频资源中每个RU的归一化的发射能量是第二能量;所述第一能量和所述第二能量不相等;所述归一化是对一个调制方式中的所有星座点的能量的平均;所述RU在频域上占用一个子载波,所述RU在时域上占用一个宽带符号的持续时间;所述第一无线信号包括{第一数据信号,第一辅助信号}中的至少之一,第一比特块被用于生成所述第一数据信号,第二比特块被用于生成所述第一辅助信号;或者所述第一比特块被用于生成所述第一数据信号,第一序列被用于生成所述第一辅助信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一能量与所述第一子时频资源在目标时频资源池中的频域位置是相关的,所述第一子时频资源属于所述目标时频资源池,所述目标时频资源池是可配置的;或者所述目标时频资源池是预先定义的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一子时频资源在时域占用的时间间隔为第一时间间隔,所述目标时频资源池在所述第一时间间隔的中心频率为第一中心频率,第一子载波的中心频率与所述第一中心频率的差值的绝对值与第二子载波的中心频率与所述第一中心频率的差值的绝对值不相等。所述第一子载波是所述第一子时频资源中的任意一个子载波,所述第二子载波是所述第二子时频资源中的任意一个子载波。
  4. 根据权利要求1,2或3中任一权利要求所述的方法,其特征在于,还包括:
    -接收第一信令;
    其中,所述第一信令被用于确定参考时频资源;所述第一无线信号的发送者在所述参考时频资源中的每个RU的归一化的最大发射能量为第三能量,所述第一能量等于或者小于所述第三能量,所述参考时频资源属于所述目标时频资源池,所述第一子时频资源属于所述参考时频资源,所述第二子时频 资源与所述参考时频资源正交。
  5. 根据权利要求4所述的方法,其特征在于,所述参考时频资源所占用的频域资源和{所述目标时频资源池的频域位置,所述参考时频资源中的子载波的子载波间距}中至少之一是相关的。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,还包括:
    -接收第二信令;
    其中,所述第二信令被用于确定{所述第一能量,所述第二能量,所述第一能量和所述第二能量的差值}中至少之一。
  7. 根据权利要求1至6中任一权利要求所述的方法,其特征在于,还包括:
    -接收第三信令;
    其中,所述第三信令包括所述第一无线信号的配置信息,所述配置信息包括{所占用的时频资源,生成序列,MCS,NDI,RV,HARQ进程号,发送天线端口}中的至少之一。
  8. 一种支持功率调整的基站中的方法,其中,包括如下步骤:
    -步骤A.在第一时频资源上接收第一无线信号;或者在所述第一时频资源上发送第一无线信号;
    其中,所述第一时频资源包括第一子时频资源与第二子时频资源,所述第一子时频资源与所述第二子时频资源不同,所述第一子时频资源与所述第二子时频资源在时域上占用相同的时间间隔;所述第一无线信号在所述第一子时频资源中的每个RU的归一化的发射能量是第一能量,所述第一无线信号在所述第二子时频资源中每个RU的归一化的发射能量是第二能量;所述第一能量和所述第二能量不相等;所述归一化是对一个调制方式中的所有星座点的能量的平均;所述RU在频域上占用一个子载波,所述RU在时域上占用一个宽带符号的持续时间;所述第一无线信号包括{第一数据信号,第一辅助信号}中的至少之一,第一比特块被用于生成所述第一数据信号,第二比特块被用于生成所述第一辅助信号;或者所述第一比特块被用于生成所述第一数据信号,第一序列被用于生成所述第一辅助信号。
  9. 根据权利要求8所述的方法,其特征在于,所述第一能量与所述第一子时频资源在目标时频资源池中的频域位置是相关的,所述第一子时频资源属于 所述目标时频资源池,所述目标时频资源池是可配置的;或者所述目标时频资源池是预先定义的。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一子时频资源在时域占用的时间间隔为第一时间间隔,所述目标时频资源池在所述第一时间间隔的中心频率为第一中心频率,第一子载波的中心频率与所述第一中心频率的差值的绝对值与第二子载波的中心频率与所述第一中心频率的差值的绝对值不相等。所述第一子载波是所述第一子时频资源中的任意一个子载波,所述第二子载波是所述第二子时频资源中的任意一个子载波。
  11. 根据权利要求8,9或10中任一权利要去所述的方法,其特征在于,还包括:
    -发送第一信令;
    其中,所述第一信令被用于确定参考时频资源;所述第一无线信号的发送者在所述参考时频资源中的每个RU的归一化的最大发射能量为第三能量,所述第一能量等于或者小于所述第三能量,所述参考时频资源属于所述目标时频资源池,所述第一子时频资源属于所述参考时频资源,所述第二子时频资源与所述参考时频资源正交。
  12. 根据权利要求11所述的方法,其特征在于,所述参考时频资源所占用的频域资源和{所述目标时频资源池的频域位置,所述参考时频资源中的子载波的子载波间距}中至少之一是相关的。
  13. 根据权利要求8至12中任一权利要求所述的方法,其特征在于,还包括:
    -发送第二信令;
    其中,所述第二信令被用于确定{所述第一能量,所述第二能量,所述第一能量和所述第二能量的差值}中至少之一。
  14. 根据权利要求8至13中任一权利要求所述的方法,其特征在于,还包括:
    -发送第三信令;
    其中,所述第三信令包括所述第一无线信号的配置信息,所述配置信息包括{所占用的时频资源,生成序列,MCS,NDI,RV,HARQ进程号,发送天线端口}中的至少之一。
  15. 一种支持功率调整的用户设备,其中,包括如下模块:
    -第一处理模块:用于在第一时频资源上发送第一无线信号;或者在所述第一时频资源上接收第一无线信号;
    其中,所述第一时频资源包括第一子时频资源与第二子时频资源,所述第一子时频资源与所述第二子时频资源不同,所述第一子时频资源与所述第二子时频资源在时域上占用相同的时间间隔;所述第一无线信号在所述第一子时频资源中的每个RU的归一化的发射能量是第一能量,所述第一无线信号在所述第二子时频资源中每个RU的归一化的发射能量是第二能量;所述第一能量和所述第二能量不相等;所述归一化是对一个调制方式中的所有星座点的能量的平均;所述RU在频域上占用一个子载波,所述RU在时域上占用一个宽带符号的持续时间。所述第一无线信号包括{第一数据信号,第一辅助信号}中的至少之一,第一比特块被用于生成所述第一数据信号,第二比特块被用于生成所述第一辅助信号;或者所述第一比特块被用于生成所述第一数据信号,第一序列被用于生成所述第一辅助信号。
  16. 根据权利要求15所述的用户设备,其特征在于,所述第一处理模块还用于接收第二信令,所述第二信令被用于确定{所述第一能量,所述第二能量,所述第一能量和所述第二能量的差值}中至少之一。
  17. 一种支持功率调整的基站设备,其中,包括如下模块:
    -第二处理模块:用于在第一时频资源上接收第一无线信号;或者在所述第一时频资源上发送第一无线信号;
    其中,所述第一时频资源包括第一子时频资源与第二子时频资源,所述第一子时频资源与所述第二子时频资源不同,所述第一子时频资源与所述第二子时频资源在时域上占用相同的时间间隔;所述第一无线信号在所述第一子时频资源中的每个RU的归一化的发射能量是第一能量,所述第一无线信号在所述第二子时频资源中每个RU的归一化的发射能量是第二能量;所述第一能量和所述第二能量不相等;所述归一化是对一个调制方式中的所有星座点的能量的平均;所述RU在频域上占用一个子载波,所述RU在时域上占用一个宽带符号的持续时间;所述第一无线信号包括{第一数据信号,第一辅助信号}中的至少之一,第一比特块被用于生成所述第一数据信号,第二比特块被用于生成所述第一辅助信号;或者所述第一比特块被用于生成所述第一数据信号,第一序列被用于生成所述第一辅助信号。
  18. 根据权利要求17所述的基站设备,其特征在于,所述第二处理模 块还用于发送第二信令,所述第二信令被用于确定{所述第一能量,所述第二能量,所述第一能量和所述第二能量的差值}中至少之一。
PCT/CN2017/099881 2016-09-19 2017-08-31 一种用户设备、基站中的发射功率调整的方法和装置 WO2018049988A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610831274.4A CN107846726B (zh) 2016-09-19 2016-09-19 一种ue、基站中的发射功率调整的方法和装置
CN201610831274.4 2016-09-19

Publications (1)

Publication Number Publication Date
WO2018049988A1 true WO2018049988A1 (zh) 2018-03-22

Family

ID=61618625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099881 WO2018049988A1 (zh) 2016-09-19 2017-08-31 一种用户设备、基站中的发射功率调整的方法和装置

Country Status (2)

Country Link
CN (2) CN107846726B (zh)
WO (1) WO2018049988A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112153597A (zh) * 2019-06-28 2020-12-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110784291B (zh) * 2018-07-30 2020-09-04 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635598A (zh) * 2008-07-24 2010-01-27 大唐移动通信设备有限公司 一种估计噪声功率的方法和装置
CN101924721A (zh) * 2009-06-10 2010-12-22 清华大学 确定下行多址系统传输模式的方法及发射端、接收端装置
CN102025393A (zh) * 2009-09-09 2011-04-20 华为技术有限公司 数据传输方法及装置
US20150071365A1 (en) * 2012-04-27 2015-03-12 China Academy Of Telecommunications Technology Method, system, and device for performing uplink transmission

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100433924C (zh) * 2005-10-27 2008-11-12 华为技术有限公司 一种上行/下行控制信道的实现方法
CN101064706A (zh) * 2006-04-28 2007-10-31 华为技术有限公司 时频资源的分配方法及其装置和无线通信系统
KR101792110B1 (ko) * 2007-09-12 2017-11-02 애플 인크. 업링크 시그널링 시스템 및 방법
CN101409583B (zh) * 2007-10-11 2013-02-13 电信科学技术研究院 信号发送方法、信号发送装置
CN102036401B (zh) * 2009-09-30 2013-11-06 华为技术有限公司 多载波信道配置方法、装置以及通信系统
CN102480734B (zh) * 2010-11-22 2014-04-30 中兴通讯股份有限公司 一种分配时频资源的方法和装置
WO2015149349A1 (zh) * 2014-04-04 2015-10-08 华为技术有限公司 参考信号的检测方法、接收方法、用户设备和基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635598A (zh) * 2008-07-24 2010-01-27 大唐移动通信设备有限公司 一种估计噪声功率的方法和装置
CN101924721A (zh) * 2009-06-10 2010-12-22 清华大学 确定下行多址系统传输模式的方法及发射端、接收端装置
CN102025393A (zh) * 2009-09-09 2011-04-20 华为技术有限公司 数据传输方法及装置
US20150071365A1 (en) * 2012-04-27 2015-03-12 China Academy Of Telecommunications Technology Method, system, and device for performing uplink transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112153597A (zh) * 2019-06-28 2020-12-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112153597B (zh) * 2019-06-28 2022-03-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN107846726B (zh) 2019-08-09
CN110430612B (zh) 2021-10-29
CN110430612A (zh) 2019-11-08
CN107846726A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
US10461893B2 (en) Data and control multiplexing in PUSCH in wireless networks
US11363618B2 (en) Method and device for narrow band communication in UE and base station
US11374710B2 (en) Method and device for wireless communication
WO2018145607A1 (zh) 一种用于无线通信中的方法和装置
CN109618402B (zh) 一种ue、基站中的发射功率调整的方法和装置
WO2017115609A1 (ja) 装置及び方法
US20220070900A1 (en) Subslot-based harq-ack timing and pucch resource determination for ultra-low latency pdsch transmission
KR102637565B1 (ko) 사용자 장비들, 기지국들 및 방법들
US11877283B2 (en) Terminal device, base station device, and method
CN114944902B (zh) 一种被用于无线通信的节点中的方法和装置
WO2017195655A1 (ja) 端末装置、基地局装置および通信方法
JP2013085152A (ja) 無線通信システム、無線基地局装置、マシン通信端末及び無線通信方法
JP2019033374A (ja) 基地局装置および通信方法
CN113647179A (zh) 在无线通信系统中用于基于无授权的数据传输的方法和装置
CN111213421A (zh) 时隙聚合
WO2018157365A1 (zh) 一种被用于功率调整的用户设备、基站中的方法和装置
WO2018049988A1 (zh) 一种用户设备、基站中的发射功率调整的方法和装置
US8982823B2 (en) Method and apparatus for allocating terminal identifier in wireless access system
WO2018128087A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
US20210329622A1 (en) Low latency physical uplink control channel (pucch) configuration and resource allocation
JP2019054306A (ja) 基地局装置、端末装置および通信方法
CN107920389B (zh) 一种ue、基站中的资源映射调整的方法和装置
WO2021155816A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018137130A1 (zh) Harq进程的配置方法、装置及设备
US12003448B2 (en) Method and device for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17850190

Country of ref document: EP

Kind code of ref document: A1