WO2018049612A1 - 一种测量信号传输方法及网络设备 - Google Patents

一种测量信号传输方法及网络设备 Download PDF

Info

Publication number
WO2018049612A1
WO2018049612A1 PCT/CN2016/099068 CN2016099068W WO2018049612A1 WO 2018049612 A1 WO2018049612 A1 WO 2018049612A1 CN 2016099068 W CN2016099068 W CN 2016099068W WO 2018049612 A1 WO2018049612 A1 WO 2018049612A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical resource
measurement signal
resource block
user equipment
occupied
Prior art date
Application number
PCT/CN2016/099068
Other languages
English (en)
French (fr)
Inventor
邝奕如
王键
曾勇波
徐海博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3035576A priority Critical patent/CA3035576A1/en
Priority to CN201680089083.3A priority patent/CN109690995A/zh
Priority to EP16915997.7A priority patent/EP3493451A4/en
Priority to BR112019004028-5A priority patent/BR112019004028A2/pt
Priority to US16/333,178 priority patent/US20200187034A1/en
Priority to RU2019110424A priority patent/RU2713448C1/ru
Priority to AU2016423212A priority patent/AU2016423212C1/en
Priority to JP2019535426A priority patent/JP6732135B2/ja
Priority to KR1020197007486A priority patent/KR102228469B1/ko
Priority to PCT/CN2016/099068 priority patent/WO2018049612A1/zh
Publication of WO2018049612A1 publication Critical patent/WO2018049612A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a measurement signal transmission method and a network device.
  • a Reference Signal is a known signal that is provided by the transmitting end to the receiving end for channel estimation or channel sounding.
  • the downlink reference signal is a signal that is provided by the base station to the user equipment (User Equipment, UE) for downlink channel estimation or measurement, and a cell-specific reference signal (CRS) is present in the downlink reference signal, which can be used to solve
  • the downlink control channel can also be used for downlink channel measurement, and the downlink channel measurement result is a key indicator for cell selection/reselection and handover.
  • CRS is mainly used for downlink channel measurement.
  • a CRS is distributed on any physical resource block (PRB) on the system frequency band, that is, the CRS is a reference signal of a full-band distribution.
  • PRB physical resource block
  • Subsystems such as the Narrow Band-Internet of Thing (NB-IoT) are used in the future fifth-generation mobile communication technology (5G) or new radio access technology (NR).
  • 5G fifth-generation mobile communication technology
  • NR new radio access technology
  • the subsystem must be deployed at the 100 kHz channel grid. If the center frequency of a PRB or the frequency offset near the center frequency is within an integer multiple of 100 kHz, the PRB can be considered to deploy the subsystem.
  • the CRS is continuously distributed over the entire frequency band, that is, there is a CRS distribution on each PRB.
  • some PRBs are used to deploy subsystems.
  • These reference signals are not expected on the PRBs for deploying subsystems, so they are similar to CRS.
  • the deployment of the reference signals for the band distribution and the deployment of the subsystems will affect each other.
  • the embodiment of the invention provides a measurement signal transmission method and a network device, which can reduce the influence between the deployment of the measurement signal and the subsystem deployment, and at the same time ensure the measurement performance of the measurement signal.
  • a first aspect of the embodiments of the present invention provides a measurement signal transmission method, including:
  • the physical resource block Determining a physical resource block for deploying a measurement signal, the physical resource block being a subset of all physical resource blocks in a frequency domain corresponding to a channel bandwidth of the user equipment;
  • the physical resource block for deploying the measurement signal is a subset of all physical resource blocks in the frequency domain corresponding to the channel bandwidth of the user equipment, that is, not all physical resource blocks in the frequency domain. Used to deploy measurement signals, the remaining physical resource blocks can be used for the deployment of other signals or systems, which can ensure the measurement performance of the measurement signals, and reduce the possibility that the deployment of measurement signals and the deployment of subsystems occupy the same physical resource block. , thereby reducing the impact of measurement signal deployment and subsystem deployment.
  • the method further includes sending, to the user equipment, a resource indication message, where the resource indication message indicates that the physical resource block occupied by the measurement signal is deployed and/or the measurement signal is transmitted.
  • the resource indication message is used to inform the user equipment which physical resource blocks are deployed with measurement signals, so that the user equipment can find the measurement signal on the corresponding physical resource block.
  • the resource indication message is used to inform the user equipment which physical resources are used to transmit the measurement signal, so that the user equipment can find the corresponding physical resource block according to the physical resource, thereby acquiring the measurement signal.
  • the resource indication message is a primary synchronization signal PSS
  • a root sequence of the PSS indicates that the physical resource block occupied by the measurement signal is deployed and/or the measurement signal is used.
  • the physical resources It can be understood that different root sequences indicate different deployment manners of measurement signals, and the deployment manner is represented by occupied physical resource blocks.
  • the resource indication message is a broadcast message, where the broadcast message indicates the physical resource block occupied by the deployment of the measurement signal and/or the physical occupied by the measurement signal. Resources. Specifically, the resource indicator bit in the broadcast message indicates that the different value of the resource indicator bit indicates different deployment modes, and the deployment mode is represented by the occupied physical resource block.
  • the physical resource block for deploying the measurement signal is determined according to the physical resource block occupied by the deployment subsystem, that is, avoiding the physical resource block occupied by the subsystem or reducing the subsystem occupying the same as the measurement signal. The probability of a physical resource block, thereby avoiding or reducing the impact between the deployment of measurement signals and subsystem deployment.
  • the physical resource block includes at least two physical resource blocks that are consecutive in position, indicating that the measurement signal occupies a continuous physical resource block.
  • the physical resource block includes at least two objects at equal intervals
  • the resource block indicates that the physical resource block occupied by the measurement signal is discontinuous. It can be understood that the number of occupied physical resource blocks is equal to the number of columns.
  • the channel information includes at least one of a reference signal received power RSRP, a received signal strength indicator RSSI, and a reference signal received quality RSRQ.
  • a second aspect of the embodiments of the present invention provides a network device, including:
  • a processor configured to determine a physical resource block for deploying a measurement signal, where the physical resource block is a subset of all physical resource blocks in a frequency domain corresponding to a channel bandwidth of the user equipment;
  • the processor is further configured to determine a physical resource corresponding to the physical resource block
  • a transmitter configured to transmit, by using the physical resource, a measurement signal to the user equipment, where the measurement signal is used by the user equipment to measure channel information.
  • the network device provided by the second aspect of the embodiment of the present invention is used to implement the measurement signal transmission method provided by the first aspect of the embodiments of the present invention, and details are not described herein again.
  • a third aspect of the embodiments of the present invention provides a computer storage medium for storing computer software instructions for use in the network device, including a program designed to perform the above aspects.
  • the physical resource block is a subset of all physical resource blocks in the frequency domain corresponding to the channel bandwidth of the user equipment, and the physical area corresponding to the physical resource block is determined by determining a physical resource block for deploying the measurement signal.
  • the measurement signals are used by the user equipment to measure channel information, thereby avoiding deployment of measurement signals occupying the same physical resource blocks as the deployment subsystem, or reducing deployment measurement signals to occupy the same footprint as the deployment subsystem.
  • the probability of the physical resource block which in turn reduces the impact between the deployment of the measurement signal and the subsystem deployment, while ensuring the measurement performance of the measurement signal.
  • FIG. 1 is a schematic diagram of a possible network architecture according to an embodiment of the present invention
  • 2 is a mapping list between a channel bandwidth and a number of physical resource blocks
  • FIG. 3 is a schematic flowchart of a method for transmitting a measurement signal according to an embodiment of the present invention
  • Figure 4 is a physical resource block comparison table of the deployment subsystem
  • FIG. 5a is a physical resource block comparison table for deploying measurement signals
  • FIG. 5b is another physical resource block comparison table for deploying measurement signals
  • FIG. 5c is another physical resource block comparison table for deploying measurement signals
  • Figure 6a is a schematic diagram of continuous deployment of measurement signals
  • Figure 6b is a schematic diagram of an equal interval deployment of measurement signals
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • LTE Long Term Evolution
  • UMTS Terrestrial Radio Access Universal Mobile Telecommunications System
  • UTRAN Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data Rate for GSM Evolution
  • GSM EDGE Radio Access Network GSM EDGE Radio Access Network
  • GPRS General Packet Radio Service
  • SGSN Serving GPRS Support
  • GGSN Gateway GPRS Support Node
  • embodiments of the present invention can also be applied to other communication systems, such as a Public Land Mobile Network (PLMN) system, and even a future 5G communication system, an NR system, and the like, which are not limited by the embodiment of the present invention.
  • PLMN Public Land Mobile Network
  • embodiments of the present invention are applied to future 5G communication systems or NR system architectures.
  • the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), and the user equipment can include, but is not limited to, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, and a remote station. , a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • the network device may be a device for communicating with the user equipment, for example, may be a base station (Base Transceiver Station, BTS) in the GSM system or CDMA, or a base station (NodeB, NB) in the WCDMA system, or may be An evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a network side device in a future 5G communication system or a network device in an NR system.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • NB base station
  • eNodeB evolved base station
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disk (CD), a digital versatile disk (Digital Versatile Disk, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 is a schematic diagram of a possible network architecture provided by an embodiment of the present invention.
  • the network architecture 100 includes a network device 102, which may include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of user devices, such as user device 116 and user device 122. However, it will be appreciated that network device 102 can communicate with any number of user devices similar to user device 116 or 122.
  • User devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, in-vehicle devices, and/or for communicating over wireless communication system 100. Any other suitable device.
  • user equipment 116 is in communication with antennas 112 and 114, with antennas 112 and 114 transmitting information to terminal device 116 over forward link 118 and receiving information from user equipment 116 over reverse link 120.
  • user equipment 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to user equipment 122 over forward link 124 and information from user equipment 122 over reverse link 126.
  • network device 122 transmits measurement signals to user equipment, such as 118 and 124 shown in FIG.
  • FIG. 1 is only a simplified schematic diagram of an example, and other network devices may also be included in the network, which are not shown in FIG. 1.
  • the network device 122 shown in FIG. 1 can also configure system resources corresponding to channel bandwidth and channel bandwidth for the user equipment 116 or 122 or other user equipment.
  • the channel bandwidth refers to a signal lower limit frequency and an upper limit frequency that are allowed to pass through the channel, that is, a frequency pass band is defined.
  • the channel bandwidth may be the main system bandwidth.
  • the network device 122 may also configure a subcarrier spacing for the user equipment 116 or 122, determine system resources corresponding to the channel bandwidth according to the channel bandwidth and the subcarrier spacing, and then configure system resources corresponding to the channel bandwidth.
  • the system resource corresponding to the channel bandwidth may be all physical resource blocks in the frequency domain corresponding to the channel bandwidth, that is, the total number of physical resource blocks in the frequency domain.
  • the physical resource blocks involved in the embodiments of the present invention are physical resource blocks in the frequency domain. 2 which is a mapping list between the channel bandwidth and the number of physical resource blocks (PRBs).
  • PRBs physical resource blocks
  • the mapping list shown in FIG. 2 is a mapping list corresponding to a subcarrier spacing of 15 kHz, if the subcarrier spacing is not At 15 kHz, the correspondence between the channel bandwidth and the number of PRBs is different from that of FIG.
  • each PRB includes 12 subcarriers.
  • the CRS used for downlink channel measurement is distributed on any PRB in the system frequency band, for example, the channel bandwidth is 3 MHz, the subcarrier spacing is 15 kHz, and CRS is deployed on the corresponding 15 PRBs.
  • the numerology may include a subcarrier interval, a cyclic prefix length, a transmission time interval length, a channel bandwidth, and the like.
  • the downlink subcarrier spacing in future 5G communication systems or NR systems is 15 kHz, or 2 n times 15 kHz, such as 120 kHz, 150 kHz, and the like.
  • Subsystem deployment can be supported under various numerologies. Among them, the subsystems may include, but are not limited to, a narrowband Internet of Things. The subsystem must be deployed at the 100 kHz channel grid. If the center frequency of a PRB or a certain frequency offset near the center frequency is within an integer multiple of 100 kHz, the PRB can be considered to deploy subsystems.
  • PRBs Since there is a CRS distribution on each PRB, some PRBs are used to deploy the subsystems. These PRBs for subsystem deployment do not want to have reference signals, so the deployment and sub-band of the full-band-distributed reference signals like CRS The deployment of the system will affect each other.
  • the embodiment of the present invention provides a measurement signal and a measurement signal transmission method, which can avoid or reduce the measurement signal.
  • the measurement signal is used by the user equipment to measure channel information, that is, to implement a measurement function of the CRS, and the measurement signal has forward compatibility, that is, compatible with a future 5G communication system or an NR system or a future sixth generation mobile communication technology ( 6G) and other communication systems.
  • the measurement signal is not a reference signal for the full band distribution. It should be noted that the name of the measurement signal does not constitute a limitation on the embodiment of the present invention.
  • the embodiment of the invention further provides a network device for implementing the measurement signal transmission method.
  • FIG. 3 is a schematic flowchart of a method for transmitting a measurement signal according to an embodiment of the present invention, where the method may include:
  • any one of the network devices may configure a channel bandwidth for each user equipment within its coverage, and in the presence of a subsystem, the channel bandwidth may be a primary system bandwidth.
  • the network device configures a channel bandwidth, a system resource corresponding to the channel bandwidth, for the user equipment.
  • the system resource corresponding to the channel bandwidth is all physical resource blocks in the frequency domain corresponding to the channel bandwidth.
  • the network device further configures a subcarrier spacing for the user equipment, and determines, according to the channel bandwidth and the subcarrier spacing, system resources corresponding to the channel bandwidth, and further the user The device configures system resources corresponding to the channel bandwidth. If the subcarrier spacing is 15 kHz, the network device may configure the number of PRBs corresponding to the channel bandwidth for the user equipment according to the mapping list between the channel bandwidth and the number of PRBs shown in FIG. 2 .
  • the network device configures a physical resource block for deploying a subsystem in a system resource corresponding to the user equipment, or a user deployment measurement, while configuring the channel bandwidth and the system resource corresponding to the user equipment.
  • the subsystem Since the subsystem must be deployed at the 100 kHz channel grid, only the PRBs that partially satisfy this condition can deploy the subsystem.
  • the center frequency of each PRB is calculated. If the center frequency of a PRB or a certain frequency offset near the center frequency of the PRB is within an integer multiple of 100 kHz, the PRB can be considered to deploy a subsystem. Since the future 5G communication system or NR system can support multiple numerologies, that is, support multiple subcarrier spacings, for a plurality of subcarrier spacings, and the number of PRBs corresponding to multiple channel bandwidths, the deployment subsystem shown in FIG. 4 is calculated. Physical resource block comparison table. The look-up table shown in FIG.
  • the PRB 4 describes the PRB number (numbering starts from 0) occupied by each seed carrier interval in each of the plurality of subcarrier intervals. Taking the subcarrier spacing of 15 kHz and the number of PRBs corresponding to the channel bandwidth as 15 as an example, since one PRB includes 12 subcarriers, the PRB width at this time is 180 kHz, and the PRB that can be used to deploy the subsystem is represented as (2). ;12), that is, the PRB numbered 2 and 12 in the 15 PRBs can be used to deploy the subsystem. It should be noted that the subsystems can be deployed simultaneously on the PRBs numbered 2 and 12, or on any of the PRBs numbered 2 and 12, or numbered 2 and numbered 12 Not deployed on the PRB.
  • the subcarrier spacing is 37.5 kHz, and the number of PRBs corresponding to the channel bandwidth is 15.
  • the PRB width is 450 kHz
  • the PRB that can be used to deploy the subsystem is (1, 3; 11, 13).
  • the PRBs numbered 1, numbered 3, numbered 11, and numbered 13 of the 15 PRBs can be used to deploy subsystems. It should be noted that the subsystem can be deployed on one, multiple or all PRBs of the four PRBs, or Not deployed on all four PRBs.
  • the network device may configure a physical resource block for deploying a subsystem in a system resource corresponding to the user equipment according to the comparison table shown in FIG. 4, in combination with the channel bandwidth and the sub-carrier spacing.
  • the physical resource block used to deploy the subsystem may be zero PRBs, one or more PRBs.
  • the network device determines a physical resource block for deploying a measurement signal, the physical resource block being a subset of all physical resource blocks in a frequency domain corresponding to a channel bandwidth.
  • the network device determines, according to the physical resource block occupied by the deployment subsystem, a physical resource used to deploy the measurement signal, thereby preventing the deployment of the measurement signal from occupying the same physical resource block as the subsystem deployment, or reducing the measurement signal.
  • the deployment and subsystem deployments occupy the same probability of physical resource blocks, thereby avoiding or reducing the impact on each other.
  • the physical resource block used to deploy the measurement signal includes at least two physical resource blocks that are consecutive in position. Wherein, the position continuously indicates that the resources extending from the middle to the both sides of the system resource are continuous without intervals. Continuous position can be understood as the continuous PRB number.
  • a physical resource block comparison table for deploying measurement signals shown in FIG. 5a can be summarized and constructed. The look-up table shown in Figure 5a describes the number of consecutive PRBs that can be used to deploy measurement signals at various sub-carrier intervals, various PRB numbers.
  • the PRB that can be used to deploy the measurement signal corresponds to (9, 15), and 9 indicates that the measurement signal can occupy the middle of the 15 PRBs.
  • a continuous 9 PRBs extending to both sides, 15 indicates that the measurement signal can occupy the continuous 15 PRBs.
  • the measurement signal can occupy 9 consecutive PRBs from number 3 to number 11; when the subsystem is not deployed, the measurement signal can occupy from number 0 to number 14 these 15 consecutive PRBs. Since the situation listed in Fig. 5a is more and the complexity is higher, based on the comparison table shown in Fig.
  • n represents the most intermediate PRB in the PRB corresponding to the channel bandwidth.
  • PRB PRB number 7
  • the PRB that can be used to deploy the measurement signal is (n-4, n+4), indicating that the PRB that can be used to deploy the measurement signal is a continuous 9 PRB extending from the middle to the both sides. , that is, consecutive 9 PRBs from number 3 to number 11.
  • n-7, n+7) indicates that the PRB that can be used to deploy the measurement signal is a continuous 15 PRBs extending from the middle to the sides. If the number of PRBs corresponding to the channel bandwidth is even, n - , n + represent the two most intermediate PRBs in the PRB corresponding to the channel bandwidth.
  • the number of PRBs corresponding to the channel bandwidth is 50, and the two most intermediate PRBs are The 25th (numbered 24) and the 26th PRB (numbered 25 PRB), the PRB that can be used to deploy the measurement signal is (n - -4, n + +4), indicating that the PRB that can be used to deploy the measurement signal is A continuous 10 PRBs extending from the middle to the sides, that is, 10 consecutive PRBs numbered 20 to 29.
  • (n - -9, n + +9) indicates that the PRBs that can be used to deploy the measurement signals are consecutive 20 PRBs extending from the middle to the sides, that is, consecutive 20 PRBs numbered 15 to 34; (n - -14, n + + 14) indicates that the PRBs that can be used to deploy the measurement signals are consecutive 30 PRBs extending from the middle to the sides, and consecutive 10 PRBs numbered 10 to 39.
  • FIG. 6a shows an example in which the number of PRBs corresponding to the channel bandwidth is 15.
  • the center frequency of the PRB numbered 2 is -907.5 kHz
  • the center frequency of the PRB numbered 12 is 907.5 kHz
  • the frequency offset is ⁇ 7.5. It satisfies an integer multiple of 100 kHz, so subsystems can be deployed on both PRBs. If the subsystems are deployed on the PRBs numbered 2 and 12, that is, the PRBs shown in the first row and the second row of the horizontal stripes in Figure 6a, the measurement signals can be deployed in consecutive 9 numbers from number 3 to number 11.
  • the PRB On the PRB, the PRB shown by the diagonal stripe in the second line in Figure 6a. If no subsystems are deployed on the 15 PRBs, the measurement signals can be deployed on the 15 consecutive PRBs, that is, the PRBs shown in the third row of diagonal stripes in Figure 6a.
  • the physical resource block used to deploy the measurement signal includes at least two physical resource blocks that are equally spaced in position.
  • the equal interval of positions can be understood as the discontinuity of the PRB number.
  • FIG. 5c Another physical resource block comparison table of the deployment measurement signals shown in FIG. 5c can be summarized and constructed.
  • the look-up table shown in Figure 5c describes PRB sequences that can be used to deploy measurement signals at various sub-carrier intervals, various PRB numbers.
  • k 0, 1, 2, . . .
  • n represents the most intermediate PRB in the PRB corresponding to the channel bandwidth, for example, the number of PRBs corresponding to the channel bandwidth.
  • the most intermediate PRB is the 8th PRB (numbered 7 PRB)
  • the PRB sequence that can be used to deploy the measurement signal is ⁇ n+1 ⁇ 2k ⁇ , indicating that the PRB that can be used to deploy the measurement signal is numbered 0, number 2, number 4, number 6, number 8, number 10, number 12, number 14 PRB; ⁇ n ⁇ 3k ⁇ indicates that the PRB that can be used to deploy the measurement signal is number 1.
  • the number is 4, the number is 7, the number is 10, and the number is 13 PRB.
  • n - , n + represent the two most intermediate PRBs in the PRB corresponding to the channel bandwidth.
  • the number of PRBs corresponding to the channel bandwidth is 50, and the two most PRBs are The 25th (numbered 24) and the 26th PRB (PRB numbered 25), the PRB sequence that can be used to deploy the measurement signal is ⁇ n + ⁇ 3k ⁇ , and the data is more than one. It can be understood that the corresponding PRB sequence indicates that the numbers of the PRBs are in the arithmetic progression, and the PRBs for deploying the measurement signals can be deployed in equal intervals (comb deployment).
  • the number of PRBs corresponding to the channel bandwidth is 15 as an example.
  • the subsystems are deployed on the PRBs numbered 2 and 12, that is, the PRBs shown in the horizontal stripes of the first row and the second row in Figure 6b.
  • the PRB sequence ⁇ n ⁇ 3k ⁇ , the measurement signal can be deployed on the PRB numbered 1, numbered 4, number 7, numbered 10, number 13, which is the PRB shown by the second line of diagonal stripes in Figure 6a. It can be seen that the measurement signals are inserted in equal intervals on the PRB between the subsystems, and can be regarded as a comb-like deployment.
  • the network device maps the physical resource block used for deploying the measurement signal according to a mapping relationship between the PRB and the resource element (Resource Element, RE), and determines the mapped physical resource.
  • the physical resource is used to measure the transmission of the signal.
  • the resource unit is the basic unit of the physical resource.
  • the network device may use the physical resource to transmit a measurement signal to the user equipment after the measurement signal is deployed on the physical resource block, that is, the physical resource is transmitted to the user equipment as a carrier of the measurement signal.
  • the network device may further send a resource indication message to the user equipment before or after transmitting the measurement signal, where the resource indication message indicates the physical resource block occupied by the deployment of the measurement signal and/or transmits the measurement The physical resource occupied by the signal.
  • the resource indication message is used to notify the user equipment which physical resource blocks are deployed with measurement signals, so that the user equipment can search for the measurement signal on the corresponding physical resource block.
  • the resource indication message is used to notify the user equipment which physical resources are used to transmit the measurement signal, so that the user equipment can search for a corresponding physical resource block according to the physical resource, thereby acquiring the measurement signal.
  • the resource indication message indicates the physical resource block and the physical resource at the same time, so that the user equipment can quickly acquire the measurement signal.
  • the deployment mode in the following is the manner in which the measurement signal occupies the PRB, and may include continuous occupation and equal interval occupation.
  • the continuous occupation is represented by the number of consecutive PRBs
  • the equal interval occupation is represented by equally spaced PRB sequences.
  • the resource indication message is a Primary Synchronization Channel (PSS), and the PSS includes a root sequence, where the root sequence indicates the physical resource occupied by the deployment of the measurement signal. Blocking and/or transmitting the physical resources occupied by the measurement signals.
  • PSS Primary Synchronization Channel
  • the physical layer distinguishes different cells by Physical Cell Identities (PCI).
  • PCI Physical Cell Identities
  • the Secondary Synchronization Signal is used to transmit the ID in the group, that is, value.
  • the specific method is: the eNB passes the group ID number. The value generates two index values, and then introduces the ID number in the group. The value encoding generates two sequences of length 31 and maps them to the RE corresponding to the SSS. The UE can know which sequence is sent by the current eNB through the blind detection sequence, thereby acquiring the current cell.
  • PSS is used to transmit the ID in the group, that is, value.
  • the specific method is: the eNB will set the ID number in the group.
  • the value is associated with a root sequence index u, and then encoded to generate a ZC sequence d u (n) of length 62, and mapped to the RE corresponding to the PSS, and the UE can obtain the current cell through the blind detection sequence.
  • the associated list of values and root sequence index u and the ZC sequence d u (n) are as follows:
  • the eNB will The value 1 is associated with a root sequence index 29, and then encoded to generate a ZC sequence d u (n) of length 62, and mapped to the RE corresponding to the PSS, and the UE can obtain the current cell through the blind detection sequence.
  • the value is 1.
  • the root sequence included in the PSS is the root sequence index, and one root sequence corresponds to one Value and a way to deploy.
  • the deployment mode is the number of PRBs occupied during continuous deployment.
  • Specific root sequence The value and the number of consecutively deployed PRBs can be found in the following table.
  • ⁇ 4 corresponds to the (n-4,n+4) or (n - -4,n + +4) deployment mode in Figure 5b, indicating that 9 is occupied.
  • the PSS includes a root sequence of 25, then the corresponding The value is 0 and the deployment mode is (n-4, n+4) or (n - -4, n + +4).
  • the root sequence is 25, and the deployment mode is determined according to the root sequence 25 as (n-4, n+4) or (n - -4, n + +4). That is, four PRBs are extended from the PRB in the middle of the frequency band to each side of the frequency band, and measurement signals are deployed on the series of consecutive PRBs.
  • the upper table is stored in both the network device and the user equipment, so that the user equipment can accurately know the deployment mode.
  • the deployment mode is a PRB sequence occupied by an equally spaced deployment.
  • Specific root sequence Values and PRB sequences can be found in the following table.
  • +1 ⁇ 2k corresponds to the deployment mode of ⁇ n+1 ⁇ 2k ⁇ in the PRB sequence in Fig. 5c
  • ⁇ 3k corresponds to the PRB sequence in Fig. 5c as ⁇ n ⁇ 3k ⁇ or ⁇ n + ⁇ 3k ⁇ deployment
  • +2 ⁇ 4k corresponds to the deployment of ⁇ n+2 ⁇ 4k ⁇ or ⁇ n + +2 ⁇ 4k ⁇ in the PRB sequence in Figure 5c
  • +2 ⁇ 5k Corresponding to the deployment mode of the PRB sequence in Fig. 5c being ⁇ n+2 ⁇ 5k ⁇ or ⁇ n + +2 ⁇ 5k ⁇
  • ⁇ k corresponds to the PRB sequence in Fig. 5c being ⁇ n ⁇ k ⁇ or ⁇ n + ⁇ The way k ⁇ is deployed.
  • the PSS includes a root sequence of 101, then the corresponding The value is 0 and the deployment mode is ⁇ n ⁇ 3k ⁇ or ⁇ n + ⁇ 3k ⁇ .
  • the root sequence is 101
  • the deployment mode is determined according to the root sequence 101 as ⁇ n ⁇ 3k ⁇ or ⁇ n + ⁇ 3k ⁇ , that is, from the PRB in the middle of the frequency band to the two sides of the frequency band.
  • the upper table is stored in both the network device and the user equipment, so that the user equipment can accurately know the deployment mode.
  • the resource indication message is a broadcast message, where the broadcast message indicates the physical resource block occupied by the deployment of the measurement signal and/or the physical occupied by the measurement signal.
  • Resources The broadcast message includes a resource indicator bit, and the value of the resource indicator bit indicates the physical resource block occupied by the deployment of the measurement signal and/or the physical resource occupied by the measurement signal.
  • the broadcast message may include, but is not limited to, a System Information Block (MIB) message.
  • MIB System Information Block
  • the 3 bits can represent 8 possible deployment modes.
  • the above two tables respectively list 6 and 5 deployment modes, then 3 bits can represent the above two.
  • the MIB message also includes the channel bandwidth and the system resources configured by the network device for the user equipment.
  • the network device may be preset to a deployment manner corresponding to each value of the resource indication bit, for example, 001 represents ⁇ 7 or +1 ⁇ 2k.
  • the MIB message is broadcast to the user equipment on a Physical Broadcast Channel (PBCH).
  • PBCH Physical Broadcast Channel
  • the user equipment receives the MIB message through the PBCH channel, and determines the deployment mode of the measurement signal according to the value indicated by the resource indication bit, that is, the physical resource block occupied by the measurement signal or the physical resource occupied by the measurement signal.
  • the user equipment When receiving the resource indication information, the user equipment determines a PRB occupied by the measurement signal according to the resource indication information, and receives a measurement signal transmitted by the network device on the corresponding PRB.
  • the user equipment measures channel information according to the measurement signal.
  • the channel information includes Reference Signal Rejected Power (RSRP), Received Signal Strength Indicator (RSSI), and Reference Signal Recieved (Reference Signal Recieved) At least one of Quality, RSRQ).
  • RSRP is the power value of the measurement signal or CRS received by the user equipment, and the value is a linear average value of the single RE power in the measurement bandwidth, which reflects the strength of the useful signal of the cell.
  • the RSSI is the linear average of the power of all signals received by the user equipment (including the same frequency of interference and interference, adjacent frequency interference, thermal noise, etc.), reflecting the load strength on the resource.
  • the user equipment may measure the channel information according to the measurement signal, and may perform fine time frequency synchronization according to the measurement signal.
  • the physical resource block is a subset of all physical resource blocks in the frequency domain corresponding to the channel bandwidth of the user equipment, and the physical area corresponding to the physical resource block is determined by determining a physical resource block for deploying the measurement signal.
  • the measurement signals are used by the user equipment to measure channel information, thereby avoiding deployment of measurement signals occupying the same physical resource blocks as the deployment subsystem, or reducing deployment measurement signals to occupy the same footprint as the deployment subsystem.
  • the probability of the physical resource block which in turn reduces the impact between the deployment of the measurement signal and the subsystem deployment, while ensuring the measurement performance of the measurement signal.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • the network device 700 includes: a processor 701, a transmitter 702, and an antenna, where:
  • the processor 701 is configured to determine a physical resource block for deploying a measurement signal, where the physical resource block is a subset of all physical resource blocks in a frequency domain corresponding to a channel bandwidth of the user equipment;
  • the processor 701 is specifically configured to determine, according to a physical resource block occupied by the deployment subsystem, a physical resource block for deploying the measurement signal.
  • the processor 701 is further configured to determine a physical resource corresponding to the physical resource block;
  • the transmitter 702 is configured to transmit, by using the physical resource, a measurement signal to the user equipment, where the measurement signal is used by the user equipment to measure channel information.
  • the transmitter 702 is further configured to send a resource indication message to the user equipment, where the resource indication message indicates the physical resource block and/or occupied by the deployment of the measurement signal. Transmitting the physical resource occupied by the measurement signal.
  • the resource indication message is a primary synchronization signal PSS
  • the root sequence indication part of the PSS is The physical resource block occupied by the measurement signal and/or the physical resource occupied by the measurement signal.
  • the resource indication message is a broadcast message, where the broadcast message indicates the physical resource block occupied by the deployment of the measurement signal and/or the physical resource occupied by the measurement signal.
  • the physical resource block includes at least two physical resource blocks that are consecutively located.
  • the physical resource block includes at least two physical resource blocks that are equally spaced in position.
  • the channel information includes at least one of a reference signal received power RSRP, a received signal strength indicator RSSI, and a reference signal received quality RSRQ.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • processor 701 is configured to execute 301 and 302 in the embodiment shown in FIG. 3, where the transmitter 702 is configured to execute 303 in the embodiment shown in FIG. 3, and perform sending a resource indication message to the user equipment. .
  • the processor 701 may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), or an application-specific integrated circuit (ASIC). Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor 701 described above may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the processor 701 described above may also be a controller.
  • the processor 701 mainly includes four components: a cell controller, a voice channel controller, a signaling channel controller, and a multi-channel interface for expansion.
  • the above processor 701 is responsible for all mobile communication interface management, mainly the allocation, release and management of wireless channels.
  • the transmitter 702 may be a transceiver, a transceiver circuit or a communication module, a communication interface, or the like.
  • the transceiver includes a receiver and a transmitter. For the user equipment, uplink data can be transmitted through the transmitter, and downlink data can be received through the receiver.
  • the embodiment of the invention further provides a computer storage medium for storing computer software instructions used by the network device, which comprises a program designed to execute the above aspects.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • the computer readable medium may include a random access memory (RAM), a read-only memory (ROM), and an electrically erasable programmable read-only memory (Electrically Erasable Programmable).
  • EEPROM Electrically Error Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • Any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), or wireless technologies such as infrared, radio, and microwave, Then coaxial cable, fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the associated medium.
  • DSL Digital Subscriber Line
  • Disks and discs include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVDs), floppy discs, and Blu-ray discs, where the disc is usually magnetically complex.
  • the data is used, and the disc uses a laser to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Abstract

一种测量信号传输方法及其装置、网络设备,其中方法包括如下步骤:确定用于部署测量信号的物理资源块,所述物理资源块为用户设备的信道带宽对应的频域上的全部物理资源块的子集;确定所述物理资源块对应的物理资源;使用所述物理资源向所述用户设备传输测量信号,所述测量信号用于所述用户设备测量信道信息。可选的,上述方法还包括向所述用户设备发送资源指示消息,所述资源指示消息指示部署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。本发明实施例能够减少测量信号的部署与子系统部署之间的影响,同时保证测量信号的测量性能。

Description

一种测量信号传输方法及网络设备 技术领域
本发明涉及通信技术领域,尤其涉及一种测量信号传输方法及网络设备。
背景技术
参考信号(Reference Signal,RS)是由发射端提供给接收端用于信道估计或信道探测的一种已知信号。下行参考信号是由基站提供给用户设备(User Equipment,UE)用于下行信道估计或测量的信号,在下行参考信号中存在小区特定参考信号(Cell-specific Reference Signal,CRS),可以用来解调下行控制信道,还可以用来做下行信道测量,下行信道测量结果是进行小区选择/重选和切换的关键指标。目前,主要使用CRS来进行下行信道测量。在系统频带上的任意一个物理资源块(Physical Resource Block,PRB)上都分布有CRS,即CRS是一个全频带分布的参考信号。
子系统(例如窄带物联网(Narrow Band–Internet of Thing,NB-IoT))是应用在未来第五代移动通信技术(5G)或新无线接入网技术(New Radio Access Technology,NR)中的一种技术。子系统必须部署在100kHz信道栅格处,如果某个PRB的中心频点或该中心频点的附近一定频率偏移内,满足是100kHz的整数倍,则认为该PRB可以部署子系统。
CRS在整个频带上连续分布,即每个PRB上都有CRS分布,然而部分PRB会被用于部署子系统,这些用于部署子系统的PRB上不希望出现参考信号,因此类似CRS这种全频带分布的参考信号的部署与子系统的部署会彼此影响。
发明内容
本发明实施例提供了一种测量信号传输方法及网络设备,能够减少测量信号的部署与子系统部署之间的影响,同时保证测量信号的测量性能。
本发明实施例第一方面提供一种测量信号传输方法,包括:
确定用于部署测量信号的物理资源块,所述物理资源块为用户设备的信道带宽对应的频域上的全部物理资源块的子集;
确定所述物理资源块对应的物理资源;
使用所述物理资源向所述用户设备传输测量信号,所述测量信号用于所述用户设备测量信道信息。
在本发明实施例第一方面中,用于部署测量信号的物理资源块为用户设备的信道带宽对应的频域上的全部物理资源块的子集,即并不是频域上所有的物理资源块用来部署测量信号,剩余的物理资源块可以用于其它信号或系统的部署,既能保证测量信号的测量性能,又能减少测量信号的部署与子系统的部署占用同一物理资源块的可能性,进而减少测量信号的部署与子系统部署之间的影响。
在一种可能实现的方式中,上述方法还包括向所述用户设备发送资源指示消息,所述资源指示消息指示部署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。通过资源指示消息告知用户设备哪些物理资源块上部署有测量信号,从而便于用户设备在对应的物理资源块上查找测量信号。通过资源指示消息告知用户设备哪些物理资源用于传输测量信号,从而便于用户设备根据物理资源查找对应的物理资源块,从而获取测量信号。
在一种可能实现的方式中,所述资源指示消息为主同步信号PSS,所述PSS的根序列指示部署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。可以理解的是,不同的根序列指示测量信号不同的部署方式,部署方式由所占用的物理资源块表示。
在一种可能实现的方式中,所述资源指示消息为广播消息,所述广播消息指示部署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。具体可由广播消息中的资源指示位来指示,资源指示位的不同数值指示不同的部署方式,部署方式由所占用的物理资源块表示。
在一种可能实现的方式中,根据部署子系统所占用的物理资源块确定用于部署测量信号的物理资源块,即避开子系统所占用的物理资源块或减少子系统与测量信号占用相同物理资源块的概率,从而避免或减少测量信号的部署与子系统部署之间的影响。
在一种可能实现的方式中,所述物理资源块包括位置连续的至少两个物理资源块,表示测量信号占用连续的物理资源块。
在一种可能实现的方式中,所述物理资源块包括位置等间隔的至少两个物 理资源块,表示测量信号占用的物理资源块非连续,可以理解为占用的物理资源块的编号成等差数列。
在一种可能实现的方式中,所述信道信息包括参考信号接收功率RSRP、接收信号强度指示RSSI、参考信号接收质量RSRQ中的至少一种。
本发明实施例第二方面提供一种网络设备,包括:
处理器,用于确定用于部署测量信号的物理资源块,所述物理资源块为用户设备的信道带宽对应的频域上的全部物理资源块的子集;
所述处理器,还用于确定所述物理资源块对应的物理资源;
发送器,用于使用所述物理资源向所述用户设备传输测量信号,所述测量信号用于所述用户设备测量信道信息。
本发明实施例第二方面提供的网络设备用于实现本发明实施例第一方面提供的测量信号传输方法,在此不再赘述。
本发明实施例第三方面提供一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
在本发明实施例中,通过确定用于部署测量信号的物理资源块,物理资源块为用户设备的信道带宽对应的频域上的全部物理资源块的子集,并确定物理资源块对应的物理资源,并使用物理资源向用户设备传输测量信号,测量信号用于用户设备测量信道信息,从而避免部署测量信号与部署子系统占用相同的物理资源块,或减少部署测量信号与部署子系统占用相同的物理资源块的概率,进而减少测量信号的部署与子系统部署之间的影响,同时保证测量信号的测量性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种可能的网络架构示意图;
图2为信道带宽与物理资源块个数之间的映射列表;
图3为本发明实施例提供的一种测量信号传输方法的流程示意图;
图4为部署子系统的物理资源块对照表;
图5a为一种部署测量信号的物理资源块对照表;
图5b为另一种部署测量信号的物理资源块对照表;
图5c为又一种部署测量信号的物理资源块对照表;
图6a为测量信号连续部署的示意图;
图6b为测量信号等间隔部署的示意图;
图7为本发明实施例提供的一种网络设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本发明实施例的技术方案可以应用于长期演进(Long Term Evolution,LTE)架构,还可以应用于通用移动通信系统(Universal Mobile Telecommunications System,UMTS)陆地无线接入网(UMTS Terrestrial Radio Access Network,UTRAN)架构,或者全球移动通信系统(Global System for Mobile Communication,GSM)/增强型数据速率GSM演进(Enhanced Data Rate for GSM Evolution,EDGE)系统的无线接入网(GSM EDGE Radio Access Network,GERAN)架构。在UTRAN架构或/GERAN架构中,MME的功能由 服务通用分组无线业务(General Packet Radio Service,GPRS)支持节点(Serving GPRS Support,SGSN)完成,SGW\PGW的功能由网关GPRS支持节点(Gateway GPRS Support Node,GGSN)完成。本发明实施例的技术方案还可以应用于其他通信系统,例如公共陆地移动网络(Public Land Mobile Network,PLMN)系统,甚至未来的5G通信系统、NR系统等,本发明实施例对此不作限定。优选的,本发明实施例应用于未来5G通信系统或NR系统架构中。
本发明各个实施例可以应用于UE中。用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备可以包括但不限于接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、移动交通工具设备、可穿戴设备,未来5G通信系统中的终端设备等。
本发明各个实施例也可以应用于网络设备中。网络设备可以是用于与用户设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者未来5G通信系统中的网络侧设备或NR系统中的网络设备等。
此外,本发明的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disk,CD)、数字通用盘(Digital Versatile Disk,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是本发明实施例提供的一种可能的网络架构示意图。如图1所示,该网络架构100包括网络设备102,网络设备102可包括多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个用户设备(例如用户设备116和用户设备122)通信。然而,可以理解,网络设备102可以与类似于用户设备116或122的任意数目的用户设备通信。用户设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA、车载设备和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,用户设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从用户设备116接收信息。此外,用户设备122与天线104和106通信,其中天线104和106通过前向链路124向用户设备122发送信息,并通过反向链路126从用户设备122接收信息。
应理解,本发明实施例可以应用于下行传输,即网络设备122向用户设备传输测量信号,例如图1中示出的118和124。图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
图1所示的网络设备122还可以为用户设备116或122或其它用户设备配置信道带宽、信道带宽对应的系统资源。其中,信道带宽是指限定了允许通过该信道的信号下限频率和上限频率,也就是限定了一个频率通带。在未来5G通信系统或NR系统中存在子系统的情况下,信道带宽可以为主系统带宽。网络设备122还可以为用户设备116或122配置子载波间隔,根据信道带宽和子载波间隔确定信道带宽对应的系统资源,进而配置信道带宽对应的系统资源。其中,信道带宽对应的系统资源可以为信道带宽对应的频域上的全部物理资源块,即频域上的物理资源块总数。需要说明的是,本发明实施例中所涉及的物理资源块均为频域上的物理资源块。可参见图2,为信道带宽与物理资源块(PRB)个数之间的映射列表,需要说明的是,图2所示的映射列表为子载波间隔为15kHz对应的映射列表,若子载波间隔不为15kHz,则信道带宽与PRB个数的对应与图2有所不同。在蜂窝通信系统或LTE系统中,每个PRB包括 12个子载波。
目前,用于下行信道测量的CRS在系统频带上的任意一个PRB上都有分布,例如信道带宽为3MHz,子载波间隔为15kHz,其对应的15个PRB上均部署着CRS。
在未来5G通信系统或NR系统中,有一些新的设计与需求,对于每个NR子载波,可以支持多种正交频分复用系统设计的基本参数(numerology)。其中,numerology可以包括子载波间隔、循环前缀长度、传输时间间隔长度、信道带宽等。未来5G通信系统或NR系统中的下行子载波间隔为15kHz,或为15kHz的2n倍,例如120kHz、150kHz等。在各种numerology下,可以支持子系统的部署。其中,子系统可以包括但不限于窄带物联网。子系统必须部署在100kHz信道栅格处,如果某个PRB的中心频点或该中心频点附近一定频率偏移内,满足是100kHz的整数倍,则认为该PRB可以部署子系统。
由于每个PRB上都有CRS分布,然而部分PRB会被用于部署子系统,这些用于子系统部署的PRB不希望出现参考信号,因此类似CRS这种全频带分布的参考信号的部署与子系统的部署会彼此影响。
为了避免或减小类似CRS这种全频带分布的参考信号的部署与子系统部署之间的影响,本发明实施例提供一种测量信号以及一种测量信号传输方法,能够避免或减小测量信号的部署对子系统部署的影响,同时保证测量信号的测量性能。其中,所述测量信号用于用户设备测量信道信息,即实现CRS的测量功能,并且所述测量信号具有前向兼容性,即兼容未来5G通信系统或NR系统或未来第六代移动通信技术(6G)等更远的通信系统。但是,所述测量信号并不是全频带分布的参考信号。需要说明的是,所述测量信号的名称并不构成对本发明实施例的限定。本发明实施例还提供一种网络设备,用于实现所述测量信号传输方法。
下面将结合附图3-附图5对本发明实施例提供的测量信号传输方法进行详细介绍。
请参见图3,为本发明实施例提供的一种测量信号传输方法的流程示意图,该方法可以包括:
301,确定用于部署测量信号的物理资源块,所述物理资源块为用户设备的信道带宽对应的频域上的全部物理资源块的子集;
具体的,任意一个网络设备可针对其覆盖范围内的每个用户设备配置信道带宽,在存在子系统的情况下,所述信道带宽可以为主系统带宽。
网络设备针对用户设备配置信道带宽、所述信道带宽对应的系统资源。所述信道带宽对应的系统资源即为所述信道带宽对应的频域上的全部物理资源块。在一种可能实现的方式中,所述网络设备还为所述用户设备配置子载波间隔,根据所述信道带宽以及所述子载波间隔确定所述信道带宽对应的系统资源,进而为所述用户设备配置所述信道带宽对应的系统资源。若所述子载波间隔为15kHz,则所述网络设备可以根据图2所示的信道带宽与PRB个数之间的映射列表为所述用户设备配置所述信道带宽对应的PRB个数。
所述网络设备在配置所述信道带宽以及所述用户设备对应的系统资源的同时或之后,在所述用户设备对应的系统资源中配置用于部署子系统的物理资源块,或用户部署除测量信号、子系统之外的其它信号的物理资源块。下面以部署子系统为例进行介绍。
由于子系统必须部署在100kHz信道栅格处,只有部分满足此条件的PRB可以部署子系统。计算每个PRB的中心频点,如果某个PRB的中心频点或该PRB的中心频点附近一定频率偏移内,满足是100kHz的整数倍,则认为该PRB可以部署子系统。由于未来5G通信系统或NR系统可以支持多种numerology,即支持多种子载波间隔,针对多种子载波间隔,以及多种信道带宽对应的PRB个数,计算得出图4所示的部署子系统的物理资源块对照表。图4所示的对照表描述多种子载波间隔中每种子载波间隔在每种PRB个数下所占用的PRB编号(编号从0开始)。以子载波间隔为15kHz、信道带宽对应的PRB个数为15个为例,由于一个PRB包括12个子载波,那么此时的PRB宽度为180kHz,此时可用于部署子系统的PRB表示为(2;12),即这15个PRB中编号为2和编号为12的PRB可用于部署子系统。需要说明的是,子系统可在编号为2和编号为12的PRB上同时部署,也可在编号为2和编号为12的其中任意一个PRB上部署,也可在编号为2和编号为12的PRB上都不部署。以子载波间隔为37.5kHz,信道带宽对应的PRB个数为15个为例,此时的PRB宽度为450kHz,此时可用于部署子系统的PRB为(1,3;11,13),即这15个PRB中编号为1、编号为3、编号为11和编号为13的PRB可用于部署子系统。需要说明的是,子系统可在这四个PRB的一个、多个或全部PRB上部署,也可 以在这四个PRB上都不部署。
所述网络设备可根据图4所示的对照表,结合所述信道带宽以及所述子载波间隔,在所述用户设备对应的系统资源中配置用于部署子系统的物理资源块。所述用于部署子系统的物理资源块可能为零个PRB、一个或多个PRB。
所述网络设备确定用于部署测量信号的物理资源块,所述物理资源块为信道带宽对应的频域上的全部物理资源块的子集。可选的,所述网络设备根据部署子系统所占用的物理资源块确定用于部署测量信号的物理资源,从而避免测量信号的部署与子系统部署占用相同的物理资源块,或减小测量信号的部署与子系统部署占用相同的物理资源块的概率,进而避免或减小彼此之间的影响。
在一种可能实现的方式中,用于部署测量信号的所述物理资源块包括位置连续的至少两个物理资源块。其中,位置连续表示从所述系统资源的最中间向两侧延伸的资源连续,无间隔。位置连续可以理解为PRB编号连续。基于图4所示的部署子系统的物理资源块对照表,归纳、构造可得图5a所示的一种部署测量信号的物理资源块对照表。图5a所示的对照表描述在各个子载波间隔、各种PRB个数下可用于部署测量信号的连续PRB的个数。以子载波间隔为15kHz、信道带宽对应的PRB个数为15个为例,可用于部署测量信号的PRB对应于(9,15),9表示测量信号可以占用这15个PRB中的从最中间向两侧延伸的连续9个PRB,15表示测量信号可以占用这连续的15个PRB。当子系统占用编号为2和/或编号为12的PRB时,测量信号可以占用从编号3至编号11这9个连续的PRB;当未部署子系统时,测量信号可以占用从编号0至编号14这15个连续的PRB。由于图5a所列的情况较多,复杂度较高,因此基于图5a所示的对照表,提取几种具有代表性的情况,构造可得图5b所示的另一种部署测量信号的物理资源块对照表。图5b中,若信道带宽对应的PRB个数为奇数,则n表示信道带宽对应的PRB中最中间的那个PRB,例如信道带宽对应的PRB个数为15个,最中间的那个PRB为第8个PRB(编号为7的PRB),可用于部署测量信号的PRB为(n-4,n+4),表示可用于部署测量信号的PRB为从最中间向两侧延伸的连续的9个PRB,即编号3至编号11这连续的9个PRB。(n-7,n+7)表示可用于部署测量信号的PRB为从最中间向两侧延伸的连续的15个PRB。若信道带宽对应的PRB个数为偶数,则n-,n+表示信道带宽对应的PRB中最中间的两个PRB,例如信道带宽对应的PRB 个数为50个,最中间的两个PRB为第25个(编号为24)和第26个PRB(编号为25的PRB),可用于部署测量信号的PRB为(n--4,n++4),表示可用于部署测量信号的PRB为从最中间向两侧延伸的连续的10个PRB,即编号20至编号29这连续的10个PRB。(n--9,n++9)表示可用于部署测量信号的PRB为从最中间向两侧延伸的连续的20个PRB,即编号15至编号34这连续的20个PRB;(n--14,n++14)表示可用于部署测量信号的PRB为从最中间向两侧延伸的连续的30个PRB,编号10至编号39这连续的10个PRB。
请参见图6a,为测量信号连续部署的示意图。图6a以信道带宽对应的PRB个数为15个为例,编号为2的PRB的中心频点为-907.5kHz,编号为12的PRB的中心频点为907.5kHz,频率偏移为±7.5,满足100kHz的整数倍,因此可以在这两个PRB上部署子系统。若在编号为2和编号为12的PRB上部署子系统,即图6a中第一行、第二行横条纹所示的PRB,则测量信号可以部署在编号3至编号11这连续的9个PRB上,即图6a中第二行斜条纹所示的PRB。若这个15个PRB上未部署子系统,则测量信号可以部署在这连续的15个PRB上,即图6a中第三行斜条纹所示的PRB。
在另一种可能实现的方式中,用于部署测量信号的所述物理资源块包括位置等间隔的至少两个物理资源块。其中,位置等间隔可以理解为资PRB编号不连续。基于图4所示的部署子系统的物理资源块对照表,归纳、构造可得图5c所示的又一种部署测量信号的物理资源块对照表。图5c所示的对照表描述在各个子载波间隔、各种PRB个数下可用于部署测量信号的PRB序列。图5c中,k=0,1,2,...,若信道带宽对应的PRB个数为奇数,则n表示信道带宽对应的PRB中最中间的那个PRB,例如信道带宽对应的PRB个数为15个,最中间的那个PRB为第8个PRB(编号为7的PRB),可用于部署测量信号的PRB序列为{n+1±2k},表示可用于部署测量信号的PRB为编号为0、编号为2、编号为4、编号为6、编号为8、编号为10、编号为12、编号为14的PRB;{n±3k}表示可用于部署测量信号的PRB为编号为1、编号为4、编号为7、编号为10、编号为13的PRB。若信道带宽对应的PRB个数为偶数,则n-,n+表示信道带宽对应的PRB中最中间的两个PRB,例如信道带宽对应的PRB个数为50个,最中间的两个PRB为第25个(编号为24)和第26个PRB(编号为25的PRB),可用于部署测量信号的PRB序列为{n+±3k},数据较多在 此不一一列举。可以理解的是,对应的PRB序列表示PRB的编号成等差数列,可用于部署测量信号的PRB成等间隔部署(梳状部署)。
请参见图6b,为测量信号等间隔部署的示意图。图6b以信道带宽对应的PRB个数为15个为例,在编号为2和编号为12的PRB上部署子系统,即图6b中第一行、第二行横条纹所示的PRB,根据PRB序列{n±3k},测量信号可以部署在编号为1、编号为4、编号为7、编号为10、编号为13的PRB上,即图6a中第二行斜条纹所示的PRB。由此可见,测量信号插在子系统之间的PRB上等间隔部署,可以看成是梳状部署。
302,确定所述物理资源块对应的物理资源;
具体的,所述网络设备根据PRB与资源单元(Resource Element,RE)之间的映射关系对用于部署测量信号的所述物理资源块进行映射,并确定映射后的物理资源。其中,所述物理资源用于测量信号的传输。其中,资源单元为物理资源的基本单元。
303,使用所述物理资源向所述用户设备传输测量信号,所述测量信号用于所述用户设备测量信道信息;
具体的,所述网络设备可以在所述物理资源块上部署测量信号之后,使用所述物理资源向所述用户设备传输测量信号,即所述物理资源作为测量信号的载体向所述用户设备传输。
所述网络设备还可以在传输测量信号之前或之后,向所述用户设备发送资源指示消息,所述资源指示消息指示部署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。通过所述资源指示消息告知所述用户设备哪些物理资源块上部署有测量信号,从而便于所述用户设备在对应的物理资源块上查找测量信号。通过所述资源指示消息告知所述用户设备哪些物理资源用于传输测量信号,从而便于所述用户设备根据物理资源查找对应的物理资源块,从而获取测量信号。所述资源指示消息同时指示所述物理资源块和所述物理资源,便于所述用户设备快速获取测量信号。
需要说明的是,下文中的部署方式即为测量信号占用PRB的方式,可以包括连续占用、等间隔占用。其中,连续占用由连续的PRB数量表示,等间隔占用由等间隔的PRB序列表示。
在一种可能实现的方式中,所述资源指示消息为主同步信号(Primary  Synchronization Channel,PSS),所述PSS包括根序列,所述根序列指示部署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。在LTE中,物理层是通过物理小区ID(Physical Cell Identities,PCI)来区分不同的小区的。物理小区ID总共有504个,它们被分成168个不同的组(记为
Figure PCTCN2016099068-appb-000001
范围是0-167),每个组又包括3个不同的组内标识(记为
Figure PCTCN2016099068-appb-000002
范围是0-2)。因此,物理小区ID(记为
Figure PCTCN2016099068-appb-000003
)可以通过
Figure PCTCN2016099068-appb-000004
公式计算得到。辅同步信号(Secondary Synchronization Signal,SSS)用于传输组内ID,即
Figure PCTCN2016099068-appb-000005
值。具体做法是:eNB通过组ID号
Figure PCTCN2016099068-appb-000006
值生成两个索引值,然后引入组内ID号
Figure PCTCN2016099068-appb-000007
值编码生成2个长度均为31的序列,并映射到SSS对应的RE中,UE通过盲检测序列就可以知道当前eNB下发的是哪种序列,从而获取当前小区的
Figure PCTCN2016099068-appb-000008
PSS用于传输组内ID,即
Figure PCTCN2016099068-appb-000009
值。具体做法是:eNB将组内ID号
Figure PCTCN2016099068-appb-000010
值与一个根序列索引u相关联,然后编码生成1个长度为62的ZC序列du(n),并映射到PSS对应的RE中,UE通过盲检测序列就可以获取当前小区的
Figure PCTCN2016099068-appb-000011
其中,
Figure PCTCN2016099068-appb-000012
值与根序列索引u的关联列表以及ZC序列du(n)如下所示:
Figure PCTCN2016099068-appb-000013
Figure PCTCN2016099068-appb-000014
例如,eNB将
Figure PCTCN2016099068-appb-000015
值1与一个根序列索引29相关联,然后编码生成1个长度为62的ZC序列du(n),并映射到PSS对应的RE中,UE通过盲检测序列就可以获取当前小区的
Figure PCTCN2016099068-appb-000016
值为1。在本发明实施例中,所述PSS包括的根序列即为上述根序列索引,一个根序列对应于一个
Figure PCTCN2016099068-appb-000017
值以及一种部署方式。
可选的,该部署方式为连续部署时所占用的PRB数量。具体的根序列与
Figure PCTCN2016099068-appb-000018
值以及连续部署的PRB数量可参见下表,下表中±4对应于图5b中的(n-4,n+4)或(n--4,n++4)部署方式,表示占用9个连续的PRB,或10个连 续的PRB;±7对应于图5b中的(n-7,n+7)部署方式,表示占用15个连续的PRB;±9对应于图5b中的(n-9,n+9)或(n--9,n++9)部署方式,表示占用19个连续的PRB,或20个连续的PRB;±14对应于图5b中的(n--14,n++14)部署方式,表示占用30个连续的PRB;±24对应于图5b中的(n-24,n+24)或(n--24,n++24)部署方式,表示占用49个连续的PRB,或50个连续的PRB;±37对应于图5b中的(n-37,n+37)或(n--37,n++37)部署方式,表示占用75个连续的PRB,或76个连续的PRB。
Figure PCTCN2016099068-appb-000019
例如,所述PSS包括的根序列为25,那么对应的
Figure PCTCN2016099068-appb-000020
值为0,部署方式为(n-4,n+4)或(n--4,n++4)。所述用户设备在接收到所述PSS时,解得其根序列为25,根据根序列25确定部署方式为(n-4,n+4)或(n--4,n++4),即从频带中间的PRB向频带两边各延伸4个PRB,在这一系列连续的PRB上部署有测量信号。需要说明的是,上表中的根序列的具体数值用于举例说明,并不构成对本发明实施例的限定。在所述网络设备和所述用户设备均存储着上表,便于所述用户设备能够准确获知部署方式。
可选的,该部署方式为等间隔部署时所占用的PRB序列。具体的根序列与
Figure PCTCN2016099068-appb-000021
值以及PRB序列可参见下表,下表中+1±2k对应于图5c中的PRB序列为{n+1±2k}的部署方式;±3k对应于图5c中的PRB序列为{n±3k}或{n+±3k}的部署方式;+2±4k对应于图5c中的PRB序列为{n+2±4k}或{n++2±4k}的部署方式;+2±5k对应于图5c中的PRB序列为{n+2±5k}或{n++2±5k}的部署方式;±k对应于图5c中的PRB序列为{n±k}或{n+±k}的部署方式。
Figure PCTCN2016099068-appb-000022
Figure PCTCN2016099068-appb-000023
例如,所述PSS包括的根序列为101,那么对应的
Figure PCTCN2016099068-appb-000024
值为0,部署方式为{n±3k}或{n+±3k}。所述用户设备在接收到所述PSS时,解得其根序列为101,根据根序列101确定部署方式为{n±3k}或{n+±3k},即从频带中间的PRB向频带两边等间隔延伸的PRB序列,在该PRB序列上部署有测量信号。需要说明的是,上表中的根序列的具体数值用于举例说明,并不构成对本发明实施例的限定。在所述网络设备和所述用户设备均存储着上表,便于所述用户设备能够准确获知部署方式。
在一种可能实现的方式中,所述资源指示消息为广播消息,所述广播消息指示部署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。其中,所述广播消息包括资源指示位,所述资源指示位的数值指示部署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。其中,所述广播消息可以包括但不限于系统信息块(MasterInformationBlock,MIB)消息。在MIB消息中存在资源指示位,可以用3bits表示所述资源指示位,3bits可以表示8种可能的部署方式,上述两表中分别列举了6种和5种部署方式,那么3bits可以表示上述两表中所列举的部署方式。MIB消息还包括所述网络设备为所述用户设备配置的所述信道带宽以及所述系统资源。所述网络设备可预先定于所述资源指示位的每种数值对应的部署方式,例如001表示±7或+1±2k。MIB消息在物理广播信道(Physical Broadcast Channel,PBCH)上广播给所述用户设备。所述用户设备通过PBCH信道接收MIB消息,并根据资源指示位所指示的数值确定测量信号的部署方式,即部署测量信号所占用的物理资源块或传输测量信号所占用的物理资源。
所述用户设备在接收到所述资源指示信息时,根据所述资源指示信息确定测量信号所占用的PRB,并在相应的PRB上接收所述网络设备传输的测量信号。所述用户设备根据测量信号测量信道信息。所述信道信息包括参考信号接收功率(Reference Signal Recieved Power,RSRP)、接收信号强度指示(Received Signal Strength Indicator,RSSI)、参考信号接收质量(Reference Signal Recieved  Quality,RSRQ)中的至少一种。其中,RSRP是用户设备接收到的测量信号或CRS的功率值,数值为测量带宽内单个RE功率的线性平均值,反映的是本小区有用信号的强度。RSSI是用户设备接收到的所有信号(包括同频的有用和干扰、邻频干扰、热噪声等)功率的线性平均值,反映的是该资源上的负载强度。RSRQ是N倍的RSRP与RSSI的比值,RSRQ=N*RSRP/RSSI,其中N表示RSRI的测量带宽内包含的RE数目,能反映出信号和干扰之间的相对大小。
所述用户设备可根据测量信号测量所述信道信息,还可根据测量信号进行精时频同步。
在本发明实施例中,通过确定用于部署测量信号的物理资源块,物理资源块为用户设备的信道带宽对应的频域上的全部物理资源块的子集,并确定物理资源块对应的物理资源,并使用物理资源向用户设备传输测量信号,测量信号用于用户设备测量信道信息,从而避免部署测量信号与部署子系统占用相同的物理资源块,或减少部署测量信号与部署子系统占用相同的物理资源块的概率,进而减少测量信号的部署与子系统部署之间的影响,同时保证测量信号的测量性能。
请参见图7,为本发明实施例提供的一种网络设备的结构示意图,该网络设备700包括:处理器701、发送器702和天线,其中:
处理器701,用于确定用于部署测量信号的物理资源块,所述物理资源块为用户设备的信道带宽对应的频域上的全部物理资源块的子集;
具体实现中,所述处理器701具体用于根据部署子系统所占用的物理资源块确定用于部署测量信号的物理资源块。
所述处理器701,还用于确定所述物理资源块对应的物理资源;
发送器702,用于使用所述物理资源向所述用户设备传输测量信号,所述测量信号用于所述用户设备测量信道信息。
在一种可能实现的方式中,所述发送器702,还用于向所述用户设备发送资源指示消息,所述资源指示消息指示部署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。
可选的,所述资源指示消息为主同步信号PSS,所述PSS的根序列指示部 署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。
可选的,所述资源指示消息为广播消息,所述广播消息指示部署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。
可选的,所述物理资源块包括位置连续的至少两个物理资源块。
可选的,所述物理资源块包括位置等间隔的至少两个物理资源块。
可选的,所述信道信息包括参考信号接收功率RSRP、接收信号强度指示RSSI、参考信号接收质量RSRQ中的至少一种。
需要说明的是,上述处理器701用于执行图3所示实施例中的301和302,上述发送器702用于执行图3所示实施例中的303,以及执行向用户设备发送资源指示消息。
其中,上述处理器701可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。上述处理器701也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。上述处理器701还可以是控制器。其中,上述处理器701主要包括四个部件:小区控制器、话音信道控制器、信令信道控制器和用于扩充的多路端接口。上述处理器701负责所有的移动通信接口管理,主要是无线信道的分配、释放和管理。
上述发送器702可以是收发器、收发电路或通信模块、通信接口等。收发器包括接收机和发射机,对于用户设备而言,可以通过发射机进行上行数据的发射,通过接收机对下行数据进行接收。
本发明实施例还提供一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述 为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为根据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例装置中的单元可以根据实际需要进行合并、划分和删减。本领域的技术人员可以将本说明书中描述的不同实施例以及不同实施例的特征进行结合或组合。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(Digital Subscriber Line,DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复 制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种测量信号传输方法,其特征在于,包括:
    确定用于部署测量信号的物理资源块,所述物理资源块为用户设备的信道带宽对应的频域上的全部物理资源块的子集;
    确定所述物理资源块对应的物理资源;
    使用所述物理资源向所述用户设备传输测量信号,所述测量信号用于所述用户设备测量信道信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述用户设备发送资源指示消息,所述资源指示消息指示部署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。
  3. 根据权利要求2所述的方法,其特征在于,所述资源指示消息为主同步信号PSS,所述PSS的根序列指示部署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。
  4. 根据权利要求2所述的方法,其特征在于,所述资源指示消息为广播消息,所述广播消息指示部署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。
  5. 根据权利要求1所述的方法,其特征在于,所述确定用于部署测量信号的物理资源块,包括:
    根据部署子系统所占用的物理资源块确定用于部署测量信号的物理资源块。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述物理资源块包括位置连续的至少两个物理资源块。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述物理资源块包括位置等间隔的至少两个物理资源块。
  8. 根据权利要求1所述的方法,其特征在于,所述信道信息包括参考信号接收功率RSRP、接收信号强度指示RSSI、参考信号接收质量RSRQ中的至少一种。
  9. 一种网络设备,其特征在于,包括:
    处理器,用于确定用于部署测量信号的物理资源块,所述物理资源块为用户设备的信道带宽对应的上的全部物理资源块的子集;
    所述处理器,还用于确定所述物理资源块对应的物理资源;
    发送器,用于使用所述物理资源向所述用户设备传输测量信号,所述测量信号用于所述用户设备测量信道信息。
  10. 根据权利要求9所述的网络设备,其特征在于,
    所述发送器,还用于向所述用户设备发送资源指示消息,所述资源指示消息指示部署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。
  11. 根据权利要求10所述的网络设备,其特征在于,所述资源指示消息为主同步信号PSS,所述PSS的根序列指示部署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。
  12. 根据权利要求10所述的网络设备,其特征在于,所述资源指示消息为广播消息,所述广播消息指示部署所述测量信号所占用的所述物理资源块和/或传输所述测量信号所占用的所述物理资源。
  13. 根据权利要求9所述的网络设备,其特征在于,所述处理器具体用于根据部署子系统所占用的物理资源块确定用于部署测量信号的物理资源块。
  14. 根据权利要求9-13任一项所述的网络设备,其特征在于,所述物理资源块包括位置连续的至少两个物理资源块。
  15. 根据权利要求9-13任一项所述的网络设备,其特征在于,所述物理资源块包括位置等间隔的至少两个物理资源块。
  16. 根据权利要求9所述的网络设备,其特征在于,所述信道信息包括参考信号接收功率RSRP、接收信号强度指示RSSI、参考信号接收质量RSRQ中的至少一种。
PCT/CN2016/099068 2016-09-14 2016-09-14 一种测量信号传输方法及网络设备 WO2018049612A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA3035576A CA3035576A1 (en) 2016-09-14 2016-09-14 Measurement signal transmission method and network device
CN201680089083.3A CN109690995A (zh) 2016-09-14 2016-09-14 一种测量信号传输方法及网络设备
EP16915997.7A EP3493451A4 (en) 2016-09-14 2016-09-14 METHOD OF TRANSMITTING MEASUREMENT SIGNAL AND NETWORK DEVICE
BR112019004028-5A BR112019004028A2 (pt) 2016-09-14 2016-09-14 método de transmissão de sinal de medição e dispositivo de rede
US16/333,178 US20200187034A1 (en) 2016-09-14 2016-09-14 Measurement Signal Transmission Method and Network Device
RU2019110424A RU2713448C1 (ru) 2016-09-14 2016-09-14 Способ передачи сигнала измерения и сетевое устройство
AU2016423212A AU2016423212C1 (en) 2016-09-14 2016-09-14 Measurement signal transmission method and network device
JP2019535426A JP6732135B2 (ja) 2016-09-14 2016-09-14 測定信号送信方法およびネットワークデバイス
KR1020197007486A KR102228469B1 (ko) 2016-09-14 2016-09-14 측정 신호 전송 방법 및 네트워크 장치
PCT/CN2016/099068 WO2018049612A1 (zh) 2016-09-14 2016-09-14 一种测量信号传输方法及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099068 WO2018049612A1 (zh) 2016-09-14 2016-09-14 一种测量信号传输方法及网络设备

Publications (1)

Publication Number Publication Date
WO2018049612A1 true WO2018049612A1 (zh) 2018-03-22

Family

ID=61619017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099068 WO2018049612A1 (zh) 2016-09-14 2016-09-14 一种测量信号传输方法及网络设备

Country Status (10)

Country Link
US (1) US20200187034A1 (zh)
EP (1) EP3493451A4 (zh)
JP (1) JP6732135B2 (zh)
KR (1) KR102228469B1 (zh)
CN (1) CN109690995A (zh)
AU (1) AU2016423212C1 (zh)
BR (1) BR112019004028A2 (zh)
CA (1) CA3035576A1 (zh)
RU (1) RU2713448C1 (zh)
WO (1) WO2018049612A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190127193A (ko) * 2018-05-03 2019-11-13 삼성전자주식회사 무선통신 시스템에서 그룹캐스트를 위한 동기화 방법 및 장치
US20220190998A1 (en) * 2019-03-29 2022-06-16 Telefonaktiebolaget Lm Ericsson (Publ) Aligning Resources of Two Radio Access Technologies
US11582765B2 (en) 2021-01-15 2023-02-14 T-Mobile Innovations Llc Determining radio signal metrics for specified resource blocks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104025682A (zh) * 2011-11-08 2014-09-03 华为技术有限公司 一种在蜂窝网络中管理干扰的系统和方法
WO2014161586A1 (en) * 2013-04-05 2014-10-09 Nokia Solutions And Networks Oy Transmission of reference symbols
WO2015034411A1 (en) * 2013-09-03 2015-03-12 Telefonaktiebolaget L M Ericsson (Publ) Robust transmission on downlink discontinuous transmission carrier
CN105659659A (zh) * 2013-11-27 2016-06-08 英特尔公司 用于lte-u网络与其自身以及与其他技术共存的机制

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9485075B2 (en) * 2011-04-29 2016-11-01 Futurewei Technologies Inc. Method and system for transmission and reception of signals and related method of signaling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104025682A (zh) * 2011-11-08 2014-09-03 华为技术有限公司 一种在蜂窝网络中管理干扰的系统和方法
WO2014161586A1 (en) * 2013-04-05 2014-10-09 Nokia Solutions And Networks Oy Transmission of reference symbols
WO2015034411A1 (en) * 2013-09-03 2015-03-12 Telefonaktiebolaget L M Ericsson (Publ) Robust transmission on downlink discontinuous transmission carrier
CN105659659A (zh) * 2013-11-27 2016-06-08 英特尔公司 用于lte-u网络与其自身以及与其他技术共存的机制

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3493451A4 *

Also Published As

Publication number Publication date
KR20190035907A (ko) 2019-04-03
KR102228469B1 (ko) 2021-03-15
AU2016423212A1 (en) 2019-03-14
EP3493451A1 (en) 2019-06-05
EP3493451A4 (en) 2019-08-21
BR112019004028A2 (pt) 2019-05-21
RU2713448C1 (ru) 2020-02-05
JP6732135B2 (ja) 2020-07-29
CA3035576A1 (en) 2018-03-22
US20200187034A1 (en) 2020-06-11
AU2016423212B2 (en) 2020-05-28
JP2019530383A (ja) 2019-10-17
CN109690995A (zh) 2019-04-26
AU2016423212C1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6813662B2 (ja) ユーザ端末及び無線通信方法
JP7197371B2 (ja) 端末、無線通信方法、基地局及びシステム
US10484152B2 (en) Method and apparatus for transmitting or receiving reference signal in beamforming communication system
US20180368054A1 (en) Method and apparatus for generating and using reference signal for broadcast channel for radio system
WO2018137577A1 (zh) 通信方法及装置
JP6938630B2 (ja) 端末、無線通信方法及びシステム
JP6795627B2 (ja) 端末、基地局及び無線通信方法
WO2015106715A1 (zh) 信号传输方法和装置
JPWO2019159300A1 (ja) ユーザ端末及び無線通信方法
KR102321036B1 (ko) 유저단말 및 무선 통신 방법
CN111201818A (zh) 侧行链路通信中载波聚合的方法和装置
JP6887015B2 (ja) 端末、無線通信方法及び基地局
JP7074780B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019030913A1 (ja) ユーザ端末及び無線通信方法
KR20190102255A (ko) 무선 신호의 주파수 위치를 표시하는 방법, 기지국 및 사용자 장비
JP7074778B2 (ja) 端末、無線通信方法、基地局及びシステム
EP3573274A1 (en) Communication method and network device
WO2021027936A1 (en) Electronic device and method for physical uplink control channel (pucch) resource configuration
JP2021170844A (ja) 端末、無線通信方法、基地局及びシステム
WO2018049612A1 (zh) 一种测量信号传输方法及网络设备
RU2704254C1 (ru) Способ передачи сигналов, сетевое оборудование и терминальное оборудование
WO2018235299A1 (ja) ユーザ端末及び無線通信方法
JPWO2019159299A1 (ja) ユーザ端末及び無線通信方法
WO2018235297A1 (ja) ユーザ端末及び無線通信方法
WO2018235298A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3035576

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016915997

Country of ref document: EP

Effective date: 20190227

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019004028

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019535426

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016423212

Country of ref document: AU

Date of ref document: 20160914

Kind code of ref document: A

Ref document number: 20197007486

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019004028

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190227