WO2018048180A1 - Electrochemical cell including channel-type flow electrode unit structure - Google Patents

Electrochemical cell including channel-type flow electrode unit structure Download PDF

Info

Publication number
WO2018048180A1
WO2018048180A1 PCT/KR2017/009730 KR2017009730W WO2018048180A1 WO 2018048180 A1 WO2018048180 A1 WO 2018048180A1 KR 2017009730 W KR2017009730 W KR 2017009730W WO 2018048180 A1 WO2018048180 A1 WO 2018048180A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
flow
wall
electrode
unit
Prior art date
Application number
PCT/KR2017/009730
Other languages
French (fr)
Korean (ko)
Inventor
김동국
조용현
양승철
최지연
추고연
이기숙
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160114568A external-priority patent/KR102657824B1/en
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to CN201780068506.8A priority Critical patent/CN110214391A/en
Publication of WO2018048180A1 publication Critical patent/WO2018048180A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/94Non-porous diffusion electrodes, e.g. palladium membranes, ion exchange membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrochemical cell having a channel flow electrode unit structure.
  • the biggest problem in the power storage and water treatment system using the same principle is the efficiency reduction and the high cost of the device at the time of large capacity. That is, the large area of the electrode for scale-up, the nonuniformity of the electric field distribution in the electrode, the limited amount of active material of the thin film electrode coated on the current collector, the contact area between the active material and the electrolyte by the binder during the coating process, and the charge and discharge efficiency decrease, etc.
  • a large number of unit cell stacks are required, and accordingly, the high cost of the device, and in particular, in the case of CDI (Capacitive Deionization) process, increases in operating costs due to pressure loss of the water (electrolyte) flow in the stack are pointed out as a problem. .
  • CDI Capacitive Deionization
  • the prior art such as a redox flow battery including devices using the flow electrode increases the electrode area to increase the capacity.
  • the unit components including the positive electrode current collector and the negative electrode current collector are infinitely stacked.
  • the stacking of the unit cells not only greatly increases the volume, but also has a large problem that the number of parts increases due to the large flow path, thereby increasing the cost for manufacturing the device.
  • An object of the present invention is to configure the flow electrode unit as a channel defined by a liquid-permeable wall or separator in order to reduce the device cost and increase the capacity while applying to a large-scale plant such as power generation, energy storage, and desalination.
  • the present invention provides a flow electrode structure in which a plurality of channel type flow electrode units are arranged in a high density such as a lattice, while a skeleton is formed of a support for supplying an electrolyte.
  • a first aspect of the invention is a channel flow electrode unit defined by a liquid penetrating wall, wherein an ion exchange current collector that passes through cations or anions and is electrically conductive is located on the inner surface of the channel wall and has a channel inlet.
  • An electrode flow path through which an electrode active material-containing fluid introduced from the outlet and discharged to a channel outlet flows is spaced apart from the wall through an ion exchange current collector.
  • a second aspect of the invention is a channel flow electrode unit defined by a liquid penetrating wall, wherein the ion exchange material passes through the channeled wall inner surface, outer surface, wall itself, or a combination thereof to allow passage of cations or anions.
  • the electrode flow path is applied to the inner surface of the channel-like wall to which the ion exchange material is applied, and the electrode flow path through which the electrode active material-containing fluid flowing from the channel inlet and discharged to the channel outlet flows. It provides a channel flow electrode unit, characterized in that spaced from the wall.
  • the third aspect of the present invention provides a channel flow electrode structure having two or more channel flow electrode units of the first or second aspect.
  • a fourth aspect of the present invention provides a method for producing a channel flow electrode unit of the first or second aspect, comprising the steps of: preparing a channel defined by a liquid-permeable wall; A second step of applying an ion exchange material through which a cation or anion passes through the inner surface, the outer surface, the wall itself, or a combination thereof; And a third step of applying the porous current collector to the inner surface of the channel-shaped wall to which the ion exchange material is applied.
  • a fifth aspect of the present invention provides a method for producing a channel flow electrode unit of the first aspect, comprising: preparing a channel defined by a liquid-permeable wall; A second step of applying the porous current collector to the inner surface of the channel-shaped wall; And a third step of applying an ion exchange membrane through which a cation or anion passes to the inner surface of the channel wall to which the porous current collector is applied.
  • a sixth aspect of the present invention is a method of manufacturing a channel flow electrode structure of the third aspect, the first step of preparing a liquid-permeable wall to form a basic skeleton having a plurality of channels in which fluid is introduced to the inlet and discharged to the outlet ; Apply the selected channel (s) to the channel-like wall inner surface with an ion exchange material through the cation, the wall itself or a combination thereof, and select the other channel (s) to the channel-wall wall with an ion exchange material passing the anions, A second step of applying to the wall itself or a combination thereof; And a third step of applying the porous current collector to an inner surface of the channel-shaped wall to which the ion exchange material is applied.
  • a method of manufacturing a channel flow electrode structure according to the third aspect, the first step of preparing a liquid-permeable wall that forms a basic skeleton having a plurality of channels through which fluid is introduced into and discharged from the outlet. ; A second step of applying the porous current collector to the inner surface of the channel-shaped wall; Coating the selected channel (s) of the porous current collector to the inner surface of the channel-like wall with an ion exchange material through which cations pass, and passing the negative ion through other selected channel (s) of the channels to which the porous current collector is applied. It provides a method for producing a channel-type flow electrode structure characterized in that it comprises a third step of coating the inner surface of the channel-like wall with an ion exchange material.
  • An eighth aspect of the present invention is a channel flow anode unit defined by a liquid penetrating wall, in which a channel flow anode in which an anode ion exchange current collector passing through cations and having electrical conductivity is located on an inner surface of the channel wall. monomer; And a channel type flow cathode unit defined by the liquid penetrating wall, the channel type flow cathode unit having a negative ion ion exchange current passing through the anion and having an electrical conductivity located on an inner surface of the channel wall.
  • An electrode flow path through which an electrode active material-containing fluid flowing from an inlet and discharged to a channel outlet flows is separated from the wall through an ion exchange current collector.
  • a ninth aspect of the invention is a channel flow anode unit defined by a liquid penetrating wall, wherein the ion exchange material is applied to the channel wall inner wall, outer surface, wall itself, or a combination thereof to pass cations.
  • a channel-type flow anode unit having a porous current collector applied to an inner surface of the channel-type wall to which the ion exchange material is applied;
  • a channel-type flow cathode unit defined by a liquid-permeable wall, wherein an ion exchange material is applied to the inner surface of the channeled wall, the outer surface, the wall itself, or a combination thereof so as to allow anions to pass therethrough.
  • the channel flow cathode unit is applied to the inner surface of the channel-like wall to which the ion exchange material is applied, the electrode flow path flowing through the electrode active material-containing fluid introduced from the channel inlet and discharged to the channel outlet through the porous current collector It provides a cell with a channel flow electrode characterized in that it is spaced apart from the wall.
  • a tenth aspect of the present invention is a membrane support for forming a basic skeleton having a plurality of channels in which fluid is introduced into the inlet and discharged to the outlet;
  • the porous current collector is disposed on the inner wall of the channel (s) selected in the membrane support, and an anode flow path through which the positive electrode active material-containing fluid flowing from the channel inlet and discharged to the channel outlet flows from the channel-type separator support. Spaced, channel-type flow anode units;
  • a negative electrode flow path having a porous current collector disposed on an inner wall surface of the other channel (s) selected from the membrane support, and flowing a negative electrode active material-containing fluid introduced from the channel inlet and discharged to the channel outlet through the channel-type separator.
  • a channel flow electrode structure is provided that includes a channel flow cathode unit spaced from a support.
  • An eleventh aspect of the present invention provides a capacitive electrode flow device comprising the channel-type flow electrode structure of the third or tenth aspect.
  • a twelfth aspect of the present invention provides a redox flow cell device, characterized in that the channel type flow electrode structure of the third or tenth aspect is provided.
  • the positive electrode means a cathode
  • the negative electrode means an anode.
  • the polarity may change.
  • Redox flow cells are the ones in which electrolytes (including reaction catalysts) flow.
  • the electrode active material does not flow only in the fixed container, but in-out flow of the electrode active material through the channel.
  • a “capacitive flow electrode” an electrode active material is used that can adsorb and desorb ions.
  • the FCDI to which the channel type flow electrode cell according to the present invention can be applied may be referred to as a "capacitive flow battery" in terms of the phenomenon, but it is a cathode active material and a cathode active material among four components.
  • the materials are simultaneously introduced from the electrode flow path inlet and discharged to the electrode flow path outlet, wherein the electrolyte may or may not flow through the flow path having the inlet / outlet.
  • the channel type flow electrode unit and the unit structure have the same meaning.
  • a capacitive flow electrode device 100 that can be used in a power generation device for producing electricity from an electrolyte is described with a plate-shaped flow anode 112 at both sides of the plate-shaped electrolyte flow path 102.
  • a plate-shaped flow cathode 114 is disposed.
  • a plate-shaped positive electrode ion exchange current collector is disposed between the electrolyte flow path 102 and the flow anode 112, and a plate-shaped negative electrode ion exchange current collector is disposed between the electrolyte flow path 102 and the flow cathode 114.
  • closed plates 116 and 118 for forming a flow path outside the plate-shaped flow anode 112 and the plate-shaped flow cathode 114 are disposed.
  • a cathode ion exchange membrane 104 and a porous cathode plate 106 may be stacked.
  • the anode ion exchange membrane 104 is disposed on the electrolyte flow path 102 side
  • the porous cathode plate 106 is disposed on the flow anode 112 side.
  • the anode ion exchange membrane 104 may be disposed on the flow anode 112 side
  • the porous cathode plate 106 may be disposed on the electrolyte flow path 102 side.
  • the cathode ion exchange current collector may be formed by overlapping the cathode ion exchange membrane 108 and the porous cathode plate 110.
  • the cathode ion exchange membrane 108 is disposed on the electrolyte flow path 102 side, and the porous cathode plate 110 is disposed on the flow cathode 114 side.
  • the cathode ion exchange membrane 108 may be disposed on the flow cathode 114 side, and the porous cathode plate 110 may be disposed on the electrolyte flow path 102 side.
  • the plate-shaped flow positive electrode 112 is a plate-shaped flow path flowing in a slurry state in which the positive electrode active material 111 is dispersed in an electrode solution.
  • the plate-shaped flow cathode 114 is a plate-shaped flow path flowing in a slurry state in which the negative electrode active material 113 is dispersed in the electrode solution.
  • the plate-shaped flow anode 112 and the plate-shaped flow cathode 114 need closed plates 116 and 118 on the outside and a plate-like support on the inside to form a plate-shaped flow path.
  • the operating principle of the capacitive electrode flow device 100 when used as a power generation device when the electrolyte having a cation and an anion flows into the plate-shaped electrolyte flow path 102, the cation that has passed through the plate-shaped positive electrode ion exchange current collector is the plate-shaped
  • the negative ions move to the flow anode 112 and pass through the cathode ion exchange current collector to the plate-shaped flow cathode 114, a potential difference is generated between the flow anode 112 and the flow cathode 114.
  • the capacitive electrode flow device 100 may be utilized as a power generation unit.
  • the closing plates 116 and 118 may use a non-electrically conductive plate, or may use an electrically conductive metal plate. In the case of using an electrically conductive metal plate, it can be utilized as an additional current collector.
  • the flow-type flow electrode channel can be designed as a channel surrounded by a liquid-permeable wall or separator, and can provide a channel-type flow electrode structure in which a plurality of channel-type flow electrode units are arranged highly densely, such as a lattice, and a liquid-permeable wall.
  • the separator can serve as a support for supplying the electrolyte while forming a basic skeleton. The present invention is based on this.
  • the present invention forms a basic skeleton having a plurality of channels into which the fluid is introduced into the outlet and discharged to the outlet as an integral liquid-permeable wall or separator, and then some or all of the defined channels are surrounded by the liquid-permeable wall or separator. It is one feature to provide a channel flow electrode structure that constitutes an electrode unit (FIG. 3). In this case, two channel-type flow electrode units adjacent to each other may share a liquid penetrating wall or a separator (FIG. 2).
  • the present invention is designed to assemble the channel flow electrode unit (unit) in the form of a block (Fig. 3), it is another feature to provide a channel flow electrode structure having two or more channel flow electrode units. (FIG. 4).
  • the electrolyte may be supplied through the liquid penetrating wall of the channel type electrode unit even without a separate electrolyte flow path. It is another feature that it can therefore act as an electrochemical cell.
  • the present invention provides an anode / cathode / separator / electrolyte of the capacitive flow electrode device as a channel flow electrode structure according to the third or tenth aspect of the present invention.
  • the channel flow electrode structure according to the third aspect of the present invention includes two or more channel flow electrode units according to the first or second aspect of the present invention.
  • the channel flow electrode unit according to the first aspect of the present invention is a channel flow electrode unit defined by a liquid penetrating wall,
  • An ion exchange current collector having only a cation or an anion, preferably a cation and an anion and having electrical conductivity is located on the inner surface of the channel wall,
  • the electrode flow path through which the electrode active material-containing fluid introduced from the channel inlet and discharged to the channel outlet flows may be spaced apart from the wall through the ion exchange current collector.
  • the positive ion ion current collector having a positive electrode and passing through the cation may be a channel flow positive electrode unit
  • the negative ion ion current collector having a negative ion passing through the negative electrode and having an electrical conductivity the channel flow negative electrode It may be a monomer (Fig. 5).
  • the ion exchange current collector may be made of a material that is electrically conductive while transmitting only ions, and the ion exchange membrane and the porous current collector (for example, carbon, a metal material, and a conductive polymer) may be stacked. In this case, the stacking order is not important as long as it serves as an ion exchange collector.
  • the cation exchange membrane may be a dense membrane that prevents the flow of electrolyte liquid and selectively passes only cations
  • the anion exchange membrane may be a dense membrane that prevents the flow of electrolyte liquid and selectively passes only anions.
  • a well-known ion separation membrane can be used for a cation exchange membrane and an anion exchange membrane.
  • the channel flow electrode unit according to the second aspect of the present invention is a channel flow electrode unit defined by a liquid penetrating wall
  • the ion exchange material is applied (e.g., coated) at the inner surface of the channeled wall, the outer surface, the wall itself or a combination thereof so as to pass only one of the cations or anions, preferably cations and anions,
  • the porous current collector is applied to the inner surface of the channel-shaped wall to which the ion exchange material is applied,
  • the electrode flow path through which the electrode active material-containing fluid introduced from the channel inlet and discharged to the channel outlet flows may be spaced apart from the wall through the porous current collector.
  • an ion exchange material through which a cation is applied may be a channel flow cathode unit, and when an ion exchange material through which an anion is applied may be a channel flow cathode unit.
  • the positive electrode active material and the negative electrode active material may be different materials, but the same material may be used.
  • the electrode active material is collectively named as the electrode active material.
  • the cathode active material and the anode active material may be porous carbon (activated carbon, carbon fiber, carbon aerogel, carbon nanotube, etc.), graphite powder, metal oxide powder, or the like.
  • the electrode solution is a water-soluble electrolyte solution such as NaCl, H 2 SO 4 , HCl, NaOH, KOH, Na 2 NO 3 , propylene carbonate (Propylene Carbonate, PC), diethyl carbonate (DEC), tetrahydro It may include an organic electrolyte solution such as furan (Tetrahydrofuran, THF). In particular, it is possible to use brine containing a large amount of salt (especially NaCl) or fresh water containing a small amount of salt as the electrode solution.
  • the porous current collector may be a material, such as porous carbon or a conductive polymer, through which fluid can pass while electricity is passed through.
  • the porous carbon may be made of graphite, graphene, carbon fiber, activated carbon, carbon nanotubes, and the like.
  • a water-soluble electrolyte solution such as NaCl, H 2 SO 4 , HCl, NaOH, KOH, Na 2 NO 3 , propylene carbonate (PC), diethyl carbonate (DEC), It may include an organic electrolyte solution such as tetrahydrofuran (THF).
  • THF tetrahydrofuran
  • the liquid penetrating wall can serve as a skeletal support.
  • the channel defined surrounded by the liquid-penetrating wall may be a polygonal column, such as a square pillar, as shown in FIG. 3, or may be a cylinder.
  • the liquid penetrating wall is preferably electrically insulating.
  • the material of the liquid penetrating wall may contain zeolite, ceramic, or high molecular material. It is preferable that the electrolyte is made of a fibrous structure to facilitate movement.
  • the ion exchange membrane formed on the liquid permeable wall may be a pore filling membrane coated with a material that transmits ions to the porous support.
  • the channel type flow electrode unit of the present invention is
  • the channel type flow electrode structure according to the third aspect of the present invention may be an assembly of the channel type flow electrode units in the form of an assembleable block.
  • the channel flow electrode structure according to the third aspect of the present invention is formed of a liquid-permeable wall having a basic skeleton for forming a plurality of channels into which the fluid is introduced into the inlet and discharged to the outlet, and among the channels defined by the liquid-permeable wall. Some or all may be configured as a flow electrode unit.
  • the channel flow electrode structure according to the present invention may further include a channel electrolyte flow path.
  • the electrolyte passage may serve to continuously supply the electrolyte.
  • the electrolyte flow path may be surrounded by a liquid penetrating wall and may have a defined channel shape.
  • the channel electrolyte flow path is not limited in shape and position as long as the electrolyte can be supplied adjacent to the at least one channel flow anode unit and the at least one channel flow cathode unit (empty space in FIG. 9, hatched in FIG. 10). , Black circle in Fig. 11).
  • the liquid-penetrating wall mainly serves as a movement of the ions and the structure, the movement of the electrolyte may be mainly by the electrolyte flow path.
  • the moving direction of the electrolyte and the moving direction of the fluid in the channel flow cathode unit and the channel flow cathode unit may be the same or opposite to each other.
  • the channel flow electrode structure according to the present invention may be formed only by the channel flow anode unit and the channel flow cathode unit.
  • the electrolyte is supplied through a separate channel-like flow path, through the liquid penetrating wall, or both, and based on the channel, the electrolyte can be supplied in the longitudinal direction of the channel, in the lateral direction of the channel, or both.
  • the liquid-permeable wall may be partially contained in the electrolyte solution to allow the electrolyte to move naturally by gravity or capillary action, or may be flowed while the electrolyte forced by the electrolyte flow path penetrates into the liquid-permeable wall.
  • the channel flow anode unit, the channel flow cathode unit, and the channel electrolyte channel unit can be arranged in various forms according to the designer's intention, and thus supply of the flow electrode active material is continued. If desired, it can be continuously desalted / generated by infinite adsorption capacity (FIGS. 9 and 10).
  • the channel flow anode unit and the channel flow cathode unit face each other around the channel electrolyte flow path, and at the same time, the channel flow anode unit and the channel flow cathode unit may be disposed in a diagonal direction.
  • the channel electrolyte flow path may be arranged in a diagonal direction.
  • the channel flow electrode structure according to the present invention may include at least one channel flow anode unit and at least one channel flow cathode unit, and may be supplied with an electrolyte through a liquid penetrating wall to form an electrochemical cell.
  • the electrochemical includes not only a redox reaction but also a desorption reaction of ions.
  • the channel flow electrode structure according to the present invention preferably has at least one relationship between the channel flow anode unit and the channel flow cathode unit adjacent to each other.
  • the relationship between the channel flow anode unit and the channel flow cathode unit close to each other includes not only a case where the channel flow anode unit and the channel flow cathode unit are directly adjacent to each other, but also a case where the channel flow anode unit and the channel flow cathode unit are adjacent to each other.
  • FIGS. 5 and 6 The principle of operation of the electrochemical cell in the channeled flow electrode structure according to the invention is shown in FIGS. 5 and 6.
  • the same principle of operation as in FIG. 1 applies to the channel type flow electrode structure according to the present invention.
  • the electrolyte may be supplied by the liquid penetrable wall of the channel type electrode unit even without a separate electrolyte flow path. And thus can act as an electrochemical cell (FIG. 7).
  • the channel flow electrode structure according to the present invention since the movement of the anions and cations occurs on the entire wall of the channel-type liquid penetrating wall surrounding the electrode flow path, unlike the plate flow electrode, the movement distance of the anions and the cations in the electrode flow path is short. In addition to the high adsorption / desorption speed on the electrode active material, the charge and discharge efficiency is high, and the capacity of the flow electrode device 200 may be greatly increased.
  • the channel type flow electrode structure according to the present invention may not have a separate electrolyte flow path, and a liquid permeable wall may replace it. Therefore, there is an advantage that the size of the capacitive electrode flow device can be further reduced.
  • Step 3c applying the porous current collector to the inner surface of the channel type wall to which the ion exchange material is applied
  • the cell with a channel flow electrode according to an eighth aspect of the present invention
  • a channel flow anode unit defined by a liquid penetrating wall comprising: a channel flow anode unit in which an anode ion exchange current collector passing through cations and having electrical conductivity is located on an inner surface of the channel wall;
  • a channel flow cathode unit defined by a liquid-permeable wall comprising a channel flow cathode unit in which a negative ion ion current collector passing through an anion and having electrical conductivity is located on an inner surface of the channel wall,
  • the electrode flow path through which the electrode active material-containing fluid introduced from the channel inlet and discharged to the channel outlet flows may be spaced apart from the wall through the ion exchange current collector.
  • a channel flow anode unit defined by a liquid-permeable wall, in which an ion exchange material is applied to the inside of the channel wall, the outer surface, the wall itself, or a combination thereof to pass cations and the porous current collector is ionized.
  • a channel flow anode unit applied to the inner surface of the channel wall to which the exchange material is applied;
  • a channel flow cathode unit defined by a liquid penetrating wall, wherein an ion exchange material is applied to the inner surface, the outer surface, the wall itself, or a combination thereof to pass an anion and the porous current collector is ionized.
  • a channel flow cathode unit is applied to the inner surface of the channel wall to which the exchange material is applied,
  • the electrode flow path through which the electrode active material-containing fluid introduced from the channel inlet and discharged to the channel outlet flows may be spaced apart from the wall through the porous current collector.
  • a cell with a channel flow electrode has at least one channel flow anode unit and at least one channel flow cathode unit and is supplied with an electrolyte through a liquid penetrating wall to provide electrochemical Form a cell.
  • the channel type flow anode unit and the channel type flow cathode unit may share adjacent walls (FIG. 7).
  • the negative electrode flow path 128 are disposed in each of the positive electrode collector 122 and the negative electrode collector 124 for collecting electricity.
  • the positive electrode solution 126 is circulated by the positive electrode solution tank 132 by the positive electrode pump 134, and the negative electrode solution 128 is stored in the negative electrode solution tank 136 by the negative electrode pump ( 138).
  • the positive electrode solution and the negative electrode solution generally use an electrolyte solution containing zinc ions and bromine ions.
  • the redox reaction occurs in the positive electrode channel 126 and the negative electrode channel 128 based on the separator 130, thereby releasing or accumulating electricity.
  • the present invention is characterized in that the anode / cathode / separation membrane / electrolyte of the redox flow electrode device is provided as a channel flow electrode structure according to the third or tenth aspect of the present invention.
  • the channel flow electrode structure according to the tenth aspect of the present invention partially modifies the channel flow electrode unit according to the first or second aspect of the present invention to apply a separator instead of the liquid penetrating wall as a function of the channel skeleton support. It is.
  • the separator is an electrically insulating membrane through which ions can pass freely, and physically separates the positive electrode and the negative electrode.
  • a separator support for forming a basic skeleton having a plurality of channels through which fluid is introduced into the inlet and discharged to the outlet;
  • the porous current collector is disposed on the inner wall of the channel (s) selected in the membrane support, and an anode flow path through which the positive electrode active material-containing fluid flowing from the channel inlet and discharged to the channel outlet flows from the channel-type separator support. Spaced, channel-type flow anode units; And
  • the porous current collector is disposed on the inner wall surface of the other channel (s) selected from the membrane support, and a cathode flow path through which the negative active material-containing fluid flowing from the channel inlet and discharged to the channel outlet flows through the porous current collector. It may comprise a channel flow cathode unit, spaced from the.
  • the channel type flow cathode unit may be disposed adjacent to the channel type flow cathode unit.
  • the separator support may be in the form of a pore-filling membrane coated with a pore of the porous support with a material that selectively transmits protons to a porous support to form a structure.
  • the porous current collector may be disposed to abut the inner wall surface of the channel formed by the membrane support. Accordingly, the positive electrode flow path through which the positive electrode active material-containing fluid flows is spaced apart from the channel type separator support through the porous current collector, and the negative electrode flow path through which the negative electrode active material containing fluid flows is spaced apart from the channel type membrane support through the porous current collector.
  • the different materials may be used for the positive electrode active material and the negative electrode active material, the same material may be used.
  • channel type flow electrode structure may further include a channel type electrolyte flow path, and the electrolyte flow path may be a channel type defined by a separator.
  • the redox flow electrode device 418 including the channel flow electrode structure according to the tenth aspect of the present invention includes a membrane support 402 for transmitting only protons, and the channel type membrane support. It may include a flow anode flow path 401 and the flow cathode flow path 403 formed inside the 402. As shown in FIG. 13, the channel type flow anode flow path 401 and the channel type flow cathode flow path 403 may be arranged to have a checkered pattern. As a result, redox reaction occurs in the positive electrode active material-containing fluid and the negative electrode active material-containing fluid in the channel flow anode flow channel 401 and the channel flow flow cathode flow path 403, respectively, while the proton moves through the membrane support 402. As this happens, it is charged or discharged.
  • the grid-type capacitive desalination cell may be operated in a batch mode as shown in FIG. 17 or in a continuous mode in which the supplied brine is desalted and drained out.
  • Desalting occurs mainly at the desalting site (center channel of 1 ⁇ 3 cells) between the cation and anion exchange membrane-coated channels. If the number of channels increases from three to nine, four separate sites can serve as desalination sites. That is, the volume of the entire system (3x3 cells) increased three times while the desalination site increased four times that of 1x3 cells. Thus, as cell size expands, the number of desalination sites increases dramatically, resulting in a significant increase in salt removal capacity. Moreover, in the case of lattice cells, even if the number of channels increases, the pressure increase, which is one of the problems of the series-type FCDI stack, does not occur.
  • the channel type flow electrode structure including two or more channel type flow electrode units can reduce the number of parts while increasing the electrode capacity to be suitable for large-scale plants such as power generation, energy storage, and desalination. It can be reduced, and can be applied to capacitive flow electrode devices and / or redox flow electrode devices, and can be applied to devices for generating electricity, storing energy, and desalting electricity while ions or protons move.
  • FIG. 1 is a schematic diagram of a plate-like capacitive flow electrode device from which the basic structure and operating principle of the present invention are derived.
  • FIG. 2 is a schematic diagram of a channel flow electrode structure having two or more channel flow electrode units integrally formed according to one embodiment of the present invention.
  • FIG 3 is a schematic diagram of a channel-type flow anode unit and a channel-type flow anode unit according to one embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a channel flow electrode structure in which two or more channel flow electrode units are assembled according to one embodiment of the present invention.
  • 5A illustrates distribution and flow of cations and anions on the electrode active material flow and the electrolyte flow in each channel when there is a separate electrolyte flow path between the channel flow anode unit and the channel flow cathode unit according to one embodiment of the present invention. It is a schematic diagram shown.
  • 5B is a structural cross-sectional view of the channel flow electrode structure when there is a separate electrolyte flow path between the channel flow anode unit and the channel flow cathode unit according to one embodiment of the present invention.
  • FIG. 6 is a schematic diagram illustrating an operation principle of a channel flow electrode structure when an electrolyte flow path is disposed between the channel flow anode unit and the channel flow cathode unit according to one embodiment of the present invention.
  • FIG. 7 is a schematic diagram illustrating the flow of an electrolyte through a liquid penetrating wall when there is no separate electrolyte flow path between the channel type flow anode unit and the channel type flow cathode unit according to one embodiment of the present invention.
  • FIG. 8 is a schematic view of a method of manufacturing the three channel flow electrode structure of Example 1.
  • FIG. 8 is a schematic view of a method of manufacturing the three channel flow electrode structure of Example 1.
  • FIG. 9 is a layout view of a channel flow anode unit and a channel flow cathode unit in a channel flow electrode structure according to one embodiment of the present invention.
  • FIG. 10 is a layout view of each channel in a channel type flow electrode structure having a channel type electrolyte flow channel (indicated by hatching) according to one embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a channel flow electrode structure with an electrolyte flow path (indicated by black circles) in accordance with various embodiments of the invention.
  • FIG. 12 is a schematic view showing the structure of a general redox flow battery.
  • FIG. 13 is a schematic diagram of a redox flow electrode device according to an embodiment of the present invention.
  • FIG. 14 is a graph showing a change in current value according to a reaction time using the three-channel flow electrode structure manufactured in Example 1.
  • FIG. 15 is a graph showing a change in current value according to a reaction time using the nine-channel flow electrode structure manufactured in Example 2.
  • 16 is a schematic diagram of a lattice capacitive desalination cell according to an embodiment of the present invention ((a): top view (1x3-channel cell), (b): 3x3-channel cell, (c): desalination process) .
  • FIG. 17 shows the configuration ((a)) and salt concentration change ((b)) of a lattice capacitive desalination cell operating in batch mode, according to one embodiment of the invention.
  • Example 1 3 Channel Flow Electrode Structure
  • three square pillar channel supports were molded to prepare a liquid-permeable microporous honeycomb structure.
  • the first square column channel was coated with a cation separation membrane
  • the third square column channel was coated with an anion separation membrane, and a cation exchange membrane and an anion exchange membrane were formed on the inner wall of the channel, respectively.
  • graphene was coated on the inner wall surfaces of the first square pillar channel and the third square pillar channel coated with the ion exchange membrane to form a porous collector.
  • a channel-type flow electrode structure was prepared in which the first square pillar channel provided the anode flow path through which the positive electrode active material-flowing fluid flowed, the second square pillar channel provided the electrolyte flow path, and the third square column channel provided the cathode flow path through which the negative electrode active material containing fluid flows. .
  • the positive electrode active material and the negative electrode active material used activated carbon, and the positive electrode active material-containing fluid and the negative electrode active material-containing fluid were prepared by adding 10 wt% of activated carbon and 0.1 M NaCl to water.
  • the cell prepared as described above was placed in a vessel containing brine (35 g / L) to start the reaction.
  • the amount of NaCl in brine can be inferred from the conductivity of the brine.
  • the conductivity of the initial brine (35 g / L) without desalination was 55 mS / cm, whereas the conductivity after desalination decreased to 37 mS / cm.
  • the concentration of saline was inferred to be 23.5 g / L.
  • the three-channel flow electrode structure manufactured in Example 1 can be driven as a desalting apparatus with a Salt Removal Efficiency of ⁇ 33%.
  • Example 2 In the same manner as in Example 1, a nine channel flow electrode structure as shown in FIG. 5A was prepared.
  • the prepared cell was placed in a vessel containing brine (35 g / L) to start the reaction.
  • the amount of NaCl in brine can be inferred from the conductivity of the brine.
  • the conductivity of the initial brine (35 g / L) without desalination was 62 mS / cm, but the conductivity decreased to 50 mS / cm after desalination.
  • the concentration of brine was inferred to 28 g / L, and the salt removal efficiency was 20%.
  • the conductivity was reduced to 8.15 mS / cm, with the brine concentration of 8.1 g / L and the salt removal efficiency of 87%.
  • the lattice structure was 3 mm wide, 0.5 mm thick and 120 mm high.
  • Cordierite had a porous channel of 10-30 ⁇ m and an ion exchange membrane was coated on the surface.
  • the graphene layer was coated at about 30 ⁇ m as a current collector thereon.
  • Desalting experiments were performed in batch mode by immersing the prepared cells in a chamber containing 35 g / L saline. Salt removal efficiency was calculated by the following formula. The experimental results are shown in Table 2.

Abstract

The present invention relates to an electrochemical cell including a channel-type flow electrode unit. A channel-type flow electrode unit structure including at least two channel-type flow electrode units according to the present invention has an electrode capacity expanded to be suitable for use in large-scale plants for electricity generation, energy storage, desalting and the like, includes a reduced number of components, which bring about a significant reduction in production cost and installation space, and finds applications in capacitive flow-electrode devices and/or redox flow-electrode devices and even in any device that uses the migration of ions or protons in electricity generation, energy storage, or desalting.

Description

채널형 흐름전극 단위 구조체를 구비한 전기화학적 셀Electrochemical Cells with Channel Flow Electrode Unit Structures
본 발명은 채널형 흐름전극 단위 구조체를 구비한 전기화학적 셀에 관한 것이다.The present invention relates to an electrochemical cell having a channel flow electrode unit structure.
최근 세계 각국은 대기환경 오염 및 지구온난화 문제를 해결하기 위해 청정대체 에너지 개발에 노력을 기울이고 있으며 특히 최근에는 전해질 농도차를 이용한 해양 발전이 새로운 화두로 크게 대두되고 있다.Recently, countries around the world are making efforts to develop clean alternative energy to solve the air pollution and global warming problem. Especially, recently, marine power generation using electrolyte concentration difference is emerging as a new topic.
이와 함께 다양한 대체 에너지를 통해 생성된 전기에너지를 저장할 수 있는 대용량 전력저장기술 개발은 미래 녹색산업기반의 핵심으로 대두되고 있다. 이러한 미래 전력저장 기술의 대부분은 Li 이온 전지 방식 또는 이온의 흡착(충전) 및 탈착(방전) 원리를 이용한 슈퍼캐패시터(Super capacitor)와 같은 방식으로, 세계 각국은 소재부품의 충방전 특성의 개선을 통한 고효율 컴팩트화와 대용량화를 위해 많은 연구개발 노력을 진행 중이다.In addition, the development of large-capacity power storage technology that can store electric energy generated through various alternative energy is emerging as the core of the future green industry foundation. Most of these future power storage technologies, such as Li-ion battery method or super capacitor using the adsorption (charge) and desorption (discharge) principle of ions, the world around the world to improve the charge and discharge characteristics of the material parts Many R & D efforts are underway for high efficiency compactness and high capacity.
한편, 최근에는 수질오염 및 물부족에 대비한 정수 또는 폐수처리, 해수담수화와 같은 수처리 분야에서도 이와 동일한 원리를 이용하여 기존의 증발법이나 역삼투압(RO)법에 비해 매우 낮은 에너지 비용만으로 수처리가 가능한 공정, 즉 축전식 탈염(Capacitive Deionization: CDI) 공정개발이 진행 중이다.Recently, the same principle is used in water treatment fields such as water purification or wastewater treatment and seawater desalination in preparation for water pollution and water shortage, and the water treatment is performed at a much lower energy cost than conventional evaporation or reverse osmosis (RO) methods. A possible process is being developed, namely Capacitive Deionization (CDI).
이러한 동일 원리를 이용한 전력저장과 수처리 시스템에 있어 가장 큰 문제는 대용량화시 효율저하와 고가의 장치비용이다. 즉 스케일업을 위한 전극의 대면적화, 이에 따른 전극내 전기장 분포의 불균일, 집전체에 코팅되는 박막전극의 제한된 활물질 량, 코팅과정에서 바인더에 의한 활물질과 전해질의 접촉면적 감소 및 충방전 효율저하 등으로 다수의 단위셀 스택화가 필요하고, 이에 따른 장치의 고가화, 특히 CDI(Capacitive Deionization) 공정의 경우 스택(stack) 내 물(전해질) 흐름의 압력손실에 의한 운전비용의 증가가 문제점으로 지적되고 있다.The biggest problem in the power storage and water treatment system using the same principle is the efficiency reduction and the high cost of the device at the time of large capacity. That is, the large area of the electrode for scale-up, the nonuniformity of the electric field distribution in the electrode, the limited amount of active material of the thin film electrode coated on the current collector, the contact area between the active material and the electrolyte by the binder during the coating process, and the charge and discharge efficiency decrease, etc. As a result, a large number of unit cell stacks are required, and accordingly, the high cost of the device, and in particular, in the case of CDI (Capacitive Deionization) process, increases in operating costs due to pressure loss of the water (electrolyte) flow in the stack are pointed out as a problem. .
상기의 문제점을 해결하기 위하여 본 출원인은 축전식 흐름전극장치(한국특허 제10-1233295호)를 개발하였고, 이를 발전(한국특허 제10-1318331호), 에너지 저장(한국특허 제10-1210525호), 수처리(한국특허 제10-1221562호) 등에 사용하였다.In order to solve the above problems, the present applicant has developed a capacitive electrode flow device (Korean Patent No. 10-1233295), and developed it (Korea Patent No. 10-1318331), energy storage (Korean Patent No. 10-1210525) ), Water treatment (Korean Patent No. 10-1221562) and the like.
상기의 발명에서 제안한 흐름전극으로 무한한 전극용량 가진 전극을 단위셀에 공급하는 것이 가능하였지만 흐름전극을 이용한 장치들을 비롯한 레독스 흐름전지(redox flow battery) 등의 종래기술은 대용량화를 위해서는 전극면적을 늘리거나, 스택화를 하여야 하는데, 이 경우 종래기술에서는 양극집전체 및 음극집전체를 비롯한 단위구성요소들을 무한히 적층하게 된다.Although it was possible to supply the electrode having infinite electrode capacity to the unit cell as the flow electrode proposed in the above invention, the prior art such as a redox flow battery including devices using the flow electrode increases the electrode area to increase the capacity. In this case, in the prior art, the unit components including the positive electrode current collector and the negative electrode current collector are infinitely stacked.
이 결과, 단위셀의 적층은 부피가 크게 증대할 뿐만 아니라, 많은 유로로 인하여 부품수가 증대하여 장치를 제작하기 위한 비용이 커진다는 큰 문제가 있다.As a result, the stacking of the unit cells not only greatly increases the volume, but also has a large problem that the number of parts increases due to the large flow path, thereby increasing the cost for manufacturing the device.
본 발명의 목적은, 발전, 에너지저장, 탈염 등의 대단위 플랜트에 적용시 장치비용을 낮추고 작은 공간을 차지하면서도 대용량화시키기 위해, 흐름 전극 단위체를 액체침투성 벽체 또는 분리막에 의해 한정된 채널로 구성하고, 기본 골격을 전해질을 공급하는 지지체로 형성하면서 상기 복수개의 채널형 흐름 전극 단위체들을 격자형과 같이 고도로 밀집하게 배치한 흐름 전극 구조체를 제공하는 것이다. An object of the present invention is to configure the flow electrode unit as a channel defined by a liquid-permeable wall or separator in order to reduce the device cost and increase the capacity while applying to a large-scale plant such as power generation, energy storage, and desalination. The present invention provides a flow electrode structure in which a plurality of channel type flow electrode units are arranged in a high density such as a lattice, while a skeleton is formed of a support for supplying an electrolyte.
본 발명의 제1양태는 액체침투성 벽체에 의해 한정된 채널형 흐름 전극 단위체(unit)로서, 양이온 또는 음이온을 통과시키고 전기 전도성을 가지는 이온교환집전체가 채널형 벽체 내부면에 위치되어 있으며, 채널 입구로부터 도입되어 채널 출구로 배출되는 전극활물질 함유 유체가 흐르는 전극 유로가, 이온교환집전체를 통해 상기 벽체로부터 이격되어 있는 것이 특징인 채널형 흐름 전극 단위체를 제공한다.A first aspect of the invention is a channel flow electrode unit defined by a liquid penetrating wall, wherein an ion exchange current collector that passes through cations or anions and is electrically conductive is located on the inner surface of the channel wall and has a channel inlet. An electrode flow path through which an electrode active material-containing fluid introduced from the outlet and discharged to a channel outlet flows is spaced apart from the wall through an ion exchange current collector.
본 발명의 제2양태는 액체침투성 벽체에 의해 한정된 채널형 흐름 전극 단위체(unit)로서, 양이온 또는 음이온을 통과시키도록 이온교환 물질이 채널형 벽체 내부면, 외부면, 벽체 자체 또는 이들의 조합 위치에 적용되어 있으며, 다공성 집전체가 이온교환 물질이 적용된 채널형 벽체의 내부면에 적용되어 있고, 채널 입구로부터 도입되어 채널 출구로 배출되는 전극활물질 함유 유체가 흐르는 전극 유로가, 다공성 집전체를 통해 상기 벽체로부터 이격되어 있는 것이 특징인 채널형 흐름 전극 단위체를 제공한다.A second aspect of the invention is a channel flow electrode unit defined by a liquid penetrating wall, wherein the ion exchange material passes through the channeled wall inner surface, outer surface, wall itself, or a combination thereof to allow passage of cations or anions. The electrode flow path is applied to the inner surface of the channel-like wall to which the ion exchange material is applied, and the electrode flow path through which the electrode active material-containing fluid flowing from the channel inlet and discharged to the channel outlet flows. It provides a channel flow electrode unit, characterized in that spaced from the wall.
본 발명의 제3양태는 제1양태 또는 제2양태의 채널형 흐름 전극 단위체를 2개 이상 구비한 채널형 흐름 전극 구조체를 제공한다.The third aspect of the present invention provides a channel flow electrode structure having two or more channel flow electrode units of the first or second aspect.
본 발명의 제4양태는 제1양태 또는 제2양태의 채널형 흐름 전극 단위체의 제조방법으로서, 액체침투성 벽체에 의해 한정된 채널을 준비하는 제1a단계; 양이온 또는 음이온을 통과시키는 이온교환물질을 채널형 벽체 내부면, 외부면, 벽체 자체 또는 이의 조합에 적용하는 제2a단계; 및 다공성 집전체를 이온교환 물질이 적용된 채널형 벽체의 내부면에 적용하는 제3a단계를 포함하는 것이 특징인 채널형 흐름 전극 단위체의 제조방법을 제공한다.A fourth aspect of the present invention provides a method for producing a channel flow electrode unit of the first or second aspect, comprising the steps of: preparing a channel defined by a liquid-permeable wall; A second step of applying an ion exchange material through which a cation or anion passes through the inner surface, the outer surface, the wall itself, or a combination thereof; And a third step of applying the porous current collector to the inner surface of the channel-shaped wall to which the ion exchange material is applied.
본 발명의 제5양태는 제1양태의 채널형 흐름 전극 단위체의 제조방법으로서, 액체침투성 벽체에 의해 한정된 채널을 준비하는 제1b단계; 다공성 집전체를 채널형 벽체의 내부면에 적용하는 제2b단계; 및 양이온 또는 음이온을 통과시키는 이온교환막을 다공성 집전체가 적용된 채널형 벽체 내부면에 적용하는 제3b단계를 포함하는 것이 특징인 채널형 흐름 전극 단위체의 제조방법을 제공한다.A fifth aspect of the present invention provides a method for producing a channel flow electrode unit of the first aspect, comprising: preparing a channel defined by a liquid-permeable wall; A second step of applying the porous current collector to the inner surface of the channel-shaped wall; And a third step of applying an ion exchange membrane through which a cation or anion passes to the inner surface of the channel wall to which the porous current collector is applied.
본 발명의 제6양태는 제3양태의 채널형 흐름 전극 구조체의 제조방법으로서, 유체가 입구로 도입되어 출구로 배출되는 채널들을 복수개 구비한 기본 골격을 형성하는 액체침투성 벽체를 준비하는 제1c단계; 선택된 채널(들)을 양이온을 통과시키는 이온교환물질로 채널형 벽체 내부면, 벽체 자체 또는 이의 조합에 적용하고, 선택된 다른 채널(들)을 음이온을 통과시키는 이온교환물질로 채널형 벽체 내부면, 벽체 자체 또는 이의 조합에 적용하는 제2c단계; 및 다공성 집전체를 이온교환 물질이 적용된 채널형 벽체의 내부면에 적용하는 제3c단계를 포함하는 것이 특징인 채널형 흐름 전극 구조체의 제조방법을 제공한다.A sixth aspect of the present invention is a method of manufacturing a channel flow electrode structure of the third aspect, the first step of preparing a liquid-permeable wall to form a basic skeleton having a plurality of channels in which fluid is introduced to the inlet and discharged to the outlet ; Apply the selected channel (s) to the channel-like wall inner surface with an ion exchange material through the cation, the wall itself or a combination thereof, and select the other channel (s) to the channel-wall wall with an ion exchange material passing the anions, A second step of applying to the wall itself or a combination thereof; And a third step of applying the porous current collector to an inner surface of the channel-shaped wall to which the ion exchange material is applied.
본 발명의 제7양태는 제3양태의 채널형 흐름 전극 구조체의 제조방법으로서, 유체가 입구로 도입되어 출구로 배출되는 채널들을 복수개 구비한 기본 골격을 형성하는 액체침투성 벽체를 준비하는 제1d단계; 다공성 집전체를 채널형 벽체의 내부면에 적용하는 제2d단계; 다공성 집전체가 적용된 채널들 중 선택된 채널(들)을 양이온을 통과시키는 이온교환물질로 채널형 벽체 내부면에 코팅하고, 다공성 집전체가 적용된 채널들 중 선택된 다른 채널(들)을 음이온을 통과시키는 이온교환물질로 채널형 벽체 내부면에 코팅하는 제3c단계를 포함하는 것이 특징인 채널형 흐름 전극 구조체의 제조방법을 제공한다.According to a seventh aspect of the present invention, there is provided a method of manufacturing a channel flow electrode structure according to the third aspect, the first step of preparing a liquid-permeable wall that forms a basic skeleton having a plurality of channels through which fluid is introduced into and discharged from the outlet. ; A second step of applying the porous current collector to the inner surface of the channel-shaped wall; Coating the selected channel (s) of the porous current collector to the inner surface of the channel-like wall with an ion exchange material through which cations pass, and passing the negative ion through other selected channel (s) of the channels to which the porous current collector is applied. It provides a method for producing a channel-type flow electrode structure characterized in that it comprises a third step of coating the inner surface of the channel-like wall with an ion exchange material.
본 발명의 제8양태는 액체침투성 벽체에 의해 한정된 채널형 흐름 양극 단위체(unit)로서, 양이온을 통과시키고 전기 전도성을 가지는 양극 이온교환집전체가 채널형 벽체 내부면에 위치되어 있는 채널형 흐름 양극 단위체; 및 액체침투성 벽체에 의해 한정된 채널형 흐름 음극 단위체(unit)로서, 음이온을 통과시키고 전기 전도성을 가지는 음극 이온교환집전체가 채널형 벽체 내부면에 위치되어 있는 채널형 흐름 음극 단위체를 구비하되, 채널 입구로부터 도입되어 채널 출구로 배출되는 전극활물질 함유 유체가 흐르는 전극 유로가, 이온교환집전체를 통해 상기 벽체로부터 이격되어 있는 것이 특징인 채널형 흐름 전극 구비 셀을 제공한다.An eighth aspect of the present invention is a channel flow anode unit defined by a liquid penetrating wall, in which a channel flow anode in which an anode ion exchange current collector passing through cations and having electrical conductivity is located on an inner surface of the channel wall. monomer; And a channel type flow cathode unit defined by the liquid penetrating wall, the channel type flow cathode unit having a negative ion ion exchange current passing through the anion and having an electrical conductivity located on an inner surface of the channel wall. An electrode flow path through which an electrode active material-containing fluid flowing from an inlet and discharged to a channel outlet flows is separated from the wall through an ion exchange current collector.
본 발명의 제9양태는 액체침투성 벽체에 의해 한정된 채널형 흐름 양극 단위체(unit)로서, 양이온을 통과시키도록 이온교환 물질이 채널형 벽체 내부면, 외부면, 벽체 자체 또는 이들의 조합 위치에 적용되어 있으며 다공성 집전체가 이온교환 물질이 적용된 채널형 벽체의 내부면에 적용되어 있는 채널형 흐름 양극 단위체; 및 액체침투성 벽체에 의해 한정된 채널형 흐름 음극 단위체(unit)로서, 음이온을 통과시키도록 이온교환 물질이 채널형 벽체 내부면, 외부면, 벽체 자체 또는 이들의 조합 위치에 적용되어 있으며 다공성 집전체가 이온교환 물질이 적용된 채널형 벽체의 내부면에 적용되어 있는 채널형 흐름 음극 단위체를 구비하되, 채널 입구로부터 도입되어 채널 출구로 배출되는 전극활물질 함유 유체가 흐르는 전극 유로가, 다공성 집전체를 통해 상기 벽체로부터 이격되어 있는 것이 특징인 채널형 흐름 전극 구비 셀을 제공한다.A ninth aspect of the invention is a channel flow anode unit defined by a liquid penetrating wall, wherein the ion exchange material is applied to the channel wall inner wall, outer surface, wall itself, or a combination thereof to pass cations. A channel-type flow anode unit having a porous current collector applied to an inner surface of the channel-type wall to which the ion exchange material is applied; And a channel-type flow cathode unit defined by a liquid-permeable wall, wherein an ion exchange material is applied to the inner surface of the channeled wall, the outer surface, the wall itself, or a combination thereof so as to allow anions to pass therethrough. The channel flow cathode unit is applied to the inner surface of the channel-like wall to which the ion exchange material is applied, the electrode flow path flowing through the electrode active material-containing fluid introduced from the channel inlet and discharged to the channel outlet through the porous current collector It provides a cell with a channel flow electrode characterized in that it is spaced apart from the wall.
본 발명의 제10양태는 유체가 입구로 도입되어 출구로 배출되는 채널들을 복수개 구비한 기본 골격을 형성하는 분리막 지지체; 상기 분리막 지지체에서 선택된 채널(들)의 내부 벽면에 다공성 집전체가 배치되고, 채널 입구로부터 도입되어 채널 출구로 배출되는 양극활물질 함유 유체가 흐르는 양극 유로가 다공성 집전체를 통해 상기 채널형 분리막 지지체로부터 이격되어 있는, 채널형 흐름 양극 단위체(unit); 및 상기 분리막 지지체에서 선택된 다른 채널(들)의 내부 벽면에 다공성 집전체가 배치되고, 채널 입구로부터 도입되어 채널 출구로 배출되는 음극활물질 함유 유체가 흐르는 음극 유로가 다공성 집전체를 통해 상기 채널형 분리막 지지체로부터 이격되어 있는, 채널형 흐름 음극 단위체(unit)를 포함하는 것이 특징인 채널형 흐름 전극 구조체를 제공한다.A tenth aspect of the present invention is a membrane support for forming a basic skeleton having a plurality of channels in which fluid is introduced into the inlet and discharged to the outlet; The porous current collector is disposed on the inner wall of the channel (s) selected in the membrane support, and an anode flow path through which the positive electrode active material-containing fluid flowing from the channel inlet and discharged to the channel outlet flows from the channel-type separator support. Spaced, channel-type flow anode units; And a negative electrode flow path having a porous current collector disposed on an inner wall surface of the other channel (s) selected from the membrane support, and flowing a negative electrode active material-containing fluid introduced from the channel inlet and discharged to the channel outlet through the channel-type separator. A channel flow electrode structure is provided that includes a channel flow cathode unit spaced from a support.
본 발명의 제11양태는 제3양태 또는 제10양태의 채널 형 흐름 전극 구조체를 구비하는 것이 특징인 축전식 흐름전극장치를 제공한다.An eleventh aspect of the present invention provides a capacitive electrode flow device comprising the channel-type flow electrode structure of the third or tenth aspect.
본 발명의 제12양태는 제3양태 또는 제10양태의 채널 형 흐름 전극 구조체를 구비하는 것이 특징인 레독스 흐름전지장치를 제공한다.A twelfth aspect of the present invention provides a redox flow cell device, characterized in that the channel type flow electrode structure of the third or tenth aspect is provided.
이하, 본 발명을 자세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에서 양극은 캐소드(cathode)를 의미하며, 음극은 애노드(anode)를 의미한다. 탈염 또는 방전에서는 극성이 바뀔 수 있다.In the present invention, the positive electrode means a cathode, and the negative electrode means an anode. In desalting or discharging, the polarity may change.
구체적인 작용원리는 다르지만 condenser, capacitor, battery와 같은 이차전지(secondary cell)의 공통적인 4가지 기본 구성은 양극, 음극, 분리막 및 전해질이다. Battery에서는 산화환원(Redox)반응이, Capacitor에는 이온흡착(EDL)이론이 적용된다.Although the principle of action is different, the four basic components common to secondary cells such as condenser, capacitor and battery are anode, cathode, separator and electrolyte. Redox reaction is applied to battery and ion adsorption (EDL) theory is applied to capacitor.
통상 흐름전지(Flow Cell)라고 알려진 Redox 흐름전지는 4가지 구성요소중 전해질(electrolyte, 반응촉매포함)이 흐르는 것이다.Redox flow cells, commonly known as flow cells, are the ones in which electrolytes (including reaction catalysts) flow.
본 발명에 따른 채널형 흐름 전극(flowable electrode, flow-electrode)은 전극 활물질이 고정용기 안에서만 유동하는 것이 아니라, 채널을 통해 전극 활물질의 in-out 흐름(flow)이 있는 것이다. "축전식 흐름전극"의 경우, 전극 활물질은 이온을 흡착 및 탈착할 수 있는 것을 사용한다.In the flowable electrode (flow-electrode) according to the present invention, the electrode active material does not flow only in the fixed container, but in-out flow of the electrode active material through the channel. In the case of a "capacitive flow electrode", an electrode active material is used that can adsorb and desorb ions.
따라서, 본 발명에 따른 채널형 흐름 전극 구비 셀이 적용될 수 있는 FCDI은 현상적 측면에서 "Capacitive 흐름전지"라고 할 수 있으나, 4가지 구성요소 중 양극 활물질(cathode active materials) 및 음극 활물질(anode active materials)이 동시에 전극 유로 입구로부터 도입되어 전극 유로 출구로 배출되도록 흐르는 것으로, 이때 입구/출구를 갖는 유로를 통해 전해질은 흐를 수도, 흐르지 않을 수도 있다.Accordingly, the FCDI to which the channel type flow electrode cell according to the present invention can be applied may be referred to as a "capacitive flow battery" in terms of the phenomenon, but it is a cathode active material and a cathode active material among four components. The materials are simultaneously introduced from the electrode flow path inlet and discharged to the electrode flow path outlet, wherein the electrolyte may or may not flow through the flow path having the inlet / outlet.
본 발명에서는 채널형 흐름전극 단위체(unit) 및 단위 구조체(unit structure)를 동일한 의미로 사용한다.In the present invention, the channel type flow electrode unit and the unit structure have the same meaning.
한편, 전해질로부터 전기를 생산하는 발전장치에 사용될 수 있는 축전식 흐름전극장치(100)를 도 1를 참조하여 설명하면, 판상형 전해질 유로(102)를 중심으로 그 양측에 판상형 흐름 양극(112)과 판상형 흐름 음극(114)가 배치된다. 상기 전해질 유로(102)와 상기 흐름 양극(112) 사이에는 판상형 양극 이온교환집전체가 배치되고, 상기 전해질 유로(102)와 상기 흐름음극(114) 사이에는 판상형 음극 이온교환집전체가 배치된다. 그리고, 상기 판상형 흐름 양극(112)의 외측과 상기 판상형 흐름 음극(114)의 외측으로 유로를 형성하기 위한 폐쇄플레이트(116,118)가 배치된다.Meanwhile, referring to FIG. 1, a capacitive flow electrode device 100 that can be used in a power generation device for producing electricity from an electrolyte is described with a plate-shaped flow anode 112 at both sides of the plate-shaped electrolyte flow path 102. A plate-shaped flow cathode 114 is disposed. A plate-shaped positive electrode ion exchange current collector is disposed between the electrolyte flow path 102 and the flow anode 112, and a plate-shaped negative electrode ion exchange current collector is disposed between the electrolyte flow path 102 and the flow cathode 114. In addition, closed plates 116 and 118 for forming a flow path outside the plate-shaped flow anode 112 and the plate-shaped flow cathode 114 are disposed.
상기 양극 이온교환집전체는 도 1에 도시된 바와 같이, 양극 이온교환막(104)과 다공성양극판(106)을 적층한 것을 사용할 수 있다. 상기 양극 이온교환막(104)은 상기 전해질 유로(102) 측에 배치되고, 상기 다공성양극판(106)은 상기 흐름 양극(112) 측에 배치된다. 반대로, 상기 양극 이온교환막(104)은 상기 흐름양극(112) 측에 배치되고, 상기 다공성양극판(106)은 상기 전해질 유로(102) 측에 배치되는 것도 가능하다.As the cathode ion exchange current collector, as shown in FIG. 1, a cathode ion exchange membrane 104 and a porous cathode plate 106 may be stacked. The anode ion exchange membrane 104 is disposed on the electrolyte flow path 102 side, and the porous cathode plate 106 is disposed on the flow anode 112 side. On the contrary, the anode ion exchange membrane 104 may be disposed on the flow anode 112 side, and the porous cathode plate 106 may be disposed on the electrolyte flow path 102 side.
또, 상기 음극 이온교환집전체는 도 1에 도시된 바와 같이, 음극 이온교환막(108)과 다공성음극판(110)을 중첩한 것을 사용할 수 있다. 상기 음극 이온교환막(108)은 상기 전해질 유로(102) 측에 배치되고, 상기 다공성음극판(110)은 상기 흐름음극(114) 측에 배치된다. 반대로, 상기 음극 이온교환막(108)은 상기 흐름음극(114) 측에 배치되고, 상기 다공성음극판(110)은 상기 전해질 유로(102) 측에 배치되는 것도 가능하다.In addition, as shown in FIG. 1, the cathode ion exchange current collector may be formed by overlapping the cathode ion exchange membrane 108 and the porous cathode plate 110. The cathode ion exchange membrane 108 is disposed on the electrolyte flow path 102 side, and the porous cathode plate 110 is disposed on the flow cathode 114 side. In contrast, the cathode ion exchange membrane 108 may be disposed on the flow cathode 114 side, and the porous cathode plate 110 may be disposed on the electrolyte flow path 102 side.
상기 판상형 흐름 양극(112)은 전극용액에 양극 활물질(111)이 분산된 슬러리 상태로 흐르는 판상형 유로이다. 그리고, 상기 판상형 흐름 음극(114)은 전극용액에 음극 활물질(113)이 분산된 슬러리 상태로 흐르는 판상형 유로이다. 상기 판상형 흐름 양극(112)과 상기 판상형 흐름 음극(114)은 판상형 유로를 형성하기 위해 외측에 폐쇄플레이트(116,118)와 내측에 판상형 지지체가 필요하다.The plate-shaped flow positive electrode 112 is a plate-shaped flow path flowing in a slurry state in which the positive electrode active material 111 is dispersed in an electrode solution. In addition, the plate-shaped flow cathode 114 is a plate-shaped flow path flowing in a slurry state in which the negative electrode active material 113 is dispersed in the electrode solution. The plate-shaped flow anode 112 and the plate-shaped flow cathode 114 need closed plates 116 and 118 on the outside and a plate-like support on the inside to form a plate-shaped flow path.
발전장치로 활용시 상기 축전식 흐름전극장치(100)의 작동원리는, 상기 판상형 전해질 유로(102)로 양이온과 음이온을 가지는 전해질을 흘리면, 상기 판상형 양극 이온교환집전체를 통과한 양이온이 상기 판상형 흐름 양극(112)로 이동하고 상기 음극 이온교환집전체를 통과한 음이온이 상기 판상형 흐름 음극(114)로 이동하면, 상기 흐름 양극(112)와 상기 흐름 음극(114) 사이에 전위차가 발생하게 된다. 이 전위차가 상기 다공성 양극판(106)과 상기 다공성 음극판(110)을 통해 외부로 전기적으로 연결되면, 상기 축전식 흐름전극장치(100)는 발전유니트로써 활용될 수 있다.The operating principle of the capacitive electrode flow device 100 when used as a power generation device, when the electrolyte having a cation and an anion flows into the plate-shaped electrolyte flow path 102, the cation that has passed through the plate-shaped positive electrode ion exchange current collector is the plate-shaped When the negative ions move to the flow anode 112 and pass through the cathode ion exchange current collector to the plate-shaped flow cathode 114, a potential difference is generated between the flow anode 112 and the flow cathode 114. . When the potential difference is electrically connected to the outside through the porous positive electrode plate 106 and the porous negative electrode plate 110, the capacitive electrode flow device 100 may be utilized as a power generation unit.
반대로, 상기 다공성 양극판(106)과 상기 다공성 음극판(110)에 전위차가 발생하도록 외부에서 전류를 흘리면, 상기 흐름 양극(112)와 상기 흐름 음극(114)로 상기 전해질 유로(102)를 흐르는 전해질로부터 강제로 양이온과 음이온이 이동하면서, 전해질을 탈염시키게 된다.On the contrary, when a current flows from the outside to generate a potential difference between the porous positive electrode plate 106 and the porous negative electrode plate 110, the electrolyte flows through the electrolyte flow path 102 to the flow positive electrode 112 and the flow negative electrode 114. Forcing cations and anions to move, desalting the electrolyte.
또, 동시에 상기 흐름 양극(112)와 상기 흐름 음극(114)를 흐르는 슬러리에 전하가 채워지므로, 상기 슬러리를 저장하여 전기 저장장치로 활용하는 것도 가능하다.In addition, since the charge is filled in the slurry flowing through the flow anode 112 and the flow cathode 114 at the same time, it is also possible to store the slurry to use as an electrical storage device.
상기 폐쇄플레이트(116,118)는 비전기 전도성 플레이트를 사용할 수도 있고, 전기 전도성이 있는 금속판을 사용할 수도 있다. 전기 전도성 금속판을 사용하는 경우에는 추가 집전체로써 활용될 수 있다.The closing plates 116 and 118 may use a non-electrically conductive plate, or may use an electrically conductive metal plate. In the case of using an electrically conductive metal plate, it can be utilized as an additional current collector.
발전, 에너지저장, 탈염 등의 대단위 플랜트에 적용시 장치비용을 낮추고 작은 공간을 차지하면서도 대용량화시키기 위해, 본 발명자들은 도 1에 도시된 판상형 흐름 전극 유로 구성을 응용하면, 상기 폐쇄플레이트가 필요없는 채널형 흐름 전극 유로를 액체침투성 벽체 또는 분리막으로 둘러싸인 채널로 설계할 수 있고, 복수개의 채널형 흐름 전극 단위체들을 격자형과 같이 고도로 밀집하게 배치한 채널형 흐름 전극 구조체를 제공할 수 있으며, 액체침투성 벽체 또는 분리막이 기본 골격을 형성하면서 전해질을 공급하는 지지체 역할을 수행할 수 있다는 것을 발견하였다. 본 발명은 이에 기초한 것이다. In order to reduce the device cost and take up a small space when applied to large-scale plants such as power generation, energy storage, and desalination, the present inventors apply the plate-shaped flow electrode flow path configuration shown in FIG. The flow-type flow electrode channel can be designed as a channel surrounded by a liquid-permeable wall or separator, and can provide a channel-type flow electrode structure in which a plurality of channel-type flow electrode units are arranged highly densely, such as a lattice, and a liquid-permeable wall. Or it was found that the separator can serve as a support for supplying the electrolyte while forming a basic skeleton. The present invention is based on this.
따라서, 본 발명은 유체가 입구로 도입되어 출구로 배출되는 채널들을 복수개 구비한 기본 골격을 일체형의 액체침투성 벽체 또는 분리막으로 형성한 후 액체침투성 벽체 또는 분리막으로 둘러싸여 한정된 채널들 중 일부 또는 전부가 흐름 전극 단위체(unit)(도 3)를 구성하는 채널형 흐름 전극 구조체를 제공하는 것이 하나의 특징이다. 이 경우 서로 인접한 두 개의 채널형 흐름 전극 단위체는 액체침투성 벽체 또는 분리막을 공유할 수 있다(도 2). Accordingly, the present invention forms a basic skeleton having a plurality of channels into which the fluid is introduced into the outlet and discharged to the outlet as an integral liquid-permeable wall or separator, and then some or all of the defined channels are surrounded by the liquid-permeable wall or separator. It is one feature to provide a channel flow electrode structure that constitutes an electrode unit (FIG. 3). In this case, two channel-type flow electrode units adjacent to each other may share a liquid penetrating wall or a separator (FIG. 2).
또한, 본 발명은 채널형 흐름 전극 단위체(unit)를 블록형태로 조립가능하게 설계하여(도 3), 채널형 흐름 전극 단위체를 2개 이상 구비한 채널형 흐름 전극 구조체를 제공하는 것이 다른 특징이다(도 4).In addition, the present invention is designed to assemble the channel flow electrode unit (unit) in the form of a block (Fig. 3), it is another feature to provide a channel flow electrode structure having two or more channel flow electrode units. (FIG. 4).
나아가, 본 발명에 따른 채널형 흐름 전극 구조체는 도 1에 도시된 판상형 전극 유로를 갖는 축전식 흐름전극장치와 달리 별도의 전해질 유로가 없더라도 채널형 전극 단위체의 액체침투성 벽체를 통해 전해질이 공급될 수 있으므로 전기화학적 셀로서 작동할 수 있는 것이 또다른 특징이다.Furthermore, in the channel type flow electrode structure according to the present invention, unlike the capacitive flow electrode device having the plate-shaped electrode flow path shown in FIG. 1, the electrolyte may be supplied through the liquid penetrating wall of the channel type electrode unit even without a separate electrolyte flow path. It is another feature that it can therefore act as an electrochemical cell.
본 발명은 축전식 흐름전극장치 중 양극/음극/분리막/전해질을 본 발명의 제3양태 또는 제10양태에 따른 채널형 흐름 전극 구조체로 제공한다. 본 발명의 제3양태에 따른 채널형 흐름 전극 구조체는 본 발명의 제1양태 또는 제2양태에 따른 채널형 흐름 전극 단위체를 2개 이상 구비한 것이다.The present invention provides an anode / cathode / separator / electrolyte of the capacitive flow electrode device as a channel flow electrode structure according to the third or tenth aspect of the present invention. The channel flow electrode structure according to the third aspect of the present invention includes two or more channel flow electrode units according to the first or second aspect of the present invention.
본 발명의 제1양태에 따른 채널형 흐름 전극 단위체는 액체침투성 벽체에 의해 한정된 채널형 흐름 전극 단위체(unit)로서, The channel flow electrode unit according to the first aspect of the present invention is a channel flow electrode unit defined by a liquid penetrating wall,
양이온 또는 음이온, 바람직하게는 양이온 및 음이온 중 어느 하나만을 통과시키고 전기 전도성을 가지는 이온교환집전체가 채널형 벽체 내부면에 위치되어 있으며, An ion exchange current collector having only a cation or an anion, preferably a cation and an anion and having electrical conductivity is located on the inner surface of the channel wall,
채널 입구로부터 도입되어 채널 출구로 배출되는 전극활물질 함유 유체가 흐르는 전극 유로가, 이온교환집전체를 통해 상기 벽체로부터 이격되어 있는 것일 수 있다.The electrode flow path through which the electrode active material-containing fluid introduced from the channel inlet and discharged to the channel outlet flows may be spaced apart from the wall through the ion exchange current collector.
이때, 양이온을 통과시키고 전기 전도성을 가지는 양극 이온교환집전체를 구비하는 경우 채널형 흐름 양극 단위체가 될 수 있고, 음이온을 통과시키고 전기 전도성을 가지는 음극 이온교환집전체를 구비하는 경우 채널형 흐름 음극 단위체가 될 수 있다(도 5).In this case, when the positive ion ion current collector having a positive electrode and passing through the cation may be a channel flow positive electrode unit, and the negative ion ion current collector having a negative ion passing through the negative electrode and having an electrical conductivity, the channel flow negative electrode It may be a monomer (Fig. 5).
이때, 이온교환집전체는 이온만을 투과시키면서 전기 전도성을 띠는 재료로 제조될 수도 있고, 이온교환막과 다공성 집전체(예, 탄소, 및 금속 물질, 전도성고분자)가 적층된 것일 수 있다. 이때, 이온교환집전체 역할을 수행하는 한 적층 순서는 중요하지 않다.In this case, the ion exchange current collector may be made of a material that is electrically conductive while transmitting only ions, and the ion exchange membrane and the porous current collector (for example, carbon, a metal material, and a conductive polymer) may be stacked. In this case, the stacking order is not important as long as it serves as an ion exchange collector.
양이온 교환막은 전해질 액체의 유통을 막고 양이온만 선택적으로 통과시키는 치밀막일 수 있고, 상기 음이온 교환막은 전해질 액체의 유통을 막고 음이온만 선택적으로 통과시키는 치밀막일 수 있다. 양이온 교환막과 음이온 교환막은 공지의 이온 분리막을 사용할 수 있다.The cation exchange membrane may be a dense membrane that prevents the flow of electrolyte liquid and selectively passes only cations, and the anion exchange membrane may be a dense membrane that prevents the flow of electrolyte liquid and selectively passes only anions. A well-known ion separation membrane can be used for a cation exchange membrane and an anion exchange membrane.
본 발명의 제2양태에 따른 채널형 흐름 전극 단위체는 액체침투성 벽체에 의해 한정된 채널형 흐름 전극 단위체(unit)로서, The channel flow electrode unit according to the second aspect of the present invention is a channel flow electrode unit defined by a liquid penetrating wall,
양이온 또는 음이온, 바람직하게는 양이온 및 음이온 중 어느 하나만을 통과시키도록 이온교환 물질이 채널형 벽체 내부면, 외부면, 벽체 자체 또는 이들의 조합 위치에 적용(예, 코팅)되어 있으며, The ion exchange material is applied (e.g., coated) at the inner surface of the channeled wall, the outer surface, the wall itself or a combination thereof so as to pass only one of the cations or anions, preferably cations and anions,
다공성 집전체가 이온교환 물질이 적용된 채널형 벽체의 내부면에 적용되어 있고, The porous current collector is applied to the inner surface of the channel-shaped wall to which the ion exchange material is applied,
채널 입구로부터 도입되어 채널 출구로 배출되는 전극활물질 함유 유체가 흐르는 전극 유로가, 다공성 집전체를 통해 상기 벽체로부터 이격되어 있는 것일 수 있다.The electrode flow path through which the electrode active material-containing fluid introduced from the channel inlet and discharged to the channel outlet flows may be spaced apart from the wall through the porous current collector.
양이온을 통과시키는 이온교환물질이 적용된 경우 채널형 흐름 양극 단위체가 될 수 있고, 음이온을 통과시키는 이온교환물질이 적용된 경우 채널형 흐름 음극 단위체가 될 수 있다.When an ion exchange material through which a cation is applied may be a channel flow cathode unit, and when an ion exchange material through which an anion is applied may be a channel flow cathode unit.
본 발명에서 양극활물질 및 음극활물질은 서로 다른 물질이 사용될 수도 있지만, 동일한 물질이 사용될 수 있으며, 이 경우에 양자를 합쳐서 전극활물질이라고 명명한다. 상기 양극활물질 및 상기 음극활물질은 다공성 탄소(활성탄, 카본파이버, 탄소에어로젤, 탄소나노튜브 등), 흑연분말, 금속산화물 분말 등이 사용될 수 있다. In the present invention, the positive electrode active material and the negative electrode active material may be different materials, but the same material may be used. In this case, the electrode active material is collectively named as the electrode active material. The cathode active material and the anode active material may be porous carbon (activated carbon, carbon fiber, carbon aerogel, carbon nanotube, etc.), graphite powder, metal oxide powder, or the like.
또, 상기 전극용액은 NaCl, H2SO4, HCl, NaOH, KOH, Na2NO3등 수용성 전해질액과, 프로필렌카보네이트(Propylene Carbonate, PC), 디에틸카보네이트(Diethyl Carbonate, DEC), 테트라히드로푸란(Tetrahydrofuran, THF)와 같은 유기성 전해질액을 포함할 수 있다. 특히, 상기 전극용액으로써 다량의 염(특히, NaCl)이 함유된 염수 또는 미량의 염이 함유된 담수를 사용하는 것이 가능하다.In addition, the electrode solution is a water-soluble electrolyte solution such as NaCl, H 2 SO 4 , HCl, NaOH, KOH, Na 2 NO 3 , propylene carbonate (Propylene Carbonate, PC), diethyl carbonate (DEC), tetrahydro It may include an organic electrolyte solution such as furan (Tetrahydrofuran, THF). In particular, it is possible to use brine containing a large amount of salt (especially NaCl) or fresh water containing a small amount of salt as the electrode solution.
상기 다공성 집전체는 전기가 통하면서도 유체가 통과할 수 있는 물질, 예를 들어 다공성 탄소 또는 전도성 고분자일 수 있다. 상기 다공성 탄소는 그라파이트, 그래핀, 탄소섬유, 활성탄, 카본나노튜브 등으로 제작될 수 있다.The porous current collector may be a material, such as porous carbon or a conductive polymer, through which fluid can pass while electricity is passed through. The porous carbon may be made of graphite, graphene, carbon fiber, activated carbon, carbon nanotubes, and the like.
전해질로는 상기 전극용액과 마찬가지로 NaCl, H2SO4, HCl, NaOH, KOH, Na2NO3 등 수용성 전해질액과, 프로필렌카보네이트(Propylene Carbonate, PC), 디에틸카보네이트(Diethyl Carbonate, DEC), 테트라히드로푸란(Tetrahydrofuran, THF)와 같은 유기성 전해질액을 포함할 수 있다. 특히, 상기 전해질로 다량의 염(특히, NaCl)이 함유된 염수 또는 미량의 염이 함유된 담수를 사용하는 것이 가능하다. As the electrolyte, a water-soluble electrolyte solution such as NaCl, H 2 SO 4 , HCl, NaOH, KOH, Na 2 NO 3 , propylene carbonate (PC), diethyl carbonate (DEC), It may include an organic electrolyte solution such as tetrahydrofuran (THF). In particular, it is possible to use brine containing a large amount of salt (especially NaCl) or fresh water containing a small amount of salt as the electrolyte.
액체침투성 벽체는 골격 지지체 역할을 할 수 있다. 액체침투성 벽체에 둘러싸여 한정된 채널은 도 3에 도시된 바와 같이 사각 기둥과 같은 다각기둥 일 수 있고, 원기둥일 수 있다.The liquid penetrating wall can serve as a skeletal support. The channel defined surrounded by the liquid-penetrating wall may be a polygonal column, such as a square pillar, as shown in FIG. 3, or may be a cylinder.
액체침투성 벽체는 전기절연성인 것이 바람직하다. 액체침투성 벽체의 재료는 제올라이트, 세라믹, 또는 고분자물질을 함유할 수 있다. 전해질이 이동하기 용이하도록 섬유조직으로 이루어지는 것이 바람직하다.The liquid penetrating wall is preferably electrically insulating. The material of the liquid penetrating wall may contain zeolite, ceramic, or high molecular material. It is preferable that the electrolyte is made of a fibrous structure to facilitate movement.
본 발명에서 액체투과성 벽체에 형성되는 이온교환막은 다공성 지지체에 이온을 투과시키는 물질을 코팅한 세공충진막일 수 있다.In the present invention, the ion exchange membrane formed on the liquid permeable wall may be a pore filling membrane coated with a material that transmits ions to the porous support.
도 8에 예시된 바와 같이, 본 발명의 채널형 흐름 전극 단위체는 As illustrated in FIG. 8, the channel type flow electrode unit of the present invention is
액체침투성 벽체에 의해 한정된 채널을 준비하는 제1a단계;A first step of preparing a channel defined by the liquid penetrating wall;
양이온 또는 음이온, 바람직하게는 양이온 및 음이온 중 어느 하나만을 통과시키는 이온교환물질을 채널형 벽체 내부면, 외부면, 벽체 자체 또는 이의 조합에 적용하는 제2a단계; 및A second step of applying an ion exchange material passing only one of a cation or an anion, preferably a cation and an anion, to an inner surface, an outer surface, the wall itself, or a combination thereof; And
다공성 집전체를 이온교환 물질이 적용된 채널형 벽체의 내부면에 적용하는 제3a단계Step 3a of applying the porous current collector to the inner surface of the channel-shaped wall to which the ion exchange material is applied
를 포함하는 제조방법에 의해 제공될 수 있다.It may be provided by a manufacturing method comprising a.
또한, 본 발명의 채널형 흐름 전극 단위체는In addition, the channel type flow electrode unit of the present invention
액체침투성 벽체에 의해 한정된 채널을 준비하는 제1b단계;Step 1b of preparing a channel defined by the liquid-penetrating wall;
다공성 집전체를 채널형 벽체의 내부면에 적용하는 제2b단계; 및A second step of applying the porous current collector to the inner surface of the channel-shaped wall; And
양이온 또는 음이온 바람직하게는 양이온 및 음이온 중 어느 하나만을 통과시키는 이온교환막을 다공성 집전체가 적용된 채널형 벽체 내부면에 적용하는 제3b단계;A third step of applying an ion exchange membrane through which only one of a cation and an anion, preferably a cation or an anion, is applied to the inner surface of the channel-type wall to which the porous current collector is applied;
를 포함하는 제조방법에 의해 제공될 수 있다.It may be provided by a manufacturing method comprising a.
한편, 본 발명의 제3양태에 따른 채널형 흐름 전극 구조체는 조립가능한 블록형태의 채널형 흐름 전극 단위체들을 조립한 것일 수 있다. 또한, 본 발명의 제3양태에 따른 채널형 흐름 전극 구조체는 유체가 입구로 도입되어 출구로 배출되는 채널들을 복수개 형성하는 기본 골격을 액체침투성 벽체로 형성한 후, 액체침투성 벽체로 한정된 채널들 중 일부 또는 전부를 흐름 전극 단위체(unit)로 구성한 것일 수 있다. Meanwhile, the channel type flow electrode structure according to the third aspect of the present invention may be an assembly of the channel type flow electrode units in the form of an assembleable block. In addition, the channel flow electrode structure according to the third aspect of the present invention is formed of a liquid-permeable wall having a basic skeleton for forming a plurality of channels into which the fluid is introduced into the inlet and discharged to the outlet, and among the channels defined by the liquid-permeable wall. Some or all may be configured as a flow electrode unit.
본 발명에 따른 채널형 흐름 전극 구조체는 채널형 전해질 유로를 추가로 구비할 수 있다. 전해질 유로는 지속적으로 전해질을 공급해 주는 역할을 할 수 있다. 이때, 전해질 유로는 액체침투성 벽체에 둘러싸여 한정된 채널형일 수 있다. 채널형 전해질 유로는 적어도 하나의 채널형 흐름 양극 단위체 및 적어도 하나의 채널형 흐름 음극 단위체와 인접하여 전해질을 공급할 수 있는 한 그 형태 및 위치에 제한이 없다(도 9 중 빈공간, 도 10 중 빗금표시, 도 11중 검은 원표시).The channel flow electrode structure according to the present invention may further include a channel electrolyte flow path. The electrolyte passage may serve to continuously supply the electrolyte. In this case, the electrolyte flow path may be surrounded by a liquid penetrating wall and may have a defined channel shape. The channel electrolyte flow path is not limited in shape and position as long as the electrolyte can be supplied adjacent to the at least one channel flow anode unit and the at least one channel flow cathode unit (empty space in FIG. 9, hatched in FIG. 10). , Black circle in Fig. 11).
별도의 전해질 유로가 있는 경우, 액체침투성 벽체는 주로 이온의 이동 및 구조물의 역할을 하며, 전해질의 이동은 주로 전해질 유로에 의할 수 있다.If there is a separate electrolyte flow path, the liquid-penetrating wall mainly serves as a movement of the ions and the structure, the movement of the electrolyte may be mainly by the electrolyte flow path.
채널형 전해질 유로에서 전해질 이동방향과 채널형 흐름 양극 단위체 및 채널형 흐름 음극 단위체에서 유체의 이동방향은 서로 동일하거나 반대방향일 수 있다.In the channel electrolyte flow path, the moving direction of the electrolyte and the moving direction of the fluid in the channel flow cathode unit and the channel flow cathode unit may be the same or opposite to each other.
전해질 유로가 없는 경우에는, 채널형 흐름 양극 단위체와 채널형 흐름 음극 단위체만으로 본 발명에 따른 채널형 흐름 전극 구조체를 형성할 수 있다.When there is no electrolyte flow path, the channel flow electrode structure according to the present invention may be formed only by the channel flow anode unit and the channel flow cathode unit.
전해질은 별도의 채널형 유로를 통해, 액체침투성 벽체를 통해 또는 둘다를 통해 공급되고, 채널을 기준으로 전해질은 채널 길이 방향으로 공급되거나, 채널의 측면방향으로 공급되거나 둘 다일 수 있다.The electrolyte is supplied through a separate channel-like flow path, through the liquid penetrating wall, or both, and based on the channel, the electrolyte can be supplied in the longitudinal direction of the channel, in the lateral direction of the channel, or both.
액체침투성 벽체는, 전해질 용액에 일부가 담겨져서 중력 또는 모세관 현상에 의해 자연적으로 전해질이 이동하도록 하거나, 상기 전해질 유로에 강제로 유동되는 전해질이 상기 액체침투성 벽체로 스며들면서 유동될 수 있다.The liquid-permeable wall may be partially contained in the electrolyte solution to allow the electrolyte to move naturally by gravity or capillary action, or may be flowed while the electrolyte forced by the electrolyte flow path penetrates into the liquid-permeable wall.
본 발명에 따른 채널형 흐름 전극 구조체에서 채널형 흐름 양극 단위체, 채널형 흐름 음극 단위체 및 채널형 전해질 유로 단위체는 설계자의 의도에 따라 다양한 형태의 배열이 가능하며, 이를 통해 흐름 전극활물질의 공급이 계속된다면 무한한 흡착 용량에 의해 지속적으로 탈염/발전될 수 있다(도 9 및 도 10).In the channel flow electrode structure according to the present invention, the channel flow anode unit, the channel flow cathode unit, and the channel electrolyte channel unit can be arranged in various forms according to the designer's intention, and thus supply of the flow electrode active material is continued. If desired, it can be continuously desalted / generated by infinite adsorption capacity (FIGS. 9 and 10).
예컨대, 채널형 전해질 유로의 주위로 채널형 흐름 양극 단위체와 채널형 흐름 음극 단위체가 서로 마주보는 형태를 가지며, 동시에 채널형 흐름 양극 단위체와 채널형 흐름 음극 단위체는 대각선 방향으로 배치될 수도 있다. 그리고, 채널형 전해질 유로는 대각선 방향으로 배치될 수 있다.For example, the channel flow anode unit and the channel flow cathode unit face each other around the channel electrolyte flow path, and at the same time, the channel flow anode unit and the channel flow cathode unit may be disposed in a diagonal direction. The channel electrolyte flow path may be arranged in a diagonal direction.
본 발명에 따른 채널형 흐름 전극 구조체는 채널형 흐름 양극 단위체를 하나 이상, 그리고 채널형 흐름 음극 단위체를 하나 이상 구비하고 액체침투성 벽체를 통해 전해질이 공급되어 전기화학적 셀을 형성할 수 있다.The channel flow electrode structure according to the present invention may include at least one channel flow anode unit and at least one channel flow cathode unit, and may be supplied with an electrolyte through a liquid penetrating wall to form an electrochemical cell.
본 발명에서 전기화학적이라 함은 산화환원 반응뿐만아니라 이온의 흡탈착 반응도 포함한다. In the present invention, the electrochemical includes not only a redox reaction but also a desorption reaction of ions.
전기화학적 셀을 형성하기 위해, 본 발명에 따른 채널형 흐름 전극 구조체는 서로 인접한 채널형 흐름 양극 단위체 및 채널형 흐름 음극 단위체의 관계가 하나 이상 있는 것이 바람직하다. 채널형 흐름 양극 단위체 및 채널형 흐름 음극 단위체가 서로 인접한 관계에는 채널형 흐름 양극 단위체와 채널형 흐름 음극 단위체가 직접 인접한 경우 뿐만아니라, 전해질 유로를 사이에 두고 인접한 경우도 포함한다.In order to form the electrochemical cell, the channel flow electrode structure according to the present invention preferably has at least one relationship between the channel flow anode unit and the channel flow cathode unit adjacent to each other. The relationship between the channel flow anode unit and the channel flow cathode unit close to each other includes not only a case where the channel flow anode unit and the channel flow cathode unit are directly adjacent to each other, but also a case where the channel flow anode unit and the channel flow cathode unit are adjacent to each other.
본 발명에 따른 채널형 흐름 전극 구조체에서 전기화학적 셀의 작동원리는 도 5 및 도 6에 도시되어 있다. The principle of operation of the electrochemical cell in the channeled flow electrode structure according to the invention is shown in FIGS. 5 and 6.
도 5a에 도시한 바와 같이, 본 발명에 따른 채널형 흐름 전극 구조체에서도, 도 1과 동일한 작동원리가 적용된다. 그러나, 본 발명에 따른 채널형 흐름 전극 구조체는 도 1에 도시된 판상형 전기유로를 갖는 축전식 흐름전극장치와 달리 별도의 전해질 유로가 없더라도 채널형 전극 단위체의 액체침투성 벽체에 의해 전해질이 공급될 수 있으므로 전기화학적 셀로서 작동할 수 있다(도 7). 또한, 본 발명에 따른 채널형 흐름 전극 구조체에서는 전극 유로를 둘러싸고 있는 채널형 액체침투성 벽체 전체 벽면에서 음이온과 양이온의 이동이 발생되므로, 판상형 흐름 전극과 달리 전극 유로 내 음이온과 양이온의 이동 거리가 짧아 전극활물질에 흡착/탈착 속도가 높을 뿐만 아니라 충방전 효율이 높고 흐름전극장치(200)의 용량도 크게 증가할 수 있다. As shown in FIG. 5A, the same principle of operation as in FIG. 1 applies to the channel type flow electrode structure according to the present invention. However, in the channel type flow electrode structure according to the present invention, unlike the capacitive flow electrode device having the plate-shaped electric flow path shown in FIG. 1, the electrolyte may be supplied by the liquid penetrable wall of the channel type electrode unit even without a separate electrolyte flow path. And thus can act as an electrochemical cell (FIG. 7). In addition, in the channel flow electrode structure according to the present invention, since the movement of the anions and cations occurs on the entire wall of the channel-type liquid penetrating wall surrounding the electrode flow path, unlike the plate flow electrode, the movement distance of the anions and the cations in the electrode flow path is short. In addition to the high adsorption / desorption speed on the electrode active material, the charge and discharge efficiency is high, and the capacity of the flow electrode device 200 may be greatly increased.
다공성 집전체에 전압을 인가하면 채널을 흐르는 양극 활물질 및 음극 활물질에 전하가 형성되어 전해질내의 양이온 및 음이온이 분리막 및 채널형 벽체를 통해 활물질과 흡착하여 빠져나감으로서 탈염이 일어난다. 전극활물질에서의 이온 흡착 또는 탈착을 통해 전기를 발생할 때 전기를 집전할 수 있다.When voltage is applied to the porous current collector, charges are formed in the positive electrode active material and the negative electrode active material flowing through the channel, so that desalination occurs as the positive and negative ions in the electrolyte are adsorbed and escaped through the membrane and the channel wall. Electricity can be collected when electricity is generated through ion adsorption or desorption from the electrode active material.
도 7에 도시된 바와 같이, 본 발명에 따른 채널형 흐름 전극 구조체는 별도의 전해질 유로가 없을 수 있고, 액체 투과성 벽체가 이를 대신할 수 있다. 따라서, 축전식 흐름전극장치의 크기를 더욱 작게 할 수 있는 장점이 있다.As shown in FIG. 7, the channel type flow electrode structure according to the present invention may not have a separate electrolyte flow path, and a liquid permeable wall may replace it. Therefore, there is an advantage that the size of the capacitive electrode flow device can be further reduced.
본 발명의 채널형 흐름 전극 구조체는The channel flow electrode structure of the present invention
유체가 입구로 도입되어 출구로 배출되는 채널들을 복수개 구비한 기본 골격을 형성하는 액체침투성 벽체를 준비하는 제1c단계;Preparing a liquid-permeable wall that forms a basic skeleton having a plurality of channels through which fluid is introduced into the inlet and discharged to the outlet;
선택된 채널(들)을 양이온을 통과시키는 이온교환물질로 채널형 벽체 내부면, 벽체 자체 또는 이의 조합에 적용하고, 선택된 다른 채널(들)을 음이온을 통과시키는 이온교환물질로 채널형 벽체 내부면, 벽체 자체 또는 이의 조합에 적용하는 제2c단계; 및Apply the selected channel (s) to the channel-like wall inner surface with an ion exchange material through the cation, the wall itself or a combination thereof, and select the other channel (s) to the channel-wall wall with an ion exchange material passing the anions, A second step of applying to the wall itself or a combination thereof; And
다공성 집전체를 이온교환 물질이 적용된 채널형 벽체의 내부면에 적용하는 제3c단계Step 3c, applying the porous current collector to the inner surface of the channel type wall to which the ion exchange material is applied
를 포함하는 제조방법에 의해 제공될 수 있다.It may be provided by a manufacturing method comprising a.
또한, 본 발명의 채널형 흐름 전극 구조체는In addition, the channel flow electrode structure of the present invention
유체가 입구로 도입되어 출구로 배출되는 채널들을 복수개 구비한 기본 골격을 형성하는 액체침투성 벽체를 준비하는 제1d단계;Preparing a liquid-permeable wall that forms a basic skeleton having a plurality of channels through which fluid is introduced into the inlet and discharged to the outlet;
다공성 집전체를 채널형 벽체의 내부면에 적용하는 제2d단계;A second step of applying the porous current collector to the inner surface of the channel-shaped wall;
다공성 집전체가 적용된 채널들 중 선택된 채널(들)을 양이온을 통과시키는 이온교환물질로 채널형 벽체 내부면에 코팅하고, 다공성 집전체가 적용된 채널들 중 선택된 다른 채널(들)을 음이온을 통과시키는 이온교환물질로 채널형 벽체 내부면에 코팅하는 제3c단계;Coating the selected channel (s) of the porous current collector to the inner surface of the channel-like wall with an ion exchange material through which cations pass, and passing the negative ion through other selected channel (s) of the channels to which the porous current collector is applied. A third step of coating the inner surface of the channel wall with an ion exchange material;
를 포함하는 제조방법에 의해 제공될 수 있다.It may be provided by a manufacturing method comprising a.
한편, 본 발명의 제8양태에 따른 채널형 흐름 전극 구비 셀은 On the other hand, the cell with a channel flow electrode according to an eighth aspect of the present invention
액체침투성 벽체에 의해 한정된 채널형 흐름 양극 단위체(unit)로서, 양이온을 통과시키고 전기 전도성을 가지는 양극 이온교환집전체가 채널형 벽체 내부면에 위치되어 있는 채널형 흐름 양극 단위체; 및 A channel flow anode unit defined by a liquid penetrating wall, comprising: a channel flow anode unit in which an anode ion exchange current collector passing through cations and having electrical conductivity is located on an inner surface of the channel wall; And
액체침투성 벽체에 의해 한정된 채널형 흐름 음극 단위체(unit)로서, 음이온을 통과시키고 전기 전도성을 가지는 음극 이온교환집전체가 채널형 벽체 내부면에 위치되어 있는 채널형 흐름 음극 단위체를 구비하되, A channel flow cathode unit defined by a liquid-permeable wall, comprising a channel flow cathode unit in which a negative ion ion current collector passing through an anion and having electrical conductivity is located on an inner surface of the channel wall,
채널 입구로부터 도입되어 채널 출구로 배출되는 전극활물질 함유 유체가 흐르는 전극 유로가, 이온교환집전체를 통해 상기 벽체로부터 이격되어 있는 것일 수 있다. The electrode flow path through which the electrode active material-containing fluid introduced from the channel inlet and discharged to the channel outlet flows may be spaced apart from the wall through the ion exchange current collector.
또한, 본 발명의 제9양태에 따른 채널형 흐름 전극 구비 셀은 In addition, the cell with a channel flow electrode according to the ninth aspect of the present invention
액체침투성 벽체에 의해 한정된 채널형 흐름 양극 단위체(unit)로서, 양이온을 통과시키도록 이온교환 물질이 채널형 벽체 내부면, 외부면, 벽체 자체 또는 이들의 조합 위치에 적용되어 있으며 다공성 집전체가 이온교환 물질이 적용된 채널형 벽체의 내부면에 적용되어 있는 채널형 흐름 양극 단위체; 및 A channel flow anode unit defined by a liquid-permeable wall, in which an ion exchange material is applied to the inside of the channel wall, the outer surface, the wall itself, or a combination thereof to pass cations and the porous current collector is ionized. A channel flow anode unit applied to the inner surface of the channel wall to which the exchange material is applied; And
액체침투성 벽체에 의해 한정된 채널형 흐름 음극 단위체(unit)로서, 음이온을 통과시키도록 이온교환 물질이 채널형 벽체 내부면, 외부면, 벽체 자체 또는 이들의 조합 위치에 적용되어 있으며 다공성 집전체가 이온교환 물질이 적용된 채널형 벽체의 내부면에 적용되어 있는 채널형 흐름 음극 단위체를 구비하되, A channel flow cathode unit defined by a liquid penetrating wall, wherein an ion exchange material is applied to the inner surface, the outer surface, the wall itself, or a combination thereof to pass an anion and the porous current collector is ionized. A channel flow cathode unit is applied to the inner surface of the channel wall to which the exchange material is applied,
채널 입구로부터 도입되어 채널 출구로 배출되는 전극활물질 함유 유체가 흐르는 전극 유로가, 다공성 집전체를 통해 상기 벽체로부터 이격되어 있는 것일 수 있다.The electrode flow path through which the electrode active material-containing fluid introduced from the channel inlet and discharged to the channel outlet flows may be spaced apart from the wall through the porous current collector.
본 발명의 제8양태 또는 제9양태에 따른 채널형 흐름 전극 구비 셀은 채널형 흐름 양극 단위체를 하나 이상, 그리고 채널형 흐름 음극 단위체를 하나 이상 구비하고 액체침투성 벽체를 통해 전해질이 공급되어 전기화학적 셀을 형성한다. 이때, 채널형 흐름 양극 단위체 및 채널형 흐름 음극 단위체는 인접한 벽체를 공유할 수 있다(도 7)A cell with a channel flow electrode according to an eighth or ninth aspect of the present invention has at least one channel flow anode unit and at least one channel flow cathode unit and is supplied with an electrolyte through a liquid penetrating wall to provide electrochemical Form a cell. In this case, the channel type flow anode unit and the channel type flow cathode unit may share adjacent walls (FIG. 7).
도 12에 도시된 바와 같이, 레독스 흐름전극장치(120)는 분리막(130)을 기준으로 양측에 전극용액이 흐르는 양극유로(126)와 음극유로(128)가 형성되고, 상기 양극유로(126) 및 상기 음극유로(128) 각각에는 전기를 모으는 양극집전체(122)와 음극집전체(124)가 배치된다.As shown in FIG. 12, in the redox flow electrode device 120, an anode flow path 126 and a cathode flow path 128 in which electrode solutions flow on both sides of the separator 130 are formed, and the anode flow path 126 is formed. ) And the negative electrode flow path 128 are disposed in each of the positive electrode collector 122 and the negative electrode collector 124 for collecting electricity.
상기 양극유로(126)에는 양극용액탱크(132)에 저장된 양극용액이 양극펌프(134)에 의해 순환하게 되고, 상기 음극유로(128)에는 음극용액탱크(136)에 저장된 음극용액이 음극펌프(138)에 의해 순환하게 된다. 양극용액과 음극용액은 일반적으로 아연이온과 브롬이온을 포함하는 전해질용액을 사용한다.The positive electrode solution 126 is circulated by the positive electrode solution tank 132 by the positive electrode pump 134, and the negative electrode solution 128 is stored in the negative electrode solution tank 136 by the negative electrode pump ( 138). The positive electrode solution and the negative electrode solution generally use an electrolyte solution containing zinc ions and bromine ions.
따라서, 상기 분리막(130)을 기준으로 상기 양극유로(126)와 상기 음극유로(128)에서 산화환원반응이 일어나면서, 전기를 방출하거나 축전하게 된다.Accordingly, the redox reaction occurs in the positive electrode channel 126 and the negative electrode channel 128 based on the separator 130, thereby releasing or accumulating electricity.
본 발명은 레독스 흐름전극장치 중 양극/음극/분리막/전해질을 본 발명의 제3양태 또는 제10양태에 따른 채널형 흐름 전극 구조체로 제공하는 것이 특징이다.The present invention is characterized in that the anode / cathode / separation membrane / electrolyte of the redox flow electrode device is provided as a channel flow electrode structure according to the third or tenth aspect of the present invention.
본 발명의 제10양태에 따른 채널형 흐름 전극 구조체는 채널형 골격 지지체의 기능으로 액체침투성 벽체 대신 분리막을 적용하기 위해 본 발명의 제1양태 또는 제2양태에 따른 채널형 흐름 전극 단위체를 일부 수정한 것이다.The channel flow electrode structure according to the tenth aspect of the present invention partially modifies the channel flow electrode unit according to the first or second aspect of the present invention to apply a separator instead of the liquid penetrating wall as a function of the channel skeleton support. It is.
여기서, 분리막은 이온이 자유롭게 통과될 수 있는 전기절연성 막으로, 양극과 음극을 물리적으로 분리시켜준다.Here, the separator is an electrically insulating membrane through which ions can pass freely, and physically separates the positive electrode and the negative electrode.
본 발명의 제10양태에 따른 채널형 흐름 전극 구조체는,The channel flow electrode structure according to the tenth aspect of the present invention,
유체가 입구로 도입되어 출구로 배출되는 채널들을 복수개 구비한 기본 골격을 형성하는 분리막 지지체; A separator support for forming a basic skeleton having a plurality of channels through which fluid is introduced into the inlet and discharged to the outlet;
상기 분리막 지지체에서 선택된 채널(들)의 내부 벽면에 다공성 집전체가 배치되고, 채널 입구로부터 도입되어 채널 출구로 배출되는 양극활물질 함유 유체가 흐르는 양극 유로가 다공성 집전체를 통해 상기 채널형 분리막 지지체로부터 이격되어 있는, 채널형 흐름 양극 단위체(unit); 및The porous current collector is disposed on the inner wall of the channel (s) selected in the membrane support, and an anode flow path through which the positive electrode active material-containing fluid flowing from the channel inlet and discharged to the channel outlet flows from the channel-type separator support. Spaced, channel-type flow anode units; And
상기 분리막 지지체에서 선택된 다른 채널(들)의 내부 벽면에 다공성 집전체가 배치되고, 채널 입구로부터 도입되어 채널 출구로 배출되는 음극활물질 함유 유체가 흐르는 음극 유로가 다공성 집전체를 통해 상기 채널형 분리막 지지체로부터 이격되어 있는, 채널형 흐름 음극 단위체(unit)를 포함할 수 있다. The porous current collector is disposed on the inner wall surface of the other channel (s) selected from the membrane support, and a cathode flow path through which the negative active material-containing fluid flowing from the channel inlet and discharged to the channel outlet flows through the porous current collector. It may comprise a channel flow cathode unit, spaced from the.
이때, 전기화학적 셀로 작동하기 위해, 상기 채널형 흐름 양극 단위체의 주위로는 상기 채널형 흐름 음극 단위체가 인접하여 배치되어 있는 것일 수 있다.In this case, in order to operate as an electrochemical cell, the channel type flow cathode unit may be disposed adjacent to the channel type flow cathode unit.
상기 분리막 지지체는, 구조물을 형성하도록 하는 다공성 지지체에 프로톤을 선택적으로 투과시키는 물질을 상기 다공성 지지체의 공극에 코팅한 세공충진막 형태일 수 있다.The separator support may be in the form of a pore-filling membrane coated with a pore of the porous support with a material that selectively transmits protons to a porous support to form a structure.
다공성 집전체는 분리막 지지체에 의해 형성된 채널의 내벽면에 맞닿도록 배치될 수 있다. 따라서, 양극 활물질 함유 유체가 흐르는 양극 유로는 다공성 집전체를 통해 상기 채널형 분리막 지지체로부터 이격되어 있고, 음극 활물질 함유 유체가 흐르는 음극 유로는 다공성 집전체를 통해 상기 채널형 분리막 지지체로부터 이격되어 있다. The porous current collector may be disposed to abut the inner wall surface of the channel formed by the membrane support. Accordingly, the positive electrode flow path through which the positive electrode active material-containing fluid flows is spaced apart from the channel type separator support through the porous current collector, and the negative electrode flow path through which the negative electrode active material containing fluid flows is spaced apart from the channel type membrane support through the porous current collector.
이때 사용되는 양극 활물질 및 상기 음극 활물질은 서로 다른 물질이 사용될 수도 있지만, 동일한 물질이 사용될 수도 있다.In this case, although the different materials may be used for the positive electrode active material and the negative electrode active material, the same material may be used.
또한, 본 발명의 제10양태에 따른 채널형 흐름 전극 구조체는 채널형 전해질 유로를 추가로 구비할 수 있으며, 전해질 유로는 분리막에 의해 한정된 채널형일 수 있다.In addition, the channel type flow electrode structure according to the tenth aspect of the present invention may further include a channel type electrolyte flow path, and the electrolyte flow path may be a channel type defined by a separator.
도 13에 도시된 바와 같이, 본 발명의 제10양태에 따른 채널형 흐름 전극 구조체를 구비한 레독스 흐름전극장치(418)는, 프로톤만을 투과시키는 분리막 지지체(402)와, 상기 채널형 분리막 지지체(402)의 내부에 형성된 흐름 양극 유로(401)과 흐름 음극 유로(403)를 포함할 수 있다. 도 13에 도시된 바와 같이, 상기 채널형 흐름 양극 유로(401)과 상기 채널형 흐름 음극 유로(403)는 바둑판 무늬를 가지도록 배치될 수 있다. 이 결과, 상기 분리막 지지체(402)를 통해 프로톤이 이동하면서, 상기 채널형 흐름 양극 유로(401)과 상기 채널형 흐름 음극 유로(403)에서 각각 양극 활물질 함유 유체 및 음극 활물질 함유 유체에서 산화환원반응이 일어나면서, 충전 또는 방전을 하게 된다.As shown in FIG. 13, the redox flow electrode device 418 including the channel flow electrode structure according to the tenth aspect of the present invention includes a membrane support 402 for transmitting only protons, and the channel type membrane support. It may include a flow anode flow path 401 and the flow cathode flow path 403 formed inside the 402. As shown in FIG. 13, the channel type flow anode flow path 401 and the channel type flow cathode flow path 403 may be arranged to have a checkered pattern. As a result, redox reaction occurs in the positive electrode active material-containing fluid and the negative electrode active material-containing fluid in the channel flow anode flow channel 401 and the channel flow flow cathode flow path 403, respectively, while the proton moves through the membrane support 402. As this happens, it is charged or discharged.
본 발명의 일 구체예에 따른 격자형 축전식 탈염 셀은 도 17과 같은 배치 모드(batch mode), 또는 공급된 염수가 탈염되어 빠져나가는 연속 모드(continuous mode)로 작동될 수 있다.The grid-type capacitive desalination cell according to one embodiment of the present invention may be operated in a batch mode as shown in FIG. 17 or in a continuous mode in which the supplied brine is desalted and drained out.
탈염은 주로 양이온 및 음이온 교환막-코팅된 채널 사이의 탈염 장소(1x3 셀의 가운데 채널)에서 일어난다. 채널의 수가 3개에서 9개로 증가하는 경우, 4개의 개별적인 장소가 탈염 장소로 기능할 수 있다. 즉 전체 시스템(3x3 셀)의 부피가 3배 증가한 반면 탈염 장소는 1x3 셀의 4배로 증가한 것이다. 따라서, 셀 크기가 확장됨에 따라, 탈염 장소의 수가 급격히 증가함으로써 염 제거 용량은 현저히 증가한다. 더욱이, 격자형 셀의 경우 채널 수가 증가하더라도, 연속형(series-type) FCDI 스택의 문제점 중 하나인 압력 증가가 일어나지 않는다.Desalting occurs mainly at the desalting site (center channel of 1 × 3 cells) between the cation and anion exchange membrane-coated channels. If the number of channels increases from three to nine, four separate sites can serve as desalination sites. That is, the volume of the entire system (3x3 cells) increased three times while the desalination site increased four times that of 1x3 cells. Thus, as cell size expands, the number of desalination sites increases dramatically, resulting in a significant increase in salt removal capacity. Moreover, in the case of lattice cells, even if the number of channels increases, the pressure increase, which is one of the problems of the series-type FCDI stack, does not occur.
본 발명에 따라 채널형 흐름 전극 단위체를 2개 이상 구비한 채널형 흐름 전극 구조체는 발전, 에너지저장, 탈염 등의 대단위 플랜트에 적합하도록 전극용량을 확대시키면서도 부품수를 줄여서 제조비용과 설치공간을 획기적으로 감소시킬 수 있으며, 축전식 흐름전극장치 및/또는 레독스 흐름전극장치에 적용될 수 있으며, 이온 또는 프로톤이 이동하면서 전기를 발전, 에너지저장, 탈염하는 장치에 모두 적용이 가능하다.According to the present invention, the channel type flow electrode structure including two or more channel type flow electrode units can reduce the number of parts while increasing the electrode capacity to be suitable for large-scale plants such as power generation, energy storage, and desalination. It can be reduced, and can be applied to capacitive flow electrode devices and / or redox flow electrode devices, and can be applied to devices for generating electricity, storing energy, and desalting electricity while ions or protons move.
도 1은 본 발명의 기본구조 및 작동원리가 도출되는 판상형 축전식 흐름전극장치의 개략도이다.1 is a schematic diagram of a plate-like capacitive flow electrode device from which the basic structure and operating principle of the present invention are derived.
도 2는 본 발명의 일구체예에 따라 채널형 흐름 전극 단위체를 2개 이상 일체형으로 구비한 채널형 흐름 전극 구조체의 개략도이다. 2 is a schematic diagram of a channel flow electrode structure having two or more channel flow electrode units integrally formed according to one embodiment of the present invention.
도 3은 본 발명의 일구체예에 따른 채널형 흐름 양극 단위체 및 채널형 흐름 양극 단위체의 개략도이다.3 is a schematic diagram of a channel-type flow anode unit and a channel-type flow anode unit according to one embodiment of the present invention.
도 4는 본 발명의 일구체예에 따라 채널형 흐름 전극 단위체를 2개 이상 조립한 채널형 흐름 전극 구조체의 개략도이다. 4 is a schematic diagram of a channel flow electrode structure in which two or more channel flow electrode units are assembled according to one embodiment of the present invention.
도 5a는 본 발명의 일구체예에 따라 채널형 흐름 양극 단위체와 채널형 흐름 음극 단위체 사이에 별도의 전해질 유로가 있는 경우 각 채널에서 전극활물질 흐름 상 및 전해질 흐름 상의 양이온 및 음이온의 분포 및 흐름을 도시한 개략도이다.5A illustrates distribution and flow of cations and anions on the electrode active material flow and the electrolyte flow in each channel when there is a separate electrolyte flow path between the channel flow anode unit and the channel flow cathode unit according to one embodiment of the present invention. It is a schematic diagram shown.
도 5b는 본 발명의 일구체예에 따라 채널형 흐름 양극 단위체와 채널형 흐름 음극 단위체 사이에 별도의 전해질 유로가 있는 경우 채널형 흐름 전극 구조체의 구조 단면도이다.5B is a structural cross-sectional view of the channel flow electrode structure when there is a separate electrolyte flow path between the channel flow anode unit and the channel flow cathode unit according to one embodiment of the present invention.
도 6은 본 발명의 일구체예에 따라 채널형 흐름 양극 단위체와 채널형 흐름 음극 단위체 사이에 전해질 유로가 배치되는 경우 채널형 흐름 전극 구조체의 작동원리를 도시한 개략도이다.FIG. 6 is a schematic diagram illustrating an operation principle of a channel flow electrode structure when an electrolyte flow path is disposed between the channel flow anode unit and the channel flow cathode unit according to one embodiment of the present invention.
도 7은 본 발명의 일구체예에 따라 채널형 흐름 양극 단위체와 채널형 흐름 음극 단위체 사이에 별도의 전해질 유로가 없는 경우 액체침투성 벽체를 통해 전해질의 흐름을 도시한 개략도이다.7 is a schematic diagram illustrating the flow of an electrolyte through a liquid penetrating wall when there is no separate electrolyte flow path between the channel type flow anode unit and the channel type flow cathode unit according to one embodiment of the present invention.
도 8은 실시예 1의 3개 채널형 흐름 전극 구조체를 제조하는 방법의 도시한 개략도이다.FIG. 8 is a schematic view of a method of manufacturing the three channel flow electrode structure of Example 1. FIG.
도 9는 본 발명의 일구체예에 따른 채널형 흐름 전극 구조체에서 채널형흐름 양극 단위체 및 채널형흐름 음극 단위체의 배치도이다. 9 is a layout view of a channel flow anode unit and a channel flow cathode unit in a channel flow electrode structure according to one embodiment of the present invention.
도 10은 본 발명의 일구체예에 따라 채널형 전해질 유로(빗금으로 표시)를 구비한 채널형 흐름 전극 구조체에서 각 채널의 배치도이다. FIG. 10 is a layout view of each channel in a channel type flow electrode structure having a channel type electrolyte flow channel (indicated by hatching) according to one embodiment of the present invention.
도 11은 본 발명의 다양한 구체예에 따라 전해질 유로(검은 원으로 표시)를 구비한 채널형 흐름 전극 구조체의 개략도이다. 11 is a schematic diagram of a channel flow electrode structure with an electrolyte flow path (indicated by black circles) in accordance with various embodiments of the invention.
도 12는 일반적인 레독스 흐름전지의 구조를 나타내는 개략도이다.12 is a schematic view showing the structure of a general redox flow battery.
도 13은 본 발명의 일구체예에 따른 레독스 흐름전극장치의 개략도이다.13 is a schematic diagram of a redox flow electrode device according to an embodiment of the present invention.
도 14는 실시예 1에서 제조된 3개 채널형 흐름 전극 구조체를 사용하여, 반응시간에 따른 전류값의 변화를 도시한 그래프이다.FIG. 14 is a graph showing a change in current value according to a reaction time using the three-channel flow electrode structure manufactured in Example 1. FIG.
도 15는 실시예 2에서 제조된 9개 채널형 흐름 전극 구조체를 사용하여, 반응시간에 따른 전류값의 변화를 도시한 그래프이다.FIG. 15 is a graph showing a change in current value according to a reaction time using the nine-channel flow electrode structure manufactured in Example 2. FIG.
도 16은 본 발명의 일 구체예에 따른 격자형 축전식 탈염 셀의 개략도이다((a): 상면도(1x3-채널 셀), (b): 3x3-채널 셀, (c): 탈염 과정).16 is a schematic diagram of a lattice capacitive desalination cell according to an embodiment of the present invention ((a): top view (1x3-channel cell), (b): 3x3-channel cell, (c): desalination process) .
도 17은 본 발명의 일 구체예에 따른, 배치 모드(batch mode)에서 작동하는 격자형 축전식 탈염 셀의 구성((a)) 및 염 농도 변화((b))를 나타낸다.FIG. 17 shows the configuration ((a)) and salt concentration change ((b)) of a lattice capacitive desalination cell operating in batch mode, according to one embodiment of the invention.
이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 기술적 특징을 명확하게 예시하기 위한 것일 뿐 본 발명의 보호범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only intended to clearly illustrate the technical features of the present invention and do not limit the protection scope of the present invention.
실시예Example 1: 3개1: 3 채널형 흐름 전극 구조체 Channel Flow Electrode Structure
도 8에 도시된 바와 같이 3개 채널을 가진 채널형 전극 구조체를 제조하였다.As shown in FIG. 8, a channel type electrode structure having three channels was manufactured.
구체적으로는 3개의 사각 기둥 채널 지지체를 성형하여, 액체침투성 가능한 마이크로포러스 허니컴 구조를 준비하였다. 이어서, 첫번째 사각 기둥 채널은 양이온분리막으로 코팅하고, 세번째 사각 기둥 채널은 음이온분리막으로 코팅하여, 각각 양이온 교환막 및 음이온 교환막은 채널 내부벽면에 형성하였다. 이어서, 이온 교환막이 코팅된 첫번째 사각 기둥 채널 및 세번째 사각 기둥 채널 내부벽면에 그라핀을 코팅하여 다공성 집접체를 형성하였다.Specifically, three square pillar channel supports were molded to prepare a liquid-permeable microporous honeycomb structure. Subsequently, the first square column channel was coated with a cation separation membrane, and the third square column channel was coated with an anion separation membrane, and a cation exchange membrane and an anion exchange membrane were formed on the inner wall of the channel, respectively. Subsequently, graphene was coated on the inner wall surfaces of the first square pillar channel and the third square pillar channel coated with the ion exchange membrane to form a porous collector.
이로인해 첫번째 사각 기둥 채널은 양극 활물질 함유 유체가 흐르는 양극 유로를, 두번째 사각 기둥 채널은 전해질 유로를, 세번째 사각 기둥 채널은 음극 활물질 함유 유체가 흐르는 음극 유로를 제공하는 채널형 흐름 전극 구조체를 준비하였다.As a result, a channel-type flow electrode structure was prepared in which the first square pillar channel provided the anode flow path through which the positive electrode active material-flowing fluid flowed, the second square pillar channel provided the electrolyte flow path, and the third square column channel provided the cathode flow path through which the negative electrode active material containing fluid flows. .
한편, 양극활물질과 음극활물질은 활성탄소를 사용하였으며, 양극 활물질 함유 유체 및 음극 활물질 함유 유체는 물에 10 wt%의 활성탄소와 0.1M의 NaCl을 첨가하여 제조하였다.Meanwhile, the positive electrode active material and the negative electrode active material used activated carbon, and the positive electrode active material-containing fluid and the negative electrode active material-containing fluid were prepared by adding 10 wt% of activated carbon and 0.1 M NaCl to water.
상기와 같이 준비된 셀을 염수 (35 g/L)이 담긴 용기에 담고 반응을 시작하였다. 염수내의 NaCl의 양은 염수의 전도도(conductivity)로부터 유추할 수 있다. 탈염반응을 하지 않은 초기 염수(35g/L)의 전도도는 55 mS/cm 인데 비해 탈염반응후 전도도가 37 mS/cm 으로 감소하였다. 이를 통해 염수의 농도는 23.5 g/L 라는 결과를 유추하였다. The cell prepared as described above was placed in a vessel containing brine (35 g / L) to start the reaction. The amount of NaCl in brine can be inferred from the conductivity of the brine. The conductivity of the initial brine (35 g / L) without desalination was 55 mS / cm, whereas the conductivity after desalination decreased to 37 mS / cm. Through this, the concentration of saline was inferred to be 23.5 g / L.
도 14에 도시된 바와 같이, 실시예 1에서 제조된 3개 채널형 흐름 전극 구조체는 Salt Removal Efficiency가 ~ 33 % 정도로 탈염장치로서 구동가능하다.As shown in Fig. 14, the three-channel flow electrode structure manufactured in Example 1 can be driven as a desalting apparatus with a Salt Removal Efficiency of ˜33%.
실시예Example 2: 9개2: 9 채널형 흐름 전극 구조체 Channel Flow Electrode Structure
실시예 1과 동일한 방법으로 도 5a에 도시된 바와 같은 9개 채널형 흐름 전극 구조체를 제조하였다. In the same manner as in Example 1, a nine channel flow electrode structure as shown in FIG. 5A was prepared.
또한, 실시예 1과 동일한 방법으로 실험한 결과를 표 1 및 도 15에 나타내었다.In addition, the results of the experiment in the same manner as in Example 1 are shown in Table 1 and FIG.
준비된 셀을 염수 (35 g /L)이 담긴 용기에 담고 반응을 시작하였다. 염수내의 NaCl의 양은 염수의 전도도(conductivity)로부터 유추할 수 있다. 3개 채널 셀의 경우 탈염반응을 하지 않은 초기 염수(35g/L)의 전도도는 62 mS/cm 인데 비해 탈염반응후 전도도가 50 mS/cm 으로 감소하였다. 이를 통해 염수의 농도는 28 g/L 라는 결과를 유추하였고 이 때 염 제거효율은 20% 이다. 셀을 9개 채널로 확장한 경우에는 전도도가 8.15 mS/cm 로 감소하였고 이 때 염수의 농도는 8.1 g/L이며 염 제거효율은 87 %이다. The prepared cell was placed in a vessel containing brine (35 g / L) to start the reaction. The amount of NaCl in brine can be inferred from the conductivity of the brine. In the three-channel cell, the conductivity of the initial brine (35 g / L) without desalination was 62 mS / cm, but the conductivity decreased to 50 mS / cm after desalination. Through this, the concentration of brine was inferred to 28 g / L, and the salt removal efficiency was 20%. When the cell was expanded to nine channels, the conductivity was reduced to 8.15 mS / cm, with the brine concentration of 8.1 g / L and the salt removal efficiency of 87%.
Conductivity (mS/cm) Conductivity (mS / cm) Salt Concentration (g/L) Salt Concentration (g / L) Salt Removal Efficiency (%) Salt Removal Efficiency (%)
Pristine Pristine 62 62 35 35
Desalinated (3 Cell Type)Desalinated (3 Cell Type) 50 50 28 28 20 20
Desalinated (9 Cell Type)Desalinated (9 Cell Type) 8.15 8.15 8.1 8.1 87 87
Operating Condition: @1.2 V for 90 min 3.5 mL Operating Condition: @ 1.2 V for 90 min 3.5 mL
실시예Example 3: 배치  3: placement 모드에서In mode 1x3 및 3x3 셀의 탈염 파라미터 측정 Desalting Parameter Measurement of 1x3 and 3x3 Cells
문헌(A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization, Energy Environ. Sci., 2017, 10, 1746-1750)에 기재된 바와 같이, 도 17의 배치 모드에서 탈염 실험을 수행하였으며, 상기 문헌은 본 발명에 포함된다.As described in A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization, Energy Environ. Sci., 2017, 10, 1746-1750, desalting experiments were performed in the batch mode of FIG. 17. And the documents are included in the present invention.
격자 구조의 규격은 폭 3 mm, 벽 두께 0.5 mm, 높이 120 mm였다. 코디어라이트(cordierite)는 10 내지 30 μm의 다공성 채널을 가지며, 표면상에 이온 교환막이 코팅되었다. 그 위에 전류 집전체로서 그래핀 층이 약 30 μm로 코팅되었다. 준비된 셀을 35 g/L의 염수가 담긴 챔버에 담가 배치 모드에서 탈염 실험을 수행하였다. 염 제거 효율은 아래의 식에 의해 계산하였다. 실험 결과는 표 2에 나타나 있다.The lattice structure was 3 mm wide, 0.5 mm thick and 120 mm high. Cordierite had a porous channel of 10-30 μm and an ion exchange membrane was coated on the surface. The graphene layer was coated at about 30 μm as a current collector thereon. Desalting experiments were performed in batch mode by immersing the prepared cells in a chamber containing 35 g / L saline. Salt removal efficiency was calculated by the following formula. The experimental results are shown in Table 2.
Current after 100 min (mA)Current after 100 min (mA) Current density after 100 min (A/m2)Current density after 100 min (A / m 2 ) Salt removal capacity (μmol/min)Salt removal capacity (μmol / min) Desalination efficiency after 100 min (%)Desalination efficiency after 100 min (%)
1x3 cell1x3 cell 5.85.8 17.617.6 99 5.65.6
3x3 cell3x3 cell 21.121.1 15.915.9 3333 18.318.3
상기와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, it has been described with reference to the preferred embodiment of the present invention, but those skilled in the art various modifications and changes of the present invention without departing from the spirit and scope of the present invention described in the claims below I can understand that you can.
부호의 설명Explanation of the sign
100,200,418: 흐름전극장치100,200,418: flow electrode device
102,216,416: 전해질 유로102,216,416: electrolyte flow path
104,204: 양극 이온교환막104,204: anode ion exchange membrane
106,206 : 다공성양극판106,206 Porous Anode Plate
108,208: 음극 이온교환막108,208: cathode ion exchange membrane
110,210 : 다공성음극판110,210: porous cathode plate
111: 양극활물질111: positive electrode active material
112,201,401: 흐름양극112,201,401: flow anode
113: 양극활물질113: positive electrode active material
114,203,403: 흐름음극114,203,403: flow cathode
116,118: 폐쇄플레이트116,118: closing plate
202,402: 지지체202,402 support
212,214,412,414: 전극용액212,214,412,414: electrode solution

Claims (27)

  1. 액체침투성 벽체에 의해 한정된 채널형 흐름 전극 단위체(unit)로서, A channel flow electrode unit defined by a liquid penetrating wall,
    양이온 또는 음이온을 통과시키고 전기 전도성을 가지는 이온교환집전체가 채널형 벽체 내부면에 위치되어 있으며, An ion exchange current collector that passes through cations or anions and is electrically conductive is located inside the channel wall.
    채널 입구로부터 도입되어 채널 출구로 배출되는 전극활물질 함유 유체가 흐르는 전극 유로가, 이온교환집전체를 통해 상기 벽체로부터 이격되어 있는 것이 특징인 채널형 흐름 전극 단위체.The channel flow electrode unit, characterized in that the electrode flow path flowing through the electrode active material-containing fluid introduced from the channel inlet and discharged to the channel outlet is spaced apart from the wall through the ion exchange collector.
  2. 액체침투성 벽체에 의해 한정된 채널형 흐름 전극 단위체(unit)로서, A channel flow electrode unit defined by a liquid penetrating wall,
    양이온 또는 음이온을 통과시키도록 이온교환 물질이 채널형 벽체 내부면, 외부면, 벽체 자체 또는 이들의 조합 위치에 적용되어 있으며, An ion exchange material is applied at the inner surface of the channeled wall, the outer surface, the wall itself, or a combination thereof to allow the passage of cations or anions,
    다공성 집전체가 이온교환 물질이 적용된 채널형 벽체의 내부면에 적용되어 있고, The porous current collector is applied to the inner surface of the channel-shaped wall to which the ion exchange material is applied,
    채널 입구로부터 도입되어 채널 출구로 배출되는 전극활물질 함유 유체가 흐르는 전극 유로가, 다공성 집전체를 통해 상기 벽체로부터 이격되어 있는 것이 특징인 채널형 흐름 전극 단위체.The channel flow electrode unit, characterized in that the electrode flow path flowing through the electrode active material-containing fluid introduced from the channel inlet and discharged to the channel outlet is spaced apart from the wall through the porous current collector.
  3. 제1항에 있어서, 이온교환집전체는 이온교환막과 다공성 집전체가 적층된 것이 특징인 채널형 흐름 양극 단위체.The channel-type flow anode unit according to claim 1, wherein the ion exchange current collector is formed by stacking an ion exchange membrane and a porous current collector.
  4. 제1항 또는 제2항에 있어서, 액체침투성 벽체는 전기절연성인 것이 특징인 채널형 흐름 전극 단위체. The channel type flow electrode unit according to claim 1 or 2, wherein the liquid-penetrating wall is electrically insulating.
  5. 제1항 또는 제2항에 있어서, 전극활물질은 이온을 흡착 및 탈착할 수 있는 것이 특징인 채널형 흐름 전극 단위체.The channel type flow electrode unit according to claim 1 or 2, wherein the electrode active material can adsorb and desorb ions.
  6. 제1항 내지 제3항 중 어느 한 항에 기재된 채널형 흐름 전극 단위체를 2개 이상 구비한 채널형 흐름 전극 구조체.A channel type flow electrode structure comprising at least two channel type flow electrode units according to any one of claims 1 to 3.
  7. 제6항에 있어서, 채널형 흐름 전극 단위체들은 블록형태로 조립가능한 것이 특징인 채널형 흐름 전극 구조체.The channel type flow electrode structure of claim 6, wherein the channel type flow electrode units are assembleable in a block form.
  8. 제6항에 있어서, 서로 인접한 두 개의 채널형 흐름 전극 단위체는 액체침투성 벽체를 공유하는 것이 특징인 채널형 흐름 전극 구조체.7. The channel flow electrode structure of claim 6, wherein two adjacent channel flow electrode units share a liquid permeable wall.
  9. 제8항에 있어서, 유체가 입구로 도입되어 출구로 배출되는 채널들을 복수개 구비한 기본 골격을 일체형의 액체침투성 벽체로 형성한 후 액체침투성 벽체로 한정된 채널들 중 일부 또는 전부가 상기 흐름 전극 단위체(unit)를 구성하는 것이 특징인 채널형 흐름 전극 구조체.The method of claim 8, wherein after the fluid is introduced into the inlet and discharged to the outlet, a basic skeleton having a plurality of channels is formed as an integral liquid-permeable wall, and then some or all of the channels defined by the liquid-permeable wall are the flow electrode unit. Channel-type flow electrode structure characterized in that the unit.
  10. 제6항에 있어서, 채널형 전해질 유로를 추가로 구비하는 것이 특징인 채널형 흐름 전극 구조체.7. The channel type flow electrode structure according to claim 6, further comprising a channel type electrolyte flow path.
  11. 제10항에 있어서, 전해질 유로는 액체침투성 벽체에 의해 한정된 채널형인 것이 특징인 채널형 흐름 전극 구조체.The channel type flow electrode structure according to claim 10, wherein the electrolyte flow path is channel type defined by the liquid penetrating wall.
  12. 제6항에 있어서, 채널형 흐름 양극 단위체를 하나 이상, 그리고 채널형 흐름 음극 단위체를 하나 이상 구비하고 액체침투성 벽체를 통해 전해질이 공급되어 전기화학적 셀을 형성하는 것이 특징인 채널형 흐름 전극 구조체.7. The channel flow electrode structure of claim 6, comprising at least one channel flow anode unit and at least one channel flow cathode unit, wherein an electrolyte is supplied through the liquid penetrating wall to form an electrochemical cell.
  13. 제6항에 있어서, 채널형 흐름 양극 단위체를 하나 이상, 그리고 채널형 흐름 음극 단위체를 하나 이상 구비하되, 서로 인접한 채널형 흐름 양극 단위체 및 채널형 흐름 음극 단위체의 관계가 하나 이상 있는 것이 특징인 채널형 흐름 전극 구조체.The channel of claim 6, wherein the channel flow anode unit is provided with at least one channel flow cathode unit and at least one channel flow cathode unit and the channel flow cathode unit is characterized in that at least one channel flow. Type flow electrode structure.
  14. 제6항에 있어서, 전해질은 별도의 채널형 유로를 통해, 액체침투성 벽체를 통해 또는 둘다를 통해 공급되고, 채널을 기준으로 전해질은 채널 길이 방향으로 공급되거나, 채널의 측면방향으로 공급되거나 둘 다인 것이 특징인 채널형 흐름 전극 구조체.The electrolyte of claim 6 wherein the electrolyte is supplied through a separate channel-like flow path, through a liquid-permeable wall, or both, and based on the channel, the electrolyte is supplied in the longitudinal direction of the channel, in the lateral direction of the channel, or both. Channel-type flow electrode structure characterized in that.
  15. 제1항 내지 제3항 중 어느 한 항에 기재된 채널형 흐름 전극 단위체의 제조방법으로서,A method for producing a channel flow electrode unit according to any one of claims 1 to 3,
    액체침투성 벽체에 의해 한정된 채널을 준비하는 제1a단계;A first step of preparing a channel defined by the liquid penetrating wall;
    양이온 또는 음이온을 통과시키는 이온교환물질을 채널형 벽체 내부면, 외부면, 벽체 자체 또는 이의 조합에 적용하는 제2a단계; 및A second step of applying an ion exchange material through which a cation or anion passes through the inner surface, the outer surface, the wall itself, or a combination thereof; And
    다공성 집전체를 이온교환 물질이 적용된 채널형 벽체의 내부면에 적용하는 제3a단계Step 3a of applying the porous current collector to the inner surface of the channel-shaped wall to which the ion exchange material is applied
    를 포함하는 것이 특징인 채널형 흐름 전극 단위체의 제조방법.Method of producing a channel-type flow electrode unit, characterized in that it comprises a.
  16. 제1항 내지 제3항 중 어느 한 항에 기재된 채널형 흐름 전극 단위체의 제조방법으로서,A method for producing a channel flow electrode unit according to any one of claims 1 to 3,
    액체침투성 벽체에 의해 한정된 채널을 준비하는 제1b단계;Step 1b of preparing a channel defined by the liquid-penetrating wall;
    다공성 집전체를 채널형 벽체의 내부면에 적용하는 제2b단계; 및A second step of applying the porous current collector to the inner surface of the channel-shaped wall; And
    양이온 또는 음이온을 통과시키는 이온교환막을 다공성 집전체가 적용된 채널형 벽체 내부면에 적용하는 제3b단계;A third step of applying an ion exchange membrane through which cations or anions pass through the inner surface of the channel wall to which the porous current collector is applied;
    를 포함하는 것이 특징인 채널형 흐름 전극 단위체의 제조방법.Method of producing a channel-type flow electrode unit, characterized in that it comprises a.
  17. 제6항에 기재된 채널형 흐름 전극 구조체의 제조방법으로서, A method for producing a channel type flow electrode structure according to claim 6,
    유체가 입구로 도입되어 출구로 배출되는 채널들을 복수개 구비한 기본 골격을 형성하는 액체침투성 벽체를 준비하는 제1c단계;Preparing a liquid-permeable wall that forms a basic skeleton having a plurality of channels through which fluid is introduced into the inlet and discharged to the outlet;
    선택된 채널(들)을 양이온을 통과시키는 이온교환물질로 채널형 벽체 내부면, 벽체 자체 또는 이의 조합에 적용하고, 선택된 다른 채널(들)을 음이온을 통과시키는 이온교환물질로 채널형 벽체 내부면, 벽체 자체 또는 이의 조합에 적용하는 제2c단계; 및Apply the selected channel (s) to the channel-like wall inner surface with an ion exchange material through the cation, the wall itself or a combination thereof, and select the other channel (s) to the channel-wall wall with an ion exchange material passing the anions, A second step of applying to the wall itself or a combination thereof; And
    다공성 집전체를 이온교환 물질이 적용된 채널형 벽체의 내부면에 적용하는 제3c단계Step 3c, applying the porous current collector to the inner surface of the channel type wall to which the ion exchange material is applied
    를 포함하는 것이 특징인 채널형 흐름 전극 구조체의 제조방법.Method of producing a channel-type flow electrode structure characterized in that it comprises a.
  18. 제6항에 기재된 채널형 흐름 전극 구조체의 제조방법으로서, A method for producing a channel type flow electrode structure according to claim 6,
    유체가 입구로 도입되어 출구로 배출되는 채널들을 복수개 구비한 기본 골격을 형성하는 액체침투성 벽체를 준비하는 제1d단계;Preparing a liquid-permeable wall that forms a basic skeleton having a plurality of channels through which fluid is introduced into the inlet and discharged to the outlet;
    다공성 집전체를 채널형 벽체의 내부면에 적용하는 제2d단계;A second step of applying the porous current collector to the inner surface of the channel-shaped wall;
    다공성 집전체가 적용된 채널들 중 선택된 채널(들)을 양이온을 통과시키는 이온교환물질로 채널형 벽체 내부면에 코팅하고, 다공성 집전체가 적용된 채널들 중 선택된 다른 채널(들)을 음이온을 통과시키는 이온교환물질로 채널형 벽체 내부면에 코팅하는 제3c단계;Coating the selected channel (s) of the porous current collector to the inner surface of the channel-like wall with an ion exchange material through which cations pass, and passing the negative ion through other selected channel (s) of the channels to which the porous current collector is applied. A third step of coating the inner surface of the channel wall with an ion exchange material;
    를 포함하는 것이 특징인 채널형 흐름 전극 구조체의 제조방법.Method of producing a channel-type flow electrode structure characterized in that it comprises a.
  19. 액체침투성 벽체에 의해 한정된 채널형 흐름 양극 단위체(unit)로서, 양이온을 통과시키고 전기 전도성을 가지는 양극 이온교환집전체가 채널형 벽체 내부면에 위치되어 있는 채널형 흐름 양극 단위체; 및 A channel flow anode unit defined by a liquid penetrating wall, comprising: a channel flow anode unit in which an anode ion exchange current collector passing through cations and having electrical conductivity is located on an inner surface of the channel wall; And
    액체침투성 벽체에 의해 한정된 채널형 흐름 음극 단위체(unit)로서, 음이온을 통과시키고 전기 전도성을 가지는 음극 이온교환집전체가 채널형 벽체 내부면에 위치되어 있는 채널형 흐름 음극 단위체를 구비하되, A channel flow cathode unit defined by a liquid-permeable wall, comprising a channel flow cathode unit in which a negative ion ion current collector passing through an anion and having electrical conductivity is located on an inner surface of the channel wall,
    채널 입구로부터 도입되어 채널 출구로 배출되는 전극활물질 함유 유체가 흐르는 전극 유로가, 이온교환집전체를 통해 상기 벽체로부터 이격되어 있는 것이 특징인 채널형 흐름 전극 구비 셀.A channel flow electrode cell, wherein an electrode flow path through which an electrode active material-containing fluid introduced from a channel inlet and discharged to a channel outlet flows is spaced apart from the wall through an ion exchange current collector.
  20. 액체침투성 벽체에 의해 한정된 채널형 흐름 양극 단위체(unit)로서, 양이온을 통과시키도록 이온교환 물질이 채널형 벽체 내부면, 외부면, 벽체 자체 또는 이들의 조합 위치에 적용되어 있으며 다공성 집전체가 이온교환 물질이 적용된 채널형 벽체의 내부면에 적용되어 있는 채널형 흐름 양극 단위체; 및 A channel flow anode unit defined by a liquid-permeable wall, in which an ion exchange material is applied to the inside of the channel wall, the outer surface, the wall itself, or a combination thereof to pass cations and the porous current collector is ionized. A channel flow anode unit applied to the inner surface of the channel wall to which the exchange material is applied; And
    액체침투성 벽체에 의해 한정된 채널형 흐름 음극 단위체(unit)로서, 음이온을 통과시키도록 이온교환 물질이 채널형 벽체 내부면, 외부면, 벽체 자체 또는 이들의 조합 위치에 적용되어 있으며 다공성 집전체가 이온교환 물질이 적용된 채널형 벽체의 내부면에 적용되어 있는 채널형 흐름 음극 단위체를 구비하되, A channel flow cathode unit defined by a liquid penetrating wall, wherein an ion exchange material is applied to the inner surface, the outer surface, the wall itself, or a combination thereof to pass an anion and the porous current collector is ionized. A channel flow cathode unit is applied to the inner surface of the channel wall to which the exchange material is applied,
    채널 입구로부터 도입되어 채널 출구로 배출되는 전극활물질 함유 유체가 흐르는 전극 유로가, 다공성 집전체를 통해 상기 벽체로부터 이격되어 있는 것이 특징인 채널형 흐름 전극 구비 셀.And an electrode flow path through which an electrode active material-containing fluid introduced from a channel inlet and discharged to a channel outlet flows away from the wall through a porous current collector.
  21. 제19항 또는 제20항에 있어서, 채널형 흐름 양극 단위체를 하나 이상, 그리고 채널형 흐름 음극 단위체를 하나 이상 구비하고 액체침투성 벽체를 통해 전해질이 공급되어 전기화학적 셀을 형성하는 것이 특징인 채널형 흐름 전극 구비 셀.21. The channel type according to claim 19 or 20, comprising at least one channel type flow anode unit and at least one channel type flow cathode unit, wherein the electrolyte is supplied through the liquid penetrating wall to form an electrochemical cell. Cell with flow electrode.
  22. 제19항 또는 제20항에 있어서, 채널형 흐름 양극 단위체 및 채널형 흐름 음극 단위체는 인접한 벽체를 공유하는 것이 특징인 채널형 흐름 전극 구비 셀.21. A cell with a channel flow electrode as claimed in claim 19 or 20, wherein the channel flow anode unit and the channel flow cathode unit share adjacent walls.
  23. 유체가 입구로 도입되어 출구로 배출되는 채널들을 복수개 구비한 기본 골격을 형성하는 분리막 지지체; A separator support for forming a basic skeleton having a plurality of channels through which fluid is introduced into the inlet and discharged to the outlet;
    상기 분리막 지지체에서 선택된 채널(들)의 내부 벽면에 다공성 양극판이 배치되고, 채널 입구로부터 도입되어 채널 출구로 배출되는 양극활물질 함유 유체가 흐르는 양극 유로가 다공성 양극판을 통해 상기 채널형 분리막 지지체로부터 이격되어 있는, 채널형 흐름 양극 단위체(unit); 및A porous bipolar plate is disposed on the inner wall of the channel (s) selected in the membrane support, and a positive flow path through which a positive electrode active material containing fluid introduced from the channel inlet flows out to the channel outlet is spaced apart from the channel type membrane support through the porous bipolar plate. Channel-type flow anode units; And
    상기 분리막 지지체에서 선택된 다른 채널(들)의 내부 벽면에 다공성 음극판이 배치되고, 채널 입구로부터 도입되어 채널 출구로 배출되는 음극활물질 함유 유체가 흐르는 음극 유로가 다공성 음극판을 통해 상기 채널형 분리막 지지체로부터 이격되어 있는, 채널형 흐름 음극 단위체(unit)를 포함하는 것이 특징인 채널형 흐름 전극 구조체. The negative electrode flow path is disposed on the inner wall surface of the other channel (s) selected in the separator support, and the negative flow path in which the negative active material-containing fluid flowing from the channel inlet and discharged to the channel outlet is spaced apart from the channel type separator support through the porous negative plate. And a channel type flow cathode unit.
  24. 제23항에 있어서, 상기 채널형 흐름 양극 단위체의 주위로는 상기 채널형흐름 음극 단위체가 인접하여 배치되어 있는 것이 특징인 채널형 흐름 전극 구조체.24. The channel flow electrode structure of claim 23, wherein the channel flow cathode unit is disposed adjacent to the channel flow anode unit.
  25. 제23항에 있어서, 채널형 전해질 유로를 추가로 구비하는 것이 특징인 채널형 흐름 전극 구조체.24. The channel flow electrode structure of claim 23, further comprising a channel electrolyte channel.
  26. 제6항 또는 제23항의 채널 형 흐름 전극 구조체를 구비하는 것이 특징인 축전식 흐름전극장치.A capacitive electrode flow device comprising the channel-type flow electrode structure of claim 6 or 23.
  27. 제6항 또는 제23항의 채널형 흐름 전극 구조체를 구비하는 것이 특징인 레독스 흐름전지장치.A redox flow battery device comprising the channel type flow electrode structure of claim 6 or 23.
PCT/KR2017/009730 2016-09-06 2017-09-05 Electrochemical cell including channel-type flow electrode unit structure WO2018048180A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780068506.8A CN110214391A (en) 2016-09-06 2017-09-05 Electrochemical cell including channel-style Flow-through electrode cellular construction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0114568 2016-09-06
KR1020160114568A KR102657824B1 (en) 2016-09-06 electrochemical cell comprising channel-type flowable electrode units

Publications (1)

Publication Number Publication Date
WO2018048180A1 true WO2018048180A1 (en) 2018-03-15

Family

ID=61561597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009730 WO2018048180A1 (en) 2016-09-06 2017-09-05 Electrochemical cell including channel-type flow electrode unit structure

Country Status (2)

Country Link
CN (1) CN110214391A (en)
WO (1) WO2018048180A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180151A1 (en) * 2018-03-21 2019-09-26 Avsalt Ab Deionization device and method for at least partially deionizing a feed liquid in which an electrolyte is dissolved, and apparatuses using such devices
EP3647275A1 (en) * 2018-11-05 2020-05-06 DWI - Leibniz-Institut für Interaktive Materialien e.V. Flexible, one-sided membrane-electrode assemblies for use in electrochemical processes, eletrochemical modules comprising the same, and methods for liquid desalination, ion separation and concentration

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111186884B (en) * 2020-01-12 2021-08-10 大连理工大学 Device for reducing nitrate in saline water into nitrogen gas through circulation type electrochemistry

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009098027A (en) * 2007-10-17 2009-05-07 Eiwa Corp Multichannel flow double-electrode measuring apparatus
US20120273359A1 (en) * 2011-04-29 2012-11-01 Suss Matthew E Flow-through electrode capacitive desalination
KR20150127828A (en) * 2012-05-31 2015-11-18 에스케이이노베이션 주식회사 Flowable Electrode and the Electrode Apparatus using Thereof
KR20160032949A (en) * 2014-09-17 2016-03-25 한국에너지기술연구원 Capacitive flow electrode device with ion-exchanged current collector
EP3045431A1 (en) * 2015-01-16 2016-07-20 DWI - Leibniz-Institut für Interaktive Materialien e.V. Apparatus and method for continuous water desalination and ion separation by flow electrode capacitive deionization

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356250B1 (en) * 2000-10-20 2014-02-06 매사츄세츠 인스티튜트 오브 테크놀러지 Bipolar device
KR101233295B1 (en) * 2010-08-13 2013-02-14 한국에너지기술연구원 Flow-electrode device
KR101210525B1 (en) * 2012-09-03 2012-12-11 한국에너지기술연구원 Mass Flow Energy Storage Device using Flow-electrode device
KR101353961B1 (en) * 2012-11-05 2014-01-23 한국에너지기술연구원 Stack structure of electrochemical flow cell and redox flow battery including the same
KR101750417B1 (en) * 2015-03-04 2017-06-26 한국에너지기술연구원 Lattice type flow cell structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009098027A (en) * 2007-10-17 2009-05-07 Eiwa Corp Multichannel flow double-electrode measuring apparatus
US20120273359A1 (en) * 2011-04-29 2012-11-01 Suss Matthew E Flow-through electrode capacitive desalination
KR20150127828A (en) * 2012-05-31 2015-11-18 에스케이이노베이션 주식회사 Flowable Electrode and the Electrode Apparatus using Thereof
KR20160032949A (en) * 2014-09-17 2016-03-25 한국에너지기술연구원 Capacitive flow electrode device with ion-exchanged current collector
EP3045431A1 (en) * 2015-01-16 2016-07-20 DWI - Leibniz-Institut für Interaktive Materialien e.V. Apparatus and method for continuous water desalination and ion separation by flow electrode capacitive deionization

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180151A1 (en) * 2018-03-21 2019-09-26 Avsalt Ab Deionization device and method for at least partially deionizing a feed liquid in which an electrolyte is dissolved, and apparatuses using such devices
CN111819157A (en) * 2018-03-21 2020-10-23 阿夫萨尔特公司 Deionization device and method for at least partially deionizing feed liquid having dissolved electrolyte, and apparatus using said device
US11772992B2 (en) 2018-03-21 2023-10-03 Avsalt Ab Deionization device and method for at least partially deionizing a feed liquid in which an electrolyte is dissolved, and apparatuses using such devices
EP3647275A1 (en) * 2018-11-05 2020-05-06 DWI - Leibniz-Institut für Interaktive Materialien e.V. Flexible, one-sided membrane-electrode assemblies for use in electrochemical processes, eletrochemical modules comprising the same, and methods for liquid desalination, ion separation and concentration
WO2020094326A1 (en) * 2018-11-05 2020-05-14 Dwi - Leibniz-Institut Für Interaktive Materialien E.V. Electrochemical module comprising a flexible membrane-electrode assembly
CN112996754A (en) * 2018-11-05 2021-06-18 DWI莱布尼茨互动材料研究所e.V. Electrochemical module comprising flexible membrane electrode assembly

Also Published As

Publication number Publication date
KR20180027716A (en) 2018-03-15
CN110214391A (en) 2019-09-06

Similar Documents

Publication Publication Date Title
WO2012021048A2 (en) Fluidized-bed electrode system, and high-capacity power storage and water treatment method using same
WO2018048180A1 (en) Electrochemical cell including channel-type flow electrode unit structure
CN1148822C (en) Surface replica fuel cell having a fiber-reinforced membrane
US5980718A (en) Means for limiting and ameliorating electrode shorting
WO2011016662A2 (en) Capacitive electrode for deionization, and electrolytic cell using same
CN101440499B (en) Electrochemical device and exhaust gas purification apparatus
WO2013147380A1 (en) Specific ion-selective composite carbon electrode for capacitive deionization, and preparation method thereof
WO2018147682A1 (en) Method and device for recycling electrolyte of flow battery
WO2016140521A1 (en) Grid flow-electrode structure
WO2018182258A1 (en) Bipolar ion exchange membrane using heterogeneous ion exchange membrane as support and production method therefor
KR20110026186A (en) Hydrophilic polyolefin separator, method for manufacturing the production and secondary battery using thereof
KR20170037387A (en) Porous membrane of zinc-bromine redox flow battery, preparation method for porous membrane of zinc-bromine redox flow battery, and zinc-bromine redox flow battery
KR20120130953A (en) Redox flow battery
KR20120115189A (en) Water treatment device using flow-electrode device
KR20120114201A (en) Mass flow energy storage device using flow-electrode device
CN103282313A (en) An apparatus for removal of ions comprising multiple stacks
CN103259034B (en) Microbial fuel cell for sewage treatment and energy recovery
WO2013103236A1 (en) Stacked fluidized capacitive deionization apparatus
KR20160136266A (en) Lattice type flow cell structure
KR101621033B1 (en) Capacitive flow electrode device with ion-exchanged current collector
Chan et al. Functional Janus membranes: Promising platform for advanced lithium batteries and beyond
KR101692064B1 (en) Microbial Fuel Cell with air cathode perpendicular to separator
KR20170117963A (en) Capacitive Deionization Device and Capacitive Deionization Module
KR101615692B1 (en) Method of manufacturing an electrode material having perovskite crystal structure material using electro-spinning method
KR102657824B1 (en) electrochemical cell comprising channel-type flowable electrode units

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17849064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17849064

Country of ref document: EP

Kind code of ref document: A1