WO2018047968A1 - Electrode catalyst - Google Patents

Electrode catalyst Download PDF

Info

Publication number
WO2018047968A1
WO2018047968A1 PCT/JP2017/032730 JP2017032730W WO2018047968A1 WO 2018047968 A1 WO2018047968 A1 WO 2018047968A1 JP 2017032730 W JP2017032730 W JP 2017032730W WO 2018047968 A1 WO2018047968 A1 WO 2018047968A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode catalyst
oxide
mol
shell
carrier
Prior art date
Application number
PCT/JP2017/032730
Other languages
French (fr)
Japanese (ja)
Inventor
谷口 浩司
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2018538501A priority Critical patent/JP6983785B2/en
Publication of WO2018047968A1 publication Critical patent/WO2018047968A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/135Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
    • B01J35/51
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode catalyst.
  • a polymer electrolyte fuel cell has a proton conductive polymer membrane such as a perfluoroalkyl sulfonic acid type polymer as a solid electrolyte, and an oxygen electrode in which an electrode catalyst is applied to each surface of the solid polymer membrane (A membrane electrode assembly in which a cathode) and a fuel electrode (anode) are formed is provided.
  • a proton conductive polymer membrane such as a perfluoroalkyl sulfonic acid type polymer as a solid electrolyte
  • an oxygen electrode in which an electrode catalyst is applied to each surface of the solid polymer membrane
  • the electrode catalyst is generally formed by supporting various precious metal catalysts such as platinum on the surface of a conductive carbon material such as carbon black serving as a carrier.
  • a conductive carbon material such as carbon black serving as a carrier.
  • the noble metal catalyst supported is agglomerated or dropped off.
  • the performance of the fuel cell decreases as the operating time elapses. Therefore, in the manufacture of a fuel cell, a larger amount of noble metal catalyst than is actually required is supported on a carrier, so that the performance is increased and the life is extended. However, this is not advantageous from an economic point of view.
  • the inventors conducted a follow-up test of the electrode catalyst described in Patent Document 1, and found that when the electrode catalyst was used in a reducing environment, the catalytic activity was significantly reduced.
  • An object of the present invention is to improve an electrode catalyst, and more specifically, to provide an electrode catalyst in which a decrease in catalytic activity is suppressed when used in a reducing environment.
  • the present inventor has intensively studied, and in a reducing environment, tin constituting the support of the electrode catalyst and a noble metal such as platinum constituting the catalyst are alloyed, resulting in that. It was found that the catalytic activity was lost.
  • the present invention has been made on the basis of the above knowledge, and a support provided with a core part of tin oxide containing a predetermined element, and a shell part located on the surface of the core part, A catalyst containing a platinum group element supported on the carrier;
  • the shell part includes an oxide of at least one metal element selected from the group consisting of Ti, Zr, Nb, and Ta and different from the predetermined element;
  • FIG. 1 is a graph showing the power generation characteristics of the fuel cell obtained in Example 1.
  • FIG. 2 is a graph showing the power generation characteristics of the fuel cell obtained in Example 5.
  • FIG. 3 is a graph showing the power generation characteristics of the fuel cell obtained in Example 7.
  • FIG. 4 is a graph showing the power generation characteristics of the fuel cell obtained in Example 8.
  • FIG. 5 is a graph showing the power generation characteristics of the fuel cell obtained in Comparative Example 1.
  • the electrode catalyst of the present invention has a support and a catalyst containing a platinum group element supported on the surface of the support.
  • the carrier includes a core part and a shell part located on the surface of the core part.
  • the shell part may cover the entire surface of the core part evenly, or may cover the surface discontinuously so that a part of the surface of the core part is exposed.
  • the shell portion preferably covers the entire core portion so that the surface of the core portion is not exposed.
  • the core part in the carrier is configured to contain tin oxide.
  • the tin oxide used in the present invention is composed of an oxide of tin. It is known that tin oxide is a highly conductive substance. Examples of the tin oxide include SnO 2 which is a tetravalent tin oxide and SnO which is a divalent tin oxide. In particular, the tin oxide is preferably composed mainly of SnO 2 from the viewpoint of increasing the acid resistance of the electrode catalyst. “Mainly composed of SnO 2 ” means that 50 mol% or more of tin oxide is composed of SnO 2 .
  • the form of the carrier is not particularly limited, but preferably, the carrier is in the form of secondary particles in which primary particles are aggregated, and the primary particles of the carrier are primary particles of a composition containing tin oxide. And a shell portion disposed on the surface thereof.
  • the primary particle is an object recognized as the smallest unit as a particle, judging from the apparent geometric form, and the secondary particle is obtained by agglomeration of two or more primary particles. It is configured. Aggregation of primary particles is caused by, for example, intermolecular force, chemical bonding, or binding by a binder.
  • the primary particle size of the carrier is preferably 5 nm or more and 200 nm or less, and more preferably 5 nm or more and 50 nm or less.
  • the primary particle diameter of the carrier can be obtained by an average value of the primary particle diameter of the carrier measured from an electron microscope image or small angle X-ray scattering. For example, it is obtained by observing with an electron microscope image, measuring the maximum transverse length for 500 or more particles, and calculating the average value.
  • the particle size of the secondary particles of the carrier is preferably from 0.1 ⁇ m to 10 ⁇ m, and more preferably from 0.5 ⁇ m to 5 ⁇ m.
  • the particle size refers to a volume cumulative particle diameter D 50 in the cumulative volume 50% by volume by laser diffraction scattering particle size distribution measuring method.
  • the core portion constituting the support contains tin oxide, and it is preferable that the tin oxide contains a predetermined element from the viewpoint of further improving the performance of the electrode catalyst.
  • a predetermined element is an element which can improve the electroconductivity of a tin oxide by containing in a tin oxide.
  • the predetermined element include one or more elements selected from the group consisting of Ta, Nb, Sb, W, In, F, and V (hereinafter, this element is referred to as “addition element”).
  • the additive element is dissolved in the tin oxide, or is mixed in the state of the compound of the additive element (for example, an oxide of the additive element) in the tin oxide.
  • the fact that the additive element is dissolved in the tin oxide means that the tin site in the tin oxide is replaced by the additive element. It is preferable that the additive element is dissolved in the tin oxide because the conductivity of the tin oxide containing the additive element is increased.
  • the content ratio of the additive element contained in the tin oxide containing the additive element is represented by X (mol) / (Sn (mol) + X (mol)) ⁇ 100, preferably 0.1 mol, where X is the additive element. % Or more and 10 mol% or less. Hereinafter, this value is referred to as “additional element content ratio”.
  • the additive element content ratio is calculated based on the total amount of all the additive elements.
  • the additive element content is more preferably 0.1 mol% or more and 5 mol% or less, and still more preferably 0.5 mol% or more. 5 mol% or less.
  • the additive element content ratio of tin oxide containing additive elements can be measured, for example, by the following method.
  • the electrode catalyst is dissolved by an appropriate method to form a solution, and this solution is analyzed by inductively coupled plasma (ICP) emission analysis, and the concentration of tin and the concentration of added elements are measured.
  • ICP emission analysis fluorescent X-ray (XRF) analysis can also be used.
  • XRF fluorescent X-ray
  • It can also be calculated by measuring the elemental composition of the core part by scraping the shell part of the carrier by X-ray photoelectron spectroscopy (XPS) combined with ion sputtering.
  • XPS X-ray photoelectron spectroscopy
  • the additive element is F
  • the content of F can be measured using combustion-ion chromatography (for example, an automatic sample combustion apparatus (AQF-2100H) manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
  • one or more elements selected from the group consisting of Ta, Nb, Sb, In, W, F, and V as the additive element.
  • these elements it is preferable to use one or more elements selected from the group consisting of Ta, Nb, Sb, W and F from the viewpoint of balance between performance and price, and a group consisting of Ta, Sb, W and F It is more preferable to use one or more elements selected from more.
  • the shell part located on the surface of the core part including tin oxide is configured to include an oxide of a specific element.
  • this specific element is also referred to as “shell element”.
  • the shell element a metal element that is at least one metal element selected from the group consisting of Ti, Ta, Nb, and Zr and that is different from the additive element described above is employed. Even when the electrode catalyst of the present invention is used in a reducing environment, an alloy of tin and a platinum group element is formed by disposing a shell portion containing an oxide of these shell elements on the surface of the core portion. As a result of the study of the present inventor, it has been found that the conversion can be effectively suppressed.
  • the oxide constituting the shell portion is insoluble under the operating environment of the fuel cell or in the environment of use in the acidic electrolyte in the electrolysis process. It is. “Insoluble” means that no metal is eluted from the oxide, and that even if it is eluted, the amount is extremely small. The elution amount is extremely small means that the elution mass of the shell element after operation for 24 hours is 1% by mass or less with respect to the mass of the shell element before operation of the fuel cell.
  • the shell portion contains zirconium oxide as an oxide constituting the shell element from the viewpoint of more effectively preventing a decrease in catalyst activity under a reducing environment.
  • the shell element is a metal element different from the additive element contained in the core portion.
  • the shell element and / or the core portion when two or more kinds of additive elements contained in the shell element and / or the core portion are present, it is necessary that they are completely different.
  • the core portion contains tantalum and antimony and the shell portion contains tantalum, it is not said that the shell element and the additive element are different.
  • the difference between the shell element and the additive element contained in the core part has the advantageous effect of suppressing the diffusion of tin element contained in the core part into the shell part when an electrode catalyst is used in a reducing environment. Played.
  • the content ratio of the shell element constituting the oxide to the tin element contained in the support is preferably 1 mol% or more and 60 mol% or less in terms of molar ratio. That is, when the total number of moles of shell elements is M (mol), M (mol) / Sn (mol) ⁇ 100 is preferably 1 mol% or more and 60 mol% or less. Hereinafter, this value is also referred to as “shell element content ratio”.
  • the content ratio of the shell element is more preferably 2 mol% or more and 50 mol% or less, and further preferably 5 mol% or more and 45 mol% or less.
  • the content ratio of the shell element is measured by X-ray photoelectron spectroscopy (XPS). Specifically, semi-quantitative values of tin element and shell element are calculated by XPS, and the content ratio of shell element is calculated from the ratio.
  • XPS is preferably measured under the following conditions (A1) to (A5).
  • A2) Angle between sample and detector: ⁇ 45 °.
  • Detector calibration implemented using Cu2p and Au4f.
  • Analysis region a circle with a diameter of 0.1 mm.
  • Chamber pressure during analysis on the order of 10 ⁇ 7 to 10 ⁇ 6 Pa.
  • the shell part preferably further contains fluorine in addition to the above-described oxide of the shell element.
  • the conductivity of the shell portion is improved, and the conductivity of the entire carrier is improved.
  • the shell contains fluorine can be confirmed by line analysis of energy dispersive X-ray spectroscopy (TEM-EDX) or electron energy loss spectroscopy (TEM-EELS) attached to the transmission electron microscope. it can.
  • the fluorine content in the shell part is 0 with respect to the total number of moles of the shell element constituting the oxide and fluorine in the shell part. It is preferably 1 mol% or more and 20 mol% or less, more preferably 0.5 mol% or more and 15 mol% or less, and further preferably 1 mol% or more and 10 mol% or less.
  • the fluorine content contained in the shell portion can be measured by combustion-ion chromatography using combustion-ion chromatography (for example, an automatic sample combustion apparatus (AQF-2100H) manufactured by Mitsubishi Chemical Analytech Co., Ltd.). Separately from this, the content ratio of fluorine is calculated from the molar amount with the shell element calculated by ICP analysis according to the formula of F (mol) / (shell element ((mol)) + F (mol)) ⁇ 100. .
  • the content of fluorine contained in the shell part is measured by energy dispersive X-ray spectroscopy (TEM-EDX) attached to a transmission electron microscope or electron energy. It can be calculated from the semi-quantitative values of fluorine and shell elements in the shell by spot analysis of loss spectroscopy (TEM-EELS).
  • the shell part preferably has a predetermined thickness and separates the core part of the support from the catalyst containing the platinum group element, and the thickness of the shell part is preferably 1 nm or more and 50 nm or less.
  • the thickness of the shell portion is more preferably 1 nm or more and 20 nm or less.
  • the thickness of the shell part can be measured by observation with a transmission electron microscope (TEM). It can also be measured by X-ray photoelectron spectroscopic analysis combined with ion sputtering. For example, the analysis is performed until the signal intensity of the shell element reaches 50% of the signal intensity of the outermost surface, and the etching thickness by ion sputtering at that time can be defined as the shell thickness.
  • TEM transmission electron microscope
  • a catalyst containing a platinum group element is supported on the surface of the support.
  • the platinum group element is a general term for elements belonging to Groups 8, 9, and 10 of the fifth period and the sixth period in the periodic table. Specific examples include platinum, ruthenium, rhodium, palladium, osmium, and iridium.
  • Examples of the catalyst containing a platinum group element include an alloy of platinum and another element. Alloys of platinum and other elements include platinum and platinum group elements other than platinum (ruthenium, rhodium, iridium, etc.), platinum and base metals (vanadium, chromium, cobalt, nickel, iron, titanium, molybdenum) And alloys with manganese).
  • These catalysts preferably have an average particle size of 1 nm or more and 10 nm or less on the surface of the support from the viewpoint of efficient expression of catalytic ability.
  • the supported amount of the platinum group element is 1 with respect to the total mass of the electrode catalyst, that is, the total mass of the support and the mass of the catalyst containing the platinum group element. It is preferable to set it as mass% or more and 30 mass% or less, and it is still more preferable to set it as 1 mass% or more and 20 mass% or less. By setting the loading amount within this range, the electrode reaction can be performed sufficiently smoothly.
  • the supported amount of the platinum group element can be determined by dissolving the electrode catalyst by an appropriate method to form a solution and analyzing the solution by ICP emission analysis.
  • the catalyst containing the platinum group element may cover the entire surface of the support evenly according to the amount of the catalyst supported, but the catalyst is discontinuously coated so that the surface of the support is exposed at an appropriate distance. Is good.
  • This production method is roughly divided into (i) a production process of the core part, (ii) a formation process of the shell part, and (iii) a support process of a catalyst containing a platinum group element.
  • a production process of the core part (ii) a production process of the core part, (ii) a formation process of the shell part, and (iii) a support process of a catalyst containing a platinum group element.
  • the core part can be suitably manufactured by, for example, a wet synthesis method or a plasma synthesis method.
  • a core portion can be obtained by generating a tin precipitate from a solution containing a tin source and, if necessary, an additive element source, and then firing the precipitate.
  • an additive element source is also used, a core part can be obtained by producing a coprecipitate containing tin and the additive element and then firing the coprecipitate.
  • the obtained core part may be granulated by subjecting it to a spray drying method as necessary.
  • powder for spray drying may be synthesized, and the powder may be granulated by spray drying. Regardless of which method is employed, the obtained granulated product can be fired. Firing can be performed, for example, in an air atmosphere.
  • the shell portion is preferably formed by a liquid phase precipitation method (LPD method).
  • LPD method is a method of directly synthesizing an oxide thin film from an aqueous solution onto a base material using a hydrolysis equilibrium reaction of a metal fluoro complex in the aqueous solution.
  • the outline of the reaction in the LPD method can be expressed by the following chemical reaction formula.
  • the hydrolysis equilibrium reaction (ligand exchange reaction) of the metal fluoro complex MF x (x-2n) — in the aqueous solution represented by the above formula (1) is the main reaction.
  • an agent for forming a fluorine compound that is more stable than the metal fluoro complex hereinafter also referred to as a fluoride ion scavenger
  • the core that is, tin oxide particles
  • the shell portion contains an oxide of Ti
  • diammonium titanate (NH 4 ) 2 TiF 6 ) is used as a Ti source
  • boric acid H 3 BO as a fluoride ion scavenger
  • the core portion may be further added thereto.
  • tantalum pentoxide Ta 2 O 5
  • boric acid H 3 BO 3
  • the shell portion contains an oxide of Nb
  • niobium pentoxide Nb 2 O 5
  • boric acid H 3 BO 3
  • the core portion may be further added thereto.
  • fluorinated zirconic acid H 2 ZrF 6
  • aluminum ions Al 3+
  • the catalyst supporting step (iii) is performed.
  • the method for supporting the catalyst on the surface of the carrier there is no particular limitation on the method for supporting the catalyst on the surface of the carrier, and methods similar to those known so far in the art can be employed.
  • chloroplatinic acid hexahydrate H 2 PtCl 6 .6H 2 O
  • dinitrodiammine platinum Pt (NH 3 ) 2 (NO 2 ) 2
  • platinum group element source are used as the platinum group element source, and these are used in the liquid phase.
  • a platinum group element is supported on a carrier by reduction using a known method such as a chemical reduction method, a gas phase chemical reduction method, an impregnation-reduction pyrolysis method, a colloid method, or a surface-modified colloid pyrolysis reduction method.
  • a carrier is dispersed in a liquid containing a colloid containing a platinum group element, and the colloid is supported on the carrier.
  • a reducing agent is added to a liquid containing a platinum group element-containing colloidal precursor to reduce the precursor, thereby generating a colloid containing a platinum group element.
  • the carrier is dispersed in the liquid containing the colloid containing the platinum group element, and the colloid is supported on the carrier as fine particles containing the platinum group element.
  • the ethanol method are described, for example, in JP-A-9-47659.
  • the colloid method are described in, for example, WO2009 / 060582 and JP-A-2006-79904.
  • This reduction treatment is preferably performed in a reducing atmosphere for the purpose of activating the catalyst.
  • the reducing atmosphere include hydrogen and carbon monoxide.
  • hydrogen When hydrogen is used, it may be used at a concentration of 100%, or preferably 0.1 to 50% by volume, more preferably 1 to 10% by volume with an inert gas such as nitrogen, helium or argon. You may dilute and use.
  • the temperature of the reduction treatment is preferably set to 10 ° C. or higher and 200 ° C. or lower, more preferably 10 ° C. or higher and 150 ° C. or lower, from the viewpoint of successfully activating the catalyst.
  • the target electrode catalyst is obtained.
  • This electrode catalyst is preferably used in a membrane electrode assembly having an oxygen electrode (cathode) disposed on one surface of a solid polymer electrolyte membrane and a fuel electrode (anode) disposed on the other surface of the fuel cell. It can be used by containing at least the fuel electrode (anode). If necessary, the electrode catalyst of the present invention may be used for an oxygen electrode (cathode). In addition, the electrode catalyst of the present invention can be applied to uses other than fuel cells. For example, it can be suitably used as a cathode catalyst in various aqueous electrolysis processes.
  • the electrode catalyst is preferably in contact with the solid polymer electrolyte membrane. Specifically, it is preferable to directly form a catalyst layer containing the electrode catalyst of the present invention on at least one surface of the solid polymer electrolyte membrane. Thereby, CCM (CatalystataCoated Membrane) is obtained.
  • This catalyst layer is preferably a catalyst layer of the fuel electrode (anode).
  • the catalyst layer is preferably a cathode catalyst layer.
  • the catalyst layer When the catalyst layer is used as an anode catalyst layer of a fuel cell, the catalyst layer preferably contains an ionomer in addition to the electrode catalyst of the present invention.
  • the ionomer for example, it is preferable to use the same type of compound as the solid polymer electrolyte membrane.
  • the solid polymer electrolyte membrane is a fluorine-containing polymer compound
  • the same kind of compound as the fluorine-containing polymer compound can be used as the ionomer contained in the catalyst layer.
  • a gas diffusion layer is disposed on each surface of the CCM, whereby an MEA (membrane electrode assembly) is obtained.
  • the gas diffusion layer functions as a supporting current collector having a current collecting function. Furthermore, it has a function of sufficiently supplying gas to the electrode catalyst.
  • the gas diffusion layer those similar to those conventionally used in this kind of technical field can be used.
  • carbon paper and carbon cloth which are porous materials can be used. Specifically, it can be formed by, for example, a carbon cloth woven with yarns having a predetermined ratio of carbon fibers whose surfaces are coated with polytetrafluoroethylene and carbon fibers that are not coated.
  • solid polymer electrolyte those similar to those conventionally used in this kind of technical field can be used.
  • a perfluorosulfonic acid polymer-based proton conductor film a hydrocarbon polymer compound doped with an inorganic acid such as phosphoric acid, or an organic / inorganic hybrid polymer partially substituted with a proton conductor functional group
  • proton conductors in which a polymer matrix is impregnated with a phosphoric acid solution or a sulfuric acid solution.
  • the membrane electrode assembly is made into a polymer electrolyte fuel cell by providing a separator on each surface.
  • a separator for example, a separator in which a plurality of protrusions (ribs) extending in one direction are formed at a predetermined interval on the surface facing the gas diffusion layer can be used. Between adjacent convex parts, it is a groove part with a rectangular cross section. The groove is used as a supply / discharge flow path for an oxidant gas such as fuel gas and air. The fuel gas and the oxidant gas are supplied from the fuel gas supply unit and the oxidant gas supply unit, respectively.
  • Each separator disposed on each surface of the membrane electrode assembly is preferably disposed so that the grooves formed therein are orthogonal to each other.
  • the above configuration constitutes the minimum unit of the fuel cell, and a fuel cell can be configured from a cell stack formed by arranging several tens to several hundreds of this configuration in parallel.
  • the electrode catalyst of the present invention has been mainly described as an example of using an electrode catalyst of a solid polymer electrolyte fuel cell or an electrode catalyst of an electrolysis process. It can be used as an electrode catalyst in various fuel cells such as fuel cells other than solid polymer electrolyte fuel cells, such as alkaline fuel cells, phosphoric acid fuel cells, and direct methanol fuel cells.
  • Example 1 Formation of anode catalyst layer (a) Manufacturing process of core part-Manufacturing process of tantalum-containing tin oxide particles- 148 g of Na 2 SnO 3 was dissolved in 1630 g of pure water to prepare a tin-containing aqueous solution. Separately from this operation, a tantalum-containing solution in which 5.1 g of TaCl 5 was dissolved in 140 mL of ethanol was prepared, and this tantalum-containing solution was mixed with an aqueous nitric acid solution (116 g of nitric acid dissolved in 1394 g of pure water). The tin-containing aqueous solution was added to the liquid after mixing and mixed and stirred.
  • the tantalum-containing tin oxide particles were coarsely crushed with an agate mortar to an average particle size of 100 ⁇ m or less, and then pulverized with a ball mill using yttrium-stabilized zirconia balls.
  • pulverization with a ball mill 40 g of tantalum-containing tin oxide particles were mixed with 700 mL of pure water and 40 g of ethanol to form a slurry, and this slurry was used for pulverization.
  • the slurry and the ball were separated and granulated by a spray drying method using the separated slurry to obtain a granulated product.
  • the granulation conditions were as follows: inlet temperature: 220 ° C., outlet temperature 60 ° C., spray pressure: 0.15-0.2 MPa, liquid feed rate: 8.3 mL / min, slurry concentration: 10 g / 250 mL.
  • the obtained granulated material was fired under conditions of 680 ° C. and 5 hours in an air atmosphere.
  • the obtained tantalum-containing tin oxide granulated product was substantially spherical with an average particle size of 2.68 ⁇ m. In this way, a core part in the carrier was obtained.
  • the loading was performed according to the method described in Examples of Japanese Patent Application Laid-Open No. 2006-79904. Specifically, it is as follows. First, a platinum solution containing 1 g of platinum was prepared using chloroplatinic acid. Sodium bisulfite was added thereto as a reducing agent, diluted with pure water, and a 5% aqueous sodium hydroxide solution was added to adjust the pH to 5. Further, hydrogen peroxide solution was added dropwise to oxidize and remove excess sulfite ions. The liquidity was maintained at pH 5 using a 5% aqueous sodium hydroxide solution.
  • the carrier was dispersed in the colloidal solution thus obtained to adsorb the platinum colloid, followed by filtration, washing and drying to obtain a platinum-supporting carrier. Thereafter, heat treatment was performed at 80 ° C. for 2 hours in a weak reducing atmosphere of 4% by volume H 2 / N 2 to obtain an electrode catalyst.
  • the amount of platinum supported was 7.5%.
  • the supported amount is defined as [platinum / (platinum + carrier)] ⁇ 100 on a mass basis. Further, from the result of XRD measurement, it was confirmed that the Ti oxide was amorphous.
  • Anode catalyst layer formation step 1.24 g of the electrode catalyst was placed in a container, and pure water, ethanol and 2-propanol were added in order at a mass ratio of 35:45:20 (1.61 g as a mixed solution). The ink thus obtained was dispersed with ultrasound for 3 minutes. Next, a yttrium-stabilized zirconia ball having a diameter of 10 mm was placed in the container, and stirred for 20 minutes at 800 rpm with a planetary ball mill (Sinky ARE310).
  • 5% Nafion (registered trademark) (274704-100ML, manufactured by Sigma-Aldrich), which is an ionomer, was added to the ink, and the same stirring was performed by ultrasonic dispersion and a planetary ball mill.
  • the amount of Nafion added was such that the mass ratio of Nafion / carrier was 0.074.
  • the ink thus obtained was applied onto a polytetrafluoroethylene sheet using a bar coater, and the coating film was dried at 60 ° C. to form a catalyst layer.
  • cathode catalyst layer 1.00 g of platinum-supported carbon black (TEC10E50E) manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. was put into a container, and pure water, ethanol and 2-propanol were mixed at a mass ratio of 45:35:20 (mixed solution As 12.8 g). The ink thus obtained was dispersed with ultrasound for 3 minutes. Next, a yttrium-stabilized zirconia ball having a diameter of 10 mm was placed in the container, and stirred at 800 rpm for 20 minutes by a planetary ball mill (Sinky ARE310).
  • 5% Nafion (registered trademark) (274704-100ML, manufactured by Sigma-Aldrich), which is an ionomer, was added to the ink, and the same agitation as described above was continued by ultrasonic dispersion and a planetary ball mill.
  • the amount of Nafion added was such that the mass ratio of Nafion / carbon black support was 0.70.
  • the ink thus obtained was applied onto a polytetrafluoroethylene sheet using a bar coater, and the coating film was dried at 60 ° C.
  • CCM membrane electrode assembly
  • the obtained sheet of polytetrafluoroethylene with cathode catalyst layer and sheet of polytetrafluoroethylene with anode catalyst layer were cut into a square shape of 54 mm square, and Nafion (registered) (Trademark) (NRE-212, manufactured by Du Pont Co., Ltd.) was superposed on the membrane and heat-pressed in air at 140 ° C. and 25 kgf / cm 2 for 2 minutes for transfer.
  • the cathode and anode catalyst layers were formed on each surface of the solid polymer electrolyte membrane made of Nafion.
  • the amount of the platinum in the electrode catalyst layer, the cathode catalyst layer in the anode catalyst layer at 0.165mg -Pt / cm 2 was 0.035mg -Pt / cm 2.
  • Example 2 In the production of the carrier in Example 1, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 1 except that the production of the core part and the formation of the shell part were changed to the following methods. Moreover, it was confirmed from the result of the XRD measurement of the electrode catalyst that the Ti oxide is amorphous.
  • the ratio of tungsten represented by W (mol) / (Sn (mol) + W (mol) + F (mol)) ⁇ 100 is 2.5 mol%, and F (mol) / (Sn (mol) + W (mol)
  • the ratio of fluorine represented by + F (mol)) ⁇ 100 was 3.8 mol%.
  • the obtained tungsten and fluorine-containing tin oxide particles were substantially spherical with an average particle size of 2.1 ⁇ m. In this way, a core part in the carrier was obtained.
  • Example 3 In the step of forming the shell portion in Example 2, 0.5 mL / L boric acid 100 mL and pure water 145 mL were mixed with 0.5 mL / L diammonium fluoride (NH 4 ) 2 TiF 6 solution 5 mL, After obtaining the reaction solution, 20 g of the core part was added to the solution and reacted for 4 hours. Except for these, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 2. Moreover, it was confirmed from the result of the XRD measurement of the electrode catalyst that the Ti oxide is amorphous.
  • NH 4 diammonium fluoride
  • Example 4 In the shell portion forming step in Example 2, 0.5 mol / L boric acid titanate (NH 4 ) 2 TiF 6 solution 10 mL was mixed with 0.5 mol / L boric acid and 100 mL pure water 140 mL, A reaction solution was obtained. Except for these, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 2. Moreover, it was confirmed from the result of the XRD measurement of the electrode catalyst that the Ti oxide is amorphous.
  • Example 5 The formation of the shell portion in Example 2 was performed in the same manner as the formation of the shell portion in Example 1. Except this, it carried out similarly to Example 2, and obtained the electrode catalyst and the fuel cell. Moreover, it was confirmed from the result of the XRD measurement of the electrode catalyst that the Ti oxide is amorphous.
  • Example 6 In the shell portion forming step in Example 5, 100 mL of 0.5 mol / L boric acid and 100 mL of pure water were mixed with 50 mL of 0.5 mol / L diammonium fluoride (NH 4 ) 2 TiF 6 solution and reacted. After obtaining the solution, 3.5 g of the core part was added to the solution and reacted for 4 hours. Except for these, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 5. Moreover, it was confirmed from the result of the XRD measurement of the electrode catalyst that the Ti oxide is amorphous.
  • NH 4 0.5 mol / L diammonium fluoride
  • Example 7 In the production of the carrier in Example 5, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 5 except that the production of the shell part was changed to the following method. Further, as a result of XRD measurement of the electrode catalyst, it was confirmed that the Ta oxide was amorphous.
  • (B) Shell part forming step 3 g of tantalum pentoxide (manufactured by Mitsuwa Chemicals) was dissolved in 500 mL of a 1 mol / L hydrofluoric acid solution to prepare a raw material solution. After 110 mL of this raw material solution was mixed with 40 mL of pure water, 100 mL of 0.5 mol / L boric acid was mixed to obtain a reaction solution.
  • Example 8 In the production of the carrier in Example 5, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 5 except that the production of the shell part was changed to the following method. Further, as a result of XRD measurement of the electrode catalyst, it was confirmed that the Nb oxide was amorphous.
  • Shell part forming step 4.5 g of niobium pentoxide (manufactured by Mitsuwa Chemical Co., Ltd.) was dissolved in 500 mL of a 1 mol / L ammonium hydrogen fluoride solution to prepare a raw material solution. 50 mL of this raw material solution was mixed with 200 mL of 0.25 mol / L boric acid to obtain a reaction solution.
  • Example 9 In the production of the carrier in Example 5, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 5 except that the production of the shell part was changed to the following method. As a result of XRD measurement of the electrode catalyst, it was confirmed that the Zr oxide was amorphous.
  • (B) Shell part forming step 3.4 mL of fluorinated zirconate H 2 ZrF 6 (manufactured by Sigma-Aldrich) was diluted with pure water to 250 mL, and then mixed and dissolved 15 g of aluminum chloride was used as a reaction solution. . 5 g of the core part was added to this solution and reacted for 4 hours. Then, filtration washing was performed and it was made to dry overnight in a 120 degreeC dryer. As a result, a support including a shell portion containing Zr oxide and a core portion made of tungsten and fluorine-containing tin oxide was obtained.
  • Example 10 In the production of the carrier in Example 5, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 5 except that the production process of tantalum and fluorine-containing tin oxide particles in the production process of the core part was changed to the following method. . From the result of XRD measurement of the electrode catalyst, it was confirmed that the Ti oxide was amorphous.
  • A Manufacturing process of core part-Manufacturing process of tin oxide particles containing antimony and tantalum- (1) Preparation of tantalum-containing solution 5 g of TaCl 5 was dissolved in 115 ml of ethanol, and 115 ml of water was subsequently added to obtain a tantalum-containing transparent liquid.
  • Example 11 In the production of the carrier in Example 8, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 8, except that the production of the core part was the same as in Example 10. From the result of XRD measurement of the electrode catalyst, it was confirmed that the Nb oxide was amorphous.
  • Example 12 In the production of the carrier in Example 9, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 9, except that the production of the core part was the same as in Example 10. From the results of XRD measurement of the electrode catalyst, it was confirmed that the Zr oxide was amorphous.
  • Example 13 An electrode catalyst and a fuel cell were obtained in the same manner as in Example 8, except that in the catalyst supporting step in the production process of the electrode catalyst in Example 8, chloroplatinic acid was changed to chloroiridic acid. From the result of XRD measurement of the electrode catalyst, it was confirmed that the Nb oxide was amorphous.
  • Example 1 In the manufacture of the carrier in Example 1, the core part itself was used as the carrier without forming a shell part on the surface of the core part. Except for this, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 1.
  • Example 2 In the production of the carrier in Example 2, the core part itself was used as a carrier without forming a shell part on the surface of the core part. Except this, it carried out similarly to Example 2, and obtained the electrode catalyst and the fuel cell.
  • This comparative example is an example in which the additive element included in the core portion and the type of the shell element included in the shell portion overlap. Specifically, in the production of the carrier in Example 7, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 7 except that the production of the core was the same as in Example 10.
  • This comparative example is an example in which the shell element contained in the shell portion is different from the element used in the present invention. Specifically, in the shell portion forming step in Example 5, 0.5 mol / L hydrosilicofluoric acid was used instead of 0.5 mol / L diammonium fluoride (NH 4 ) 2 TiF 6 solution. An electrode catalyst and a fuel cell were obtained in the same manner as in Example 5 except that an H 2 SiF 6 solution (manufactured by Kanto Chemical) was used.
  • This comparative example is an example in which the shell element contained in the shell portion is different from the element used in the present invention. Specifically, in the shell portion forming step in Example 5, 1.8 g of molybdic acid H 2 MoO 4 (instead of 0.5 mol / L diammonium titanate (NH 4 ) 2 TiF 6 solution) was used. Kanto Chemical Co.) was dissolved in 500 mL of a 0.55 mol / L hydrofluoric acid solution, and an electrode catalyst and a fuel cell were obtained in the same manner as in Example 5 except that the prepared raw material solution was used.
  • molybdic acid H 2 MoO 4 instead of 0.5 mol / L diammonium titanate (NH 4 ) 2 TiF 6 solution
  • Kanto Chemical Co. was dissolved in 500 mL of a 0.55 mol / L hydrofluoric acid solution
  • an electrode catalyst and a fuel cell were obtained in the same manner as in Example 5 except that the prepared raw material solution was used.
  • the initial (first cycle) 0.5 A / cm 2 cell voltage value (V), cell resistance ( ⁇ ⁇ cm 2 ), and evaluation results thereof, and the third cycle 0.5 A / cm
  • the cell voltage value (V) at 2 o'clock and the evaluation results are shown in Table 1 below.
  • the graph of the measurement result of Example 1, 5, 7, and 8 and the comparative example 1 is shown to FIG. Further, for Examples 4, 7, 8 and 9, 15 cycles of measurement were performed.
  • Table 2 shows the cell voltage value (V) and the evaluation result at 0.5 A / cm 2 at the 15th cycle.

Abstract

This electrode catalyst comprises: a carrier which has a core part that is formed of a tin oxide containing a specific element and a shell part that is arranged on the surface of the core part; and a catalyst which is supported by the carrier and contains a platinum group element. The shell part contains an oxide of at least one metal element that is different from the above-mentioned specific element and is selected from the group consisting of Ti, Ta, Nb and Zr. This electrode catalyst is used for an anode of a fuel cell or a cathode for electrolysis. It is preferable that the oxide is in an amorphous state. It is also preferable that the oxide is zirconium oxide.

Description

電極触媒Electrocatalyst
 本発明は、電極触媒に関する。 The present invention relates to an electrode catalyst.
 固体高分子形燃料電池は、パーフルオロアルキルスルホン酸型高分子などのプロトン伝導性を有する高分子膜を固体電解質とし、該固体高分子膜の各面に電極触媒が施されてなる酸素極(カソード)及び燃料極(アノード)が形成された膜電極接合体を備えている。 A polymer electrolyte fuel cell has a proton conductive polymer membrane such as a perfluoroalkyl sulfonic acid type polymer as a solid electrolyte, and an oxygen electrode in which an electrode catalyst is applied to each surface of the solid polymer membrane ( A membrane electrode assembly in which a cathode) and a fuel electrode (anode) are formed is provided.
 電極触媒は、一般に、担体となるカーボンブラック等の導電性炭素材料の表面に、白金を始めとする各種貴金属触媒が担持されてなる。電極触媒は、燃料電池の運転時の電位変化に起因して、カーボンが酸化腐食し、担持されている貴金属触媒の凝集や脱落が起こることが知られている。その結果、運転時間の経過とともに燃料電池の性能が低下してくる。そこで、燃料電池の製造においては、実際に必要な量よりも多量の貴金属触媒を担体に担持させておくことで、性能にゆとりを持たせて、高寿命化を図っている。しかし、このことは経済性の観点から有利とは言えない。 The electrode catalyst is generally formed by supporting various precious metal catalysts such as platinum on the surface of a conductive carbon material such as carbon black serving as a carrier. In the electrode catalyst, it is known that carbon is oxidized and corroded due to a change in potential during operation of the fuel cell, and the noble metal catalyst supported is agglomerated or dropped off. As a result, the performance of the fuel cell decreases as the operating time elapses. Therefore, in the manufacture of a fuel cell, a larger amount of noble metal catalyst than is actually required is supported on a carrier, so that the performance is increased and the life is extended. However, this is not advantageous from an economic point of view.
 そこで、固体高分子形燃料電池の高性能化や高寿命化や経済性の改善を図ることを目的として、電極触媒に関する種々の検討がなされている。例えば、これまで担体として用いられてきた導電性炭素に代えて、非炭素系の材料である導電性酸化物担体を用いることが提案されている(特許文献1参照)。同文献においては、電極触媒の担体として酸化スズが用いられている。同文献には、この酸化スズにSbをドープすることが記載されている。この担体の表面には、白金等の貴金属の微粒子が担持されている。同文献によれば、SbとSnとの和に対するSbの割合を特定の範囲に設定することで、Sbドープ酸化スズの耐酸性が高まるとされている。 Therefore, various studies on electrode catalysts have been made for the purpose of improving the performance and life of solid polymer fuel cells and improving the economic efficiency. For example, it has been proposed to use a conductive oxide carrier that is a non-carbon material instead of the conductive carbon that has been used as a carrier until now (see Patent Document 1). In this document, tin oxide is used as a support for the electrode catalyst. This document describes that this tin oxide is doped with Sb. On the surface of the carrier, fine particles of noble metal such as platinum are supported. According to the document, the acid resistance of Sb-doped tin oxide is increased by setting the ratio of Sb to the sum of Sb and Sn within a specific range.
特表2012-514287号公報Special table 2012-514287
 本発明者が特許文献1に記載の電極触媒の追試験を行ったところ、該電極触媒を還元性環境下で用いた場合には、触媒活性の低下が著しいことが判明した。 The inventors conducted a follow-up test of the electrode catalyst described in Patent Document 1, and found that when the electrode catalyst was used in a reducing environment, the catalytic activity was significantly reduced.
 本発明の課題は、電極触媒の改良にあり、更に詳しくは還元性環境下で用いた場合に触媒活性の低下が抑制された電極触媒を提供することにある。 An object of the present invention is to improve an electrode catalyst, and more specifically, to provide an electrode catalyst in which a decrease in catalytic activity is suppressed when used in a reducing environment.
 前記の課題を解決すべく本発明者は鋭意検討したところ、還元性環境下においては、電極触媒の担体を構成するスズと、触媒を構成する白金等の貴金属とが合金化し、そのことに起因して触媒活性が失われることを知見した。 In order to solve the above-mentioned problems, the present inventor has intensively studied, and in a reducing environment, tin constituting the support of the electrode catalyst and a noble metal such as platinum constituting the catalyst are alloyed, resulting in that. It was found that the catalytic activity was lost.
 本発明は前記の知見に基づきなされたものであり、所定元素を含む酸化スズのコア部、及び該コア部の表面に位置するシェル部を備えた担体と、
 前記担体に担持された、白金族の元素を含む触媒と、
を有し、
 前記シェル部が、Ti、Zr、Nb、及びTaからなる群より選択され且つ前記所定元素と異なる少なくとも一種の金属元素の酸化物を含む、
 電極触媒を提供することにより前記の課題を解決したものである。
The present invention has been made on the basis of the above knowledge, and a support provided with a core part of tin oxide containing a predetermined element, and a shell part located on the surface of the core part,
A catalyst containing a platinum group element supported on the carrier;
Have
The shell part includes an oxide of at least one metal element selected from the group consisting of Ti, Zr, Nb, and Ta and different from the predetermined element;
The above-described problems are solved by providing an electrode catalyst.
図1は、実施例1で得られた燃料電池の発電特性を示すグラフである。FIG. 1 is a graph showing the power generation characteristics of the fuel cell obtained in Example 1. 図2は、実施例5で得られた燃料電池の発電特性を示すグラフである。FIG. 2 is a graph showing the power generation characteristics of the fuel cell obtained in Example 5. 図3は、実施例7で得られた燃料電池の発電特性を示すグラフである。FIG. 3 is a graph showing the power generation characteristics of the fuel cell obtained in Example 7. 図4は、実施例8で得られた燃料電池の発電特性を示すグラフである。FIG. 4 is a graph showing the power generation characteristics of the fuel cell obtained in Example 8. 図5は、比較例1で得られた燃料電池の発電特性を示すグラフである。FIG. 5 is a graph showing the power generation characteristics of the fuel cell obtained in Comparative Example 1.
 以下本発明を、その好ましい実施形態に基づき説明する。本発明の電極触媒は、担体と、該担体の表面に担持された白金族の元素を含む触媒とを有する。担体は、コア部、及び該コア部の表面に位置するシェル部を備えている。シェル部は、コア部の表面の全域を満遍なく被覆していてもよく、あるいはコア部の表面が一部露出するように、該表面を不連続に被覆していてもよい。スズと白金族の元素との合金化を効果的に防止する観点からは、シェル部は、コア部の表面が露出しないように、該コア部の全域を被覆していることが好ましい。 Hereinafter, the present invention will be described based on preferred embodiments thereof. The electrode catalyst of the present invention has a support and a catalyst containing a platinum group element supported on the surface of the support. The carrier includes a core part and a shell part located on the surface of the core part. The shell part may cover the entire surface of the core part evenly, or may cover the surface discontinuously so that a part of the surface of the core part is exposed. From the viewpoint of effectively preventing alloying of tin and platinum group elements, the shell portion preferably covers the entire core portion so that the surface of the core portion is not exposed.
担体におけるコア部は、酸化スズを含んで構成されている。本発明で用いられる酸化スズはスズの酸化物から構成される。スズの酸化物は導電性が高い物質であることが知られている。スズの酸化物には、例えば四価のスズの酸化物であるSnOや、二価のスズの酸化物であるSnOなどがある。特にスズの酸化物はSnOを主体とすることが、電極触媒の耐酸性を高める観点から好ましい。「SnOを主体とする」とは、スズの酸化物のうちの50モル%以上がSnOからなることを言う。 The core part in the carrier is configured to contain tin oxide. The tin oxide used in the present invention is composed of an oxide of tin. It is known that tin oxide is a highly conductive substance. Examples of the tin oxide include SnO 2 which is a tetravalent tin oxide and SnO which is a divalent tin oxide. In particular, the tin oxide is preferably composed mainly of SnO 2 from the viewpoint of increasing the acid resistance of the electrode catalyst. “Mainly composed of SnO 2 ” means that 50 mol% or more of tin oxide is composed of SnO 2 .
 担体の形態に特に制限はないが、好ましくは、担体は、一次粒子が凝集した二次粒子の形態をしており、担体の一次粒子は、酸化スズを含む組成物の一次粒子であるコア部とその表面に配置されるシェル部とを備えている。本明細書において一次粒子とは、外見上の幾何学的形態から判断して、粒子としての最小単位と認められる物体のことであり、二次粒子は、一次粒子が2個以上凝集したものから構成されている。一次粒子の凝集は、例えば分子間力、化学結合、又はバインダによる結合等に起因して生じるものである。担体の一次粒子の粒径は、5nm以上200nm以下であることが好ましく、5nm以上50nm以下であることが更に好ましい。担体の一次粒子径は、電子顕微鏡像や小角X線散乱から測定される担体の一次粒子径の平均値により得ることができる。例えば、電子顕微鏡像で観察し、500個以上の粒子を対象として最大横断長を測定し、その平均値を算出することで求められる。また、担体の二次粒子の粒径は、0.1μm以上10μm以下であることが好ましく、0.5μm以上5μm以下であることが更に好ましい。この粒径は、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50のことである。 The form of the carrier is not particularly limited, but preferably, the carrier is in the form of secondary particles in which primary particles are aggregated, and the primary particles of the carrier are primary particles of a composition containing tin oxide. And a shell portion disposed on the surface thereof. In this specification, the primary particle is an object recognized as the smallest unit as a particle, judging from the apparent geometric form, and the secondary particle is obtained by agglomeration of two or more primary particles. It is configured. Aggregation of primary particles is caused by, for example, intermolecular force, chemical bonding, or binding by a binder. The primary particle size of the carrier is preferably 5 nm or more and 200 nm or less, and more preferably 5 nm or more and 50 nm or less. The primary particle diameter of the carrier can be obtained by an average value of the primary particle diameter of the carrier measured from an electron microscope image or small angle X-ray scattering. For example, it is obtained by observing with an electron microscope image, measuring the maximum transverse length for 500 or more particles, and calculating the average value. The particle size of the secondary particles of the carrier is preferably from 0.1 μm to 10 μm, and more preferably from 0.5 μm to 5 μm. The particle size refers to a volume cumulative particle diameter D 50 in the cumulative volume 50% by volume by laser diffraction scattering particle size distribution measuring method.
 担体を構成するコア部は上述のとおり酸化スズを含むものであるところ、この酸化スズは、所定の元素が含有されたものであることが、電極触媒の一層の性能向上の点から好ましい。所定の元素とは、酸化スズ中に含有されることで、酸化スズの導電性を高め得る元素のことである。所定の元素の例としては、Ta、Nb、Sb、W、In、F及びVからなる群より選ばれる一種以上の元素(以下、この元素のことを「添加元素」と言う。)が挙げられる。添加元素は、酸化スズ中に固溶しているか、又は酸化スズ中に添加元素の化合物(例えば添加元素の酸化物)の状態で混在している。添加元素が酸化スズ中に固溶しているとは、酸化スズにおけるスズのサイトが添加元素で置換されていることを指す。添加元素が酸化スズ中に固溶していると、添加元素を含有する酸化スズの導電性が高くなるので好ましい。 As described above, the core portion constituting the support contains tin oxide, and it is preferable that the tin oxide contains a predetermined element from the viewpoint of further improving the performance of the electrode catalyst. A predetermined element is an element which can improve the electroconductivity of a tin oxide by containing in a tin oxide. Examples of the predetermined element include one or more elements selected from the group consisting of Ta, Nb, Sb, W, In, F, and V (hereinafter, this element is referred to as “addition element”). . The additive element is dissolved in the tin oxide, or is mixed in the state of the compound of the additive element (for example, an oxide of the additive element) in the tin oxide. The fact that the additive element is dissolved in the tin oxide means that the tin site in the tin oxide is replaced by the additive element. It is preferable that the additive element is dissolved in the tin oxide because the conductivity of the tin oxide containing the additive element is increased.
 添加元素を含有する酸化スズに含まれる添加元素の含有割合は、添加元素をXとすると、X(mol)/(Sn(mol)+X(mol))×100で表して、好ましくは0.1mol%以上10mol%以下である。以下、この値を「添加元素含有割合」と言う。添加元素を2種類以上用いる場合には、すべての添加元素の合計量に基づき添加元素含有割合を算出する。添加元素含有割合を0.1mol%以上に設定することで、添加元素を含有する酸化スズの導電性を十分に高くすることができる。添加元素含有割合が10mol%を超えても、担体としての導電率は大きく向上しない。添加元素を含有する酸化スズの導電性を一層高め、且つ比表面積を十分に高くする観点から、添加元素含有割合は更に好ましくは0.1mol%以上5mol%以下、一層好ましくは0.5mol%以上5mol%以下である。 The content ratio of the additive element contained in the tin oxide containing the additive element is represented by X (mol) / (Sn (mol) + X (mol)) × 100, preferably 0.1 mol, where X is the additive element. % Or more and 10 mol% or less. Hereinafter, this value is referred to as “additional element content ratio”. When two or more kinds of additive elements are used, the additive element content ratio is calculated based on the total amount of all the additive elements. By setting the additive element content ratio to 0.1 mol% or more, the conductivity of tin oxide containing the additive element can be sufficiently increased. Even when the additive element content exceeds 10 mol%, the conductivity as a carrier is not greatly improved. From the viewpoint of further increasing the conductivity of tin oxide containing an additive element and sufficiently increasing the specific surface area, the additive element content is more preferably 0.1 mol% or more and 5 mol% or less, and still more preferably 0.5 mol% or more. 5 mol% or less.
 添加元素を含有する酸化スズの添加元素含有割合は、例えば次の方法で測定することができる。電極触媒を適当な方法で溶解して溶液となし、誘導結合プラズマ(ICP)発光分析によりこの溶液を分析し、スズの濃度及び添加元素の濃度を測定することにより算出する。ICP発光分析に代えて、蛍光X線(XRF)分析を用いることもできる。また、イオンスパッタを併用したX線光電子分光法(XPS)にて、担体のシェル部を削りコア部の元素組成を測定することにより算出することもできる。特に添加元素がFである場合、Fの含有量は燃焼-イオンクロマトグラフィー(例えば、三菱化学アナリテック社製自動試料燃焼装置(AQF-2100H))を用いて測定できる。 The additive element content ratio of tin oxide containing additive elements can be measured, for example, by the following method. The electrode catalyst is dissolved by an appropriate method to form a solution, and this solution is analyzed by inductively coupled plasma (ICP) emission analysis, and the concentration of tin and the concentration of added elements are measured. Instead of ICP emission analysis, fluorescent X-ray (XRF) analysis can also be used. It can also be calculated by measuring the elemental composition of the core part by scraping the shell part of the carrier by X-ray photoelectron spectroscopy (XPS) combined with ion sputtering. In particular, when the additive element is F, the content of F can be measured using combustion-ion chromatography (for example, an automatic sample combustion apparatus (AQF-2100H) manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
 添加元素としては、上述したとおり、Ta、Nb、Sb、In、W、F及びVからなる群より選ばれる一種以上の元素が用いられることが好ましい。これらの元素のうち、性能と価格とのバランスの観点からTa、Nb、Sb、W及びFからなる群より選ばれる一種以上の元素を用いることが好ましく、Ta、Sb、W及びFからなる群より選ばれる一種以上の元素を用いることが一層好ましい。 As described above, it is preferable to use one or more elements selected from the group consisting of Ta, Nb, Sb, In, W, F, and V as the additive element. Among these elements, it is preferable to use one or more elements selected from the group consisting of Ta, Nb, Sb, W and F from the viewpoint of balance between performance and price, and a group consisting of Ta, Sb, W and F It is more preferable to use one or more elements selected from more.
 酸化スズを含んで構成されるコア部の表面に位置するシェル部は、特定の元素の酸化物を含んで構成されている。以下、この特定の元素のことを「シェル元素」とも言う。本発明ではシェル元素として、Ti、Ta、Nb及びZrからなる群より選択される少なくとも一種の金属元素であって、且つ上述した添加元素と異なる金属元素を採用している。これらのシェル元素の酸化物を含むシェル部をコア部の表面に配置することで、本発明の電極触媒を還元性環境下で用いた場合であっても、スズと白金族の元素との合金化を効果的に抑制できることが本発明者の検討の結果判明した。そのことに起因して、還元性環境下での電極触媒における触媒活性が長期間にわたり維持される。この利点を一層顕著なものとするために、シェル部を構成する酸化物は、燃料電池の運転環境下又は電気分解工程における酸性電解液中での使用環境下で不溶性のものであることが好適である。「不溶性」とは、酸化物中から金属が一切溶出しないこと、及び溶出したとしてもその量が極微量であることを言う。溶出量が極微量であるとは、燃料電池の運転前のシェル元素の質量に対して、24時間運転後のシェル元素の溶出質量が1質量%以下であることを言う。特にシェル部は、シェル元素を構成する酸化物として酸化ジルコニウムを含むことが、還元性環境下での触媒活性の低下を一層効果的に防止できる点から好ましい。 The shell part located on the surface of the core part including tin oxide is configured to include an oxide of a specific element. Hereinafter, this specific element is also referred to as “shell element”. In the present invention, as the shell element, a metal element that is at least one metal element selected from the group consisting of Ti, Ta, Nb, and Zr and that is different from the additive element described above is employed. Even when the electrode catalyst of the present invention is used in a reducing environment, an alloy of tin and a platinum group element is formed by disposing a shell portion containing an oxide of these shell elements on the surface of the core portion. As a result of the study of the present inventor, it has been found that the conversion can be effectively suppressed. As a result, the catalytic activity of the electrode catalyst in a reducing environment is maintained over a long period of time. In order to make this advantage even more remarkable, it is preferable that the oxide constituting the shell portion is insoluble under the operating environment of the fuel cell or in the environment of use in the acidic electrolyte in the electrolysis process. It is. “Insoluble” means that no metal is eluted from the oxide, and that even if it is eluted, the amount is extremely small. The elution amount is extremely small means that the elution mass of the shell element after operation for 24 hours is 1% by mass or less with respect to the mass of the shell element before operation of the fuel cell. In particular, it is preferable that the shell portion contains zirconium oxide as an oxide constituting the shell element from the viewpoint of more effectively preventing a decrease in catalyst activity under a reducing environment.
 上述のとおり、シェル元素は、コア部に含まれる添加元素と異なる金属元素である。この場合、シェル元素及び/又はコア部に含まれる添加元素が2種以上存在する場合、両者は完全に相違していることが必要である。例えば後述する比較例3のように、コア部がタンタル及びアンチモンを含み、且つシェル部がタンタルを含む場合には、シェル元素と添加元素とが異なっているとは言わない。シェル元素と、コア部に含まれる添加元素とが異なることで、還元性環境下で電極触媒を用いた場合においてコア部に含まれるスズ元素のシェル部への拡散を抑制するという有利な効果が奏される。 As described above, the shell element is a metal element different from the additive element contained in the core portion. In this case, when two or more kinds of additive elements contained in the shell element and / or the core portion are present, it is necessary that they are completely different. For example, as in Comparative Example 3 described later, when the core portion contains tantalum and antimony and the shell portion contains tantalum, it is not said that the shell element and the additive element are different. The difference between the shell element and the additive element contained in the core part has the advantageous effect of suppressing the diffusion of tin element contained in the core part into the shell part when an electrode catalyst is used in a reducing environment. Played.
 担体に含まれるスズ元素に対する前記酸化物を構成するシェル元素の含有割合は、モル比で表して好ましくは1mol%以上60mol%以下である。すなわち、シェル元素のモル数の総和をM(mol)とすると、M(mol)/Sn(mol)×100が好ましくは1mol%以上60mol%以下である。以下、この値を「シェル元素の含有割合」とも言う。シェル元素の含有割合をこの範囲内に設定することで、担体としての導電性を損なうことなく、スズと白金族の元素との合金化を効果的に抑制することができる。この効果を更に一層顕著なものとする観点から、シェル元素の含有割合は更に好ましくは2mol%以上50mol%以下、一層好ましくは5mol%以上45mol%以下である。 The content ratio of the shell element constituting the oxide to the tin element contained in the support is preferably 1 mol% or more and 60 mol% or less in terms of molar ratio. That is, when the total number of moles of shell elements is M (mol), M (mol) / Sn (mol) × 100 is preferably 1 mol% or more and 60 mol% or less. Hereinafter, this value is also referred to as “shell element content ratio”. By setting the content ratio of the shell element within this range, alloying of tin and a platinum group element can be effectively suppressed without impairing the conductivity as a carrier. From the viewpoint of making this effect even more remarkable, the content ratio of the shell element is more preferably 2 mol% or more and 50 mol% or less, and further preferably 5 mol% or more and 45 mol% or less.
 シェル元素の含有割合は、X線光電子分光法(XPS)によって測定される。具体的には、XPSによってスズ元素及びシェル元素の半定量値を算出し、その比率からシェル元素の含有割合を算出する。XPSは好ましくは以下の(A1)~(A5)の条件で測定される。
 (A1)X線源:AlのKα(hν=1486.6eV)。
 (A2)試料と検出器の角度:θ=45°。
 (A3)検出器の校正:Cu2pとAu4fを用いて実施。
 (A4)分析領域:直径0.1mmの円。
 (A5)分析時のチャンバ圧力:10-7~10-6Paのオーダー。
The content ratio of the shell element is measured by X-ray photoelectron spectroscopy (XPS). Specifically, semi-quantitative values of tin element and shell element are calculated by XPS, and the content ratio of shell element is calculated from the ratio. XPS is preferably measured under the following conditions (A1) to (A5).
(A1) X-ray source: Kα of Al (hν = 1486.6 eV).
(A2) Angle between sample and detector: θ = 45 °.
(A3) Detector calibration: implemented using Cu2p and Au4f.
(A4) Analysis region: a circle with a diameter of 0.1 mm.
(A5) Chamber pressure during analysis: on the order of 10 −7 to 10 −6 Pa.
 シェル部は、上述したシェル元素の酸化物を含むことに加えてフッ素を更に含むことが好ましい。これによってシェル部の導電性が向上し、担体全体としての導電性が向上する。シェル部にフッ素が含まれているか否かは、透過型電子顕微鏡付属のエネルギー分散型X線分光法(TEM-EDX)又は電子エネルギー損失分光法(TEM-EELS)のライン分析により確認することができる。シェル部の導電性の向上を一層顕著なものとする観点から、シェル部におけるフッ素の含有割合は、前記酸化物を構成するシェル元素と該シェル部におけるフッ素との合計モル数に対して、0.1mol%以上20mol%以下であることが好ましく、0.5mol%以上15mol%以下であることが更に好ましく、1mol%以上10mol%以下であることが一層好ましい。 The shell part preferably further contains fluorine in addition to the above-described oxide of the shell element. As a result, the conductivity of the shell portion is improved, and the conductivity of the entire carrier is improved. Whether or not the shell contains fluorine can be confirmed by line analysis of energy dispersive X-ray spectroscopy (TEM-EDX) or electron energy loss spectroscopy (TEM-EELS) attached to the transmission electron microscope. it can. From the viewpoint of further improving the conductivity of the shell part, the fluorine content in the shell part is 0 with respect to the total number of moles of the shell element constituting the oxide and fluorine in the shell part. It is preferably 1 mol% or more and 20 mol% or less, more preferably 0.5 mol% or more and 15 mol% or less, and further preferably 1 mol% or more and 10 mol% or less.
 シェル部に含まれるフッ素の含有量は燃焼-イオンクロマトグラフィー(例えば、三菱化学アナリテック社製自動試料燃焼装置(AQF-2100H))を用いて燃焼-イオンクロマトグラフによって測定できる。そして、これとは別にICP分析で算出したシェル元素とのモル量から、F(mol)/(シェル元素((mol))+F(mol))×100の計算式に従いフッ素の含有割合を算出する。シェル部及びコア部の双方にフッ素が含まれている場合、シェル部に含まれるフッ素の含有量の測定は、透過型電子顕微鏡付属のエネルギー分散型X線分光法(TEM-EDX)又は電子エネルギー損失分光法(TEM-EELS)のスポット分析によるシェル部のフッ素及びシェル元素の半定量値から算出することができる。 The fluorine content contained in the shell portion can be measured by combustion-ion chromatography using combustion-ion chromatography (for example, an automatic sample combustion apparatus (AQF-2100H) manufactured by Mitsubishi Chemical Analytech Co., Ltd.). Separately from this, the content ratio of fluorine is calculated from the molar amount with the shell element calculated by ICP analysis according to the formula of F (mol) / (shell element ((mol)) + F (mol)) × 100. . When fluorine is contained in both the shell part and the core part, the content of fluorine contained in the shell part is measured by energy dispersive X-ray spectroscopy (TEM-EDX) attached to a transmission electron microscope or electron energy. It can be calculated from the semi-quantitative values of fluorine and shell elements in the shell by spot analysis of loss spectroscopy (TEM-EELS).
 コア部の表面に特定の酸化物を含んで構成されるシェル部を配置することで、スズと白金族の元素との合金化が抑制される理由は現在のところ明確ではないが、本発明者の検討によれば、該酸化物は結晶質の状態よりも非晶質の状態である方が、スズと白金族の元素との合金化抑制効果が高いことが判明した。シェル部を構成する酸化物が、結晶質であるか、それとも非晶質であるかは、電極触媒をX線回折測定して得られる回折パターンにてシェル部を構成する酸化物の回折ピークが確認されるか否かによって判断することができる。また、非晶質の酸化物を含むシェル部は、例えば後述する液相析出法によって好適に製造することができる。 The reason why alloying of tin and platinum group elements is suppressed by disposing a shell part including a specific oxide on the surface of the core part is not clear at present, but the present inventor According to the above investigation, it was found that the effect of suppressing alloying between tin and a platinum group element is higher when the oxide is in an amorphous state than in a crystalline state. Whether the oxide constituting the shell part is crystalline or amorphous is determined by the diffraction peak of the oxide constituting the shell part in the diffraction pattern obtained by X-ray diffraction measurement of the electrode catalyst. Judgment can be made based on whether or not it is confirmed. Moreover, the shell part containing an amorphous oxide can be suitably manufactured, for example by the liquid phase precipitation method mentioned later.
 シェル部は、所定の厚みを有して、担体のコア部と白金族の元素を含む触媒とを隔てていることが好ましく、シェル部の厚みは1nm以上50nm以下であることが好ましい。シェル部の厚みをこの範囲内に設定することで、担体としての導電性を損なうことなく、スズと白金族の元素との合金化を効果的に抑制することができる。この効果を更に一層顕著なものとする観点から、シェル部の厚みは更に好ましくは1nm以上20nm以下である。シェル部の厚みは、透過型電子顕微鏡(TEM)観察によって測定することができる。また、イオンスパッタを併用したX線光電子分光分析によって測定することもできる。例えば、シェル元素の信号強度が最表面の信号強度の50%の値になるまで分析を行い、そのときのイオンスパッタによるエッチング厚みをシェル部厚みと規定することができる。 The shell part preferably has a predetermined thickness and separates the core part of the support from the catalyst containing the platinum group element, and the thickness of the shell part is preferably 1 nm or more and 50 nm or less. By setting the thickness of the shell portion within this range, alloying of tin and a platinum group element can be effectively suppressed without impairing the conductivity as a carrier. From the viewpoint of making this effect even more remarkable, the thickness of the shell portion is more preferably 1 nm or more and 20 nm or less. The thickness of the shell part can be measured by observation with a transmission electron microscope (TEM). It can also be measured by X-ray photoelectron spectroscopic analysis combined with ion sputtering. For example, the analysis is performed until the signal intensity of the shell element reaches 50% of the signal intensity of the outermost surface, and the etching thickness by ion sputtering at that time can be defined as the shell thickness.
 担体の表面には、白金族の元素を含む触媒が担持されている。白金族の元素とは、周期表において第5周期及び第6周期の第8、9及び10族に属する元素の総称である。具体的には、白金、ルテニウム、ロジウム、パラジウム、オスミウム及びイリジウムが挙げられる。白金族の元素を含む触媒としては、白金と他の元素との合金などが挙げられる。白金と他の元素との合金としては、白金と白金以外の白金族の元素(ルテニウム、ロジウム、イリジウムなど)との合金や、白金と卑金属(バナジウム、クロム、コバルト、ニッケル、鉄、チタン、モリブデン、マンガンなど)との合金等が挙げられる。これらの触媒は、担体の表面における平均粒径が1nm以上10nm以下であることが、触媒能の効率的な発現の点から好ましい。 A catalyst containing a platinum group element is supported on the surface of the support. The platinum group element is a general term for elements belonging to Groups 8, 9, and 10 of the fifth period and the sixth period in the periodic table. Specific examples include platinum, ruthenium, rhodium, palladium, osmium, and iridium. Examples of the catalyst containing a platinum group element include an alloy of platinum and another element. Alloys of platinum and other elements include platinum and platinum group elements other than platinum (ruthenium, rhodium, iridium, etc.), platinum and base metals (vanadium, chromium, cobalt, nickel, iron, titanium, molybdenum) And alloys with manganese). These catalysts preferably have an average particle size of 1 nm or more and 10 nm or less on the surface of the support from the viewpoint of efficient expression of catalytic ability.
 触媒に含まれる白金族の元素に着目したとき、白金族の元素の担持量は、電極触媒の全質量、つまり担体の質量と、白金族の元素を含む触媒の質量との総和に対して1質量%以上30質量%以下とすることが好ましく、1質量%以上20質量%以下とすることが更に好ましい。この範囲の担持量に設定することで、電極反応を十分に円滑に行うことが可能になる。白金族の元素の担持量は、電極触媒を適当な方法で溶解して溶液となし、ICP発光分析によりこの溶液を分析することで求めることができる。 When attention is paid to the platinum group element contained in the catalyst, the supported amount of the platinum group element is 1 with respect to the total mass of the electrode catalyst, that is, the total mass of the support and the mass of the catalyst containing the platinum group element. It is preferable to set it as mass% or more and 30 mass% or less, and it is still more preferable to set it as 1 mass% or more and 20 mass% or less. By setting the loading amount within this range, the electrode reaction can be performed sufficiently smoothly. The supported amount of the platinum group element can be determined by dissolving the electrode catalyst by an appropriate method to form a solution and analyzing the solution by ICP emission analysis.
 白金族の元素を含む触媒は、その担持量に応じて担体の表面全域を満遍なく被覆していてもよいが、適切な距離を保ち担体の表面が露出するように不連続に被覆している方がよい。 The catalyst containing the platinum group element may cover the entire surface of the support evenly according to the amount of the catalyst supported, but the catalyst is discontinuously coated so that the surface of the support is exposed at an appropriate distance. Is good.
 次に、本発明の電極触媒の好適な製造方法について説明する。本製造方法は、(i)コア部の製造工程、(ii)シェル部の形成工程、及び(iii)白金族の元素を含む触媒の担持工程に大別される。以下、それぞれの工程について説明する。 Next, a preferred method for producing the electrode catalyst of the present invention will be described. This production method is roughly divided into (i) a production process of the core part, (ii) a formation process of the shell part, and (iii) a support process of a catalyst containing a platinum group element. Hereinafter, each process will be described.
 まず(i)のコア部の製造工程について説明する。コア部は、例えば湿式合成法や、プラズマ合成法によって好適に製造することができる。湿式合成法においては、スズ源及び必要に応じて添加元素源を含む溶液から、スズの沈殿物を生成させ、次いで該沈殿物を焼成することで、コア部を得ることができる。添加元素源も併用する場合には、スズ及び添加元素を含む共沈物を生成させ、次いで該共沈物を焼成することで、コア部を得ることができる。得られたコア部を、必要に応じてスプレードライ法に付して造粒してもよい。プラズマ合成法においては、スプレードライ法用の粉を合成し、その粉をスプレードライ法によって造粒してもよい。いずれの方法を採用する場合であっても、得られた造粒物を焼成することができる。焼成は、例えば大気雰囲気下にて行うことができる。 First, the manufacturing process of the core part (i) will be described. The core part can be suitably manufactured by, for example, a wet synthesis method or a plasma synthesis method. In the wet synthesis method, a core portion can be obtained by generating a tin precipitate from a solution containing a tin source and, if necessary, an additive element source, and then firing the precipitate. When an additive element source is also used, a core part can be obtained by producing a coprecipitate containing tin and the additive element and then firing the coprecipitate. The obtained core part may be granulated by subjecting it to a spray drying method as necessary. In the plasma synthesis method, powder for spray drying may be synthesized, and the powder may be granulated by spray drying. Regardless of which method is employed, the obtained granulated product can be fired. Firing can be performed, for example, in an air atmosphere.
 次に(ii)のシェル部の形成工程について説明する。シェル部は好適には液相析出法(LPD法)によって形成される。LPD法は水溶液中における金属フルオロ錯体の加水分解平衡反応を利用して、水溶液から母材上に酸化物薄膜を直接合成する方法である。LPD法における反応の概要は以下の化学反応式で表すことができる。 Next, the process of forming the shell part (ii) will be described. The shell portion is preferably formed by a liquid phase precipitation method (LPD method). The LPD method is a method of directly synthesizing an oxide thin film from an aqueous solution onto a base material using a hydrolysis equilibrium reaction of a metal fluoro complex in the aqueous solution. The outline of the reaction in the LPD method can be expressed by the following chemical reaction formula.
<析出平衡反応>
MF (x-2n)- + nHO = MOn + xF- + 2nH (1)
(式中Mは酸化物の元素を表す。)
<析出駆動反応>
BO3 + 4H+ + 4F = HBF4 + 3HO (2)
Al3+ + 6H+ + 6F = HAlF6 (3)
<Precipitation equilibrium reaction>
MF x (x-2n) - + nH 2 O = MOn + xF - + 2nH + (1)
(In the formula, M represents an oxide element.)
<Deposition driven reaction>
H 3 BO 3 + 4H + + 4F = HBF 4 + 3H 2 O (2)
Al 3+ + 6H + + 6F = H 3 AlF 6 (3)
 LPD法においては前記の(1)式で示される水溶液中での金属フルオロ錯体MF (x-2n)-の加水分解平衡反応(配位子交換反応)が主反応である。この反応系に、該金属フルオロ錯体よりも安定なフッ素化合物を形成するための剤(以下、フッ化物イオン捕捉剤ともいう)と、前記コア部、すなわち酸化スズの粒子とを添加する。例えば、前記の反応系に、フッ化物イオン捕捉剤であるホウ酸又はアルミニウムイオンを添加することにより、(2)式又は(3)式の反応に従い、より安定な錯体が形成する。この錯体の形成によって遊離フッ化物イオンを消費させ、(1)式の平衡を金属酸化物析出の方向へシフトさせる。これによって自発的に(1)式の反応が進行し、水溶液中で過飽和になった酸化物が、水溶液中に添加したコア部の表面上で徐々に薄膜を形成する。 In the LPD method, the hydrolysis equilibrium reaction (ligand exchange reaction) of the metal fluoro complex MF x (x-2n) — in the aqueous solution represented by the above formula (1) is the main reaction. To this reaction system, an agent for forming a fluorine compound that is more stable than the metal fluoro complex (hereinafter also referred to as a fluoride ion scavenger) and the core, that is, tin oxide particles, are added. For example, by adding boric acid or aluminum ions, which are fluoride ion scavengers, to the reaction system, a more stable complex is formed according to the reaction of the formula (2) or (3). The formation of this complex consumes free fluoride ions and shifts the equilibrium of equation (1) toward the direction of metal oxide precipitation. As a result, the reaction of formula (1) proceeds spontaneously, and the oxide supersaturated in the aqueous solution gradually forms a thin film on the surface of the core portion added to the aqueous solution.
 シェル部がTiの酸化物を含む場合には、Ti源としてチタン酸フッ化二アンモニウム((NHTiF)を用い、この水溶液にフッ化物イオン捕捉剤であるホウ酸(HBO)を添加し、そこにコア部を更に添加すればよい。
 また、シェル部がTaの酸化物を含む場合には、Ta源として五酸化タンタル(Ta)を用い、この水溶液にフッ化物イオン捕捉剤であるホウ酸(HBO)を添加し、そこにコア部を更に添加すればよい。
 更に、シェル部がNbの酸化物を含む場合には、Nb源として五酸化ニオブ(Nb)を用い、この水溶液にフッ化物イオン捕捉剤であるホウ酸(HBO)を添加し、そこにコア部を更に添加すればよい。
When the shell portion contains an oxide of Ti, diammonium titanate ((NH 4 ) 2 TiF 6 ) is used as a Ti source, and boric acid (H 3 BO as a fluoride ion scavenger) is used in this aqueous solution. 3 ) is added, and the core portion may be further added thereto.
Further, when the shell portion contains Ta oxide, tantalum pentoxide (Ta 2 O 5 ) is used as a Ta source, and boric acid (H 3 BO 3 ) as a fluoride ion scavenger is added to this aqueous solution. Then, the core portion may be further added thereto.
Further, when the shell portion contains an oxide of Nb, niobium pentoxide (Nb 2 O 5 ) is used as the Nb source, and boric acid (H 3 BO 3 ) as a fluoride ion scavenger is added to this aqueous solution. Then, the core portion may be further added thereto.
 シェル部がZrの酸化物を含む場合についても、Zr源としてフッ化ジルコン酸(HZrF)を用い、この水溶液にフッ化物イオン捕捉剤であるアルミニウムイオン(Al3+)を添加し、そこにコア部を更に添加すればよい。 Even in the case where the shell portion contains an oxide of Zr, fluorinated zirconic acid (H 2 ZrF 6 ) is used as a Zr source, and aluminum ions (Al 3+ ) as a fluoride ion scavenger are added to this aqueous solution. What is necessary is just to add a core part to this.
 以上のようにしてコア部及びシェル部を備えた担体が得られたら、(iii)の触媒担持工程を行う。触媒を担体の表面に担持させる方法に特に制限はなく、当該技術分野においてこれまで知られている方法と同様の方法を採用することができる。例えば、白金族の元素源として塩化白金酸六水和物(H2PtCl6・6H2O)やジニトロジアンミン白金(Pt(NH32(NO22)等を用い、これらを液相化学還元法、気相化学還元法、含浸-還元熱分解法、コロイド法、表面修飾コロイド熱分解還元法等の公知の手法を用いて還元することで、担体に白金族の元素を担持させることができる。コロイド法においては、白金族の元素を含有するコロイドを含む液に担体を分散し、該コロイドを該担体に担持する。詳細には、白金族の元素を含有する、コロイドの前駆体を含む液に、還元剤を添加して該前駆体を還元し、白金族の元素を含有するコロイドを生成させる。そして、生成した白金族の元素を含有するコロイドを含む液に担体を分散し、該コロイドを該担体に、白金族の元素を含有する微粒子として担持させる。エタノール法の詳細は、例えば特開平9-47659号に記載されている。コロイド法の詳細は、例えばWO2009/060582や特開2006-79904号に記載されている。 When the carrier having the core portion and the shell portion is obtained as described above, the catalyst supporting step (iii) is performed. There is no particular limitation on the method for supporting the catalyst on the surface of the carrier, and methods similar to those known so far in the art can be employed. For example, chloroplatinic acid hexahydrate (H 2 PtCl 6 .6H 2 O), dinitrodiammine platinum (Pt (NH 3 ) 2 (NO 2 ) 2 ), etc. are used as the platinum group element source, and these are used in the liquid phase. A platinum group element is supported on a carrier by reduction using a known method such as a chemical reduction method, a gas phase chemical reduction method, an impregnation-reduction pyrolysis method, a colloid method, or a surface-modified colloid pyrolysis reduction method. Can do. In the colloid method, a carrier is dispersed in a liquid containing a colloid containing a platinum group element, and the colloid is supported on the carrier. Specifically, a reducing agent is added to a liquid containing a platinum group element-containing colloidal precursor to reduce the precursor, thereby generating a colloid containing a platinum group element. Then, the carrier is dispersed in the liquid containing the colloid containing the platinum group element, and the colloid is supported on the carrier as fine particles containing the platinum group element. Details of the ethanol method are described, for example, in JP-A-9-47659. Details of the colloid method are described in, for example, WO2009 / 060582 and JP-A-2006-79904.
 このようにして、担体の表面に白金族の元素を含む微粒子を付着させたら、次に還元処理を行う。この還元処理は、触媒を活性化させる目的で、好ましくは還元性雰囲気下で行われる。還元性雰囲気としては、水素や一酸化炭素などが挙げられる。水素を用いる場合には、これを濃度100%で用いてもよく、あるいは不活性気体、例えば窒素、ヘリウム、アルゴンなどで好ましくは0.1~50体積%、更に好ましくは1~10体積%に希釈して用いてもよい。還元処理の温度は、触媒の活性化を首尾よく行う観点から、10℃以上200℃以下に設定することが好ましく、10℃以上150℃以下に設定することが更に好ましい。 After the fine particles containing the platinum group element are adhered to the surface of the carrier in this way, the reduction treatment is performed next. This reduction treatment is preferably performed in a reducing atmosphere for the purpose of activating the catalyst. Examples of the reducing atmosphere include hydrogen and carbon monoxide. When hydrogen is used, it may be used at a concentration of 100%, or preferably 0.1 to 50% by volume, more preferably 1 to 10% by volume with an inert gas such as nitrogen, helium or argon. You may dilute and use. The temperature of the reduction treatment is preferably set to 10 ° C. or higher and 200 ° C. or lower, more preferably 10 ° C. or higher and 150 ° C. or lower, from the viewpoint of successfully activating the catalyst.
 以上のようにして、目的とする電極触媒が得られる。この電極触媒は、好適には、燃料電池における固体高分子電解質膜の一方の面に配置された酸素極(カソード)及び他方の面に配置された燃料極(アノード)を有する膜電極接合体における少なくとも燃料極(アノード)に含有させて用いることができる。必要に応じ、本発明の電極触媒を酸素極(カソード)に用いてもよい。また、本発明の電極触媒は、燃料電池以外の用途にも適用可能である。例えば各種の水系の電気分解工程におけるカソードの触媒として好適に用いることができる。 Thus, the target electrode catalyst is obtained. This electrode catalyst is preferably used in a membrane electrode assembly having an oxygen electrode (cathode) disposed on one surface of a solid polymer electrolyte membrane and a fuel electrode (anode) disposed on the other surface of the fuel cell. It can be used by containing at least the fuel electrode (anode). If necessary, the electrode catalyst of the present invention may be used for an oxygen electrode (cathode). In addition, the electrode catalyst of the present invention can be applied to uses other than fuel cells. For example, it can be suitably used as a cathode catalyst in various aqueous electrolysis processes.
 電極反応を円滑に進行させるために、電極触媒は固体高分子電解質膜に接していることが好ましい。具体的には、固体高分子電解質膜の少なくとも一方の面に、本発明の電極触媒を含む触媒層を直接形成することが好ましい。これによって、CCM(Catalyst Coated Membrane)が得られる。この触媒層は、燃料極(アノード)の触媒層であることが好ましい。一方、本発明の電極触媒を水系の電気分解工程の電極触媒として用いる場合には、この触媒層はカソード触媒層であることが好ましい。なお、触媒層を燃料電池のアノード触媒層として用いる場合には、該触媒層には、本発明の電極触媒に加えてアイオノマが含まれていることが好ましい。アイオノマとしては、例えば固体高分子電解質膜と同種の化合物を用いることが好ましい。具体的には、固体高分子電解質膜が含フッ素高分子化合物である場合には、触媒層に含有されるアイオノマとして該含フッ素高分子化合物と同種の化合物を用いることができる。 In order to make the electrode reaction proceed smoothly, the electrode catalyst is preferably in contact with the solid polymer electrolyte membrane. Specifically, it is preferable to directly form a catalyst layer containing the electrode catalyst of the present invention on at least one surface of the solid polymer electrolyte membrane. Thereby, CCM (CatalystataCoated Membrane) is obtained. This catalyst layer is preferably a catalyst layer of the fuel electrode (anode). On the other hand, when the electrode catalyst of the present invention is used as an electrode catalyst in an aqueous electrolysis process, the catalyst layer is preferably a cathode catalyst layer. When the catalyst layer is used as an anode catalyst layer of a fuel cell, the catalyst layer preferably contains an ionomer in addition to the electrode catalyst of the present invention. As the ionomer, for example, it is preferable to use the same type of compound as the solid polymer electrolyte membrane. Specifically, when the solid polymer electrolyte membrane is a fluorine-containing polymer compound, the same kind of compound as the fluorine-containing polymer compound can be used as the ionomer contained in the catalyst layer.
 CCMの各面にはガス拡散層が配置され、それによってMEA(膜電極接合体)が得られる。ガス拡散層は、集電機能を有する支持集電体として機能するものである。更に、電極触媒にガスを十分に供給する機能を有するものである。ガス拡散層としては、この種の技術分野において従来用いられてきたものと同様のものを用いることができる。例えば多孔質材料であるカーボンペーパー、カーボンクロスを用いることができる。具体的には、例えば表面をポリ四フッ化エチレンでコーティングした炭素繊維と、当該コーティングがなされていない炭素繊維とを所定の割合とした糸で織成したカーボンクロスにより形成することができる。 A gas diffusion layer is disposed on each surface of the CCM, whereby an MEA (membrane electrode assembly) is obtained. The gas diffusion layer functions as a supporting current collector having a current collecting function. Furthermore, it has a function of sufficiently supplying gas to the electrode catalyst. As the gas diffusion layer, those similar to those conventionally used in this kind of technical field can be used. For example, carbon paper and carbon cloth which are porous materials can be used. Specifically, it can be formed by, for example, a carbon cloth woven with yarns having a predetermined ratio of carbon fibers whose surfaces are coated with polytetrafluoroethylene and carbon fibers that are not coated.
 固体高分子電解質としては、この種の技術分野において従来用いられてきたものと同様のものを用いることができる。例えばパーフルオロスルホン酸ポリマー系のプロトン伝導体膜、リン酸などの無機酸を炭化水素系高分子化合物にドープさせたもの、一部がプロトン伝導体の官能基で置換された有機/無機ハイブリッドポリマー、高分子マトリックスにリン酸溶液や硫酸溶液を含浸させたプロトン伝導体などが挙げられる。 As the solid polymer electrolyte, those similar to those conventionally used in this kind of technical field can be used. For example, a perfluorosulfonic acid polymer-based proton conductor film, a hydrocarbon polymer compound doped with an inorganic acid such as phosphoric acid, or an organic / inorganic hybrid polymer partially substituted with a proton conductor functional group And proton conductors in which a polymer matrix is impregnated with a phosphoric acid solution or a sulfuric acid solution.
 前記膜電極接合体は、その各面にセパレータが配されて固体高分子形燃料電池となされる。セパレータとしては、例えばガス拡散層との対向面に、一方向に延びる複数個の凸部(リブ)が所定間隔をおいて形成されているものを用いることができる。隣り合う凸部間は、断面が矩形の溝部となっている。この溝部は、燃料ガス及び空気等の酸化剤ガスの供給排出用流路として用いられる。燃料ガス及び酸化剤ガスは、燃料ガス供給手段及び酸化剤ガス供給手段からそれぞれ供給される。膜電極接合体の各面に配されるそれぞれのセパレータは、それに形成されている溝部が互いに直交するように配置されることが好ましい。以上の構成が燃料電池の最小単位を構成しており、この構成を数十個~数百個並設してなるセルスタックから燃料電池を構成することができる。 The membrane electrode assembly is made into a polymer electrolyte fuel cell by providing a separator on each surface. As the separator, for example, a separator in which a plurality of protrusions (ribs) extending in one direction are formed at a predetermined interval on the surface facing the gas diffusion layer can be used. Between adjacent convex parts, it is a groove part with a rectangular cross section. The groove is used as a supply / discharge flow path for an oxidant gas such as fuel gas and air. The fuel gas and the oxidant gas are supplied from the fuel gas supply unit and the oxidant gas supply unit, respectively. Each separator disposed on each surface of the membrane electrode assembly is preferably disposed so that the grooves formed therein are orthogonal to each other. The above configuration constitutes the minimum unit of the fuel cell, and a fuel cell can be configured from a cell stack formed by arranging several tens to several hundreds of this configuration in parallel.
 以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば前記実施形態においては、本発明の電極触媒を、固体高分子電解質形燃料電池の電極触媒や、電気分解工程の電極触媒として用いた例を中心に説明したが、本発明の電極触媒を、固体高分子電解質形燃料電池以外の燃料電池、例えばアルカリ形燃料電池、リン酸形燃料電池、直接メタノール形燃料電池などの各種燃料電池における電極触媒として用いることができる。 As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment. For example, in the above-described embodiment, the electrode catalyst of the present invention has been mainly described as an example of using an electrode catalyst of a solid polymer electrolyte fuel cell or an electrode catalyst of an electrolysis process. It can be used as an electrode catalyst in various fuel cells such as fuel cells other than solid polymer electrolyte fuel cells, such as alkaline fuel cells, phosphoric acid fuel cells, and direct methanol fuel cells.
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” means “mass%”.
  〔実施例1〕
(1)アノード触媒層の形成
(イ)コア部の製造工程
~タンタル含有酸化スズ粒子の製造工程~
 148gのNaSnOを1630gの純水に溶解させて、スズ含有水溶液を調製した。この操作とは別に、5.1gのTaClを140mLのエタノールに溶解したタンタル含有溶液を調製し、このタンタル含有溶液を硝酸水溶液(116gの硝酸を1394gの純水に溶解)と混合した。混合後の液に、前記のスズ含有水溶液を添加し混合撹拌した。撹拌を1時間継続した後に撹拌を停止し、12時間静置した。これによって、タンタルを含有するスズ酸化物の前駆体が生成・沈殿した。液を濾過し、固形物を水洗した後、60℃で乾燥させた。乾燥後の前駆体を、大気雰囲気下にて450℃で5時間焼成して、タンタル含有酸化スズ粒子を得た。Ta(mol)/(Sn(mol)+Ta(mol))×100で表されるタンタルの割合は2.6mol%であった。
[Example 1]
(1) Formation of anode catalyst layer (a) Manufacturing process of core part-Manufacturing process of tantalum-containing tin oxide particles-
148 g of Na 2 SnO 3 was dissolved in 1630 g of pure water to prepare a tin-containing aqueous solution. Separately from this operation, a tantalum-containing solution in which 5.1 g of TaCl 5 was dissolved in 140 mL of ethanol was prepared, and this tantalum-containing solution was mixed with an aqueous nitric acid solution (116 g of nitric acid dissolved in 1394 g of pure water). The tin-containing aqueous solution was added to the liquid after mixing and mixed and stirred. Stirring was continued for 1 hour, then stirring was stopped, and the mixture was allowed to stand for 12 hours. As a result, a tin oxide precursor containing tantalum was produced and precipitated. The liquid was filtered and the solid was washed with water and then dried at 60 ° C. The precursor after drying was fired at 450 ° C. for 5 hours in an air atmosphere to obtain tantalum-containing tin oxide particles. The ratio of tantalum represented by Ta (mol) / (Sn (mol) + Ta (mol)) × 100 was 2.6 mol%.
~タンタル含有酸化スズ粒子の造粒物の製造工程~
 タンタル含有酸化スズ粒子を、メノウ乳鉢で粗砕して平均粒径を100μm以下になるようにし、次いでイットリウム安定化ジルコニア製のボールを使用してボールミルで粉砕した。ボールミルによる粉砕においては、タンタル含有酸化スズ粒子40gを、純水700mL及びエタノール40gと混合してスラリーとなし、このスラリーを粉砕に用いた。粉砕後、スラリーとボールとを分離し、分離されたスラリーを用いて噴霧乾燥法による造粒を行い造粒物を得た。造粒条件は、入口温度:220℃、出口温度60℃、噴霧圧力:0.15-0.2MPa、送液速度:8.3mL/分、スラリー濃度:10g/250mLとした。
-Manufacturing process of granulated product of tantalum-containing tin oxide particles-
The tantalum-containing tin oxide particles were coarsely crushed with an agate mortar to an average particle size of 100 μm or less, and then pulverized with a ball mill using yttrium-stabilized zirconia balls. In pulverization with a ball mill, 40 g of tantalum-containing tin oxide particles were mixed with 700 mL of pure water and 40 g of ethanol to form a slurry, and this slurry was used for pulverization. After pulverization, the slurry and the ball were separated and granulated by a spray drying method using the separated slurry to obtain a granulated product. The granulation conditions were as follows: inlet temperature: 220 ° C., outlet temperature 60 ° C., spray pressure: 0.15-0.2 MPa, liquid feed rate: 8.3 mL / min, slurry concentration: 10 g / 250 mL.
~造粒物の焼成工程~
 得られた造粒物を大気雰囲気下にて、680℃、5時間の条件で焼成を行った。得られたタンタル含有スズ酸化物造粒物は、平均粒径が2.68μmの略球状であった。このようにして担体におけるコア部を得た。
~ Firing process of granulated product ~
The obtained granulated material was fired under conditions of 680 ° C. and 5 hours in an air atmosphere. The obtained tantalum-containing tin oxide granulated product was substantially spherical with an average particle size of 2.68 μm. In this way, a core part in the carrier was obtained.
(ロ)シェル部の形成工程
 0.5mol/Lのチタン酸フッ化二アンモニウム(NHTiF溶液50mLに0.5mol/Lのホウ酸100mLと純水100mLを混合し反応溶液を得た。この溶液中にコア部を5g添加し、4時間反応を行った。その後、濾過洗浄を行い、120℃の乾燥機中で一晩乾燥させた。これによって、Ti酸化物を含むシェル部と、タンタル含有スズ酸化物からなるコア部とを備えた担体を得た。
(B) Shell part formation step 50 mol of 0.5 mol / L diammonium fluoride (NH 4 ) 2 TiF 6 solution is mixed with 100 mL of 0.5 mol / L boric acid and 100 mL of pure water to obtain a reaction solution. It was. 5 g of the core part was added to this solution and reacted for 4 hours. Then, filtration washing was performed and it was made to dry overnight in a 120 degreeC dryer. Thus, a support provided with a shell portion containing Ti oxide and a core portion made of tantalum-containing tin oxide was obtained.
(ハ)触媒担持工程
 工程(ロ)で得られた担体に白金を担持させた。担持は、特開2006-79904号公報の実施例に記載の方法にしたがった。具体的には次のとおりである。まず塩化白金酸を用いて、白金1gを含有する白金溶液を調製した。これに還元剤として亜硫酸水素ナトリウムを加え、純水で希釈後5%水酸化ナトリウム水溶液を加えてpHを5にした。更に、過剰に存在する亜硫酸イオンを酸化除去するため過酸化水素水を滴下した。液性は5%水酸化ナトリウム水溶液を用いてpH5を維持した。これにより得たコロイド溶液に担体を分散し白金コロイドを吸着させた後、濾過・洗浄・乾燥し白金担持担体を得た。その後、4体積%H/Nの弱還元雰囲気下で2時間にわたり80℃で熱処理を行い、電極触媒を得た。白金の担持量は分析の結果7.5%であった。なお担持量は質量基準で〔白金/(白金+担体)〕×100と定義する。また、XRD測定の結果から、Ti酸化物は非晶質のものであることが確認された。
(C) Catalyst loading step Platinum was loaded on the carrier obtained in the step (b). The loading was performed according to the method described in Examples of Japanese Patent Application Laid-Open No. 2006-79904. Specifically, it is as follows. First, a platinum solution containing 1 g of platinum was prepared using chloroplatinic acid. Sodium bisulfite was added thereto as a reducing agent, diluted with pure water, and a 5% aqueous sodium hydroxide solution was added to adjust the pH to 5. Further, hydrogen peroxide solution was added dropwise to oxidize and remove excess sulfite ions. The liquidity was maintained at pH 5 using a 5% aqueous sodium hydroxide solution. The carrier was dispersed in the colloidal solution thus obtained to adsorb the platinum colloid, followed by filtration, washing and drying to obtain a platinum-supporting carrier. Thereafter, heat treatment was performed at 80 ° C. for 2 hours in a weak reducing atmosphere of 4% by volume H 2 / N 2 to obtain an electrode catalyst. As a result of analysis, the amount of platinum supported was 7.5%. The supported amount is defined as [platinum / (platinum + carrier)] × 100 on a mass basis. Further, from the result of XRD measurement, it was confirmed that the Ti oxide was amorphous.
(二)アノード触媒層の形成工程
 電極触媒1.24gを容器に入れ、更に純水、エタノール及び2-プロパノールを35:45:20の質量比(混合液として1.61g)で順に加えた。このようにして得られたインクを、超音波で3分間にわたり分散した。次いで、直径10mmのイットリウム安定化ジルコニア製ボールを容器内に入れ、遊星ボールミル(シンキーARE310)で800rpmで20分間撹拌した。更にインクにアイオノマである5%ナフィオン(登録商標)(274704-100ML、Sigma-Aldrich製)を加え、超音波分散と遊星ボールミルにより前記と同様な撹拌を行った。ナフィオンの添加量は、ナフィオン/担体の質量比が0.074となるような量とした。このようにして得られたインクを、ポリ四フッ化エチレンのシート上にバーコーターを用いて塗工し、塗膜を60℃で乾燥させ、触媒層を形成した。
(2) Anode catalyst layer formation step 1.24 g of the electrode catalyst was placed in a container, and pure water, ethanol and 2-propanol were added in order at a mass ratio of 35:45:20 (1.61 g as a mixed solution). The ink thus obtained was dispersed with ultrasound for 3 minutes. Next, a yttrium-stabilized zirconia ball having a diameter of 10 mm was placed in the container, and stirred for 20 minutes at 800 rpm with a planetary ball mill (Sinky ARE310). Further, 5% Nafion (registered trademark) (274704-100ML, manufactured by Sigma-Aldrich), which is an ionomer, was added to the ink, and the same stirring was performed by ultrasonic dispersion and a planetary ball mill. The amount of Nafion added was such that the mass ratio of Nafion / carrier was 0.074. The ink thus obtained was applied onto a polytetrafluoroethylene sheet using a bar coater, and the coating film was dried at 60 ° C. to form a catalyst layer.
(2)カソード触媒層の形成
 田中貴金属工業社製の白金担持カーボンブラック(TEC10E50E)1.00gを容器に入れ、更に純水、エタノール及び2-プロパノールを45:35:20の質量比(混合液として12.8g)で順に加えた。このようにして得られたインクを、超音波で3分間にわたり分散した。次いで、直径10mmのイットリウム安定化ジルコニア製ボールを容器内に入れ、遊星ボールミル(シンキーARE310)によって800rpmで20分間撹拌した。更にインクにアイオノマである5%ナフィオン(登録商標)(274704-100ML、Sigma-Aldrich製)を加え、超音波分散と遊星ボールミルにより前記と同様な撹拌を引き続き行った。ナフィオンの添加量は、ナフィオン/カーボンブラック担体の質量比が0.70となるような量とした。このようにして得られたインクを、ポリ四フッ化エチレンのシート上にバーコーターを用いて塗工し、塗膜を60℃で乾燥させた。
(2) Formation of cathode catalyst layer 1.00 g of platinum-supported carbon black (TEC10E50E) manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. was put into a container, and pure water, ethanol and 2-propanol were mixed at a mass ratio of 45:35:20 (mixed solution As 12.8 g). The ink thus obtained was dispersed with ultrasound for 3 minutes. Next, a yttrium-stabilized zirconia ball having a diameter of 10 mm was placed in the container, and stirred at 800 rpm for 20 minutes by a planetary ball mill (Sinky ARE310). Further, 5% Nafion (registered trademark) (274704-100ML, manufactured by Sigma-Aldrich), which is an ionomer, was added to the ink, and the same agitation as described above was continued by ultrasonic dispersion and a planetary ball mill. The amount of Nafion added was such that the mass ratio of Nafion / carbon black support was 0.70. The ink thus obtained was applied onto a polytetrafluoroethylene sheet using a bar coater, and the coating film was dried at 60 ° C.
(3)CCM(膜電極接合体)の製造
 得られたカソード触媒層付ポリ四フッ化エチレンのシート及びアノード触媒層付ポリ四フッ化エチレンのシートを54mm四方の正方形状に切り出し、ナフィオン(登録商標)(NRE-212、Du PonT社製)の電解質膜と重ね合わせ、140℃、25kgf/cmの条件下にて2分間大気中で熱プレスし、転写を行った。このようにして、ナフィオンからなる固体高分子電解質膜の各面にカソード及びアノード触媒層を形成した。電極触媒層における白金の量は、カソード触媒層では0.165mg-Pt/cmでアノード触媒層では0.035mg-Pt/cmであった。
(3) Manufacture of CCM (membrane electrode assembly) The obtained sheet of polytetrafluoroethylene with cathode catalyst layer and sheet of polytetrafluoroethylene with anode catalyst layer were cut into a square shape of 54 mm square, and Nafion (registered) (Trademark) (NRE-212, manufactured by Du Pont Co., Ltd.) was superposed on the membrane and heat-pressed in air at 140 ° C. and 25 kgf / cm 2 for 2 minutes for transfer. In this way, the cathode and anode catalyst layers were formed on each surface of the solid polymer electrolyte membrane made of Nafion. The amount of the platinum in the electrode catalyst layer, the cathode catalyst layer in the anode catalyst layer at 0.165mg -Pt / cm 2 was 0.035mg -Pt / cm 2.
(4)燃料電池の組み立て
 前記(3)で得られたCCM及びJARI標準セルを用いて燃料電池を組み立てた。ガス拡散層としてSIGRACET(登録商標)29BC(SGL社製)を用いた。また、ガスケットとして、Si/PEN/Si(180μm)を用いた。
(4) Assembly of fuel cell A fuel cell was assembled using the CCM and JARI standard cell obtained in (3) above. SIGRACE (registered trademark) 29BC (manufactured by SGL) was used as the gas diffusion layer. Further, Si / PEN / Si (180 μm) was used as the gasket.
  〔実施例2〕
 実施例1における担体の製造において、コア部の製造とシェル部の形成を下記方法に変更した以外は、実施例1と同様にして電極触媒及び燃料電池を得た。また、電極触媒のXRD測定の結果から、Ti酸化物は非晶質のものであることが確認された。
(イ)コア部の製造工程
 WO2016/098399の実施例1の記載に基づいて一次粒子径が20nmであるタングステン及びフッ素含有酸化スズ粒子を得た。W(mol)/(Sn(mol)+W(mol)+F(mol))×100で表されるタングステンの割合は2.5mol%であり、F(mol)/(Sn(mol)+W(mol)+F(mol))×100で表されるフッ素の割合は3.8mol%であった。得られたタングステン及びフッ素含有酸化スズ粒子は、平均粒径が2.1μmの略球状であった。このようにして担体におけるコア部を得た。
[Example 2]
In the production of the carrier in Example 1, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 1 except that the production of the core part and the formation of the shell part were changed to the following methods. Moreover, it was confirmed from the result of the XRD measurement of the electrode catalyst that the Ti oxide is amorphous.
(A) Manufacturing process of core part Based on the description of Example 1 of WO2016 / 098399, tungsten and fluorine-containing tin oxide particles having a primary particle diameter of 20 nm were obtained. The ratio of tungsten represented by W (mol) / (Sn (mol) + W (mol) + F (mol)) × 100 is 2.5 mol%, and F (mol) / (Sn (mol) + W (mol) The ratio of fluorine represented by + F (mol)) × 100 was 3.8 mol%. The obtained tungsten and fluorine-containing tin oxide particles were substantially spherical with an average particle size of 2.1 μm. In this way, a core part in the carrier was obtained.
(ロ)シェル部の形成工程
 0.5mol/Lのチタン酸フッ化二アンモニウム(NHTiF溶液0.5mLに0.5mol/Lのホウ酸100mLと純水149.5mLを混合し、反応溶液を得た。この溶液中にコア部を5g添加し、4時間反応を行った。その後、濾過洗浄を行い、120℃の乾燥機中で一晩乾燥させた。これによって、Ti酸化物を含むシェル部と、タングステン及びフッ素含有スズ酸化物からなるコア部とを備えた担体を得た。
(B) Shell part forming step 0.5 mol / L diammonium fluoride (NH 4 ) 2 TiF 6 solution 0.5 mL was mixed with 0.5 mol / L boric acid 100 mL and pure water 149.5 mL. A reaction solution was obtained. 5 g of the core part was added to this solution and reacted for 4 hours. Then, filtration washing was performed and it was made to dry overnight in a 120 degreeC dryer. As a result, a support provided with a shell portion containing Ti oxide and a core portion made of tungsten and fluorine-containing tin oxide was obtained.
  〔実施例3〕
 実施例2におけるシェル部の形成工程において、0.5mol/Lのチタン酸フッ化二アンモニウム(NHTiF溶液5mLに0.5mol/Lのホウ酸100mLと純水145mLを混合し、反応溶液を得た後、この溶液中にコア部を20g添加し、4時間反応を行った。これら以外は実施例2と同様にして電極触媒及び燃料電池を得た。また、電極触媒のXRD測定の結果から、Ti酸化物は非晶質のものであることが確認された。
Example 3
In the step of forming the shell portion in Example 2, 0.5 mL / L boric acid 100 mL and pure water 145 mL were mixed with 0.5 mL / L diammonium fluoride (NH 4 ) 2 TiF 6 solution 5 mL, After obtaining the reaction solution, 20 g of the core part was added to the solution and reacted for 4 hours. Except for these, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 2. Moreover, it was confirmed from the result of the XRD measurement of the electrode catalyst that the Ti oxide is amorphous.
  〔実施例4〕
 実施例2におけるシェル部の形成工程において、0.5mol/Lのチタン酸フッ化二アンモニウム(NHTiF溶液10mLに0.5mol/Lのホウ酸と100mL純水140mLを混合し、反応溶液を得た。これら以外は実施例2と同様にして電極触媒及び燃料電池を得た。また、電極触媒のXRD測定の結果から、Ti酸化物は非晶質のものであることが確認された。
Example 4
In the shell portion forming step in Example 2, 0.5 mol / L boric acid titanate (NH 4 ) 2 TiF 6 solution 10 mL was mixed with 0.5 mol / L boric acid and 100 mL pure water 140 mL, A reaction solution was obtained. Except for these, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 2. Moreover, it was confirmed from the result of the XRD measurement of the electrode catalyst that the Ti oxide is amorphous.
  〔実施例5〕
 実施例2におけるシェル部の形成を、実施例1におけるシェル部の形成と同様に行った。これ以外は実施例2と同様にして電極触媒及び燃料電池を得た。また、電極触媒のXRD測定の結果から、Ti酸化物は非晶質のものであることが確認された。
Example 5
The formation of the shell portion in Example 2 was performed in the same manner as the formation of the shell portion in Example 1. Except this, it carried out similarly to Example 2, and obtained the electrode catalyst and the fuel cell. Moreover, it was confirmed from the result of the XRD measurement of the electrode catalyst that the Ti oxide is amorphous.
  〔実施例6〕
 実施例5におけるシェル部の形成工程において、0.5mol/Lのチタン酸フッ化二アンモニウム(NHTiF溶液50mLに0.5mol/Lのホウ酸100mLと純水100mLを混合し反応溶液を得た後、この溶液中にコア部を3.5g添加し、4時間反応を行った。これら以外は実施例5と同様にして電極触媒及び燃料電池を得た。また、電極触媒のXRD測定の結果から、Ti酸化物は非晶質のものであることが確認された。
Example 6
In the shell portion forming step in Example 5, 100 mL of 0.5 mol / L boric acid and 100 mL of pure water were mixed with 50 mL of 0.5 mol / L diammonium fluoride (NH 4 ) 2 TiF 6 solution and reacted. After obtaining the solution, 3.5 g of the core part was added to the solution and reacted for 4 hours. Except for these, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 5. Moreover, it was confirmed from the result of the XRD measurement of the electrode catalyst that the Ti oxide is amorphous.
  〔実施例7〕
 実施例5における担体の製造において、シェル部の製造を下記方法に変更した以外は、実施例5と同様にして電極触媒及び燃料電池を得た。また、電極触媒のXRD測定の結果、Ta酸化物は非晶質のものであることが確認された。
(ロ)シェル部の形成工程
 3gの五酸化タンタル(三津和化学薬品社製)を1mol/Lのフッ酸溶液500mLに溶解させ、原料溶液を調製した。この原料溶液110mLを40mLの純水と混合した後、0.5mol/Lのホウ酸100mLを混合し反応溶液を得た。この溶液中にコア部を5g添加し、4時間反応を行った。その後、濾過洗浄を行い、120℃の乾燥機中で一晩乾燥させた。これによって、Ta酸化物を含むシェル部と、タングステン及びフッ素含有スズ酸化物からなるコア部とを備えた担体を得た。
Example 7
In the production of the carrier in Example 5, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 5 except that the production of the shell part was changed to the following method. Further, as a result of XRD measurement of the electrode catalyst, it was confirmed that the Ta oxide was amorphous.
(B) Shell part forming step 3 g of tantalum pentoxide (manufactured by Mitsuwa Chemicals) was dissolved in 500 mL of a 1 mol / L hydrofluoric acid solution to prepare a raw material solution. After 110 mL of this raw material solution was mixed with 40 mL of pure water, 100 mL of 0.5 mol / L boric acid was mixed to obtain a reaction solution. 5 g of the core part was added to this solution and reacted for 4 hours. Then, filtration washing was performed and it was made to dry overnight in a 120 degreeC dryer. Thus, a support provided with a shell portion containing Ta oxide and a core portion made of tungsten and fluorine-containing tin oxide was obtained.
  〔実施例8〕
 実施例5における担体の製造において、シェル部の製造を下記方法に変更した以外は、実施例5と同様にして電極触媒及び燃料電池を得た。また、電極触媒のXRD測定をした結果、Nb酸化物は非晶質のものであることが確認された。
(ロ)シェル部の形成工程
 4.5gの五酸化ニオブ(三津和化学薬品社製)を1mol/Lのフッ化水素アンモニウム溶液500mLに溶解させ、原料溶液を調製した。この原料溶液50mLを0.25mol/Lのホウ酸200mLと混合し反応溶液を得た。この溶液中にコア部を5g添加し、4時間反応を行った。その後、濾過洗浄を行い、120℃の乾燥機中で一晩乾燥させた。これによって、Nb酸化物を含むシェル部と、タングステン及びフッ素含有スズ酸化物からなるコア部とを備えた担体を得た。
Example 8
In the production of the carrier in Example 5, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 5 except that the production of the shell part was changed to the following method. Further, as a result of XRD measurement of the electrode catalyst, it was confirmed that the Nb oxide was amorphous.
(B) Shell part forming step 4.5 g of niobium pentoxide (manufactured by Mitsuwa Chemical Co., Ltd.) was dissolved in 500 mL of a 1 mol / L ammonium hydrogen fluoride solution to prepare a raw material solution. 50 mL of this raw material solution was mixed with 200 mL of 0.25 mol / L boric acid to obtain a reaction solution. 5 g of the core part was added to this solution and reacted for 4 hours. Then, filtration washing was performed and it was made to dry overnight in a 120 degreeC dryer. As a result, a support including a shell portion containing Nb oxide and a core portion made of tungsten and fluorine-containing tin oxide was obtained.
  〔実施例9〕
 実施例5における担体の製造において、シェル部の製造を下記方法に変更した以外は、実施例5と同様にして電極触媒及び燃料電池を得た。電極触媒のXRD測定をした結果、Zr酸化物は非晶質のものであることが確認された。
(ロ)シェル部の形成工程
 フッ化ジルコン酸HZrF(Sigma-Aldrich製)3.4mLを純水で希釈し250mLにしたのち、塩化アルミニウム15gを混合溶解したものを反応溶液として用いた。この溶液中にコア部を5g添加し、4時間反応を行った。その後、濾過洗浄を行い、120℃の乾燥機中で一晩乾燥させた。これによって、Zr酸化物を含むシェル部と、タングステン及びフッ素含有スズ酸化物からなるコア部とを備えた担体を得た。
Example 9
In the production of the carrier in Example 5, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 5 except that the production of the shell part was changed to the following method. As a result of XRD measurement of the electrode catalyst, it was confirmed that the Zr oxide was amorphous.
(B) Shell part forming step 3.4 mL of fluorinated zirconate H 2 ZrF 6 (manufactured by Sigma-Aldrich) was diluted with pure water to 250 mL, and then mixed and dissolved 15 g of aluminum chloride was used as a reaction solution. . 5 g of the core part was added to this solution and reacted for 4 hours. Then, filtration washing was performed and it was made to dry overnight in a 120 degreeC dryer. As a result, a support including a shell portion containing Zr oxide and a core portion made of tungsten and fluorine-containing tin oxide was obtained.
  〔実施例10〕
 実施例5における担体の製造において、コア部の製造工程のうちタンタル及びフッ素含有酸化スズ粒子の製造工程を下記方法に変更した以外は、実施例5と同様にして電極触媒及び燃料電池を得た。電極触媒のXRD測定の結果から、Ti酸化物は非晶質のものであることが確認された。
(イ)コア部の製造工程
~アンチモン及びタンタル含有酸化スズ粒子の製造工程~
 (1)タンタル含有溶液の調製
 5gのTaClを115mlのエタノールに溶解し、引き続き115mlの水を添加して、タンタル含有透明液を得た。この透明液に25%アンモニア水をpHが10になるまで滴下した。それによって液中に沈殿が生じた。この沈殿を濾別回収し、洗浄した後、30%過酸化水素水22.5gと、シュウ酸2水和物10.5gと、純水117gとを添加した。これによってタンタル含有透明液を再び得た。
Example 10
In the production of the carrier in Example 5, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 5 except that the production process of tantalum and fluorine-containing tin oxide particles in the production process of the core part was changed to the following method. . From the result of XRD measurement of the electrode catalyst, it was confirmed that the Ti oxide was amorphous.
(A) Manufacturing process of core part-Manufacturing process of tin oxide particles containing antimony and tantalum-
(1) Preparation of tantalum-containing solution 5 g of TaCl 5 was dissolved in 115 ml of ethanol, and 115 ml of water was subsequently added to obtain a tantalum-containing transparent liquid. To this transparent liquid, 25% aqueous ammonia was added dropwise until the pH reached 10. This caused precipitation in the liquid. The precipitate was collected by filtration and washed, and then 22.5 g of 30% hydrogen peroxide water, 10.5 g of oxalic acid dihydrate, and 117 g of pure water were added. Thus, a tantalum-containing transparent liquid was obtained again.
(2)ゾルゲル法による酸化スズの生成
 2.2%のSbを含むSn箔10gと、33.3gのクエン酸との混合物に、40%硝酸水溶液250mlを添加した。これによって透明液を得た。この透明液に、(1)で得られたタンタル含有透明液10.6gを添加、混合した。得られた混合液に25%アンモニア水を、液のpHが8になるまで滴下した。滴下直後の液は透明なままであった。この液を100℃で2時間にわたり還流した。これによって液が白濁した。液が冷却した後、遠心分離して固形分を回収し、それを水洗した。得られた固形分を大気下に120℃で1晩にわたり乾燥した後、乳鉢で粉砕した。粉砕後の固形分を大気下に730℃で2時間にわたり焼成した。これによって、アンチモン及びタンタルを含有する酸化スズの粒子を得た。(Sb(mol)+Ta(mol))/(Sn(mol)+Sb(mol)+Ta(mol))×100は2.7%であった。
(2) Production of Tin Oxide by Sol-Gel Method 250 ml of 40% nitric acid aqueous solution was added to a mixture of 10 g of Sn foil containing 2.2% Sb and 33.3 g of citric acid. This gave a clear liquid. To this transparent liquid, 10.6 g of the tantalum-containing transparent liquid obtained in (1) was added and mixed. 25% aqueous ammonia was added dropwise to the resulting mixture until the pH of the solution reached 8. The liquid immediately after the dropping remained transparent. The solution was refluxed at 100 ° C. for 2 hours. This caused the liquid to become cloudy. After the liquid had cooled, it was centrifuged to recover the solids and washed with water. The obtained solid was dried in the atmosphere at 120 ° C. overnight and then pulverized in a mortar. The solid content after pulverization was calcined at 730 ° C. for 2 hours in the air. Thus, particles of tin oxide containing antimony and tantalum were obtained. (Sb (mol) + Ta (mol)) / (Sn (mol) + Sb (mol) + Ta (mol)) × 100 was 2.7%.
  〔実施例11〕
 実施例8における担体の製造において、コア部の製造を実施例10と同様にした以外は、実施例8と同様にして電極触媒及び燃料電池を得た。電極触媒のXRD測定の結果から、Nb酸化物は非晶質のものであることが確認された。
Example 11
In the production of the carrier in Example 8, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 8, except that the production of the core part was the same as in Example 10. From the result of XRD measurement of the electrode catalyst, it was confirmed that the Nb oxide was amorphous.
  〔実施例12〕
 実施例9における担体の製造において、コア部の製造を実施例10と同様にした以外は、実施例9と同様にして電極触媒及び燃料電池を得た。電極触媒のXRD測定の結果から、Zr酸化物は非晶質のものであることが確認された。
Example 12
In the production of the carrier in Example 9, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 9, except that the production of the core part was the same as in Example 10. From the results of XRD measurement of the electrode catalyst, it was confirmed that the Zr oxide was amorphous.
  〔実施例13〕
 実施例8における電極触媒の製造工程のうち触媒の担持工程において、塩化白金酸を塩化イリジウム酸に変更した以外は、実施例8と同様にして電極触媒及び燃料電池を得た。電極触媒のXRD測定の結果から、Nb酸化物は非晶質のものであることが確認された。
Example 13
An electrode catalyst and a fuel cell were obtained in the same manner as in Example 8, except that in the catalyst supporting step in the production process of the electrode catalyst in Example 8, chloroplatinic acid was changed to chloroiridic acid. From the result of XRD measurement of the electrode catalyst, it was confirmed that the Nb oxide was amorphous.
  〔比較例1〕
 実施例1における担体の製造において、コア部の表面にシェル部を形成せず、コア部そのものを担体として使用した。これ以外は実施例1と同様にして電極触媒及び燃料電池を得た。
[Comparative Example 1]
In the manufacture of the carrier in Example 1, the core part itself was used as the carrier without forming a shell part on the surface of the core part. Except for this, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 1.
  〔比較例2〕
 実施例2における担体の製造において、コア部の表面にシェル部を形成せず、コア部そのものを担体として使用した。これ以外は実施例2と同様にして電極触媒及び燃料電池を得た。
[Comparative Example 2]
In the production of the carrier in Example 2, the core part itself was used as a carrier without forming a shell part on the surface of the core part. Except this, it carried out similarly to Example 2, and obtained the electrode catalyst and the fuel cell.
  〔比較例3〕
 本比較例は、コア部に含まれる添加元素と、シェル部に含まれるシェル元素の種類が重複する例である。詳細には、実施例7における担体の製造において、コア部の製造を実施例10と同様にした以外は、実施例7と同様にして電極触媒及び燃料電池を得た。
[Comparative Example 3]
This comparative example is an example in which the additive element included in the core portion and the type of the shell element included in the shell portion overlap. Specifically, in the production of the carrier in Example 7, an electrode catalyst and a fuel cell were obtained in the same manner as in Example 7 except that the production of the core was the same as in Example 10.
  〔比較例4〕
 本比較例は、シェル部に含まれるシェル元素が、本発明で用いられている元素と異なる例である。詳細には、実施例5におけるシェル部の形成工程において、0.5mol/Lのチタン酸フッ化二アンモニウム(NHTiF溶液に変えて、0.5mol/Lの珪フッ化水素酸HSiF溶液(関東化学製)を用いた以外は実施例5と同様にして電極触媒及び燃料電池を得た。
[Comparative Example 4]
This comparative example is an example in which the shell element contained in the shell portion is different from the element used in the present invention. Specifically, in the shell portion forming step in Example 5, 0.5 mol / L hydrosilicofluoric acid was used instead of 0.5 mol / L diammonium fluoride (NH 4 ) 2 TiF 6 solution. An electrode catalyst and a fuel cell were obtained in the same manner as in Example 5 except that an H 2 SiF 6 solution (manufactured by Kanto Chemical) was used.
  〔比較例5〕
 本比較例は、シェル部に含まれるシェル元素が、本発明で用いられている元素と異なる例である。詳細には、実施例5におけるシェル部の形成工程において、0.5mol/Lのチタン酸フッ化二アンモニウム(NHTiF溶液に変えて、1.8gのモリブデン酸HMoO(関東化学製)を0.55mol/Lのフッ酸溶液500mLに溶解させ、調製した原料溶液を用いた以外は実施例5と同様にして電極触媒及び燃料電池を得た。
[Comparative Example 5]
This comparative example is an example in which the shell element contained in the shell portion is different from the element used in the present invention. Specifically, in the shell portion forming step in Example 5, 1.8 g of molybdic acid H 2 MoO 4 (instead of 0.5 mol / L diammonium titanate (NH 4 ) 2 TiF 6 solution) was used. Kanto Chemical Co.) was dissolved in 500 mL of a 0.55 mol / L hydrofluoric acid solution, and an electrode catalyst and a fuel cell were obtained in the same manner as in Example 5 except that the prepared raw material solution was used.
  〔評価〕
 実施例及び比較例において得られた電極触媒のシェル部について、上述の方法でシェル元素の含有割合(M/Sn)及びフッ素の含有割合(F/(M+F))を測定した。それらの結果を以下の表1に示す。フッ素の含有割合は、実施例1及び10ないし12並びに比較例3については、三菱化学アナリテック社製自動試料燃焼装置(AQF-2100H)を用いた燃焼-イオンクロマトグラフによって測定した。実施例2ないし9及び13並びに比較例4及び5については、電子エネルギー損失分光法(TEM-EELS)のスポット分析によって測定した。
 また、実施例及び比較例で得られた燃料電池について発電特性を評価した。評価は、80℃に加熱し、100%RHに加湿した窒素を燃料電池のアノード及びカソードに流通させて安定化した後、加湿した水素をアノードに供給するとともに、加湿した酸素をカソードに供給して行った。この条件下で、0~1.5A/cmの電流値の範囲にて、発電特性(電流-電圧特性)を3サイクル測定した。そのときのセル抵抗は、鶴賀電機(株)製 低抵抗計(MODEL 356E)を用いて測定した。そして、初期(1サイクル目)の0.5A/cm時のセル電圧値(V)、セル抵抗値(Ω・cm)、及びそれらの評価結果と、3サイクル目の0.5A/cm時のセル電圧値(V)及び評価結果を以下の表1に示す。また実施例1、5、7及び8並びに比較例1の測定結果のグラフを、図1ないし5に示す。更に、実施例4、7、8及び9については、15サイクルの測定を行った。15サイクル目の0.5A/cm時のセル電圧値(V)及び評価結果を表2に示す。
[Evaluation]
About the shell part of the electrode catalyst obtained in the Example and the comparative example, the content rate (M / Sn) of the shell element and the content rate of fluorine (F / (M + F)) were measured by the above-mentioned method. The results are shown in Table 1 below. The fluorine content was measured for each of Examples 1 and 10 to 12 and Comparative Example 3 by a combustion-ion chromatograph using an automatic sample combustion apparatus (AQF-2100H) manufactured by Mitsubishi Chemical Analytech. Examples 2 to 9 and 13 and Comparative Examples 4 and 5 were measured by spot analysis by electron energy loss spectroscopy (TEM-EELS).
In addition, the power generation characteristics of the fuel cells obtained in Examples and Comparative Examples were evaluated. In the evaluation, after heating to 80 ° C. and stabilizing nitrogen gas humidified to 100% RH to the anode and cathode of the fuel cell, humidified hydrogen is supplied to the anode and humidified oxygen is supplied to the cathode. I went. Under these conditions, the power generation characteristics (current-voltage characteristics) were measured for three cycles in the current value range of 0 to 1.5 A / cm 2 . The cell resistance at that time was measured using a low resistance meter (MODEL 356E) manufactured by Tsuruga Electric Co., Ltd. The initial (first cycle) 0.5 A / cm 2 cell voltage value (V), cell resistance (Ω · cm 2 ), and evaluation results thereof, and the third cycle 0.5 A / cm The cell voltage value (V) at 2 o'clock and the evaluation results are shown in Table 1 below. Moreover, the graph of the measurement result of Example 1, 5, 7, and 8 and the comparative example 1 is shown to FIG. Further, for Examples 4, 7, 8 and 9, 15 cycles of measurement were performed. Table 2 shows the cell voltage value (V) and the evaluation result at 0.5 A / cm 2 at the 15th cycle.
 表1における評価基準は以下のとおりである。
<初期の電圧>
 A:セル電圧が0.7V以上
 B:セル電圧が0.68V以上0.7V未満
 C:セル電圧が0.66V以上0.68V未満
 D:セル電圧が0.64V以上0.66V未満
 E:セル電圧が0.64V未満
<初期の抵抗>
 A:90mΩ・cm以下
 B:90mΩ・cm超95mΩ・cm以下
 C:95mΩ・cm超100mΩ・cm以下
 D:100mΩ・cm超105mΩ・cm以下
 E:105mΩ・cm
<3サイクル目の電圧>
 A:セル電圧が0.7V以上
 B:セル電圧が0.68V以上0.7V未満
 C:セル電圧が0.66V以上0.68V未満
 D:セル電圧が0.64V以上0.66V未満
 E:セル電圧が0.64V未満
The evaluation criteria in Table 1 are as follows.
<Initial voltage>
A: Cell voltage is 0.7V or more B: Cell voltage is 0.68V or more and less than 0.7V C: Cell voltage is 0.66V or more and less than 0.68V D: Cell voltage is 0.64V or more and less than 0.66V E: Cell voltage is less than 0.64V <Initial resistance>
A: 90mΩ · cm 2 or less B: 90mΩ · cm 2 ultra 95mΩ · cm 2 or less C: 95mΩ · cm 2 ultra 100 m [Omega · cm 2 or less D: 100mΩ · cm 2 ultra 105mΩ · cm 2 or less E: 105mΩ · cm 2 greater <Voltage at the third cycle>
A: Cell voltage is 0.7V or more B: Cell voltage is 0.68V or more and less than 0.7V C: Cell voltage is 0.66V or more and less than 0.68V D: Cell voltage is 0.64V or more and less than 0.66V E: Cell voltage is less than 0.64V
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び図1ないし5に示す結果から明らかなとおり、各実施例(本発明品)ではサイクルを3回繰り返しても発電特性に大きな低下は観察されない。これに対して各比較例では2サイクル目で発電ができなくなってしまった。すなわち、各実施例の電極触媒は、水素の酸化活性(触媒活性)が失われないのに対し、各比較例の電極触媒は、水素の酸化活性(触媒活性)が失われた。 As is apparent from the results shown in Table 1 and FIGS. 1 to 5, in each example (product of the present invention), no significant decrease in power generation characteristics is observed even when the cycle is repeated three times. On the other hand, in each comparative example, power generation was not possible in the second cycle. That is, the electrode catalyst of each example did not lose the hydrogen oxidation activity (catalytic activity), whereas the electrode catalyst of each comparative example lost the hydrogen oxidation activity (catalytic activity).
 特に、表2に示す実施例4、7、8及び9の対比から明らかなとおり、シェル元素としてジルコニウムを用いた場合には、他のシェル元素を用いた場合よりもセル電圧が高く、耐久性が一層高くなることが判る。 In particular, as is clear from the comparison of Examples 4, 7, 8 and 9 shown in Table 2, when zirconium is used as the shell element, the cell voltage is higher than when other shell elements are used, and the durability is high. Can be seen to be even higher.
 以上、詳述したとおり、本発明によれば、還元性環境下での触媒活性の低下を効果的に防止することができる。 As described above in detail, according to the present invention, it is possible to effectively prevent a decrease in catalytic activity in a reducing environment.

Claims (10)

  1.  所定元素を含む酸化スズのコア部、及び該コア部の表面に位置するシェル部を備えた担体と、
     前記担体に担持された、白金族の元素を含む触媒と、
    を有し、
     前記シェル部が、Ti、Ta、Nb及びZrからなる群より選択され且つ前記所定元素と異なる少なくとも一種の金属元素の酸化物を含む、
     電極触媒。
    A support comprising a core portion of tin oxide containing a predetermined element, and a shell portion located on the surface of the core portion;
    A catalyst containing a platinum group element supported on the carrier;
    Have
    The shell part includes an oxide of at least one metal element selected from the group consisting of Ti, Ta, Nb and Zr and different from the predetermined element;
    Electrocatalyst.
  2.  X線光電子分光法(XPS)により測定された、前記担体に含まれるスズ元素に対する前記酸化物を構成する前記金属元素の含有割合が、1mol%以上60mol%以下である請求項1に記載の電極触媒。 2. The electrode according to claim 1, wherein a content ratio of the metal element constituting the oxide with respect to a tin element contained in the carrier, measured by X-ray photoelectron spectroscopy (XPS), is 1 mol% or more and 60 mol% or less. catalyst.
  3.  前記シェル部は、フッ素を更に含む請求項1又は2に記載の電極触媒。 The electrode catalyst according to claim 1 or 2, wherein the shell portion further contains fluorine.
  4.  前記シェル部におけるフッ素の含有割合が、前記酸化物を構成する前記金属元素と該シェル部におけるフッ素との合計モル数に対して、0.1mol%以上20mol%以下である請求項1ないし3のいずれか一項に記載の電極触媒。 The content ratio of fluorine in the shell part is 0.1 mol% or more and 20 mol% or less with respect to the total number of moles of the metal element constituting the oxide and fluorine in the shell part. The electrode catalyst according to any one of the above.
  5.  前記酸化物が酸化ジルコニウムである請求項1ないし4のいずれか一項に記載の電極触媒。 The electrode catalyst according to any one of claims 1 to 4, wherein the oxide is zirconium oxide.
  6.  前記酸化物が非晶質の形態である請求項1ないし5のいずれか一項に記載の電極触媒。 The electrode catalyst according to any one of claims 1 to 5, wherein the oxide is in an amorphous form.
  7.  燃料電池のアノード又は電気分解のカソードに用いられる請求項1ないし6に記載の電極触媒。 The electrode catalyst according to claim 1, which is used for an anode of a fuel cell or an electrolysis cathode.
  8.  請求項1ないし6のいずれか一項に記載の電極触媒を含む燃料電池用アノード触媒層。 An anode catalyst layer for a fuel cell comprising the electrode catalyst according to any one of claims 1 to 6.
  9.  請求項1ないし6のいずれか一項に記載の電極触媒を含む電気分解用カソード触媒層。 A cathode catalyst layer for electrolysis comprising the electrode catalyst according to any one of claims 1 to 6.
  10.  請求項1ないし7のいずれか一項に記載の電極触媒の製造方法であって、
     Ti、Ta、Nb及びZrからなる群より選択される少なくとも一種の金属元素の金属フルオロ錯体の溶液中に、前記フルオロ錯体よりも安定なフッ素化合物を形成するための剤と、酸化スズ粒子とを添加して、前記酸化スズ粒子の表面に前記金属元素の酸化物の膜を形成する工程を有する、電極触媒の製造方法。
    A method for producing an electrode catalyst according to any one of claims 1 to 7,
    An agent for forming a fluorine compound more stable than the fluoro complex in a solution of a metal fluoro complex of at least one metal element selected from the group consisting of Ti, Ta, Nb and Zr, and tin oxide particles A method for producing an electrode catalyst, comprising the step of adding and forming an oxide film of the metal element on the surface of the tin oxide particles.
PCT/JP2017/032730 2016-09-12 2017-09-11 Electrode catalyst WO2018047968A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018538501A JP6983785B2 (en) 2016-09-12 2017-09-11 Electrode catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016178029 2016-09-12
JP2016-178029 2016-09-12

Publications (1)

Publication Number Publication Date
WO2018047968A1 true WO2018047968A1 (en) 2018-03-15

Family

ID=61562184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032730 WO2018047968A1 (en) 2016-09-12 2017-09-11 Electrode catalyst

Country Status (2)

Country Link
JP (1) JP6983785B2 (en)
WO (1) WO2018047968A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173131A (en) * 2018-03-29 2019-10-10 堺化学工業株式会社 Electrode material for electrochemical reduction, electrode for electrochemical reduction, and electrochemical reduction device
JP2022510134A (en) * 2018-11-20 2022-01-26 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー Catalyst system, electrodes, and fuel cell or electrolytic cell
CN114008828A (en) * 2019-06-12 2022-02-01 国立大学法人横滨国立大学 Oxygen reduction catalyst, fuel cell, air cell, and method for producing oxygen reduction catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097874A (en) * 2006-10-06 2008-04-24 Sharp Corp Electrocatalyst for fuel direct type fuel cell, fuel direct type fuel cell using this, and electronic equipment
JP2015502646A (en) * 2011-12-22 2015-01-22 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG ELECTROCATALYST FOR FUEL CELL AND METHOD FOR PRODUCING THE ELECTROCATALYST
JP2015056286A (en) * 2013-09-12 2015-03-23 三菱マテリアル株式会社 Conductive composite particle
WO2016098399A1 (en) * 2014-12-19 2016-06-23 三井金属鉱業株式会社 Halogen-containing tin oxide particles and production method thereof
JP2017183273A (en) * 2016-03-28 2017-10-05 三井金属鉱業株式会社 Electrode catalyst, membrane electrode assembly and solid polymer fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097874A (en) * 2006-10-06 2008-04-24 Sharp Corp Electrocatalyst for fuel direct type fuel cell, fuel direct type fuel cell using this, and electronic equipment
JP2015502646A (en) * 2011-12-22 2015-01-22 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG ELECTROCATALYST FOR FUEL CELL AND METHOD FOR PRODUCING THE ELECTROCATALYST
JP2015056286A (en) * 2013-09-12 2015-03-23 三菱マテリアル株式会社 Conductive composite particle
WO2016098399A1 (en) * 2014-12-19 2016-06-23 三井金属鉱業株式会社 Halogen-containing tin oxide particles and production method thereof
JP2017183273A (en) * 2016-03-28 2017-10-05 三井金属鉱業株式会社 Electrode catalyst, membrane electrode assembly and solid polymer fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173131A (en) * 2018-03-29 2019-10-10 堺化学工業株式会社 Electrode material for electrochemical reduction, electrode for electrochemical reduction, and electrochemical reduction device
JP2022510134A (en) * 2018-11-20 2022-01-26 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー Catalyst system, electrodes, and fuel cell or electrolytic cell
JP7137013B2 (en) 2018-11-20 2022-09-13 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー Catalyst Systems, Electrodes, and Fuel Cells or Electrolysers
CN114008828A (en) * 2019-06-12 2022-02-01 国立大学法人横滨国立大学 Oxygen reduction catalyst, fuel cell, air cell, and method for producing oxygen reduction catalyst

Also Published As

Publication number Publication date
JP6983785B2 (en) 2021-12-17
JPWO2018047968A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
Lambert et al. Electrodeposited Ni x Co 3− x O 4 nanostructured films as bifunctional oxygen electrocatalysts
Ito et al. Ultrahigh methanol electro-oxidation activity of PtRu nanoparticles prepared on TiO2-embedded carbon nanofiber support
Kuriganova et al. Electrochemical dispersion technique for preparation of hybrid MO x–C supports and Pt/MO x–C electrocatalysts for low-temperature fuel cells
EP1825544B1 (en) Electrode catalyst for fuel cell
Maiyalagan et al. Electrochemical oxidation of methanol on Pt/V2O5–C composite catalysts
CN109906287A (en) Electrocatalyst composition comprising the metal oxide containing precious metals being supported on tin oxide
EP3333127B1 (en) Electrode catalyst for fuel cells comprising tin oxide, membrane electrode assembly, and solid polymer fuel cell
JP5217434B2 (en) Fuel cell, its catalyst and its electrode
EP1799342B1 (en) Platinum/ruthenium catalyst for direct methanol fuel cells
US8197965B2 (en) Anode for fuel cell and fuel cell using the same
Thiagarajan et al. Pt nanoparticles supported on NiTiO3/C as electrocatalyst towards high performance Methanol Oxidation Reaction
CN101391217B (en) Methanol oxidation catalyst
Gunji et al. Long-term, stable, and improved oxygen-reduction performance of titania-supported PtPb nanoparticles
WO2018047968A1 (en) Electrode catalyst
JP7183158B2 (en) Supported catalyst and method for producing the same
James et al. Ruthenium-tin oxide/carbon supported platinum catalysts for electrochemical oxidation of ethanol in direct ethanol fuel cells
Zhang et al. Demetallized PtxNiy/C catalyst for SO2 electrochemical oxidation in the SI/HyS hydrogen production cycles
Yuasa Molten salt synthesis of Nb-doped TiO2 rod-like particles for use in bifunctional oxygen reduction/evolution electrodes
RU2561711C2 (en) Method of catalytic electrode manufacturing based on heteropoly compounds for hydrogen and methanol fuel elements
Dhanya et al. High temperature annealed (002) oriented WO3 nanoplatelets with uniform Pt decoration as durable carbon free anode electrocatalyst for PEMFC application
WO2018051765A1 (en) Method for manufacturing electrode catalyst, and electrode catalyst
JP6863764B2 (en) Electrode catalyst, membrane electrode assembly and polymer electrolyte fuel cell
JP7349343B2 (en) Electrode catalysts, electrode catalyst layers, membrane electrode assemblies, and water electrolysis devices
JPWO2018066485A1 (en) Method of producing electrode catalyst and electrode catalyst
WO2021181113A1 (en) Catalyst support

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018538501

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848906

Country of ref document: EP

Kind code of ref document: A1