WO2018047606A1 - Power generation input device - Google Patents

Power generation input device Download PDF

Info

Publication number
WO2018047606A1
WO2018047606A1 PCT/JP2017/029613 JP2017029613W WO2018047606A1 WO 2018047606 A1 WO2018047606 A1 WO 2018047606A1 JP 2017029613 W JP2017029613 W JP 2017029613W WO 2018047606 A1 WO2018047606 A1 WO 2018047606A1
Authority
WO
WIPO (PCT)
Prior art keywords
slider
magnet
urging
torsion spring
biasing
Prior art date
Application number
PCT/JP2017/029613
Other languages
French (fr)
Japanese (ja)
Inventor
伸之 二宮
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to CN201780052328.XA priority Critical patent/CN109643947B/en
Priority to JP2018538336A priority patent/JP6678245B2/en
Publication of WO2018047606A1 publication Critical patent/WO2018047606A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems

Definitions

  • the present invention relates to a power generator that moves a slider material supporting a magnet to change the direction of magnetic flux in a yoke member, thereby inducing power in a coil.
  • Patent Document 1 describes an invention related to a power generation input device.
  • This power generation input device has a magnetic path forming member.
  • the magnetic path forming member has a first arm portion and a second arm portion, and a power generation coil wound around each arm portion is provided.
  • a driving body (rotating body) is provided between the first arm portion and the second arm portion.
  • the driver includes a magnet having a first magnetized surface and a second magnetized surface, a first magnetizing member fixed to the first magnetized surface, and a second magnet fixed to the second magnetized surface. It has the magnetized member.
  • the driving body includes a first posture in which the first magnetizing member faces the first arm and the second magnetizing member faces the second arm, and the first magnetizing member faces the second arm and the second arm
  • the magnetized member is in a stable state in the second posture facing the first arm portion.
  • a connecting elongated hole is formed in the slide member operated by the operating member, and a connecting pin provided in the driving body is slidably inserted into the connecting elongated hole.
  • the pressing force is transmitted to the slide member via the first elastic member, the connection elongated hole and the connection pin slide, and the movement of the slide member is converted into the rotational force of the driving body.
  • the driving body rotates and changes from the first posture to the second posture, the direction of the magnetic flux in the magnetic path forming member changes, and electric power is induced in the power generation coil.
  • the pressing force of the operation member is released, the slide member is returned by the biasing force of the second elastic member.
  • the driving body is rotated from the second posture to the first posture by the restoring force of the slide member, and the direction of the magnetic flux in the magnetic path forming member is changed again. Is done.
  • Patent Document 1 when the operation member is pressed, the pressing force acts on the slide member via the first elastic member, and the assisting force of the first elastic member is applied, so that the posture of the driving body changes. It is described that the speed can be increased.
  • the present invention solves the above-described conventional problems, and can efficiently convert the pressing operation force of the operation member into the moving force of the magnet, and always move the magnet at a high speed, thereby exhibiting a large electromotive force.
  • the purpose is to provide a power generator.
  • a biasing slider that moves in a first direction and a second direction that is opposite to the first direction, a magnet supported by the biasing slider, and a magnetic flux that passes through the magnet change as the magnet moves.
  • the magnet has a first magnetized portion and a second magnetized portion in which magnetic fluxes applied to the yoke member are opposite to each other, and the first magnetized portion is on the first direction side, The second magnetized portion is positioned side by side in the second direction, and a switching spring member that biases the biasing slider in the first direction and the second direction is provided, (1) When the first magnetized portion faces the yoke member, the biasing slider is biased in the second direction by the switching spring member, (2) When the biasing slider is moved in the first direction, before the boundary between the first magnetized portion and the second magnetized portion passes through the portion facing the yoke
  • the biasing direction by the switching spring member is switched from the second direction to the first direction, (3) After the biasing slider moves in the first direction, the second magnetized portion faces the yoke member, and the biasing slider is biased in the first direction by the switching spring member. Energized, (4) When the urging slider moves in the second direction, the urging direction by the switching spring member is changed from the first direction before the boundary portion passes through the portion facing the yoke member. Switched to the second direction, It is characterized by this.
  • the magnet is supported by the biasing slider so as to be relatively movable by a predetermined distance in the first direction and the second direction.
  • the magnet is held by a magnet holding member, and the magnet holding member is movable relative to the biasing slider by a predetermined distance in a first direction and a second direction. What is supported is preferred.
  • the first magnetized portion when the first magnetized portion is opposed to the yoke member, and in (3), the second magnetized portion is formed on the yoke.
  • a magnetic holding force for stopping the magnet is acting between the magnet and the yoke member,
  • the force by which the switching spring member moves the biasing slider in the first direction and the second direction is larger than the magnetic coercive force.
  • the power generation input device of the present invention is provided with an operation slider that moves in a first direction and a second direction, and the urging slider is moved in the first direction and the second direction by the operation slider.
  • the biasing slider is supported by the operation slider so as to be relatively movable in a first distance and a second direction by a predetermined distance
  • the urging slider is not restrained by the operation slider.
  • the switching spring member is a torsion spring.
  • the movement of the biasing slider and the magnet in the first direction and the second direction is not limited to the linear movement of the biasing slider and the magnet. And the one that is pivotally moved.
  • the biasing slider is biased by a switching spring member such as a torsion spring.
  • a switching spring member such as a torsion spring.
  • the switching spring member biases the boundary between the first magnetized portion and the second magnetized portion of the magnet before passing the portion facing the yoke member. Since the direction is switched from the second direction to the first direction, the magnet moves at high speed in the first direction, the magnetic flux in the yoke member is rapidly reversed, and a large electric power is induced in the coil. it can. This is the same when the urging slider moves in the second direction.
  • the biasing slider moves in the first direction. Both when moving in the second direction, the biasing direction of the switching spring member before the boundary between the first magnetized portion and the second magnetized portion reaches the opposing portion of the yoke member Thus, it is possible to increase the moving speed of the magnet when the boundary portion moves on the portion facing the yoke.
  • an operation slider is provided, and when the biasing slider is movable relative to the operation slider in the first direction and the second direction, the operation slider is pressed in the first direction or the like.
  • the urging slider can be moved at high speed by the urging force of the switching spring member without being restricted by the moving speed of the operation slider.
  • X1 is the left direction
  • X2 is the right direction
  • Y1 is the upper direction and the second direction
  • Y2 is the lower direction and the first direction
  • Z1 is the direction along the rotation axis of the roller member
  • the front side Z2 is the direction along the rotation axis of the roller member and is the back side.
  • FIG. 1 is a perspective view showing a power generation input device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the internal structure of the power generation input device according to this embodiment.
  • FIG. 3 is an exploded perspective view showing the internal structure of the power generation input device according to this embodiment.
  • FIG. 4 is an explanatory diagram showing the magnet of this embodiment.
  • the power generation input device 1 includes a first housing 11, a second housing 12, a first housing 11, and a second housing. 12 and an internal structure 2 provided in the interior.
  • the internal structure 2 includes a core 21, a yoke member 23, a coil 25, a roller member 27, a magnet 29, a slide member 31, a switching spring member 33, And a coil spring 35 as a return spring member.
  • the core 21 extends in the Y1-Y2 direction.
  • the core 21 is passed through one hole (a hole on the Y1 side in FIG. 3) 39a of the coil holding member 39 that holds the coil 25, is passed through the inside of the coil 25, and the other hole of the coil holding member 39 (FIG. 3). Then, it is held in a state of being passed through the hole (Y2 side) 39b.
  • the core 21 is made of a magnetic material such as iron (Fe), for example, and constitutes at least a part of the magnetic circuit. Details of the magnetic circuit will be described later.
  • the yoke member 23 is formed of a magnetic material such as iron (Fe), for example, and constitutes at least a part of the magnetic circuit.
  • the yoke member 23 has a first yoke 23 a and a second yoke 23 b connected to the core 21.
  • the first yoke 23a has one end portion (the end portion on the Y1 side in FIG. 3) 21a passing through the hole 26a of the first yoke 23a. 21 is connected.
  • the second yoke 23b is connected to the core 21 by passing the other end (the Y2 end in FIG. 3) 21b of the core 21 through the hole 26b of the second yoke 23b.
  • the coil 25 is held by a coil holding member 39, and the core 21 is passed through the inside.
  • the axis of the coil 25 extends in the Y1-Y2 direction.
  • One end of the conducting wire of the coil 25 is electrically connected to one terminal 41 attached to the coil holding member 39.
  • the other end of the conducting wire of the coil 25 is electrically connected to the other terminal 41 attached to the coil holding member 39.
  • the coil 25 generates a voltage by changing the magnetic flux passing through the magnetic circuit. Details of the configuration in which the coil 25 generates voltage will be described later.
  • the roller member 27 is formed of a magnetic material such as iron (Fe), for example, and constitutes at least a part of the magnetic circuit. In the present invention, the roller member 27 functions as a part of the yoke member.
  • the roller member 27 is rotatably supported with respect to the yoke member 23, and includes a first roller 27a and a second roller 27b.
  • the first roller 27a is held by the protrusion 24a of the first yoke 23a, and is supported by the first yoke 23a so as to be rotatable about an axis along the direction in which the protrusion 24a extends.
  • the second roller 27b is held by the protrusion 24b of the second yoke 23b, and is supported by the second yoke 23b so as to be rotatable about an axis along the direction in which the protrusion 24b extends.
  • the magnet 29 is provided in contact with the roller member 27. Specifically, the magnet 29 is sandwiched between the first roller 27a and the second roller 27b, the circumferential surface 28a of the first roller 27a (see, for example, FIG. 5), and the second roller 27a. The roller 27b is in contact with the circumferential surface 28b (see, for example, FIG. 5).
  • a nonmagnetic material such as rubber may be provided on at least one of the circumferential surface 28a of the first roller 27a and the circumferential surface 28b of the second roller 27b.
  • the magnet 29 indirectly contacts the circumferential surface 28a of the first roller 27a and the circumferential surface 28b of the second roller 27b via a nonmagnetic material.
  • a non-magnetic material such as rubber, for example, has a circumferential surface 28a of the first roller 27a and a circumferential surface 28b of the second roller 27b. May be provided in at least one of the above.
  • first roller 27a and the second roller 27b are in contact with the magnet or through a non-magnetic material so that the yoke member 23 faces the magnet 29.
  • a part of the yoke member 23 faces the magnet 29 through a gap or contacts the magnet 29 through a nonmagnetic material. It may be a structure.
  • the magnet 29 is a plate-like permanent magnet and includes a first magnetized portion 29a and a second magnetized portion 29b.
  • the first magnetized portion 29a is provided on the first direction side (Y2 side) of the magnet 29 and has different polarities on both surfaces.
  • the second magnetized portion 29b is provided on the second direction side (Y1 side) of the magnet 29 and has different polarities on both surfaces.
  • the first magnetized portion 29 a and the second magnetized portion 29 b are adjacent to each other in the magnet 29.
  • One magnetized surface (the surface on the X2 side in FIGS. 4A to 4C) 291a of the first magnetized portion 29a is magnetized, for example, to an N pole.
  • the other magnetized surface (the surface on the X1 side in FIGS. 4A to 4C) 291b of the first magnetized portion 29a is magnetized to, for example, the S pole.
  • one magnetized surface (the surface on the X2 side in FIGS. 4A to 4C) 292a of the second magnetized portion 29b is magnetized to, for example, the S pole.
  • the other magnetized surface (the surface on the X1 side in FIGS. 4A to 4C) 292b of the second magnetized portion 29b is magnetized, for example, to an N pole.
  • the second magnetized portion 29b has a polarity on both sides in which the polarities of the magnetized surfaces on both sides of the first magnetized portion 29a are interchanged with each other.
  • the slide member 31 includes an operation slider 31 a and an urging slider 31 b, and the Y2 direction (the first direction along the tangential direction of the rotation of the roller member 27 based on the operation force from the outside.
  • a coil spring 35 which is a return spring member, is provided below the operation slider 31a.
  • One end of the coil spring 35 is attached to the lower part of the operation slider 31a.
  • the other end of the coil spring 35 is attached to the first housing 11.
  • the coil spring 35 biases the operation slider 31a in the Y1 direction (second direction).
  • the operation slider 31a moves in the Y2 direction (first direction) against the urging force of the coil spring 35.
  • the operating slider 31a moves back in the Y1 direction (second direction) by the biasing force of the coil spring 35.
  • the urging slider 31b is slidably held in the Y2 direction (first direction) and the Y1 direction (second direction) with respect to the operation slider 31a. That is, the biasing slider 31b can move in the Y1-Y2 direction relative to the operation slider 31a.
  • the urging slider 31b has a gap inside which the magnet 29 can move in the Y1-Y2 direction, and the magnet 29 can move a small distance in the Y1-Y2 direction inside the urging slider 31b.
  • the magnet 29 is held by a magnet holding member 37 (see FIGS. 2 and 3).
  • the magnet holding member 37 is slidably held by a slight distance in the Y1-Y2 direction with respect to the urging slider 31b while holding the magnet 29.
  • the operation slider 31a, the urging slider 31b, and the magnet holding member 37 are made of, for example, a resin material.
  • the magnet holding member 37 covers the periphery of the magnet 29 and can suppress an impact from being applied to the magnet 29. That is, the magnet holding member 37 functions as a buffer member, and is intended to reduce the impact when it moves up and down and hits the urging slider 31b.
  • the switching spring member 33 is a torsion spring, and biases the biasing slider 31b in the Y1 direction and the Y2 direction.
  • the switching spring member 33 includes a first torsion spring 33a and a second torsion spring 33b. As shown in FIGS. 2 and 3, the first torsion spring 33a is provided on the X2 side of the biasing slider 31b.
  • the second torsion spring 33b is provided on the X1 side of the biasing slider 31b. That is, the first torsion spring 33a and the second torsion spring 33b are arranged side by side in the X1-X2 direction.
  • first torsion spring 33a One end of the first torsion spring 33a is attached to the urging slider 31b. The other end of the first torsion spring 33 a is attached to a fixed part such as the second housing 12. One end of the second torsion spring 33b is attached to the urging slider 31b. The other end of the second torsion spring 33 b is attached to a fixed part such as the second housing 12.
  • the first torsion spring 33a biases the biasing slider 31b in the Y1 direction.
  • the urging slider 31b moves in the Y2 direction, and one end of the first torsion spring 33a attached to the urging slider 31b is positioned closer to the Y2 side than the other end attached to the second housing 12. Then, the first torsion spring 33a biases the biasing slider 31b in the Y2 direction.
  • the second torsion spring 33b is The biasing slider 31b is biased in the Y1 direction.
  • the urging slider 31b moves in the Y2 direction, and one end of the second torsion spring 33b attached to the urging slider 31b is positioned closer to the Y2 side than the other end attached to the second housing 12. Then, the second torsion spring 33b urges the urging slider 31b in the Y2 direction. In this way, the switching spring member 33 urges the urging slider 31b in the Y1 direction and the Y2 direction.
  • FIG. 5 is a perspective view illustrating a state where the operation slider of the present embodiment is in a free position.
  • FIG. 6 is a side view and a cross-sectional view showing a state where the operation slider of the present embodiment is in a free position.
  • FIG. 6A is a side view of the internal structure 2 of the present embodiment when viewed in the X2 direction.
  • FIG. 6B is a cross-sectional view taken along the cutting plane C1-C1 shown in FIG.
  • one end of the first torsion spring 33a attached to the urging slider 31b is positioned closer to the Y1 side than the other end attached to the second housing 12. To do. Therefore, the biasing force Fa applied to the biasing slider 31b by the first torsion spring 33a has a component Fay in the Y1 direction.
  • one end (i) attached to the urging slider 31b of the second torsion spring 33b is the other end (ii) attached to the second casing 12. It is located on the Y1 side. Therefore, the urging force Fb applied to the urging slider 31b by the second torsion spring 33b has a component Fby in the Y1 direction.
  • the urging slider 31b is urged toward the Y1 side by the urging force of the first torsion spring 33a and the second torsion spring 33b and returned.
  • a gap S2 is formed on the Y2 side of the urging slider 31b between the operation slider 31a and the urging slider 31b.
  • the biasing force Fa applied by the first torsion spring 33a to the biasing slider 31b has a component Faz in the Z1 direction.
  • the urging force Fb applied to the urging slider 31b by the second torsion spring 33b has a component Fbz in the Z2 direction.
  • the biasing force Fa applied to the biasing slider 31b by the first torsion spring 33a has a component Faz in the direction opposite to the component Fbz of the biasing force Fb applied to the biasing slider 31b by the second torsion spring 33b.
  • the component Faz of the biasing force Fa applied by the first torsion spring 33a to the biasing slider 31b, and the component Fbz of the biasing force Fb applied by the second torsion spring 33b to the biasing slider 31b, and , Can be offset against each other.
  • the contact position between the first roller 27a and the second roller 27b and the magnet 29 exists in the first magnetized portion 29a. Since the first roller 27a is made of a magnetic material, it is magnetically attracted to one magnetized surface 291a (see FIGS. 4A to 4C) of the first magnetized portion 29a. ing. Further, since the second roller 27b is made of a magnetic material, the second roller 27b is magnetically applied to the other magnetized surface 291b (see FIGS. 4A to 4C) of the first magnetized portion 29a. Being sucked. The first magnetized portion 29a is held between the first roller 27a and the second roller 27b with a magnetic holding force.
  • a gap S ⁇ b> 1 is formed on the Y ⁇ b> 1 side of the magnet holding member 37 between the biasing slider 31 b and the magnet holding member 37. .
  • an imaginary straight line L1 connecting the rotation center 271a of the first roller 27a and the rotation center 271b of the second roller 27b is formed between the first magnetized portion 29a and the first magnetized portion 29a.
  • the imaginary straight line L1 is orthogonal to the Y1-Y2 direction, which is the moving direction of the magnet 29, parallel to the boundary surface 29c between the two magnetized portions 29b.
  • a virtual straight line L1 connecting the rotation center 271a of the first roller 27a and the rotation center 271b of the second roller 27b is a contact position between the first roller 27a and the magnet 29, and the second roller 27b and the magnet. 29 corresponds to an imaginary straight line connecting the contact position with 29.
  • the imaginary straight line L1 is the opposite center line between the magnet 29, the first roller 27a, and the second roller 27b.
  • the virtual straight line L ⁇ b> 1 is the opposing center line between the magnet 29 and the yoke member 23.
  • the magnetic flux emitted from one magnetized surface 291 a of the first magnetized portion 29 a is composed of the first roller 27 a, the first yoke 23 a, and the core 21. Then, the second yoke 23b and the second roller 27b are passed in this order and enter the other magnetized surface 291b of the first magnetized portion 29a.
  • a magnetic circuit is configured in a state where the operation slider 31a is in a free position.
  • FIG. 7 is a perspective view showing a state when the operation slider of this embodiment is pushed.
  • FIG. 8 is a side view and a cross-sectional view showing a state when the operation slider of this embodiment is pushed.
  • FIG. 8A is a side view of the internal structure 2 of the present embodiment when viewed in the X2 direction.
  • FIG. 8B is a cross-sectional view taken along section line C2-C2 shown in FIG.
  • FIG. 28A and FIG. 28B the gap S ⁇ b> 1 that has been formed on the Y ⁇ b> 1 side of the magnet holding member 37 until then disappears, and the biasing slider 31 b comes into contact with the upper portion of the magnet holding member 37.
  • a gap S3 is formed on the Y2 side of the magnet holding member 37 between the biasing slider 31b and the magnet holding member 37. . Note that the gap S2 formed on the Y2 side of the biasing slider 31b remains maintained.
  • the magnet holding member 37 receives the force from the urging slider 31b and moves in the Y2 direction while holding the magnet 29. It is done.
  • the biasing slider 31b is further pushed in the Y2 direction from the position shown in FIG. 28B and reaches the positions shown in FIGS. 7, 8A, and 28C, the first torsion spring 33a and the second The torsion spring 33b is in a neutral posture.
  • the “neutral posture” means a posture in which the position of one end (i) of the torsion spring is aligned in the horizontal plane (XZ plane) with respect to the position of the other end (ii) of the torsion spring.
  • the “neutral posture” means that the urging force that the torsion spring applies to an arbitrary member (the urging slider 31b in this embodiment) has only a horizontal component, and a vertical component (Y1-Y2 direction). An attitude that does not have.
  • the first roller 27a and the second roller 27a When the first torsion spring 33a and the second torsion spring 33b are in the neutral posture when the operation slider 31a is pushed, the first roller 27a and the second roller 27a The contact position between the roller 27b and the magnet 29 exists in the first magnetized portion 29a.
  • the virtual straight line L1 is located on the first magnetized portion 29a.
  • the contact position between the first roller 27a and the second roller 27b and the magnet 29 exists on the first magnetized portion 29a side in the vicinity of the boundary surface 29c.
  • the contact position between the first roller 27a and the second roller 27b and the magnet 29 is a state immediately before the change from the first magnetized portion 29a to the second magnetized portion 29b.
  • the operation slider 31a From the state where the first torsion spring 33a and the second torsion spring 33b are in the neutral posture, as shown in FIG. 28 (d), the operation slider 31a further pushes in the Y2 direction against the urging force of the coil spring 35.
  • the urging slider 31b When the urging slider 31b is pushed in the Y2 direction by the operation slider 31a, one end of the first torsion spring 33a attached to the urging slider 31b is more than the other end attached to the second housing 12. Move to Y2 side. Therefore, the urging force Fa applied to the urging slider 31b by the first torsion spring 33a is converted so as to have a component Fay in the Y2 direction.
  • one end (i) attached to the urging slider 31b of the second torsion spring 33b is also the other end (ii) attached to the second casing 12. Move to the Y2 side. Therefore, the urging force Fb applied to the urging slider 31b by the second torsion spring 33b is also converted so as to have a component Fby in the Y2 direction. Thereby, the urging slider 31b is urged in the Y2 direction by the first torsion spring 33a and the second torsion spring 33b.
  • the urging slider 31b is provided separately from the operation slider 31a, and the gap S2 is formed on the Y2 side of the urging slider 31b at the time of FIG. 28 (c), so the first torsion spring 33a.
  • the urging slider 31b is moved in the Y2 direction independently of the operation slider 31a.
  • a gap S4 is formed between the operation slider 31a and the urging slider 31b on the Y1 side of the urging slider 31b.
  • the urging slider 31b Since the movement of the urging slider 31b and the movement of the operation slider 31a can be set to different movements, the urging slider 31b is almost affected by the speed of the external operation (speed of the operation slider 31a). And can move in the Y2 direction at a higher speed. The urging slider 31b is accelerated and moved in the Y2 direction by the urging force of the first torsion spring 33a and the second torsion spring 33b.
  • the magnetic flux emitted from the other magnetized surface 292b of the second magnetized portion 29b (see FIGS. 4 (a) to 4 (c))
  • the contact position between the first roller 27a and the second roller 27b and the magnet 29 changes from the first magnetized portion 29a to the second magnetized portion 29b, and the core 21 and the yoke member 23 are changed.
  • the direction of the magnetic flux passing through the roller member 27 is reversed.
  • FIG. 9 is a perspective view showing a state when the operation slider of the present embodiment is pushed in most.
  • 10A and 10B are a side view and a cross-sectional view illustrating a state when the operation slider of the present embodiment is pushed in the most.
  • FIG. 10A is a side view of the internal structure 2 of the present embodiment when viewed in the X2 direction.
  • FIG. 10B is a cross-sectional view taken along section line C3-C3 shown in FIG.
  • the urging slider 31b is further pushed down by the operation slider 31a as shown in FIG. 29A, and the Y2 of the urging slider 31b is between the operation slider 31a and the urging slider 31b.
  • a gap S2 is formed on the side.
  • FIG. 11 is a perspective view illustrating a state when the operation slider of the present embodiment returns.
  • 12A and 12B are a side view and a cross-sectional view illustrating a state when the operation slider of the present embodiment returns.
  • FIG. 12A is a side view of the internal structure 2 of the present embodiment when viewed in the X2 direction.
  • FIG. 12B is a cross-sectional view taken along section line C4-C4 shown in FIG.
  • the magnet 29 does not move, and the operation slider 31a and the urging slider 31b move in the Y1 direction and are formed on the Y2 side of the urging slider 31b.
  • the gap S4 is urged between the operation slider 31a and the urging slider 31b. It is formed on the Y1 side of the slider 31b.
  • the magnet holding member is between the magnet holding member 37 ⁇ ⁇ and the biasing slider 31b.
  • the gap S3 formed on the Y2 side of 37 disappears, and the urging slider 31b contacts the lower part of the magnet holding member 37.
  • a gap S ⁇ b> 1 is formed on the Y ⁇ b> 1 side of the magnet holding member 37 between the biasing slider 31 b and the magnet holding member 37.
  • the contact position between the first roller 27a and the second roller 27b and the magnet 29 exists on the second magnetized portion 29b side in the vicinity of the boundary surface 29c.
  • the contact position between the first roller 27a and the second roller 27b and the magnet 29 is the state immediately before the change from the second magnetized portion 29b to the first magnetized portion 29a.
  • the operation slider 31a is further moved in the Y1 direction by the biasing force of the coil spring 35, and one end of the first torsion spring 33a is in the first position.
  • the urging force Fa applied to the urging slider 31b by the first torsion spring 33a has a component Fay in the Y1 direction.
  • one end (i) of the second torsion spring 33b is located on the Y1 side with respect to the other end (ii) of the second torsion spring 33b, and the urging force Fb applied to the urging slider 31b by the second torsion spring 33b.
  • the urging slider 31b is urged in the Y1 direction by the first torsion spring 33a and the second torsion spring 33b.
  • the urging slider 31b can move in the Y1 direction ahead of the operation slider 31a, so that the operation slider 31a by the urging force of the coil spring 35 is used. Even if the moving speed in the Y1 direction is slow, the urging slider 31b moves in the Y1 direction at a high speed without being restrained by the operation slider 31a.
  • the magnet holding member 37 moves at a high speed in the Y1 direction while holding the magnet 29, and the contact position between the first roller 27a and the second roller 27b and the magnet 29 is changed from the second magnetized portion 29b. It changes rapidly to the first magnetized portion 29a. Then, the direction of the magnetic flux passing through the core 21, the yoke member 23, and the roller member 27 is reversed. That is, the direction of the magnetic flux is the same as the direction of the magnetic flux described above with reference to FIG.
  • an induced electromotive force is generated in the coil 25 when the operation slider 31a and the urging slider 31b move in the Y1 direction.
  • an induced electromotive force is generated in the coil 25 both when the operation slider 31a is pushed in and when the operation slider 31a is returned.
  • the first magnetized portion 29a of the magnet 29 is held by the first roller 27a and the second roller 27b with a magnetic coercive force in the state of FIG. ing. Therefore, when the urging slider 31b further moves in the Y2 direction from FIG. 28C, the component Fay in the Y2 direction of the urging force Fa of the first torsion spring 33a and the urging force of the second torsion spring 33b.
  • the total sum of Fb and the component Fby in the Y2 direction needs to be larger than the force that holds the first magnetized portion 29a with a magnetic force. This is the same when the urging slider 31b returns to the Y1 direction as shown in FIG.
  • the urging force of the first torsion spring 33a and the second torsion spring 33b is applied to the urging slider 31b, but the magnet holding member 37 holding the magnet 29 is Within the urging slider 31b, there is a movement margin (gap S1, S3) in the Y1-Y2 direction.
  • a movement margin (gap S1, S3) in the Y1-Y2 direction.
  • the first torsion spring 33a and the second torsion spring 33b can be in a neutral posture, and when the biasing slider 31b moves back in the Y1 direction, as shown in FIG.
  • the first torsion spring 33a and the second torsion spring 33b can be set to the neutral posture immediately before the boundary between the magnetized portion 29a and the second magnetized portion 29b passes through the virtual straight line L1.
  • the biasing slider 31b moves in the Y2 direction
  • the first magnetizing portion 29a and the second magnetizing are caused by the biasing force of the first torsion spring 33a and the second torsion spring 33b in the Y2 direction.
  • the boundary portion with the portion 29b passes through the imaginary straight line L1
  • the urging slider 31b moves back in the Y1 direction
  • the first torsion spring 33a and the second torsion spring 33b move in the Y1 direction.
  • the boundary portion between the first magnetized portion 29a and the second magnetized portion 29b can be passed through the virtual straight line L1. Therefore, the direction of the magnetic flux guided to the inside of the yoke member can be reversed at high speed.
  • the urging slider 31b has a movement margin (gap S2, S4) in the Y1-Y2 direction with respect to the operation slider 31a, the first torsion is performed from FIG. 28 (c) to FIG. 28 (d).
  • the operation slider 31a does not prevent the urging slider 31b from moving at high speed. This is the same when the operation slider 31a returns to the Y1 direction from FIG. 29 (c) to FIG. 29 (d).
  • FIG. 13 is a perspective view showing a power generation input device according to another embodiment of the present invention.
  • FIG. 14 is a perspective view showing the internal structure of the power generation input device according to this embodiment.
  • FIG. 15 is an exploded view showing the internal structure of the power generation input device according to this embodiment.
  • the power generation input device 1A includes a first housing 11, a second housing 12, and a space between the first housing 11 and the second housing 12. 2A, and an internal structure 2A provided inside.
  • the internal structure 2 ⁇ / b> A includes a core 21, a yoke member 23, a coil 25, a roller member 27, a magnet 29, a slide member 31, a switching spring member 33,
  • the core 21 extends in the X1-X2 direction. Accordingly, the axis of the coil 25 wound around the core 21 extends in the X1-X2 direction.
  • the power generation input device 1A according to the present embodiment is different from the power generation input device 1 described above with reference to FIGS.
  • two coil springs 35 are arranged in the X1-X2 direction below the operation slider 31a. One end of each of the two coil springs 35 is attached to the lower part of the operation slider 31a. The other ends of the two coil springs 35 are attached to the first housing 11. The two coil springs 35 urge the operation slider 31a in the Y1 direction.
  • the power generation input device 1A according to the present embodiment is different from the power generation input device 1 described above with reference to FIGS.
  • a first torsion spring 33a is provided on the X2 side of the biasing slider 31b. One end of the first torsion spring 33a is attached to the urging slider 31b. The other end of the first torsion spring 33 a is attached to the second housing 12.
  • a second torsion spring 33b is provided on the X1 side of the urging slider 31b. One end of the second torsion spring 33b is attached to the urging slider 31b. The other end of the second torsion spring 33 b is attached to the second housing 12.
  • the urging force Fa (see FIG. 18) applied to the urging slider 31b by the first torsion spring 33a has a component Fax (see FIG. 18) in the X1 direction.
  • the urging force Fb (see FIG. 18) applied to the urging slider 31b by the second torsion spring 33b has a component Fbx in the X2 direction.
  • the power generation input device 1A is shown in FIGS. 3 is different from the power generation input device 1 described above.
  • the structure, material, and arrangement of other members are as described above with reference to FIGS. Further, the magnet 29 included in the power generation input device 1A according to the present embodiment is as described above with reference to FIG.
  • FIG. 16 is a perspective view illustrating a state where the operation slider of the present embodiment is in a free position.
  • FIG. 17 is a side view and a cross-sectional view illustrating a state where the operation slider of the present embodiment is in a free position.
  • FIG. 18 is a front view illustrating a state where the operation slider of the present embodiment is in a free position.
  • FIG. 17A is a side view of the internal structure 2A of the present embodiment when viewed in the X2 direction.
  • FIG. 17B is a cross-sectional view taken along section line C5-C5 shown in FIG.
  • FIG. 18 is a front view of the internal structure 2A according to the present embodiment when viewed in the Z2 direction. This operation state corresponds to FIG.
  • the operation slider 31a when the operating force from the outside is not acting on the operation slider 31a, the operation slider 31a is positioned on the Y1 side by the biasing force of the coil spring 35.
  • one end of the first torsion spring 33a is positioned on the Y1 side with respect to the other end of the first torsion spring 33a. Therefore, the biasing force Fa applied to the biasing slider 31b by the first torsion spring 33a has a component Fay in the Y1 direction. Further, one end of the second torsion spring 33b is located on the Y1 side with respect to the other end of the second torsion spring 33b. Therefore, the urging force Fb applied to the urging slider 31b by the second torsion spring 33b has a component Fby in the Y1 direction.
  • the urging slider 31b is located on the Y1 side by the urging force of the first torsion spring 33a and the second torsion spring 33b.
  • a gap S6 is formed on the Y2 side of the urging slider 31b between the operation slider 31a and the urging slider 31b.
  • the biasing force Fa applied by the first torsion spring 33a to the biasing slider 31b has a component Fax in the X1 direction.
  • the urging force Fb applied to the urging slider 31b by the second torsion spring 33b has a component Fbx in the X2 direction.
  • the biasing force Fa applied to the biasing slider 31b by the first torsion spring 33a has a component Fax in the direction opposite to the component Fbx of the biasing force Fb applied to the biasing slider 31b by the second torsion spring 33b.
  • the contact position between the first roller 27a and the second roller 27b and the magnet 29 exists in the first magnetized portion 29a. Since the first roller 27a is made of a magnetic material, it is magnetically attracted to one magnetized surface 291a (see FIGS. 4A to 4C) of the first magnetized portion 29a. ing. Further, since the second roller 27b is made of a magnetic material, the second roller 27b is magnetically applied to the other magnetized surface 291b (see FIGS. 4A to 4C) of the first magnetized portion 29a. Being sucked.
  • a gap S ⁇ b> 5 is formed on the Y ⁇ b> 1 side of the magnet holding member 37 between the biasing slider 31 b and the magnet holding member 37.
  • a virtual straight line L1 connecting the rotation center 271a of the first roller 27a and the rotation center 271b of the second roller 27b is the first magnetized portion 29a and the first magnetized portion 29a. It is parallel to the boundary surface 29c between the two magnetized portions 29b.
  • a virtual straight line L1 connecting the rotation center 271a of the first roller 27a and the rotation center 271b of the second roller 27b is a contact position between the first roller 27a and the magnet 29, and the second roller 27b and the magnet. 29 corresponds to an imaginary straight line connecting the contact position with 29.
  • the magnetic flux emitted from one magnetized surface 291a of the first magnetized portion 29a is composed of the first roller 27a, the first yoke 23a, and the core 21. Then, the second yoke 23b and the second roller 27b are passed in this order and enter the other magnetized surface 291b of the first magnetized portion 29a.
  • a magnetic circuit is configured in a state where the operation slider 31a is in a free position.
  • FIG. 19 is a perspective view showing a state when the operation slider of this embodiment is pushed.
  • FIG. 20 is a side view and a cross-sectional view showing a state when the operation slider of this embodiment is pushed in.
  • FIG. 21 is a front view showing a state when the operation slider of this embodiment is pushed.
  • FIG. 20A is a side view of the internal structure 2A of the present embodiment when viewed in the X2 direction.
  • FIG. 20B is a cross-sectional view taken along the cutting plane C6-C6 shown in FIG.
  • FIG. 21 is a front view of the internal structure 2A of the present embodiment when viewed in the Z2 direction. This operation state corresponds to FIG.
  • the operation slider 31a moves in the Y2 direction against the urging force of the coil spring 35.
  • the biasing slider 31b receives a force from the operation slider 31a and moves in the Y2 direction together with the operation slider 31a.
  • a gap S ⁇ b> 7 is formed on the Y ⁇ b> 2 side of the magnet holding member 37 between the biasing slider 31 b and the magnet holding member 37. Note that the gap S6 formed on the Y2 side of the urging slider 31b remains maintained.
  • the magnet holding member 37 receives a force from the urging slider 31b and moves in the Y2 direction while holding the magnet 29. Then, as shown in FIG. 21, the first torsion spring 33a and the second torsion spring 33b are in a neutral posture.
  • the respective deflections of the first torsion spring 33a and the second torsion spring 33b are maximized.
  • the urging force Fa applied to the urging slider 31b by the first torsion spring 33a is the urging slider 31b by the second torsion spring 33b. It is balanced with the urging force Fb given to.
  • the first roller 27a and the second roller 27b When the first torsion spring 33a and the second torsion spring 33b are in the neutral posture when the operation slider 31a is pushed in, the first roller 27a and the second roller 27b The position of contact with the magnet 29 exists in the first magnetized portion 29a. Specifically, the contact position between the first roller 27a and the second roller 27b and the magnet 29 exists on the first magnetized portion 29a side in the vicinity of the boundary surface 29c. In other words, the contact position between the first roller 27a and the second roller 27b and the magnet 29 is a state immediately before the change from the first magnetized portion 29a to the second magnetized portion 29b.
  • the first roller 27a is magnetically attracted to one magnetized surface 291a (see FIGS. 4A to 4C) of the first magnetized portion 29a.
  • the second roller 27b is magnetically attracted to the other magnetized surface 291b (see FIGS. 4A to 4C) of the first magnetized portion 29a.
  • the same magnetic circuit as that described above with reference to FIG. 16 is formed. In other words, the magnetic circuit described above with reference to FIG. 16 (see the two-dot chain arrow shown in FIG. 16) is maintained.
  • the virtual straight line L1 is parallel to the boundary surface 29c between the first magnetized portion 29a and the second magnetized portion 29b.
  • FIG. 22 is a perspective view showing a state when the operation slider of the present embodiment is pushed in most.
  • FIG. 23 is a side view and a cross-sectional view showing a state when the operation slider of the present embodiment is pushed in the most.
  • FIG. 24 is a front view illustrating a state when the operation slider of the present embodiment is pushed in most.
  • FIG. 23A is a side view of the internal structure 2A of the present embodiment when viewed in the X2 direction.
  • FIG. 23B is a cross-sectional view taken along section line C7-C7 shown in FIG.
  • FIG. 24 is a front view of the internal structure 2A of the present embodiment when viewed in the Z2 direction. This operation state corresponds to FIG.
  • one end of the first torsion spring 33a is connected to the other of the first torsion spring 33a. It is located on the Y2 side from the end. Therefore, as shown in FIG. 24, the biasing force Fa applied by the first torsion spring 33a to the biasing slider 31b has a component Fay in the Y2 direction. Further, one end of the second torsion spring 33b is located on the Y2 side with respect to the other end of the second torsion spring 33b.
  • the urging force Fb applied to the urging slider 31b by the second torsion spring 33b has a component Fby in the Y2 direction.
  • the urging slider 31b is urged in the Y2 direction by the first torsion spring 33a and the second torsion spring 33b.
  • the urging slider 31b is provided separately from the operation slider 31a, and the gap S6 is formed on the Y2 side of the urging slider 31b. Therefore, the urging slider 31b is separate from the operation slider 31a in the Y2 direction. Can be moved to. Thereby, the movement of the urging slider 31b and the movement of the operation slider 31a can be set to different movements, and the urging slider 31b has little influence on the speed of the external operation (speed of the operation slider 31a). You can move faster without receiving it. That is, the urging slider 31b is accelerated in the Y2 direction by the urging force of the first torsion spring 33a and the second torsion spring 33b.
  • the magnet holding member 37 receives a force from the urging slider 31b and is accelerated in the Y2 direction while holding the magnet 29. At this time, since the gap S7 is formed on the Y2 side of the magnet holding member 37, the magnet holding member 37 can move in the Y2 direction separately from the urging slider 31b. Thereby, the magnet 29 can move at a higher speed with almost no influence on the speed of the external operation.
  • the magnetic flux emitted from the other magnetized surface 292b (see FIGS. 4A to 4C) of the second magnetized portion 29b is The second roller 27b, the second yoke 23b, the core 21, the first yoke 23a, and the first roller 27a in this order, and one of the magnetized surfaces 292a of the second magnetized portion 29b. to go into.
  • the core 21 and the yoke The direction of the magnetic flux passing through the member 23 and the roller member 27 is reversed.
  • FIG. 25 is a perspective view illustrating a state when the operation slider of the present embodiment returns.
  • FIG. 26 is a side view and a cross-sectional view illustrating a state when the operation slider of the present embodiment returns.
  • FIG. 27 is a front view illustrating a state when the operation slider of the present embodiment returns.
  • FIG. 26A is a side view of the internal structure 2A of the present embodiment when viewed in the X2 direction.
  • FIG. 26B is a cross-sectional view taken along the section C8-C8 shown in FIG.
  • FIG. 27 is a front view of the internal structure 2A of the present embodiment when viewed in the Z2 direction. This operation state corresponds to FIG.
  • the biasing slider 31b receives a force from the operation slider 31a and moves in the Y1 direction together with the operation slider 31a.
  • a gap S ⁇ b> 5 is formed on the Y ⁇ b> 1 side of the magnet holding member 37 between the biasing slider 31 b and the magnet holding member 37.
  • the magnet holding member 37 receives a force from the urging slider 31b and moves in the Y1 direction while holding the magnet 29. Then, as shown in FIG. 27, the first torsion spring 33a and the second torsion spring 33b are in a neutral posture.
  • the first roller 27a and the second torsion spring 33b are in the neutral posture when the operation slider 31a is returned, the first roller 27a and The contact position between the second roller 27b and the magnet 29 exists in the second magnetized portion 29b.
  • the contact position between the first roller 27a and the second roller 27b and the magnet 29 exists on the second magnetized portion 29b side in the vicinity of the boundary surface 29c.
  • the contact position between the first roller 27a and the second roller 27b and the magnet 29 is the state immediately before the change from the second magnetized portion 29b to the first magnetized portion 29a.
  • the first roller 27a is magnetically attracted to one magnetized surface 292a of the second magnetized portion 29b.
  • the second roller 27b is magnetically attracted to the other magnetized surface 292b of the second magnetized portion 29b.
  • the same magnetic circuit as that described above with reference to FIG. 22 is formed. In other words, the magnetic circuit described above with reference to FIG. 22 (see the two-dot chain arrow in FIG. 22) is maintained.
  • the virtual straight line L1 is parallel to the boundary surface 29c between the first magnetized portion 29a and the second magnetized portion 29b.
  • the operation slider 31a When the operation slider 31a is returned, when the operation slider 31a further moves in the Y1 direction by the biasing force of the coil spring 35 from the state where the first torsion spring 33a and the second torsion spring 33b are in the neutral posture, One end of the torsion spring 33a is positioned closer to the Y1 side than the other end of the first torsion spring 33a. Therefore, the biasing force Fa applied by the first torsion spring 33a to the biasing slider 31b has a component Fay in the Y1 direction (see FIG. 18). Further, one end of the second torsion spring 33b is located on the Y1 side with respect to the other end of the second torsion spring 33b.
  • the urging force Fb applied to the urging slider 31b by the second torsion spring 33b has a component Fby in the Y1 direction (see FIG. 18).
  • the urging slider 31b is urged in the Y1 direction by the first torsion spring 33a and the second torsion spring 33b.
  • an induced electromotive force is generated in the coil 25 when the operation slider 31a and the urging slider 31b move in the Y1 direction.
  • an induced electromotive force is generated in the coil 25 both when the operation slider 31a is pushed in and when the operation slider 31a is returned.
  • the core 21 extends in the X1-X2 direction, and the axis of the coil 25 wound around the core 21 extends in the X1-X2 direction.
  • the input device 1A can be downsized. Further, the same effect as that of the power generation input device 1 described above with reference to FIGS. 1 to 12 can be obtained.
  • the magnet and the biasing slider may be rotated by an operating force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Push-Button Switches (AREA)
  • Toys (AREA)

Abstract

[Problem] To provide a power generation input device capable of causing a magnet to operate at high speed to increase power generation efficiency. [Solution] A power generation input device having: a core 21; a yoke member 23; a coil 25; a roller member 27 supported by the yoke member 23; a magnet 29 having a first magnetized section 29a and a second magnetized section 29b that have the roller member 27 coming in contact therewith; a slide member 31 that moves in a Y1-Y2 direction; and torsion springs 33a, 33b. When the slide member 31 moves in a first direction, the contact position between the roller member 27 and the magnet 29 changes from the first magnetized section 29a to the second magnetized section 29b, as a result of an inversion of the impelling force of the torsion springs 33a, 33b, and when the slide member 31 moves in a second direction, the contact position between the roller member 27 and the magnet 29 changes from the second magnetized section 29b to the first magnetized section 29a, as a result of the inversion of the impelling force of the torsion springs 33a, 33b.

Description

発電入力装置Power generation input device
 本発明は、磁石を支持しているスライダ材を移動させて、ヨーク部材内の磁束の向きを変化させ、これによりコイルに電力を誘起する発電装置に関する。 The present invention relates to a power generator that moves a slider material supporting a magnet to change the direction of magnetic flux in a yoke member, thereby inducing power in a coil.
 特許文献1に発電入力装置に関する発明が記載されている。
 この発電入力装置は、磁路形成部材を有している。磁路形成部材は第1腕部と第2腕部を有しており、それぞれの腕部の周囲に巻かれた発電コイルが設けられている。第1腕部と第2腕部の間に駆動体(回動体)が設けられている。駆動体は、第1の着磁面と第2の着磁面を有する磁石と、第1の着磁面に固着された第1の磁化部材および第2の着磁面に固着された第2の磁化部材を有している。
Patent Document 1 describes an invention related to a power generation input device.
This power generation input device has a magnetic path forming member. The magnetic path forming member has a first arm portion and a second arm portion, and a power generation coil wound around each arm portion is provided. A driving body (rotating body) is provided between the first arm portion and the second arm portion. The driver includes a magnet having a first magnetized surface and a second magnetized surface, a first magnetizing member fixed to the first magnetized surface, and a second magnet fixed to the second magnetized surface. It has the magnetized member.
 駆動体は、第1の磁化部材が第1腕部に対向し第2磁化部材が第2腕部に対向する第1の姿勢と、第1の磁化部材が第2腕部に対向し第2磁化部材が第1腕部に対向する第2の姿勢で安定状態になる。 The driving body includes a first posture in which the first magnetizing member faces the first arm and the second magnetizing member faces the second arm, and the first magnetizing member faces the second arm and the second arm The magnetized member is in a stable state in the second posture facing the first arm portion.
 操作部材によって動作させられるスライド部材に連結長穴が形成され、駆動体に設けられた連結ピンが連結長穴に摺動自在に挿入されている。 A connecting elongated hole is formed in the slide member operated by the operating member, and a connecting pin provided in the driving body is slidably inserted into the connecting elongated hole.
 操作部材が押されると、その押圧力が第1弾性部材を介してスライド部材に伝達され、前記連結長穴と連結ピンとが摺動し、スライド部材の動きが駆動体の回転力に変換される。駆動体が回転して、第1の姿勢から第2の姿勢に変化するときに磁路形成部材内の磁束の向きが変化し、発電コイルに電力が誘起される。操作部材の押圧力を解除すると、第2弾性部材の付勢力でスライド部材が復帰させられる。このとき、スライド部材の復帰力で駆動体が第2の姿勢から第1の姿勢に回動し、磁路形成部材内の磁束の向きが再び変化して、このときも発電コイルに電力が誘起される。 When the operation member is pressed, the pressing force is transmitted to the slide member via the first elastic member, the connection elongated hole and the connection pin slide, and the movement of the slide member is converted into the rotational force of the driving body. . When the driving body rotates and changes from the first posture to the second posture, the direction of the magnetic flux in the magnetic path forming member changes, and electric power is induced in the power generation coil. When the pressing force of the operation member is released, the slide member is returned by the biasing force of the second elastic member. At this time, the driving body is rotated from the second posture to the first posture by the restoring force of the slide member, and the direction of the magnetic flux in the magnetic path forming member is changed again. Is done.
特開2015-139267号公報Japanese Patent Laying-Open No. 2015-139267
 特許文献1には、操作部材が押されるときに、その押圧力が第1弾性部材を介してスライド部材に作用し、第1弾性部材の補助力が加わることで、駆動体の姿勢が変化する速さをより速くすることができる、と記載されている。 In Patent Document 1, when the operation member is pressed, the pressing force acts on the slide member via the first elastic member, and the assisting force of the first elastic member is applied, so that the posture of the driving body changes. It is described that the speed can be increased.
 しかし、特許文献1に記載の発電入力装置は、押圧部材が押されたときに、スライド部材が移動する力を駆動体の回転力に変換しているため、操作力を発電力に変換するときの運動の伝達効率が悪い。しかも、駆動体は、もっぱら磁石の力で、第1の姿勢と、第2の姿勢で安定状態になるため、押圧部材の押圧操作によって、駆動体の回動力を速めることに限界がある。 However, in the power generation input device described in Patent Document 1, when the pressing member is pressed, the force by which the slide member moves is converted into the rotational force of the driving body. The exercise transmission efficiency is poor. In addition, since the driving body is in a stable state in the first posture and the second posture exclusively by the force of the magnet, there is a limit to speeding up the rotational force of the driving body by pressing the pressing member.
 本発明は上記従来の課題を解決するものであり、操作部材の押圧操作力を磁石の移動力に効率よく変換して、常に磁石を高速で移動させて、大きい起電力を発揮することができる発電装置を提供することを目的としている。 The present invention solves the above-described conventional problems, and can efficiently convert the pressing operation force of the operation member into the moving force of the magnet, and always move the magnet at a high speed, thereby exhibiting a large electromotive force. The purpose is to provide a power generator.
 本発明は、第1の方向とこれと逆向きの第2の方向へ移動する付勢スライダと、前記付勢スライダに支持された磁石と、前記磁石の移動によって内部を通過する磁束が変化する磁性体のヨーク部材と、前記ヨーク部材内の磁束の変化により発電するコイルと、が設けられた発電入力装置において、
 前記磁石は、前記ヨーク部材に与える磁束が互いに逆向きである第1の着磁部と第2の着磁部とを有し、前記第1の着磁部が第1の方向側で、前記第2の着磁部が第2の方向側に並んで位置し、前記付勢スライダを第1の方向と第2の方向へ付勢する切替えばね部材が設けられており、
(1)前記第1の着磁部が前記ヨーク部材に対向しているときに、前記切替えばね部材によって前記付勢スライダが第2の方向へ付勢され、
(2)前記付勢スライダが第1の方向へ移動させられると、前記第1の着磁部と前記第2の着磁部との境界部が前記ヨーク部材との対向部を通過する前に、前記切替えばね部材による付勢方向が、第2の方向から第1の方向へ切替えられ、
(3)前記付勢スライダが第1の方向へ移動した後は、前記第2の着磁部が前記ヨーク部材に対向するとともに、前記切替えばね部材によって前記付勢スライダが第1の方向へ付勢され、
(4)前記付勢スライダが第2の方向へ移動するときは、前記境界部が前記ヨーク部材との対向部を通過する前に、前記切替えばね部材による付勢方向が、第1の方向から第2の方向へ切替えられる、
 ことを特徴とするものである。
According to the present invention, a biasing slider that moves in a first direction and a second direction that is opposite to the first direction, a magnet supported by the biasing slider, and a magnetic flux that passes through the magnet change as the magnet moves. In a power generation input device provided with a magnetic yoke member and a coil for generating power by changing a magnetic flux in the yoke member,
The magnet has a first magnetized portion and a second magnetized portion in which magnetic fluxes applied to the yoke member are opposite to each other, and the first magnetized portion is on the first direction side, The second magnetized portion is positioned side by side in the second direction, and a switching spring member that biases the biasing slider in the first direction and the second direction is provided,
(1) When the first magnetized portion faces the yoke member, the biasing slider is biased in the second direction by the switching spring member,
(2) When the biasing slider is moved in the first direction, before the boundary between the first magnetized portion and the second magnetized portion passes through the portion facing the yoke member. The biasing direction by the switching spring member is switched from the second direction to the first direction,
(3) After the biasing slider moves in the first direction, the second magnetized portion faces the yoke member, and the biasing slider is biased in the first direction by the switching spring member. Energized,
(4) When the urging slider moves in the second direction, the urging direction by the switching spring member is changed from the first direction before the boundary portion passes through the portion facing the yoke member. Switched to the second direction,
It is characterized by this.
 本発明の発電入力装置は、前記磁石は、前記付勢スライダに、第1の方向と第2の方向へ所定距離だけ相対移動自在に支持されているものである。 In the power generation input device of the present invention, the magnet is supported by the biasing slider so as to be relatively movable by a predetermined distance in the first direction and the second direction.
 本発明の発電入力装置は、前記磁石は、磁石保持部材に保持されており、前記磁石保持部材が、前記付勢スライダに、第1の方向と第2の方向へ所定距離だけ相対移動自在に支持されているものが好ましい。 In the power generation input device according to the present invention, the magnet is held by a magnet holding member, and the magnet holding member is movable relative to the biasing slider by a predetermined distance in a first direction and a second direction. What is supported is preferred.
 本発明の発電入力装置は、前記(1)で、前記第1の着磁部が前記ヨーク部材に対向しているときと、前記(3)で、前記第2の着磁部が前記ヨークに対向しているときに、前記磁石と前記前記ヨーク部材との間で前記磁石を停止させる磁気保持力が作用しており、
 前記切替えばね部材が前記付勢スライダを第1の方向と第2の方向へ移動させる力が、前記磁気保磁力よりも大きいものである。
In the power generation input device of the present invention, in (1), when the first magnetized portion is opposed to the yoke member, and in (3), the second magnetized portion is formed on the yoke. When facing each other, a magnetic holding force for stopping the magnet is acting between the magnet and the yoke member,
The force by which the switching spring member moves the biasing slider in the first direction and the second direction is larger than the magnetic coercive force.
 本発明の発電入力装置は、第1の方向と第2の方向へ移動する操作スライダが設けられ、前記操作スライダによって、前記付勢スライダが第1の方向と第2の方向へ移動させられるものとして構成できる。 The power generation input device of the present invention is provided with an operation slider that moves in a first direction and a second direction, and the urging slider is moved in the first direction and the second direction by the operation slider. Can be configured as
 この場合に、前記付勢スライダは、前記操作スライダに、第1の方向と第2の方向へ所定距離だけ相対移動自在に支持されており、
 前記(2)で、前記切替えばね部材による付勢方向が、第2の方向から第1の方向へ切替えられたときに、前記付勢スライダが、前記操作スライダに拘束されることなく第1の方向へ移動し、
 前記(4)で、前記切替えばね部材による付勢方向が、第1の方向から第2の方向へ切替えられたときに、前記付勢スライダが、前記操作スライダに拘束されることなく第2の方向へ移動するものが好ましい。
 本発明の発電入力装置は、前記切替えばね部材は、トーションばねである。
In this case, the biasing slider is supported by the operation slider so as to be relatively movable in a first distance and a second direction by a predetermined distance,
In (2), when the urging direction by the switching spring member is switched from the second direction to the first direction, the urging slider is not restrained by the operation slider. Move in the direction,
In (4), when the urging direction by the switching spring member is switched from the first direction to the second direction, the urging slider is not restrained by the operation slider. Those that move in the direction are preferred.
In the power generation input device of the present invention, the switching spring member is a torsion spring.
 なお、本発明での、付勢スライダおよび磁石の第1の方向と第2の方向への移動とは、付勢スライダと磁石が直線的に往復動作することに限られず、付勢スライダと磁石とが回動移動するものも含まれる。 In the present invention, the movement of the biasing slider and the magnet in the first direction and the second direction is not limited to the linear movement of the biasing slider and the magnet. And the one that is pivotally moved.
 本発明の発電入力装置は、トーションばねなどの切替えばね部材によって、付勢スライダが付勢されている。付勢スライダが第1の方向へ移動するときには、磁石の第1の着磁部と第2の着磁部の境界部が、ヨーク部材との対向部を通過する前に切替えばね部材による付勢方向が第2の方向から第1の方向へ切り替わるので、磁石が第1の方向へ高速に移動し、ヨーク部材内の磁束が急速に反転することになり、コイルに大きな電力を誘導することができる。これは、付勢スライダが第2の方向へ移動するときも同じである。 In the power generation input device of the present invention, the biasing slider is biased by a switching spring member such as a torsion spring. When the biasing slider moves in the first direction, the switching spring member biases the boundary between the first magnetized portion and the second magnetized portion of the magnet before passing the portion facing the yoke member. Since the direction is switched from the second direction to the first direction, the magnet moves at high speed in the first direction, the magnetic flux in the yoke member is rapidly reversed, and a large electric power is induced in the coil. it can. This is the same when the urging slider moves in the second direction.
 また、磁石または磁石を保持している磁石保持部材が、付勢スライダに第1の方向と第2の方向へ相対移動自在に支持されていると、付勢スライダが第1の方向へ移動するときと、第2の方向へ移動するときの双方において、第1の着磁部と第2の着磁部の境界部が、ヨーク部材との対向部に至る前に切替えばね部材の付勢方向を切替えることができ、境界部がヨークとの対向部を移動するときの磁石の移動速度を速めることが可能になる。 Further, when the magnet or the magnet holding member holding the magnet is supported by the biasing slider so as to be relatively movable in the first direction and the second direction, the biasing slider moves in the first direction. Both when moving in the second direction, the biasing direction of the switching spring member before the boundary between the first magnetized portion and the second magnetized portion reaches the opposing portion of the yoke member Thus, it is possible to increase the moving speed of the magnet when the boundary portion moves on the portion facing the yoke.
 さらに、操作スライダを設け、付勢スライダが、操作スライダに対して第1の方向と第2の方向へ相対移動自在であると、操作スライダを第1の方向などに押圧操作しているときに、操作スライダの移動速度に拘束されることなく、切替えばね部材の付勢力で付勢スライダを高速に移動させることが可能になる。 Further, an operation slider is provided, and when the biasing slider is movable relative to the operation slider in the first direction and the second direction, the operation slider is pressed in the first direction or the like. The urging slider can be moved at high speed by the urging force of the switching spring member without being restricted by the moving speed of the operation slider.
本発明の実施形態に係る発電入力装置を表す斜視図である。It is a perspective view showing the power generation input device concerning the embodiment of the present invention. 本実施形態に係る発電入力装置の内部構造を表す斜視図である。It is a perspective view showing the internal structure of the power generation input device concerning this embodiment. 本実施形態に係る発電入力装置の内部構造を表す分解斜視図である。It is an exploded perspective view showing the internal structure of the power generation input device concerning this embodiment. 本実施形態の磁石を表す説明図である。It is explanatory drawing showing the magnet of this embodiment. 本実施形態の操作スライダが自由位置にある状態を表す斜視図である。It is a perspective view showing the state in which the operation slider of this embodiment exists in a free position. 本実施形態の操作スライダが自由位置にある状態を表す側面図および断面図である。It is the side view and sectional drawing showing the state which has the operation slider of this embodiment in a free position. 本実施形態の操作スライダが押し込まれている途中の状態を表す斜視図である。It is a perspective view showing the state in the middle of being pushed in the operation slider of this embodiment. 本実施形態の操作スライダが押し込まれている途中の状態を表す側面図および断面図である。It is the side view and sectional drawing showing the state in the middle of the operation slider of this embodiment being pushed in. 本実施形態の操作スライダが最も押し込まれたときの状態を表す斜視図である。It is a perspective view showing a state when the operation slider of this embodiment is pushed in most. 本実施形態の操作スライダが最も押し込まれたときの状態を表す側面図および断面図である。It is the side view and sectional drawing showing a state when the operation slider of this embodiment is pushed in most. 本実施形態の操作スライダが復帰する途中の状態を表す斜視図である。It is a perspective view showing the state in the middle of the return of the operation slider of this embodiment. 本実施形態の操作スライダが復帰する途中の状態を表す側面図および断面図である。It is the side view and sectional drawing showing the state in the middle of the operation slider of this embodiment returning. 本発明の他の実施形態に係る発電入力装置を表す斜視図である。It is a perspective view showing the electric power generation input device which concerns on other embodiment of this invention. 本実施形態に係る発電入力装置の内部構造を表す斜視図である。It is a perspective view showing the internal structure of the power generation input device concerning this embodiment. 本実施形態に係る発電入力装置の内部構造を表す分解斜視図である。It is an exploded perspective view showing the internal structure of the power generation input device concerning this embodiment. 本実施形態の操作スライダが自由位置にある状態を表す斜視図である。It is a perspective view showing the state in which the operation slider of this embodiment exists in a free position. 本実施形態の操作スライダが自由位置にある状態を表す側面図および断面図である。It is the side view and sectional drawing showing the state which has the operation slider of this embodiment in a free position. 本実施形態の操作スライダが自由位置にある状態を表す正面図である。It is a front view showing the state in which the operation slider of this embodiment exists in a free position. 本実施形態の操作スライダが押し込まれている途中の状態を表す斜視図である。It is a perspective view showing the state in the middle of being pushed in the operation slider of this embodiment. 本実施形態の操作スライダが押し込まれている途中の状態を表す側面図および断面図である。It is the side view and sectional drawing showing the state in the middle of the operation slider of this embodiment being pushed in. 本実施形態の操作スライダが押し込まれている途中の状態を表す正面図である。It is a front view showing the state in the middle of the operation slider of this embodiment being pushed in. 本実施形態の操作スライダが最も押し込まれたときの状態を表す斜視図である。It is a perspective view showing a state when the operation slider of this embodiment is pushed in most. 本実施形態の操作スライダが最も押し込まれたときの状態を表す側面図および断面図である。It is the side view and sectional drawing showing a state when the operation slider of this embodiment is pushed in most. 本実施形態の操作スライダが最も押し込まれたときの状態を表す正面図である。It is a front view showing a state when the operation slider of this embodiment is pushed in most. 本実施形態の操作スライダが復帰する途中の状態を表す斜視図である。It is a perspective view showing the state in the middle of the return of the operation slider of this embodiment. 本実施形態の操作スライダが復帰する途中の状態を表す側面図および断面図である。It is the side view and sectional drawing showing the state in the middle of the operation slider of this embodiment returning. 本実施形態の操作スライダが復帰する途中の状態を表す正面図である。It is a front view showing the state in the middle of the operation slider of this embodiment returning. 操作スライダと付勢スライダおよび磁石の第1の方向(Y2方向)への移動を連続的に示す説明図、Explanatory drawing which shows continuously the movement to the 1st direction (Y2 direction) of an operation slider, a biasing slider, and a magnet, 操作スライダと付勢スライダおよび磁石の第2の方向(Y1方向)への移動を連続的に示す説明図、Explanatory drawing which shows continuously the movement to the 2nd direction (Y1 direction) of an operation slider, a biasing slider, and a magnet,
 以下、本発明の実施の形態について図面を参照しつつ説明する。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in each drawing, the same code | symbol is attached | subjected to the same component and detailed description is abbreviate | omitted suitably.
 各図では、X1が左方向、X2が右方向、Y1が上方向で第2の方向、Y2が下方向で第1の方向、Z1がローラ部材の回転軸に沿う方向であって手前側、Z2がローラ部材の回転軸に沿う方向であって奥側である。 In each figure, X1 is the left direction, X2 is the right direction, Y1 is the upper direction and the second direction, Y2 is the lower direction and the first direction, Z1 is the direction along the rotation axis of the roller member, and the front side, Z2 is the direction along the rotation axis of the roller member and is the back side.
 図1は、本発明の実施形態に係る発電入力装置を表す斜視図である。
 図2は、本実施形態に係る発電入力装置の内部構造を表す斜視図である。
 図3は、本実施形態に係る発電入力装置の内部構造を表す分解斜視図である。
 図4は、本実施形態の磁石を表す説明図である。
FIG. 1 is a perspective view showing a power generation input device according to an embodiment of the present invention.
FIG. 2 is a perspective view showing the internal structure of the power generation input device according to this embodiment.
FIG. 3 is an exploded perspective view showing the internal structure of the power generation input device according to this embodiment.
FIG. 4 is an explanatory diagram showing the magnet of this embodiment.
 図1~図3に表したように、本実施形態に係る発電入力装置1は、第1の筐体11と、第2の筐体12と、第1の筐体11と第2の筐体12との間の内部に設けられた内部構造体2と、を備える。 As shown in FIGS. 1 to 3, the power generation input device 1 according to the present embodiment includes a first housing 11, a second housing 12, a first housing 11, and a second housing. 12 and an internal structure 2 provided in the interior.
 図2および図3に表したように、内部構造体2は、コア21と、ヨーク部材23と、コイル25と、ローラ部材27と、磁石29と、スライド部材31と、切替えばね部材33と、復帰ばね部材であるコイルばね35とを有する。 As shown in FIGS. 2 and 3, the internal structure 2 includes a core 21, a yoke member 23, a coil 25, a roller member 27, a magnet 29, a slide member 31, a switching spring member 33, And a coil spring 35 as a return spring member.
 コア21は、Y1-Y2方向に延びている。コア21は、コイル25を保持するコイル保持部材39の一方の孔(図3ではY1側の孔)39aに通され、コイル25の内部に通され、コイル保持部材39の他方の孔(図3ではY2側の孔)39bに通された状態で保持されている。コア21は、例えば鉄(Fe)などの磁性材料により形成され、磁気回路の少なくとも一部を構成する。磁気回路の詳細については、後述する。 The core 21 extends in the Y1-Y2 direction. The core 21 is passed through one hole (a hole on the Y1 side in FIG. 3) 39a of the coil holding member 39 that holds the coil 25, is passed through the inside of the coil 25, and the other hole of the coil holding member 39 (FIG. 3). Then, it is held in a state of being passed through the hole (Y2 side) 39b. The core 21 is made of a magnetic material such as iron (Fe), for example, and constitutes at least a part of the magnetic circuit. Details of the magnetic circuit will be described later.
 ヨーク部材23は、例えば鉄(Fe)などの磁性材料により形成され、磁気回路の少なくとも一部を構成する。ヨーク部材23は、コア21に接続された、第1のヨーク23aと、第2のヨーク23bと、を有する。図3に表したように、第1のヨーク23aは、コア21の一方の端部(図3ではY1側の端部)21aが第1のヨーク23aの孔26aに通されることにより、コア21に接続されている。第2のヨーク23bは、コア21の他方の端部(図3ではY2側の端部)21bが第2のヨーク23bの孔26bに通されることにより、コア21に接続されている。 The yoke member 23 is formed of a magnetic material such as iron (Fe), for example, and constitutes at least a part of the magnetic circuit. The yoke member 23 has a first yoke 23 a and a second yoke 23 b connected to the core 21. As shown in FIG. 3, the first yoke 23a has one end portion (the end portion on the Y1 side in FIG. 3) 21a passing through the hole 26a of the first yoke 23a. 21 is connected. The second yoke 23b is connected to the core 21 by passing the other end (the Y2 end in FIG. 3) 21b of the core 21 through the hole 26b of the second yoke 23b.
 コイル25は、コイル保持部材39に保持され、内部にコア21が通されている。コイル25の軸は、Y1-Y2方向に延びている。コイル25の導線の一端は、コイル保持部材39に取り付けられた一方の端子41に電気的に接続されている。コイル25の導線の他端は、コイル保持部材39に取り付けられた他方の端子41に電気的に接続されている。コイル25は、磁気回路を通る磁束の変化により電圧を発生する。コイル25が電圧を発生する構成の詳細については、後述する。 The coil 25 is held by a coil holding member 39, and the core 21 is passed through the inside. The axis of the coil 25 extends in the Y1-Y2 direction. One end of the conducting wire of the coil 25 is electrically connected to one terminal 41 attached to the coil holding member 39. The other end of the conducting wire of the coil 25 is electrically connected to the other terminal 41 attached to the coil holding member 39. The coil 25 generates a voltage by changing the magnetic flux passing through the magnetic circuit. Details of the configuration in which the coil 25 generates voltage will be described later.
 ローラ部材27は、例えば鉄(Fe)などの磁性材料により形成され、磁気回路の少なくとも一部を構成し、本発明ではローラ部材27がヨーク部材の一部として機能する。ローラ部材27は、ヨーク部材23に対して回動自在に支持され、第1のローラ27aと、第2のローラ27bと、を有する。第1のローラ27aは、第1のヨーク23aの突起部24aに保持され、突起部24aが延びる方向に沿う軸を中心として回動自在に第1のヨーク23aに支持されている。第2のローラ27bは、第2のヨーク23bの突起部24bに保持され、突起部24bが延びる方向に沿う軸を中心とし回動自在に第2のヨーク23bに支持されている。 The roller member 27 is formed of a magnetic material such as iron (Fe), for example, and constitutes at least a part of the magnetic circuit. In the present invention, the roller member 27 functions as a part of the yoke member. The roller member 27 is rotatably supported with respect to the yoke member 23, and includes a first roller 27a and a second roller 27b. The first roller 27a is held by the protrusion 24a of the first yoke 23a, and is supported by the first yoke 23a so as to be rotatable about an axis along the direction in which the protrusion 24a extends. The second roller 27b is held by the protrusion 24b of the second yoke 23b, and is supported by the second yoke 23b so as to be rotatable about an axis along the direction in which the protrusion 24b extends.
 磁石29は、ローラ部材27に接触して設けられている。具体的には、磁石29は、第1のローラ27aと、第2のローラ27bと、の間に挟まれ、第1のローラ27aの円周面28a(例えば図5参照)、および第2のローラ27bの円周面28b(例えば図5参照)に接触している。なお、第1のローラ27aの円周面28aおよび第2のローラ27bの円周面28bの少なくともいずれかには、例えばゴムなどの非磁性体が設けられていてもよい。この場合には、磁石29は、非磁性体を介して第1のローラ27aの円周面28aおよび第2のローラ27bの円周面28bに間接的に接触する。このように、磁束が磁石29とローラ部材27との間を通過する限りにおいて、例えばゴムなどの非磁性体が第1のローラ27aの円周面28aおよび第2のローラ27bの円周面28bの少なくともいずれかに設けられていてもよい。 The magnet 29 is provided in contact with the roller member 27. Specifically, the magnet 29 is sandwiched between the first roller 27a and the second roller 27b, the circumferential surface 28a of the first roller 27a (see, for example, FIG. 5), and the second roller 27a. The roller 27b is in contact with the circumferential surface 28b (see, for example, FIG. 5). Note that a nonmagnetic material such as rubber may be provided on at least one of the circumferential surface 28a of the first roller 27a and the circumferential surface 28b of the second roller 27b. In this case, the magnet 29 indirectly contacts the circumferential surface 28a of the first roller 27a and the circumferential surface 28b of the second roller 27b via a nonmagnetic material. Thus, as long as the magnetic flux passes between the magnet 29 and the roller member 27, a non-magnetic material such as rubber, for example, has a circumferential surface 28a of the first roller 27a and a circumferential surface 28b of the second roller 27b. May be provided in at least one of the above.
 本実施の形態では、第1のローラ27aと第2のローラ27bが、磁石に接触しまたは非磁性体を介して接触することで、ヨーク部材23が磁石29に対向する構造である。ただし、本発明では、第1のローラ27aと第2のローラ27bを設けることなく、ヨーク部材23の一部が隙間を介して磁石29に対向し、または非磁性体を介して磁石29に接触している構造であってもよい。 In this embodiment, the first roller 27a and the second roller 27b are in contact with the magnet or through a non-magnetic material so that the yoke member 23 faces the magnet 29. However, in the present invention, without providing the first roller 27a and the second roller 27b, a part of the yoke member 23 faces the magnet 29 through a gap or contacts the magnet 29 through a nonmagnetic material. It may be a structure.
 図4(a)~図4(c)に表したように、磁石29は、板状の永久磁石であり、第1の着磁部29aと、第2の着磁部29bと、を有する。第1の着磁部29aは、磁石29のうちの第1の方向側(Y2側)に設けられ、両面において互いに異なる極性を有する。第2の着磁部29bは、磁石29のうちの第2の方向側(Y1側)に設けられ、両面において互いに異なる極性を有する。第1の着磁部29aおよび第2の着磁部29bは、磁石29のうちで互いに隣接している。 As shown in FIGS. 4A to 4C, the magnet 29 is a plate-like permanent magnet and includes a first magnetized portion 29a and a second magnetized portion 29b. The first magnetized portion 29a is provided on the first direction side (Y2 side) of the magnet 29 and has different polarities on both surfaces. The second magnetized portion 29b is provided on the second direction side (Y1 side) of the magnet 29 and has different polarities on both surfaces. The first magnetized portion 29 a and the second magnetized portion 29 b are adjacent to each other in the magnet 29.
 第1の着磁部29aの一方の着磁面(図4(a)~図4(c)ではX2側の面)291aは、例えばN極に着磁されている。第1の着磁部29aの他方の着磁面(図4(a)~図4(c)ではX1側の面)291bは、例えばS極に着磁されている。一方で、第2の着磁部29bの一方の着磁面(図4(a)~図4(c)ではX2側の面)292aは、例えばS極に着磁されている。第2の着磁部29bの他方の着磁面(図4(a)~図4(c)ではX1側の面)292bは、例えばN極に着磁されている。このように、第2の着磁部29bは、第1の着磁部29aの両側の着磁面の極性が互いに入れ替わった極性を両面に有する。 One magnetized surface (the surface on the X2 side in FIGS. 4A to 4C) 291a of the first magnetized portion 29a is magnetized, for example, to an N pole. The other magnetized surface (the surface on the X1 side in FIGS. 4A to 4C) 291b of the first magnetized portion 29a is magnetized to, for example, the S pole. On the other hand, one magnetized surface (the surface on the X2 side in FIGS. 4A to 4C) 292a of the second magnetized portion 29b is magnetized to, for example, the S pole. The other magnetized surface (the surface on the X1 side in FIGS. 4A to 4C) 292b of the second magnetized portion 29b is magnetized, for example, to an N pole. As described above, the second magnetized portion 29b has a polarity on both sides in which the polarities of the magnetized surfaces on both sides of the first magnetized portion 29a are interchanged with each other.
 図3に表すように、スライド部材31は、操作スライダ31aと、付勢スライダ31bと、を有し、外部からの操作力に基づいてローラ部材27の回転の接線方向に沿うY2方向(第1の方向)に移動する。操作スライダ31aの下部には、復帰ばね部材であるコイルばね35が設けられている。コイルばね35の一端は、操作スライダ31aの下部に取り付けられている。コイルばね35の他端は、第1の筐体11に取り付けられている。コイルばね35は、操作スライダ31aをY1方向(第2の方向)へ付勢している。外部からの操作力が操作スライダ31aに加えられると、操作スライダ31aは、コイルばね35の付勢力に対抗しつつY2方向(第1の方向)へ移動する。外部からの操作力が解除されると、操作スライダ31aは、コイルばね35の付勢力によりY1の方向(第2の方向)へ復帰移動する。 As shown in FIG. 3, the slide member 31 includes an operation slider 31 a and an urging slider 31 b, and the Y2 direction (the first direction along the tangential direction of the rotation of the roller member 27 based on the operation force from the outside. Move in the direction of A coil spring 35, which is a return spring member, is provided below the operation slider 31a. One end of the coil spring 35 is attached to the lower part of the operation slider 31a. The other end of the coil spring 35 is attached to the first housing 11. The coil spring 35 biases the operation slider 31a in the Y1 direction (second direction). When an operation force from the outside is applied to the operation slider 31a, the operation slider 31a moves in the Y2 direction (first direction) against the urging force of the coil spring 35. When the operating force from the outside is released, the operating slider 31a moves back in the Y1 direction (second direction) by the biasing force of the coil spring 35.
 付勢スライダ31bは、操作スライダ31aに対してY2方向(第1の方向)およびY1方向(第2の方向)に摺動自在に保持されている。すなわち、付勢スライダ31bは、操作スライダ31aに対し、相対的にY1-Y2方向へ移動できる。付勢スライダ31bは、磁石29がY1-Y2方向に移動可能な隙間を内部に有し、磁石29は、付勢スライダ31bの内部においてY1-Y2方向にわずかな距離だけ移動可能である。磁石29は、磁石保持部材37(図2および図3参照)に保持されている。磁石保持部材37は、磁石29を保持した状態で、付勢スライダ31bに対してY1-Y2方向にわずかな距離だけ摺動自在に保持されている。 The urging slider 31b is slidably held in the Y2 direction (first direction) and the Y1 direction (second direction) with respect to the operation slider 31a. That is, the biasing slider 31b can move in the Y1-Y2 direction relative to the operation slider 31a. The urging slider 31b has a gap inside which the magnet 29 can move in the Y1-Y2 direction, and the magnet 29 can move a small distance in the Y1-Y2 direction inside the urging slider 31b. The magnet 29 is held by a magnet holding member 37 (see FIGS. 2 and 3). The magnet holding member 37 is slidably held by a slight distance in the Y1-Y2 direction with respect to the urging slider 31b while holding the magnet 29.
 操作スライダ31a、付勢スライダ31b、および磁石保持部材37は、例えば樹脂材料により形成されている。磁石保持部材37は、磁石29の周囲を覆っており、磁石29に衝撃が加わることを抑えることができる。つまり、磁石保持部材37は、緩衝部材として機能し、上下に移動して付勢スライダ31bに当たったときの衝撃を緩和するためのものである。 The operation slider 31a, the urging slider 31b, and the magnet holding member 37 are made of, for example, a resin material. The magnet holding member 37 covers the periphery of the magnet 29 and can suppress an impact from being applied to the magnet 29. That is, the magnet holding member 37 functions as a buffer member, and is intended to reduce the impact when it moves up and down and hits the urging slider 31b.
 切替えばね部材33は、トーションばねであり、付勢スライダ31bをY1方向およびY2方向に付勢している。切替えばね部材33は、第1のトーションばね33aと、第2のトーションばね33bと、から構成されている。図2および図3に表したように、第1のトーションばね33aは、付勢スライダ31bのX2側に設けられている。第2のトーションばね33bは、付勢スライダ31bのX1側に設けられている。つまり、第1のトーションばね33aおよび第2のトーションばね33bは、X1-X2方向に並んで配置されている。 The switching spring member 33 is a torsion spring, and biases the biasing slider 31b in the Y1 direction and the Y2 direction. The switching spring member 33 includes a first torsion spring 33a and a second torsion spring 33b. As shown in FIGS. 2 and 3, the first torsion spring 33a is provided on the X2 side of the biasing slider 31b. The second torsion spring 33b is provided on the X1 side of the biasing slider 31b. That is, the first torsion spring 33a and the second torsion spring 33b are arranged side by side in the X1-X2 direction.
 第1のトーションばね33aの一端は、付勢スライダ31bに取り付けられている。第1のトーションばね33aの他端は、第2の筐体12などの固定部に取り付けられている。第2のトーションばね33bの一端は、付勢スライダ31bに取り付けられている。第2のトーションばね33bの他端は、第2の筐体12などの固定部に取り付けられている。 One end of the first torsion spring 33a is attached to the urging slider 31b. The other end of the first torsion spring 33 a is attached to a fixed part such as the second housing 12. One end of the second torsion spring 33b is attached to the urging slider 31b. The other end of the second torsion spring 33 b is attached to a fixed part such as the second housing 12.
 図2と図5に示すように、第1のトーションばね33aの付勢スライダ31bに取付けられた一端が、第2の筐体12に取付けられた他端よりもY1側に位置するときは、第1のトーションばね33aが、付勢スライダ31bをY1方向へ付勢する。一方で、付勢スライダ31bがY2方向へ移動し、第1のトーションばね33aの付勢スライダ31bに取付けられた一端が、第2の筐体12に取付けられた他端よりもY2側に位置すると、第1のトーションばね33aは、付勢スライダ31bをY2方向へ付勢する。 As shown in FIGS. 2 and 5, when one end attached to the biasing slider 31b of the first torsion spring 33a is located on the Y1 side relative to the other end attached to the second housing 12, The first torsion spring 33a biases the biasing slider 31b in the Y1 direction. On the other hand, the urging slider 31b moves in the Y2 direction, and one end of the first torsion spring 33a attached to the urging slider 31b is positioned closer to the Y2 side than the other end attached to the second housing 12. Then, the first torsion spring 33a biases the biasing slider 31b in the Y2 direction.
 同様に、第2のトーションばね33bの付勢スライダ31bに取付けられた一端が、第2の筐体12に取付けられた他端よりもY1側に位置するときは、第2のトーションばね33bは、付勢スライダ31bをY1方向へ付勢する。一方で、付勢スライダ31bがY2方向へ移動し、第2のトーションばね33bの付勢スライダ31bに取付けられた一端が、第2の筐体12に取付けられた他端よりもY2側に位置すると、第2のトーションばね33bは、付勢スライダ31bをY2方向へ付勢する。このようにして、切替えばね部材33は、付勢スライダ31bをY1方向およびY2方向に付勢している。 Similarly, when one end attached to the biasing slider 31b of the second torsion spring 33b is located on the Y1 side with respect to the other end attached to the second housing 12, the second torsion spring 33b is The biasing slider 31b is biased in the Y1 direction. On the other hand, the urging slider 31b moves in the Y2 direction, and one end of the second torsion spring 33b attached to the urging slider 31b is positioned closer to the Y2 side than the other end attached to the second housing 12. Then, the second torsion spring 33b urges the urging slider 31b in the Y2 direction. In this way, the switching spring member 33 urges the urging slider 31b in the Y1 direction and the Y2 direction.
 次に、本実施形態に係る発電入力装置の動作について、図面を参照しつつ説明する。
 以下では、説明の便宜上、第1の筐体11および第2の筐体12を省略し、内部構造体2を表す図面を用いて説明する。
Next, the operation of the power generation input device according to this embodiment will be described with reference to the drawings.
In the following, for convenience of explanation, the first housing 11 and the second housing 12 are omitted, and description will be made with reference to the drawing showing the internal structure 2.
 図28(a)(b)(c)(d)には、操作スライダ31aが第1の方向(Y2方向)へ押し込まれるときの、操作スライダ31aと付勢スライダ31bおよび磁石29の相対的な位置が順に模式的に示されている。図29(a)(b)(c)(d)には、操作スライダ31aが第2の方向(Y1方向)へ復帰動作するときの、操作スライダ31aと付勢スライダ31bおよび磁石29の相対的な位置が順に模式的に示されている。以下、図5以下の各図と図28および図29の各図を比較して参照しながら、発電入力装置1の動作を説明する。 28A, 28B, 28C, and 28D, relative to the operation slider 31a, the urging slider 31b, and the magnet 29 when the operation slider 31a is pushed in the first direction (Y2 direction). The positions are schematically shown in order. 29 (a), (b), (c), and (d), relative to the operation slider 31a, the biasing slider 31b, and the magnet 29 when the operation slider 31a returns in the second direction (Y1 direction). The positions are schematically shown in order. Hereinafter, the operation of the power generation input device 1 will be described with reference to FIG. 5 and the subsequent drawings in comparison with each of FIGS. 28 and 29.
 図5は、本実施形態の操作スライダが自由位置にある状態を表す斜視図である。
 図6は、本実施形態の操作スライダが自由位置にある状態を表す側面図および断面図である。
 図6(a)は、本実施形態の内部構造体2をX2方向に見たときの側面図である。図6(b)は、図6(a)に表した切断面C1-C1における断面図である。
FIG. 5 is a perspective view illustrating a state where the operation slider of the present embodiment is in a free position.
FIG. 6 is a side view and a cross-sectional view showing a state where the operation slider of the present embodiment is in a free position.
FIG. 6A is a side view of the internal structure 2 of the present embodiment when viewed in the X2 direction. FIG. 6B is a cross-sectional view taken along the cutting plane C1-C1 shown in FIG.
 図5~図6(b)に表したように、外部からの操作力が操作スライダ31aに作用していないときには、操作スライダ31aは、復帰ばね部材であるコイルばね35の付勢力でY1側に復帰させられている。 As shown in FIG. 5 to FIG. 6B, when the operating force from the outside is not acting on the operation slider 31a, the operation slider 31a is moved to the Y1 side by the urging force of the coil spring 35 as a return spring member. It has been restored.
 このときには、図6(a)に表したように、第1のトーションばね33aの付勢スライダ31bに取付けられた一端が、第2の筐体12に取付けられた他端よりもY1側に位置する。そのため、第1のトーションばね33aが付勢スライダ31bに与える付勢力Faは、Y1方向の成分Fayを有する。また、図28(a)に表されるように、第2のトーションばね33bの付勢スライダ31bに取付けられた一端(i)が、第2の筐体12に取付けられた他端(ii)よりもY1側に位置する。そのため、第2のトーションばね33bが付勢スライダ31bに与える付勢力Fbは、Y1方向の成分Fbyを有する。これにより、付勢スライダ31bは、第1のトーションばね33aおよび第2のトーションばね33bの付勢力によりY1側に付勢されて復帰している。このとき、操作スライダ31aと付勢スライダ31bとの間には、隙間S2が付勢スライダ31bのY2側に形成されている。 At this time, as shown in FIG. 6A, one end of the first torsion spring 33a attached to the urging slider 31b is positioned closer to the Y1 side than the other end attached to the second housing 12. To do. Therefore, the biasing force Fa applied to the biasing slider 31b by the first torsion spring 33a has a component Fay in the Y1 direction. Further, as shown in FIG. 28A, one end (i) attached to the urging slider 31b of the second torsion spring 33b is the other end (ii) attached to the second casing 12. It is located on the Y1 side. Therefore, the urging force Fb applied to the urging slider 31b by the second torsion spring 33b has a component Fby in the Y1 direction. Thereby, the urging slider 31b is urged toward the Y1 side by the urging force of the first torsion spring 33a and the second torsion spring 33b and returned. At this time, a gap S2 is formed on the Y2 side of the urging slider 31b between the operation slider 31a and the urging slider 31b.
 図6(a)に表されるように、第1のトーションばね33aが付勢スライダ31bに与える付勢力Faは、Z1方向の成分Fazを有する。第2のトーションばね33bが付勢スライダ31bに与える付勢力Fbは、Z2方向の成分Fbzを有する。このように、第1のトーションばね33aが付勢スライダ31bに与える付勢力Faは、第2のトーションばね33bが付勢スライダ31bに与える付勢力Fbの成分Fbzとは反対方向の成分Fazを有する。 6A, the biasing force Fa applied by the first torsion spring 33a to the biasing slider 31b has a component Faz in the Z1 direction. The urging force Fb applied to the urging slider 31b by the second torsion spring 33b has a component Fbz in the Z2 direction. Thus, the biasing force Fa applied to the biasing slider 31b by the first torsion spring 33a has a component Faz in the direction opposite to the component Fbz of the biasing force Fb applied to the biasing slider 31b by the second torsion spring 33b. .
 これにより、Z1-Z2方向において、第1のトーションばね33aが付勢スライダ31bに与える付勢力Faの成分Fazと、第2のトーションばね33bが付勢スライダ31bに与える付勢力Fbの成分Fbzと、を互いに相殺することができる。これにより、一方向だけの付勢力が付勢スライダ31bに対して加わることを抑え、付勢スライダ31bのより円滑な移動を実現することができる。これは、図7~図12(b)に関して後述する状態においても同じである。 Thus, in the Z1-Z2 direction, the component Faz of the biasing force Fa applied by the first torsion spring 33a to the biasing slider 31b, and the component Fbz of the biasing force Fb applied by the second torsion spring 33b to the biasing slider 31b, and , Can be offset against each other. Thereby, it is possible to suppress the urging force in only one direction from being applied to the urging slider 31b, and to realize a smoother movement of the urging slider 31b. This is the same in the state described later with reference to FIGS. 7 to 12B.
 図5および図6(b)に表したように、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置は、第1の着磁部29aに存在する。第1のローラ27aは、磁性材料により形成されているため、第1の着磁部29aの一方の着磁面291a(図4(a)~図4(c)参照)に磁気的に吸引されている。また、第2のローラ27bは、磁性材料により形成されているため、第1の着磁部29aの他方の着磁面291b(図4(a)~図4(c)参照)に磁気的に吸引されている。第1の着磁部29aは第1のローラ27aと第2のローラ27bとの間で、磁気保持力で保持されている。 As shown in FIG. 5 and FIG. 6B, the contact position between the first roller 27a and the second roller 27b and the magnet 29 exists in the first magnetized portion 29a. Since the first roller 27a is made of a magnetic material, it is magnetically attracted to one magnetized surface 291a (see FIGS. 4A to 4C) of the first magnetized portion 29a. ing. Further, since the second roller 27b is made of a magnetic material, the second roller 27b is magnetically applied to the other magnetized surface 291b (see FIGS. 4A to 4C) of the first magnetized portion 29a. Being sucked. The first magnetized portion 29a is held between the first roller 27a and the second roller 27b with a magnetic holding force.
 このとき、図6(a)と図28(a)に表したように、付勢スライダ31bと磁石保持部材37との間には、隙間S1が磁石保持部材37のY1側に形成されている。 At this time, as shown in FIG. 6A and FIG. 28A, a gap S <b> 1 is formed on the Y <b> 1 side of the magnet holding member 37 between the biasing slider 31 b and the magnet holding member 37. .
 図6(b)に表したように、第1のローラ27aの回転中心271aと、第2のローラ27bの回転中心271bと、を結ぶ仮想直線L1は、第1の着磁部29aと、第2の着磁部29bと、の間の境界面29cに対して平行であり、仮想直線L1は磁石29の移動方向であるY1-Y2方向と直交している。第1のローラ27aの回転中心271aと、第2のローラ27bの回転中心271bと、を結ぶ仮想直線L1は、第1のローラ27aと磁石29との接触位置と、第2のローラ27bと磁石29との接触位置と、を結ぶ仮想直線に相当する。また、仮想直線L1は、磁石29と、第1のローラ27aならびに第2のローラ27bとの対向中心線である。第1のローラ27aと第2のローラ27bを設けない実施の形態の場合には、仮想直線L1は、磁石29とヨーク部材23との対向中心線である。 As shown in FIG. 6B, an imaginary straight line L1 connecting the rotation center 271a of the first roller 27a and the rotation center 271b of the second roller 27b is formed between the first magnetized portion 29a and the first magnetized portion 29a. The imaginary straight line L1 is orthogonal to the Y1-Y2 direction, which is the moving direction of the magnet 29, parallel to the boundary surface 29c between the two magnetized portions 29b. A virtual straight line L1 connecting the rotation center 271a of the first roller 27a and the rotation center 271b of the second roller 27b is a contact position between the first roller 27a and the magnet 29, and the second roller 27b and the magnet. 29 corresponds to an imaginary straight line connecting the contact position with 29. The imaginary straight line L1 is the opposite center line between the magnet 29, the first roller 27a, and the second roller 27b. In the embodiment in which the first roller 27 a and the second roller 27 b are not provided, the virtual straight line L <b> 1 is the opposing center line between the magnet 29 and the yoke member 23.
 図5に表した二点鎖線の矢印のように、第1の着磁部29aの一方の着磁面291aから出た磁束は、第1のローラ27aと、第1のヨーク23aと、コア21と、第2のヨーク23bと、第2のローラ27bと、をこの順に通り、第1の着磁部29aの他方の着磁面291bに入る。これにより、操作スライダ31aが自由位置にある状態において、磁気回路が構成されている。 As indicated by an alternate long and two short dashes arrow in FIG. 5, the magnetic flux emitted from one magnetized surface 291 a of the first magnetized portion 29 a is composed of the first roller 27 a, the first yoke 23 a, and the core 21. Then, the second yoke 23b and the second roller 27b are passed in this order and enter the other magnetized surface 291b of the first magnetized portion 29a. Thus, a magnetic circuit is configured in a state where the operation slider 31a is in a free position.
 図7は、本実施形態の操作スライダが押し込まれたときの状態を表す斜視図である。
 図8は、本実施形態の操作スライダが押し込まれたときの状態を表す側面図および断面図である。
 図8(a)は、本実施形態の内部構造体2をX2方向に見たときの側面図である。図8(b)は、図8(a)に表した切断面C2-C2における断面図である。
FIG. 7 is a perspective view showing a state when the operation slider of this embodiment is pushed.
FIG. 8 is a side view and a cross-sectional view showing a state when the operation slider of this embodiment is pushed.
FIG. 8A is a side view of the internal structure 2 of the present embodiment when viewed in the X2 direction. FIG. 8B is a cross-sectional view taken along section line C2-C2 shown in FIG.
 外部からY2方向(第1の方向)の操作力(押圧力)が操作スライダ31aに作用すると、操作スライダ31aは、コイルばね35の付勢力に対抗しつつY2方向へ移動する。操作スライダ31aがY2方向へ移動すると、操作スライダ31aで付勢スライダ31bがY2方向へ押され、操作スライダ31aとともに付勢スライダ31bがY2方向へ移動する。 When an operation force (pressing force) in the Y2 direction (first direction) is applied to the operation slider 31a from the outside, the operation slider 31a moves in the Y2 direction against the urging force of the coil spring 35. When the operation slider 31a moves in the Y2 direction, the urging slider 31b is pushed in the Y2 direction by the operation slider 31a, and the urging slider 31b moves in the Y2 direction together with the operation slider 31a.
 磁石29は、第1のローラ27aと第2のローラ27bとの間において磁力で保持されているため、付勢スライダ31bがY2方向へ移動し始めたときに磁石29は動かず、図8(a)と図28(b)に示すように、 それまで磁石保持部材37のY1側に形成されていた隙間S1がなくなり、付勢スライダ31bが磁石保持部材37の上部に接触する。
  その代りに、図8(a)と図28(b)に表したように、付勢スライダ31bと磁石保持部材37との間には、隙間S3が磁石保持部材37のY2側に形成される。なお、付勢スライダ31bのY2側に形成されていた隙間S2は、維持されたままである。
Since the magnet 29 is held by the magnetic force between the first roller 27a and the second roller 27b, the magnet 29 does not move when the biasing slider 31b starts to move in the Y2 direction, and FIG. As shown in FIG. 28A and FIG. 28B, the gap S <b> 1 that has been formed on the Y <b> 1 side of the magnet holding member 37 until then disappears, and the biasing slider 31 b comes into contact with the upper portion of the magnet holding member 37.
Instead, as shown in FIGS. 8A and 28B, a gap S3 is formed on the Y2 side of the magnet holding member 37 between the biasing slider 31b and the magnet holding member 37. . Note that the gap S2 formed on the Y2 side of the biasing slider 31b remains maintained.
 操作スライダ31aがY2方向へ押されて、付勢スライダ31bがY2方向へさらに移動すると、磁石保持部材37は、付勢スライダ31bから力を受け、磁石29を保持した状態でY2方向へ移動させられる。付勢スライダ31bが、図28(b)の位置からさらにY2方向へ押され、図7および図8(a)および図28(c)の位置に至ると、第1のトーションばね33aおよび第2のトーションばね33bが、中立姿勢になる。 When the operation slider 31a is pushed in the Y2 direction and the urging slider 31b further moves in the Y2 direction, the magnet holding member 37 receives the force from the urging slider 31b and moves in the Y2 direction while holding the magnet 29. It is done. When the biasing slider 31b is further pushed in the Y2 direction from the position shown in FIG. 28B and reaches the positions shown in FIGS. 7, 8A, and 28C, the first torsion spring 33a and the second The torsion spring 33b is in a neutral posture.
 本願明細書において、「中立姿勢」とは、トーションばねの一端(i)の位置が、トーションばねの他端(ii)の位置に対して水平面(X-Z平面)において並んだ姿勢をいう。あるいは、「中立姿勢」とは、トーションばねが任意の部材(本実施形態では付勢スライダ31b)に与える付勢力が、水平方向の成分のみを有し、鉛直方向(Y1-Y2方向)の成分を有していない姿勢をいう。 In the present specification, the “neutral posture” means a posture in which the position of one end (i) of the torsion spring is aligned in the horizontal plane (XZ plane) with respect to the position of the other end (ii) of the torsion spring. Alternatively, the “neutral posture” means that the urging force that the torsion spring applies to an arbitrary member (the urging slider 31b in this embodiment) has only a horizontal component, and a vertical component (Y1-Y2 direction). An attitude that does not have.
 第1のトーションばね33aおよび第2のトーションばね33bが中立姿勢にあるとき、第1のトーションばね33aおよび第2のトーションばね33bのそれぞれのたわみが最大となる。図8(b)に示すように、第1のトーションばね33aおよび第2のトーションばね33bが中立姿勢にあるとき、第1のトーションばね33aが付勢スライダ31bに与える付勢力Faは、第2のトーションばね33bが付勢スライダ31bに与える付勢力Fbとつり合っている。 When the first torsion spring 33a and the second torsion spring 33b are in the neutral posture, the respective deflections of the first torsion spring 33a and the second torsion spring 33b are maximized. As shown in FIG. 8B, when the first torsion spring 33a and the second torsion spring 33b are in the neutral posture, the urging force Fa applied to the urging slider 31b by the first torsion spring 33a is the second The torsion spring 33b balances with the urging force Fb applied to the urging slider 31b.
 図7および図8(b)に表したように、操作スライダ31aの押し込み時において、第1のトーションばね33aおよび第2のトーションばね33bが中立姿勢にあるとき、第1のローラ27aおよび第2のローラ27bと、磁石29との接触位置は、第1の着磁部29aに存在する。図28(c)に示すように、仮想直線L1は、第1の着磁部29a上に位置している。具体的には、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置は、境界面29cの近傍 の第1の着磁部29a側に存在する。言い換えれば、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置は、第1の着磁部29aから第2の着磁部29bへ変化する直前の状態である。 As shown in FIGS. 7 and 8B, when the first torsion spring 33a and the second torsion spring 33b are in the neutral posture when the operation slider 31a is pushed, the first roller 27a and the second roller 27a The contact position between the roller 27b and the magnet 29 exists in the first magnetized portion 29a. As shown in FIG. 28C, the virtual straight line L1 is located on the first magnetized portion 29a. Specifically, the contact position between the first roller 27a and the second roller 27b and the magnet 29 exists on the first magnetized portion 29a side in the vicinity of the boundary surface 29c. In other words, the contact position between the first roller 27a and the second roller 27b and the magnet 29 is a state immediately before the change from the first magnetized portion 29a to the second magnetized portion 29b.
 第1のトーションばね33aおよび第2のトーションばね33bが中立姿勢にある状態から、図28(d)に示すように、 さらに操作スライダ31aがコイルばね35の付勢力に対抗しつつY2方向へ押され、操作スライダ31aによって付勢スライダ31bがY2方向へ押されると、第1のトーションばね33aの付勢スライダ31bに取付けられた一端が、第2の筐体12に取付けられた他端よりもY2側に移動する。そのため、第1のトーションばね33aが付勢スライダ31bに与える付勢力Faが、Y2方向の成分Fayを有するように変換させられる。また、図28(d)に表されるように、第2のトーションばね33bの付勢スライダ31bに取付けられた一端(i)も、第2の筐体12に取付けられた他端(ii)よりもY2側に移動する。そのため、第2のトーションばね33bが付勢スライダ31bに与える付勢力Fbも、Y2方向の成分Fbyを有するように変換させられる。これにより、付勢スライダ31bは、第1のトーションばね33aおよび第2のトーションばね33bによりY2方向に付勢される。 From the state where the first torsion spring 33a and the second torsion spring 33b are in the neutral posture, as shown in FIG. 28 (d), the operation slider 31a further pushes in the Y2 direction against the urging force of the coil spring 35. When the urging slider 31b is pushed in the Y2 direction by the operation slider 31a, one end of the first torsion spring 33a attached to the urging slider 31b is more than the other end attached to the second housing 12. Move to Y2 side. Therefore, the urging force Fa applied to the urging slider 31b by the first torsion spring 33a is converted so as to have a component Fay in the Y2 direction. In addition, as shown in FIG. 28D, one end (i) attached to the urging slider 31b of the second torsion spring 33b is also the other end (ii) attached to the second casing 12. Move to the Y2 side. Therefore, the urging force Fb applied to the urging slider 31b by the second torsion spring 33b is also converted so as to have a component Fby in the Y2 direction. Thereby, the urging slider 31b is urged in the Y2 direction by the first torsion spring 33a and the second torsion spring 33b.
 このとき、付勢スライダ31bが操作スライダ31aとは別体として設けられ、図28(c)の時点で、隙間S2が付勢スライダ31bのY2側に形成されていたため、第1のトーションばね33aと第2のトーションばね33bの付勢力がY2方向に切替えられた瞬間に、付勢スライダ31bが、操作スライダ31aとは独立してY2方向に移動させられる。そして、操作スライダ31aと付勢スライダ31bとの間では、付勢スライダ31bのY1側に隙間S4が形成される。 At this time, the urging slider 31b is provided separately from the operation slider 31a, and the gap S2 is formed on the Y2 side of the urging slider 31b at the time of FIG. 28 (c), so the first torsion spring 33a. At the moment when the urging force of the second torsion spring 33b is switched in the Y2 direction, the urging slider 31b is moved in the Y2 direction independently of the operation slider 31a. A gap S4 is formed between the operation slider 31a and the urging slider 31b on the Y1 side of the urging slider 31b.
 付勢スライダ31bの動きと、操作スライダ31aの動きと、を別の動きに設定することができるため、付勢スライダ31bは、外部操作の速度(操作スライダ31aの速度)にほとんど影響を受けることなく、より速い速度でY2方向へ移動することができる。付勢スライダ31bは、第1のトーションばね33aおよび第2のトーションばね33bの付勢力によりY2方向へ加速されて移動する。 Since the movement of the urging slider 31b and the movement of the operation slider 31a can be set to different movements, the urging slider 31b is almost affected by the speed of the external operation (speed of the operation slider 31a). And can move in the Y2 direction at a higher speed. The urging slider 31b is accelerated and moved in the Y2 direction by the urging force of the first torsion spring 33a and the second torsion spring 33b.
 操作スライダ31aおよび付勢スライダ31bがY2方向へ移動し、磁石保持部材37が磁石29を保持した状態でY2方向へ移動すると、図9および図10(b)に表したように、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置が、第1の着磁部29aから第2の着磁部29bへ変化する。すると、コア21、ヨーク部材23およびローラ部材27を通る磁束の向きが反転する。 When the operation slider 31a and the urging slider 31b are moved in the Y2 direction and the magnet holding member 37 is moved in the Y2 direction while holding the magnet 29, as shown in FIG. 9 and FIG. The contact position between the roller 27a and the second roller 27b and the magnet 29 changes from the first magnetized portion 29a to the second magnetized portion 29b. Then, the direction of the magnetic flux passing through the core 21, the yoke member 23, and the roller member 27 is reversed.
 すなわち、図9に表した二点鎖線の矢印ように、第2の着磁部29bの他方の着磁面292b(図4(a)~図4(c)参照)から出た磁束は、第2のローラ27bと、第2のヨーク23bと、コア21と、第1のヨーク23aと、第1のローラ27aと、をこの順に通り、第2の着磁部29bの一方の着磁面292aに入る。これにより、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置が、第1の着磁部29aから第2の着磁部29bへ変化し、コア21、ヨーク部材23およびローラ部材27を通る磁束の向きが反転する。 That is, as indicated by the two-dot chain line arrow shown in FIG. 9, the magnetic flux emitted from the other magnetized surface 292b of the second magnetized portion 29b (see FIGS. 4 (a) to 4 (c)) The second roller 27b, the second yoke 23b, the core 21, the first yoke 23a, and the first roller 27a in this order, and one of the magnetized surfaces 292a of the second magnetized portion 29b. to go into. Thereby, the contact position between the first roller 27a and the second roller 27b and the magnet 29 changes from the first magnetized portion 29a to the second magnetized portion 29b, and the core 21 and the yoke member 23 are changed. And the direction of the magnetic flux passing through the roller member 27 is reversed.
 これにより、コア21に巻かれたコイル25の内部を通る磁束の向きが反転する。これにより、操作スライダ31aおよび付勢スライダ31bがY2方向に移動するときに、コイル25に誘導起電力が発生する。 Thereby, the direction of the magnetic flux passing through the inside of the coil 25 wound around the core 21 is reversed. Thereby, an induced electromotive force is generated in the coil 25 when the operation slider 31a and the urging slider 31b move in the Y2 direction.
 なお、図9は、本実施形態の操作スライダが最も押し込まれたときの状態を表す斜視図である。
 図10は、本実施形態の操作スライダが最も押し込まれたときの状態を表す側面図および断面図である。
 図10(a)は、本実施形態の内部構造体2をX2方向に見たときの側面図である。図10(b)は、図10(a)に表した切断面C3-C3における断面図である。
FIG. 9 is a perspective view showing a state when the operation slider of the present embodiment is pushed in most.
10A and 10B are a side view and a cross-sectional view illustrating a state when the operation slider of the present embodiment is pushed in the most.
FIG. 10A is a side view of the internal structure 2 of the present embodiment when viewed in the X2 direction. FIG. 10B is a cross-sectional view taken along section line C3-C3 shown in FIG.
 図9と図10では、図29(a)にも示すように、操作スライダ31aによって付勢スライダ31bがさらに押し下げられ、操作スライダ31aと付勢スライダ31bとの間では、付勢スライダ31bのY2側に隙間S2が形成される。 9 and 10, the urging slider 31b is further pushed down by the operation slider 31a as shown in FIG. 29A, and the Y2 of the urging slider 31b is between the operation slider 31a and the urging slider 31b. A gap S2 is formed on the side.
 図11は、本実施形態の操作スライダが復帰するときの状態を表す斜視図である。
 図12は、本実施形態の操作スライダが復帰するときの状態を表す側面図および断面図である。
 図12(a)は、本実施形態の内部構造体2をX2方向に見たときの側面図である。図12(b)は、図12(a)に表した切断面C4-C4における断面図である。
FIG. 11 is a perspective view illustrating a state when the operation slider of the present embodiment returns.
12A and 12B are a side view and a cross-sectional view illustrating a state when the operation slider of the present embodiment returns.
FIG. 12A is a side view of the internal structure 2 of the present embodiment when viewed in the X2 direction. FIG. 12B is a cross-sectional view taken along section line C4-C4 shown in FIG.
 図9と図10(b)および図29(a)に示すように、操作スライダ31aがY2方向に最も押し込まれた状態から、操作スライダ31aに作用する外部からの操作力が解除されると、操作スライダ31aは、コイルばね35の付勢力によりY1方向へ復帰移動する。図9と図10(b)および図29(a)の状態では、磁石29の第2の着磁部29bが、第1のローラ27aと第2のローラ27bの間で、磁気力で保持されている。そのため、操作スライダ31aがY1方向へ移動し始めた直後は、磁石29が動くことがなく、操作スライダ31aと付勢スライダ31bがY1方向へ移動して、付勢スライダ31bのY2側に形成されていた隙間S2がなくなり、操作スライダ31aが付勢スライダ31bの下部に接触し、図29(b)に表したように、操作スライダ31aと付勢スライダ31bとの間に、隙間S4が付勢スライダ31bのY1側に形成される。 As shown in FIGS. 9, 10 (b) and 29 (a), when the operation force from the outside acting on the operation slider 31 a is released from the state in which the operation slider 31 a is most pushed in the Y2 direction, The operation slider 31a moves back in the Y1 direction by the biasing force of the coil spring 35. In the state of FIG. 9, FIG. 10 (b) and FIG. 29 (a), the second magnetized portion 29b of the magnet 29 is held by the magnetic force between the first roller 27a and the second roller 27b. ing. Therefore, immediately after the operation slider 31a starts to move in the Y1 direction, the magnet 29 does not move, and the operation slider 31a and the urging slider 31b move in the Y1 direction and are formed on the Y2 side of the urging slider 31b. As shown in FIG. 29B, the gap S4 is urged between the operation slider 31a and the urging slider 31b. It is formed on the Y1 side of the slider 31b.
 さらに、操作スライダ31aがY1方向へ移動し、付勢スライダ31bがY1方向へ移動すると、図29(b)に示すように、磁石保持部材37 と付勢スライダ31bとの間では、磁石保持部材37のY2側に形成されていた隙間S3がなくなって、付勢スライダ31bが磁石保持部材37の下部に接触する。そして、付勢スライダ31bと磁石保持部材37との間には、隙間S1が磁石保持部材37のY1側に形成される。 Further, when the operation slider 31a moves in the Y1 direction and the biasing slider 31b moves in the Y1 direction, as shown in FIG. 29B, the magnet holding member is between the magnet holding member 37 部 材 and the biasing slider 31b. The gap S3 formed on the Y2 side of 37 disappears, and the urging slider 31b contacts the lower part of the magnet holding member 37. A gap S <b> 1 is formed on the Y <b> 1 side of the magnet holding member 37 between the biasing slider 31 b and the magnet holding member 37.
 コイルばね35の付勢力で、操作スライダ31aおよび付勢スライダ31bが、図11および図12(a)および図29(c)の位置に移動すると、第1のトーションばね33aおよび第2のトーションばね33bが、中立姿勢になる。操作スライダ31aの復帰時において、第1のトーションばね33aおよび第2のトーションばね33bが中立姿勢になった時点では、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置は、第2の着磁部29bに存在する。図29(c)に示すように、仮想直線L1は、第2の着磁部29bに位置している。具体的には、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置は、境界面29c の近傍の第2の着磁部29b側に存在する。言い換えれば、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置は、第2の着磁部29bから第1の着磁部29aへ変化する直前の状態である。 When the operation slider 31a and the urging slider 31b are moved to the positions shown in FIGS. 11, 12A, and 29C by the urging force of the coil spring 35, the first torsion spring 33a and the second torsion spring are moved. 33b becomes a neutral posture. When the first torsion spring 33a and the second torsion spring 33b are in the neutral posture when the operation slider 31a is returned, the contact position between the first roller 27a and the second roller 27b and the magnet 29 is reached. Exists in the second magnetized portion 29b. As shown in FIG. 29 (c), the virtual straight line L1 is located in the second magnetized portion 29b. Specifically, the contact position between the first roller 27a and the second roller 27b and the magnet 29 exists on the second magnetized portion 29b side in the vicinity of the boundary surface 29c. In other words, the contact position between the first roller 27a and the second roller 27b and the magnet 29 is the state immediately before the change from the second magnetized portion 29b to the first magnetized portion 29a.
 第1のトーションばね33aおよび第2のトーションばね33bが中立姿勢にある状態から、操作スライダ31aがコイルばね35の付勢力によりY1方向へさらに移動させられ、第1のトーションばね33aの一端が第1のトーションばね33aの他端よりもY1側に位置すると、第1のトーションばね33aが付勢スライダ31bに与える付勢力Faが、Y1方向の成分Fayを有するようになる。また、第2のトーションばね33bの一端(i)が第2のトーションばね33bの他端(ii)よりもY1側に位置し、第2のトーションばね33bが付勢スライダ31bに与える付勢力Fbが、Y1方向の成分Fbyを有する(図29(d)参照)ようになる。これにより、付勢スライダ31bは、第1のトーションばね33aおよび第2のトーションばね33bによりY1方向に付勢される。 From the state where the first torsion spring 33a and the second torsion spring 33b are in the neutral posture, the operation slider 31a is further moved in the Y1 direction by the biasing force of the coil spring 35, and one end of the first torsion spring 33a is in the first position. When the first torsion spring 33a is positioned closer to the Y1 side than the other end, the urging force Fa applied to the urging slider 31b by the first torsion spring 33a has a component Fay in the Y1 direction. Further, one end (i) of the second torsion spring 33b is located on the Y1 side with respect to the other end (ii) of the second torsion spring 33b, and the urging force Fb applied to the urging slider 31b by the second torsion spring 33b. Has a component Fby in the Y1 direction (see FIG. 29D). Thereby, the urging slider 31b is urged in the Y1 direction by the first torsion spring 33a and the second torsion spring 33b.
 このとき、図29(c)から図29(d)に示すように、操作スライダ31aに対して付勢スライダ31bが先行してY1方向へ移動できるため、コイルばね35の付勢力による操作スライダ31aのY1方向への移動速度が遅くても、付勢スライダ31bが操作スライダ31aに拘束されることなく、高速でY1方向へ移動する。 At this time, as shown in FIGS. 29C to 29D, the urging slider 31b can move in the Y1 direction ahead of the operation slider 31a, so that the operation slider 31a by the urging force of the coil spring 35 is used. Even if the moving speed in the Y1 direction is slow, the urging slider 31b moves in the Y1 direction at a high speed without being restrained by the operation slider 31a.
 磁石保持部材37が磁石29を保持した状態でY1方向へ高速で移動し、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置が、第2の着磁部29bから第1の着磁部29aへ急激に変化する。すると、コア21、ヨーク部材23およびローラ部材27を通る磁束の向きが反転する。すなわち、磁束の向きは、図5に関して前述した磁束の向きと同じになる。 The magnet holding member 37 moves at a high speed in the Y1 direction while holding the magnet 29, and the contact position between the first roller 27a and the second roller 27b and the magnet 29 is changed from the second magnetized portion 29b. It changes rapidly to the first magnetized portion 29a. Then, the direction of the magnetic flux passing through the core 21, the yoke member 23, and the roller member 27 is reversed. That is, the direction of the magnetic flux is the same as the direction of the magnetic flux described above with reference to FIG.
 すると、コア21に巻かれたコイル25の内部を通る磁束の向きが反転する。これにより、操作スライダ31aおよび付勢スライダ31bがY1方向に移動するときに、コイル25に誘導起電力が発生する。このように、本実施形態に係る発電入力装置1によれば、操作スライダ31aの押し込み時および復帰時の両方において、コイル25に誘導起電力が発生する。 Then, the direction of the magnetic flux passing through the inside of the coil 25 wound around the core 21 is reversed. Thereby, an induced electromotive force is generated in the coil 25 when the operation slider 31a and the urging slider 31b move in the Y1 direction. Thus, according to the power generation input device 1 according to the present embodiment, an induced electromotive force is generated in the coil 25 both when the operation slider 31a is pushed in and when the operation slider 31a is returned.
 本実施形態に係る発電入力装置1では、図28(c)の状態で、磁石29の第1の着磁部29aが、第1のローラ27aと第2のローラ27bにおいて磁気保磁力で保持されている。そのため、図28(c)からさらに付勢スライダ31bがY2方向へ移動したときに、第1のトーションばね33aの付勢力Faの、Y2方向の成分Fayと、第2のトーションばね33bの付勢力Fbの、Y2方向の成分Fbyとの総和が、第1の着磁部29aを磁力で保持している力よりも大きいことが必要である。これは、図29に示すように、付勢スライダ31bがY1方向へ復帰するときも同じである。 In the power generation input device 1 according to the present embodiment, the first magnetized portion 29a of the magnet 29 is held by the first roller 27a and the second roller 27b with a magnetic coercive force in the state of FIG. ing. Therefore, when the urging slider 31b further moves in the Y2 direction from FIG. 28C, the component Fay in the Y2 direction of the urging force Fa of the first torsion spring 33a and the urging force of the second torsion spring 33b. The total sum of Fb and the component Fby in the Y2 direction needs to be larger than the force that holds the first magnetized portion 29a with a magnetic force. This is the same when the urging slider 31b returns to the Y1 direction as shown in FIG.
 本実施形態に係る発電入力装置1では、第1のトーションばね33aと第2のトーションばね33bの付勢力が付勢スライダ31bに与えられるが、磁石29を保持している磁石保持部材37は、付勢スライダ31bの内部でY1-Y2方向への移動余裕(隙間S1,S3)を有している。その結果、付勢スライダ31bがY2方向へ移動するときは、図28(c)に示すように、第1の着磁部29aと第2の着磁部29bとの境界部が仮想直線L1を通過する直前に、第1のトーションばね33aと第2のトーションばね33bを中立姿勢にでき、付勢スライダ31bがY1方向へ復帰移動するときも、図29(c)に示すように、第1の着磁部29aと第2の着磁部29bとの境界部が仮想直線L1を通過する直前に、第1のトーションばね33aと第2のトーションばね33bを中立姿勢に設定することができる。 In the power generation input device 1 according to the present embodiment, the urging force of the first torsion spring 33a and the second torsion spring 33b is applied to the urging slider 31b, but the magnet holding member 37 holding the magnet 29 is Within the urging slider 31b, there is a movement margin (gap S1, S3) in the Y1-Y2 direction. As a result, when the urging slider 31b moves in the Y2 direction, as shown in FIG. 28C, the boundary between the first magnetized portion 29a and the second magnetized portion 29b forms an imaginary straight line L1. Immediately before passing, the first torsion spring 33a and the second torsion spring 33b can be in a neutral posture, and when the biasing slider 31b moves back in the Y1 direction, as shown in FIG. The first torsion spring 33a and the second torsion spring 33b can be set to the neutral posture immediately before the boundary between the magnetized portion 29a and the second magnetized portion 29b passes through the virtual straight line L1.
 よって、付勢スライダ31bがY2方向へ移動するときに、第1のトーションばね33aと第2のトーションばね33bのY2方向 への付勢力で、第1の着磁部29aと第2の着磁部29bとの境界部が、仮想直線L1を 通過することになり、付勢スライダ31bがY1方向へ復帰移動するときにも、第1のトーションばね33aと第2のトーションばね33bのY1方向への付勢力で、第1の着磁部29aと第2の着磁部29bとの境界部を、仮想直線L1に通過させることができる。したがって、ヨーク部材の内部に導かれる磁束の向きを高速に反転させることができる。 Therefore, when the biasing slider 31b moves in the Y2 direction, the first magnetizing portion 29a and the second magnetizing are caused by the biasing force of the first torsion spring 33a and the second torsion spring 33b in the Y2 direction. The boundary portion with the portion 29b passes through the imaginary straight line L1, and when the urging slider 31b moves back in the Y1 direction, the first torsion spring 33a and the second torsion spring 33b move in the Y1 direction. With this urging force, the boundary portion between the first magnetized portion 29a and the second magnetized portion 29b can be passed through the virtual straight line L1. Therefore, the direction of the magnetic flux guided to the inside of the yoke member can be reversed at high speed.
 また、操作スライダ31aに対して付勢スライダ31bがY1-Y2方向へ移動余裕(隙間S2,S4)を有しているため、図28(c)から図28(d)にかけて、第1のトーションばね33aと第2のトーションばね33bのY2方向への付勢力 で、付勢スライダ31bがY2方向へ移動するときに、操作スライダ31aが、付勢スライダ31bの高速移動を妨げることがない。これは、図29(c)から図29(d)にかけて、操作スライダ31aがY1方向へ復帰するときも同じである。 Further, since the urging slider 31b has a movement margin (gap S2, S4) in the Y1-Y2 direction with respect to the operation slider 31a, the first torsion is performed from FIG. 28 (c) to FIG. 28 (d). When the urging slider 31b moves in the Y2 direction by the urging force in the Y2 direction of the spring 33a and the second torsion spring 33b, the operation slider 31a does not prevent the urging slider 31b from moving at high speed. This is the same when the operation slider 31a returns to the Y1 direction from FIG. 29 (c) to FIG. 29 (d).
 次に、本発明の他の実施形態に係る発電入力装置について説明する。
 図13は、本発明の他の実施形態に係る発電入力装置を表す斜視図である。
 図14は、本実施形態に係る発電入力装置の内部構造を表す斜視図である。
 図15は、本実施形態に係る発電入力装置の内部構造を表す分解図である。
Next, a power generation input device according to another embodiment of the present invention will be described.
FIG. 13 is a perspective view showing a power generation input device according to another embodiment of the present invention.
FIG. 14 is a perspective view showing the internal structure of the power generation input device according to this embodiment.
FIG. 15 is an exploded view showing the internal structure of the power generation input device according to this embodiment.
 図13~図15は、本実施形態に係る発電入力装置1Aは、第1の筐体11と、第2の筐体12と、第1の筐体11と第2の筐体12との間の内部に設けられた内部構造体2Aと、を備える。 13 to 15 show that the power generation input device 1A according to the present embodiment includes a first housing 11, a second housing 12, and a space between the first housing 11 and the second housing 12. 2A, and an internal structure 2A provided inside.
 図14および図15に表したように、内部構造体2Aは、コア21と、ヨーク部材23と、コイル25と、ローラ部材27と、磁石29と、スライド部材31と、切替えばね部材33と、を有する。 As shown in FIGS. 14 and 15, the internal structure 2 </ b> A includes a core 21, a yoke member 23, a coil 25, a roller member 27, a magnet 29, a slide member 31, a switching spring member 33, Have
 コア21は、X1-X2方向に延びている。これに伴い、コア21に巻かれたコイル25の軸は、X1-X2方向に延びている。コア21およびコイル25の配置において、本実施形態に係る発電入力装置1Aは、図1~図3に関して前述した発電入力装置1とは異なる。 The core 21 extends in the X1-X2 direction. Accordingly, the axis of the coil 25 wound around the core 21 extends in the X1-X2 direction. In the arrangement of the core 21 and the coil 25, the power generation input device 1A according to the present embodiment is different from the power generation input device 1 described above with reference to FIGS.
 また、操作スライダ31aの下部には、2つのコイルばね35がX1-X2方向に並んで配置されている。2つのコイルばね35のそれぞれの一端は、操作スライダ31aの下部に取り付けられている。2つのコイルばね35のそれぞれの他端は、第1の筐体11に取り付けられている。2つのコイルばね35は、操作スライダ31aをY1方向へ付勢している。コイルばね35の設置数において、本実施形態に係る発電入力装置1Aは、図1~図3に関して前述した発電入力装置1とは異なる。 Further, two coil springs 35 are arranged in the X1-X2 direction below the operation slider 31a. One end of each of the two coil springs 35 is attached to the lower part of the operation slider 31a. The other ends of the two coil springs 35 are attached to the first housing 11. The two coil springs 35 urge the operation slider 31a in the Y1 direction. In terms of the number of coil springs 35 installed, the power generation input device 1A according to the present embodiment is different from the power generation input device 1 described above with reference to FIGS.
 付勢スライダ31bのX2側には、第1のトーションばね33aが設けられている。第1のトーションばね33aの一端は、付勢スライダ31bに取り付けられている。第1のトーションばね33aの他端は、第2の筐体12に取り付けられている。付勢スライダ31bのX1側には、第2のトーションばね33bが設けられている。第2のトーションばね33bの一端は、付勢スライダ31bに取り付けられている。第2のトーションばね33bの他端は、第2の筐体12に取り付けられている。 A first torsion spring 33a is provided on the X2 side of the biasing slider 31b. One end of the first torsion spring 33a is attached to the urging slider 31b. The other end of the first torsion spring 33 a is attached to the second housing 12. A second torsion spring 33b is provided on the X1 side of the urging slider 31b. One end of the second torsion spring 33b is attached to the urging slider 31b. The other end of the second torsion spring 33 b is attached to the second housing 12.
 第1のトーションばね33aが付勢スライダ31bに与える付勢力Fa(図18参照)は、X1方向の成分Fax(図18参照)を有する。第2のトーションばね33bが付勢スライダ31bに与える付勢力Fb(図18参照)は、X2方向の成分Fbxを有する。第1のトーションばね33aおよび第2のトーションばね33bが付勢スライダ31bに与える付勢力の水平面(X-Z平面)内の成分において、本実施形態に係る発電入力装置1Aは、図1~図3に関して前述した発電入力装置1とは異なる。 The urging force Fa (see FIG. 18) applied to the urging slider 31b by the first torsion spring 33a has a component Fax (see FIG. 18) in the X1 direction. The urging force Fb (see FIG. 18) applied to the urging slider 31b by the second torsion spring 33b has a component Fbx in the X2 direction. With respect to the components in the horizontal plane (XZ plane) of the urging force applied to the urging slider 31b by the first torsion spring 33a and the second torsion spring 33b, the power generation input device 1A according to this embodiment is shown in FIGS. 3 is different from the power generation input device 1 described above.
 その他の各部材の構造、材料、および配置は、図1~図3に関して前述した通りである。また、本実施形態に係る発電入力装置1Aが備える磁石29は、図4に関して前述した通りである。 The structure, material, and arrangement of other members are as described above with reference to FIGS. Further, the magnet 29 included in the power generation input device 1A according to the present embodiment is as described above with reference to FIG.
 次に、本実施形態に係る発電入力装置の動作について、図面を参照しつつ説明する。
 以下では、説明の便宜上、第1の筐体11および第2の筐体12を省略し、内部構造体2Aを表す図面を用いて説明する。
Next, the operation of the power generation input device according to this embodiment will be described with reference to the drawings.
In the following, for convenience of explanation, the first casing 11 and the second casing 12 are omitted, and description will be made with reference to the drawing showing the internal structure 2A.
 図16は、本実施形態の操作スライダが自由位置にある状態を表す斜視図である。
 図17は、本実施形態の操作スライダが自由位置にある状態を表す側面図および断面図である。
 図18は、本実施形態の操作スライダが自由位置にある状態を表す正面図である。
 図17(a)は、本実施形態の内部構造体2AをX2方向に見たときの側面図である。図17(b)は、図17(a)に表した切断面C5-C5における断面図である。
  図18は、本実施形態の内部構造体2AをZ2方向に見たときの正面図である。この動作状態は、図28(a)に相当している。
FIG. 16 is a perspective view illustrating a state where the operation slider of the present embodiment is in a free position.
FIG. 17 is a side view and a cross-sectional view illustrating a state where the operation slider of the present embodiment is in a free position.
FIG. 18 is a front view illustrating a state where the operation slider of the present embodiment is in a free position.
FIG. 17A is a side view of the internal structure 2A of the present embodiment when viewed in the X2 direction. FIG. 17B is a cross-sectional view taken along section line C5-C5 shown in FIG.
FIG. 18 is a front view of the internal structure 2A according to the present embodiment when viewed in the Z2 direction. This operation state corresponds to FIG.
 図16~図18に表したように、外部からの操作力が操作スライダ31aに作用していないときには、操作スライダ31aは、コイルばね35の付勢力によりY1側に位置している。 As shown in FIGS. 16 to 18, when the operating force from the outside is not acting on the operation slider 31a, the operation slider 31a is positioned on the Y1 side by the biasing force of the coil spring 35.
 このときには、図18に表したように、第1のトーションばね33aの一端が第1のトーションばね33aの他端よりもY1側に位置する。そのため、第1のトーションばね33aが付勢スライダ31bに与える付勢力Faは、Y1方向の成分Fayを有する。また、第2のトーションばね33bの一端が第2のトーションばね33bの他端よりもY1側に位置する。そのため、第2のトーションばね33bが付勢スライダ31bに与える付勢力Fbは、Y1方向の成分Fbyを有する。これにより、付勢スライダ31bは、第1のトーションばね33aおよび第2のトーションばね33bの付勢力によりY1側に位置している。そして、図17(a)に表したように、操作スライダ31aと付勢スライダ31bとの間には、隙間S6が付勢スライダ31bのY2側に形成されている。 At this time, as shown in FIG. 18, one end of the first torsion spring 33a is positioned on the Y1 side with respect to the other end of the first torsion spring 33a. Therefore, the biasing force Fa applied to the biasing slider 31b by the first torsion spring 33a has a component Fay in the Y1 direction. Further, one end of the second torsion spring 33b is located on the Y1 side with respect to the other end of the second torsion spring 33b. Therefore, the urging force Fb applied to the urging slider 31b by the second torsion spring 33b has a component Fby in the Y1 direction. Thereby, the urging slider 31b is located on the Y1 side by the urging force of the first torsion spring 33a and the second torsion spring 33b. As shown in FIG. 17A, a gap S6 is formed on the Y2 side of the urging slider 31b between the operation slider 31a and the urging slider 31b.
 また、図18に表したように、第1のトーションばね33aが付勢スライダ31bに与える付勢力Faは、X1方向の成分Faxを有する。第2のトーションばね33bが付勢スライダ31bに与える付勢力Fbは、X2方向の成分Fbxを有する。このように、第1のトーションばね33aが付勢スライダ31bに与える付勢力Faは、第2のトーションばね33bが付勢スライダ31bに与える付勢力Fbの成分Fbxとは反対方向の成分Faxを有する。 Further, as shown in FIG. 18, the biasing force Fa applied by the first torsion spring 33a to the biasing slider 31b has a component Fax in the X1 direction. The urging force Fb applied to the urging slider 31b by the second torsion spring 33b has a component Fbx in the X2 direction. Thus, the biasing force Fa applied to the biasing slider 31b by the first torsion spring 33a has a component Fax in the direction opposite to the component Fbx of the biasing force Fb applied to the biasing slider 31b by the second torsion spring 33b. .
 これにより、X1-X2方向において、第1のトーションばね33aが付勢スライダ31bに与える付勢力Faの成分Faxと、第2のトーションばね33bが付勢スライダ31bに与える付勢力Fbの成分Fbxと、を互いに相殺することができる。これにより、一方向だけの付勢力が付勢スライダ31bに対して加わることを抑え、付勢スライダ31bのより円滑な移動を実現することができる。これは、図19~図27に関して後述する状態においても同じである。 Thereby, in the X1-X2 direction, the component Fax of the biasing force Fa given by the first torsion spring 33a to the biasing slider 31b and the component Fbx of the biasing force Fb given by the second torsion spring 33b to the biasing slider 31b , Can be offset against each other. Thereby, it is possible to suppress the urging force in only one direction from being applied to the urging slider 31b, and to realize a smoother movement of the urging slider 31b. This is the same in the state described later with reference to FIGS.
 図16および図17(b)に表したように、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置は、第1の着磁部29aに存在する。第1のローラ27aは、磁性材料により形成されているため、第1の着磁部29aの一方の着磁面291a(図4(a)~図4(c)参照)に磁気的に吸引されている。また、第2のローラ27bは、磁性材料により形成されているため、第1の着磁部29aの他方の着磁面291b(図4(a)~図4(c)参照)に磁気的に吸引されている。 As shown in FIG. 16 and FIG. 17B, the contact position between the first roller 27a and the second roller 27b and the magnet 29 exists in the first magnetized portion 29a. Since the first roller 27a is made of a magnetic material, it is magnetically attracted to one magnetized surface 291a (see FIGS. 4A to 4C) of the first magnetized portion 29a. ing. Further, since the second roller 27b is made of a magnetic material, the second roller 27b is magnetically applied to the other magnetized surface 291b (see FIGS. 4A to 4C) of the first magnetized portion 29a. Being sucked.
 このとき、図17(a)に表したように、付勢スライダ31bと磁石保持部材37との間には、隙間S5が磁石保持部材37のY1側に形成されている。 At this time, as illustrated in FIG. 17A, a gap S <b> 5 is formed on the Y <b> 1 side of the magnet holding member 37 between the biasing slider 31 b and the magnet holding member 37.
 図17(b)に表したように、第1のローラ27aの回転中心271aと、第2のローラ27bの回転中心271bと、を結ぶ仮想直線L1は、第1の着磁部29aと、第2の着磁部29bと、の間の境界面29cに対して平行である。第1のローラ27aの回転中心271aと、第2のローラ27bの回転中心271bと、を結ぶ仮想直線L1は、第1のローラ27aと磁石29との接触位置と、第2のローラ27bと磁石29との接触位置と、を結ぶ仮想直線に相当する。 As shown in FIG. 17B, a virtual straight line L1 connecting the rotation center 271a of the first roller 27a and the rotation center 271b of the second roller 27b is the first magnetized portion 29a and the first magnetized portion 29a. It is parallel to the boundary surface 29c between the two magnetized portions 29b. A virtual straight line L1 connecting the rotation center 271a of the first roller 27a and the rotation center 271b of the second roller 27b is a contact position between the first roller 27a and the magnet 29, and the second roller 27b and the magnet. 29 corresponds to an imaginary straight line connecting the contact position with 29.
 図16に表した二点鎖線の矢印のように、第1の着磁部29aの一方の着磁面291aから出た磁束は、第1のローラ27aと、第1のヨーク23aと、コア21と、第2のヨーク23bと、第2のローラ27bと、をこの順に通り、第1の着磁部29aの他方の着磁面291bに入る。これにより、操作スライダ31aが自由位置にある状態において、磁気回路が構成されている。 As indicated by a two-dot chain line arrow shown in FIG. 16, the magnetic flux emitted from one magnetized surface 291a of the first magnetized portion 29a is composed of the first roller 27a, the first yoke 23a, and the core 21. Then, the second yoke 23b and the second roller 27b are passed in this order and enter the other magnetized surface 291b of the first magnetized portion 29a. Thus, a magnetic circuit is configured in a state where the operation slider 31a is in a free position.
 図19は、本実施形態の操作スライダが押し込まれたときの状態を表す斜視図である。
 図20は、本実施形態の操作スライダが押し込まれたときの状態を表す側面図および断面図である。
 図21は、本実施形態の操作スライダが押し込まれたときの状態を表す正面図である。
 図20(a)は、本実施形態の内部構造体2AをX2方向に見たときの側面図である。図20(b)は、図20(a)に表した切断面C6-C6における断面図である。図21は、本実施形態の内部構造体2AをZ2方向に見たときの正面図である。この動作状態は図28(c)に相当している。
FIG. 19 is a perspective view showing a state when the operation slider of this embodiment is pushed.
FIG. 20 is a side view and a cross-sectional view showing a state when the operation slider of this embodiment is pushed in.
FIG. 21 is a front view showing a state when the operation slider of this embodiment is pushed.
FIG. 20A is a side view of the internal structure 2A of the present embodiment when viewed in the X2 direction. FIG. 20B is a cross-sectional view taken along the cutting plane C6-C6 shown in FIG. FIG. 21 is a front view of the internal structure 2A of the present embodiment when viewed in the Z2 direction. This operation state corresponds to FIG.
 外部からY2方向の操作力が操作スライダ31aに作用すると、操作スライダ31aは、コイルばね35の付勢力に対抗しつつY2方向へ移動する。操作スライダ31aがY2方向へ移動すると、付勢スライダ31bは、操作スライダ31aから力を受け、操作スライダ31aとともにY2方向へ移動する。 When an operation force in the Y2 direction acts on the operation slider 31a from the outside, the operation slider 31a moves in the Y2 direction against the urging force of the coil spring 35. When the operation slider 31a moves in the Y2 direction, the biasing slider 31b receives a force from the operation slider 31a and moves in the Y2 direction together with the operation slider 31a.
 すると、磁石保持部材37のY1側に形成されていた隙間S5がなくなり、付勢スライダ31bが磁石保持部材37の上部に接触する。これにより、図20(a)に表したように、付勢スライダ31bと磁石保持部材37との間には、隙間S7が磁石保持部材37のY2側に形成される。なお、付勢スライダ31bのY2側に形成されていた隙間S6は、維持されたままである。 Then, the gap S <b> 5 formed on the Y <b> 1 side of the magnet holding member 37 disappears, and the urging slider 31 b comes into contact with the upper part of the magnet holding member 37. Accordingly, as illustrated in FIG. 20A, a gap S <b> 7 is formed on the Y <b> 2 side of the magnet holding member 37 between the biasing slider 31 b and the magnet holding member 37. Note that the gap S6 formed on the Y2 side of the urging slider 31b remains maintained.
 操作スライダ31aおよび付勢スライダ31bがY2方向へさらに移動すると、磁石保持部材37は、付勢スライダ31bから力を受け、磁石29を保持した状態でY2方向へ移動する。すると、図21に表したように、第1のトーションばね33aおよび第2のトーションばね33bは、中立姿勢になる。 When the operation slider 31a and the urging slider 31b further move in the Y2 direction, the magnet holding member 37 receives a force from the urging slider 31b and moves in the Y2 direction while holding the magnet 29. Then, as shown in FIG. 21, the first torsion spring 33a and the second torsion spring 33b are in a neutral posture.
 第1のトーションばね33aおよび第2のトーションばね33bが中立姿勢にある場合には、第1のトーションばね33aおよび第2のトーションばね33bのそれぞれのたわみが最大となる。第1のトーションばね33aおよび第2のトーションばね33bが中立姿勢にある場合において、第1のトーションばね33aが付勢スライダ31bに与える付勢力Faは、第2のトーションばね33bが付勢スライダ31bに与える付勢力Fbとつり合っている。 When the first torsion spring 33a and the second torsion spring 33b are in the neutral posture, the respective deflections of the first torsion spring 33a and the second torsion spring 33b are maximized. When the first torsion spring 33a and the second torsion spring 33b are in the neutral posture, the urging force Fa applied to the urging slider 31b by the first torsion spring 33a is the urging slider 31b by the second torsion spring 33b. It is balanced with the urging force Fb given to.
 図21に表したように 、操作スライダ31aの押し込み時において、第1のトーションばね33aおよび第2のトーションばね33bが中立姿勢にある場合には、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置は、第1の着磁部29aに存在する。具体的には、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置は、境界面29cの近傍の第1の着磁部29a側に存在する。言い換えれば、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置は、第1の着磁部29aから第2の着磁部29bへ変化する直前の状態である。 As shown in FIG. 21, when the first torsion spring 33a and the second torsion spring 33b are in the neutral posture when the operation slider 31a is pushed in, the first roller 27a and the second roller 27b The position of contact with the magnet 29 exists in the first magnetized portion 29a. Specifically, the contact position between the first roller 27a and the second roller 27b and the magnet 29 exists on the first magnetized portion 29a side in the vicinity of the boundary surface 29c. In other words, the contact position between the first roller 27a and the second roller 27b and the magnet 29 is a state immediately before the change from the first magnetized portion 29a to the second magnetized portion 29b.
 そのため、第1のローラ27aは、第1の着磁部29aの一方の着磁面291a(図4(a)~図4(c)参照)に磁気的に吸引されている。また、第2のローラ27bは、第1の着磁部29aの他方の着磁面291b(図4(a)~図4(c)参照)に磁気的に吸引されている。そして、図16に関して前述した磁気回路と同じ磁気回路が構成されている。言い換えれば、図16に関して前述した磁気回路(図16に表した二点鎖線の矢印参照)が維持されている。図17(b)に関して前述したように、仮想直線L1は、第1の着磁部29aと、第2の着磁部29bと、の間の境界面29cに対して平行である。 Therefore, the first roller 27a is magnetically attracted to one magnetized surface 291a (see FIGS. 4A to 4C) of the first magnetized portion 29a. The second roller 27b is magnetically attracted to the other magnetized surface 291b (see FIGS. 4A to 4C) of the first magnetized portion 29a. The same magnetic circuit as that described above with reference to FIG. 16 is formed. In other words, the magnetic circuit described above with reference to FIG. 16 (see the two-dot chain arrow shown in FIG. 16) is maintained. As described above with reference to FIG. 17B, the virtual straight line L1 is parallel to the boundary surface 29c between the first magnetized portion 29a and the second magnetized portion 29b.
 図22は、本実施形態の操作スライダが最も押し込まれたときの状態を表す斜視図である。
 図23は、本実施形態の操作スライダが最も押し込まれたときの状態を表す側面図および断面図である。
 図24は、本実施形態の操作スライダが最も押し込まれたときの状態を表す正面図である。
 図23(a)は、本実施形態の内部構造体2AをX2方向に見たときの側面図である。図23(b)は、図23(a)に表した切断面C7-C7における断面図である。
  図24は、本実施形態の内部構造体2AをZ2方向に見たときの正面図である。この動作状態は、図29(a)に相当している。
FIG. 22 is a perspective view showing a state when the operation slider of the present embodiment is pushed in most.
FIG. 23 is a side view and a cross-sectional view showing a state when the operation slider of the present embodiment is pushed in the most.
FIG. 24 is a front view illustrating a state when the operation slider of the present embodiment is pushed in most.
FIG. 23A is a side view of the internal structure 2A of the present embodiment when viewed in the X2 direction. FIG. 23B is a cross-sectional view taken along section line C7-C7 shown in FIG.
FIG. 24 is a front view of the internal structure 2A of the present embodiment when viewed in the Z2 direction. This operation state corresponds to FIG.
 図19~図20に関して前述した中立姿勢から、操作スライダ31aがコイルばね35の付勢力に対抗しつつY2方向へさらに移動すると、第1のトーションばね33aの一端が第1のトーションばね33aの他端よりもY2側に位置する。そのため、図24に表したように、第1のトーションばね33aが付勢スライダ31bに与える付勢力Faは、Y2方向の成分Fayを有する。また、第2のトーションばね33bの一端が第2のトーションばね33bの他端よりもY2側に位置する。そのため、第2のトーションばね33bが付勢スライダ31bに与える付勢力Fbは、Y2方向の成分Fbyを有する。これにより、付勢スライダ31bは、第1のトーションばね33aおよび第2のトーションばね33bによりY2方向に付勢される。 When the operation slider 31a further moves in the Y2 direction against the urging force of the coil spring 35 from the neutral posture described above with reference to FIGS. 19 to 20, one end of the first torsion spring 33a is connected to the other of the first torsion spring 33a. It is located on the Y2 side from the end. Therefore, as shown in FIG. 24, the biasing force Fa applied by the first torsion spring 33a to the biasing slider 31b has a component Fay in the Y2 direction. Further, one end of the second torsion spring 33b is located on the Y2 side with respect to the other end of the second torsion spring 33b. Therefore, the urging force Fb applied to the urging slider 31b by the second torsion spring 33b has a component Fby in the Y2 direction. Thereby, the urging slider 31b is urged in the Y2 direction by the first torsion spring 33a and the second torsion spring 33b.
 このとき、付勢スライダ31bが操作スライダ31aとは別体として設けられ、隙間S6が付勢スライダ31bのY2側に形成されているため、付勢スライダ31bは、操作スライダ31aとは別にY2方向に移動することができる。これにより、付勢スライダ31bの動きと、操作スライダ31aの動きと、を別の動きに設定することができ、付勢スライダ31bは、外部操作の速度(操作スライダ31aの速度)にほとんど影響を受けることなく、より速い速度で移動することができる。つまり、付勢スライダ31bは、第1のトーションばね33aおよび第2のトーションばね33bの付勢力によりY2方向へ加速される。 At this time, the urging slider 31b is provided separately from the operation slider 31a, and the gap S6 is formed on the Y2 side of the urging slider 31b. Therefore, the urging slider 31b is separate from the operation slider 31a in the Y2 direction. Can be moved to. Thereby, the movement of the urging slider 31b and the movement of the operation slider 31a can be set to different movements, and the urging slider 31b has little influence on the speed of the external operation (speed of the operation slider 31a). You can move faster without receiving it. That is, the urging slider 31b is accelerated in the Y2 direction by the urging force of the first torsion spring 33a and the second torsion spring 33b.
 すると、磁石保持部材37は、付勢スライダ31bから力を受け、磁石29を保持した状態でY2方向へ加速される。このとき、隙間S7が磁石保持部材37のY2側に形成されているため、磁石保持部材37は、付勢スライダ31bとは別にY2方向に移動することができる。これにより、磁石29は、外部操作の速度にほとんど影響を受けることなく、より速い速度で移動することができる。 Then, the magnet holding member 37 receives a force from the urging slider 31b and is accelerated in the Y2 direction while holding the magnet 29. At this time, since the gap S7 is formed on the Y2 side of the magnet holding member 37, the magnet holding member 37 can move in the Y2 direction separately from the urging slider 31b. Thereby, the magnet 29 can move at a higher speed with almost no influence on the speed of the external operation.
 操作スライダ31aおよび付勢スライダ31bがY2方向へ移動し、磁石保持部材37が磁石29を保持した状態でY2方向へ移動すると、図22および図23(b)に表したように、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置が、第1の着磁部29aから第2の着磁部29bへ変化する。すると、コア21、ヨーク部材23およびローラ部材27を通る磁束の向きが反転する。 When the operation slider 31a and the urging slider 31b move in the Y2 direction, and the magnet holding member 37 moves in the Y2 direction while holding the magnet 29, as shown in FIG. 22 and FIG. The contact position between the roller 27a and the second roller 27b and the magnet 29 changes from the first magnetized portion 29a to the second magnetized portion 29b. Then, the direction of the magnetic flux passing through the core 21, the yoke member 23, and the roller member 27 is reversed.
 すなわち、図22に表した二点鎖線の矢印ように、第2の着磁部29bの他方の着磁面292b(図4(a)~図4(c)参照)から出た磁束は、第2のローラ27bと、第2のヨーク23bと、コア21と、第1のヨーク23aと、第1のローラ27aと、をこの順に通り、第2の着磁部29bの一方の着磁面292a に入る。これにより、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置が、第1の着磁部29aから第2の着磁部29bへ変化したときに、コア21、ヨーク部材23およびローラ部材27を通る磁束の向きが反転する。 That is, as indicated by an alternate long and two short dashes line in FIG. 22, the magnetic flux emitted from the other magnetized surface 292b (see FIGS. 4A to 4C) of the second magnetized portion 29b is The second roller 27b, the second yoke 23b, the core 21, the first yoke 23a, and the first roller 27a in this order, and one of the magnetized surfaces 292a of the second magnetized portion 29b. to go into. As a result, when the contact position between the first roller 27a and the second roller 27b and the magnet 29 changes from the first magnetized portion 29a to the second magnetized portion 29b, the core 21 and the yoke The direction of the magnetic flux passing through the member 23 and the roller member 27 is reversed.
 すると、コア21に巻かれたコイル25の内部を通る磁束の向きが反転する。これにより、操作スライダ31aおよび付勢スライダ31bがY2方向に移動するときに、コイル25に誘導起電力が発生する。 Then, the direction of the magnetic flux passing through the inside of the coil 25 wound around the core 21 is reversed. Thereby, an induced electromotive force is generated in the coil 25 when the operation slider 31a and the urging slider 31b move in the Y2 direction.
 図25は、本実施形態の操作スライダが復帰するときの状態を表す斜視図である。
 図26は、本実施形態の操作スライダが復帰するときの状態を表す側面図および断面図である。
 図27は、本実施形態の操作スライダが復帰するときの状態を表す正面図である。
 図26(a)は、本実施形態の内部構造体2AをX2方向に見たときの側面図である。図26(b)は、図26(a)に表した切断面C8-C8における断面図である。図27は、本実施形態の内部構造体2AをZ2方向に見たときの正面図である。この動作状態は、図29(c)に相当している。
FIG. 25 is a perspective view illustrating a state when the operation slider of the present embodiment returns.
FIG. 26 is a side view and a cross-sectional view illustrating a state when the operation slider of the present embodiment returns.
FIG. 27 is a front view illustrating a state when the operation slider of the present embodiment returns.
FIG. 26A is a side view of the internal structure 2A of the present embodiment when viewed in the X2 direction. FIG. 26B is a cross-sectional view taken along the section C8-C8 shown in FIG. FIG. 27 is a front view of the internal structure 2A of the present embodiment when viewed in the Z2 direction. This operation state corresponds to FIG.
 図22~図24に表した状態から、操作スライダ31aに作用する外部からの操作力が解除されると、操作スライダ31aは、コイルばね35の付勢力によりY1方向へ移動する。操作スライダ31aがY1方向へ移動すると、付勢スライダ31bのY2側に形成されていた隙間S6がなくなり、操作スライダ31aが付勢スライダ31bの下部に接触する。これにより、操作スライダ31aと付勢スライダ31bとの間には、隙間(図示せず)が付勢スライダ31bのY1側に形成される。 22 to 24, when the external operating force acting on the operation slider 31a is released, the operation slider 31a is moved in the Y1 direction by the urging force of the coil spring 35. When the operation slider 31a moves in the Y1 direction, the gap S6 formed on the Y2 side of the biasing slider 31b disappears, and the operation slider 31a contacts the lower portion of the biasing slider 31b. As a result, a gap (not shown) is formed on the Y1 side of the urging slider 31b between the operation slider 31a and the urging slider 31b.
 操作スライダ31aがY1方向へさらに移動すると、付勢スライダ31bは、操作スライダ31aから力を受け、操作スライダ31aとともにY1方向へ移動する。 When the operation slider 31a further moves in the Y1 direction, the biasing slider 31b receives a force from the operation slider 31a and moves in the Y1 direction together with the operation slider 31a.
 すると、磁石保持部材37のY2側に形成されていた隙間S7がなくなり、付勢スライダ31bが磁石保持部材37の下部に接触する。これにより、図26(a)に表したように、付勢スライダ31bと磁石保持部材37との間には、隙間S5が磁石保持部材37のY1側に形成される。 Then, the gap S7 formed on the Y2 side of the magnet holding member 37 disappears, and the urging slider 31b comes into contact with the lower part of the magnet holding member 37. Accordingly, as illustrated in FIG. 26A, a gap S <b> 5 is formed on the Y <b> 1 side of the magnet holding member 37 between the biasing slider 31 b and the magnet holding member 37.
 操作スライダ31aおよび付勢スライダ31bがY1方向へさらに移動すると、磁石保持部材37は、付勢スライダ31bから力を受け、磁石29を保持した状態でY1方向へ移動する。すると、図27に表したように、第1のトーションばね33aおよび第2のトーションばね33bは、中立姿勢になる。 When the operation slider 31a and the urging slider 31b further move in the Y1 direction, the magnet holding member 37 receives a force from the urging slider 31b and moves in the Y1 direction while holding the magnet 29. Then, as shown in FIG. 27, the first torsion spring 33a and the second torsion spring 33b are in a neutral posture.
 図25および図26(b)に表したように、操作スライダ31aの復帰時において、第1のトーションばね33aおよび第2のトーションばね33bが中立姿勢にある場合には、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置は、第2の着磁部29bに存在する。具体的には、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置は、境界面29cの近傍の第2の着磁部29b側に存在する。言い換えれば、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置は、第2の着磁部29bから第1の着磁部29aへ変化する直前の状態である。 As shown in FIGS. 25 and 26B, when the first torsion spring 33a and the second torsion spring 33b are in the neutral posture when the operation slider 31a is returned, the first roller 27a and The contact position between the second roller 27b and the magnet 29 exists in the second magnetized portion 29b. Specifically, the contact position between the first roller 27a and the second roller 27b and the magnet 29 exists on the second magnetized portion 29b side in the vicinity of the boundary surface 29c. In other words, the contact position between the first roller 27a and the second roller 27b and the magnet 29 is the state immediately before the change from the second magnetized portion 29b to the first magnetized portion 29a.
 そのため、第1のローラ27aは、第2の着磁部29bの一方の着磁面292aに磁気的に吸引されている。また、第2のローラ27bは、第2の着磁部29bの他方の着磁面292bに磁気的に吸引されている。そして、図22に関して前述した磁気回路と同じ磁気回路が構成されている。言い換えれば、図22に関して前述した磁気回路(図22に表した二点鎖線の矢印参照)が維持されている。図17(b)に関して前述したように、仮想直線L1は、第1の着磁部29aと、第2の着磁部29bと、の間の境界面29cに対して平行である。 Therefore, the first roller 27a is magnetically attracted to one magnetized surface 292a of the second magnetized portion 29b. The second roller 27b is magnetically attracted to the other magnetized surface 292b of the second magnetized portion 29b. The same magnetic circuit as that described above with reference to FIG. 22 is formed. In other words, the magnetic circuit described above with reference to FIG. 22 (see the two-dot chain arrow in FIG. 22) is maintained. As described above with reference to FIG. 17B, the virtual straight line L1 is parallel to the boundary surface 29c between the first magnetized portion 29a and the second magnetized portion 29b.
 操作スライダ31aの復帰時において、第1のトーションばね33aおよび第2のトーションばね33bが中立姿勢にある状態から、操作スライダ31aがコイルばね35の付勢力によりY1方向へさらに移動すると、第1のトーションばね33aの一端が第1のトーションばね33aの他端よりもY1側に位置する。そのため、第1のトーションばね33aが付勢スライダ31bに与える付勢力Faは、Y1方向の成分Fayを有する(図18参照)。また、第2のトーションばね33bの一端が第2のトーションばね33bの他端よりもY1側に位置する。そのため、第2のトーションばね33bが付勢スライダ31bに与える付勢力Fbは、Y1方向の成分Fbyを有する(図18参照)。これにより、付勢スライダ31bは、第1のトーションばね33aおよび第2のトーションばね33bによりY1方向に付勢される。 When the operation slider 31a is returned, when the operation slider 31a further moves in the Y1 direction by the biasing force of the coil spring 35 from the state where the first torsion spring 33a and the second torsion spring 33b are in the neutral posture, One end of the torsion spring 33a is positioned closer to the Y1 side than the other end of the first torsion spring 33a. Therefore, the biasing force Fa applied by the first torsion spring 33a to the biasing slider 31b has a component Fay in the Y1 direction (see FIG. 18). Further, one end of the second torsion spring 33b is located on the Y1 side with respect to the other end of the second torsion spring 33b. Therefore, the urging force Fb applied to the urging slider 31b by the second torsion spring 33b has a component Fby in the Y1 direction (see FIG. 18). Thereby, the urging slider 31b is urged in the Y1 direction by the first torsion spring 33a and the second torsion spring 33b.
 操作スライダ31aおよび付勢スライダ31bがY1方向へ移動し、磁石保持部材37が磁石29を保持した状態でY1方向へ移動すると、図16および図17(b)に表したように、第1のローラ27aおよび第2のローラ27bと、磁石29と、の接触位置が、第2の着磁部29bから第1の着磁部29aへ変化する。すると、コア21、ヨーク部材23およびローラ部材27を通る磁束の向きが反転する。すなわち、磁束の向きは、図16に関して 前述した磁束の向きと同じになる。 When the operation slider 31a and the urging slider 31b move in the Y1 direction and the magnet holding member 37 moves in the Y1 direction while holding the magnet 29, as shown in FIG. 16 and FIG. The contact position between the roller 27a and the second roller 27b and the magnet 29 changes from the second magnetized portion 29b to the first magnetized portion 29a. Then, the direction of the magnetic flux passing through the core 21, the yoke member 23, and the roller member 27 is reversed. That is, the direction of the magnetic flux is the same as the direction of the magnetic flux described above with reference to FIG.
 すると、コア21に巻かれたコイル25の内部を通る磁束の向きが反転する。これにより、操作スライダ31aおよび付勢スライダ31bがY1方向に移動するときに、コイル25に誘導起電力が発生する。このように、本実施形態に係る発電入力装置1Aによれば、操作スライダ31aの押し込み時および復帰時の両方において、コイル25に誘導起電力が発生する。 Then, the direction of the magnetic flux passing through the inside of the coil 25 wound around the core 21 is reversed. Thereby, an induced electromotive force is generated in the coil 25 when the operation slider 31a and the urging slider 31b move in the Y1 direction. Thus, according to the power generation input device 1A according to the present embodiment, an induced electromotive force is generated in the coil 25 both when the operation slider 31a is pushed in and when the operation slider 31a is returned.
 本実施形態に係る発電入力装置1Aによれば、コア21がX1-X2方向に延び、コア21に巻かれたコイル25の軸がX1-X2方向に延びているため、Y1-Y2方向において発電入力装置1Aの小型化を図ることができる。また、図1~図12に関して前述した発電入力装置1の効果と同じ効果が得られる。 According to the power generation input device 1A according to the present embodiment, the core 21 extends in the X1-X2 direction, and the axis of the coil 25 wound around the core 21 extends in the X1-X2 direction. The input device 1A can be downsized. Further, the same effect as that of the power generation input device 1 described above with reference to FIGS. 1 to 12 can be obtained.
 なお、上記に本実施形態およびその適用例を説明したが、本発明はこれらの例に限定されるものではない。例えば、磁石および付勢スライダが、操作力により回動するものであってもよい。 In addition, although this embodiment and its application example were demonstrated above, this invention is not limited to these examples. For example, the magnet and the biasing slider may be rotated by an operating force.
 1 発電入力装置
 1A 発電入力装置
 2 内部構造体
 2A 内部構造体
 11 第1の筐体
 12 第2の筐体
 21 コア
 21a 端部
 21b 端部
 23 ヨーク部材
 23a 第1のヨーク
 23b 第2のヨーク
 24a 突起部
 24b 突起部
 25 コイル
 26a 孔
 26b 孔
 27 ローラ部材
 27a 第1のローラ
 27b 第2のローラ
 28a 円周面
 28b 円周面
 29 磁石
 29a 第1の着磁部
 29b 第2の着磁部
 29c 境界面
 31 スライド部材
 31a 操作スライダ
 31b 付勢スライダ
 33 切替えばね部材
 33a 第1のトーションばね
 33b 第2のトーションばね
 35 コイルばね
 37 磁石保持部材
 39 コイル保持部材
 39a 孔
 39b 孔
 41 端子
 271a 回転中心
 271b 回転中心
 291a 面
 291b 面
 292a 面
 292b 面
 C1 切断面
 C2 切断面
 C3 切断面
 C4 切断面
 C5 切断面
 C6 切断面
 C7 切断面
 C8 切断面
 Fa 付勢力
 Fax 成分
 Fay 成分
 Faz 成分
 Fb 付勢力
 Fbx 成分
 Fby 成分
 Fbz 成分
 L1 仮想直線
 S1 隙間
 S2 隙間
 S3 隙間
 S4 隙間
 S5 隙間
 S6 隙間
 S7 隙間
DESCRIPTION OF SYMBOLS 1 Power generation input device 1A Power generation input device 2 Internal structure 2A Internal structure 11 1st housing | casing 12 2nd housing | casing 21 Core 21a End part 21b End part 23 Yoke member 23a 1st yoke 23b 2nd yoke 24a Protrusion 24b Protrusion 25 Coil 26a Hole 26b Hole 27 Roller member 27a First roller 27b Second roller 28a Circumferential surface 28b Circumferential surface 29 Magnet 29a First magnetized portion 29b Second magnetized portion 29c Boundary Surface 31 Slide member 31a Operation slider 31b Energizing slider 33 Switching spring member 33a First torsion spring 33b Second torsion spring 35 Coil spring 37 Magnet holding member 39 Coil holding member 39a Hole 39b Hole 41 Terminal 271a Rotation center 271b Rotation center 291a surface 291b surface 292a surface 292b surface C1 cut surface C2 cut surface C3 cut surface C4 cut surface C5 cut surface C6 cut surface C7 cut surface C8 cut surface Fa biasing force Fax component Fay component Faz component Fb biasing force Fbx component Fby component Fbz component L1 virtual straight line S3 Gap S4 Gap S5 Gap S6 Gap S7 Gap

Claims (7)

  1.  第1の方向とこれと逆向きの第2の方向へ移動する付勢スライダと、前記付勢スライダに支持された磁石と、前記磁石の移動によって内部を通過する磁束が変化する磁性体のヨーク部材と、前記ヨーク部材内の磁束の変化により発電するコイルと、が設けられた発電入力装置において、
     前記磁石は、前記ヨーク部材に与える磁束が互いに逆向きである第1の着磁部と第2の着磁部とを有し、前記第1の着磁部が第1の方向側で、前記第2の着磁部が第2の方向側に並んで位置し、前記付勢スライダを第1の方向と第2の方向へ付勢する切替えばね部材が設けられており、
    (1)前記第1の着磁部が前記ヨーク部材に対向しているときに、前記切替えばね部材によって前記付勢スライダが第2の方向へ付勢され、
    (2)前記付勢スライダが第1の方向へ移動させられると、前記第1の着磁部と前記第2の着磁部との境界部が前記ヨーク部材との対向部を通過する前に、前記切替えばね部材による付勢方向が、第2の方向から第1の方向へ切替えられ、
    (3)前記付勢スライダが第1の方向へ移動した後は、前記第2の着磁部が前記ヨーク部材に対向するとともに、前記切替えばね部材によって前記付勢スライダが第1の方向へ付勢され、
    (4)前記付勢スライダが第2の方向へ移動するときは、前記境界部が前記ヨーク部材との対向部を通過する前に、前記切替えばね部材による付勢方向が、第1の方向から第2の方向へ切替えられる、
     ことを特徴とする発電入力装置。
    A biasing slider that moves in a first direction and a second direction that is opposite to the first direction, a magnet that is supported by the biasing slider, and a magnetic yoke that changes the magnetic flux that passes through the magnet as the magnet moves. In a power generation input device provided with a member and a coil that generates power by a change in magnetic flux in the yoke member,
    The magnet has a first magnetized portion and a second magnetized portion in which magnetic fluxes applied to the yoke member are opposite to each other, and the first magnetized portion is on the first direction side, The second magnetized portion is positioned side by side in the second direction, and a switching spring member that biases the biasing slider in the first direction and the second direction is provided,
    (1) When the first magnetized portion faces the yoke member, the biasing slider is biased in the second direction by the switching spring member,
    (2) When the biasing slider is moved in the first direction, before the boundary between the first magnetized portion and the second magnetized portion passes through the portion facing the yoke member. The biasing direction by the switching spring member is switched from the second direction to the first direction,
    (3) After the biasing slider moves in the first direction, the second magnetized portion faces the yoke member, and the biasing slider is biased in the first direction by the switching spring member. Energized,
    (4) When the urging slider moves in the second direction, the urging direction by the switching spring member is changed from the first direction before the boundary portion passes through the portion facing the yoke member. Switched to the second direction,
    A power generation input device characterized by that.
  2.  前記磁石は、前記付勢スライダに、第1の方向と第2の方向へ所定距離だけ相対移動自在に支持されている請求項1記載の発電入力装置。 2. The power generation input device according to claim 1, wherein the magnet is supported by the biasing slider so as to be relatively movable by a predetermined distance in a first direction and a second direction.
  3.  前記磁石は、磁石保持部材に保持されており、前記磁石保持部材が、前記付勢スライダに、第1の方向と第2の方向へ所定距離だけ相対移動自在に支持されている請求項2記載の発電入力装置。 The magnet is held by a magnet holding member, and the magnet holding member is supported by the biasing slider so as to be relatively movable by a predetermined distance in a first direction and a second direction. Power generation input device.
  4.  前記(1)で、前記第1の着磁部が前記ヨーク部材に対向しているときと、前記(3)で、前記第2の着磁部が前記ヨークに対向しているときに、前記磁石と前記前記ヨーク部材との間で前記磁石を停止させる磁気保持力が作用しており、
     前記切替えばね部材が前記付勢スライダを第1の方向と第2の方向へ移動させる力が、前記磁気保磁力よりも大きい請求項2または3記載の発電入力装置。
    In (1), when the first magnetized portion faces the yoke member, and in (3), when the second magnetized portion faces the yoke, A magnetic holding force for stopping the magnet is acting between the magnet and the yoke member,
    The power generation input device according to claim 2 or 3, wherein a force by which the switching spring member moves the biasing slider in the first direction and the second direction is larger than the magnetic coercive force.
  5.  第1の方向と第2の方向へ移動する操作スライダが設けられ、前記操作スライダによって、前記付勢スライダが第1の方向と第2の方向へ移動させられる請求項1ないし4のいずれかに記載の発電入力装置。 5. An operation slider that moves in a first direction and a second direction is provided, and the biasing slider is moved in the first direction and the second direction by the operation slider. The power generation input device described.
  6.  前記付勢スライダは、前記操作スライダに、第1の方向と第2の方向へ所定距離だけ相対移動自在に支持されており、
     前記(2)で、前記切替えばね部材による付勢方向が、第2の方向から第1の方向へ切替えられたときに、前記付勢スライダが、前記操作スライダに拘束されることなく第1の方向へ移動し、
     前記(4)で、前記切替えばね部材による付勢方向が、第1の方向から第2の方向へ切替えられたときに、前記付勢スライダが、前記操作スライダに拘束されることなく第2の方向へ移動する請求項5記載の発電入力装置。
    The biasing slider is supported by the operation slider so as to be relatively movable in a first distance and a second direction by a predetermined distance,
    In (2), when the urging direction by the switching spring member is switched from the second direction to the first direction, the urging slider is not restrained by the operation slider. Move in the direction,
    In (4), when the urging direction by the switching spring member is switched from the first direction to the second direction, the urging slider is not restrained by the operation slider. The power generation input device according to claim 5, which moves in a direction.
  7.  前記切替えばね部材は、トーションばねである請求項1ないし6のいずれかに記載の発電入力装置。 The power generation input device according to any one of claims 1 to 6, wherein the switching spring member is a torsion spring.
PCT/JP2017/029613 2016-09-12 2017-08-18 Power generation input device WO2018047606A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780052328.XA CN109643947B (en) 2016-09-12 2017-08-18 Power generation input device
JP2018538336A JP6678245B2 (en) 2016-09-12 2017-08-18 Power generation input device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-177749 2016-09-12
JP2016177749 2016-09-12

Publications (1)

Publication Number Publication Date
WO2018047606A1 true WO2018047606A1 (en) 2018-03-15

Family

ID=61561468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029613 WO2018047606A1 (en) 2016-09-12 2017-08-18 Power generation input device

Country Status (3)

Country Link
JP (1) JP6678245B2 (en)
CN (1) CN109643947B (en)
WO (1) WO2018047606A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110039A (en) * 2008-10-28 2010-05-13 Isuzu Motors Ltd Direct-acting generator
JP2013021746A (en) * 2011-07-07 2013-01-31 Alps Electric Co Ltd Power generation input device, and electronic apparatus using the same
JP2015139267A (en) * 2014-01-22 2015-07-30 アルプス電気株式会社 Power generation input device and electronic equipment using power generation input device
WO2016021456A1 (en) * 2014-08-07 2016-02-11 アルプス電気株式会社 Power generation input device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110039A (en) * 2008-10-28 2010-05-13 Isuzu Motors Ltd Direct-acting generator
JP2013021746A (en) * 2011-07-07 2013-01-31 Alps Electric Co Ltd Power generation input device, and electronic apparatus using the same
JP2015139267A (en) * 2014-01-22 2015-07-30 アルプス電気株式会社 Power generation input device and electronic equipment using power generation input device
WO2016021456A1 (en) * 2014-08-07 2016-02-11 アルプス電気株式会社 Power generation input device

Also Published As

Publication number Publication date
CN109643947B (en) 2020-12-22
JPWO2018047606A1 (en) 2019-06-24
JP6678245B2 (en) 2020-04-08
CN109643947A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
US20180241295A1 (en) Magnetically balancing guided linear vibration motor
JP5585550B2 (en) relay
JP6245950B2 (en) Vibration actuator and portable information terminal
US9389417B2 (en) Scanner device
JP2015112013A (en) Vibration actuator and portable information terminal
WO2014168236A1 (en) Bistable moving device
WO2012073780A1 (en) Latching relay
JP5359574B2 (en) Mobile device
JP6767492B2 (en) Power generation input device
WO2015033851A1 (en) Bistable moving device
WO2018047606A1 (en) Power generation input device
JP6074633B1 (en) Power generator
JP4331086B2 (en) Electromagnetic actuator and optical device using the same
JP2020107548A (en) Electromagnetic relay
US3394325A (en) Four pole microminiature relay
JP2019032944A (en) Magnetic relay and smart meter
JP2018142508A (en) Electromagnetic relay and smart meter
JPH027131B2 (en)
JP2771780B2 (en) electromagnet
US4221937A (en) Moving iron type cartridge
JP2006181082A (en) Solenoid for game machine and game machine winning device using the same
JP2022099570A (en) Electromagnetic relay
WO2023180876A1 (en) Motion converting device
JPH09285098A (en) Disc device linear actuator
JPS63232231A (en) Polar electromagnet apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018538336

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848549

Country of ref document: EP

Kind code of ref document: A1