WO2015033851A1 - Bistable moving device - Google Patents

Bistable moving device Download PDF

Info

Publication number
WO2015033851A1
WO2015033851A1 PCT/JP2014/072581 JP2014072581W WO2015033851A1 WO 2015033851 A1 WO2015033851 A1 WO 2015033851A1 JP 2014072581 W JP2014072581 W JP 2014072581W WO 2015033851 A1 WO2015033851 A1 WO 2015033851A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
mover
permanent magnet
movable
movable axis
Prior art date
Application number
PCT/JP2014/072581
Other languages
French (fr)
Japanese (ja)
Inventor
上運天 昭司
光晴 田中
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Publication of WO2015033851A1 publication Critical patent/WO2015033851A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/122Guiding or setting position of armatures, e.g. retaining armatures in their end position by permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/17Pivoting and rectilinearly-movable armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Definitions

  • the present invention relates to a bistable moving device that uses a mover and a rotor, moves the mover between two positions, and holds the mover at either position.
  • bistable moving device As a bistable moving device of this kind, there is a mechanism that allows the mover to move between two positions in various applications such as shut-off valves, electromagnetic switches, and electronic locks, and holds it in either position.
  • the bistable latch type solenoid provided is used.
  • a plunger (movable element) fixed to a nonmagnetic shaft that can move in the axial direction has an axial direction across the plunger. It is configured to be latched by one of a set of permanent magnets (stator) having a fixed core placed symmetrically to each other, and movement to the other end is arranged symmetrically in the axial direction surrounding them. Also disclosed is a bistable moving device that uses a set of exciting coils.
  • the mover is an iron core and a magnet is arranged on the stator.
  • the mover is In any case, the conventional bistable moving device has a structure in which either the mover or the stator is an iron core (magnetic material) and the other is a magnet. Has been.
  • JP-A-8-288129 JP 7-335434 A Japanese Unexamined Patent Publication No. 2010-98037
  • the electromagnetic force is inversely proportional to the square of the distance (gap), and thus a large amount of power is required.
  • the present invention has been made to solve such a problem.
  • the object of the present invention is to apply an impact or temporary excessive force to the mover in the other direction, and the mover moves in the other direction. If this happens, the mover will not be latched in the other direction, and the mover will automatically return to the latch in the original direction. It is to provide a stable moving device. It is another object of the present invention to provide a bistable moving device that can be operated with less electric power than a conventional solenoid that is used as the main power for movement in the direction of the movable axis.
  • the present invention can move in the direction of the movable axis and is held so as to prevent rotation about the movable axis, and sandwich the movable axis in a direction perpendicular to the movable axis.
  • the first permanent magnets having a plurality of magnetic poles arranged in the first and second magnetic poles are arranged so that the movable shaft is sandwiched in a direction orthogonal to the movable shaft, and the different polarities are in the movable axis direction with respect to the magnetic pole of the first permanent magnet.
  • a movable element including a second permanent magnet having a plurality of magnetic poles arranged to face each other, a movable element that can rotate about the movable axis, and is held so as to prevent movement in the movable axis direction;
  • the position of the magnetic pole is on a first circumference centered on the movable axis, and the position of the other magnetic pole is on a second circumference centered on a movable axis having a larger diameter than the first circumference.
  • the arrangement of the magnetic poles on the first circumference is the first arrangement
  • the first permanent magnet of the mover is magnetically attracted and held, while the second permanent magnet of the mover is magnetically repelled
  • the arrangement of the magnetic poles on the circumference of 1 is the second arrangement
  • the second permanent magnet of the mover is magnetically attracted and held, while the first permanent magnet of the mover is magnetically repelled.
  • the mover is movable in the direction of the movable axis and is held so as to prevent rotation about the movable axis, and a plurality of magnetic poles are sandwiched between the movable axes in a direction orthogonal to the movable axis.
  • a plurality of first permanent magnets are arranged so as to sandwich the movable shaft in a direction orthogonal to the movable shaft, and opposite to each other in the movable shaft direction with respect to the magnetic pole of the first permanent magnet.
  • the first permanent magnet of the mover when the rotor is rotated and the arrangement of the magnetic poles on the first circumference of the rotor is the first arrangement, the first permanent magnet of the mover is magnetically attracted and held, while the first of the mover 2 permanent magnets are magnetically repelled.
  • the second permanent magnet of the mover is magnetically attracted and held, while the first of the mover is The permanent magnet is magnetically repelled.
  • the rotor when the arrangement of the magnetic poles on the first circumference of the rotor is in the first arrangement, and the first permanent magnet of the mover is magnetically attracted to the rotor, the rotor is When the rotor is rotated to place the magnetic poles on the first circumference of the rotor in the second arrangement, the magnetic attractive force between the first permanent magnet of the mover and the rotor disappears, and the first permanent A magnetic repulsive force is generated between the magnet and the rotor. As a result, the first permanent magnet leaves the rotor, the second permanent magnet approaches the rotor, and the resultant force with the magnetic attractive force generated between the second permanent magnet and the mover moves in the direction of the movable axis. The second permanent magnet of the mover is latched (attracted and held) by the rotor.
  • the rotor when the arrangement of the magnetic poles on the first circumference of the rotor is in the second arrangement, and the second permanent magnet of the mover is magnetically attracted to the rotor, the rotor is When the arrangement of the magnetic poles on the first circumference of the rotor is changed to the first arrangement by rotating the magnetic attraction force between the second permanent magnet of the mover and the rotor, the second permanent magnet is lost. A magnetic repulsive force is generated between the magnet and the rotor. As a result, the second permanent magnet leaves the rotor, the first permanent magnet approaches the rotor, and the resultant force with the magnetic attractive force generated between the first permanent magnet and the mover moves in the direction of the movable axis. The first permanent magnet of the mover is latched (attracted and held) by the rotor.
  • the direction of the movable axis Suppose that an impact or temporary excessive force is applied to one side of the armature and the mover has moved to one side in the direction of the movable axis.
  • the mover moves from the state in which the first permanent magnet is latched to the rotor in a state where the magnetic poles on the first circumference of the rotor are in the first arrangement, in the direction of the movable axis. Move to one side.
  • the second permanent magnet of the mover approaches the rotor, a magnetic repulsive force is generated between the second permanent magnet and the rotor.
  • the second permanent magnet moves away from the rotor, the first permanent magnet approaches the rotor, and the movable element is moved by the resultant force of the magnetic attraction force generated between the first permanent magnet and the rotor. Returned to the other side in the direction of the movable axis. That is, even if the mover moves to one side in the movable axis direction, the mover is not latched at the position moved to one side in the movable axis direction, and is automatically moved to the other side in the movable axis direction. Return to the original latch (original latch state).
  • the direction of the movable axis Suppose that an impact or temporary excessive force is applied to the other side of the armature and the mover has moved to the other side in the direction of the movable axis.
  • the mover moves from the state in which the second permanent magnet is latched to the rotor in the state where the magnetic poles on the first circumference of the rotor are in the second arrangement, in the direction of the movable axis. Move to the other side.
  • the first permanent magnet of the mover approaches the rotor, a magnetic repulsive force is generated between the first permanent magnet and the rotor.
  • the position moved from one side of the mover to the position moved to the other side is changed. Latch switching cannot be performed from the position moved to the other side to the position moved to the one side.
  • the mover latched at the position moved to one side is moved to the other side and latched at the position moved to the other side.
  • the original latch state is automatically restored. This is due to the addition of a lock mechanism called the rotation of the rotor to the movement of the mover in the direction of the movable axis.
  • a permanent magnet is used for both the mover and the rotor, and the main power for moving the mover in the direction of the movable axis is the source side that works with the rotor (permanent magnet).
  • the magnetic repulsive force of the mover (permanent magnet) and the magnetic attraction force of the mover (permanent magnet) on the destination side are used simultaneously, and the rotational force for rotating the rotor is used as pilot power.
  • the rotational force (rotational torque) for rotating the rotor does not necessarily have to be electromagnetic force, and may be mechanical force from the outside.
  • the mover needs to be movable in the direction of the movable axis and held so as to prevent rotation about the movable axis.
  • a rotation stop mechanism is installed on the mover or the shaft to which the mover is connected to prevent rotation around the moveable axis, and only movement in the moveable axis direction is possible.
  • the rotor needs to be able to rotate around the movable axis and be held so as to prevent movement in the direction of the movable axis.
  • the rotor is arranged in an annular groove, etc. The movement in the direction is prevented, and only rotation around the movable shaft is possible.
  • the permanent magnet of the mover and the permanent magnet of the rotor are arranged so as not to contact each other, the impact force and the adsorption sound to the magnet generated at the time of latching in the prior art are suppressed, and the latch having compliance Since the state can be maintained, there is a merit that it is not necessary to add a mechanical shock-absorbing mechanism or a spring mechanism as in the conventional solenoid.
  • the magnetic poles (outer periphery) arranged on the second circumference of the permanent magnet of the rotor Side magnetic pole) is used for generating rotational force
  • magnetic pole inner peripheral side magnetic pole arranged on the first circumference of the permanent magnet of the rotor is used for magnetic attraction holding and magnetic repulsion of the mover
  • the rotor can be rotated with a weak force from the outer peripheral side against the torque that hinders the rotation from the inner peripheral side caused by the magnetic attractive force generated between the mover and the rotor.
  • the child rotating means can be reduced in size and power can be saved.
  • a rotation holding force is exerted on the outer peripheral side of the rotor with a mechanical mechanism.
  • the mover includes a first permanent magnet (a permanent magnet in which a plurality of magnetic poles are arranged so as to sandwich the movable shaft in a direction orthogonal to the movable axis) and a second permanent magnet (a direction orthogonal to the movable axis). And a permanent magnet having a plurality of magnetic poles arranged so that different poles face each other in the direction of the movable axis with respect to the magnetic pole of the first permanent magnet.
  • the first permanent magnet of the mover is magnetically attracted and held, while the second permanent magnet of the mover is magnetically repelled so that the arrangement of the magnetic poles on the first circumference of the rotor is
  • the second permanent magnet of the mover is magnetically attracted and held, while the first permanent magnet of the mover Since the magnetic repulsion is applied, the mover may be latched in the other direction even if the mover is subjected to an impact or temporary excessive force in the other direction and the mover moves in the other direction. Therefore, the mover automatically returns to the latch in the original direction, so that a reliable operation can be obtained and safety is improved.
  • the rotational force for rotating the rotor is used only as a pilot power to change the arrangement of the magnetic poles on the first circumference of the rotor. It is only necessary to apply a magnetic field instantaneously from a position close to the permanent magnet, and it is possible to operate with less power than that used for the main power of movement in the direction of the movable axis with a conventional solenoid. .
  • FIG. 1A is a diagram showing a configuration of a main part of an embodiment of a bistable moving device according to the present invention (a diagram showing a state in which a mover is latched in a state where it is moved to the other side in a movable axis direction). is there.
  • FIG. 1B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 1A.
  • FIG. 2A is a diagram showing a configuration of a main part of one embodiment of the bistable moving device according to the present invention (a diagram showing a state where the mover is latched in a state of moving to one side in the movable axis direction). is there.
  • FIG. 1A is a diagram showing a configuration of a main part of an embodiment of a bistable moving device according to the present invention (a diagram showing a state where the mover is latched in a state of moving to one side in the movable axis direction). is there.
  • FIG. 2B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 2A.
  • FIG. 3A is a diagram (a diagram corresponding to FIG. 1A) illustrating an example in which the first permanent magnet and the second permanent magnet of the mover are arranged apart from each other.
  • FIG. 3B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 3A.
  • FIG. 4A is a diagram (a diagram corresponding to FIG. 2A) illustrating an example in which the first permanent magnet and the second permanent magnet of the mover are arranged apart from each other.
  • FIG. 4B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 4A.
  • FIG. 5A is a diagram illustrating an example in which chamfered portions are formed at both the edges of the mover and the rotor that are close to each other.
  • FIG. 5B is a diagram showing a side view of the bistable moving device shown in FIG. 5A.
  • FIG. 5C is a diagram showing a side view of the bistable moving device shown in FIG. 5A.
  • FIG. 6A is a diagram illustrating a main part of a mechanism (rotation stop mechanism) that prevents rotation about the movable axis of the movable body.
  • FIG. 6B is a view showing a BB cross section of the main part of the rotation stopping mechanism shown in FIG. 6A.
  • FIG. 7A is a diagram showing an example using a rotor in which two permanent magnets are arranged so as to sandwich the mover so that the magnetic pole direction is perpendicular to the movable axis.
  • FIG. 7B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 7A.
  • FIG. 8A is a diagram showing another example of a rotor in which two permanent magnets are arranged so as to sandwich the mover so that the magnetic pole direction is perpendicular to the movable axis.
  • FIG. 8B is a view showing a CC cross section of the rotor shown in FIG. 8A.
  • FIG. 9A is a diagram showing another example of a rotor in which two permanent magnets are arranged so as to sandwich the mover so that the magnetic pole direction thereof is orthogonal to the movable axis.
  • FIG. 9B is a diagram showing a DD cross section of the rotor shown in FIG. 9A.
  • FIG. 10A is a diagram showing an example using a set of electromagnetic coils that are arranged such that the axes of the movable shafts are substantially coincident and the ends of the cores are opposed to each other.
  • FIG. 10B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 10A.
  • FIG. 11A is a diagram illustrating an example in which the shape of the other end of the yoke facing the movable element from a direction substantially orthogonal to the movable shaft is a flat surface.
  • FIG. 11B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 11A.
  • FIG. 12 is a diagram showing an example in which the other end portion of the yoke facing each other with the mover interposed therebetween in a direction substantially orthogonal to the movable shaft is partially connected or integrated.
  • FIG. 13 is a diagram illustrating an example in which the shape of the other end of the yoke facing the movable element from the direction substantially orthogonal to the movable shaft is asymmetric.
  • FIG. 14 is a diagram showing an example in which a notch is provided at the other end of the yoke facing the movable element from a direction substantially orthogonal to the movable shaft.
  • FIG. 15 is a diagram showing an example in which the movable shaft does not intersect the line connecting the centers of the end portions of the yokes facing each other with the movable element sandwiched from a direction substantially orthogonal to the movable shaft.
  • FIG. 16 is a diagram showing an example in which the center of the yoke end opposed to the movable shaft in a direction substantially orthogonal to the movable shaft is shifted to both sides of the movable member within a plane orthogonal to the movable shaft.
  • FIG. 17A is a diagram showing an example in which a set of permanent magnets for generating rotational force is provided so that the rotor can advance and retreat from a direction substantially orthogonal to the movable shaft (the state where the rotor is moved to the other side in the movable shaft direction).
  • FIG. 17B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 17A.
  • FIG. 18A is a diagram showing an example in which a set of permanent magnets for generating a rotational force is provided so that the rotor can advance and retreat from a direction substantially orthogonal to the movable shaft (moved to one side in the movable shaft direction).
  • FIG. 18B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 18A.
  • FIG. 19A is a diagram illustrating an example in which a rotating lever is attached to the rotor and mechanical force (rotational torque) is applied from the outside to rotate the rotor.
  • FIG. 19B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 19A.
  • FIG. 20A is a diagram illustrating another example of a mechanism (rotation stop mechanism) that prevents rotation about the movable axis of the movable body.
  • 20B is a view showing a CC cross section of the rotation stopping mechanism shown in FIG. 20A.
  • FIG. 21 is a diagram illustrating another example of the rotation stopping mechanism.
  • FIG. 21 is a diagram illustrating another example of the rotation stopping mechanism.
  • FIG. 22 is a diagram illustrating another example of the rotation stopping mechanism.
  • FIG. 23A is a diagram illustrating another example of the rotation stopping mechanism.
  • FIG. 23B is a diagram showing a DD cross section of the rotation stop mechanism shown in FIG. 23A.
  • FIG. 24A is a diagram illustrating another example of the rotation stopping mechanism.
  • FIG. 24B is a diagram showing an EE cross section of the rotation stopping mechanism shown in FIG. 24A.
  • FIG. 25 is a diagram illustrating a movable body (movable element) and a rotor holding structure (an example in which the rotor is arranged in a compartment).
  • FIG. 26 is a diagram illustrating a movable body (movable element) and a rotor holding structure (an example in which the rotor is disposed outside the compartment).
  • FIG. 27A is a diagram illustrating a configuration of a main part when the first and second permanent magnets of the mover have four magnetic poles.
  • FIG. 27B is a diagram showing a side view of the bistable moving device shown in FIG. 27A.
  • FIG. 27C is a diagram showing a side view of the bistable moving device shown in FIG. 27A.
  • FIG. 28 is a diagram showing the arrangement of the yokes constituting the rotor rotating means when the first and second permanent magnets of the mover have four magnetic poles.
  • FIG. 29 is a diagram illustrating an example in which the magnetic pole pair in the rotor is set in only two directions, ie, the upper and lower directions, when the first and second permanent magnets of the mover have four magnetic poles.
  • FIG. 1A and 1B are views showing the configuration of the main part of an embodiment of a bistable moving device according to the present invention (FIG. 1A is a front view, and FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A).
  • reference numeral 1 (1A) denotes a mover
  • shafts 2-1 and 2-2 are connected to both ends thereof.
  • the shafts 2-1 and 2-2 are non-magnetic.
  • an integral body composed of the movable element 1 and the shafts 2-1 and 2-2 is referred to as a movable body and is denoted by reference numeral 3.
  • the movable body 3 is provided so as to be movable in the axial direction (Z-axis direction) of the shafts 2-1 and 2-2. That is, the movable body 3 (movable element 1) is provided so as to be movable in the movable axis direction with the Z-axis direction as the movable axis direction.
  • the movable body 3 (movable element 1) is held so as to prevent rotation about the Z axis.
  • a mechanism for preventing the rotation of the movable body 3 (movable element 1) around the Z axis will be described later.
  • the Z axis is referred to as a movable axis.
  • the mover 1 includes a cylindrical first permanent magnet 1-1 and a second permanent magnet 1-2, and the permanent magnets 1-1 and 1-2 are magnetized in the radial direction.
  • the permanent magnets 1-1 and 1-2 are integrated, the permanent magnet 1-1 is provided on one (Z1) side in the movable shaft direction, and the permanent magnet 1-2 is moved to the movable shaft. It is provided on the other side (Z2) in the direction.
  • the permanent magnet 1-1 has a configuration in which two magnetic poles are arranged so as to sandwich the movable axis Z in a direction orthogonal to the movable axis Z, and one surface side facing the movable axis Z is disposed.
  • the upper side in the state of FIG. 1B is the N pole, and the other side (the lower side in the state of FIG. 1B) is the S pole.
  • the permanent magnet 1-2 has a configuration in which two magnetic poles are arranged so as to sandwich the movable shaft Z in a direction orthogonal to the movable shaft Z, and are opposed to each other with the movable shaft Z interposed therebetween.
  • One surface side (upper side in the state of FIG. 1B) is the S pole, and the other surface side (lower side in the state of FIG. 1B) is the N pole.
  • the permanent magnets 1-1 and 1-2 are a pair of magnetic poles so that the movable axis Z is sandwiched in a direction orthogonal to the movable axis Z so that the different poles face each other in the movable axis direction. Is arranged.
  • the direction of the magnetic poles of the permanent magnets 1-1 and 1-2 is as shown in FIG. 1A when the direction of the vertical line L1 orthogonal to the movable axis Z is the reference direction. It is inclined by ⁇ with respect to the reference direction.
  • reference numeral 4 (4A) denotes a rotor, which is rotatable about the movable axis Z and is held so as to prevent movement in the direction of the movable axis.
  • the rotor 4 is a ring magnetized in the radial direction or a cylindrical permanent magnet (in this example, a ring-shaped permanent magnet), and moves in the direction of the movable axis through the hollow portion 4a of the ring-shaped permanent magnet.
  • a movable body 3 (movable element 1) is provided so as to be movable.
  • the inner peripheral surface of the ring-shaped permanent magnet is such that one surface side (upper side in the state of FIG. 1B) facing the movable shaft Z is the S pole and the other surface side (in the state of FIG. 1B).
  • the lower surface is the N pole
  • the outer peripheral surface of the ring-shaped permanent magnet is the N pole and the other surface side (the upper side in the state of FIG.
  • the lower side in the state of FIG. 1B is the S pole.
  • the rotor 4 has a position of the S pole on the first circumference (inner circumferential surface) centered on the movable axis Z and has a larger diameter than the first circumference centered on the movable axis Z.
  • a first magnetic pole (upper magnetic pole pair) pair having an N-pole position on the second circumference (outer peripheral surface) and N on the first circumference (inner peripheral surface) centered on the movable axis Z
  • the second magnetic pole pair (the lower magnetic pole pair) having the S pole position on the second circumference (outer peripheral surface) having a diameter larger than the first circumference centered on the movable axis Z.
  • the permanent magnets 1-1 and 1-2 of the mover 1 have the same shape and the same size. Further, the length l of the permanent magnets 1-1 and 1-2 of the mover 1 in the movable axis direction is equal to or longer than the length L of the rotor 4 in the movable axis direction.
  • reference numeral 7 (7A) designates a magnetic field in a normal / reverse direction to the rotor 4 from a direction substantially orthogonal to the movable axis Z to rotate the rotor 4 (rotate 180 °), thereby rotating the rotor 4
  • the rotor rotating means 7 is composed of an electromagnetic coil 5 and yokes 6-1 and 6-2 in which one end is connected or integrated with one end and the other end of the core of the electromagnetic coil 5. Yes.
  • the other ends of the yokes 6-1 and 6-2 are opposed to each other with the rotor 4 sandwiched from a direction substantially perpendicular to the movable axis Z. That is, they are generally opposed to a pair of adjacent magnetic poles on the outer peripheral surface of the rotor 4. Further, the other ends of the yokes 6-1 and 6-2 have an arc shape in accordance with the shape of the outer peripheral surface of the rotor 4. The arc is preferably formed concentrically with the outer periphery of the rotor 4 in order to improve the rotation efficiency.
  • the magnetic poles on the inner peripheral surface of the rotor 4 have an S pole on the upper side and an N pole on the lower side.
  • the rotor 4 magnetically attracts the permanent magnet 1-1 of the mover 1. That is, the permanent magnet 1-1 of the mover 1 is drawn into the hollow portion 4a and latched (attracted / held).
  • 1A and 1B is a state where the rotor 4 is rotated by the rotor rotating means 7, that is, after the energization of the electromagnetic coil 5 is performed, the energization of the electromagnetic coil 5 is cut off (non-excitation). State).
  • the rotor 4 In the non-excited state of the electromagnetic coil 5, the rotor 4 is moved along the direction of the magnetic pole of the permanent magnet 1-1 of the mover 1 by the magnetic attractive force between the rotor 4 and the permanent magnet 1-1 of the mover 1.
  • the magnetic pole is stationary with the direction of the magnetic field tilted by about ⁇ .
  • the permanent magnet 1-1 leaves the rotor 4, and the permanent magnet 1-2 approaches the rotor 4. Due to the resultant force with the magnetic attractive force generated between the permanent magnet 1-2, the mover 1 is moved. Moving to one side of the movable axis direction (left (Z1) direction shown in FIG. 1B), the permanent magnet 1-2 of the movable element 1 is latched by the rotor 4 (see FIGS. 2A and 2B).
  • 2A and 2B are states in which the rotor 4 is rotated by the rotor rotating means 7, that is, after the energization of the electromagnetic coil 5 is performed, the energization of the electromagnetic coil 5 is cut off (non-excitation). State). Also in this case, the rotor 4 changes the direction of the magnetic pole along the direction of the magnetic pole of the permanent magnet 1-2 of the mover 1 by the magnetic attraction force between the rotor 1 and the permanent magnet 1-2 of the mover 1. Stand still with a tilt of ⁇ ⁇ .
  • the rotor 4 is rotated (rotated 180 °) by the rotor rotating means 7, and the arrangement of the magnetic poles on the inner peripheral surface of the rotor 4 is the first arrangement.
  • the positions of the magnetic poles on the inner peripheral surface of the rotor 4 are changed so that the lower side is the N pole and the upper side is the S pole.
  • the magnetic attractive force between the permanent magnet 1-2 and the rotor 4 of the mover 1 disappears, and a magnetic repulsive force is generated between the permanent magnet 1-2 and the rotor 4.
  • the permanent magnet 1-2 leaves the rotor 4, and the permanent magnet 1-1 approaches the rotor 4, and the mover 1 is moved by the resultant force with the magnetic attractive force generated between the permanent magnet 1-1 and the permanent magnet 1-1.
  • the permanent magnet 1-1 of the movable element 1 is latched by the rotor 4 (see FIGS. 1A and 1B).
  • the mover 1 moves in a non-contact manner with the rotor 4, and the latch on one side of the mover 1 and the latch on the other side are latched.
  • the magnetic pole on the outer peripheral surface of the rotor 4 is used for generating a rotational force
  • the magnetic pole on the inner peripheral surface of the rotor 4 is used for magnetic attraction holding and magnetic repulsion of the movable element 1.
  • the rotor 4 can be rotated with a weak force from the outer peripheral side against the torque that hinders the rotation from the inner peripheral side caused by the magnetic attractive force generated between the rotor 4 and the outer peripheral side. Thereby, size reduction and power saving of the rotor rotation means 7 are attained.
  • the rotor 4 is efficiently rotated by receiving the electromagnetic force from the rotor rotating means 7. .
  • the electromagnetic coil 5 Since the crossing angle of the line connecting the center of the magnetic pole on the outer peripheral surface of the rotor 4 and the other end of the yoke 6-2 and the movable axis Z is ⁇ , the electromagnetic coil 5 is The electromagnetic force generated when the excitation state is established acts efficiently on the rotation of the rotor 4.
  • the rotor 4 can be easily rotated, can be rotated with low power, and the power of the rotor rotating means 7 can be reduced. Further, the rotor 4 rotates in one direction.
  • the crossing angle ⁇ is preferably in a range larger than 0 ° and smaller than 90 °.
  • the mover 1 moves from the state in which the permanent magnet 1-1 is latched to the rotor 4 in the state in which the magnetic poles on the inner peripheral surface of the rotor 4 are in the first arrangement. Move to one side of When the permanent magnet 1-2 of the mover 1 approaches the rotor 4, a magnetic repulsive force is generated between the permanent magnet 1-2 and the rotor 4.
  • the permanent magnet 1-2 moves away from the rotor 4, and the permanent magnet 1-1 approaches the rotor 4, and due to the resultant force of the magnetic attraction generated between the permanent magnet 1-1 and the rotor 4, The mover 1 is returned to the other side in the movable axis direction.
  • the mover 1 moves to one side in the movable axis direction. Then, without being latched, it automatically returns to the latch (original latch state) at the position moved to the other side in the movable axis direction.
  • the mover 1 moves from the state in which the permanent magnet 1-2 is latched to the rotor 4 in the state where the magnetic poles on the inner circumferential surface of the rotor 4 are in the second arrangement, Move to the other side.
  • the permanent magnet 1-1 of the mover 1 approaches the rotor 4, a magnetic repulsive force is generated between the permanent magnet 1-1 and the rotor 4.
  • the permanent magnet 1-1 moves away from the rotor 4, and the permanent magnet 1-2 approaches the rotor 4. Due to the resultant force of the magnetic attractive force generated between the permanent magnet 1-2 and the rotor 4, The mover 1 is returned to one side in the movable axis direction.
  • the mover 1 moves to the other side in the movable axis direction. Then, without being latched, it automatically returns to the latch (original latched state) at the position moved to one side in the movable axis direction.
  • the position is moved from one position of the mover 1. Switching the latch to the position moved to the other side and switching the latch from the position moved to the other side to the position moved to one side cannot be performed. Further, without changing the arrangement of the magnetic poles on the inner peripheral surface of the rotor 4, the mover 1 latched at the position moved to one side is moved to the other side, or latched at the position moved to the other side. When the mover 1 is moved to one side, the mover 1 automatically returns to the original latched state.
  • a lock mechanism called rotation of the rotor 4 is added to the movement of the mover 1 in the direction of the movable axis, and a reliable operation is obtained by adding this lock mechanism. And safety is increased.
  • permanent magnets are used for both the mover 1 and the rotor 4, and the main power for moving the mover 1 in the direction of the movable axis is the rotor (permanent magnet). ) It works by using both the magnetic repulsive force of the mover 1 (permanent magnet) on the source side and the magnetic attraction force of the mover 1 (permanent magnet) on the destination side, rotating between The rotational force for rotating the child 4 is used as pilot power only for replacing the arrangement of the magnetic poles on the inner peripheral surface of the rotor 4.
  • a magnetic field is instantaneously applied from a position close to the rotor (permanent magnet) 4 to generate a rotational torque necessary to change the arrangement of the magnetic poles on the inner peripheral surface of the rotor 4.
  • it can be operated with (in principle) less power than a conventional solenoid used for the main power of movement in the direction of the movable axis.
  • the permanent magnets 1-1 and 1-2 of the mover 1 are columnar, but may be cylindrical.
  • the distance from the inner peripheral surface of the rotor 4 arranged on the outside can be set close. It is magnetically efficient and convenient for miniaturization.
  • the magnetic force becomes weaker depending on the volume and the distance between the magnetic poles, but since it can be fixed through the shaft on the inside, the shaft alignment and connection with the shaft are facilitated and the assembly is facilitated.
  • the permanent magnets 1-1 and 1-2 of the mover 1 may be rectangular, but it can be said that a cylindrical or cylindrical shape is the best shape in terms of magnetic and space efficiency.
  • the permanent magnets 1-1 and 1-2 of the mover 1 have the same shape and the same size. However, they may not necessarily have the same shape and the same size. . By making the same shape and the same size, bidirectional operation characteristics can be made uniform. On the contrary, by changing the shape and size of the permanent magnets 1-1 and 1-2, the bidirectional operation characteristics can be made asymmetric.
  • the length l of the permanent magnets 1-1 and 1-2 of the mover 1 in the movable axis direction is equal to or longer than the length L of the rotor 4 in the movable axis direction. It is not always necessary that l ⁇ L. By setting l ⁇ L, the stroke of the mover 1 can be increased.
  • the permanent magnets 1-1 and 1-2 of the mover 1 are integrated.
  • the permanent magnets 1-1 and 1-2 are not necessarily integrated.
  • the members may be connected by magnetic force or adhesion.
  • FIGS. 3A and 3B show an example (a diagram corresponding to FIGS. 1A and 1B) in which the permanent magnet 1-1 and the permanent magnet 1-2 of the mover 1 are arranged apart from each other.
  • the mover 1 is constituted by a permanent magnet 1-1 and a permanent magnet 1-2, and between the permanent magnet 1-1 and the permanent magnet 1-2 (movable axis direction). Are connected by a non-magnetic member (shaft or the like) 1-3.
  • a non-magnetic member shaft or the like
  • FIGS. 4A and 4B show diagrams corresponding to FIGS. 2A and 2B, respectively.
  • Control of movable range of mover] 3A and 3B show an example in which the movable range of the mover 1 is limited.
  • a stopper 8-1 is provided on one side of the movable axis direction
  • a stopper 8-2 is provided on the other side of the movable axis direction
  • the movable body 3 (movable element 1) is moved in the movable axis direction by the stopper 8-1.
  • the movement to one side is restricted, and the movement of the movable body 3 (movable element 1) to the other side in the movable axis direction is restricted by the stopper 8-2.
  • the range of movement is limited.
  • the permanent magnets of the mover 1B are arranged so that the permanent magnets 1-1 and 1-2 of the mover 1B do not enter the hollow portion 4a of the rotor 4.
  • the movable range of the mover 1B is limited so as to stop near the inner end face of the 1-1, 1-2, the permanent magnets 1-1, 1-2 that interfere with the rotation of the rotor 4 and the inner peripheral side of the rotor 4 Since it is possible to suppress an increase in the vector component in the direction perpendicular to the movable axis Z of the attractive force between the rotor 4 and the magnetic pole, the rotor 4 can be easily rotated.
  • the inner end faces of the permanent magnets 1-1 and 1-2 of the mover 1B are slightly in the hollow portion 4a of the rotor 4 (for example, the rotor 4 is a ring-shaped permanent magnet having an outer diameter of about 13 mm and an inner diameter of about 8 mm). If it is about 0.5 mm), if the movable range of the movable element 1B is limited so as to stop when it enters, the rotor 4 can be further rotated. This is because between the magnetic pole of the permanent magnet closer to the rotor 4 of the permanent magnets 1-1 and 1-2 of the mover 1B and the magnetic pole on the inner peripheral side of the rotor 4 (different poles).
  • a chamfered portion may be formed on both or one of the edges of the movable element 1 and the rotor 4 that are close to each other.
  • 5A, 5B, and 5C show an example in which chamfered portions are formed at both the edges of the movable element 1 and the rotor 4 that are close to each other.
  • 5A is a side cross-sectional view of the main part
  • FIG. 5B is a view of FIG. 5A viewed from the left (Z1) direction
  • FIG. 5C is a view of FIG. 5A viewed from the right (Z2) direction.
  • chamfered portions 1a and 1b are formed at the edges of the permanent magnets 1-1 and 1-2 of the mover 1 that are close to and opposed to the rotor 4 respectively. Further, chamfered portions 4b and 4c are formed at edges of the rotor 4 that are close to and opposed to the permanent magnets 1-1 and 1-2 of the mover 1 of the rotor 4.
  • FIG. 6A and 6B show a main part of an example of a mechanism (rotation stop mechanism) that prevents the movable body 3 (mover 1) from rotating about the movable axis Z.
  • FIG. 6A is a side view of the main part
  • FIG. 6B is a cross-sectional view taken along line BB in FIG. 6A. 6A and 6B, the rotor 4 and the rotor rotating means 7 are omitted.
  • a shaft 2-1 connected to one end of the mover 1 is inserted into a bush (linear guide) 9-1, and a shaft 2-2 connected to the other end of the mover 1 is a bush (linear guide). It is inserted through 9-2.
  • the bushes (linear guides) 9-1 and 9-2 are fixed, and the movable body 3 (movable element 1) moves in the movable axis direction along the bushes (linear guides) 9-1 and 9-2.
  • Protrusions 9a and 9b are formed on the inner peripheral surfaces of the bushes (linear guides) 9-1 and 9-2.
  • the protrusions 9a and 9b are arranged in the direction of the movable axis on the outer peripheral surfaces of the shafts 2-1 and 2-2.
  • the shafts 2-1 and 2-2 are inserted into bushes (linear guides) 9-1 and 9-2 by engaging the grooves 2 a and 2 b formed along
  • the engagement of the projections 9a, 9b and the grooves 2a, 2b prevents rotation of the movable body 3 (movable element 1) about the movable axis Z. Further, the movable shaft 3 of the movable body 3 (movable element 1) is moved by the engagement between the protrusions 9a and 9b and the grooves 2a and 2b, that is, depending on the fixed angle of the bushes (linear guides) 9-1 and 9-2. A rotation angle around the center is set, and the inclination ⁇ in the direction of the magnetic poles of the permanent magnets 1-1 and 1-2 of the mover 1 is set by setting the rotation angle.
  • the rotor 4 is a ring or a cylindrical permanent magnet.
  • the rotor 4 is not limited to a ring or a cylindrical permanent magnet, and as shown in FIGS.
  • the permanent magnets 4-1 and 4-2 having a pair of magnetic poles may be arranged so as to sandwich the mover 1 so that the magnetic pole direction is orthogonal to the movable axis Z.
  • FIGS. 7A and 7B rectangular permanent magnets 4-1 and 4-2 are sandwiched between the ends of semi-ring or semi-cylindrical holding members (non-magnetic members) 4-3 and 4-4.
  • the rotor 4 (4B) having an overall shape of a ring or a cylinder is used.
  • the positions of the S pole of the permanent magnet 4-1 and the N pole of the permanent magnet 4-2 are on the inner circumferential surface (first circumference) of the rotor 4B, and the permanent magnet 4-1
  • the positions of the N pole and the S pole of the permanent magnet 4-2 are on the outer peripheral surface of the rotor 4B (on the second circumference). That is, the permanent magnets 4-1 and 4-2 having a pair of magnetic poles are arranged so that the movable element 1 is sandwiched so that the magnetic pole direction is perpendicular to the movable axis Z.
  • rectangular permanent magnets 4-1 and 4-2 may be provided on a disk-shaped holding member (nonmagnetic member) 4-5. As shown in FIG. 9B, rectangular permanent magnets 4-1 and 4-2 may be fitted into the outer peripheral surface of a ring or cylindrical holding member (nonmagnetic member) 4-6.
  • the holding members 4-3 to 4-6 as shown in FIGS. 7A, 7B to 9A, 9B, the amount of magnet material used can be reduced, and the sliding portion can be integrated. Increases freedom.
  • the rotor rotating means 7 (7A) is composed of an electromagnetic coil 5 and yokes 6-1, 6-2, and the other ends of the yokes 6-1 and 6-2 are connected. Although it is made to oppose on both sides of the rotor 4 from the direction substantially orthogonal to the movable axis Z, such a configuration is not necessarily required.
  • a pair of electromagnetic coils 5-1 and 5-2 are arranged with the movable shaft Z sandwiched between them so that the shaft cores are substantially coincident and one end of the core is opposed to each other.
  • the yokes 6-3 and 6-4, one end of which is connected to or integrated with one end of the core of the set of electromagnetic coils 5-1 and 5-2, and the set of electromagnetic coils 5-1 , 5-2 and the yoke 6-5 connecting the other ends of the cores may constitute the rotor rotating means 7.
  • the other end of the yokes 6-3 and 6-4 in which one end is connected to or integrated with one end of the core of the set of electromagnetic coils 5-1 and 5-2.
  • the ends are opposed to each other with the mover 1 sandwiched from a direction substantially orthogonal to the movable axis Z.
  • the shape of the other end portion of the yokes 6-3 and 6-4 is formed in an arc shape in accordance with the shape of the outer peripheral surface of the rotor 4.
  • the arc is preferably formed concentrically with the outer periphery of the rotor 4 in order to improve the rotation efficiency.
  • the shape of the other end of the yokes 6-1 and 6-2 is an arc shape in accordance with the shape of the outer peripheral surface of the rotor 4, but in FIGS. As shown, the shape of the other end of the yokes 6-1 and 6-2 may be a flat surface. If the shape of the other end of the yokes 6-1 and 6-2 is an arc, the generation efficiency of the rotational force is improved (it can be rotated with a low magnetic flux (low power)). It is preferable that both end portions of the arcs of the opposing yokes 6-1 and 6-2 have a small cross-sectional area (high magnetic resistance) and face each other in close proximity to increase the rotational force.
  • a space is provided in the abutting portion at the other end of the yokes 6-1 and 6-2, but no space is provided in the abutting portion as shown in FIG. It may be connected to or integrated with.
  • the butted portions of the other ends of the yokes 6-1 and 6-2 are connected or integrated, that is, when the other ends of the yokes 6-1 and 6-2 are partially connected or integrated, Although the generation efficiency decreases, alignment and assembly become easy.
  • the setting of the crossing angle ⁇ in the non-excited state of the electromagnetic coil 5 is performed by setting the rotation angle about the movable axis Z of the mover 1.
  • the asymmetric shape or arrangement of 6-1 and 6-2 may be used. An example is shown in FIGS.
  • the shape of the other end of the yokes 6-1 and 6-2 is asymmetrical so that the rotor 4 and the yokes 6-1 and 6-2 are in the non-excited state of the electromagnetic coil 5.
  • the crossing angle ⁇ is generated by setting a stable position where the rotation angles of the rotor 4 are balanced by the attractive force acting between the other end portions of the two.
  • the notches 6a and 6b are provided at the other ends of the yokes 6-1 and 6-2, so that the rotor 4 and the yokes 6-1 and 6 are in the non-excited state of the electromagnetic coil 5.
  • the crossing angle ⁇ is generated by setting a stable position where the rotation angle of the rotor 4 is balanced by the attractive force acting between the other end portion of -2.
  • the holding torque for holding the rotor 4 at a predetermined angular position works, so that the electromagnetic coil It is possible to prevent rotation due to factors other than excitation and prevent malfunction.
  • the direction of the magnetic pole of the mover 1 is not shown, but in order to maximize the generated force in the direction of the movable axis Z of the mover 1, the magnetic pole of the mover 1 Is preferably set by a rotation stopping mechanism so as to match the direction of the magnetic pole of the rotor 4.
  • a set of permanent magnets 10-1 and 10-2 for generating a rotational force is provided so that the rotor 4 can advance and retreat from a direction substantially orthogonal to the movable axis Z. It may be.
  • an arc-shaped permanent magnet 10-1 for generating a rotational force is provided on the upper side of the rotor 4 with the S pole as the rotor 4 side, and an arc-shaped permanent magnet for generating the rotating force.
  • 10-2 is provided on the lower side of the rotor 4 with the S pole as the rotor 4 side, and the push button 11-1 and the coil spring 12-1 are attached to the permanent magnet 10-1 for generating the rotational force, thereby rotating.
  • the generating permanent magnet 10-2 is movable forward and backward with respect to the rotor 4.
  • the push button 11-1 is pushed and the permanent magnet 10-1 for generating rotational force rotates.
  • the movable body 3 moves to the other side in the movable axis direction, and the permanent magnet 1-1 of the movable element 1 is latched by the rotor 4 (see FIGS. 17A and 17B).
  • FIGS. 1A and 1B In the configuration shown in FIGS. 1A and 1B and the configuration shown in FIGS. 17A and 17B, a magnetic field is applied to the rotor 4 from the outside. However, as shown in FIGS. (13-1, 13-2) are attached, and a mechanical force (rotational torque) is applied to the rotary lever 13 from the outside to rotate the rotor 4, so that the magnetic poles on the inner peripheral surface of the rotor 4 are arranged. You may make it replace.
  • the rotor rotating means 7 (7D) is constituted by the rotating lever 13 and means for applying a mechanical force to the rotating lever 13 from the outside.
  • an actuator such as a manual motor or a motor is conceivable as means for applying a mechanical force to the rotary lever 13 from the outside.
  • the rotor 4 When a magnetic field is applied to the rotor 4 from the outside, the rotor 4 can be driven through a non-magnetic shield. For example, the rotor 4 in the explosion-proof area in the tube can be driven without contact.
  • rotation stop mechanism In the configuration shown in FIGS. 1A and 1B, as shown in FIGS. 6A and 6B, by providing protrusions 9a and 9b for rotation prevention on bushes (linear guides) 9-1 and 9-2, the movable body 3 (movable) Although the rotation about the movable axis Z of the child 1) is prevented, such a rotation stopping mechanism is not necessarily required.
  • FIG. 20A and 20B show another example of the rotation stop mechanism.
  • 20A is a side view of the main part
  • FIG. 20B is a cross-sectional view taken along the line CC in FIG. 20A.
  • 20A and 20B, the rotor 4 and the rotor rotating means 7 are omitted.
  • the bushes (linear guides) 9-1 and 9-2 are not provided with a rotation-preventing protrusion, and the shafts 2-1 and 2-2 connected to the mover 1 can be directly moved and rotated.
  • the bushes (linear guides) 9-1 and 9-2 are fixed.
  • the bush (linear guide) 9-1 is fixed (press-fitted) to the base member (nonmagnetic member) 14.
  • the bush (linear guide) 9-2 is fixed (press-fit) to another member.
  • Reference numeral 15 denotes an external driven body that receives a force in the direction of the movable axis of the mover 1.
  • the movement of the movable member in the direction of the movable axis is guided using a plurality of pins 16 provided on the base member 14 as a guide.
  • the movement in the rotation direction around Z is restricted by the pin 16.
  • the tip of the shaft 2-1 is connected (fixed) to the driven body 15, and the movement of the movable body 3 (movable element 1) in the movable axis direction guided by bushes (linear guides) 9-1 and 9-2. Is transmitted to the actuated body 15. Further, the rotation of the driven body 15 is restricted by the pin 16, so that the rotation about the movable axis Z of the movable body 3 (mover 1) is prevented.
  • 21 to 24A and 24B show another example of the rotation stop mechanism.
  • a plurality of pins 16 provided on the base member 14 are inserted into holes 15a provided on the operated body 15 (for example, a valve body of a shut-off valve), whereby the operated body 15
  • the operated body 15 for example, a valve body of a shut-off valve
  • the movement of the driven body 15 in the direction of the movable axis is performed by inserting a plurality of pins 17 provided on the back side of the driven body 15 into the holes 14 a provided in the base member 14.
  • the movement of the driven body 15 in the rotational direction around the movable axis Z is restricted (rotation around the movable axis Z of the movable body 3 (movable element 1) is prevented).
  • the plurality of projections 15b provided on the back surface side of the body 15 to be driven and the plurality of projections 14a provided on the base member 14 are engaged with each other, thereby The movement of the movable body 15 around the movable axis Z is regulated (the rotation of the movable body 3 (movable element 1) around the movable axis Z is prevented). )
  • the columnar convex portion 15 c provided on the back surface side of the driven body 15 is inserted into the square hole 14 b provided in the base member 14, thereby moving the movable shaft of the driven body 15.
  • the movement in the direction is guided, and the movement of the driven body 15 in the rotation direction around the movable axis Z is restricted (rotation of the movable body 3 (movable element 1) around the movable axis Z is prevented). I have to.
  • FIG. 25 and FIG. 26 illustrate the holding structure of the movable body 3 (movable element 1) and the rotor 4.
  • the rotor rotating means 7, the rotation stopping mechanism of the movable body 3 (movable element 1), and the like are omitted.
  • the movable body 3 (movable element 1) and the compartment 22 formed by the base member (nonmagnetic member) 14 (14 A) and the tubular member (nonmagnetic member) 21 (21 A) are provided.
  • the rotor 4 is provided.
  • the shaft 2-1 of the movable body 3 is inserted into a bush (linear guide) 9-1 fixed (press-fitted) to the base member 14A, and the shaft 2-2 of the movable body 3 is fixed in the pipe of the tubular member 21A ( The bush (linear guide) 9-2 is press-fitted.
  • the rotor 4 is held in a space in the compartment 22 sandwiched between the base member 14A and the tubular member 21A so as to be rotatable about the movable axis Z and to prevent movement in the movable axis direction. .
  • the movable body 3 (movable element 1) is provided in the internal compartment 22 formed by the base member 14 (14B) and the tubular member 21 (21B).
  • the shaft 2-1 of the movable body 3 is inserted into a bush (linear guide) 9-1 fixed (press-fitted) to the base member 14B, and the shaft 2-2 of the movable body 3 is fixed in the pipe of the tubular member 21B (
  • the bush (linear guide) 9-2 is press-fitted.
  • the rotor 4 is held in a groove 23 provided outside the tubular member 21B so as to be rotatable about the movable axis Z and to prevent movement in the movable axis direction.
  • the permanent magnets 1-1 and 1-2 constituting the mover 1 have two magnetic poles, but four or more magnetic poles (for example, cylindrical radial magnetization (in the case of a cylinder, the inner Since there are magnetic poles on the circumferential side, a multi-pole permanent magnet of 8 magnetic poles)) may be used.
  • FIGS. 27A to 27C are configuration diagrams in the case where the permanent magnets 1-1 and 1-2 of the mover 1 are columnar permanent magnets and the columnar permanent magnets are four magnetic poles.
  • 27A is a side cross-sectional view of the main part
  • FIG. 27B is a view of FIG. 27A viewed from the left (Z1) direction
  • FIG. 27C is a view of FIG. 27A viewed from the right (Z2) direction.
  • the rotor rotating means 7 and the like shown in FIGS. 1A and 1B are omitted.
  • the circumferential direction of the permanent magnet 1-1 of the mover 1 is divided into four, and magnetic poles are formed on adjacent circumferential surfaces at 90 ° intervals.
  • the S pole is on the first circumferential surface (the upper surface in FIG. 27B) that is adjacent at 90 ° intervals, and the second surface (the left surface in FIG. 27B).
  • the N pole is formed, the S pole is formed on the third surface (the lower surface in FIG. 27B), and the N pole is formed on the fourth surface (the right surface in FIG. 27B).
  • the circumferential direction of the permanent magnet 1-2 of the mover 1 is divided into four, and magnetic poles are formed on adjacent circumferential surfaces at 90 ° intervals.
  • an N pole is formed on the first circumferential surface adjacent at 90 ° intervals (the upper surface in FIG. 27C), and an S pole is formed on the second surface (the left surface in FIG. 27C).
  • the N pole is formed on the third surface (the lower surface in FIG. 27C), and the S pole is formed on the fourth surface (the right surface in FIG. 27C).
  • the rotor 4 is also a ring-shaped permanent magnet having a total of 8 magnetic poles with 4 magnetic poles on the inner peripheral surface and 4 magnetic poles on the outer peripheral surface. That is, the circumferential direction of the inner peripheral surface of the rotor 4 is divided into four, and magnetic poles are formed on adjacent circumferential surfaces at 90 ° intervals.
  • the N pole is formed on the first circumferential surface (the upper surface in FIG. 27B) adjacent at 90 ° intervals
  • the S pole is formed on the second surface (the left surface in FIG. 27B).
  • An N pole is formed on the third surface (the lower surface in FIG. 27B), and an S pole is formed on the fourth surface (the right surface in FIG. 27B).
  • the circumferential direction of the outer inner circumferential surface of the rotor 4 is divided into four, and magnetic poles are formed on adjacent circumferential surfaces at 90 ° intervals.
  • the S pole is formed on the first circumferential surface (the upper surface in FIG. 27B) adjacent at 90 ° intervals
  • the N pole is formed on the second surface (the left surface in FIG. 27B).
  • the S pole is formed on the third surface (the lower surface in FIG. 27B), and the N pole is formed on the fourth surface (the right surface in FIG. 27B).
  • be the intersection angle between the connecting line and the line connecting the center of the magnetic pole on the outer peripheral surface of the permanent magnet of the rotor 4 substantially opposite to the other end of the yoke 6-1 and the movable axis Z.
  • be the intersection angle between the connecting line and the line connecting the center of the magnetic pole on the outer peripheral surface of the permanent magnet of the rotor 4 substantially opposite to the other end of the yoke 6-1 and the movable axis Z.
  • the crossing angle between a line connecting the center of the magnetic pole and the movable axis Z so as to be orthogonal is ⁇ , and to be generated.
  • the pair of magnetic poles in the rotor 4 may be in only two directions, as shown in FIG.
  • the magnetic pole pair is in only two directions up and down, they are opposite to each other with the same polarity, so that rotation by a coil (electromagnetic force) is difficult.
  • the rotor 4 can be composed of magnetic pole pairs in two upper and lower directions. Is possible.
  • the permanent magnet is made of, for example, a rare earth magnet or ferrite magnet such as neodymium or samarium cobalt, or a bonded magnet formed by mixing a resin with a magnetic powder thereof.
  • the yoke is made of a soft magnetic material (for example, an electromagnetic steel plate, electromagnetic soft iron, permalloy, etc.) having a large saturation magnetic flux density and magnetic permeability, a small coercive force, and a small magnetic hysteresis.
  • the nonmagnetic member such as the shaft is made of, for example, aluminum, SUS316 (L), brass, resin, or the like. Although the performance is lowered, from the viewpoint of cost and the like, it is also conceivable to select a slightly magnetic material (for example, SUS304) as the nonmagnetic member instead of the nonmagnetic material as described above.
  • the bistable movement device according to the present invention can be applied to various uses such as a shut-off valve, an electromagnetic switch, and an electronic lock.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Linear Motors (AREA)

Abstract

A mover (1) is movable in a movable axis (Z-axis) direction and held so as to prevent rotation about the movable axis. The mover (1) is constituted by a first permanent magnet (1-1) and a second permanent magnet (1-2), and the magnetic poles of the permanent magnets (1-1, 1-2) are arranged so that different poles face each other in the movable axis direction. A ring-shaped permanent magnet is provided on the outside of the mover (1) as a rotor (4). The rotor (4) is rotatable about the movable axis and held so as to prevent movement in the movable axis direction. By rotating the rotor (4), an arrangement of the magnetic poles on the inner circumferential surface of the rotor (4) is changed between a first arrangement (S pole on the upper side, N pole on the lower side) and a second arrangement (N pole on the upper side, S pole on the lower side), so that the mover (1) is latched at movement positions on one side and the other side of the movable axis direction. This makes it possible to obtain a bistable moving device having a high safety and capable of obtaining a reliable operation.

Description

双安定移動装置Bistable moving device
 この発明は、可動子と回転子を用い、可動子を2つの位置の間で移動させ、そのどちらかの位置に保持する双安定移動装置に関するものである。 The present invention relates to a bistable moving device that uses a mover and a rotor, moves the mover between two positions, and holds the mover at either position.
 従来より、この種の双安定移動装置として、遮断弁や電磁開閉器、電子ロックなどの様々な用途で、可動子が2つの位置の間を移動でき、そのどちらかの位置に保持する機構を備えた双安定ラッチ型のソレノイドが使用されている。 Conventionally, as a bistable moving device of this kind, there is a mechanism that allows the mover to move between two positions in various applications such as shut-off valves, electromagnetic switches, and electronic locks, and holds it in either position. The bistable latch type solenoid provided is used.
 例えば、特許文献1には双安定型リニア電磁ソレノイドとして、特許文献2にはソレノイドアクチュエータとして、軸方向に移動可能な非磁性軸に固定されたプランジャ(可動子)が、プランジャを挟んで軸方向に対称に設置された固定コアを備えた1組の永久磁石(固定子)のどちらか一方にラッチされるように構成され、他端への移動はそれらを囲んで軸方向に対称に配置された1組の励磁コイルにより行う双安定移動装置が開示されている。 For example, as a bistable linear electromagnetic solenoid in Patent Document 1 and as a solenoid actuator in Patent Document 2, a plunger (movable element) fixed to a nonmagnetic shaft that can move in the axial direction has an axial direction across the plunger. It is configured to be latched by one of a set of permanent magnets (stator) having a fixed core placed symmetrically to each other, and movement to the other end is arranged symmetrically in the axial direction surrounding them. Also disclosed is a bistable moving device that uses a set of exciting coils.
 また、特許文献1や特許文献2では、可動子が鉄心で固定子に磁石を配置しているのに対して、例えば、特許文献3に示された双方向ラッチングソレノイドは、逆に可動子が磁石で、固定子を鉄心のみで構成されているが、いずれにしても、従来の双安定移動装置は可動子と固定子のどちらか一方が鉄心(磁性体)で、他方が磁石という構成とされている。 In Patent Document 1 and Patent Document 2, the mover is an iron core and a magnet is arranged on the stator. On the other hand, for example, in the bidirectional latching solenoid shown in Patent Document 3, the mover is In any case, the conventional bistable moving device has a structure in which either the mover or the stator is an iron core (magnetic material) and the other is a magnet. Has been.
特開平8-288129号公報JP-A-8-288129 特開平7-335434号公報JP 7-335434 A 特開平2010-98037号公報Japanese Unexamined Patent Publication No. 2010-98037
 しかしながら、上述した従来の双安定移動装置では、可動子と固定子のどちらか一方が鉄心(磁性体)で、他方が磁石という構成であるために、励磁コイルへの供給電流(励磁電流)を遮断した状態で1組の固定子のどちらか一方に可動子がラッチされている状態のときに、他方向への衝撃や過大力が掛かり、可動子が他方向へ移動してしまった場合は、可動子が他方向でラッチされてしまい、重大な誤動作となってしまう。特に、遮断弁や電磁開閉器、電子ロックなどでは、衝撃で開閉状態が逆になってしまうという致命的な問題となる。 However, in the conventional bistable moving device described above, since either the mover or the stator is an iron core (magnetic material) and the other is a magnet, the supply current (excitation current) to the excitation coil is reduced. When the mover is latched to either one of the pair of stators in the shut-off state, if an impact or excessive force is applied in the other direction and the mover moves in the other direction The mover is latched in the other direction, resulting in a serious malfunction. In particular, shut-off valves, electromagnetic switches, electronic locks, and the like become a fatal problem that the open / close state is reversed by an impact.
 また、それを防止するためにラッチ用永久磁石の磁力を強くするなどして、ラッチ力を強くすると、ラッチの解除および他方向への移動に大きな電力が必要になる、という問題が生じる。 Also, if the latching force is increased by increasing the magnetic force of the latching permanent magnet in order to prevent this, a problem arises that large electric power is required for releasing the latch and moving in the other direction.
 また、可動子の可動軸方向への移動の初期動作、つまり、最も離れた状態での可動子の吸引動作を電磁力で行うために、特に、ストローク(≒可動子と固定子間のギャップ)が大きい場合、電磁力は距離(ギャップ)のほぼ2乗に反比例するため、大きな電力が必要になる。 In addition, in order to perform the initial movement of the mover in the direction of the movable axis, that is, the attracting action of the mover in the most distant state with electromagnetic force, in particular, stroke (≈ gap between the mover and the stator) Is large, the electromagnetic force is inversely proportional to the square of the distance (gap), and thus a large amount of power is required.
 本発明は、このような課題を解決するためになされたもので、その目的とするところは、可動子に他方向への衝撃や一時的な過大力が掛かり、可動子が他方向へ移動してしまった場合でも、可動子が他方向でラッチされることがなく、可動子が元の方向でのラッチに自動的に復帰する、安全性が高く、確実な動作を得ることが可能な双安定移動装置を提供することにある。
 また、従来のソレノイドで可動軸方向への移動の主動力に使われる場合よりも少ない電力で動作させることが可能な双安定移動装置を提供することにある。
The present invention has been made to solve such a problem. The object of the present invention is to apply an impact or temporary excessive force to the mover in the other direction, and the mover moves in the other direction. If this happens, the mover will not be latched in the other direction, and the mover will automatically return to the latch in the original direction. It is to provide a stable moving device.
It is another object of the present invention to provide a bistable moving device that can be operated with less electric power than a conventional solenoid that is used as the main power for movement in the direction of the movable axis.
 このような目的を達成するために本発明は、可動軸方向に移動可能で、かつ、可動軸を中心とした回転を阻止するように保持され、可動軸と直交する方向に可動軸を挟むように配置された複数の磁極を有する第1の永久磁石と、可動軸と直交する方向に可動軸を挟むように、かつ、第1の永久磁石の磁極に対して可動軸方向に異極同士が対向するように配置された複数の磁極を有する第2の永久磁石とを備える可動子と、可動軸を中心として回転可能で、かつ、可動軸方向の移動を阻止するように保持され、一方の磁極の位置を可動軸を中心とする第1の円周上とし、他方の磁極の位置を第1の円周よりも大径の可動軸を中心とする第2の円周上とする複数の磁極対を、可動軸と直交する方向に可動子を挟むように配置した永久磁石を備える回転子と、回転子を回転させて、回転子の第1の円周上の磁極の配置を、第1の配置と第2の配置との間で入れ替える回転子回転手段とを備え、回転子は、第1の円周上の磁極の配置が第1の配置である場合、可動子の第1の永久磁石を磁気吸引保持する一方、可動子の第2の永久磁石を磁気反発させ、第1の円周上の磁極の配置が第2の配置である場合、可動子の第2の永久磁石を磁気吸引保持する一方、可動子の第1の永久磁石を磁気反発させることを特徴とする。 In order to achieve such an object, the present invention can move in the direction of the movable axis and is held so as to prevent rotation about the movable axis, and sandwich the movable axis in a direction perpendicular to the movable axis. The first permanent magnets having a plurality of magnetic poles arranged in the first and second magnetic poles are arranged so that the movable shaft is sandwiched in a direction orthogonal to the movable shaft, and the different polarities are in the movable axis direction with respect to the magnetic pole of the first permanent magnet. A movable element including a second permanent magnet having a plurality of magnetic poles arranged to face each other, a movable element that can rotate about the movable axis, and is held so as to prevent movement in the movable axis direction; The position of the magnetic pole is on a first circumference centered on the movable axis, and the position of the other magnetic pole is on a second circumference centered on a movable axis having a larger diameter than the first circumference. Equipped with permanent magnets with magnetic pole pairs arranged so that the mover is sandwiched in the direction perpendicular to the movable axis A rotor, and rotor rotation means for rotating the rotor to change the arrangement of the magnetic poles on the first circumference of the rotor between the first arrangement and the second arrangement; When the arrangement of the magnetic poles on the first circumference is the first arrangement, the first permanent magnet of the mover is magnetically attracted and held, while the second permanent magnet of the mover is magnetically repelled, When the arrangement of the magnetic poles on the circumference of 1 is the second arrangement, the second permanent magnet of the mover is magnetically attracted and held, while the first permanent magnet of the mover is magnetically repelled. .
 本発明において、可動子は、可動軸方向に移動可能で、かつ、可動軸を中心とした回転を阻止するように保持され、可動軸と直交する方向に可動軸を挟むように複数の磁極を配置した第1の永久磁石と、可動軸と直交する方向に可動軸を挟むように、かつ、第1の永久磁石の磁極に対して可動軸方向に異極同士が対向するように、複数の磁極を配置した第2の永久磁石とで構成されており、回転子は、回転させることによって、第1の円周上の磁極の配置を第1の配置と第2の配置との間で入れ替えることができる。 In the present invention, the mover is movable in the direction of the movable axis and is held so as to prevent rotation about the movable axis, and a plurality of magnetic poles are sandwiched between the movable axes in a direction orthogonal to the movable axis. A plurality of first permanent magnets are arranged so as to sandwich the movable shaft in a direction orthogonal to the movable shaft, and opposite to each other in the movable shaft direction with respect to the magnetic pole of the first permanent magnet. It is comprised with the 2nd permanent magnet which has arrange | positioned the magnetic pole, and a rotor replaces the arrangement | positioning of the magnetic pole on a 1st circumference between 1st arrangement | positioning and 2nd arrangement | positioning by rotating. be able to.
 本発明において、回転子を回転させ、回転子の第1の円周上の磁極の配置を第1の配置とすると、可動子の第1の永久磁石を磁気吸引保持する一方、可動子の第2の永久磁石を磁気反発させる。また、回転子を回転させ、回転子の第1の円周上の磁極の配置を第2の配置とすると、可動子の第2の永久磁石を磁気吸引保持する一方、可動子の第1の永久磁石を磁気反発させる。 In the present invention, when the rotor is rotated and the arrangement of the magnetic poles on the first circumference of the rotor is the first arrangement, the first permanent magnet of the mover is magnetically attracted and held, while the first of the mover 2 permanent magnets are magnetically repelled. When the rotor is rotated and the arrangement of the magnetic poles on the first circumference of the rotor is the second arrangement, the second permanent magnet of the mover is magnetically attracted and held, while the first of the mover is The permanent magnet is magnetically repelled.
 すなわち、本発明において、回転子の第1の円周上の磁極の配置が第1の配置にあり、可動子の第1の永久磁石が回転子に磁気吸引されている場合に、回転子を回転させて回転子の第1の円周上の磁極の配置を第2の配置にすると、可動子の第1の永久磁石と回転子との間の磁気吸引力が消失し、第1の永久磁石と回転子との間に磁気反発力が発生する。これにより、第1の永久磁石が回転子を離れるとともに、第2の永久磁石が回転子に近づき、第2の永久磁石との間に生じる磁気吸引力との合力により、可動子が可動軸方向の一方側に移動し、可動子の第2の永久磁石が回転子によりラッチ(吸引・保持)される。 That is, in the present invention, when the arrangement of the magnetic poles on the first circumference of the rotor is in the first arrangement, and the first permanent magnet of the mover is magnetically attracted to the rotor, the rotor is When the rotor is rotated to place the magnetic poles on the first circumference of the rotor in the second arrangement, the magnetic attractive force between the first permanent magnet of the mover and the rotor disappears, and the first permanent A magnetic repulsive force is generated between the magnet and the rotor. As a result, the first permanent magnet leaves the rotor, the second permanent magnet approaches the rotor, and the resultant force with the magnetic attractive force generated between the second permanent magnet and the mover moves in the direction of the movable axis. The second permanent magnet of the mover is latched (attracted and held) by the rotor.
 また、本発明において、回転子の第1の円周上の磁極の配置が第2の配置にあり、可動子の第2の永久磁石が回転子に磁気吸引されている場合に、回転子を回転させて回転子の第1の円周上の磁極の配置を第1の配置にすると、可動子の第2の永久磁石と回転子との間の磁気吸引力が消失し、第2の永久磁石と回転子との間に磁気反発力が発生する。これにより、第2の永久磁石が回転子を離れるとともに、第1の永久磁石が回転子に近づき、第1の永久磁石との間に生じる磁気吸引力との合力により、可動子が可動軸方向の他方方側に移動し、可動子の第1の永久磁石が回転子によりラッチ(吸引・保持)される。 In the present invention, when the arrangement of the magnetic poles on the first circumference of the rotor is in the second arrangement, and the second permanent magnet of the mover is magnetically attracted to the rotor, the rotor is When the arrangement of the magnetic poles on the first circumference of the rotor is changed to the first arrangement by rotating the magnetic attraction force between the second permanent magnet of the mover and the rotor, the second permanent magnet is lost. A magnetic repulsive force is generated between the magnet and the rotor. As a result, the second permanent magnet leaves the rotor, the first permanent magnet approaches the rotor, and the resultant force with the magnetic attractive force generated between the first permanent magnet and the mover moves in the direction of the movable axis. The first permanent magnet of the mover is latched (attracted and held) by the rotor.
 本発明において、例えば、回転子の第1の円周上の磁極の配置が第1の配置にあり、可動子の第1の永久磁石が回転子に磁気吸引されている場合に、可動軸方向の一方側への衝撃や一時的な過大力が掛かり、可動子が可動軸方向の一方側へ移動してしまったとする。この場合、可動子は、回転子の第1の円周上の磁極の配置が第1の配置にある状態で、第1の永久磁石が回転子にラッチされている状態から、可動軸方向の一方側へ移動する。可動子の第2の永久磁石が回転子に近づくと、第2の永久磁石と回転子との間には磁気反発力が発生する。 In the present invention, for example, when the arrangement of magnetic poles on the first circumference of the rotor is in the first arrangement and the first permanent magnet of the mover is magnetically attracted to the rotor, the direction of the movable axis Suppose that an impact or temporary excessive force is applied to one side of the armature and the mover has moved to one side in the direction of the movable axis. In this case, the mover moves from the state in which the first permanent magnet is latched to the rotor in a state where the magnetic poles on the first circumference of the rotor are in the first arrangement, in the direction of the movable axis. Move to one side. When the second permanent magnet of the mover approaches the rotor, a magnetic repulsive force is generated between the second permanent magnet and the rotor.
 これにより、第2の永久磁石が回転子から離れるとともに、第1の永久磁石が回転子に近づき、第1の永久磁石と回転子との間に生じる磁気吸引力との合力により、可動子が可動軸方向の他方側に戻される。すなわち、可動子が可動軸方向の一方側へ移動しても、可動子は可動軸方向の一方側に移動した位置ではラッチされずに、自動的に可動軸方向の他方側に移動した位置でのラッチ(元のラッチ状態)に復帰する。 As a result, the second permanent magnet moves away from the rotor, the first permanent magnet approaches the rotor, and the movable element is moved by the resultant force of the magnetic attraction force generated between the first permanent magnet and the rotor. Returned to the other side in the direction of the movable axis. That is, even if the mover moves to one side in the movable axis direction, the mover is not latched at the position moved to one side in the movable axis direction, and is automatically moved to the other side in the movable axis direction. Return to the original latch (original latch state).
 本発明において、例えば、回転子の第1の円周上の磁極の配置が第2の配置にあり、可動子の第2の永久磁石が回転子に磁気吸引されている場合に、可動軸方向の他方側への衝撃や一時的な過大力が掛かり、可動子が可動軸方向の他方側へ移動してしまったとする。この場合、可動子は、回転子の第1の円周上の磁極の配置が第2の配置にある状態で、第2の永久磁石が回転子にラッチされている状態から、可動軸方向の他方側へ移動する。可動子の第1の永久磁石が回転子に近づくと、第1の永久磁石と回転子との間には磁気反発力が発生する。 In the present invention, for example, when the arrangement of the magnetic poles on the first circumference of the rotor is in the second arrangement and the second permanent magnet of the mover is magnetically attracted to the rotor, the direction of the movable axis Suppose that an impact or temporary excessive force is applied to the other side of the armature and the mover has moved to the other side in the direction of the movable axis. In this case, the mover moves from the state in which the second permanent magnet is latched to the rotor in the state where the magnetic poles on the first circumference of the rotor are in the second arrangement, in the direction of the movable axis. Move to the other side. When the first permanent magnet of the mover approaches the rotor, a magnetic repulsive force is generated between the first permanent magnet and the rotor.
 これにより、可動子の第1の永久磁石が回転子から離れるとともに、第2の永久磁石が回転子に近づき、第2の永久磁石と回転子との間に生じる磁気吸引力との合力により、可動子が可動軸方向の一方側に戻される。すなわち、可動子が可動軸方向の他方側へ移動しても、可動子は可動軸方向の他方側に移動した位置ではラッチされずに、自動的に可動軸方向の一方側に移動した位置でのラッチ(元のラッチ状態)に復帰する。 Thereby, while the 1st permanent magnet of a mover leaves | separates from a rotor, a 2nd permanent magnet approaches a rotor, By the resultant force with the magnetic attraction force produced between a 2nd permanent magnet and a rotor, The mover is returned to one side in the movable axis direction. In other words, even if the mover moves to the other side in the movable axis direction, the mover is not latched at the position moved to the other side in the movable axis direction, but is automatically moved to one side in the movable axis direction. Return to the original latch (original latch state).
 このように、本発明では、回転子を回転させて回転子の第1の円周上の磁極の配置を入れ替えなければ、可動子の一方側に移動した位置から他方側に移動した位置へのラッチの切り換え、他方側に移動した位置から一方側に移動した位置へのラッチの切り換えを行うことができない。また、回転子の第1の円周上の磁極の配置を入れ替えない状態で、一方側に移動した位置にラッチされている可動子の他方側への移動、他方側に移動した位置にラッチされている可動子の一方側への移動が生じた場合、自動的に元のラッチ状態に復帰される。これは、可動子の可動軸方向の移動に、回転子の回転というロック機構を付加したことによるものであり、このロック機構を付加することによって、安全性が高められ、確実な動作を得ることが可能となる。 Thus, in the present invention, if the arrangement of the magnetic poles on the first circumference of the rotor is not changed by rotating the rotor, the position moved from one side of the mover to the position moved to the other side is changed. Latch switching cannot be performed from the position moved to the other side to the position moved to the one side. Further, without changing the arrangement of the magnetic poles on the first circumference of the rotor, the mover latched at the position moved to one side is moved to the other side and latched at the position moved to the other side. When the mover moving to one side occurs, the original latch state is automatically restored. This is due to the addition of a lock mechanism called the rotation of the rotor to the movement of the mover in the direction of the movable axis. By adding this lock mechanism, safety is improved and reliable operation is obtained. Is possible.
 また、本発明では、可動子と回転子の両方に永久磁石を使用し、可動子を可動軸方向へ移動させるための主動力は、回転子(永久磁石)との間で働く、移動元側の可動子(永久磁石)の磁気反発力と、移動先側の可動子(永久磁石)の磁気吸引力の両方を同時に使用して行い、回転子を回転させるための回転力は、パイロット動力として、回転子の第1の円周上の磁極の配置を入れ替えるためにだけに使用されるので、例えば回転子(永久磁石)に近接した位置から瞬間的に磁界を与え、回転子の第1の円周上の磁極の配置を入れ替えるために必要な回転トルクを発生させるようにするだけでよく、従来のソレノイドで可動軸方向への移動の主動力に使われる場合よりも、(原理的に)少ない電力で動作させることが可能となる。なお、回転子を回転させるための回転力(回転トルク)は、必ずしも電磁力でなくてもよく、外部からの機械的な力であってもよい。 Further, in the present invention, a permanent magnet is used for both the mover and the rotor, and the main power for moving the mover in the direction of the movable axis is the source side that works with the rotor (permanent magnet). The magnetic repulsive force of the mover (permanent magnet) and the magnetic attraction force of the mover (permanent magnet) on the destination side are used simultaneously, and the rotational force for rotating the rotor is used as pilot power. , Because it is used only to change the arrangement of the magnetic poles on the first circumference of the rotor, for example, a magnetic field is applied instantaneously from a position close to the rotor (permanent magnet), and the first rotor It is only necessary to generate the rotational torque necessary to change the arrangement of the magnetic poles on the circumference, and (in principle) compared to the case where the conventional solenoid is used as the main power for movement in the direction of the movable axis. It is possible to operate with less power. Note that the rotational force (rotational torque) for rotating the rotor does not necessarily have to be electromagnetic force, and may be mechanical force from the outside.
 本発明において、可動子は、可動軸方向に移動可能で、かつ、可動軸を中心とした回転を阻止するように保持される必要がある。このために、例えば、可動子または可動子が接続されたシャフトなどに回転止め機構を設置するなどして、可動軸を中心とした回転を阻止するようにし、可動軸方向への移動のみを可能とする。一方、回転子は、可動軸を中心として回転可能で、かつ可動軸方向の移動を阻止するように保持される必要があり、例えば、環状の溝に配置するなどしてなどして、可動軸方向の移動を阻止するようにし、可動軸を中心とした回転のみを可能とする。 In the present invention, the mover needs to be movable in the direction of the movable axis and held so as to prevent rotation about the movable axis. For this purpose, for example, a rotation stop mechanism is installed on the mover or the shaft to which the mover is connected to prevent rotation around the moveable axis, and only movement in the moveable axis direction is possible. And On the other hand, the rotor needs to be able to rotate around the movable axis and be held so as to prevent movement in the direction of the movable axis. For example, the rotor is arranged in an annular groove, etc. The movement in the direction is prevented, and only rotation around the movable shaft is possible.
 本発明において、可動子の永久磁石と回転子の永久磁石とを接触しないように配置すると、従来技術でラッチ時に発生する磁石への衝撃力や吸着音も抑制され、また、コンプライアンスを持ったラッチ状態に保持できるため、従来のソレノイドのようにメカ的な緩衝機構やバネ機構などを付加する必要がなくなるというメリットが生じる。 In the present invention, if the permanent magnet of the mover and the permanent magnet of the rotor are arranged so as not to contact each other, the impact force and the adsorption sound to the magnet generated at the time of latching in the prior art are suppressed, and the latch having compliance Since the state can be maintained, there is a merit that it is not necessary to add a mechanical shock-absorbing mechanism or a spring mechanism as in the conventional solenoid.
 さらに、本発明において、回転子の永久磁石に外部から磁界を与えることにより回転子を回転させるような構成の場合は、回転子の永久磁石の第2の円周上に配置された磁極(外周側の磁極)を回転力発生用に使用し、回転子の永久磁石の第1の円周上に配置された磁極(内周側の磁極)を可動子の磁気吸引保持と磁気反発用に使用するようにして、可動子との間に発生する磁気吸引力に起因する内周側からの回転を妨げるトルクに対して、外周側からの弱い力で回転子を回転させることができるため、回転子回転手段の小型化と省電力化とが可能となる。 Furthermore, in the present invention, when the rotor is rotated by applying a magnetic field from the outside to the permanent magnet of the rotor, the magnetic poles (outer periphery) arranged on the second circumference of the permanent magnet of the rotor Side magnetic pole) is used for generating rotational force, and magnetic pole (inner peripheral side magnetic pole) arranged on the first circumference of the permanent magnet of the rotor is used for magnetic attraction holding and magnetic repulsion of the mover Thus, the rotor can be rotated with a weak force from the outer peripheral side against the torque that hinders the rotation from the inner peripheral side caused by the magnetic attractive force generated between the mover and the rotor. The child rotating means can be reduced in size and power can be saved.
 また、本発明では、さらなる安全対策として、通常の保持状態では回転子が衝撃などで意図しない回転をしないように、回転子に回転力を与えるヨークや永久磁石との間の吸引力やレバーなどのメカ機構などで、回転子の外周側に回転保持力が働くようにしておくことが好ましい。 Further, in the present invention, as a further safety measure, in a normal holding state, an attractive force between a yoke or a permanent magnet, a lever, or the like that applies a rotational force to the rotor so that the rotor does not rotate unintentionally due to an impact or the like. It is preferable that a rotation holding force is exerted on the outer peripheral side of the rotor with a mechanical mechanism.
 本発明によれば、可動子を第1の永久磁石(可動軸と直交する方向に可動軸を挟むように複数の磁極を配置した永久磁石)と第2の永久磁石(可動軸と直交する方向に可動軸を挟むように、かつ、第1の永久磁石の磁極に対して可動軸方向に異極同士が対向するように、複数の磁極を配置した永久磁石)とを備えた構成とし、回転子を回転させることによって回転子の第1の円周上の磁極の配置を第1の配置と第2の配置との間で入れ替え、回転子の第1の円周上の磁極の配置が第1の配置である場合に、可動子の第1の永久磁石を磁気吸引保持する一方、可動子の第2の永久磁石を磁気反発させ、回転子の第1の円周上の磁極の配置が第2の配置である場合に、可動子の第2の永久磁石を磁気吸引保持する一方、可動子の第1の永久磁石を磁気反発させるようにしたので、可動子に他方向への衝撃や一時的な過大力が掛かり、可動子が他方向へ移動してしまった場合でも、可動子が他方向でラッチされることがなく、可動子が元の方向でのラッチに自動的に復帰するものとなり、確実な動作を得ることが可能となり、安全性が高められる。 According to the present invention, the mover includes a first permanent magnet (a permanent magnet in which a plurality of magnetic poles are arranged so as to sandwich the movable shaft in a direction orthogonal to the movable axis) and a second permanent magnet (a direction orthogonal to the movable axis). And a permanent magnet having a plurality of magnetic poles arranged so that different poles face each other in the direction of the movable axis with respect to the magnetic pole of the first permanent magnet. By rotating the rotor, the arrangement of the magnetic poles on the first circumference of the rotor is switched between the first arrangement and the second arrangement, and the arrangement of the magnetic poles on the first circumference of the rotor is changed to the first one. In the case of the arrangement 1, the first permanent magnet of the mover is magnetically attracted and held, while the second permanent magnet of the mover is magnetically repelled so that the arrangement of the magnetic poles on the first circumference of the rotor is In the case of the second arrangement, the second permanent magnet of the mover is magnetically attracted and held, while the first permanent magnet of the mover Since the magnetic repulsion is applied, the mover may be latched in the other direction even if the mover is subjected to an impact or temporary excessive force in the other direction and the mover moves in the other direction. Therefore, the mover automatically returns to the latch in the original direction, so that a reliable operation can be obtained and safety is improved.
 また、本発明によれば、回転子を回転させるための回転力は、パイロット動力として、回転子の第1の円周上の磁極の配置を入れ替えるためにだけに使用されるので、例えば回転子の永久磁石に近接した位置から瞬間的に磁界を与えるようにするだけでよく、従来のソレノイドで可動軸方向への移動の主動力に使われる場合よりも少ない電力で動作させることが可能となる。 In addition, according to the present invention, the rotational force for rotating the rotor is used only as a pilot power to change the arrangement of the magnetic poles on the first circumference of the rotor. It is only necessary to apply a magnetic field instantaneously from a position close to the permanent magnet, and it is possible to operate with less power than that used for the main power of movement in the direction of the movable axis with a conventional solenoid. .
図1Aは、本発明に係る双安定移動装置の一実施の形態の要部の構成を示す図(可動子が可動軸方向の他方側に移動した状態でラッチされている状態を示す図)である。FIG. 1A is a diagram showing a configuration of a main part of an embodiment of a bistable moving device according to the present invention (a diagram showing a state in which a mover is latched in a state where it is moved to the other side in a movable axis direction). is there. 図1Bは、図1Aに示される双安定移動装置のA-A断面を示す図である。FIG. 1B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 1A. 図2Aは、本発明に係る双安定移動装置の一実施の形態の要部の構成を示す図(可動子が可動軸方向の一方側に移動した状態でラッチされている状態を示す図)である。FIG. 2A is a diagram showing a configuration of a main part of one embodiment of the bistable moving device according to the present invention (a diagram showing a state where the mover is latched in a state of moving to one side in the movable axis direction). is there. 図2Bは、図2Aに示される双安定移動装置のA-A断面を示す図である。FIG. 2B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 2A. 図3Aは、可動子の第1の永久磁石と第2の永久磁石とを離間して配置するようにした例を示す図(図1Aに対応する図)である。FIG. 3A is a diagram (a diagram corresponding to FIG. 1A) illustrating an example in which the first permanent magnet and the second permanent magnet of the mover are arranged apart from each other. 図3Bは、図3Aに示される双安定移動装置のA-A断面を示す図である。FIG. 3B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 3A. 図4Aは、可動子の第1の永久磁石と第2の永久磁石とを離間して配置するようにした例を示す図(図2Aに対応する図)である。FIG. 4A is a diagram (a diagram corresponding to FIG. 2A) illustrating an example in which the first permanent magnet and the second permanent magnet of the mover are arranged apart from each other. 図4Bは、図4Aに示される双安定移動装置のA-A断面を示す図である。FIG. 4B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 4A. 図5Aは、可動子および回転子の近接対向するエッジの両方に面取り部を形成するようにした例を示す図である。FIG. 5A is a diagram illustrating an example in which chamfered portions are formed at both the edges of the mover and the rotor that are close to each other. 図5Bは、図5Aに示される双安定移動装置の側面を示す図である。FIG. 5B is a diagram showing a side view of the bistable moving device shown in FIG. 5A. 図5Cは、図5Aに示される双安定移動装置の側面を示す図である。FIG. 5C is a diagram showing a side view of the bistable moving device shown in FIG. 5A. 図6Aは、可動体の可動軸を中心とした回転を阻止する機構(回転止め機構)の要部を示す図である。FIG. 6A is a diagram illustrating a main part of a mechanism (rotation stop mechanism) that prevents rotation about the movable axis of the movable body. 図6Bは、図6Aに示される回転止め機構の要部のB-B断面を示す図である。FIG. 6B is a view showing a BB cross section of the main part of the rotation stopping mechanism shown in FIG. 6A. 図7Aは、2つの永久磁石をその磁極方向が可動軸と直交するように可動子を挟むようにして配置した回転子を用いた例を示す図である。FIG. 7A is a diagram showing an example using a rotor in which two permanent magnets are arranged so as to sandwich the mover so that the magnetic pole direction is perpendicular to the movable axis. 図7Bは、図7Aに示される双安定移動装置のA-A断面を示す図である。FIG. 7B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 7A. 図8Aは、2つの永久磁石をその磁極方向が可動軸と直交するように可動子を挟むようにして配置した回転子の他の例を示す図である。FIG. 8A is a diagram showing another example of a rotor in which two permanent magnets are arranged so as to sandwich the mover so that the magnetic pole direction is perpendicular to the movable axis. 図8Bは、図8Aに示される回転子のC-C断面を示す図である。FIG. 8B is a view showing a CC cross section of the rotor shown in FIG. 8A. 図9Aは、2つの永久磁石をその磁極方向が可動軸と直交するように可動子を挟むようにして配置した回転子の別の例を示す図である。FIG. 9A is a diagram showing another example of a rotor in which two permanent magnets are arranged so as to sandwich the mover so that the magnetic pole direction thereof is orthogonal to the movable axis. 図9Bは、図9Aに示される回転子のD-D断面を示す図である。FIG. 9B is a diagram showing a DD cross section of the rotor shown in FIG. 9A. 図10Aは、可動軸を挟んでその軸芯をほゞ一致させてかつそのコアの一端を対向させて配置した1組の電磁コイルを用いた例を示す図である。FIG. 10A is a diagram showing an example using a set of electromagnetic coils that are arranged such that the axes of the movable shafts are substantially coincident and the ends of the cores are opposed to each other. 図10Bは、図10Aに示される双安定移動装置のA-A断面を示す図である。FIG. 10B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 10A. 図11Aは、可動軸とほゞ直交する方向から可動子を挟んで対向するヨークの他方の端部の形状を平坦面とした例を示す図である。FIG. 11A is a diagram illustrating an example in which the shape of the other end of the yoke facing the movable element from a direction substantially orthogonal to the movable shaft is a flat surface. 図11Bは、図11Aに示される双安定移動装置のA-A断面を示す図である。FIG. 11B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 11A. 図12は、可動軸とほゞ直交する方向から可動子を挟んで対向するヨークの他方の端部を部分的に接続または一体化させた例を示す図である。FIG. 12 is a diagram showing an example in which the other end portion of the yoke facing each other with the mover interposed therebetween in a direction substantially orthogonal to the movable shaft is partially connected or integrated. 図13は、可動軸とほゞ直交する方向から可動子を挟んで対向するヨークの他方の端部の形状を非対称とした例を示す図である。FIG. 13 is a diagram illustrating an example in which the shape of the other end of the yoke facing the movable element from the direction substantially orthogonal to the movable shaft is asymmetric. 図14は、可動軸とほゞ直交する方向から可動子を挟んで対向するヨークの他方の端部にノッチを設けるようにした例を示す図である。FIG. 14 is a diagram showing an example in which a notch is provided at the other end of the yoke facing the movable element from a direction substantially orthogonal to the movable shaft. 図15は、可動軸とほゞ直交する方向から可動子を挟んで対向するヨークの端部の中心を結ぶ線と可動軸とを交わらせないようにした例を示す図である。FIG. 15 is a diagram showing an example in which the movable shaft does not intersect the line connecting the centers of the end portions of the yokes facing each other with the movable element sandwiched from a direction substantially orthogonal to the movable shaft. 図16は、可動軸とほゞ直交する方向から可動子を挟んで対向するヨーク端部の中心を可動軸に直交する面内で可動子の両側にずらすようにした例を示す図である。FIG. 16 is a diagram showing an example in which the center of the yoke end opposed to the movable shaft in a direction substantially orthogonal to the movable shaft is shifted to both sides of the movable member within a plane orthogonal to the movable shaft. 図17Aは、回転子に対し可動軸とほゞ直交する方向から進退自在として1組の回転力発生用の永久磁石を設けるようにした例を示す図(可動軸方向の他方側に移動した状態でラッチされている状態を示す図)である。FIG. 17A is a diagram showing an example in which a set of permanent magnets for generating rotational force is provided so that the rotor can advance and retreat from a direction substantially orthogonal to the movable shaft (the state where the rotor is moved to the other side in the movable shaft direction). FIG. 図17Bは、図17Aに示される双安定移動装置のA-A断面を示す図である。FIG. 17B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 17A. 図18Aは、回転子に対し可動軸とほゞ直交する方向から進退自在として1組の回転力発生用の永久磁石を設けるようにした例を示す図(可動軸方向の一方側に移動した状態でラッチされている状態を示す図)である。FIG. 18A is a diagram showing an example in which a set of permanent magnets for generating a rotational force is provided so that the rotor can advance and retreat from a direction substantially orthogonal to the movable shaft (moved to one side in the movable shaft direction). FIG. 図18Bは、図18Aに示される双安定移動装置のA-A断面を示す図である。18B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 18A. 図19Aは、回転子に回転レバーを取り付けて外部から機械的な力(回転トルク)を与えて回転子を回転させるようにした例を示す図である。FIG. 19A is a diagram illustrating an example in which a rotating lever is attached to the rotor and mechanical force (rotational torque) is applied from the outside to rotate the rotor. 図19Bは、図19Aに示される双安定移動装置のA-A断面を示す図である。FIG. 19B is a diagram showing an AA cross section of the bistable moving device shown in FIG. 19A. 図20Aは、可動体の可動軸を中心とした回転を阻止する機構(回転止め機構)の他の例を示す図である。FIG. 20A is a diagram illustrating another example of a mechanism (rotation stop mechanism) that prevents rotation about the movable axis of the movable body. 図20Bは、図20Aに示される回転止め機構のC-C断面を示す図である。20B is a view showing a CC cross section of the rotation stopping mechanism shown in FIG. 20A. 図21は、回転止め機構の別の例を示す図である。FIG. 21 is a diagram illustrating another example of the rotation stopping mechanism. 図22は、回転止め機構の別の例を示す図である。FIG. 22 is a diagram illustrating another example of the rotation stopping mechanism. 図23Aは、回転止め機構の別の例を示す図である。FIG. 23A is a diagram illustrating another example of the rotation stopping mechanism. 図23Bは、図23Aに示される回転止め機構のD-D断面を示す図である。FIG. 23B is a diagram showing a DD cross section of the rotation stop mechanism shown in FIG. 23A. 図24Aは、回転止め機構の別の例を示す図である。FIG. 24A is a diagram illustrating another example of the rotation stopping mechanism. 図24Bは、図24Aに示される回転止め機構のE-E断面を示す図である。FIG. 24B is a diagram showing an EE cross section of the rotation stopping mechanism shown in FIG. 24A. 図25は、可動体(可動子)および回転子の保持構造を例示(回転子を隔室に配置した例)する図である。FIG. 25 is a diagram illustrating a movable body (movable element) and a rotor holding structure (an example in which the rotor is arranged in a compartment). 図26は、可動体(可動子)および回転子の保持構造を例示(回転子を隔室の外側に配置した例)する図である。FIG. 26 is a diagram illustrating a movable body (movable element) and a rotor holding structure (an example in which the rotor is disposed outside the compartment). 図27Aは、可動子の第1および第2の永久磁石を4磁極とした場合の要部の構成を示す図である。FIG. 27A is a diagram illustrating a configuration of a main part when the first and second permanent magnets of the mover have four magnetic poles. 図27Bは、図27Aに示される双安定移動装置の側面を示す図である。FIG. 27B is a diagram showing a side view of the bistable moving device shown in FIG. 27A. 図27Cは、図27Aに示される双安定移動装置の側面を示す図である。FIG. 27C is a diagram showing a side view of the bistable moving device shown in FIG. 27A. 図28は、可動子の第1および第2の永久磁石を4磁極とした場合の回転子回転手段を構成するヨークの配置を示す図である。FIG. 28 is a diagram showing the arrangement of the yokes constituting the rotor rotating means when the first and second permanent magnets of the mover have four magnetic poles. 図29は、可動子の第1および第2の永久磁石を4磁極とした場合に回転子における磁極対を上下だけの2方向とした例を示す図である。FIG. 29 is a diagram illustrating an example in which the magnetic pole pair in the rotor is set in only two directions, ie, the upper and lower directions, when the first and second permanent magnets of the mover have four magnetic poles.
 以下、本発明を図面に基づいて詳細に説明する。図1A、1Bは本発明に係る双安定移動装置の一実施の形態の要部の構成を示す図(図1Aは正面図、図1Bは図1AにおけるA-A線断面図)である。 Hereinafter, the present invention will be described in detail with reference to the drawings. 1A and 1B are views showing the configuration of the main part of an embodiment of a bistable moving device according to the present invention (FIG. 1A is a front view, and FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A).
 図1A、1Bにおいて、1(1A)は可動子であり、その両端にはシャフト2-1,2-2が接続されている。シャフト2-1,2-2は非磁性体とされている。以下では、この可動子1とシャフト2-1,2-2とからなる一体物を可動体と呼び、符号3で示す。 1A and 1B, reference numeral 1 (1A) denotes a mover, and shafts 2-1 and 2-2 are connected to both ends thereof. The shafts 2-1 and 2-2 are non-magnetic. In the following, an integral body composed of the movable element 1 and the shafts 2-1 and 2-2 is referred to as a movable body and is denoted by reference numeral 3.
 可動体3は、シャフト2-1,2-2の軸方向(Z軸方向)に移動可能に設けられている。すなわち、可動体3(可動子1)は、Z軸方向を可動軸方向とし、この可動軸方向に移動可能に設けられている。 The movable body 3 is provided so as to be movable in the axial direction (Z-axis direction) of the shafts 2-1 and 2-2. That is, the movable body 3 (movable element 1) is provided so as to be movable in the movable axis direction with the Z-axis direction as the movable axis direction.
 また、可動体3(可動子1)は、Z軸を中心とした回転を阻止するように保持されている。このZ軸を中心とした可動体3(可動子1)の回転を阻止する機構(回転止め機構)については後述する。以下、Z軸を可動軸と呼ぶ。 The movable body 3 (movable element 1) is held so as to prevent rotation about the Z axis. A mechanism (rotation stop mechanism) for preventing the rotation of the movable body 3 (movable element 1) around the Z axis will be described later. Hereinafter, the Z axis is referred to as a movable axis.
 可動子1は、円柱状の第1の永久磁石1-1と第2の永久磁石1-2とから構成され、永久磁石1-1および1-2は径方向に着磁されている。本実施の形態において、永久磁石1-1と1-2とは一体とされており、永久磁石1-1が可動軸方向の一方(Z1)側に設けられ、永久磁石1-2が可動軸方向の他方(Z2)側に設けられている。 The mover 1 includes a cylindrical first permanent magnet 1-1 and a second permanent magnet 1-2, and the permanent magnets 1-1 and 1-2 are magnetized in the radial direction. In the present embodiment, the permanent magnets 1-1 and 1-2 are integrated, the permanent magnet 1-1 is provided on one (Z1) side in the movable shaft direction, and the permanent magnet 1-2 is moved to the movable shaft. It is provided on the other side (Z2) in the direction.
 また、この例において、永久磁石1-1は、可動軸Zと直交する方向に可動軸Zを挟むように2つの磁極を配置した構成とされ、可動軸Zを挟んで対向する一方の面側(図1Bの状態では上側)がN極、他方の面側(図1Bの状態では下側)がS極とされている。 Further, in this example, the permanent magnet 1-1 has a configuration in which two magnetic poles are arranged so as to sandwich the movable axis Z in a direction orthogonal to the movable axis Z, and one surface side facing the movable axis Z is disposed. The upper side in the state of FIG. 1B is the N pole, and the other side (the lower side in the state of FIG. 1B) is the S pole.
 また、永久磁石1-2も、永久磁石1-1と同様に、可動軸Zと直交する方向に可動軸Zを挟むように2つの磁極を配置した構成とされ、可動軸Zを挟んで対向する一方の面側(図1Bの状態では上側)がS極、他方の面側(図1Bの状態では下側)がN極とされている。 Similarly to the permanent magnet 1-1, the permanent magnet 1-2 has a configuration in which two magnetic poles are arranged so as to sandwich the movable shaft Z in a direction orthogonal to the movable shaft Z, and are opposed to each other with the movable shaft Z interposed therebetween. One surface side (upper side in the state of FIG. 1B) is the S pole, and the other surface side (lower side in the state of FIG. 1B) is the N pole.
 すなわち、この例において、永久磁石1-1と1-2とは、可動軸方向に異極同士が対向するように、可動軸Zと直交する方向に可動軸Zを挟むように1対の磁極が配置された構成とされている。 That is, in this example, the permanent magnets 1-1 and 1-2 are a pair of magnetic poles so that the movable axis Z is sandwiched in a direction orthogonal to the movable axis Z so that the different poles face each other in the movable axis direction. Is arranged.
 なお、この例において、永久磁石1-1および1-2の磁極の方向は、図1Aに示されるように、可動軸Zと直交する垂直方向の線L1の方向を基準方向とした場合、この基準方向に対してθだけ傾けられている。 In this example, the direction of the magnetic poles of the permanent magnets 1-1 and 1-2 is as shown in FIG. 1A when the direction of the vertical line L1 orthogonal to the movable axis Z is the reference direction. It is inclined by θ with respect to the reference direction.
 図1A、1Bにおいて、4(4A)は回転子であり、可動軸Zを中心として回転可能で、かつ、可動軸方向の移動を阻止するように保持されている。回転子4は、径方向に着磁されたリングまたは円筒状の永久磁石(この例では、リング状の永久磁石)とされており、このリング状の永久磁石の中空部4aを通して可動軸方向に移動可能に可動体3(可動子1)が設けられている。 1A and 1B, reference numeral 4 (4A) denotes a rotor, which is rotatable about the movable axis Z and is held so as to prevent movement in the direction of the movable axis. The rotor 4 is a ring magnetized in the radial direction or a cylindrical permanent magnet (in this example, a ring-shaped permanent magnet), and moves in the direction of the movable axis through the hollow portion 4a of the ring-shaped permanent magnet. A movable body 3 (movable element 1) is provided so as to be movable.
 回転子4において、リング状の永久磁石の内周面は、可動軸Zを挟んで対向する一方の面側(図1Bの状態では上側)がS極、他方の面側(図1Bの状態では下側)がN極とされており、リング状の永久磁石の外周面は、可動軸Zを挟んで対向する一方の面側(図1Bの状態では上側)がN極、他方の面側(図1Bの状態では下側)がS極とされている。 In the rotor 4, the inner peripheral surface of the ring-shaped permanent magnet is such that one surface side (upper side in the state of FIG. 1B) facing the movable shaft Z is the S pole and the other surface side (in the state of FIG. 1B). The lower surface is the N pole, and the outer peripheral surface of the ring-shaped permanent magnet is the N pole and the other surface side (the upper side in the state of FIG. The lower side in the state of FIG. 1B is the S pole.
 すなわち、回転子4には、可動軸Zを中心とする第1の円周(内周面)上をS極の位置とし、可動軸Zを中心とする第1の円周よりも大径の第2の円周(外周面)上をN極の位置とする第1の磁極(上側の磁極対)対と、可動軸Zを中心とする第1の円周(内周面)上をN極の位置とし、可動軸Zを中心とする第1の円周よりも大径の第2の円周(外周面)上をS極の位置とする第2の磁極対(下側の磁極対)とが、可動軸Zを直交する方向に可動子1を挟むように配置されている。 That is, the rotor 4 has a position of the S pole on the first circumference (inner circumferential surface) centered on the movable axis Z and has a larger diameter than the first circumference centered on the movable axis Z. A first magnetic pole (upper magnetic pole pair) pair having an N-pole position on the second circumference (outer peripheral surface) and N on the first circumference (inner peripheral surface) centered on the movable axis Z The second magnetic pole pair (the lower magnetic pole pair) having the S pole position on the second circumference (outer peripheral surface) having a diameter larger than the first circumference centered on the movable axis Z. Are arranged so as to sandwich the mover 1 in a direction perpendicular to the movable axis Z.
 なお、この例において、可動子1の永久磁石1-1,1-2は、同一の形状、同一のサイズとされている。また、可動子1の永久磁石1-1,1-2の可動軸方向の長さlは、回転子4の可動軸方向の長さL以上とされている。 In this example, the permanent magnets 1-1 and 1-2 of the mover 1 have the same shape and the same size. Further, the length l of the permanent magnets 1-1 and 1-2 of the mover 1 in the movable axis direction is equal to or longer than the length L of the rotor 4 in the movable axis direction.
 図1A、1Bにおいて、7(7A)は、可動軸Zとほゞ直交する方向から回転子4に正逆方向の磁界を与えて回転子4を回転(180゜回転)させて、回転子4の内周面上の磁極の配置を、第1の配置と第2の配置との間で入れ替える回転子回転手段である。 In FIGS. 1A and 1B, reference numeral 7 (7A) designates a magnetic field in a normal / reverse direction to the rotor 4 from a direction substantially orthogonal to the movable axis Z to rotate the rotor 4 (rotate 180 °), thereby rotating the rotor 4 This is a rotor rotation means for switching the arrangement of the magnetic poles on the inner peripheral surface between the first arrangement and the second arrangement.
 この回転子回転手段7は、電磁コイル5と、この電磁コイル5のコアの一端および他端にその一方の端部が接続または一体化されたヨーク6-1および6-2とから構成されている。 The rotor rotating means 7 is composed of an electromagnetic coil 5 and yokes 6-1 and 6-2 in which one end is connected or integrated with one end and the other end of the core of the electromagnetic coil 5. Yes.
 この回転子回転手段7において、ヨーク6-1および6-2の他方の端部は、可動軸Zとほゞ直交する方向から回転子4を挟んで対向している。すなわち、回転子4の外周面の隣り合う1対の磁極にほゞ対向している。また、このヨーク6-1および6-2の他方の端部は、その形状が回転子4の外周面の形状に合わせて円弧状とされている。この円弧の形状は、回転子4の外周と同心円状に形成するのが回転効率を向上させるために好ましい。 In this rotor rotating means 7, the other ends of the yokes 6-1 and 6-2 are opposed to each other with the rotor 4 sandwiched from a direction substantially perpendicular to the movable axis Z. That is, they are generally opposed to a pair of adjacent magnetic poles on the outer peripheral surface of the rotor 4. Further, the other ends of the yokes 6-1 and 6-2 have an arc shape in accordance with the shape of the outer peripheral surface of the rotor 4. The arc is preferably formed concentrically with the outer periphery of the rotor 4 in order to improve the rotation efficiency.
〔通常のラッチ動作〕
 図1A、1Bの状態は、回転子回転手段7によって回転子4を回転させ、回転子4の内周面上の磁極の配置を第1の配置(上側がS極、下側がN極)に切り替えた状態を示している。
[Normal latch operation]
In the state shown in FIGS. 1A and 1B, the rotor 4 is rotated by the rotor rotating means 7 so that the magnetic poles on the inner peripheral surface of the rotor 4 are arranged in the first arrangement (the S pole on the upper side and the N pole on the lower side). It shows the switched state.
 この第1の配置において、回転子4(リング状の永久磁石)の内周面の磁極は図1に示されているように、上側がS極、下側がN極となる。この状態において、回転子4は、可動子1の永久磁石1-1を磁気吸引している。すなわち、中空部4a内に可動子1の永久磁石1-1を引き込んで、ラッチ(吸引・保持)している。 In this first arrangement, as shown in FIG. 1, the magnetic poles on the inner peripheral surface of the rotor 4 (ring-shaped permanent magnet) have an S pole on the upper side and an N pole on the lower side. In this state, the rotor 4 magnetically attracts the permanent magnet 1-1 of the mover 1. That is, the permanent magnet 1-1 of the mover 1 is drawn into the hollow portion 4a and latched (attracted / held).
 なお、図1A、1Bの状態は、回転子回転手段7によって回転子4を回転させた後、すなわち電磁コイル5への通電を行った後、電磁コイル5への通電を遮断した状態(非励磁状態)を示している。 1A and 1B is a state where the rotor 4 is rotated by the rotor rotating means 7, that is, after the energization of the electromagnetic coil 5 is performed, the energization of the electromagnetic coil 5 is cut off (non-excitation). State).
 この電磁コイル5の非励磁状態において、回転子4は、可動子1の永久磁石1-1との間の磁気吸引力によって、可動子1の永久磁石1-1の磁極の方向に沿って、その磁極の方向をほゞθだけ傾けた状態で静止している。 In the non-excited state of the electromagnetic coil 5, the rotor 4 is moved along the direction of the magnetic pole of the permanent magnet 1-1 of the mover 1 by the magnetic attractive force between the rotor 4 and the permanent magnet 1-1 of the mover 1. The magnetic pole is stationary with the direction of the magnetic field tilted by about θ.
 この状態から、回転子回転手段7によって回転子4を回転(180゜回転)させ、回転子4の内周面上の磁極の配置を第2の配置に切り替えたとする。すなわち、回転子4の内周面の磁極の位置を入れ替え、下側をS極、上側をN極にしたとする。すると、可動子1の永久磁石1-1と回転子4との間の磁気吸引力が消失し、永久磁石1-1と回転子4との間に磁気反発力が発生する。 From this state, it is assumed that the rotor 4 is rotated (rotated 180 °) by the rotor rotating means 7 and the arrangement of the magnetic poles on the inner peripheral surface of the rotor 4 is switched to the second arrangement. That is, it is assumed that the positions of the magnetic poles on the inner peripheral surface of the rotor 4 are changed so that the lower side is the S pole and the upper side is the N pole. Then, the magnetic attractive force between the permanent magnet 1-1 of the mover 1 and the rotor 4 disappears, and a magnetic repulsive force is generated between the permanent magnet 1-1 and the rotor 4.
 これにより、永久磁石1-1が回転子4を離れるとともに、永久磁石1-2が回転子4に近づき、永久磁石1-2との間に生じる磁気吸引力との合力により、可動子1が可動軸方向の一方側(図1Bに示す左(Z1)方向)に移動し、可動子1の永久磁石1-2が回転子4によりラッチされる(図2A、2B参照)。 As a result, the permanent magnet 1-1 leaves the rotor 4, and the permanent magnet 1-2 approaches the rotor 4. Due to the resultant force with the magnetic attractive force generated between the permanent magnet 1-2, the mover 1 is moved. Moving to one side of the movable axis direction (left (Z1) direction shown in FIG. 1B), the permanent magnet 1-2 of the movable element 1 is latched by the rotor 4 (see FIGS. 2A and 2B).
 なお、図2A、2Bの状態は、回転子回転手段7によって回転子4を回転させた後、すなわち電磁コイル5への通電を行った後、電磁コイル5への通電を遮断した状態(非励磁状態)を示している。この場合も、回転子4は、可動子1の永久磁石1-2との間の磁気吸引力によって、可動子1の永久磁石1-2の磁極の方向に沿って、その磁極の方向をほゞθだけ傾けた状態で静止する。 2A and 2B are states in which the rotor 4 is rotated by the rotor rotating means 7, that is, after the energization of the electromagnetic coil 5 is performed, the energization of the electromagnetic coil 5 is cut off (non-excitation). State). Also in this case, the rotor 4 changes the direction of the magnetic pole along the direction of the magnetic pole of the permanent magnet 1-2 of the mover 1 by the magnetic attraction force between the rotor 1 and the permanent magnet 1-2 of the mover 1. Stand still with a tilt of ゞ θ.
 次に、この状態(図2A、2Bの状態)から、回転子回転手段7によって回転子4を回転(180゜回転)させ、回転子4の内周面上の磁極の配置を第1の配置に切り替えたとする。すなわち、回転子4の内周面の磁極の位置を入れ替え、下側をN極、上側をS極にしたとする。すると、可動子1の永久磁石1-2と回転子4との間の磁気吸引力が消失し、永久磁石1-2と回転子4との間に磁気反発力が発生する。 Next, from this state (the state of FIGS. 2A and 2B), the rotor 4 is rotated (rotated 180 °) by the rotor rotating means 7, and the arrangement of the magnetic poles on the inner peripheral surface of the rotor 4 is the first arrangement. Suppose you switch to. In other words, it is assumed that the positions of the magnetic poles on the inner peripheral surface of the rotor 4 are changed so that the lower side is the N pole and the upper side is the S pole. Then, the magnetic attractive force between the permanent magnet 1-2 and the rotor 4 of the mover 1 disappears, and a magnetic repulsive force is generated between the permanent magnet 1-2 and the rotor 4.
 これにより、永久磁石1-2が回転子4を離れるとともに、永久磁石1-1が回転子4に近づき、永久磁石1-1との間に生じる磁気吸引力との合力により、可動子1が可動軸方向の他方側(図2Bに示す右方向)に移動し、可動子1の永久磁石1-1が回転子4によりラッチされる(図1A、1B参照)。 As a result, the permanent magnet 1-2 leaves the rotor 4, and the permanent magnet 1-1 approaches the rotor 4, and the mover 1 is moved by the resultant force with the magnetic attractive force generated between the permanent magnet 1-1 and the permanent magnet 1-1. Moving to the other side of the movable axis direction (the right direction shown in FIG. 2B), the permanent magnet 1-1 of the movable element 1 is latched by the rotor 4 (see FIGS. 1A and 1B).
 このようにして、回転子回転手段7によって回転子4を回転させることによって、可動子1が回転子4と非接触で移動し、可動子1の一方側でのラッチ、他方側でのラッチが行われる。この場合、回転子4の外周面の磁極を回転力発生用に使用し、回転子4の内周面の磁極を可動子1の磁気吸引保持と磁気反発用に使用することから、可動子1との間に発生する磁気吸引力に起因する内周側からの回転を妨げるトルクに対して、外周側からの弱い力で回転子4を回転させることができる。これにより、回転子回転手段7の小型化と省電力化とが可能となる。 In this way, by rotating the rotor 4 by the rotor rotating means 7, the mover 1 moves in a non-contact manner with the rotor 4, and the latch on one side of the mover 1 and the latch on the other side are latched. Done. In this case, the magnetic pole on the outer peripheral surface of the rotor 4 is used for generating a rotational force, and the magnetic pole on the inner peripheral surface of the rotor 4 is used for magnetic attraction holding and magnetic repulsion of the movable element 1. The rotor 4 can be rotated with a weak force from the outer peripheral side against the torque that hinders the rotation from the inner peripheral side caused by the magnetic attractive force generated between the rotor 4 and the outer peripheral side. Thereby, size reduction and power saving of the rotor rotation means 7 are attained.
 また、回転子4は、電磁コイル5の非励磁状態において、その磁極の方向がほゞθだけ傾けられて静止しているので、回転子回転手段7からの電磁力を受けて効率よく回転する。 Further, since the magnetic pole 5 is tilted by about θ in the non-excited state of the electromagnetic coil 5 and the rotor 4 is stationary, the rotor 4 is efficiently rotated by receiving the electromagnetic force from the rotor rotating means 7. .
 すなわち、電磁コイル5の非励磁状態において、ヨーク6-1の他方の端部の中心と可動軸Zとを直交するように結ぶ線とヨーク6-1の他方の端部とほゞ対向する回転子4の外周面の磁極の中心と可動軸Zとを結ぶ線との交差角をθとして、またヨーク6-2の他方の端部の中心と可動軸Zとを直交するように結ぶ線とヨーク6-2の他方の端部とほゞ対向する回転子4の外周面の磁極の中心と可動軸Zとを結ぶ線との交差角をθとして生じさせていることから、電磁コイル5を励磁状態とした時に発生する電磁力が回転子4の回転に効率よく作用する。なお、上述の交差角をθをつけていない場合は、つまり、θ=0の場合は、電磁力を受けても右回りと左回り(時計方向と反時計方向)の回転力がバランスしてしまうため回転しにくい。 That is, when the electromagnetic coil 5 is in a non-excited state, the rotation connecting the center of the other end of the yoke 6-1 and the movable shaft Z so as to be orthogonal to the other end of the yoke 6-1. A crossing angle between a line connecting the center of the magnetic pole on the outer peripheral surface of the child 4 and the movable axis Z is θ, and a line connecting the center of the other end of the yoke 6-2 and the movable axis Z so as to be orthogonal to each other. Since the crossing angle of the line connecting the center of the magnetic pole on the outer peripheral surface of the rotor 4 and the other end of the yoke 6-2 and the movable axis Z is θ, the electromagnetic coil 5 is The electromagnetic force generated when the excitation state is established acts efficiently on the rotation of the rotor 4. When the above crossing angle is not θ, that is, when θ = 0, the clockwise and counterclockwise (clockwise and counterclockwise) rotational forces are balanced even when subjected to electromagnetic force. Therefore, it is difficult to rotate.
 これにより、回転子4を回転させ易くなり、低電力で回転させることができ、回転子回転手段7の小電力化が可能となる。また、回転子4が一方向に回転する。なお、この場合の交差角θは、0゜より大きく、90゜より小さい範囲とすることが好ましい。 Thereby, the rotor 4 can be easily rotated, can be rotated with low power, and the power of the rotor rotating means 7 can be reduced. Further, the rotor 4 rotates in one direction. In this case, the crossing angle θ is preferably in a range larger than 0 ° and smaller than 90 °.
〔ラッチ状態で他方向への衝撃や一時的な過大力が掛かった場合〕
 今、回転子4の内周面上の磁極の配置が第1の配置とされ、可動子1の永久磁石1-1が回転子4に磁気吸引されている場合に(図1A、1B参照)、可動軸方向の一方側への衝撃や一時的な過大力が掛かり、可動子1が可動軸方向の一方側へ移動してしまったとする。
[When impact in the other direction or temporary excessive force is applied in the latched state]
Now, when the arrangement of the magnetic poles on the inner peripheral surface of the rotor 4 is the first arrangement, and the permanent magnet 1-1 of the mover 1 is magnetically attracted to the rotor 4 (see FIGS. 1A and 1B). Assume that an impact or temporary excessive force is applied to one side in the movable axis direction, and the mover 1 has moved to one side in the movable axis direction.
 この場合、可動子1は、回転子4の内周面上の磁極の配置が第1の配置にある状態で、永久磁石1-1が回転子4にラッチされている状態から、可動軸方向の一方側へ移動する。可動子1の永久磁石1-2が回転子4に近づくと、永久磁石1-2と回転子4との間には磁気反発力が発生する。 In this case, the mover 1 moves from the state in which the permanent magnet 1-1 is latched to the rotor 4 in the state in which the magnetic poles on the inner peripheral surface of the rotor 4 are in the first arrangement. Move to one side of When the permanent magnet 1-2 of the mover 1 approaches the rotor 4, a magnetic repulsive force is generated between the permanent magnet 1-2 and the rotor 4.
 これにより、永久磁石1-2が回転子4から離れるとともに、永久磁石1-1が回転子4に近づき、永久磁石1-1と回転子4との間に生じる磁気吸引力との合力により、可動子1が可動軸方向の他方側に戻される。 As a result, the permanent magnet 1-2 moves away from the rotor 4, and the permanent magnet 1-1 approaches the rotor 4, and due to the resultant force of the magnetic attraction generated between the permanent magnet 1-1 and the rotor 4, The mover 1 is returned to the other side in the movable axis direction.
 すなわち、可動軸方向の一方側への衝撃や一時的な過大力が掛かり、可動子1が可動軸方向の一方側へ移動しても、可動子1は可動軸方向の一方側に移動した位置ではラッチされずに、自動的に可動軸方向の他方側に移動した位置でのラッチ(元のラッチ状態)に復帰する。 That is, even if an impact or temporary excessive force is applied to one side in the movable axis direction and the mover 1 moves to one side in the movable axis direction, the mover 1 moves to one side in the movable axis direction. Then, without being latched, it automatically returns to the latch (original latch state) at the position moved to the other side in the movable axis direction.
 今、回転子4の内周面上の磁極の配置が第2の配置とされ、可動子1の永久磁石1-2が回転子4に磁気吸引されている場合に(図2A、2B参照)、可動軸方向の他方側への衝撃や一時的な過大力が掛かり、可動子1が可動軸方向の他方側へ移動してしまったとする。 Now, when the arrangement of the magnetic poles on the inner peripheral surface of the rotor 4 is the second arrangement and the permanent magnet 1-2 of the mover 1 is magnetically attracted to the rotor 4 (see FIGS. 2A and 2B). Assume that an impact or temporary excessive force is applied to the other side in the movable axis direction, and the mover 1 has moved to the other side in the movable axis direction.
 この場合、可動子1は、回転子4の内周面上の磁極の配置が第2の配置にある状態で、永久磁石1-2が回転子4にラッチされている状態から、可動軸方向の他方側へ移動する。可動子1の永久磁石1-1が回転子4に近づくと、永久磁石1-1と回転子4との間には磁気反発力が発生する。 In this case, the mover 1 moves from the state in which the permanent magnet 1-2 is latched to the rotor 4 in the state where the magnetic poles on the inner circumferential surface of the rotor 4 are in the second arrangement, Move to the other side. When the permanent magnet 1-1 of the mover 1 approaches the rotor 4, a magnetic repulsive force is generated between the permanent magnet 1-1 and the rotor 4.
 これにより、永久磁石1-1が回転子4から離れるとともに、永久磁石1-2が回転子4に近づき、永久磁石1-2と回転子4との間に生じる磁気吸引力との合力により、可動子1が可動軸方向の一方側に戻される。 As a result, the permanent magnet 1-1 moves away from the rotor 4, and the permanent magnet 1-2 approaches the rotor 4. Due to the resultant force of the magnetic attractive force generated between the permanent magnet 1-2 and the rotor 4, The mover 1 is returned to one side in the movable axis direction.
 すなわち、可動軸方向の他方側への衝撃や一時的な過大力が掛かり、可動子1が可動軸方向の他方側へ移動しても、可動子1は可動軸方向の他方側に移動した位置ではラッチされずに、自動的に可動軸方向の一方側に移動した位置でのラッチ(元のラッチ状態)に復帰する。 That is, even when an impact or temporary excessive force is applied to the other side in the movable axis direction and the mover 1 moves to the other side in the movable axis direction, the mover 1 moves to the other side in the movable axis direction. Then, without being latched, it automatically returns to the latch (original latched state) at the position moved to one side in the movable axis direction.
 このように、本実施の形態の双安定移動装置では、回転子4を回転させて回転子4の内周面上の磁極の配置を入れ替えなければ、可動子1の一方側に移動した位置から他方側に移動した位置へのラッチの切り換え、および他方側に移動した位置から一方側に移動した位置へのラッチの切り換えを行うことができない。また、回転子4の内周面上の磁極の配置を入れ替えない状態で、一方側に移動した位置にラッチされている可動子1の他方側への移動、または他方側に移動した位置にラッチされている可動子1の一方側への移動が生じた場合、可動子1は自動的に元のラッチ状態に復帰する。 As described above, in the bistable moving device of the present embodiment, unless the arrangement of the magnetic poles on the inner peripheral surface of the rotor 4 is changed by rotating the rotor 4, the position is moved from one position of the mover 1. Switching the latch to the position moved to the other side and switching the latch from the position moved to the other side to the position moved to one side cannot be performed. Further, without changing the arrangement of the magnetic poles on the inner peripheral surface of the rotor 4, the mover 1 latched at the position moved to one side is moved to the other side, or latched at the position moved to the other side. When the mover 1 is moved to one side, the mover 1 automatically returns to the original latched state.
 本実施の形態の双安定移動装置では、可動子1の可動軸方向の移動に、回転子4の回転というロック機構を付加しており、このロック機構を付加することによって、確実な動作を得ることが可能となり、安全性が高められる。 In the bistable moving device of the present embodiment, a lock mechanism called rotation of the rotor 4 is added to the movement of the mover 1 in the direction of the movable axis, and a reliable operation is obtained by adding this lock mechanism. And safety is increased.
 また、本実施の形態の双安定移動装置では、可動子1と回転子4の両方に永久磁石を使用し、可動子1を可動軸方向へ移動させるための主動力は、回転子(永久磁石)4との間で働く、移動元側の可動子1(永久磁石)の磁気反発力と、移動先側の可動子1(永久磁石)の磁気吸引力の両方を同時に使用して行い、回転子4を回転させるための回転力は、パイロット動力として、回転子4の内周面上の磁極の配置を入れ替えるためにだけに使用される。これにより、回転子(永久磁石)4に近接した位置から瞬間的に磁界を与え、回転子4の内周面上の磁極の配置を入れ替えるために必要な回転トルクを発生させるようにするだけでよく、従来のソレノイドで可動軸方向への移動の主動力に使われる場合よりも、(原理的に)少ない電力で動作させることができる。 Further, in the bistable moving device of the present embodiment, permanent magnets are used for both the mover 1 and the rotor 4, and the main power for moving the mover 1 in the direction of the movable axis is the rotor (permanent magnet). ) It works by using both the magnetic repulsive force of the mover 1 (permanent magnet) on the source side and the magnetic attraction force of the mover 1 (permanent magnet) on the destination side, rotating between The rotational force for rotating the child 4 is used as pilot power only for replacing the arrangement of the magnetic poles on the inner peripheral surface of the rotor 4. As a result, a magnetic field is instantaneously applied from a position close to the rotor (permanent magnet) 4 to generate a rotational torque necessary to change the arrangement of the magnetic poles on the inner peripheral surface of the rotor 4. Well, it can be operated with (in principle) less power than a conventional solenoid used for the main power of movement in the direction of the movable axis.
〔可動子について〕
 図1A、1Bに示した構成では、可動子1の永久磁石1-1,1-2を円柱状としたが、円筒状とするなどしてもよい。可動子1の永久磁石1-1,1-2を円柱状としたり、円筒状としたりすることにより、外側に配置される回転子4の内周面との距離を近く設定することができるため、磁気的な効率が良く、小型化にも都合がよい。さらに、円筒状の場合は、体積や磁極間距離に応じて磁力は弱くなるが、内側にシャフトを通して固定できるので、軸合わせやシャフトとの接続が容易になり組立やすくなる。可動子1の永久磁石1-1,1-2は、角型としてもよいが、円柱または円筒状とすることが、磁気的およびスペース的な効率が最も良い形状であると言える。
[About the mover]
In the configuration shown in FIGS. 1A and 1B, the permanent magnets 1-1 and 1-2 of the mover 1 are columnar, but may be cylindrical. By making the permanent magnets 1-1 and 1-2 of the mover 1 columnar or cylindrical, the distance from the inner peripheral surface of the rotor 4 arranged on the outside can be set close. It is magnetically efficient and convenient for miniaturization. Further, in the case of a cylindrical shape, the magnetic force becomes weaker depending on the volume and the distance between the magnetic poles, but since it can be fixed through the shaft on the inside, the shaft alignment and connection with the shaft are facilitated and the assembly is facilitated. The permanent magnets 1-1 and 1-2 of the mover 1 may be rectangular, but it can be said that a cylindrical or cylindrical shape is the best shape in terms of magnetic and space efficiency.
 また、図1A、1Bに示した構成では、可動子1の永久磁石1-1,1-2を同一の形状、同一のサイズとしたが、必ずしも同一の形状、同一のサイズとしてなくてもよい。同一の形状、同一のサイズとすることにより、双方向の動作特性を均一にすることができる。なお、逆に永久磁石1-1,1-2の形状やサイズを変えることにより、双方向の動作特性を非対称にすることも可能である。 In the configuration shown in FIGS. 1A and 1B, the permanent magnets 1-1 and 1-2 of the mover 1 have the same shape and the same size. However, they may not necessarily have the same shape and the same size. . By making the same shape and the same size, bidirectional operation characteristics can be made uniform. On the contrary, by changing the shape and size of the permanent magnets 1-1 and 1-2, the bidirectional operation characteristics can be made asymmetric.
 また、図1A、1Bに示した構成では、可動子1の永久磁石1-1,1-2の可動軸方向の長さlを回転子4の可動軸方向の長さL以上としているが、必ずしもl≧Lとしなくてもよい。l≧Lとすることにより、可動子1のストロークを大きくすることができる。 Further, in the configuration shown in FIGS. 1A and 1B, the length l of the permanent magnets 1-1 and 1-2 of the mover 1 in the movable axis direction is equal to or longer than the length L of the rotor 4 in the movable axis direction. It is not always necessary that l ≧ L. By setting l ≧ L, the stroke of the mover 1 can be increased.
 また、図1A、1Bに示した構成では、可動子1の永久磁石1-1,1-2を一体としているが、必ずしも一体としてなくてもよく、永久磁石1-1,1-2を別部材として磁力や接着などにより接続しても良い。可動子1の永久磁石1-1,1-2を一体とすることにより、すなわち多磁極着磁で同一部材に永久磁石1-1,1-2を形成することにより、組立を容易とすることができる。 In the configuration shown in FIGS. 1A and 1B, the permanent magnets 1-1 and 1-2 of the mover 1 are integrated. However, the permanent magnets 1-1 and 1-2 are not necessarily integrated. The members may be connected by magnetic force or adhesion. By assembling the permanent magnets 1-1 and 1-2 of the mover 1 as one body, that is, by forming the permanent magnets 1-1 and 1-2 on the same member by multi-pole magnetization, the assembly can be facilitated. Can do.
 図3A、3Bに、可動子1の永久磁石1-1と永久磁石1-2とを離間して配置するようにした例(図1A、1Bに対応する図)を示す。図3A、3Bに示した例では、可動子1を永久磁石1-1と永久磁石1-2とで構成し、この永久磁石1-1と永久磁石1-2との間(可動軸方向)を非磁性の部材(シャフトなど)1-3で連結している。このような可動子1Bを用いることにより、可動子のストロークをさらに大きくすることができる。図4A、4Bに図2A、2Bに夫々対応する図を示す。 FIGS. 3A and 3B show an example (a diagram corresponding to FIGS. 1A and 1B) in which the permanent magnet 1-1 and the permanent magnet 1-2 of the mover 1 are arranged apart from each other. In the example shown in FIGS. 3A and 3B, the mover 1 is constituted by a permanent magnet 1-1 and a permanent magnet 1-2, and between the permanent magnet 1-1 and the permanent magnet 1-2 (movable axis direction). Are connected by a non-magnetic member (shaft or the like) 1-3. By using such a mover 1B, the stroke of the mover can be further increased. FIGS. 4A and 4B show diagrams corresponding to FIGS. 2A and 2B, respectively.
〔可動子の可動範囲の規制〕
 図3A、3Bに可動子1の可動範囲を制限するようにした例を示す。この例では、可動軸方向の一方側にストッパ8-1を、可動軸方向の他方側にストッパ8-2を設けて、ストッパ8-1により可動体3(可動子1)の可動軸方向の一方側への移動を規制し、ストッパ8-2により可動体3(可動子1)の可動軸方向の他方側への移動を規制し、これにより可動体3(可動子1)の可動軸方向の可動範囲を制限するようにしている。
[Control of movable range of mover]
3A and 3B show an example in which the movable range of the mover 1 is limited. In this example, a stopper 8-1 is provided on one side of the movable axis direction, and a stopper 8-2 is provided on the other side of the movable axis direction, and the movable body 3 (movable element 1) is moved in the movable axis direction by the stopper 8-1. The movement to one side is restricted, and the movement of the movable body 3 (movable element 1) to the other side in the movable axis direction is restricted by the stopper 8-2. The range of movement is limited.
 また、図3A、3Bに示されるような構成とする場合、可動子1Bの永久磁石1-1,1-2が回転子4の中空部4a内に入らないように、可動子1Bの永久磁石1-1,1-2の内側の端面付近で止まるように可動子1Bの可動範囲を制限すると、回転子4の回転を妨げる永久磁石1-1,1-2と回転子4の内周側の磁極との間の吸引力の可動軸Zと垂直方向のベクトル成分が大きくなるのを抑制できるので、回転子4を回転させやすくなる。また、可動子1Bの永久磁石1-1,1-2の内側の端面が回転子4の中空部4a内にわずかに(例えば、回転子4が外径13mm、内径8mm程度のリング状永久磁石であれば、0.5mm程度)入ったところで止まるように可動子1Bの可動範囲を制限すると、さらに回転子4を回転させやすくなる。これは、可動子1Bの永久磁石1-1,1-2の回転子4に接近している方の永久磁石の磁極と、回転子4の内周側の磁極との間(異極同士)に発生する吸引力の他に、回転子4の外周側の磁極との間(同極同士)に発生する反発力の影響も受けるためお互いの力がバランスし、回転子4が可動子1Bの永久磁石1-1,1-2の回転子4に接近している方の永久磁石から受ける合力として、回転子4の回転を妨げる力が弱くなるためである。 3A and 3B, the permanent magnets of the mover 1B are arranged so that the permanent magnets 1-1 and 1-2 of the mover 1B do not enter the hollow portion 4a of the rotor 4. When the movable range of the mover 1B is limited so as to stop near the inner end face of the 1-1, 1-2, the permanent magnets 1-1, 1-2 that interfere with the rotation of the rotor 4 and the inner peripheral side of the rotor 4 Since it is possible to suppress an increase in the vector component in the direction perpendicular to the movable axis Z of the attractive force between the rotor 4 and the magnetic pole, the rotor 4 can be easily rotated. Further, the inner end faces of the permanent magnets 1-1 and 1-2 of the mover 1B are slightly in the hollow portion 4a of the rotor 4 (for example, the rotor 4 is a ring-shaped permanent magnet having an outer diameter of about 13 mm and an inner diameter of about 8 mm). If it is about 0.5 mm), if the movable range of the movable element 1B is limited so as to stop when it enters, the rotor 4 can be further rotated. This is because between the magnetic pole of the permanent magnet closer to the rotor 4 of the permanent magnets 1-1 and 1-2 of the mover 1B and the magnetic pole on the inner peripheral side of the rotor 4 (different poles). In addition to the attractive force generated at the same time, it is also affected by the repulsive force generated between the magnetic poles on the outer periphery side of the rotor 4 (same poles), so that the forces balance each other and the rotor 4 This is because the force that impedes the rotation of the rotor 4 is weakened as the resultant force received from the permanent magnet 1-1 and 1-2 of the permanent magnet closer to the rotor 4.
 また、図3A、3Bに示されるような構成とする場合、可動子1および回転子4の近接対向するエッジの両方または片方に面取り部を形成するようにしてもよい。図5A、5B、5Cに、可動子1および回転子4の近接対向するエッジの両方に面取り部を形成するようにした例を示す。図5Aは要部の側面断面図であり、図5Bは図5Aを左(Z1)方向から見た図、図5Cは図5Aを右(Z2)方向から見た図である。 3A and 3B, a chamfered portion may be formed on both or one of the edges of the movable element 1 and the rotor 4 that are close to each other. 5A, 5B, and 5C show an example in which chamfered portions are formed at both the edges of the movable element 1 and the rotor 4 that are close to each other. 5A is a side cross-sectional view of the main part, FIG. 5B is a view of FIG. 5A viewed from the left (Z1) direction, and FIG. 5C is a view of FIG. 5A viewed from the right (Z2) direction.
 図5A、5B、5Cに示した例では、可動子1の永久磁石1-1および1-2の回転子4に近接対向するエッジに、面取り部1aおよび1bを形成している。また、回転子4の可動子1の永久磁石1-1および1-2に近接対向するエッジに、面取り部4bおよび4cを形成している。 In the example shown in FIGS. 5A, 5B, and 5C, chamfered portions 1a and 1b are formed at the edges of the permanent magnets 1-1 and 1-2 of the mover 1 that are close to and opposed to the rotor 4 respectively. Further, chamfered portions 4b and 4c are formed at edges of the rotor 4 that are close to and opposed to the permanent magnets 1-1 and 1-2 of the mover 1 of the rotor 4.
 可動子1と回転子4のエッジ部が近接した時、急激に磁気吸引力が高くなり、可動子1に発生する力の特性が急変するとともに、回転を妨げる可動軸Zと直交する方向の力も大きくなる。可動子1および回転子4の近接対向するエッジの両方または片方に面取り部を形成することにより、特性変化が滑らかになるため、固体間によるばらつきが小さくなり、可動軸Zと直交する方向の力も弱くなり、回転を妨げるトルクも小さくなるため、回転子回転手段7における低電力化が可能となる。また、可動軸Zと平行な方向の力成分が大きくなるため、可動子1の発生力が向上する。 When the edges of the mover 1 and the rotor 4 are close to each other, the magnetic attractive force suddenly increases, the characteristics of the force generated in the mover 1 change suddenly, and the force in the direction perpendicular to the movable axis Z that prevents rotation is also present. growing. By forming chamfers on both or one of the adjacent edges of the mover 1 and the rotor 4, the characteristic change becomes smooth, so that the variation between solids is reduced, and the force in the direction perpendicular to the movable axis Z is also Since the torque becomes weaker and the torque that hinders the rotation is reduced, the power of the rotor rotating means 7 can be reduced. Further, since the force component in the direction parallel to the movable axis Z is increased, the generated force of the mover 1 is improved.
〔回転止め機構について〕
 図6A、6Bに可動体3(可動子1)の可動軸Zを中心とした回転を阻止する機構(回転止め機構)の一例の要部を示す。図6Aは要部の側面図であり、図6Bは図6AにおけるB-B線断面図である。なお、図6A、6 Bにおいて、回転子4や回転子回転手段7などは省略している。
[Rotation stop mechanism]
6A and 6B show a main part of an example of a mechanism (rotation stop mechanism) that prevents the movable body 3 (mover 1) from rotating about the movable axis Z. FIG. 6A is a side view of the main part, and FIG. 6B is a cross-sectional view taken along line BB in FIG. 6A. 6A and 6B, the rotor 4 and the rotor rotating means 7 are omitted.
 この例において、可動子1の一端に接続されたシャフト2-1はブッシュ(リニアガイド)9-1に挿通され、可動子1の他端に接続されたシャフト2-2はブッシュ(リニアガイド)9-2に挿通されている。ブッシュ(リニアガイド)9-1,9-2は固定されており、このブッシュ(リニアガイド)9-1,9-2を可動体3(可動子1)が可動軸方向に移動する。 In this example, a shaft 2-1 connected to one end of the mover 1 is inserted into a bush (linear guide) 9-1, and a shaft 2-2 connected to the other end of the mover 1 is a bush (linear guide). It is inserted through 9-2. The bushes (linear guides) 9-1 and 9-2 are fixed, and the movable body 3 (movable element 1) moves in the movable axis direction along the bushes (linear guides) 9-1 and 9-2.
 ブッシュ(リニアガイド)9-1,9-2の内周面には、突起9a,9bが形成されており、この突起9a,9bにシャフト2-1,2-2の外周面に可動軸方向に沿って形成されている溝2a,2bを係合させて、シャフト2-1,2-2をブッシュ(リニアガイド)9-1,9-2に挿通させている。 Protrusions 9a and 9b are formed on the inner peripheral surfaces of the bushes (linear guides) 9-1 and 9-2. The protrusions 9a and 9b are arranged in the direction of the movable axis on the outer peripheral surfaces of the shafts 2-1 and 2-2. The shafts 2-1 and 2-2 are inserted into bushes (linear guides) 9-1 and 9-2 by engaging the grooves 2 a and 2 b formed along
 この突起9a,9bと溝2a,2bとの係合によって、可動体3(可動子1)の可動軸Zを中心とした回転が阻止される。また、この突起9a,9bと溝2a,2bとの係合によって、つまり、ブッシュ(リニアガイド)9-1,9-2の固定角度によって、可動体3(可動子1)の可動軸Zを中心とする回転角度が設定され、この回転角度の設定によって可動子1の永久磁石1-1および1-2の磁極の方向の傾きθが設定される。 The engagement of the projections 9a, 9b and the grooves 2a, 2b prevents rotation of the movable body 3 (movable element 1) about the movable axis Z. Further, the movable shaft 3 of the movable body 3 (movable element 1) is moved by the engagement between the protrusions 9a and 9b and the grooves 2a and 2b, that is, depending on the fixed angle of the bushes (linear guides) 9-1 and 9-2. A rotation angle around the center is set, and the inclination θ in the direction of the magnetic poles of the permanent magnets 1-1 and 1-2 of the mover 1 is set by setting the rotation angle.
〔回転子について〕
 図1A、1Bに示した構成では、回転子4をリングまたは円筒状の永久磁石としたが、リング状や円筒状の永久磁石に限られるものではなく、図7A、7Bに示すように、1対の磁極を持つ永久磁石4-1,4-2を、その磁極方向が可動軸Zと直交するように、可動子1を挟むようにして配置した構成としてもよい。
[About rotor]
In the configuration shown in FIGS. 1A and 1B, the rotor 4 is a ring or a cylindrical permanent magnet. However, the rotor 4 is not limited to a ring or a cylindrical permanent magnet, and as shown in FIGS. The permanent magnets 4-1 and 4-2 having a pair of magnetic poles may be arranged so as to sandwich the mover 1 so that the magnetic pole direction is orthogonal to the movable axis Z.
 図7A、7Bに示した構成では、半リングまたは半円筒状の保持部材(非磁性部材)4-3と4-4の端部間に矩形状の永久磁石4-1,4-2を挟んで、全体の形状をリングまたは円筒状とした回転子4(4B)を用いている。 In the configuration shown in FIGS. 7A and 7B, rectangular permanent magnets 4-1 and 4-2 are sandwiched between the ends of semi-ring or semi-cylindrical holding members (non-magnetic members) 4-3 and 4-4. Thus, the rotor 4 (4B) having an overall shape of a ring or a cylinder is used.
 この回転子4Bでは、永久磁石4-1のS極および永久磁石4-2のN極の位置を回転子4Bの内周面上(第1の円周上)とし、永久磁石4-1のN極および永久磁石4-2のS極の位置を回転子4Bの外周面上(第2の円周上)としている。すなわち、1対の磁極を持つ永久磁石4-1,4-2を、その磁極方向が可動軸Zと直交するように、可動子1を挟むようにして配置した構成としている。 In this rotor 4B, the positions of the S pole of the permanent magnet 4-1 and the N pole of the permanent magnet 4-2 are on the inner circumferential surface (first circumference) of the rotor 4B, and the permanent magnet 4-1 The positions of the N pole and the S pole of the permanent magnet 4-2 are on the outer peripheral surface of the rotor 4B (on the second circumference). That is, the permanent magnets 4-1 and 4-2 having a pair of magnetic poles are arranged so that the movable element 1 is sandwiched so that the magnetic pole direction is perpendicular to the movable axis Z.
 なお、図8A、8Bに示すように、円板状の保持部材(非磁性部材)4-5上に矩形状の永久磁石4-1,4-2を設けるようにしてもよく、図9A、9Bに示すように、リングまたは円筒状の保持部材(非磁性部材)4-6の外周面に矩形状の永久磁石4-1,4-2を嵌め込むようにしてもよい。図7A、7B~図9A、9Bに示すような保持部材4-3~4-6を用いることにより、磁石材料の使用量を削減することができ、摺動部を一体化するなど、設計の自由度が広がる。 8A and 8B, rectangular permanent magnets 4-1 and 4-2 may be provided on a disk-shaped holding member (nonmagnetic member) 4-5. As shown in FIG. 9B, rectangular permanent magnets 4-1 and 4-2 may be fitted into the outer peripheral surface of a ring or cylindrical holding member (nonmagnetic member) 4-6. By using the holding members 4-3 to 4-6 as shown in FIGS. 7A, 7B to 9A, 9B, the amount of magnet material used can be reduced, and the sliding portion can be integrated. Increases freedom.
〔回転子回転手段について〕
 図1A、1Bに示した構成では、回転子回転手段7(7A)を電磁コイル5とヨーク6-1,6-2とから構成し、ヨーク6-1および6-2の他方の端部を可動軸Zとほゞ直交する方向から回転子4を挟んで対向させるようにしているが、必ずしもこのような構成でなくてもよい。
[About rotor rotation means]
In the configuration shown in FIGS. 1A and 1B, the rotor rotating means 7 (7A) is composed of an electromagnetic coil 5 and yokes 6-1, 6-2, and the other ends of the yokes 6-1 and 6-2 are connected. Although it is made to oppose on both sides of the rotor 4 from the direction substantially orthogonal to the movable axis Z, such a configuration is not necessarily required.
 例えば、図10A、10Bに示すように、可動軸Zを挟んでその軸芯をほゞ一致させてかつそのコアの一端を対向させて配置した1組の電磁コイル5-1,5-2と、この1組の電磁コイル5-1,5-2のコアの一端にその一方の端部が接続または一体化されたヨーク6-3,6-4と、この1組の電磁コイル5-1,5-2のコアの他端を連結するヨーク6-5とで回転子回転手段7を構成するようにしてもよい。 For example, as shown in FIGS. 10A and 10B, a pair of electromagnetic coils 5-1 and 5-2 are arranged with the movable shaft Z sandwiched between them so that the shaft cores are substantially coincident and one end of the core is opposed to each other. The yokes 6-3 and 6-4, one end of which is connected to or integrated with one end of the core of the set of electromagnetic coils 5-1 and 5-2, and the set of electromagnetic coils 5-1 , 5-2 and the yoke 6-5 connecting the other ends of the cores may constitute the rotor rotating means 7.
 この回転子回転手段7(7B)では、1組の電磁コイル5-1,5-2のコアの一端にその一方の端部を接続または一体化したヨーク6-3,6-4の他方の端部を、可動軸Zとほゞ直交する方向から可動子1を挟んで対向させている。また、ヨーク6-3および6-4の他方の端部の形状を回転子4の外周面の形状に合わせて円弧状としている。この円弧の形状は、回転子4の外周と同心円状に形成するのが回転効率を向上させるために好ましい。 In this rotor rotating means 7 (7B), the other end of the yokes 6-3 and 6-4 in which one end is connected to or integrated with one end of the core of the set of electromagnetic coils 5-1 and 5-2. The ends are opposed to each other with the mover 1 sandwiched from a direction substantially orthogonal to the movable axis Z. Further, the shape of the other end portion of the yokes 6-3 and 6-4 is formed in an arc shape in accordance with the shape of the outer peripheral surface of the rotor 4. The arc is preferably formed concentrically with the outer periphery of the rotor 4 in order to improve the rotation efficiency.
 また、図1A、1Bに示した構成では、ヨーク6-1および6-2の他方の端部の形状を回転子4の外周面の形状に合わせて円弧状としているが、図11A、11Bに示すように、ヨーク6-1および6-2の他方の端部の形状を平坦面としてもよい。ヨーク6-1および6-2の他方の端部の形状を円弧状とすると、回転力の発生効率が良くなる(低磁束(低電力)で回転させることができる)。なお、それぞれ対向するヨーク6-1および6-2の円弧の両端部分は、断面積を小さく(磁気抵抗を高く)し、近接して対向させることが回転力を大きくするために好ましい。 Further, in the configuration shown in FIGS. 1A and 1B, the shape of the other end of the yokes 6-1 and 6-2 is an arc shape in accordance with the shape of the outer peripheral surface of the rotor 4, but in FIGS. As shown, the shape of the other end of the yokes 6-1 and 6-2 may be a flat surface. If the shape of the other end of the yokes 6-1 and 6-2 is an arc, the generation efficiency of the rotational force is improved (it can be rotated with a low magnetic flux (low power)). It is preferable that both end portions of the arcs of the opposing yokes 6-1 and 6-2 have a small cross-sectional area (high magnetic resistance) and face each other in close proximity to increase the rotational force.
 また、図1A、1Bに示した構成では、ヨーク6-1および6-2の他方の端部の突き合わせ部に空間を設けているが、図12に示すように、突き合わせ部に空間を設けずに接続または一体化するようにしてもよい。ヨーク6-1および6-2の他方の端部の突き合わせ部を接続または一体化すると、すなわちヨーク6-1および6-2の他方の端部を部分的に接続または一体化すると、回転力の発生効率は低下するが、位置合わせや組み付けが容易となる。 Further, in the configuration shown in FIGS. 1A and 1B, a space is provided in the abutting portion at the other end of the yokes 6-1 and 6-2, but no space is provided in the abutting portion as shown in FIG. It may be connected to or integrated with. When the butted portions of the other ends of the yokes 6-1 and 6-2 are connected or integrated, that is, when the other ends of the yokes 6-1 and 6-2 are partially connected or integrated, Although the generation efficiency decreases, alignment and assembly become easy.
 また、図1A、1Bに示した構成では、電磁コイル5の非励磁状態における交差角θの設定を可動子1の可動軸Zを中心とする回転角度の設定によって行うようにしているが、ヨーク6-1および6-2の非対称な形状または配置で行うようにしてもよい。図13,図14にその一例を示す。 In the configuration shown in FIGS. 1A and 1B, the setting of the crossing angle θ in the non-excited state of the electromagnetic coil 5 is performed by setting the rotation angle about the movable axis Z of the mover 1. The asymmetric shape or arrangement of 6-1 and 6-2 may be used. An example is shown in FIGS.
 図13に示した例では、ヨーク6-1および6-2の他方の端部の形状を非対称とすることにより、電磁コイル5の非励磁状態において、回転子4とヨーク6-1および6-2の他方の端部との間に働く吸引力によって回転子4の回転角度がバランスする安定位置を設定することにより交差角θを生じさせるようにしている。 In the example shown in FIG. 13, the shape of the other end of the yokes 6-1 and 6-2 is asymmetrical so that the rotor 4 and the yokes 6-1 and 6-2 are in the non-excited state of the electromagnetic coil 5. The crossing angle θ is generated by setting a stable position where the rotation angles of the rotor 4 are balanced by the attractive force acting between the other end portions of the two.
 図14に示した例では、ヨーク6-1および6-2の他方の端部にノッチ6aおよび6bを設けることにより、電磁コイル5の非励磁状態において、回転子4とヨーク6-1および6-2の他方の端部との間に働く吸引力によって回転子4の回転角度がバランスする安定位置を設定することにより交差角θを生じさせるようにしている。 In the example shown in FIG. 14, the notches 6a and 6b are provided at the other ends of the yokes 6-1 and 6-2, so that the rotor 4 and the yokes 6-1 and 6 are in the non-excited state of the electromagnetic coil 5. The crossing angle θ is generated by setting a stable position where the rotation angle of the rotor 4 is balanced by the attractive force acting between the other end portion of -2.
 このように、ヨーク6-1および6-2の非対称な形状または配置で交差角θの設定を行うようにすると、回転子4を所定の角度位置に保持する保持トルクが働くため、電磁コイルの励磁以外の要因による回転を妨げ、誤動作を防止することが可能となる。 As described above, when the crossing angle θ is set with the asymmetric shapes or arrangements of the yokes 6-1 and 6-2, the holding torque for holding the rotor 4 at a predetermined angular position works, so that the electromagnetic coil It is possible to prevent rotation due to factors other than excitation and prevent malfunction.
 なお、図13および図14に示した例において、可動子1の磁極の方向は図示されていないが、可動子1の可動軸Z方向の発生力を最大にするために、可動子1の磁極の方向も回転子4の磁極の方向と合わせるように回転止め機構によって設定することが好ましい。 In the example shown in FIGS. 13 and 14, the direction of the magnetic pole of the mover 1 is not shown, but in order to maximize the generated force in the direction of the movable axis Z of the mover 1, the magnetic pole of the mover 1 Is preferably set by a rotation stopping mechanism so as to match the direction of the magnetic pole of the rotor 4.
 また、図15に示すように、図11A、11Bに示した構成において、可動軸Zとほゞ直交する方向から可動子1を挟んで対向するヨーク6-1,6-2の端部の中心を結ぶ線と可動軸Zとを交わらせないようにしてもよい。 Further, as shown in FIG. 15, in the configuration shown in FIGS. 11A and 11B, the centers of the end portions of the yokes 6-1 and 6-2 facing each other with the movable element 1 sandwiched from the direction substantially orthogonal to the movable axis Z. And the movable axis Z may not be crossed.
 また、図16に示すように、図11A、11Bに示した構成において、可動軸Zとほゞ直交する方向から可動子1を挟んで対向するヨーク6-1,6-2の端部の中心を、可動軸Zに直交する面内で可動子1の両側にずらすようにしてもよい。 In addition, as shown in FIG. 16, in the configuration shown in FIGS. 11A and 11B, the centers of the end portions of the yokes 6-1 and 6-2 facing each other with the movable element 1 sandwiched from the direction substantially orthogonal to the movable axis Z. May be shifted to both sides of the mover 1 within a plane orthogonal to the movable axis Z.
 図15,図16に示すような構成とすると、図11A、11Bに示した構成に比べて電磁コイル5の励磁で回転し易くなるため、低電力で回転させることができ、回転子回転手段7の 省電力化が可能となる。 15 and 16 makes it easier to rotate with the excitation of the electromagnetic coil 5, compared to the configuration shown in FIGS. 11A and 11B, so that it can be rotated with low power, and the rotor rotating means 7 Power saving can be achieved.
 また、図17A、17Bに示すように、回転子4に対し可動軸Zとほゞ直交する方向から進退自在として、1組の回転力発生用の永久磁石10-1,10-2を設けるようにしてもよい。 Further, as shown in FIGS. 17A and 17B, a set of permanent magnets 10-1 and 10-2 for generating a rotational force is provided so that the rotor 4 can advance and retreat from a direction substantially orthogonal to the movable axis Z. It may be.
 図17A、17Bに示した例では、回転力発生用の円弧状の永久磁石10-1をS極を回転子4側として回転子4の上側に設け、回転力発生用の円弧状の永久磁石10-2をS極を回転子4側として回転子4の下側に設け、押ボタン11-1とコイルバネ12-1とを回転力発生用の永久磁石10-1に付設することによって、回転力発生用の永久磁石10-1を回転子4に対して進退自在とし、押ボタン11-2とコイルバネ12-2とを回転力発生用の永久磁石10-2に付設することによって、回転力発生用の永久磁石10-2を回転子4に対して進退自在としている。 In the example shown in FIGS. 17A and 17B, an arc-shaped permanent magnet 10-1 for generating a rotational force is provided on the upper side of the rotor 4 with the S pole as the rotor 4 side, and an arc-shaped permanent magnet for generating the rotating force. 10-2 is provided on the lower side of the rotor 4 with the S pole as the rotor 4 side, and the push button 11-1 and the coil spring 12-1 are attached to the permanent magnet 10-1 for generating the rotational force, thereby rotating. By making the permanent magnet 10-1 for generating force freely movable with respect to the rotor 4, and by attaching the push button 11-2 and the coil spring 12-2 to the permanent magnet 10-2 for generating rotating force, The generating permanent magnet 10-2 is movable forward and backward with respect to the rotor 4.
 この回転力発生用の永久磁石10-1,10-2を用いた回転子回転手段7(7C)では、可動子1の永久磁石1-1が回転子4に磁気吸引されている場合に、押ボタン11-2が押され、回転力発生用の永久磁石10-2が回転子4に近づけられると、回転力発生用の永久磁石10-2の回転子4に対向する磁極(S極)と回転子4の外周面の磁極(S極)との間の磁気反発および他方の磁極(N極)との磁気吸引によって、回転子4が回転してその内周面上の磁極の配置が第1の配置から第2の配置に切り換えられる。これにより、可動体3が可動軸方向の一方側に移動し、可動子1の永久磁石1-2が回転子4にラッチされる(図18A、18B参照)。 In the rotor rotating means 7 (7C) using the permanent magnets 10-1 and 10-2 for generating rotational force, when the permanent magnet 1-1 of the mover 1 is magnetically attracted to the rotor 4, When the push button 11-2 is pressed and the permanent magnet 10-2 for generating rotational force is brought close to the rotor 4, the magnetic pole (S pole) facing the rotor 4 of the permanent magnet 10-2 for generating rotational force And the magnetic repulsion between the outer peripheral surface of the rotor 4 and the magnetic pole (S pole) and the magnetic attraction with the other magnetic pole (N pole), the rotor 4 rotates and the magnetic poles are arranged on the inner peripheral surface. The first arrangement is switched to the second arrangement. As a result, the movable body 3 moves to one side in the movable axis direction, and the permanent magnet 1-2 of the movable element 1 is latched by the rotor 4 (see FIGS. 18A and 18B).
 また、可動子1の永久磁石1-2が回転子4に磁気吸引されている場合(図18参照)に、押ボタン11-1が押され、回転力発生用の永久磁石10-1が回転子4に近づけられると、回転力発生用の永久磁石10-1の回転子4に対向する磁極(S極)と回転子4の外周面の磁極(S極)との間の磁気反発および他方の磁極(N極)との磁気吸引によって、回転子4が回転してその内周面上の磁極の配置が第2の配置から第1の配置に切り換えられる。これにより、可動体3が可動軸方向の他方側に移動し、可動子1の永久磁石1-1が回転子4にラッチされる(図17A、17B参照)。 Further, when the permanent magnet 1-2 of the mover 1 is magnetically attracted to the rotor 4 (see FIG. 18), the push button 11-1 is pushed and the permanent magnet 10-1 for generating rotational force rotates. When approached to the rotor 4, the magnetic repulsion between the magnetic pole (S pole) facing the rotor 4 of the permanent magnet 10-1 for generating rotational force and the magnetic pole (S pole) on the outer peripheral surface of the rotor 4 and the other Due to magnetic attraction with the magnetic pole (N pole), the rotor 4 rotates and the arrangement of the magnetic poles on the inner peripheral surface is switched from the second arrangement to the first arrangement. Thereby, the movable body 3 moves to the other side in the movable axis direction, and the permanent magnet 1-1 of the movable element 1 is latched by the rotor 4 (see FIGS. 17A and 17B).
 図1A、1Bに示した構成や図17A、17Bに示した構成では、回転子4に外部から磁界を与えるようにしているが、図19A、19Bに示すように、回転子4に回転レバー13(13-1,13-2)を取り付け、この回転レバー13に外部から機械的な力(回転トルク)を与えて回転子4を回転させ、回転子4の内周面上の磁極の配置を入れ替えるようにしてもよい。 In the configuration shown in FIGS. 1A and 1B and the configuration shown in FIGS. 17A and 17B, a magnetic field is applied to the rotor 4 from the outside. However, as shown in FIGS. (13-1, 13-2) are attached, and a mechanical force (rotational torque) is applied to the rotary lever 13 from the outside to rotate the rotor 4, so that the magnetic poles on the inner peripheral surface of the rotor 4 are arranged. You may make it replace.
 この構成では、回転レバー13と、この回転レバー13に外部から機械的な力を与える手段によって、回転子回転手段7(7D)が構成される。なお、図19A、19Bには示していないが、回転レバー13に外部から機械的な力を与える手段として、手動やモータ等のアクチュエータなどが考えられる。 In this configuration, the rotor rotating means 7 (7D) is constituted by the rotating lever 13 and means for applying a mechanical force to the rotating lever 13 from the outside. Although not shown in FIGS. 19A and 19B, an actuator such as a manual motor or a motor is conceivable as means for applying a mechanical force to the rotary lever 13 from the outside.
 回転子4に外部から磁界を与えるようにすると、非磁性の遮蔽物を通して、回転子4を駆動することが可能である。例えば、管の中の防爆領域にある回転子4を非接触で駆動することが可能となる。 When a magnetic field is applied to the rotor 4 from the outside, the rotor 4 can be driven through a non-magnetic shield. For example, the rotor 4 in the explosion-proof area in the tube can be driven without contact.
〔回転止め機構の他の例〕
 図1A、1Bに示した構成では、図6A、6Bに示したように、ブッシュ(リニアガイド)9-1,9-2に回転止めの突起9a,9bを設けることによって、可動体3(可動子1)の可動軸Zを中心とした回転を阻止するようにしたが、必ずしもこのような回転止め機構としなくてもよい。
[Other examples of rotation stop mechanism]
In the configuration shown in FIGS. 1A and 1B, as shown in FIGS. 6A and 6B, by providing protrusions 9a and 9b for rotation prevention on bushes (linear guides) 9-1 and 9-2, the movable body 3 (movable) Although the rotation about the movable axis Z of the child 1) is prevented, such a rotation stopping mechanism is not necessarily required.
 図20A、20Bに回転止め機構の他の例を示す。図20Aは要部の側面図であり、図20Bは図20AにおけるC-C線断面図である。なお、図20A、20Bにおいて、回転子4や回転子回転手段7などは省略している。 20A and 20B show another example of the rotation stop mechanism. 20A is a side view of the main part, and FIG. 20B is a cross-sectional view taken along the line CC in FIG. 20A. 20A and 20B, the rotor 4 and the rotor rotating means 7 are omitted.
 この例において、ブッシュ(リニアガイド)9-1,9-2には回転止めの突起は設けられておらず、可動子1に接続されたシャフト2-1および2-2を直動および回転可能に軸支する。ブッシュ(リニアガイド)9-1,9-2は固定されている。この例において、ブッシュ(リニアガイド)9-1は、ベース部材(非磁性部材)14に固定(圧入)されている。ブッシュ(リニアガイド)9-2は他の部材に固定(圧入)されている。 In this example, the bushes (linear guides) 9-1 and 9-2 are not provided with a rotation-preventing protrusion, and the shafts 2-1 and 2-2 connected to the mover 1 can be directly moved and rotated. To support. The bushes (linear guides) 9-1 and 9-2 are fixed. In this example, the bush (linear guide) 9-1 is fixed (press-fitted) to the base member (nonmagnetic member) 14. The bush (linear guide) 9-2 is fixed (press-fit) to another member.
 15は可動子1の可動軸方向の力を受ける外部の被動作体であり、ベース部材14に設けられた複数のピン16をガイドとしてその可動軸方向への動きが案内されると共に、可動軸Zを中心とする回転方向の動きがピン16によって規制される。 Reference numeral 15 denotes an external driven body that receives a force in the direction of the movable axis of the mover 1. The movement of the movable member in the direction of the movable axis is guided using a plurality of pins 16 provided on the base member 14 as a guide. The movement in the rotation direction around Z is restricted by the pin 16.
 シャフト2-1の先端は被動作体15に接続(固定)されており、ブッシュ(リニアガイド)9-1,9-2によって案内される可動軸方向の可動体3(可動子1)の動きが、被動作体15に伝達される。また、ピン16によって被動作体15の回転が規制されることにより、可動体3(可動子1)の可動軸Zを中心とした回転が阻止される。 The tip of the shaft 2-1 is connected (fixed) to the driven body 15, and the movement of the movable body 3 (movable element 1) in the movable axis direction guided by bushes (linear guides) 9-1 and 9-2. Is transmitted to the actuated body 15. Further, the rotation of the driven body 15 is restricted by the pin 16, so that the rotation about the movable axis Z of the movable body 3 (mover 1) is prevented.
 図21~図24A、図24Bに回転止め機構の別の例を示す。図21に示した例では、ベース部材14に設けられた複数のピン16を被動作体15(例えば、遮断弁の弁体など)に設けられた孔15aに挿入することにより、被動作体15の可動軸方向への動きを案内すると共に、被動作体15の可動軸Zを中心とする回転方向の動きを規制(可動体3(可動子1)の可動軸Zを中心とした回転を阻止)するようにしている。 21 to 24A and 24B show another example of the rotation stop mechanism. In the example shown in FIG. 21, a plurality of pins 16 provided on the base member 14 are inserted into holes 15a provided on the operated body 15 (for example, a valve body of a shut-off valve), whereby the operated body 15 The movement of the movable body 15 around the movable axis Z is regulated (the rotation of the movable body 3 (movable element 1) around the movable axis Z is prevented). )
 図22に示した例では、被動作体15の裏面側に設けられた複数のピン17をベース部材14に設けられた孔14aに挿入することにより、被動作体15の可動軸方向への動きを案内すると共に、被動作体15の可動軸Zを中心とする回転方向の動きを規制(可動体3(可動子1)の可動軸Zを中心とした回転を阻止)するようにしている。 In the example shown in FIG. 22, the movement of the driven body 15 in the direction of the movable axis is performed by inserting a plurality of pins 17 provided on the back side of the driven body 15 into the holes 14 a provided in the base member 14. The movement of the driven body 15 in the rotational direction around the movable axis Z is restricted (rotation around the movable axis Z of the movable body 3 (movable element 1) is prevented).
 図23A、23Bに示した例では、被動作体15の裏面側に設けられた複数の凸部15bとベース部材14に設けられた複数の凸部14aとを噛み合わせることにより、被動作体15の可動軸方向への動きを案内すると共に、被動作体15の可動軸Zを中心とする回転方向の動きを規制(可動体3(可動子1)の可動軸Zを中心とした回転を阻止)するようにしている。 In the example shown in FIGS. 23A and 23B, the plurality of projections 15b provided on the back surface side of the body 15 to be driven and the plurality of projections 14a provided on the base member 14 are engaged with each other, thereby The movement of the movable body 15 around the movable axis Z is regulated (the rotation of the movable body 3 (movable element 1) around the movable axis Z is prevented). )
 図24A、24Bに示した例では、被動作体15の裏面側に設けられた柱状の凸部15cをベース部材14に設けられた角孔14bに挿入することにより、被動作体15の可動軸方向への動きを案内すると共に、被動作体15の可動軸Zを中心とする回転方向の動きを規制(可動体3(可動子1)の可動軸Zを中心とした回転を阻止)するようにしている。 In the example shown in FIGS. 24A and 24B, the columnar convex portion 15 c provided on the back surface side of the driven body 15 is inserted into the square hole 14 b provided in the base member 14, thereby moving the movable shaft of the driven body 15. The movement in the direction is guided, and the movement of the driven body 15 in the rotation direction around the movable axis Z is restricted (rotation of the movable body 3 (movable element 1) around the movable axis Z is prevented). I have to.
 図21~図24A、24Bに示すような構成とすることにより、被動作体15に何らかの外力(可動軸Zを中心とした回転力)が加わってしまった場合の誤動作を防止することができると共に、回転止めをシャフト側に設けないようにすることが可能となる。 With the configuration shown in FIGS. 21 to 24A and 24B, it is possible to prevent malfunction when some external force (rotational force about the movable axis Z) is applied to the actuated body 15. It becomes possible not to provide the rotation stopper on the shaft side.
 図25および図26に可動体3(可動子1)および回転子4の保持構造を例示する。なお、図25および図26において、回転子回転手段7や可動体3(可動子1)の回転止め機構などは省略している。 FIG. 25 and FIG. 26 illustrate the holding structure of the movable body 3 (movable element 1) and the rotor 4. In FIG. 25 and FIG. 26, the rotor rotating means 7, the rotation stopping mechanism of the movable body 3 (movable element 1), and the like are omitted.
 図25に示した例では、ベース部材(非磁性部材)14(14A)と管状部材(非磁性部材)21(21A)とによって作られる隔室22内に、可動体3(可動子1)と、回転子4とを設けている。可動体3のシャフト2-1は、ベース部材14Aに固定(圧入)されたブッシュ(リニアガイド)9-1に挿通され、可動体3のシャフト2-2は、管状部材21Aの管内に固定(圧入)されたブッシュ(リニアガイド)9-2に挿通されている。回転子4は、ベース部材14Aと管状部材21Aとで挟まれた隔室22内の空間に、可動軸Zを中心として回転可能に、かつ可動軸方向の移動を阻止するように保持されている。 In the example shown in FIG. 25, the movable body 3 (movable element 1) and the compartment 22 formed by the base member (nonmagnetic member) 14 (14 A) and the tubular member (nonmagnetic member) 21 (21 A) are provided. The rotor 4 is provided. The shaft 2-1 of the movable body 3 is inserted into a bush (linear guide) 9-1 fixed (press-fitted) to the base member 14A, and the shaft 2-2 of the movable body 3 is fixed in the pipe of the tubular member 21A ( The bush (linear guide) 9-2 is press-fitted. The rotor 4 is held in a space in the compartment 22 sandwiched between the base member 14A and the tubular member 21A so as to be rotatable about the movable axis Z and to prevent movement in the movable axis direction. .
 図26に示した例では、ベース部材14(14B)と管状部材21(21B)とによって作られる内部の隔室22に、可動体3(可動子1)を設けている。可動体3のシャフト2-1は、ベース部材14Bに固定(圧入)されたブッシュ(リニアガイド)9-1に挿通され、可動体3のシャフト2-2は、管状部材21Bの管内に固定(圧入)されたブッシュ(リニアガイド)9-2に挿通されている。回転子4は、管状部材21Bの外側設けられた溝23に、可動軸Zを中心として回転可能に、かつ可動軸方向の移動を阻止するように保持されている。 In the example shown in FIG. 26, the movable body 3 (movable element 1) is provided in the internal compartment 22 formed by the base member 14 (14B) and the tubular member 21 (21B). The shaft 2-1 of the movable body 3 is inserted into a bush (linear guide) 9-1 fixed (press-fitted) to the base member 14B, and the shaft 2-2 of the movable body 3 is fixed in the pipe of the tubular member 21B ( The bush (linear guide) 9-2 is press-fitted. The rotor 4 is held in a groove 23 provided outside the tubular member 21B so as to be rotatable about the movable axis Z and to prevent movement in the movable axis direction.
〔可動子の永久磁石について〕
 図1A、1Bに示した構造では、可動子1を構成する永久磁石1-1,1-2を2磁極としているが、4磁極以上(例えば、円柱径方向着磁(円筒の場合は、内周側にも磁極があるため8磁極))の多磁極の永久磁石としてもよい。
[About the permanent magnet of the mover]
In the structure shown in FIGS. 1A and 1B, the permanent magnets 1-1 and 1-2 constituting the mover 1 have two magnetic poles, but four or more magnetic poles (for example, cylindrical radial magnetization (in the case of a cylinder, the inner Since there are magnetic poles on the circumferential side, a multi-pole permanent magnet of 8 magnetic poles)) may be used.
 図27A~図27Cに、可動子1の永久磁石1-1,1-2を円柱状の永久磁石とし、この円柱状の永久磁石を4磁極とした場合の構成図を示す。図27Aは要部の側面断面図であり、図27Bは図27Aを左(Z1)方向から見た図、図27Cは図27Aを右(Z2)方向から見た図である。なお、図27A~27Cにおいて、図1A、1Bに示されている回転子回転手段7などは省略している。 FIGS. 27A to 27C are configuration diagrams in the case where the permanent magnets 1-1 and 1-2 of the mover 1 are columnar permanent magnets and the columnar permanent magnets are four magnetic poles. 27A is a side cross-sectional view of the main part, FIG. 27B is a view of FIG. 27A viewed from the left (Z1) direction, and FIG. 27C is a view of FIG. 27A viewed from the right (Z2) direction. 27A to 27C, the rotor rotating means 7 and the like shown in FIGS. 1A and 1B are omitted.
 この例では、可動子1の永久磁石1-1の円周方向を4分割し、90゜間隔で隣接する周方向の面に磁極を形成している。この例では、90゜間隔で隣接する周方向の第1の面(図27(b))では上側の面)にS極を、第2の面(図27(b)では左側の面)にN極を形成し、第3の面(図27(b)では下側の面)にS極を、第4の面(図27(b)では右側の面)にN極を形成している。 In this example, the circumferential direction of the permanent magnet 1-1 of the mover 1 is divided into four, and magnetic poles are formed on adjacent circumferential surfaces at 90 ° intervals. In this example, the S pole is on the first circumferential surface (the upper surface in FIG. 27B) that is adjacent at 90 ° intervals, and the second surface (the left surface in FIG. 27B). The N pole is formed, the S pole is formed on the third surface (the lower surface in FIG. 27B), and the N pole is formed on the fourth surface (the right surface in FIG. 27B). .
 同様に、可動子1の永久磁石1-2の円周方向を4分割し、90゜間隔で隣接する周方向の面に磁極を形成している。この例では、90゜間隔で隣接する周方向の第1の面(図27C)では上側の面)にN極を、第2の面(図27Cでは左側の面)にS極を形成し、第3の面(図27Cでは下側の面)にN極を、第4の面(図27Cでは右側の面)にS極を形成している。 Similarly, the circumferential direction of the permanent magnet 1-2 of the mover 1 is divided into four, and magnetic poles are formed on adjacent circumferential surfaces at 90 ° intervals. In this example, an N pole is formed on the first circumferential surface adjacent at 90 ° intervals (the upper surface in FIG. 27C), and an S pole is formed on the second surface (the left surface in FIG. 27C). The N pole is formed on the third surface (the lower surface in FIG. 27C), and the S pole is formed on the fourth surface (the right surface in FIG. 27C).
 また、これに伴い、回転子4もその内周面を4磁極、外周面を4磁極、合計8磁極のリング状の永久磁石としている。すなわち、回転子4の内周面の円周方向を4分割し、90゜間隔で隣接する周方向の面に磁極を形成している。この例では、90゜間隔で隣接する周方向の第1の面(図27B)では上側の面)にN極を、第2の面(図27Bでは左側の面)にS極を形成し、第3の面(図27Bでは下側の面)にN極を、第4の面(図27Bでは右側の面)にS極を形成している。 Accordingly, the rotor 4 is also a ring-shaped permanent magnet having a total of 8 magnetic poles with 4 magnetic poles on the inner peripheral surface and 4 magnetic poles on the outer peripheral surface. That is, the circumferential direction of the inner peripheral surface of the rotor 4 is divided into four, and magnetic poles are formed on adjacent circumferential surfaces at 90 ° intervals. In this example, the N pole is formed on the first circumferential surface (the upper surface in FIG. 27B) adjacent at 90 ° intervals, and the S pole is formed on the second surface (the left surface in FIG. 27B). An N pole is formed on the third surface (the lower surface in FIG. 27B), and an S pole is formed on the fourth surface (the right surface in FIG. 27B).
 同様に、回転子4の外内周面の円周方向を4分割し、90゜間隔で隣接する周方向の面に磁極を形成している。この例では、90゜間隔で隣接する周方向の第1の面(図27B)では上側の面)にS極を、第2の面(図27Bでは左側の面)にN極を形成し、第3の面(図27Bでは下側の面)にS極を、第4の面(図27Bでは右側の面)にN極を形成している。 Similarly, the circumferential direction of the outer inner circumferential surface of the rotor 4 is divided into four, and magnetic poles are formed on adjacent circumferential surfaces at 90 ° intervals. In this example, the S pole is formed on the first circumferential surface (the upper surface in FIG. 27B) adjacent at 90 ° intervals, and the N pole is formed on the second surface (the left surface in FIG. 27B). The S pole is formed on the third surface (the lower surface in FIG. 27B), and the N pole is formed on the fourth surface (the right surface in FIG. 27B).
 なお、図27A~27Cに示した構造において、回転子回転手段7を設ける場合には、図28に示すように、ヨーク6-1および6-2の他方の端部は、可動軸Zとほゞ直交する方向から回転子4の永久磁石の外周面上の隣り合う1対の磁極にほゞ対向するように配置する。 In the structure shown in FIGS. 27A to 27C, when the rotor rotating means 7 is provided, the other ends of the yokes 6-1 and 6-2 are almost the same as the movable shaft Z as shown in FIG. They are arranged so as to be substantially opposed to a pair of adjacent magnetic poles on the outer peripheral surface of the permanent magnet of the rotor 4 from the orthogonal direction.
 図28に示すようにヨーク6-1,6-2を配置する場合も、電磁コイル5の非励磁状態において、ヨーク6-1の他方の端部の中心と可動軸Zとを直交するように結ぶ線とヨーク6-1の他方の端部とほゞ対向する回転子4の永久磁石の外周面上の磁極の中心と可動軸Zとを直交するように結ぶ線との交差角をθとして、またヨーク6-2の他方の端部の中心と可動軸Zとを直交するように結ぶ線とヨーク6-2の他方の端部とほゞ対向する回転子4の永久磁石の外周面上の磁極の中心と可動軸Zとを直交するように結ぶ線との交差角をθとして、生じさせるようにすることが望ましい。 As shown in FIG. 28, when the yokes 6-1 and 6-2 are arranged, the center of the other end of the yoke 6-1 and the movable axis Z are orthogonal to each other when the electromagnetic coil 5 is not excited. Let θ be the intersection angle between the connecting line and the line connecting the center of the magnetic pole on the outer peripheral surface of the permanent magnet of the rotor 4 substantially opposite to the other end of the yoke 6-1 and the movable axis Z. In addition, on the outer peripheral surface of the permanent magnet of the rotor 4 that is substantially opposite to the other end of the yoke 6-2 and a line connecting the center of the other end of the yoke 6-2 and the movable shaft Z so as to be orthogonal to each other. It is desirable that the crossing angle between a line connecting the center of the magnetic pole and the movable axis Z so as to be orthogonal is θ, and to be generated.
 なお、例えば、可動子1を構成する永久磁石1-1,1-2を4磁極とする場合、図29に示すように、回転子4における磁極対は上下だけの2方向でもよい。但し、磁極対を上下だけの2方向とした場合、同極対向となるので、コイル(電磁力)による回転は困難となるが、回転子4を上下の2方向の磁極対から構成することは可能である。 For example, when the permanent magnets 1-1 and 1-2 constituting the mover 1 have four magnetic poles, the pair of magnetic poles in the rotor 4 may be in only two directions, as shown in FIG. However, when the magnetic pole pair is in only two directions up and down, they are opposite to each other with the same polarity, so that rotation by a coil (electromagnetic force) is difficult. However, the rotor 4 can be composed of magnetic pole pairs in two upper and lower directions. Is possible.
 また、上述した実施の形態において、永久磁石は、例えば、ネオジムやサマリウムコバルトなどの希土類磁石またはフェライト磁石、あるいは、それらの磁性体粉末に樹脂を混合して成形したボンド磁石などからなる。ヨークは、飽和磁束密度や透磁率が大きく、保磁力が小さく、磁気ヒステリシスの小さい軟磁性材料(例えば、電磁鋼板、電磁軟鉄、パーマロイなど)からなる。また、シャフトなどの非磁性部材は、例えば、アルミ、SUS316(L)、真鍮、樹脂などからなる。なお、性能は低くなるがコストなどの観点から、上記非磁性部材として、上述のような非磁性材料の代わりに、わずかに磁性を持つ材料(例えば、SUS304など)を選択することも考えられる。 In the above-described embodiment, the permanent magnet is made of, for example, a rare earth magnet or ferrite magnet such as neodymium or samarium cobalt, or a bonded magnet formed by mixing a resin with a magnetic powder thereof. The yoke is made of a soft magnetic material (for example, an electromagnetic steel plate, electromagnetic soft iron, permalloy, etc.) having a large saturation magnetic flux density and magnetic permeability, a small coercive force, and a small magnetic hysteresis. The nonmagnetic member such as the shaft is made of, for example, aluminum, SUS316 (L), brass, resin, or the like. Although the performance is lowered, from the viewpoint of cost and the like, it is also conceivable to select a slightly magnetic material (for example, SUS304) as the nonmagnetic member instead of the nonmagnetic material as described above.
〔実施の形態の拡張〕
 以上、実施の形態を参照して本発明を説明したが、本発明は上記の実施の形態に限定されるものではない。本発明の構成や詳細には、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。
[Extension of the embodiment]
The present invention has been described above with reference to the embodiment. However, the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the technical idea of the present invention.
 本発明に係る双安定移動装置は、例えば遮断弁や電磁開閉器、電子ロックなどの様々な用途に適用できる。 The bistable movement device according to the present invention can be applied to various uses such as a shut-off valve, an electromagnetic switch, and an electronic lock.
 1(1A,1B)…可動子、1-1,1-2…永久磁石、2-1,2-2…シャフト、3…可動体、4(4A,4B)…回転子、4-1,4-2…永久磁石、5…電磁コイル、6-1,6-2…ヨーク、7(7A,17B,17C)…回転子回転手段。 1 (1A, 1B) ... movable element, 1-1, 1-2 ... permanent magnet, 2-1,2-2 ... shaft, 3 ... movable body, 4 (4A, 4B) ... rotor, 4-1, 4-2 ... Permanent magnet, 5 ... Electromagnetic coil, 6-1, 6-2 ... Yoke, 7 (7A, 17B, 17C) ... Rotor rotating means.

Claims (22)

  1.  可動軸方向に移動可能で、かつ、前記可動軸を中心とした回転を阻止するように保持され、前記可動軸と直交する方向に前記可動軸を挟むように配置された複数の磁極を有する第1の永久磁石と、前記可動軸と直交する方向に前記可動軸を挟むように、かつ、前記第1の永久磁石の磁極に対して前記可動軸方向に異極同士が対向するように配置された複数の磁極を有する第2の永久磁石とを備える可動子と、
     前記可動軸を中心として回転可能で、かつ、前記可動軸方向の移動を阻止するように保持され、一方の磁極の位置を前記可動軸を中心とする第1の円周上とし、他方の磁極の位置を前記第1の円周よりも大径の前記可動軸を中心とする第2の円周上とする複数の磁極対を、前記可動軸と直交する方向に前記可動子を挟むように配置した永久磁石を備える回転子と、
     前記回転子を回転させて、前記回転子の第1の円周上の磁極の配置を、第1の配置と第2の配置との間で入れ替える回転子回転手段とを備え、
     前記回転子は、
     前記第1の円周上の磁極の配置が第1の配置である場合、前記可動子の第1の永久磁石を磁気吸引保持する一方、前記可動子の第2の永久磁石を磁気反発させ、
     前記第1の円周上の磁極の配置が前記第2の配置である場合、前記可動子の第2の永久磁石を磁気吸引保持する一方、前記可動子の第1の永久磁石を磁気反発させる
     ことを特徴とする双安定移動装置。
    A plurality of magnetic poles that are movable in the direction of the movable axis, are held so as to prevent rotation about the movable axis, and are arranged so as to sandwich the movable axis in a direction perpendicular to the movable axis; One permanent magnet is disposed so that the movable shaft is sandwiched in a direction orthogonal to the movable shaft, and opposite poles are opposed to each other in the movable shaft direction with respect to the magnetic pole of the first permanent magnet. A mover comprising a second permanent magnet having a plurality of magnetic poles;
    It is rotatable about the movable shaft and is held so as to prevent movement in the direction of the movable shaft, and the position of one magnetic pole is on the first circumference centered on the movable shaft, and the other magnetic pole A plurality of magnetic pole pairs whose positions are on a second circumference centered on the movable shaft having a diameter larger than that of the first circumference so as to sandwich the mover in a direction perpendicular to the movable shaft A rotor with permanent magnets arranged;
    Rotator rotating means for rotating the rotor to change the arrangement of magnetic poles on the first circumference of the rotor between the first arrangement and the second arrangement;
    The rotor is
    When the arrangement of the magnetic poles on the first circumference is the first arrangement, the first permanent magnet of the mover is magnetically attracted and held, while the second permanent magnet of the mover is magnetically repelled,
    When the arrangement of the magnetic poles on the first circumference is the second arrangement, the second permanent magnet of the mover is magnetically attracted and held, while the first permanent magnet of the mover is magnetically repelled. A bistable moving device characterized by that.
  2.  請求項1に記載された双安定移動装置において、
     前記可動子の第1および第2の永久磁石は、円柱または円筒状とされている
     ことを特徴とする双安定移動装置。
    The bistable moving device according to claim 1, wherein
    The first and second permanent magnets of the mover are columnar or cylindrical.
  3.  請求項1に記載された双安定移動装置において、
     前記可動子の第1および第2の永久磁石は、同一の形状、同一のサイズとされている
     ことを特徴とする双安定移動装置。
    The bistable moving device according to claim 1, wherein
    The bistable movement device characterized in that the first and second permanent magnets of the mover have the same shape and the same size.
  4.  請求項1に記載された双安定移動装置において、
     前記可動子の第1および第2の永久磁石の前記可動軸方向の長さは、前記回転子の可動軸方向の長さ以上とされている
     ことを特徴とする双安定移動装置。
    The bistable moving device according to claim 1, wherein
    The length of the first permanent magnet and the second permanent magnet of the mover in the movable axis direction is equal to or longer than the length of the rotor in the movable axis direction.
  5.  請求項1に記載された双安定移動装置において、
     前記可動子の第1および第2の永久磁石は、一体とされている
     ことを特徴とする双安定移動装置。
    The bistable moving device according to claim 1, wherein
    The bistable movement device characterized in that the first and second permanent magnets of the mover are integrated.
  6.  請求項1に記載された双安定移動装置において、
     前記可動子の第1および第2の永久磁石は、離間して配置されている
     ことを特徴とする双安定移動装置。
    The bistable moving device according to claim 1, wherein
    The bistable movement device characterized in that the first and second permanent magnets of the mover are spaced apart.
  7.  請求項6に記載された双安定移動装置において、
     前記可動子の第1および第2の永久磁石は、非磁性の部材で接続されている
     ことを特徴とする双安定移動装置。
    The bistable movement device according to claim 6, wherein
    The bistable movement apparatus characterized by the 1st and 2nd permanent magnet of the said needle | mover being connected by the nonmagnetic member.
  8.  請求項6に記載された双安定移動装置において、
     前記可動子および前記回転子の近接対向するエッジの両方または片方に面取り部が形成されている
     ことを特徴とする双安定移動装置。
    The bistable movement device according to claim 6, wherein
    A chamfered portion is formed on both or one of the adjacent edges of the movable element and the rotor.
  9.  請求項1に記載された双安定移動装置において、
     更に、前記可動軸方向に移動可能で、かつ、前記可動軸を中心とした回転を阻止するように保持された非磁性シャフトを備え、
     前記可動子は、前記非磁性シャフトの可動軸方向に接続されている
     ことを特徴とする双安定移動装置。
    The bistable moving device according to claim 1, wherein
    And a nonmagnetic shaft that is movable in the direction of the movable axis and is held so as to prevent rotation about the movable axis.
    The movable element is connected in the direction of the movable axis of the nonmagnetic shaft.
  10.  請求項1に記載された双安定移動装置において、
     更に、前記可動軸を中心とした回転を阻止する手段と、前記可動軸方向に移動可能に保持され、前記回転を阻止する手段に接続されている非磁性シャフトとを備え、
     前記可動子は、前記非磁性シャフトの可動軸方向に接続されている
     ことを特徴とする双安定移動装置。
    The bistable moving device according to claim 1, wherein
    And a means for preventing rotation about the movable shaft; and a nonmagnetic shaft that is movably held in the direction of the movable shaft and connected to the means for preventing rotation.
    The movable element is connected in the direction of the movable axis of the nonmagnetic shaft.
  11.  請求項1に記載された双安定移動装置において、
     前記回転子は、径方向に着磁されたリングまたは円筒状の永久磁石で形成されている
     ことを特徴とする双安定移動装置。
    The bistable moving device according to claim 1, wherein
    The rotor is formed of a ring magnetized in the radial direction or a cylindrical permanent magnet.
  12.  請求項1に記載された双安定移動装置において、
     前記回転子の永久磁石は、
     前記可動子を挟むように配置され、その磁極方向が前記可動軸と直交する1対の磁極を持つ複数の永久磁石から構成されている
     ことを特徴とする双安定移動装置。
    The bistable moving device according to claim 1, wherein
    The permanent magnet of the rotor is
    A bistable moving device comprising a plurality of permanent magnets arranged so as to sandwich the mover and having a pair of magnetic poles whose magnetic pole directions are orthogonal to the movable shaft.
  13.  請求項1に記載された双安定移動装置において、
     前記回転子回転手段は、
     外部から機械的な力を与えることにより前記回転子を回転させる
     ことを特徴とする双安定移動装置。
    The bistable moving device according to claim 1, wherein
    The rotor rotating means includes
    A bistable moving device characterized in that the rotor is rotated by applying a mechanical force from the outside.
  14.  請求項1に記載された双安定移動装置において、
     前記回転子回転手段は
     前記回転子の永久磁石に外部から磁界を与えることにより前記回転子を回転させる
     ことを特徴とする双安定移動装置。
    The bistable moving device according to claim 1, wherein
    The rotator rotating means rotates the rotor by applying a magnetic field from the outside to the permanent magnet of the rotor.
  15.  請求項14に記載された双安定移動装置において、
     前記回転子回転手段は
     前記可動軸とほゞ直交する方向から永久磁石を近づけて、前記回転子の永久磁石に逆方向の磁界を与えることにより前記回転子を回転させる
     ことを特徴とする双安定移動装置。
    The bistable moving device according to claim 14,
    The rotator rotating means rotates the rotor by bringing a permanent magnet closer to the movable shaft from a direction substantially perpendicular to the movable shaft and applying a reverse magnetic field to the permanent magnet of the rotor. Mobile equipment.
  16.  請求項14に記載された双安定移動装置において、
     前記回転子回転手段は
     電磁コイルと、この電磁コイルのコアの一端および他端にその一方の端部が接続または一体化された第1および第2のヨークとを備え、
     前記第1および第2のヨークの他方の端部は、
     前記可動軸とほゞ直交する方向から前記回転子の永久磁石の第2の円周上の隣り合う1対の磁極にほゞ対向するように配置されている
     ことを特徴とする双安定移動装置。
    The bistable moving device according to claim 14,
    The rotor rotating means includes an electromagnetic coil, and first and second yokes having one end connected to or integrated with one end and the other end of the core of the electromagnetic coil,
    The other ends of the first and second yokes are
    A bistable moving device arranged so as to be substantially opposed to a pair of adjacent magnetic poles on a second circumference of the permanent magnet of the rotor from a direction substantially orthogonal to the movable shaft. .
  17.  請求項16に記載された双安定移動装置において、
     前記第1のヨークの他方の端部の中心と前記可動軸とを直交するように結ぶ線と前記第1のヨークの他方の端部とほゞ対向する前記回転子の永久磁石の第2の円周上の磁極の中心と前記可動軸とを直交するように結ぶ線との交差角、および前記第2のヨークの他方の端部の中心と前記可動軸とを直交するように結ぶ線と前記第2のヨークの他方の端部とほゞ対向する前記回転子の永久磁石の第2の円周上の磁極の中心と前記可動軸とを直交するように結ぶ線との交差角が、前記電磁コイルの非励磁状態において、前記可動軸方向からみて0゜より大きく、90゜より小さい範囲とされている
     ことを特徴とする双安定移動装置。
    The bistable movement device according to claim 16,
    A line connecting the center of the other end of the first yoke and the movable shaft so as to be orthogonal to a second end of the permanent magnet of the rotor that is generally opposed to the other end of the first yoke. A crossing angle between the center of the magnetic pole on the circumference and the line connecting the movable axis perpendicularly, and a line connecting the center of the other end of the second yoke and the movable axis orthogonally An intersection angle between a line connecting the movable axis and the center of the magnetic pole on the second circumference of the permanent magnet of the rotor, which is substantially opposite to the other end of the second yoke, is A bistable moving device characterized in that when the electromagnetic coil is in a non-excited state, the range is larger than 0 ° and smaller than 90 ° when viewed from the movable axis direction.
  18.  請求項17に記載された双安定移動装置において、
     前記交差角度の設定が、前記可動子の前記可動軸を中心とする回転角度の設定によって行われている
     ことを特徴とする双安定移動装置。
    The bistable movement device according to claim 17,
    The crossing angle is set by setting a rotation angle about the movable axis of the mover.
  19.  請求項17に記載された双安定移動装置において、
     前記交差角度の設定が、前記第1および第2のヨークを非対称な形状または配置にすることによって行われている
     ことを特徴とする双安定移動装置。
    The bistable movement device according to claim 17,
    The crossing angle is set by making the first and second yokes have an asymmetric shape or arrangement.
  20.  請求項16に記載された双安定移動装置において、
     前記第1および第2のヨークの夫々の前記他方の端部の形状は、円弧状とされている
     ことを特徴とする双安定移動装置。
    The bistable movement device according to claim 16,
    A shape of the other end of each of the first and second yokes is an arc shape.
  21.  請求項16に記載された双安定移動装置において、
     前記第1および第2のヨークの夫々の前記他方の端部は、部分的に接続または一体化されている
     ことを特徴とする双安定移動装置。
    The bistable movement device according to claim 16,
    The other end of each of the first and second yokes is partially connected or integrated.
  22.  請求項1に記載された双安定移動装置において、
     更に、前記可動子の可動軸方向の可動範囲を制限する手段を備えている
     ことを特徴とする双安定移動装置。
    The bistable moving device according to claim 1, wherein
    The bistable moving device further comprises means for limiting a movable range of the movable element in the movable axis direction.
PCT/JP2014/072581 2013-09-09 2014-08-28 Bistable moving device WO2015033851A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-185925 2013-09-09
JP2013185925A JP6134237B2 (en) 2013-09-09 2013-09-09 Bistable moving device

Publications (1)

Publication Number Publication Date
WO2015033851A1 true WO2015033851A1 (en) 2015-03-12

Family

ID=52628326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072581 WO2015033851A1 (en) 2013-09-09 2014-08-28 Bistable moving device

Country Status (2)

Country Link
JP (1) JP6134237B2 (en)
WO (1) WO2015033851A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3484025A1 (en) * 2017-11-13 2019-05-15 SiEVA d.o.o., PE Lipnica Actuator with adjustable passive characteristic and active adaptation of said characteristic
US10903030B2 (en) 2017-04-27 2021-01-26 Magswitch Technology Worldwide Pty Ltd. Variable field magnetic couplers and methods for engaging a ferromagnetic workpiece
US11031166B2 (en) 2017-06-08 2021-06-08 Magswitch Technology Worldwide Pty Ltd Electromagnet-switchable permanent magnet device
US11097401B2 (en) 2017-04-27 2021-08-24 Magswitch Technology Worldwide Pty Ltd. Magnetic coupling device with at least one of a sensor arrangement and a degauss capability
US12023770B2 (en) 2017-04-27 2024-07-02 Magswitch Technology, Inc. Magnetic coupling device with at least one of a sensor arrangement and a degauss capability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6322055B2 (en) * 2014-06-06 2018-05-09 アズビル株式会社 Bistable moving device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194658A (en) * 1983-04-18 1984-11-05 Nippon Denso Co Ltd Small-sized motor
JPS60167677A (en) * 1984-02-09 1985-08-31 Yunikamu:Kk Repelling type pneumatic motor utilizing permanent magnet
JPH0223077A (en) * 1988-07-06 1990-01-25 Shin Yoneda Magnet power engine
JPH0498872U (en) * 1991-01-31 1992-08-26
JPH08288129A (en) * 1995-04-14 1996-11-01 Tokin Corp Bistable linear electromagnetic solenoid
JPH10122322A (en) * 1996-08-27 1998-05-15 Ntn Corp Screw driving gear
JP2001251835A (en) * 2000-03-03 2001-09-14 Cryodevice Inc Linear vibration actuator
JP2002112518A (en) * 2000-07-28 2002-04-12 Fuji Electric Co Ltd Electromagnetic linear actuator and remote operating apparatus for circuit-breaker
JP2006158130A (en) * 2004-11-30 2006-06-15 Matsushita Electric Works Ltd Linear actuator
WO2008105393A1 (en) * 2007-02-26 2008-09-04 Olympus Medical Systems Corp. Magnetic actuator, magnetic actuator operation method, and encapsulated endoscope using the same
JP2008259413A (en) * 2007-04-05 2008-10-23 Aisin Seiki Co Ltd Linear actuator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194658A (en) * 1983-04-18 1984-11-05 Nippon Denso Co Ltd Small-sized motor
JPS60167677A (en) * 1984-02-09 1985-08-31 Yunikamu:Kk Repelling type pneumatic motor utilizing permanent magnet
JPH0223077A (en) * 1988-07-06 1990-01-25 Shin Yoneda Magnet power engine
JPH0498872U (en) * 1991-01-31 1992-08-26
JPH08288129A (en) * 1995-04-14 1996-11-01 Tokin Corp Bistable linear electromagnetic solenoid
JPH10122322A (en) * 1996-08-27 1998-05-15 Ntn Corp Screw driving gear
JP2001251835A (en) * 2000-03-03 2001-09-14 Cryodevice Inc Linear vibration actuator
JP2002112518A (en) * 2000-07-28 2002-04-12 Fuji Electric Co Ltd Electromagnetic linear actuator and remote operating apparatus for circuit-breaker
JP2006158130A (en) * 2004-11-30 2006-06-15 Matsushita Electric Works Ltd Linear actuator
WO2008105393A1 (en) * 2007-02-26 2008-09-04 Olympus Medical Systems Corp. Magnetic actuator, magnetic actuator operation method, and encapsulated endoscope using the same
JP2008259413A (en) * 2007-04-05 2008-10-23 Aisin Seiki Co Ltd Linear actuator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10903030B2 (en) 2017-04-27 2021-01-26 Magswitch Technology Worldwide Pty Ltd. Variable field magnetic couplers and methods for engaging a ferromagnetic workpiece
US11097401B2 (en) 2017-04-27 2021-08-24 Magswitch Technology Worldwide Pty Ltd. Magnetic coupling device with at least one of a sensor arrangement and a degauss capability
US11511396B2 (en) 2017-04-27 2022-11-29 Magswitch Technology Worldwide Pty Ltd. Magnetic coupling devices
US11839954B2 (en) 2017-04-27 2023-12-12 Magswitch Technology, Inc. Magnetic coupling device with at least one of a sensor arrangement and a degauss capability
US11850708B2 (en) 2017-04-27 2023-12-26 Magswitch Technology, Inc. Magnetic coupling device with at least one of a sensor arrangement and a degauss capability
US11901141B2 (en) 2017-04-27 2024-02-13 Magswitch Technology, Inc. Variable field magnetic couplers and methods for engaging a ferromagnetic workpiece
US11901142B2 (en) 2017-04-27 2024-02-13 Magswitch Technology, Inc. Variable field magnetic couplers and methods for engaging a ferromagnetic workpiece
US12023770B2 (en) 2017-04-27 2024-07-02 Magswitch Technology, Inc. Magnetic coupling device with at least one of a sensor arrangement and a degauss capability
US11031166B2 (en) 2017-06-08 2021-06-08 Magswitch Technology Worldwide Pty Ltd Electromagnet-switchable permanent magnet device
US11651883B2 (en) 2017-06-08 2023-05-16 Magswitch Technology Worldwide Pty Ltd. Electromagnet-switchable permanent magnet device
US11837402B2 (en) 2017-06-08 2023-12-05 Magswitch Technology, Inc. Electromagnet-switchable permanent magnet device
EP3484025A1 (en) * 2017-11-13 2019-05-15 SiEVA d.o.o., PE Lipnica Actuator with adjustable passive characteristic and active adaptation of said characteristic

Also Published As

Publication number Publication date
JP6134237B2 (en) 2017-05-24
JP2015053816A (en) 2015-03-19

Similar Documents

Publication Publication Date Title
WO2015033851A1 (en) Bistable moving device
JP6170712B2 (en) Bistable moving device
US8773226B2 (en) Driving device and relay
KR100442676B1 (en) Magnet movable electromagnetic actuator
WO2006106240A3 (en) Quick-action bistable polarized electromagnetic actuator
WO2012073780A1 (en) Latching relay
WO2012111658A1 (en) Rotary solenoid
JP5785886B2 (en) Magnetic spring device
US4774485A (en) Polarized magnetic drive for electromagnetic switching device
JP6097185B2 (en) Shut-off valve
CN110932464A (en) High-frequency direct-acting type force motor with symmetrical magnetic circuits
JP6182407B2 (en) Shut-off valve
JP6322055B2 (en) Bistable moving device
JP6307421B2 (en) Bistable moving device
JP2012175735A (en) Rotary solenoid
JPH0529133A (en) Electromagnet
JP2006042508A (en) Linear actuator
JP2771780B2 (en) electromagnet
JPS61127105A (en) Electromagnet device
JPH0343683Y2 (en)
JP2023167540A (en) solenoid
KR20210102862A (en) Permanent magnetic actuator using low magnetic force
CN115812130A (en) Electromagnetic braking device
JP2006042509A (en) Linear actuator
JP2009259612A (en) Bistable relay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842667

Country of ref document: EP

Kind code of ref document: A1