WO2018047389A1 - Liquid crystalline textile material and textile product - Google Patents

Liquid crystalline textile material and textile product Download PDF

Info

Publication number
WO2018047389A1
WO2018047389A1 PCT/JP2017/013246 JP2017013246W WO2018047389A1 WO 2018047389 A1 WO2018047389 A1 WO 2018047389A1 JP 2017013246 W JP2017013246 W JP 2017013246W WO 2018047389 A1 WO2018047389 A1 WO 2018047389A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystalline
fiber material
polyurethane
phase
crystalline polyurethane
Prior art date
Application number
PCT/JP2017/013246
Other languages
French (fr)
Japanese (ja)
Inventor
井関 清治
裕希 日▲高▼
Original Assignee
東洋ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ゴム工業株式会社 filed Critical 東洋ゴム工業株式会社
Priority to JP2018538011A priority Critical patent/JP6660474B2/en
Publication of WO2018047389A1 publication Critical patent/WO2018047389A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes

Definitions

  • the present invention relates to a liquid crystalline fiber material containing liquid crystalline polyurethane that reversibly expands and contracts between a liquid crystal phase and an isotropic phase in accordance with a temperature change, and a fiber product using the liquid crystalline fiber material.
  • a liquid crystalline polymer having a mesogenic group in the molecular structure changes the physical properties of the liquid crystalline polymer when the degree of orientation of the liquid crystal (mesogenic group) changes. Paying attention to such properties, attempts have been made to use liquid crystalline polymers in various applications.
  • Patent Document 1 discloses a method for producing a liquid crystalline fiber material in which a liquid crystalline polymer is heated to a temperature of (Ti + 30) ° C. or higher to adjust the melt viscosity to allow melt spinning.
  • Ti represents a transition temperature from the liquid crystal phase to the isotropic phase in the liquid crystalline polymer.
  • liquid crystal fiber material In order to incorporate liquid crystal fiber materials into daily necessities, especially in the vicinity of room temperature, the liquid crystal fiber material is maintained according to changes in the external environment such as temperature while maintaining the strength (durability) of the liquid crystal fiber material to a certain level or more. It is required to arbitrarily change the mechanical properties and displacement of the conductive fiber material.
  • the liquid crystal polymer used as a raw material for the liquid crystal polymer fiber in Patent Document 1 has a transition temperature (Ti) between the liquid crystal phase and the isotropic phase that is considerably higher than room temperature. ) Is higher than room temperature, and is considered unsuitable for daily necessities such as clothing.
  • the liquid crystal polymer fiber of Patent Document 1 since the liquid crystal polymer fiber of Patent Document 1 is not intended for repeated use, it maintains durability and reliability as a heat-responsive material over a long period of time in an environment with continuous temperature changes. There is a possibility that it cannot be done.
  • the conventional liquid crystalline fiber material has not been established the thermal responsiveness that can withstand repeated use while maintaining the strength above a certain level. There is much room for improvement.
  • the present invention has been made in view of the above problems, and pays attention to a phenomenon in which the elongation rate changes when the liquid crystalline polyurethane undergoes a phase transition between the liquid crystal phase and the isotropic phase due to a temperature change.
  • An object of the present invention is to provide a liquid crystalline fiber material having a certain level of strength (durability) while having thermal response. Furthermore, this invention aims at providing the textiles using the said liquid crystalline fiber material.
  • the characteristic configuration of the liquid crystalline fiber material according to the present invention for solving the above problems is as follows.
  • a liquid crystalline fiber material comprising a liquid crystalline polyurethane that reversibly expands and contracts between a liquid crystal phase and an isotropic phase according to a temperature change, Based on the state in which the liquid crystalline polyurethane is most contracted (100%), the elongation in the fiber direction is set to 102 to 200%, or the state in which the liquid crystalline polyurethane is most expanded (100%). ), The shrinkage rate in the fiber direction is set to 98.04 to 50%.
  • the structure of a polymer material greatly affects the physical properties, and the phase structure (liquid crystal phase and isotropic property) of the liquid crystalline polyurethane is also used in the liquid crystalline fiber material having thermal responsiveness including liquid crystalline polyurethane.
  • the present inventors focused on the elongation rate or shrinkage rate of the liquid crystalline polyurethane accompanying the change of the phase structure (phase transition) of the liquid crystalline polyurethane in developing a new liquid crystalline fiber material containing the liquid crystalline polyurethane.
  • a liquid crystal fiber material meeting the object of the present invention was searched.
  • the thermal responsiveness that combines liquid crystallinity and stretchability It can be used as a material.
  • the elongation rate of the liquid crystalline polyurethane is set to 102 to 200% in the fiber direction, with the standard (100%) of the state in which the liquid crystalline polyurethane is most contracted. Since the shrinkage rate in the fiber direction is set to 98.04-50%, based on the state in which the liquid crystalline polyurethane is most stretched (100%), the amount of displacement usable as a heat-responsive material is secured. However, a certain level of strength (durability) can be maintained between the liquid crystal phase and the isotropic phase.
  • the liquid crystalline polyurethane is preferably configured as a monofilament or a multifilament.
  • the liquid crystalline polyurethane is configured as a monofilament or a multifilament, and thus can be used for various applications in an appropriate fiber form.
  • the modulus of the time, including an isotropic phase was E 2
  • the liquid crystalline fiber material of this configuration has a certain level of strength (durability) between the liquid crystal phase and the isotropic phase, and can greatly change the elastic modulus. It is useful as a material having thermal response utilizing the transition.
  • liquid crystalline fiber material In the liquid crystalline fiber material according to the present invention, In the fiber direction, when rupture stress when the liquid crystalline polyurethane includes the liquid crystal phase is ⁇ 1 and rupture stress when the isotropic phase is included is ⁇ 2 , ⁇ 1 / ⁇ 2 ⁇ 40 is satisfied. It is preferable.
  • the breaking stress when the liquid crystalline polyurethane contains a liquid crystal phase is ⁇ 1 and when the breaking stress when the liquid crystalline polyurethane contains an isotropic phase is ⁇ 2 , ⁇ 1 / ⁇ 2 ⁇ Therefore, if a phase transition occurs between the liquid crystal phase and the isotropic phase, the breaking stress of the liquid crystalline polyurethane changes up to 40 times. At this time, the order (entropy) of the molecular structure of the liquid crystalline polyurethane increases or decreases with the phase transition, and the liquid crystalline polyurethane is displaced (stretched / contracted) accordingly.
  • the liquid crystalline fiber material of this configuration has a strength (durability) of a certain level or more between the liquid crystal phase and the isotropic phase, but can greatly change the breaking stress. It is useful as a material having thermal response using
  • the phase transition temperature (Ti) serving as a boundary between the liquid crystal phase and the isotropic phase is preferably not less than the glass transition temperature (Tg) of the liquid crystalline polyurethane and not more than 100 ° C.
  • the liquid crystalline fiber material of this configuration since the phase transition temperature (Ti) of the liquid crystalline polyurethane exists between the glass transition temperature (Tg) and 100 ° C., the liquid crystal can be used in a relatively low temperature region including normal temperature. The elastic modulus and breaking stress of the flexible polyurethane are greatly changed, and it becomes a practical liquid crystal fiber material that is easy to use.
  • the difference between the phase transition temperature (Ti) and the glass transition temperature (Tg) is preferably 20 ° C. or higher.
  • the liquid crystalline fiber material of this configuration by setting the difference between the phase transition temperature (Ti) and the glass transition temperature (Tg) to 20 ° C. or more, the liquid crystal phase region in which the elastic modulus and the breaking stress are increased is wide. It is a practical liquid crystalline fiber material that is secured and easy to use.
  • the liquid crystalline polyurethane preferably contains a reaction product of a mesogen group-containing compound having an active hydrogen group, an isocyanate compound, an alkylene oxide and / or a styrene oxide, and a crosslinking agent.
  • liquid crystalline fiber material of this configuration when a mesogenic group-containing compound having an active hydrogen group, an isocyanate compound, an alkylene oxide and / or a styrene oxide, and a crosslinking agent react to form a liquid crystalline polyurethane, Since the alkylene oxide and / or styrene oxide acts to lower the thermal stability of the mesogenic group contained in the liquid crystalline polyurethane, the liquid crystalline expression temperature of the liquid crystalline polyurethane is lowered, and the liquid crystalline fiber is solventless at room temperature.
  • the material can be molded.
  • the cross-linking agent is preferably a polyol having at least three reactive functional groups.
  • the liquid crystalline fiber material of this configuration since a matrix is densified by using a polyol having at least three reactive functional groups as a crosslinking agent, it is possible to ensure a certain level of strength as a material. .
  • the polyol having at least three reactive functional groups has less steric hindrance in the molecular structure, so that an excessive change in elastic modulus and breaking stress before and after the phase transition temperature of the liquid crystalline polyurethane is suppressed. Therefore, when the liquid crystalline fiber material undergoes a phase transition from the liquid crystal phase to the isotropic phase, it is possible to reduce deterioration in physical properties of the matrix while maintaining the thermal response.
  • the amount of the crosslinking agent is 0.1 to 20 parts by weight. It is preferable that
  • the blending amount of the crosslinking agent in the raw material of the liquid crystalline polyurethane is set to an appropriate range, the mesogenic group in the liquid crystalline polyurethane can move moderately.
  • the thermal responsiveness and the liquid crystallinity can be expressed with a good balance.
  • the characteristic configuration of the textile product according to the present invention for solving the above problems is as follows: A fiber product using any one of the above liquid crystalline fiber materials, The stretch rate or the shrinkage rate is configured to be locally different.
  • the fiber product of this configuration since the liquid crystalline fiber material described above is used, the fiber product is useful as a fiber product having a certain level of strength (durability) and excellent thermal response.
  • the amount of displacement associated with the phase transition from the liquid crystal phase to the isotropic phase is set to a significant value in the liquid crystalline fiber material that is the raw material, the fiber product of this configuration is capable of minute expansion and contraction such as medical supplies. It can be used from those requiring high performance to those requiring great elasticity such as socks, sportswear, and supporters.
  • FIG. 1 is an explanatory diagram showing a relationship between a phase structure and a modulus of elasticity accompanying a change in temperature for a liquid crystalline fiber material.
  • FIG. 2 is an explanatory view showing the breaking stress due to the difference in the phase structure of the liquid crystalline fiber material.
  • FIG. 3 is an explanatory diagram of a fiber product using a liquid crystalline fiber material.
  • the liquid crystalline fiber material of the present invention contains liquid crystalline polyurethane, and is a liquid crystalline elastomer having both liquid crystallinity and stretchability.
  • the raw material liquid crystalline polyurethane constitutes the matrix of the liquid crystalline fiber material of the present invention and is processed into a fiber form by liquid crystal spinning.
  • matrix means a main component of a material. Therefore, in addition to the main component, the liquid crystalline fiber material of the present invention includes subcomponents added in a small amount (for example, other polymers, low-molecular substances, fillers, etc.) and minute three-dimensional structures (for example, bubbles, This does not exclude the possibility of including voids and the like.
  • the liquid crystalline polyurethane is obtained by reacting a mesogen group-containing compound having an active hydrogen group (hereinafter simply referred to as “mesogen group-containing compound”), an isocyanate compound, an alkylene oxide and / or a styrene oxide, and a crosslinking agent. Is generated by When producing the liquid crystalline polyurethane, the alkylene oxide and / or styrene oxide acts to reduce the thermal stability of the mesogenic group contained in the liquid crystalline polyurethane, so the liquid crystalline expression temperature of the liquid crystalline polyurethane is reduced, It becomes possible to mold the liquid crystalline fiber material without solvent at room temperature.
  • mesogen group-containing compound having an active hydrogen group
  • mesogen group-containing compound for example, a compound represented by the following general formula (1) is used.
  • X is a part of the molecular structure of the mesogenic group, and is a single bond forming a part of the adjacent linking group, —N ⁇ N—, —CO—, —CH ⁇ N—, —CO—O.
  • a 1 and A 2 independently or together are a cycloalkane having 3 to 8 carbon atoms, a benzene ring, naphthalene, biphenyl, Or a heterocyclic compound thereof, or a compound in which a part thereof is substituted with -Br, -Cl, or -CH 3 , and Y 1 and Y 2 are independently or both of one of the adjacent linking groups.
  • Y 1 and Y 2 are —O— and B 1 and B 2 are a single bond forming a part of the adjacent linking group is excluded.
  • Z 1 and Z 2 are end groups having the active hydrogen group, and independently or together, —OH, —SH, —NH 2 , —COOH, —CHO, —O—CH (OH) —CH 2 OH or secondary amine.
  • the “single bond forming a part of the adjacent linking group” means a state in which the single bond is shared with a part of the adjacent linking group.
  • Z 1 is —OH
  • Y 1 is —CO—
  • B 1 is a single bond that forms part of an adjacent bonding group
  • Z 1 —B 1 The site of —Y 1 becomes HO—CO—
  • B 1 that is a single bond is shared with —OH and —CO— on both sides.
  • isocyanate compound for example, a diisocyanate compound or a trifunctional or higher functional isocyanate compound can be used.
  • diisocyanate compounds include 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,2′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate.
  • Aromatic diisocyanates such as p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylylene diisocyanate, and m-xylylene diisocyanate, ethylene diisocyanate, 2,2,4-trimethylhexamethylene-1,6-diisocyanate, 2, Aliphatic diisocyanates such as 4,4-trimethylhexamethylene-1,6-diisocyanate and 1,6-hexamethylene diisocyanate, and 1,4 Cyclohexane diisocyanate, cyclohexane diisocyanate, 4,4'-dicyclohexyl methane diisocyanate, isophorone diisocyanate, and include alicyclic diisocyanates such as norbornane diisocyanate.
  • diisocyanate compounds may be used alone or in combination of two or more.
  • trifunctional or higher functional isocyanate compounds include triphenylmethane triisocyanate, tris (isocyanatephenyl) thiophosphate, lysine ester triisocyanate, 1,3,6-hexamethylene triisocyanate, 1,6,11-undecane triisocyanate, Examples thereof include triisocyanates such as 1,8-diisocyanate-4-isocyanate methyloctane and bicycloheptane triisocyanate, and tetraisocyanates such as tetraisocyanate silane.
  • the above trifunctional or higher functional isocyanate compounds may be used singly or as a mixture of plural kinds.
  • the isocyanate compound it is possible to use a mixture of the above-mentioned diisocyanate compound and the above-described trifunctional or higher isocyanate compound.
  • the compounding amount of the isocyanate compound is adjusted so as to be 10 to 40% by weight, preferably 15 to 35% by weight, based on all raw materials of the liquid crystalline polyurethane.
  • the blending amount of the isocyanate compound is less than 10% by weight, it is difficult to continuously mold the liquid crystalline polyurethane because the polymerization by the urethane reaction becomes insufficient.
  • the blending amount of the isocyanate compound exceeds 40% by weight, the blending amount of the mesogenic group-containing compound in the total raw materials is relatively small, so that the liquid crystallinity of the liquid crystalline polyurethane is lowered.
  • alkylene oxide for example, ethylene oxide, propylene oxide, or butylene oxide can be used.
  • the above alkylene oxides may be used alone or in combination of two or more.
  • substituents such as an alkyl group, an alkoxyl group, and a halogen, in a benzene ring.
  • alkylene oxide a mixture of the above-mentioned alkylene oxide and the above-mentioned styrene oxide can be used.
  • the blending amount of alkylene oxide and / or styrene oxide is adjusted so that 1 to 10 mol, preferably 2 to 8 mol, of alkylene oxide and / or styrene oxide is added to 1 mol of the mesogen group-containing compound.
  • the number of added moles of alkylene oxide and / or styrene oxide is less than 1 mole, it is difficult to sufficiently reduce the temperature range in which the liquid crystallinity of the liquid crystalline polyurethane is manifested. It becomes difficult to continuously mold the liquid crystalline polyurethane while reaction-curing the raw materials in the state.
  • the number of added moles of alkylene oxide and / or styrene oxide exceeds 10 moles, the liquid crystalline polyurethane liquid crystallinity may be difficult to be exhibited.
  • a polyol having at least three reactive functional groups (hereinafter, also referred to as “polyol having three or more reactive functional groups”) can be used.
  • polyol having three or more reactive functional groups when such a polyol is used as a cross-linking agent, the liquid crystalline polyurethane is densified, so that a certain level of strength can be secured as a material.
  • polyol since polyol has less steric hindrance in its molecular structure, excessive changes in elastic modulus and changes in rupture stress before and after the phase transition temperature of liquid crystalline polyurethane are suppressed (about changes in elastic modulus and changes in rupture stress). Will be explained in detail later).
  • polyols having at least three reactive functional groups include polyether polyols, polyester polyols, polycarbonate polyols, and high molecular weight polyols having three or more hydroxyl groups (molecular weight of 400 or more) such as polyester polycarbonate polyols, and trimethylolpropane.
  • Glycerin 1,2,6-hexanetriol, meso-erythritol, pentaerythritol, tetramethylolcyclohexane, methylglucoside, sorbitol, mannitol, dulcitol, sucrose, 2,2,6,6-tetrakis (hydroxymethyl) cyclohexanol, And low molecular weight polyols such as triethanolamine.
  • the above-mentioned polyols may be used alone or in combination of two or more.
  • the blending amount of the crosslinking agent is 0.1 to 20 parts by weight when the total amount of all raw materials (mesogen group-containing compound, isocyanate compound, alkylene oxide and / or styrene oxide, and crosslinking agent) is 100 parts by weight, Preferably, it is adjusted to 0.2 to 18 parts by weight. If it is such a range, the mesogenic group in liquid crystalline polyurethane can move moderately, and heat responsiveness and liquid crystallinity can be expressed with sufficient balance. When the blending amount of the cross-linking agent is less than 0.1 parts by weight, the liquid crystalline polyurethane is not sufficiently cured, so that the matrix itself may flow and heat response may not be obtained.
  • the blending amount of the cross-linking agent exceeds 20 parts by weight, the cross-linking density of the liquid crystalline polyurethane becomes too high, so that the orientation of the mesogenic group is hindered to make it difficult to develop liquid crystallinity and the thermal response may not be obtained. is there.
  • the liquid crystalline fiber material is produced, for example, by the following reaction scheme.
  • a mesogen group-containing compound is reacted with alkylene oxide and / or styrene oxide to prepare a mesogen group-containing compound to which alkylene oxide and / or styrene oxide is added (hereinafter referred to as “mesogen diol”).
  • a catalyst and a first-stage isocyanate compound are added to the obtained mesogenic diol to obtain a liquid crystalline urethane compound.
  • the first-stage isocyanate compound is preferably added so that the NCO index is 50 to 98.
  • the NCO index is a numerical value obtained by dividing the total number of isocyanate groups of the isocyanate compound by the total number of active hydrogen groups of a polyol that can react with the isocyanate group and multiplying by 100.
  • the NCO index is less than 50, the molecular weight of the liquid crystalline urethane compound is small, so that the viscosity of the liquid crystalline urethane compound is low and spinning may be difficult.
  • the NCO index exceeds 98, the crosslink density of the liquid crystalline polyurethane becomes too high with the addition of the first-stage isocyanate compound. However, there is a possibility that the crosslinking reaction hardly occurs.
  • the mesogenic groups contained in the obtained liquid crystalline urethane compound can be uniformly dispersed to some extent before crosslinking with a polyol having three or more reactive functional groups.
  • a semi-cured liquid crystalline urethane compound (prepolymer) is obtained by adding a crosslinking agent and a second-stage isocyanate compound to the obtained liquid crystalline urethane compound and kneading while heating.
  • the second-stage isocyanate compound is preferably added so that the NCO index finally becomes 100 to 130. Thereby, an isocyanate group can react with the active hydrogen group of a polyol without excess and deficiency.
  • liquid crystalline urethane compound When this semi-cured liquid crystalline urethane compound is extruded into fibers using an extrusion molding machine, etc., and cured under appropriate conditions, the liquid crystalline urethane compound cures while polymerizing and is formed into a fiber form. Polyurethane (elastomer) is formed. At this time, when the liquid crystalline polyurethane is molded while being stretched at a glass transition temperature (Tg) or higher and a phase transition temperature (Ti) or lower (that is, a temperature at which liquid crystallinity is exhibited), the mesogenic group contained in the liquid crystalline polyurethane is stretched. A high degree of orientation can be obtained.
  • Tg glass transition temperature
  • Ti phase transition temperature
  • liquid crystalline fiber material containing the liquid crystalline polyurethane that reversibly expands and contracts between the liquid crystal phase and the isotropic phase according to a temperature change. Since the liquid crystalline fiber material includes liquid crystalline polyurethane that reversibly changes between a liquid crystal phase and an isotropic phase according to a temperature change, the liquid crystalline fiber material has both liquid crystallinity and stretchability. It can be used as a heat-responsive stretch material that reversibly stretches depending on the temperature. In this liquid crystalline fiber material, the mesogenic groups in the liquid crystalline polyurethane are oriented in the stretching direction.
  • the orientation of liquid crystalline polyurethane can be evaluated by the degree of orientation of mesogenic groups.
  • the mesogenic group is highly oriented in the uniaxial direction.
  • the degree of orientation was determined by measuring the absorbance (0 °, 90 °) of the antisymmetric stretching vibration of the aromatic ether and the methyl group by one-time total reflection measurement (ATR) using a Fourier transform infrared spectrophotometer (FTIR). Absorbance (0 °, 90 °) of symmetric bending vibration is measured and calculated based on the following calculation formula using these absorbances as parameters.
  • the liquid crystalline polyurethane obtained by the above reaction scheme can be used as it is as a matrix of the liquid crystalline fiber material of the present invention, but it can be used by adding a small amount of subcomponents to the liquid crystalline polyurethane or by dispersing bubbles.
  • subcomponents that can be added to liquid crystalline polyurethane include organic fillers, inorganic fillers, reinforcing agents, thickeners, release agents, excipients, coupling agents, flame retardants, flame retardants, pigments, colorants, Examples include odorants, antibacterial agents, antifungal agents, antistatic agents, ultraviolet ray preventing agents, and surfactants.
  • the liquid crystalline polyurethane to which the subcomponent is added is provided with the function of the subcomponent and can be used in various situations.
  • Examples of a method for dispersing bubbles in liquid crystalline polyurethane include a method in which a foaming agent is mixed with a raw material of liquid crystalline polyurethane and the foaming agent is foamed during the curing reaction of the liquid crystalline polyurethane.
  • a foaming agent is mixed with a raw material of liquid crystalline polyurethane and the foaming agent is foamed during the curing reaction of the liquid crystalline polyurethane.
  • sodium bicarbonate can be used as the foaming agent.
  • liquid crystal examples include a method of dispersing the hollow filler in the liquid crystalline polyurethane by mixing the hollow filler with the raw material of the conductive polyurethane.
  • the liquid crystalline fiber material in which bubbles are dispersed in the liquid crystalline polyurethane has increased heat insulation properties due to the bubbles, and thus can be used even in an environment with a large temperature change. Further, since the liquid crystalline fiber material is reduced in weight by including bubbles in the liquid crystalline polyurethane, it can be suitably applied to a transport machine such as an automobile.
  • the fiber form of the liquid crystalline fiber material may be either monofilament or multifilament.
  • the monofilament can be obtained by processing liquid crystalline polyurethane into a fiber form by liquid crystal spinning. By extruding a kneaded product obtained by melting the liquid crystalline urethane compound obtained from the mesogenic diol and the first-stage isocyanate compound and the second-stage isocyanate compound into a fiber by an extrusion molding machine or the like, fibers are obtained.
  • a liquid crystalline polyurethane (elastomer) is produced.
  • a monofilament is obtained by winding this liquid crystalline polyurethane on a roll while uniaxially stretching and curing for a predetermined period.
  • a multifilament is obtained by bundling several to hundreds of monofilaments.
  • the liquid crystalline fiber material configured as a monofilament or a multifilament can be used for various applications depending on the fiber form.
  • the liquid crystalline fiber material of the present invention is characterized in that the physical properties of the liquid crystalline polyurethane are greatly different between a state containing a liquid crystal phase and a state containing an isotropic phase.
  • the elongation rate or shrinkage rate of the liquid crystalline polyurethane accompanying the phase transition and the influence of the phase structure of the liquid crystalline polyurethane on the mechanical properties will be described.
  • a liquid crystal phase is developed by aligning the mesogenic groups of the liquid crystalline polyurethane below the phase transition temperature (Ti). Since the mesogenic group in the liquid crystalline fiber material is oriented in the stretching direction (that is, the fiber direction), the liquid crystalline fiber material itself is stretched along the stretching direction. On the other hand, above the phase transition temperature (Ti), the orientation of the mesogenic group of the liquid crystalline polyurethane collapses (is irregular) and an isotropic phase appears. Since the orientation of the mesogen groups in the liquid crystalline fiber material is irregular, the liquid crystalline fiber material itself contracts along the stretching direction as compared to when it is aligned along the stretching direction.
  • Ti phase transition temperature
  • the orientation of the mesogenic group is imparted to the liquid crystalline fiber material by liquid crystal spinning as described above.
  • the elongation ratio in the fiber direction is set to 102 to 200% with reference to the state in which the liquid crystalline polyurethane is most contracted (100%).
  • the liquid crystalline fiber material set to such an elongation rate has a certain level of strength (durability) between the liquid crystal phase and the isotropic phase while ensuring a displacement that can be used as a heat-responsive material. Therefore, it is useful as a material having thermal response utilizing phase transition. For example, in medical supplies and precision instruments used in the body, there are cases where minute expansion and contraction is required so as not to place a burden on an organ or other members.
  • the liquid crystalline fiber material has an elongation rate set to 102 to 200%, it can be suitably used as a material for various textile products.
  • the elongation rate is less than 102%, the fiber product using the liquid crystalline fiber material hardly expands and contracts, so that it is not suitable as a material having substantially thermal response.
  • the elongation rate exceeds 200%, the fiber product using the liquid crystalline fiber material is greatly deformed, and thus there is a possibility that the durability may be lowered due to repeated expansion and contraction.
  • the elongation ratio of the liquid crystalline fiber material is based on the state in which the liquid crystalline polyurethane is most contracted (100%), but the state in which the liquid crystalline polyurethane is most expanded (100%). %), It can also be expressed as the shrinkage of the liquid crystalline fiber material. In this case, the elongation rate of 102 to 200% corresponds to the shrinkage rate of 98.04 to 50%.
  • the orientation degree of the liquid crystalline polyurethane is preferably 0.05 or more, and more preferably 0.1 or more.
  • FIG. 1 is an explanatory diagram showing the relationship between the phase structure and the elastic modulus associated with a temperature change in the liquid crystalline fiber material of the present invention.
  • the elastic modulus of the liquid crystalline polyurethane is remarkably lowered at the phase transition temperature (Ti). This is because, as shown in the image in the broken-line circle (b), the orientation of the mesogenic group of the liquid crystalline polyurethane collapses to cause a phase transition from the liquid crystal phase to the isotropic phase, thereby reducing the stress bearing ability of the mesogenic group. is there.
  • the initial tensile resistance may be a Young's modulus E obtained from a tensile test or a storage elastic modulus E ′ obtained from a dynamic viscoelasticity measurement. In the following description, the elastic modulus E will be described as the initial tensile resistance E.
  • the initial tensile resistance E of the liquid crystalline polyurethane changes up to 1000 times. Specifically, when the phase transition from the liquid crystal phase to the isotropic phase, the initial tensile resistance of the liquid crystalline polyurethane can be reduced to 1/1000 times. At this time, since the mesogenic groups that have been aligned with the phase transition become irregular, the order (entropy) of the molecular structure of the liquid crystalline polyurethane is increased, and the liquid crystalline fiber material is in the alignment direction (that is, the fiber direction).
  • the initial tensile resistance of the liquid crystalline polyurethane can increase up to 1000 times.
  • the disordered mesogen groups are aligned again with the phase transition, so that the molecular structure order (entropy) of the liquid crystalline polyurethane is lowered, and the liquid crystalline fiber material extends in the alignment direction and in the non-alignment direction. Displace to shrink.
  • the lower limit value of E 1 / E 2 is not particularly defined, but as understood from FIG.
  • the initial tensile resistance E 1 is smaller than the initial tensile resistance E 2. Therefore, it is appropriate to set E 1 / E 2 to a value larger than 1. Therefore, even if the liquid crystalline polyurethane is displaced along with the phase transition, the change in the initial tensile resistance of the liquid crystalline polyurethane is maintained within 1000 times as described above.
  • the liquid crystalline fiber material of the present invention can greatly change the initial tensile resistance while having a certain level of strength (durability) between the liquid crystal phase and the isotropic phase. It is useful as a material having thermal response utilizing phase transition.
  • E 1 and E 2 defined above have a predetermined value or more.
  • FIG. 2 is an explanatory diagram (stress-strain curve) showing the breaking stress due to the difference in phase structure for the liquid crystalline fiber material of the present invention.
  • the liquid crystalline fiber material of the present invention is an elastomer, for example, when a tensile stress is applied in the fiber direction, the liquid crystalline fiber material expands in the fiber direction, and when the tensile stress is further increased, the liquid crystalline fiber material further expands accordingly. When the tensile stress exceeds the limit value, the liquid crystalline fiber material is broken. The stress when the liquid crystalline fiber material breaks is the breaking stress.
  • the liquid crystalline phase is expressed by the orientation of the mesogenic groups of the liquid crystalline polyurethane. Since the mesogenic group can bear the stress in the direction, it has a relatively high breaking stress.
  • the liquid crystalline polyurethane is in a state containing an isotropic phase, as shown in FIG. 2 (b)
  • the phase transition from the liquid crystal phase to the isotropic phase occurs due to the disruption of the orientation of the mesogenic group of the liquid crystalline polyurethane. Since the stress bearing ability of the base is reduced, the breaking stress is significantly reduced.
  • the breaking stress when the liquid crystalline polyurethane contains a liquid crystal phase is ⁇ 1 and the breaking stress when the liquid crystalline polyurethane contains an isotropic phase is ⁇ 2
  • the liquid crystalline fiber material of the present invention has the following mechanical conditions: 2: ⁇ Mechanical condition 2>: ⁇ 1 / ⁇ 2 ⁇ 40 Designed to meet.
  • ⁇ 1 for example, a breaking stress measured at a temperature lower by 10 to 30 ° C. than the phase transition temperature (Ti) of the liquid crystalline polyurethane can be employed.
  • the breaking stress ⁇ 2 for example, a breaking stress measured at a temperature 10 to 30 ° C. higher than the phase transition temperature (Ti) of the liquid crystalline polyurethane can be adopted.
  • the liquid crystalline fiber material satisfying the above-described mechanical condition 2 changes the breaking stress ⁇ of the liquid crystalline polyurethane by a maximum of 40 times. Specifically, when the phase transition from the liquid crystal phase to the isotropic phase, the breaking stress of the liquid crystalline polyurethane can be reduced to 1/40 times. At this time, the mesogenic groups that have been aligned with the phase transition become irregular, so the order (entropy) of the molecular structure of the liquid crystalline polyurethane increases, and the liquid crystalline polyurethane shrinks in the alignment direction (that is, the fiber direction).
  • the breaking stress of the liquid crystalline polyurethane can increase up to 40 times.
  • the disordered mesogenic groups are realigned with the phase transition, so that the order (entropy) of the molecular structure of the liquid crystalline polyurethane is lowered, and the liquid crystalline polyurethane stretches in the alignment direction and shrinks in the non-alignment direction.
  • the lower limit value of ⁇ 1 / ⁇ 2 is not particularly defined, but the breaking stress is similar to the relationship between the initial tensile resistance degree E 1 and the initial tensile resistance degree E 2 described above. Since it is difficult to realistically think that ⁇ 1 is smaller than the breaking stress ⁇ 2 , it is appropriate to set ⁇ 1 / ⁇ 2 to a value larger than 1. Therefore, even if the liquid crystalline polyurethane is displaced along with the phase transition, the change in the breaking stress of the liquid crystalline polyurethane is maintained within 40 times as described above.
  • the liquid crystalline fiber material of the present invention has a strength (durability) of a certain level or more between the liquid crystal phase and the isotropic phase, and can greatly change the breaking stress. It is useful as a material having thermal response utilizing the transition.
  • ⁇ 1 and ⁇ 2 defined above have a predetermined value or more.
  • ⁇ 2 measured at a temperature higher than the phase transition temperature (Ti) of the liquid crystalline polyurethane is set to be 0.01 cN / dtex or more, preferably 0.02 cN / dtex or more.
  • Ti phase transition temperature
  • ⁇ 2 0.01 cN / dtex or more, it can be suitably used as a practical liquid crystalline fiber material having sufficient durability.
  • Glass transition temperature (Tg) and phase transition temperature (Ti) of liquid crystalline polyurethane In order for the liquid crystalline fiber material to be usable in a temperature range including normal temperature, it is necessary to select a liquid crystalline polyurethane having an appropriate glass transition temperature (Tg) and phase transition temperature (Ti) as a matrix.
  • a liquid crystalline polyurethane having a phase transition temperature (Ti) of not less than the glass transition temperature (Tg) of the liquid crystalline polyurethane and not more than 100 ° C. is preferably used.
  • the difference between the phase transition temperature (Ti) and the glass transition temperature (Tg) is preferably 20 ° C. or higher, and more preferably 25 ° C. or higher.
  • the liquid crystalline fiber material containing such a liquid crystalline polyurethane has a liquid crystal phase in which the initial tensile resistance and breaking stress of the liquid crystalline polyurethane greatly change in a relatively low temperature region including normal temperature, and the initial tensile resistance increases. Since a wide area is secured, a practical liquid crystalline fiber material having excellent thermal response and good usability is obtained.
  • a liquid crystalline polyurethane that satisfies the temperature (Ti) and is preferable as a raw material of the liquid crystalline fiber material of the present invention is the liquid crystalline polyurethane described in the above-mentioned item of “Composition of liquid crystalline fiber material”, a mesogenic group-containing compound, It is produced by reacting an isocyanate compound, alkylene oxide and / or styrene oxide, and a crosslinking agent.
  • Preferred physical property values of the liquid crystalline polyurethane usable in the present invention are exemplified below.
  • Tg Glass transition temperature
  • Ti Phase transition temperature
  • liquid crystalline fiber material of the present invention can be applied to various uses by utilizing the liquid crystallinity and stretchability of liquid crystalline polyurethane. Such an application example will be described.
  • FIG. 3 is an explanatory view of a fiber product using the liquid crystalline fiber material of the present invention.
  • a sock 10 is shown as an example of a clothing product.
  • the sock 10 includes an upper step portion 12 that mainly covers the shin, a middle step portion 13 that mainly covers the ankle, and a lower step portion 14 that mainly covers the toes from the toes, and is configured to have different elongation rates.
  • the upper step portion 12, the middle step portion 13, and the lower step portion 14 are knitted as chain stitches of fibers 11 made of multifilaments obtained by liquid crystal spinning of the liquid crystalline fiber material of the present invention.
  • the upper stage part 12, the middle stage part 13, and the lower stage part 14 are configured to have different elongation rates, and the middle stage part 13, the upper stage part 12, and the lower stage part 14 are set so that the elongation rate increases in this order.
  • the liquid-spun fibers 11 have excellent liquid crystallinity because the molecular chains of liquid crystalline polyurethane are highly oriented in the fiber length direction.
  • the sock 10 is in an environment lower than the phase transition temperature (Ti) of the liquid crystalline polyurethane, and the liquid crystalline fiber material constituting the fiber 11 is liquid crystal as shown in the image in the broken line circle.
  • Ti phase transition temperature
  • the fibers 11 are elongated, for example, the knitted fabric constituting the upper step portion 12 and the middle step portion 13 is in a relatively loose state. For this reason, the user can easily wear the socks 10 on the foot.
  • the liquid crystalline fiber material constituting the fiber 11 includes an isotropic phase, and the fiber 11 contracts accordingly.
  • the fiber 11 contracts the upper step portion 12 and the middle step portion 13 are contracted, and the sock 10 fits the user's foot.
  • the upper step portion 12 and the middle step portion 13 are set at different elongation rates, not only will they fit the user's foot, but also the pressure will be stepwise depending on the location of the user's foot as necessary. Can be granted.
  • the extension rate of the middle step portion 13 is set larger than that of the upper step portion 12, the ankle covered by the middle step portion 13 from the outside is compared with the shin covered by the upper step portion 12. It is strongly squeezed. Since the lower step portion 14 has a smaller elongation rate than the upper step portion 12 and the middle step portion 13, compression from the outside is weakened. Thus, by giving strength to the compression, blood flow in the user's foot can be effectively promoted.
  • phase transition temperature (Ti) of the liquid crystalline polyurethane used for the fiber 11 is set to around body temperature (about 35 to 37 ° C.), for example, from a material that requires microstretchability such as medical supplies, socks It can be suitably used as a material for various textile products, such as sportswear, supporters and the like that require great stretchability.
  • body temperature about 35 to 37 ° C.
  • contraction rate may differ locally, it can utilize as correction
  • liquid crystalline fiber materials containing various liquid crystalline polyurethanes were prepared by changing the composition of the raw materials, and their characteristics were evaluated.
  • it demonstrates as an Example of a fiber material.
  • Liquid crystalline polyurethane materials were synthesized according to the conditions of the present invention and spun to obtain liquid crystalline fiber materials (Examples 1 to 5).
  • the unit of the blending amount of each raw material of liquid crystalline polyurethane is “g”, but the present invention can be scaled up at an arbitrary magnification. That is, the unit of the blending amount of each raw material of the liquid crystalline polyurethane can be read as “parts by weight”.
  • BH6 500 g
  • N, N-dimethylformamide (3000 ml) as a solvent are mixed in a reaction vessel and further mixed.
  • a propylene oxide 2 equivalents of 1 mol of BH6 were added, and the mixture was reacted at 120 ° C. for 2 hours under pressure (addition reaction).
  • oxalic acid (15.0 g) was added to the reaction vessel to stop the addition reaction, insoluble salts in the reaction solution were removed by suction filtration, and N, N-dimethylformamide in the reaction solution was further reduced in pressure.
  • mesogenic diol A By removing by a distillation method, mesogenic diol A was obtained.
  • a synthesis scheme of mesogenic diol A is shown in Formula (2).
  • the mesogen diol A shown in Formula (2) is typical, and may contain various structural isomers.
  • mesogenic diol A 500 g
  • triethylenediamine as a catalyst (trade name “TEDA (registered trademark) -L33” manufactured by Tosoh Corporation)
  • 1,6-hexamethylene as the first-stage isocyanate compound Diisocyanate (158 g) was mixed and heated at 100 ° C. for 2 hours to obtain liquid crystalline urethane compound A.
  • the first-stage isocyanate compound was added so that the NCO index was 83.
  • the liquid crystalline urethane compound A is filled in a preheated extrusion molding machine and melted.
  • a trimethylolpropane (9 g) as a crosslinking agent and 1,6-hexamethylene diisocyanate as a second-stage isocyanate compound are used. (45 g) was added and the kneaded product was extruded into a fiber while being kneaded at 100 ° C. The second-stage isocyanate compound was added so that the NCO index was finally 107. When the total amount of raw materials (mesogenic diol A, isocyanate compound, and crosslinking agent) was 100 parts by weight, the content of trimethylolpropane as a crosslinking agent was 1.3 parts by weight.
  • the extruded fiber was wound up at 20 ° C. while being uniaxially stretched so that the draw ratio was 2 times. The wound fiber was cured at room temperature for 24 hours to obtain a liquid crystalline fiber material of Example 1 in which liquid crystals (mesogenic groups) were aligned.
  • Example 2 The amount of trimethylolpropane is 18.5 g, the amount of 1,6-hexamethylene diisocyanate is 160 g (NCO index is 77) as the first-stage isocyanate compound, and the amount of 1,6- The amount of hexamethylene diisocyanate was 57 g (the final NCO index was 105).
  • the content of trimethylolpropane as a crosslinking agent was 2.5 parts by weight with respect to 100 parts by weight of the raw material.
  • the other raw materials, the blending amount thereof, the reaction conditions, the stretching conditions, and the curing conditions were the same as in Example 1, and the liquid crystalline fiber material of Example 2 was obtained.
  • Example 3 The amount of trimethylolpropane is 1.5 g, the amount of 1,6-hexamethylene diisocyanate is 150 g as the first-stage isocyanate compound (NCO index is 86), and the amount of 1,6- The amount of hexamethylene diisocyanate was 27 g (the final NCO index was 101).
  • the content of trimethylolpropane as a crosslinking agent was 0.22 parts by weight with respect to 100 parts by weight of the raw material.
  • the other raw materials, the blending amount thereof, the reaction conditions, the stretching conditions, and the curing conditions were the same as in Example 1, and the liquid crystalline fiber material of Example 3 was obtained.
  • Example 4 150 g of polyether polyol (trade name “EXCENOL (registered trademark) 400MP”, manufactured by Asahi Glass Co., Ltd.) is blended as a crosslinking agent, and the blending amount of 1,6-hexamethylene diisocyanate is 173 g as the first-stage isocyanate compound (NCO index was 58), and the compounding amount of 1,6-hexamethylene diisocyanate as the second-stage isocyanate compound was 132 g (final NCO index was 102).
  • the content of the polyether polyol as a crosslinking agent was 16 parts by weight with respect to 100 parts by weight of the raw material.
  • the other raw materials, the blending amounts thereof, the reaction conditions, the stretching conditions, and the curing conditions were the same as in Example 1, and the liquid crystalline fiber material of Example 4 was obtained.
  • BH6 500 g
  • N, N-dimethylformamide (3000 ml) as a solvent 7 equivalents of propylene oxide to 2 moles of BH6 (ie, 3.5 equivalents to 1 mole of BH6) and these mixtures were reacted under pressure at 120 ° C. for 2 hours ( Addition reaction).
  • oxalic acid (15.0 g) was added to the reaction vessel to stop the addition reaction, insoluble salts in the reaction solution were removed by suction filtration, and N, N-dimethylformamide in the reaction solution was further reduced in pressure.
  • mesogenic diol B was obtained.
  • a synthesis scheme of mesogenic diol B is shown in Formula (3).
  • the mesogen diol B shown in Formula (3) is typical, and may contain various structural isomers.
  • mesogenic diol B 500 g
  • triethylenediamine as a catalyst (trade name “TEDA (registered trademark) -L33” manufactured by Tosoh Corporation)
  • 1,6-hexamethylene as the first-stage isocyanate compound Diisocyanate (142 g) was mixed and heated at 100 ° C. for 2 hours to obtain liquid crystalline urethane compound B.
  • the first-stage isocyanate compound was added so that the NCO index was 90.
  • this liquid crystalline urethane compound B is filled in a preheated extruder and melted, and a side feeder is used to crosslink trimethylolpropane (9 g) and 1,6-hexamethylene diisocyanate as the second-stage isocyanate compound. (35 g) was added and the kneaded product was extruded into a fiber while kneading at 100 ° C. The second-stage isocyanate compound was added so that the NCO index was finally 112. When the total amount of raw materials (mesogenic diol B, isocyanate compound, and crosslinking agent) was 100 parts by weight, the content of trimethylolpropane as a crosslinking agent was 1.3 parts by weight.
  • the extruded fiber was wound up at 20 ° C. while being uniaxially stretched so that the draw ratio was 2 times.
  • the wound fiber was cured at room temperature for 24 hours to obtain a liquid crystalline fiber material of Example 5 in which liquid crystals (mesogenic groups) were aligned.
  • the blending amount of methylene diisocyanate was 30 g (the final NCO index was 110).
  • the content of trimethylolpropane as a crosslinking agent was 2.5 parts by weight with respect to 100 parts by weight of the raw material.
  • the content of the polyether polyol as a crosslinking agent was 24 parts by weight with respect to 100 parts by weight of the raw material.
  • the other raw materials, the blending amount thereof, the reaction conditions, the stretching conditions, and the curing conditions were the same as in Example 4, and the fiber material of Comparative Example 2 was obtained.
  • ⁇ Elongation rate> For each sample, the change in size in the alignment direction (change in the length of the sample) generated with the phase transition between the liquid crystal phase and the isotropic phase was measured on a scale. In the measurement, the elongation percentage in the fiber direction was calculated based on the state (100%) in which the liquid crystalline polyurethane was most contracted (in this example, the shortest length in the fiber direction of the liquid crystalline fiber material).
  • the storage elastic modulus E ′ of each sample was measured using a dynamic viscoelasticity measuring device (manufactured by Ueshima Seisakusho Co., Ltd., fully automatic viscoelasticity analyzer VR-7110). The measurement conditions were a heating rate of 2 ° C./min, a measurement mode of tensile mode, a strain of 2%, and a frequency of 10 Hz.
  • the storage elastic modulus E ′ at a temperature 20 ° C. lower than the phase transition temperature (Ti) is the initial tensile resistance E 1
  • the storage elastic modulus E ′ at a temperature 20 ° C. higher than the phase transition temperature (Ti) is the initial tensile strength. was the resistance of E 2.
  • breaking stress ⁇ at a temperature about 20 ° C. lower than the phase transition temperature (Ti) is defined as the breaking stress ⁇ 1
  • breaking stress ⁇ at a temperature about 20 ° C. higher than the phase transition temperature (Ti) is defined as the breaking stress ⁇ 2 . .
  • the liquid crystalline fiber materials of Examples 1 to 5 are those having a fineness of 149 to 160 dtex. As the liquid crystalline polyurethane undergoes a phase transition from the liquid crystal phase to the isotropic phase, the size in the alignment direction (fiber length) is increased. It decreased (shrinked). When the liquid crystalline polyurethane was returned from the isotropic phase to the liquid crystal phase, the fiber length increased (stretched). Thus, the liquid crystalline fiber materials of Examples 1 to 5 exhibited the property of reversibly expanding and contracting between the liquid crystal phase and the isotropic phase in accordance with the temperature change.
  • the fiber length when the liquid crystalline polyurethane in which the liquid crystalline fiber material is most contracted is in the isotropic phase is 100%
  • the fiber length (elongation rate) when the liquid crystalline polyurethane is in the liquid crystal phase is 103 to 119%.
  • the fiber length (shrinkage rate) when the liquid crystalline polyurethane is in the isotropic phase is 97. 0.08-84.03%.
  • the liquid crystalline fiber materials of Examples 1 to 5 all have an initial tensile resistance E 2 of 0.01 cN / tdex or more, and the ratio of the initial tensile resistance E 1 and the initial tensile resistance E 2 (E 1 / E 2 ) was 6.32 to 875, and the above-mentioned mechanical condition 1 was satisfied.
  • the breaking stress ⁇ 2 is 0.01 cN / tdex or more, and the ratio of the breaking stress ⁇ 1 to the breaking stress ⁇ 2 ( ⁇ 1 / ⁇ 2 ) is 4.17. 22.5, which satisfies the above-mentioned mechanical condition 2.
  • the liquid crystalline polyurethanes of Examples 1 to 5 have a certain level of strength (durability) between the liquid crystal phase and the isotropic phase, but the initial tensile resistance and breaking stress due to the phase transition. It has been confirmed that can vary greatly. Therefore, the liquid crystalline fiber material containing the liquid crystalline polyurethane of the present invention has a thermal response and a certain level of strength (durability) and is useful as a material having both liquid crystallinity and stretchability. Was suggested.
  • the fiber material of Comparative Example 1 the initial tensile resistance degree E 1 and the initial tensile ratio of the resistance of E 2 (E 1 / E 2 ) is 1400, which do not meet the mechanical condition 1 above Met. Further, the fiber material of Comparative Example 1 had a ratio ( ⁇ 1 / ⁇ 2 ) between the breaking stress ⁇ 1 and the breaking stress ⁇ 2 of 42.1 and did not satisfy the mechanical condition 2 described above. The fiber material of Comparative Example 1 was confirmed to have liquid crystallinity, but did not exhibit the property of reversibly expanding and contracting between the liquid crystal phase and the isotropic phase in accordance with temperature changes. Moreover, the fiber material of the comparative example 2 did not express liquid crystallinity, and the stretchability according to the temperature change was not confirmed.
  • the liquid crystalline fiber material and fiber product of the present invention utilize the excellent thermal responsiveness, stretchability, elastic modulus change characteristics, and breaking stress change characteristics in addition to the clothing product (sock) described in the embodiment. It can be used for various purposes.
  • the liquid crystalline fiber material and fiber product of the present invention can be used in industrial fields such as actuators and filters. It may also be used in the medical and medical fields such as artificial muscles and catheters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Knitting Of Fabric (AREA)
  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)

Abstract

The present invention provides a liquid crystalline textile material having thermal responsiveness at near normal temperature and yet having given or greater strength (durability), focusing on a phenomenon that when a liquid crystalline polyurethane makes phase transition between a crystal phase and an isotropic phase due to a temperature change, the elongation rate thereof changes. A liquid crystalline textile material 11 including a liquid crystalline polyurethane that reversibly stretches between a crystal phase and an isotropic phase in accordance with a temperature change, wherein the elongation rate in the fiber direction is set to 102-200%, with a state of the liquid crystalline polyurethane being most shrunk used as a point of reference (100%), and the shrinkage factor in the fiber direction is set to 98.04-50%, with a state of the liquid crystalline polyurethane being most expanded used as a point of reference (100%).

Description

液晶性繊維材料、及び繊維製品Liquid crystalline fiber materials and textile products
 本発明は、温度変化に応じて液晶相と等方相との間で可逆的に伸縮する液晶性ポリウレタンを含む液晶性繊維材料、及び当該液晶性繊維材料を用いた繊維製品に関する。 The present invention relates to a liquid crystalline fiber material containing liquid crystalline polyurethane that reversibly expands and contracts between a liquid crystal phase and an isotropic phase in accordance with a temperature change, and a fiber product using the liquid crystalline fiber material.
 分子構造内にメソゲン基を有する液晶性ポリマーは、液晶(メソゲン基)の配向度が変化すると、液晶性ポリマーの物性も変化する。このような性質に着目し、液晶性ポリマーを様々な用途で利用する試みがなされている。 A liquid crystalline polymer having a mesogenic group in the molecular structure changes the physical properties of the liquid crystalline polymer when the degree of orientation of the liquid crystal (mesogenic group) changes. Paying attention to such properties, attempts have been made to use liquid crystalline polymers in various applications.
 例えば、特定構造を有する高結晶性の液晶性ポリマーについて、ある重量平均分子量以上のポリマーを溶融紡糸することにより、高配向度の液晶性繊維材料を得る技術が知られている(例えば、特許文献1を参照)。特許文献1においては、液晶性ポリマーを(Ti+30)℃以上の温度に加熱することで、溶融紡糸できる溶融粘度に調整する液晶性繊維材料の製造方法が開示されている。なお、Tiは液晶性ポリマーにおける液晶相から等方相への転移温度を示す。 For example, for a highly crystalline liquid crystalline polymer having a specific structure, a technique for obtaining a liquid crystal fiber material having a high degree of orientation by melt spinning a polymer having a certain weight average molecular weight or more is known (for example, Patent Documents). 1). Patent Document 1 discloses a method for producing a liquid crystalline fiber material in which a liquid crystalline polymer is heated to a temperature of (Ti + 30) ° C. or higher to adjust the melt viscosity to allow melt spinning. Ti represents a transition temperature from the liquid crystal phase to the isotropic phase in the liquid crystalline polymer.
特開2013-82804号公報JP 2013-82804 A
 液晶性繊維材料を日用品に組み入れて実用化するためには、特に常温付近において、液晶性繊維材料の強度(耐久性)を一定以上に維持しながら、温度等の外部環境の変化に応じて液晶性繊維材料の力学的物性や変位量を任意に変化させることが求められる。 In order to incorporate liquid crystal fiber materials into daily necessities, especially in the vicinity of room temperature, the liquid crystal fiber material is maintained according to changes in the external environment such as temperature while maintaining the strength (durability) of the liquid crystal fiber material to a certain level or more. It is required to arbitrarily change the mechanical properties and displacement of the conductive fiber material.
 この点に関し、特許文献1において液晶ポリマー繊維の原料として使用される液晶ポリマーは、液晶相と等方相と間の転移温度(Ti)が常温よりかなり高いため、液晶ポリマー繊維の転移温度(Ti)も常温より高いものとなり、衣類などの日用品の材料には適さないと考えられる。また、特許文献1の液晶ポリマー繊維は、繰り返しの使用を想定したものではないため、連続的な温度変化を伴う環境下では、長期に亘って熱応答性材料としての耐久性や信頼性を維持できない虞がある。 In this regard, the liquid crystal polymer used as a raw material for the liquid crystal polymer fiber in Patent Document 1 has a transition temperature (Ti) between the liquid crystal phase and the isotropic phase that is considerably higher than room temperature. ) Is higher than room temperature, and is considered unsuitable for daily necessities such as clothing. In addition, since the liquid crystal polymer fiber of Patent Document 1 is not intended for repeated use, it maintains durability and reliability as a heat-responsive material over a long period of time in an environment with continuous temperature changes. There is a possibility that it cannot be done.
 このように、従来の液晶性繊維材料は、強度を一定以上に維持しながら、繰り返しの使用に耐え得る熱応答性が確立されておらず、液晶性繊維材料の用途展開を検討していく上で改善の余地は大きい。本発明は、上記問題点に鑑みてなされたものであり、温度変化によって液晶性ポリウレタンが液晶相と等方相との間で相転移するときに伸長率が変化する現象に着目し、常温付近で熱応答性を有しながら、一定以上の強度(耐久性)を有する液晶性繊維材料を提供することを目的とする。さらに、本発明は、当該液晶性繊維材料を用いた繊維製品を提供することを目的とする。 As described above, the conventional liquid crystalline fiber material has not been established the thermal responsiveness that can withstand repeated use while maintaining the strength above a certain level. There is much room for improvement. The present invention has been made in view of the above problems, and pays attention to a phenomenon in which the elongation rate changes when the liquid crystalline polyurethane undergoes a phase transition between the liquid crystal phase and the isotropic phase due to a temperature change. An object of the present invention is to provide a liquid crystalline fiber material having a certain level of strength (durability) while having thermal response. Furthermore, this invention aims at providing the textiles using the said liquid crystalline fiber material.
 上記課題を解決するための本発明にかかる液晶性繊維材料の特徴構成は、
 温度変化に応じて液晶相と等方相との間で可逆的に伸縮する液晶性ポリウレタンを含む液晶性繊維材料であって、
 前記液晶性ポリウレタンが最も収縮している状態を基準(100%)として、繊維方向における伸長率が102~200%に設定され、又は前記液晶性ポリウレタンが最も伸長している状態を基準(100%)として、繊維方向における収縮率が98.04~50%に設定されていることにある。
The characteristic configuration of the liquid crystalline fiber material according to the present invention for solving the above problems is as follows.
A liquid crystalline fiber material comprising a liquid crystalline polyurethane that reversibly expands and contracts between a liquid crystal phase and an isotropic phase according to a temperature change,
Based on the state in which the liquid crystalline polyurethane is most contracted (100%), the elongation in the fiber direction is set to 102 to 200%, or the state in which the liquid crystalline polyurethane is most expanded (100%). ), The shrinkage rate in the fiber direction is set to 98.04 to 50%.
 一般に、高分子材料の構造は物性に大きく影響することが知られており、液晶性ポリウレタンを含む熱応答性を有する液晶性繊維材料においても、当該液晶性ポリウレタンの相構造(液晶相及び等方相)と力学的物性との相関関係を把握することは、液晶性繊維材料を設計する上で重要な手掛かりとなる。そこで、本発明者らは、液晶性ポリウレタンを含む新たな液晶性繊維材料を開発するにあたり、液晶性ポリウレタンの相構造の変化(相転移)に伴う液晶性ポリウレタンの伸長率又は収縮率に着目して、本発明の目的に合致する液晶性繊維材料を探索した。
 本構成の液晶性繊維材料によれば、温度変化に応じて液晶相と等方相との間で可逆的に伸縮する液晶性ポリウレタンを含むため、液晶性と伸縮性とを兼ね備えた熱応答性材料として利用することができる。ここで、液晶性ポリウレタンの伸長率は、液晶性ポリウレタンが最も収縮している状態を基準(100%)として、繊維方向における伸長率が102~200%に設定され、液晶性ポリウレタンの収縮率は、液晶性ポリウレタンが最も伸長している状態を基準(100%)として、繊維方向における収縮率が98.04~50%に設定されているため、熱応答材料として利用可能な変位量を確保しながら、液晶相と等方相との間で一定以上の強度(耐久性)を維持することができる。
In general, it is known that the structure of a polymer material greatly affects the physical properties, and the phase structure (liquid crystal phase and isotropic property) of the liquid crystalline polyurethane is also used in the liquid crystalline fiber material having thermal responsiveness including liquid crystalline polyurethane. Understanding the correlation between (phase) and mechanical properties is an important clue in designing liquid crystalline fiber materials. Therefore, the present inventors focused on the elongation rate or shrinkage rate of the liquid crystalline polyurethane accompanying the change of the phase structure (phase transition) of the liquid crystalline polyurethane in developing a new liquid crystalline fiber material containing the liquid crystalline polyurethane. Thus, a liquid crystal fiber material meeting the object of the present invention was searched.
According to the liquid crystalline fiber material of this configuration, since it contains liquid crystalline polyurethane that reversibly expands and contracts between the liquid crystal phase and the isotropic phase in response to temperature changes, the thermal responsiveness that combines liquid crystallinity and stretchability It can be used as a material. Here, the elongation rate of the liquid crystalline polyurethane is set to 102 to 200% in the fiber direction, with the standard (100%) of the state in which the liquid crystalline polyurethane is most contracted. Since the shrinkage rate in the fiber direction is set to 98.04-50%, based on the state in which the liquid crystalline polyurethane is most stretched (100%), the amount of displacement usable as a heat-responsive material is secured. However, a certain level of strength (durability) can be maintained between the liquid crystal phase and the isotropic phase.
 本発明にかかる液晶性繊維材料において、
 前記液晶性ポリウレタンは、モノフィラメント又はマルチフィラメントとして構成されていることが好ましい。
In the liquid crystalline fiber material according to the present invention,
The liquid crystalline polyurethane is preferably configured as a monofilament or a multifilament.
 本構成の液晶性繊維材料によれば、前記液晶性ポリウレタンは、モノフィラメント又はマルチフィラメントとして構成されているため、適切な繊維形態で、様々な用途に利用することができる。 According to the liquid crystalline fiber material of this configuration, the liquid crystalline polyurethane is configured as a monofilament or a multifilament, and thus can be used for various applications in an appropriate fiber form.
 本発明にかかる液晶性繊維材料において、
 前記繊維方向において、前記液晶性ポリウレタンが前記液晶相を含むときの弾性率をEとし、前記等方相を含むときの弾性率をEとしたとき、E/E ≦ 1000 を満たすことが好ましい。
In the liquid crystalline fiber material according to the present invention,
In the fiber direction, the elastic modulus of when the liquid crystalline polyurethane comprising the liquid crystal phase and E 1, when the elastic modulus of the time including the isotropic phase was E 2, satisfying the E 1 / E 2 ≦ 1000 It is preferable.
 本構成の液晶性繊維材料によれば、液晶性ポリウレタンが液晶相を含むときの弾性率をEとし、等方相を含むときの弾性率をEとしたとき、E/E ≦ 1000 を満たすように設定されているため、液晶相と等方相との間で相転移が発生すると、液晶性ポリウレタンの弾性率が最大で1000倍に変化する。このとき、相転移に伴って、液晶性ポリウレタンの分子構造の秩序(エントロピー)が増減し、それに応じて液晶性ポリウレタンが変位(伸縮)する。なお、液晶性ポリウレタンが変位しても、液晶性ポリウレタンの弾性率の変化は、上記のとおり1000倍以内に維持される。このように、本構成の液晶性繊維材料は、液晶相と等方相との間で一定以上の強度(耐久性)を有するものでありながら、弾性率を大きく変化させることができるため、相転移を利用した熱応答性を有する材料として有用である。 According to the liquid crystal fiber materials of this configuration, when the liquid crystalline polyurethanes and E 1 the modulus of elasticity of when a liquid crystal phase, the modulus of the time, including an isotropic phase was E 2, E 1 / E 2 ≦ Since it is set to satisfy 1000, when a phase transition occurs between the liquid crystal phase and the isotropic phase, the elastic modulus of the liquid crystalline polyurethane changes up to 1000 times. At this time, the order (entropy) of the molecular structure of the liquid crystalline polyurethane increases or decreases with the phase transition, and the liquid crystalline polyurethane is displaced (stretched / contracted) accordingly. Even when the liquid crystalline polyurethane is displaced, the change in the elastic modulus of the liquid crystalline polyurethane is maintained within 1000 times as described above. As described above, the liquid crystalline fiber material of this configuration has a certain level of strength (durability) between the liquid crystal phase and the isotropic phase, and can greatly change the elastic modulus. It is useful as a material having thermal response utilizing the transition.
 本発明にかかる液晶性繊維材料において、
 前記繊維方向において、前記液晶性ポリウレタンが前記液晶相を含むときの破断応力をσとし、前記等方相を含むときの破断応力をσとしたとき、σ/σ ≦ 40 を満たすことが好ましい。
In the liquid crystalline fiber material according to the present invention,
In the fiber direction, when rupture stress when the liquid crystalline polyurethane includes the liquid crystal phase is σ 1 and rupture stress when the isotropic phase is included is σ 2 , σ 1 / σ 2 ≦ 40 is satisfied. It is preferable.
 本構成の液晶性繊維材料によれば、液晶性ポリウレタンが液晶相を含むときの破断応力をσとし、等方相を含むときの破断応力をσとしたとき、σ/σ ≦ 40 を満たすように設定されているため、液晶相と等方相との間で相転移が発生すると、液晶性ポリウレタンの破断応力が最大で40倍に変化する。このとき、相転移に伴って、液晶性ポリウレタンの分子構造の秩序(エントロピー)が増減し、それに応じて液晶性ポリウレタンが変位(伸縮)する。なお、液晶性ポリウレタンが変位しても、液晶性ポリウレタンの破断応力の変化は、上記のとおり40倍以内に維持される。このように本構成の液晶性繊維材料は、液晶相と等方相との間で一定以上の強度(耐久性)を有するものでありながら、破断応力を大きく変化させることができるため、相転移を利用した熱応答性を有する材料として有用である。 According to the liquid crystalline fiber material of this configuration, when the breaking stress when the liquid crystalline polyurethane contains a liquid crystal phase is σ 1 and when the breaking stress when the liquid crystalline polyurethane contains an isotropic phase is σ 2 , σ 1 / σ 2 ≦ Therefore, if a phase transition occurs between the liquid crystal phase and the isotropic phase, the breaking stress of the liquid crystalline polyurethane changes up to 40 times. At this time, the order (entropy) of the molecular structure of the liquid crystalline polyurethane increases or decreases with the phase transition, and the liquid crystalline polyurethane is displaced (stretched / contracted) accordingly. Even when the liquid crystalline polyurethane is displaced, the change in the breaking stress of the liquid crystalline polyurethane is maintained within 40 times as described above. As described above, the liquid crystalline fiber material of this configuration has a strength (durability) of a certain level or more between the liquid crystal phase and the isotropic phase, but can greatly change the breaking stress. It is useful as a material having thermal response using
 本発明にかかる液晶性繊維材料において、
 前記液晶相と前記等方相との境界となる相転移温度(Ti)は、前記液晶性ポリウレタンのガラス転移温度(Tg)以上かつ100℃以下であることが好ましい。
In the liquid crystalline fiber material according to the present invention,
The phase transition temperature (Ti) serving as a boundary between the liquid crystal phase and the isotropic phase is preferably not less than the glass transition temperature (Tg) of the liquid crystalline polyurethane and not more than 100 ° C.
 本構成の液晶性繊維材料によれば、液晶性ポリウレタンの相転移温度(Ti)が、ガラス転移温度(Tg)と100℃との間に存在するため、常温を含む比較的低温の領域で液晶性ポリウレタンの弾性率や破断応力が大きく変化し、使い勝手が良好で実用的な液晶性繊維材料となる。 According to the liquid crystalline fiber material of this configuration, since the phase transition temperature (Ti) of the liquid crystalline polyurethane exists between the glass transition temperature (Tg) and 100 ° C., the liquid crystal can be used in a relatively low temperature region including normal temperature. The elastic modulus and breaking stress of the flexible polyurethane are greatly changed, and it becomes a practical liquid crystal fiber material that is easy to use.
 本発明にかかる液晶性繊維材料において、
 前記相転移温度(Ti)と前記ガラス転移温度(Tg)との差は、20℃以上であることが好ましい。
In the liquid crystalline fiber material according to the present invention,
The difference between the phase transition temperature (Ti) and the glass transition temperature (Tg) is preferably 20 ° C. or higher.
 本構成の液晶性繊維材料によれば、相転移温度(Ti)とガラス転移温度(Tg)との差を20℃以上とすることで、弾性率や破断応力が大きくなる液晶相の領域が広く確保され、使い勝手が良好な実用的な液晶性繊維材料となる。 According to the liquid crystalline fiber material of this configuration, by setting the difference between the phase transition temperature (Ti) and the glass transition temperature (Tg) to 20 ° C. or more, the liquid crystal phase region in which the elastic modulus and the breaking stress are increased is wide. It is a practical liquid crystalline fiber material that is secured and easy to use.
 本発明にかかる液晶性繊維材料において、
 前記液晶性ポリウレタンは、活性水素基を有するメソゲン基含有化合物と、イソシアネート化合物と、アルキレンオキシド及び/又はスチレンオキシドと、架橋剤との反応物を含むことが好ましい。
In the liquid crystalline fiber material according to the present invention,
The liquid crystalline polyurethane preferably contains a reaction product of a mesogen group-containing compound having an active hydrogen group, an isocyanate compound, an alkylene oxide and / or a styrene oxide, and a crosslinking agent.
 本構成の液晶性繊維材料によれば、活性水素基を有するメソゲン基含有化合物と、イソシアネート化合物と、アルキレンオキシド及び/又はスチレンオキシドと、架橋剤とが反応して液晶性ポリウレタンが生成する際、アルキレンオキシド及び/又はスチレンオキシドが液晶性ポリウレタンに含まれるメソゲン基の熱的安定性を低下させるように作用するため、液晶性ポリウレタンの液晶性発現温度が低下し、常温において無溶媒で液晶性繊維材料を成形することが可能となる。 According to the liquid crystalline fiber material of this configuration, when a mesogenic group-containing compound having an active hydrogen group, an isocyanate compound, an alkylene oxide and / or a styrene oxide, and a crosslinking agent react to form a liquid crystalline polyurethane, Since the alkylene oxide and / or styrene oxide acts to lower the thermal stability of the mesogenic group contained in the liquid crystalline polyurethane, the liquid crystalline expression temperature of the liquid crystalline polyurethane is lowered, and the liquid crystalline fiber is solventless at room temperature. The material can be molded.
 本発明にかかる液晶性繊維材料において、
 前記架橋剤は、少なくとも3つの反応性官能基を有するポリオールであることが好ましい。
In the liquid crystalline fiber material according to the present invention,
The cross-linking agent is preferably a polyol having at least three reactive functional groups.
 本構成の液晶性繊維材料によれば、架橋剤として少なくとも3つの反応性官能基を有するポリオールを使用することで、マトリックスが緻密化されるため、材料として一定以上の強度を確保することができる。また、少なくとも3つの反応性官能基を有するポリオールは、分子構造内の立体障害が少ないため、液晶性ポリウレタンの相転移温度前後における過剰な弾性率や破断応力の変化が抑制される。従って、液晶性繊維材料が液晶相から等方相に相転移したとき、熱応答性は維持しながら、マトリックスの物性低下を少なくすることができる。 According to the liquid crystalline fiber material of this configuration, since a matrix is densified by using a polyol having at least three reactive functional groups as a crosslinking agent, it is possible to ensure a certain level of strength as a material. . In addition, the polyol having at least three reactive functional groups has less steric hindrance in the molecular structure, so that an excessive change in elastic modulus and breaking stress before and after the phase transition temperature of the liquid crystalline polyurethane is suppressed. Therefore, when the liquid crystalline fiber material undergoes a phase transition from the liquid crystal phase to the isotropic phase, it is possible to reduce deterioration in physical properties of the matrix while maintaining the thermal response.
 本発明にかかる液晶性繊維材料において、
 前記メソゲン基含有化合物、前記イソシアネート化合物、前記アルキレンオキシド及び/又は前記スチレンオキシド、並びに前記架橋剤の合計量を100重量部としたとき、前記架橋剤の配合量は、0.1~20重量部であることが好ましい。
In the liquid crystalline fiber material according to the present invention,
When the total amount of the mesogenic group-containing compound, the isocyanate compound, the alkylene oxide and / or the styrene oxide, and the crosslinking agent is 100 parts by weight, the amount of the crosslinking agent is 0.1 to 20 parts by weight. It is preferable that
 本構成の液晶性繊維材料によれば、液晶性ポリウレタンの原材料中の架橋剤の配合量が適切な範囲に設定されているため、液晶性ポリウレタン中のメソゲン基は適度に動くことが可能であり、熱応答性と液晶性とをバランスよく発現させることができる。 According to the liquid crystalline fiber material of this configuration, since the blending amount of the crosslinking agent in the raw material of the liquid crystalline polyurethane is set to an appropriate range, the mesogenic group in the liquid crystalline polyurethane can move moderately. In addition, the thermal responsiveness and the liquid crystallinity can be expressed with a good balance.
 上記課題を解決するための本発明にかかる繊維製品の特徴構成は、
 上記何れか一つの液晶性繊維材料を用いた繊維製品であって、
 前記伸長率又は前記収縮率が局所的に異なるように構成されていることにある。
The characteristic configuration of the textile product according to the present invention for solving the above problems is as follows:
A fiber product using any one of the above liquid crystalline fiber materials,
The stretch rate or the shrinkage rate is configured to be locally different.
 本構成の繊維製品によれば、上記の液晶性繊維材料を用いるものであるため、一定以上の強度(耐久性)を有するとともに、熱応答性に優れた繊維製品として有用なものとなる。また、原材料となる液晶性繊維材料は、液晶相から等方相への相転移に伴う変位量が有意な値に設定されているため、本構成の繊維製品は、医療用品等の微小な伸縮性が求められるものから、ソックス、スポーツウェア、サポーター等の大きな伸縮性が求められるものまで利用することができる。また、伸長率又は収縮率が局所的に異なるように構成されているため、身体の締め付けたい箇所のみを局所的に締め付ける矯正下着や、マッサージ効果が得られる健康衣料品として利用することができる。 According to the fiber product of this configuration, since the liquid crystalline fiber material described above is used, the fiber product is useful as a fiber product having a certain level of strength (durability) and excellent thermal response. In addition, since the amount of displacement associated with the phase transition from the liquid crystal phase to the isotropic phase is set to a significant value in the liquid crystalline fiber material that is the raw material, the fiber product of this configuration is capable of minute expansion and contraction such as medical supplies. It can be used from those requiring high performance to those requiring great elasticity such as socks, sportswear, and supporters. Moreover, since it is comprised so that an expansion | extension rate or shrinkage | contraction rate may differ locally, it can utilize as correction | amendment underwear which tightens only the location which wants to clamp | tighten a body locally, and the health clothing goods from which a massage effect is acquired.
図1は、液晶性繊維材料について、温度変化に伴う相構造と弾性率との関係を示した説明図である。FIG. 1 is an explanatory diagram showing a relationship between a phase structure and a modulus of elasticity accompanying a change in temperature for a liquid crystalline fiber material. 図2は、液晶性繊維材料について、相構造の違いによる破断応力を示した説明図である。FIG. 2 is an explanatory view showing the breaking stress due to the difference in the phase structure of the liquid crystalline fiber material. 図3は、液晶性繊維材料を利用した繊維製品の説明図である。FIG. 3 is an explanatory diagram of a fiber product using a liquid crystalline fiber material.
 以下、本発明の液晶性繊維材料、及び当該液晶性繊維材料を用いた繊維製品に関する実施形態について説明する。ただし、本発明は、以下の実施形態や図面に記載される構成に限定されることを意図しない。 Hereinafter, embodiments relating to the liquid crystalline fiber material of the present invention and fiber products using the liquid crystalline fiber material will be described. However, the present invention is not intended to be limited to the configurations described in the following embodiments and drawings.
〔液晶性繊維材料の組成〕
 本発明の液晶性繊維材料は、液晶性ポリウレタンを含むものであり、液晶性と伸縮性とを兼ね備えた液晶性エラストマーである。原材料である液晶性ポリウレタンは、本発明の液晶性繊維材料のマトリックスを構成するものであり、液晶紡糸により繊維状に加工される。ここで、本明細書において、「マトリックス」とは、材料の主成分であることを意味する。従って、本発明の液晶性繊維材料は、主成分の他に、少量添加される副成分(例えば、他のポリマー、低分子物質、フィラー等)や、微小な三次元構造物(例えば、気泡、空隙等)などを含み得ることを排除するものではない。
[Composition of liquid crystalline fiber material]
The liquid crystalline fiber material of the present invention contains liquid crystalline polyurethane, and is a liquid crystalline elastomer having both liquid crystallinity and stretchability. The raw material liquid crystalline polyurethane constitutes the matrix of the liquid crystalline fiber material of the present invention and is processed into a fiber form by liquid crystal spinning. Here, in this specification, “matrix” means a main component of a material. Therefore, in addition to the main component, the liquid crystalline fiber material of the present invention includes subcomponents added in a small amount (for example, other polymers, low-molecular substances, fillers, etc.) and minute three-dimensional structures (for example, bubbles, This does not exclude the possibility of including voids and the like.
 液晶性ポリウレタンは、活性水素基を有するメソゲン基含有化合物(以下、単に「メソゲン基含有化合物」と称する。)と、イソシアネート化合物と、アルキレンオキシド及び/又はスチレンオキシドと、架橋剤とを反応させることにより生成される。液晶性ポリウレタンを生成する際、アルキレンオキシド及び/又はスチレンオキシドが液晶性ポリウレタンに含まれるメソゲン基の熱的安定性を低下させるように作用するため、液晶性ポリウレタンの液晶性発現温度が低下し、常温において無溶媒で液晶性繊維材料を成形することが可能となる。 The liquid crystalline polyurethane is obtained by reacting a mesogen group-containing compound having an active hydrogen group (hereinafter simply referred to as “mesogen group-containing compound”), an isocyanate compound, an alkylene oxide and / or a styrene oxide, and a crosslinking agent. Is generated by When producing the liquid crystalline polyurethane, the alkylene oxide and / or styrene oxide acts to reduce the thermal stability of the mesogenic group contained in the liquid crystalline polyurethane, so the liquid crystalline expression temperature of the liquid crystalline polyurethane is reduced, It becomes possible to mold the liquid crystalline fiber material without solvent at room temperature.
 メソゲン基含有化合物は、例えば、下記の一般式(1)で表される化合物が使用される。 As the mesogen group-containing compound, for example, a compound represented by the following general formula (1) is used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、Xは前記メソゲン基の分子構造の一部であって、隣接する結合基の一部をなす単結合、-N=N-、-CO-、-CH=N-、-CO-O-、-CH-、-CH=CH-、又は-CO-NH-であり、A及びAは独立して又は共に、炭素数3~8のシクロアルカン、ベンゼン環、ナフタレン、ビフェニル、若しくはこれらのヘテロ環式化合物、又はこれらの一部が-Br、-Cl、若しくは-CHで置換された化合物であり、Y及びYは独立して又は共に、隣接する結合基の一部をなす単結合、-O-、-CO-、-S-、-Se-、又は-Te-であり、B及びBは独立して又は共に、隣接する結合基の一部をなす単結合、又はmが1~20の整数である-(CH-である。ただし、Y及びYが-O-であり、且つB及びBが隣接する結合基の一部をなす単結合であるものを除く。Z及びZは前記活性水素基を有する末端基であって、独立して又は共に、-OH、-SH、-NH、-COOH、-CHO、-O-CH(OH)-CHOH、又は二級アミン等である。なお、「隣接する結合基の一部をなす単結合」とは、当該単結合が隣接する結合基の一部と共有されている状態を意味する。例えば、上記一般式(1)において、Zが-OHであり、Yが-CO-であり、Bが隣接する結合基の一部をなす単結合である場合、Z-B-Yの部位はHO-CO-となり、単結合であるBは両側の-OH及び-CO-と共有された状態となる。 In the formula, X is a part of the molecular structure of the mesogenic group, and is a single bond forming a part of the adjacent linking group, —N═N—, —CO—, —CH═N—, —CO—O. —, —CH 2 —, —CH═CH—, or —CO—NH—, and A 1 and A 2 independently or together are a cycloalkane having 3 to 8 carbon atoms, a benzene ring, naphthalene, biphenyl, Or a heterocyclic compound thereof, or a compound in which a part thereof is substituted with -Br, -Cl, or -CH 3 , and Y 1 and Y 2 are independently or both of one of the adjacent linking groups. Part of a single bond, —O—, —CO—, —S—, —Se—, or —Te—, and B 1 and B 2 independently or together form part of an adjacent linking group A single bond, or — (CH 2 ) m —, wherein m is an integer of 1 to 20. However, the case where Y 1 and Y 2 are —O— and B 1 and B 2 are a single bond forming a part of the adjacent linking group is excluded. Z 1 and Z 2 are end groups having the active hydrogen group, and independently or together, —OH, —SH, —NH 2 , —COOH, —CHO, —O—CH (OH) —CH 2 OH or secondary amine. The “single bond forming a part of the adjacent linking group” means a state in which the single bond is shared with a part of the adjacent linking group. For example, in the general formula (1), when Z 1 is —OH, Y 1 is —CO—, and B 1 is a single bond that forms part of an adjacent bonding group, Z 1 —B 1 The site of —Y 1 becomes HO—CO—, and B 1 that is a single bond is shared with —OH and —CO— on both sides.
 イソシアネート化合物は、例えば、ジイソシアネート化合物、又は3官能以上のイソシアネート化合物を使用することができる。ジイソシアネート化合物を例示すると、2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、p-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p-キシリレンジイソシアネート、及びm-キシリレンジイソシアネート等の芳香族ジイソシアネート、エチレンジイソシアネート、2,2,4-トリメチルヘキサメチレン-1,6-ジイソシアネート、2,4,4-トリメチルヘキサメチレン-1,6-ジイソシアネート、及び1,6-ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、並びに1,4-シクロヘキサンジイソシアネート、4,4’-ジシクロへキシルメタンジイソシアネート、イソホロンジイソシアネート、及びノルボルナンジイソシアネート等の脂環式ジイソシアネートが挙げられる。上掲のジイソシアネート化合物は、単独で使用してもよいし、複数種を混合して使用してもよい。3官能以上のイソシアネート化合物を例示すると、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオホスフェート、リジンエステルトリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、ビシクロヘプタントリイソシアネート等のトリイソシアネート、及びテトライソシアネートシラン等のテトライソシアネートが挙げられる。上掲の3官能以上のイソシアネート化合物は、単独で使用してもよいし、複数種を混合して使用してもよい。イソシアネート化合物は、上掲のジイソシアネート化合物と、上掲の3官能以上のイソシアネート化合物とを混合したものを使用することも可能である。イソシアネート化合物の配合量は、液晶性ポリウレタンの全原材料に対して、10~40重量%、好ましくは15~35重量%となるように調整される。イソシアネート化合物の配合量が10重量%未満の場合、ウレタン反応による高分子化が不十分となるため、液晶性ポリウレタンを連続成形することが困難となる。イソシアネート化合物の配合量が40重量%を超える場合、全原材料に占めるメソゲン基含有化合物の配合量が相対的に少なくなるため、液晶性ポリウレタンの液晶性が低下する。 As the isocyanate compound, for example, a diisocyanate compound or a trifunctional or higher functional isocyanate compound can be used. Examples of diisocyanate compounds include 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,2′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate. Aromatic diisocyanates such as p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylylene diisocyanate, and m-xylylene diisocyanate, ethylene diisocyanate, 2,2,4-trimethylhexamethylene-1,6-diisocyanate, 2, Aliphatic diisocyanates such as 4,4-trimethylhexamethylene-1,6-diisocyanate and 1,6-hexamethylene diisocyanate, and 1,4 Cyclohexane diisocyanate, cyclohexane diisocyanate, 4,4'-dicyclohexyl methane diisocyanate, isophorone diisocyanate, and include alicyclic diisocyanates such as norbornane diisocyanate. The above-mentioned diisocyanate compounds may be used alone or in combination of two or more. Examples of trifunctional or higher functional isocyanate compounds include triphenylmethane triisocyanate, tris (isocyanatephenyl) thiophosphate, lysine ester triisocyanate, 1,3,6-hexamethylene triisocyanate, 1,6,11-undecane triisocyanate, Examples thereof include triisocyanates such as 1,8-diisocyanate-4-isocyanate methyloctane and bicycloheptane triisocyanate, and tetraisocyanates such as tetraisocyanate silane. The above trifunctional or higher functional isocyanate compounds may be used singly or as a mixture of plural kinds. As the isocyanate compound, it is possible to use a mixture of the above-mentioned diisocyanate compound and the above-described trifunctional or higher isocyanate compound. The compounding amount of the isocyanate compound is adjusted so as to be 10 to 40% by weight, preferably 15 to 35% by weight, based on all raw materials of the liquid crystalline polyurethane. When the blending amount of the isocyanate compound is less than 10% by weight, it is difficult to continuously mold the liquid crystalline polyurethane because the polymerization by the urethane reaction becomes insufficient. When the blending amount of the isocyanate compound exceeds 40% by weight, the blending amount of the mesogenic group-containing compound in the total raw materials is relatively small, so that the liquid crystallinity of the liquid crystalline polyurethane is lowered.
 アルキレンオキシドは、例えば、エチレンオキシド、プロピレンオキシド、又はブチレンオキシドを使用することができる。上掲のアルキレンオキシドは、単独で使用してもよいし、複数種を混合して使用してもよい。スチレンオキシドについては、ベンゼン環にアルキル基、アルコキシル基、ハロゲン等の置換基を有するものでもよい。アルキレンオキシドは、上掲のアルキレンオキシドと、上掲のスチレンオキシドとを混合したものを使用することも可能である。アルキレンオキシド及び/又はスチレンオキシドの配合量は、メソゲン基含有化合物1モルに対して、アルキレンオキシド及び/又はスチレンオキシドが1~10モル、好ましくは2~8モル付加されるように調整される。アルキレンオキシド及び/又はスチレンオキシドの付加モル数が1モル未満の場合、液晶性ポリウレタンの液晶性が発現する温度範囲を十分に低下させることが困難となり、そのため、無溶媒で且つ液晶性が発現した状態で原材料を反応硬化させながら液晶性ポリウレタンを連続成形することが困難となる。アルキレンオキシド及び/又はスチレンオキシドの付加モル数が10モルを超える場合、液晶性ポリウレタンの液晶性が発現し難くなる虞がある。 As the alkylene oxide, for example, ethylene oxide, propylene oxide, or butylene oxide can be used. The above alkylene oxides may be used alone or in combination of two or more. About styrene oxide, you may have substituents, such as an alkyl group, an alkoxyl group, and a halogen, in a benzene ring. As the alkylene oxide, a mixture of the above-mentioned alkylene oxide and the above-mentioned styrene oxide can be used. The blending amount of alkylene oxide and / or styrene oxide is adjusted so that 1 to 10 mol, preferably 2 to 8 mol, of alkylene oxide and / or styrene oxide is added to 1 mol of the mesogen group-containing compound. When the number of added moles of alkylene oxide and / or styrene oxide is less than 1 mole, it is difficult to sufficiently reduce the temperature range in which the liquid crystallinity of the liquid crystalline polyurethane is manifested. It becomes difficult to continuously mold the liquid crystalline polyurethane while reaction-curing the raw materials in the state. When the number of added moles of alkylene oxide and / or styrene oxide exceeds 10 moles, the liquid crystalline polyurethane liquid crystallinity may be difficult to be exhibited.
 架橋剤は、例えば、少なくとも3つの反応性官能基を有するポリオール(以下、「3以上の反応性官能基を有するポリオール」とも言う。)を使用することができる。このようなポリオールを架橋剤として使用すれば、液晶性ポリウレタンが緻密化されるため、材料として一定以上の強度を確保することができる。また、ポリオールは、分子構造内の立体障害が少ないため、液晶性ポリウレタンの相転移温度前後における過剰な弾性率の変化や破断応力の変化が抑制される(弾性率の変化及び破断応力の変化については、後で詳しく説明する)。従って、液晶性繊維材料が液晶相から等方相に相転移したとき、熱応答性を維持しながら、液晶性ポリウレタンの物性低下を少なくすることができる。少なくとも3つの反応性官能基を有するポリオールを例示すると、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、及びポリエステルポリカーボネートポリオール等の3つ以上の水酸基を有する高分子量ポリオール(分子量400以上)、並びにトリメチロールプロパン、グリセリン、1,2,6-ヘキサントリオール、meso-エリトリトール、ペンタエリスリトール、テトラメチロールシクロヘキサン、メチルグルコシド、ソルビトール、マンニトール、ズルシトール、スクロース、2,2,6,6-テトラキス(ヒドロキシメチル)シクロヘキサノール、及びトリエタノールアミン等の低分子量ポリオールが挙げられる。上掲のポリオールは、単独で使用してもよいし、複数種を混合して使用してもよい。架橋剤の配合量は、すべての原材料(メソゲン基含有化合物、イソシアネート化合物、アルキレンオキシド及び/又はスチレンオキシド、並びに架橋剤)の合計量を100重量部としたとき、0.1~20重量部、好ましくは0.2~18重量部に調整される。このような範囲であれば、液晶性ポリウレタン中のメソゲン基は適度に動くことが可能であり、熱応答性と液晶性とをバランスよく発現させることができる。架橋剤の配合量が0.1重量部未満の場合、液晶性ポリウレタンが十分に硬化しないため、マトリックス自体が流動して熱応答性が得られなくなる虞がある。架橋剤の配合量が20重量部を超える場合、液晶性ポリウレタンの架橋密度が高くなり過ぎるため、メソゲン基の配向が阻害されて液晶性が発現し難くなり、熱応答性が得られなくなる虞がある。 As the crosslinking agent, for example, a polyol having at least three reactive functional groups (hereinafter, also referred to as “polyol having three or more reactive functional groups”) can be used. When such a polyol is used as a cross-linking agent, the liquid crystalline polyurethane is densified, so that a certain level of strength can be secured as a material. In addition, since polyol has less steric hindrance in its molecular structure, excessive changes in elastic modulus and changes in rupture stress before and after the phase transition temperature of liquid crystalline polyurethane are suppressed (about changes in elastic modulus and changes in rupture stress). Will be explained in detail later). Therefore, when the liquid crystalline fiber material undergoes a phase transition from the liquid crystal phase to the isotropic phase, it is possible to reduce the deterioration of the physical properties of the liquid crystalline polyurethane while maintaining the thermal response. Examples of polyols having at least three reactive functional groups include polyether polyols, polyester polyols, polycarbonate polyols, and high molecular weight polyols having three or more hydroxyl groups (molecular weight of 400 or more) such as polyester polycarbonate polyols, and trimethylolpropane. Glycerin, 1,2,6-hexanetriol, meso-erythritol, pentaerythritol, tetramethylolcyclohexane, methylglucoside, sorbitol, mannitol, dulcitol, sucrose, 2,2,6,6-tetrakis (hydroxymethyl) cyclohexanol, And low molecular weight polyols such as triethanolamine. The above-mentioned polyols may be used alone or in combination of two or more. The blending amount of the crosslinking agent is 0.1 to 20 parts by weight when the total amount of all raw materials (mesogen group-containing compound, isocyanate compound, alkylene oxide and / or styrene oxide, and crosslinking agent) is 100 parts by weight, Preferably, it is adjusted to 0.2 to 18 parts by weight. If it is such a range, the mesogenic group in liquid crystalline polyurethane can move moderately, and heat responsiveness and liquid crystallinity can be expressed with sufficient balance. When the blending amount of the cross-linking agent is less than 0.1 parts by weight, the liquid crystalline polyurethane is not sufficiently cured, so that the matrix itself may flow and heat response may not be obtained. When the blending amount of the cross-linking agent exceeds 20 parts by weight, the cross-linking density of the liquid crystalline polyurethane becomes too high, so that the orientation of the mesogenic group is hindered to make it difficult to develop liquid crystallinity and the thermal response may not be obtained. is there.
 液晶性繊維材料は、例えば、以下の反応スキームにより生成される。初めに、メソゲン基含有化合物とアルキレンオキシド及び/又はスチレンオキシドとを反応させ、アルキレンオキシド及び/又はスチレンオキシドが付加されたメソゲン基含有化合物(以下、「メソゲンジオール」と称する。)を調製する。得られたメソゲンジオールに、触媒及び一段階目のイソシアネート化合物を添加し、液晶性ウレタン化合物が得られる。一段階目のイソシアネート化合物は、NCO indexが50~98となるように添加されることが好ましい。ここで、NCO indexとは、イソシアネート化合物が有するイソシアネート基の総数をイソシアネート基と反応可能なポリオールの活性水素基の総数で除したものに100を乗じた数値である。NCO indexが50未満の場合、液晶性ウレタン化合物の分子量が小さいため、液晶性ウレタン化合物の粘度が低く紡糸が困難になる虞がある。NCO indexが98を超える場合、一段階目のイソシアネート化合物の添加で液晶性ポリウレタンの架橋密度が高くなり過ぎるため、二段階目のイソシアネート化合物の添加で3官能以上の反応性官能基を添加しても架橋反応がほとんど起こらない虞がある。上記の条件により、3以上の反応性官能基を有するポリオールにより架橋される前に、得られる液晶性ウレタン化合物中に含まれるメソゲン基をある程度均一に分散した状態とすることができる。得られた液晶性ウレタン化合物に、架橋剤及び二段階目のイソシアネート化合物を添加し、加熱しながら混練すると半硬化状態の液晶性ウレタン化合物(プレポリマー)が得られる。二段階目のイソシアネート化合物は、最終的にNCO indexが100~130となるように添加されることが好ましい。これにより、過不足なく、イソシアネート基がポリオールの活性水素基と反応することができる。この半硬化状態の液晶性ウレタン化合物を押出成形機等を用いて繊維状に押し出し、適切な条件下で養生すると、液晶性ウレタン化合物が高分子化しながら硬化し、繊維の形態に成形された液晶性ポリウレタン(エラストマー)が生成する。このとき、液晶性ポリウレタンをガラス転移温度(Tg)以上かつ相転移温度(Ti)以下(すなわち、液晶性が発現する温度)で延伸しながら成形すると、液晶性ポリウレタンに含まれるメソゲン基が延伸方向に沿うように動いて高度な配向性が得られる。そして、延伸した状態で液晶性ポリウレタンを養生すると、温度変化に応じて液晶相と等方相との間で可逆的に伸縮する液晶性ポリウレタンを含む液晶性繊維材料が完成する。当該液晶性繊維材料は、温度変化に応じて液晶相と等方相との間で可逆的に変化する液晶性ポリウレタンを含むため、液晶性と伸縮性とを兼ね備えたものとなり、特に、温度変化に応じて可逆的に伸縮する熱応答性伸縮材料として利用することができる。この液晶性繊維材料は、液晶性ポリウレタン中のメソゲン基が延伸方向に配向したものであり、熱が加わるとメソゲン基の配向が崩れて(不規則となって)延伸方向に収縮し、熱を取り除くとメソゲン基の配向が復活して延伸方向に伸長するという特異的な熱応答挙動を示す。 The liquid crystalline fiber material is produced, for example, by the following reaction scheme. First, a mesogen group-containing compound is reacted with alkylene oxide and / or styrene oxide to prepare a mesogen group-containing compound to which alkylene oxide and / or styrene oxide is added (hereinafter referred to as “mesogen diol”). A catalyst and a first-stage isocyanate compound are added to the obtained mesogenic diol to obtain a liquid crystalline urethane compound. The first-stage isocyanate compound is preferably added so that the NCO index is 50 to 98. Here, the NCO index is a numerical value obtained by dividing the total number of isocyanate groups of the isocyanate compound by the total number of active hydrogen groups of a polyol that can react with the isocyanate group and multiplying by 100. When the NCO index is less than 50, the molecular weight of the liquid crystalline urethane compound is small, so that the viscosity of the liquid crystalline urethane compound is low and spinning may be difficult. If the NCO index exceeds 98, the crosslink density of the liquid crystalline polyurethane becomes too high with the addition of the first-stage isocyanate compound. However, there is a possibility that the crosslinking reaction hardly occurs. Under the above conditions, the mesogenic groups contained in the obtained liquid crystalline urethane compound can be uniformly dispersed to some extent before crosslinking with a polyol having three or more reactive functional groups. A semi-cured liquid crystalline urethane compound (prepolymer) is obtained by adding a crosslinking agent and a second-stage isocyanate compound to the obtained liquid crystalline urethane compound and kneading while heating. The second-stage isocyanate compound is preferably added so that the NCO index finally becomes 100 to 130. Thereby, an isocyanate group can react with the active hydrogen group of a polyol without excess and deficiency. When this semi-cured liquid crystalline urethane compound is extruded into fibers using an extrusion molding machine, etc., and cured under appropriate conditions, the liquid crystalline urethane compound cures while polymerizing and is formed into a fiber form. Polyurethane (elastomer) is formed. At this time, when the liquid crystalline polyurethane is molded while being stretched at a glass transition temperature (Tg) or higher and a phase transition temperature (Ti) or lower (that is, a temperature at which liquid crystallinity is exhibited), the mesogenic group contained in the liquid crystalline polyurethane is stretched. A high degree of orientation can be obtained. Then, when the liquid crystalline polyurethane is cured in the stretched state, a liquid crystalline fiber material containing the liquid crystalline polyurethane that reversibly expands and contracts between the liquid crystal phase and the isotropic phase according to a temperature change is completed. Since the liquid crystalline fiber material includes liquid crystalline polyurethane that reversibly changes between a liquid crystal phase and an isotropic phase according to a temperature change, the liquid crystalline fiber material has both liquid crystallinity and stretchability. It can be used as a heat-responsive stretch material that reversibly stretches depending on the temperature. In this liquid crystalline fiber material, the mesogenic groups in the liquid crystalline polyurethane are oriented in the stretching direction. When heat is applied, the orientation of the mesogenic groups collapses (becomes irregular) and contracts in the stretching direction, and heat is applied. When it is removed, the orientation of the mesogenic group is restored and exhibits a specific thermal response behavior that extends in the stretching direction.
 ちなみに、液晶性ポリウレタンの配向性は、メソゲン基の配向度によって評価することができる。配向度の値が大きいものは、メソゲン基が一軸方向に高度に配向している。配向度は、フーリエ変換赤外分光光度計(FTIR)を用いた1回全反射測定法(ATR)により、芳香族エーテルの逆対称伸縮振動の吸光度(0°、90°)、及びメチル基の対称変角振動の吸光度(0°、90°)を測定し、これらの吸光度をパラメータとする以下の計算式に基づいて算出される。
  配向度=(A-B)/(A+2B)
 A:0°で測定したときの芳香族エーテルの逆対称伸縮振動の吸光度/0°で測定したときのメチル基の対称変角振動の吸光度
 B:90°で測定したときの芳香族エーテルの逆対称伸縮振動の吸光度/90°で測定したときのメチル基の対称変角振動の吸光度
Incidentally, the orientation of liquid crystalline polyurethane can be evaluated by the degree of orientation of mesogenic groups. In the case where the value of the degree of orientation is large, the mesogenic group is highly oriented in the uniaxial direction. The degree of orientation was determined by measuring the absorbance (0 °, 90 °) of the antisymmetric stretching vibration of the aromatic ether and the methyl group by one-time total reflection measurement (ATR) using a Fourier transform infrared spectrophotometer (FTIR). Absorbance (0 °, 90 °) of symmetric bending vibration is measured and calculated based on the following calculation formula using these absorbances as parameters.
Degree of orientation = (AB) / (A + 2B)
A: Absorbance of reverse symmetrical stretching vibration of aromatic ether measured at 0 ° / Absorbance of symmetrical bending vibration of methyl group measured at 0 ° B: Reverse of aromatic ether measured at 90 ° Absorbance of symmetrical stretching vibration / absorbance of symmetrical bending vibration of methyl group measured at 90 °
 上述の反応スキームにより得られた液晶性ポリウレタンは、そのまま本発明の液晶性繊維材料のマトリックスとして利用可能であるが、液晶性ポリウレタンに副成分を少量添加したり、気泡を分散させて利用することも可能である。液晶性ポリウレタンに添加可能な副成分を例示すると、有機フィラー、無機フィラー、補強剤、増粘剤、離型剤、賦形剤、カップリング剤、難燃剤、耐炎剤、顔料、着色料、消臭剤、抗菌剤、防カビ剤、帯電防止剤、紫外線防止剤、及び界面活性剤等が挙げられる。また、副成分として、他のポリマーや低分子物質を添加することも可能である。副成分が添加された液晶性ポリウレタンは、当該副成分の機能が付与されたものとなり、様々な場面で利用することができる。 The liquid crystalline polyurethane obtained by the above reaction scheme can be used as it is as a matrix of the liquid crystalline fiber material of the present invention, but it can be used by adding a small amount of subcomponents to the liquid crystalline polyurethane or by dispersing bubbles. Is also possible. Examples of subcomponents that can be added to liquid crystalline polyurethane include organic fillers, inorganic fillers, reinforcing agents, thickeners, release agents, excipients, coupling agents, flame retardants, flame retardants, pigments, colorants, Examples include odorants, antibacterial agents, antifungal agents, antistatic agents, ultraviolet ray preventing agents, and surfactants. Moreover, it is also possible to add another polymer and a low molecular substance as a subcomponent. The liquid crystalline polyurethane to which the subcomponent is added is provided with the function of the subcomponent and can be used in various situations.
 液晶性ポリウレタン中に気泡を分散させる方法としては、例えば、液晶性ポリウレタンの原材料に発泡剤を混合しておき、液晶性ポリウレタンの硬化反応時に発泡剤を発泡させる方法が挙げられる。この場合、発泡剤として、例えば、炭酸水素ナトリウムを使用することができる。また、液晶性ポリウレタン中に気泡を分散させる別の方法として、例えば、液晶ポリウレタンの原材料に空気を含ませながら当該原材料を混合することにより、液晶性ポリウレタン中に気泡を混入させるメカニカルフロス法、液晶性ポリウレタンの原材料に中空フィラーを混合することにより、液晶性ポリウレタン中に中空フィラーを分散させる方法等が挙げられる。液晶性ポリウレタン中に気泡が分散した液晶性繊維材料は、気泡によって断熱性が高まるため、温度変化が大きい環境でも使用することが可能となる。また、液晶性ポリウレタン中に気泡が含まれることで液晶性繊維材料が軽量化されるため、例えば、自動車等の輸送用機械に好適に適用することができる。 Examples of a method for dispersing bubbles in liquid crystalline polyurethane include a method in which a foaming agent is mixed with a raw material of liquid crystalline polyurethane and the foaming agent is foamed during the curing reaction of the liquid crystalline polyurethane. In this case, for example, sodium bicarbonate can be used as the foaming agent. Further, as another method for dispersing bubbles in liquid crystalline polyurethane, for example, a mechanical floss method in which bubbles are mixed in liquid crystalline polyurethane by mixing the raw material while containing air in the raw material of liquid crystalline polyurethane, liquid crystal Examples include a method of dispersing the hollow filler in the liquid crystalline polyurethane by mixing the hollow filler with the raw material of the conductive polyurethane. The liquid crystalline fiber material in which bubbles are dispersed in the liquid crystalline polyurethane has increased heat insulation properties due to the bubbles, and thus can be used even in an environment with a large temperature change. Further, since the liquid crystalline fiber material is reduced in weight by including bubbles in the liquid crystalline polyurethane, it can be suitably applied to a transport machine such as an automobile.
 液晶性繊維材料の繊維形態は、モノフィラメント又はマルチフィラメントの何れでも構わない。モノフィラメントは、液晶性ポリウレタンを液晶紡糸により繊維状に加工することによって得られる。上述のメソゲンジオールと一段階目のイソシアネート化合物とから得られた液晶性ウレタン化合物と、二段階目のイソシアネート化合物とを溶融させた混練物を押出成形機等で繊維状に押出すことにより、繊維状の液晶性ポリウレタン(エラストマー)が生成される。この液晶性ポリウレタンを一軸延伸しながらロールに巻き取り、所定期間養生することによりモノフィラメントが得られる。マルチフィラメントは、モノフィラメントを数本~数百本束ねて撚り合わせたものである。モノフィラメント又はマルチフィラメントとして構成された液晶性繊維材料は、その繊維形態に応じて様々な用途に利用することができる。 The fiber form of the liquid crystalline fiber material may be either monofilament or multifilament. The monofilament can be obtained by processing liquid crystalline polyurethane into a fiber form by liquid crystal spinning. By extruding a kneaded product obtained by melting the liquid crystalline urethane compound obtained from the mesogenic diol and the first-stage isocyanate compound and the second-stage isocyanate compound into a fiber by an extrusion molding machine or the like, fibers are obtained. A liquid crystalline polyurethane (elastomer) is produced. A monofilament is obtained by winding this liquid crystalline polyurethane on a roll while uniaxially stretching and curing for a predetermined period. A multifilament is obtained by bundling several to hundreds of monofilaments. The liquid crystalline fiber material configured as a monofilament or a multifilament can be used for various applications depending on the fiber form.
〔液晶性繊維材料の物性〕
 本発明の液晶性繊維材料は、液晶性ポリウレタンが液晶相を含む状態と等方相を含む状態との間で物性が大きく異なっていることに特徴がある。以下の実施形態では、相転移に伴う液晶性ポリウレタンの伸長率又は収縮率、並びに液晶性ポリウレタンの相構造が力学的物性(特に、弾性率及び破断応力)に与える影響について説明する。
[Physical properties of liquid crystalline fiber materials]
The liquid crystalline fiber material of the present invention is characterized in that the physical properties of the liquid crystalline polyurethane are greatly different between a state containing a liquid crystal phase and a state containing an isotropic phase. In the following embodiments, the elongation rate or shrinkage rate of the liquid crystalline polyurethane accompanying the phase transition and the influence of the phase structure of the liquid crystalline polyurethane on the mechanical properties (particularly the elastic modulus and breaking stress) will be described.
(液晶性繊維材料の伸長率又は収縮率)
 液晶性繊維材料においては、相転移温度(Ti)より下では液晶性ポリウレタンのメソゲン基が配向することにより液晶相が発現する。液晶性繊維材料中のメソゲン基が延伸方向(すなわち、繊維方向)に配向するため、液晶性繊維材料自体が延伸方向に沿って伸長する。一方、相転移温度(Ti)より上では液晶性ポリウレタンのメソゲン基の配向が崩れて(不規則となって)等方相が発現する。液晶性繊維材料中のメソゲン基の配向が不規則であるため、延伸方向に揃って配向しているときに比べて、液晶性繊維材料自体が延伸方向に沿って収縮する。メソゲン基の配向性は、上述のように液晶紡糸することにより液晶性繊維材料に付与される。液晶性繊維材料は、例えば、液晶性ポリウレタンが最も収縮している状態を基準(100%)として、繊維方向における伸長率が102~200%に設定される。このような伸長率に設定された液晶性繊維材料は、熱応答材料として利用可能な変位量を確保しながら、液晶相と等方相との間で一定以上の強度(耐久性)を有するものとなり、相転移を利用した熱応答性を有する材料として有用である。例えば、体内で使用されるような医療用品や精密機器等においては、臓器や他の部材等に負担をかけない程度の微小な伸縮が求められる場合がある。また、ソックス、スポーツウェア、サポーター等においては、身に装着する際には緩く、かつ装着した後は身にフィットし、必要に応じて圧迫するような大きな伸縮が求められる場合がある。当該液晶性繊維材料は、伸長率が102~200%に設定されているため、様々な繊維製品の素材として好適に利用することができる。伸長率が102%未満の場合、液晶性繊維材料を利用した繊維製品が殆ど伸縮しないため、実質的に熱応答性を有する材料として適当ではない。伸長率が200%を超える場合、液晶性繊維材料を利用した繊維製品は大きく変形するため、繰り返し伸縮されることにより耐久性が低下する虞がある。なお、上記の液晶性繊維材料の伸張率は、液晶性ポリウレタンが最も収縮している状態を基準(100%)とするものであるが、液晶性ポリウレタンが最も伸張している状態を基準(100%)とすれば、液晶性繊維材料の収縮率として表すこともできる。この場合、伸長率102~200%は、収縮率98.04~50%に対応する。また、繊維材料が有意な伸縮性を発現するためには、液晶性ポリウレタンの配向度が0.05以上であることが好ましく、0.1以上であることがより好ましい。
(Elongation rate or shrinkage rate of liquid crystalline fiber material)
In the liquid crystalline fiber material, a liquid crystal phase is developed by aligning the mesogenic groups of the liquid crystalline polyurethane below the phase transition temperature (Ti). Since the mesogenic group in the liquid crystalline fiber material is oriented in the stretching direction (that is, the fiber direction), the liquid crystalline fiber material itself is stretched along the stretching direction. On the other hand, above the phase transition temperature (Ti), the orientation of the mesogenic group of the liquid crystalline polyurethane collapses (is irregular) and an isotropic phase appears. Since the orientation of the mesogen groups in the liquid crystalline fiber material is irregular, the liquid crystalline fiber material itself contracts along the stretching direction as compared to when it is aligned along the stretching direction. The orientation of the mesogenic group is imparted to the liquid crystalline fiber material by liquid crystal spinning as described above. For the liquid crystalline fiber material, for example, the elongation ratio in the fiber direction is set to 102 to 200% with reference to the state in which the liquid crystalline polyurethane is most contracted (100%). The liquid crystalline fiber material set to such an elongation rate has a certain level of strength (durability) between the liquid crystal phase and the isotropic phase while ensuring a displacement that can be used as a heat-responsive material. Therefore, it is useful as a material having thermal response utilizing phase transition. For example, in medical supplies and precision instruments used in the body, there are cases where minute expansion and contraction is required so as not to place a burden on an organ or other members. In addition, in socks, sportswear, supporters, etc., there is a case where large expansion / contraction is required that is loose when worn on the body, fits to the body after being worn, and presses as necessary. Since the liquid crystalline fiber material has an elongation rate set to 102 to 200%, it can be suitably used as a material for various textile products. When the elongation rate is less than 102%, the fiber product using the liquid crystalline fiber material hardly expands and contracts, so that it is not suitable as a material having substantially thermal response. When the elongation rate exceeds 200%, the fiber product using the liquid crystalline fiber material is greatly deformed, and thus there is a possibility that the durability may be lowered due to repeated expansion and contraction. The elongation ratio of the liquid crystalline fiber material is based on the state in which the liquid crystalline polyurethane is most contracted (100%), but the state in which the liquid crystalline polyurethane is most expanded (100%). %), It can also be expressed as the shrinkage of the liquid crystalline fiber material. In this case, the elongation rate of 102 to 200% corresponds to the shrinkage rate of 98.04 to 50%. In order for the fiber material to exhibit significant stretchability, the orientation degree of the liquid crystalline polyurethane is preferably 0.05 or more, and more preferably 0.1 or more.
(液晶性繊維材料の相構造と弾性率との関係)
 図1は、本発明の液晶性繊維材料について、温度変化に伴う相構造と弾性率との関係を示した説明図である。低温状態にある液晶性繊維材料を加熱して温度を連続的に上昇させると、ガラス転移温度(Tg)を境として、液晶性ポリウレタンの弾性率が低下する。しかし、ガラス転移温度(Tg)を超えた領域では、その後の弾性率は維持される。これは、破線円(a)内のイメージに示すように、ガラス転移温度(Tg)より上では液晶性ポリウレタンのメソゲン基が配向することにより液晶相が発現し、その配向方向においてメソゲン基が応力を負担できるためである。この状態から液晶性繊維材料をさらに加熱すると、相転移温度(Ti)を境として、液晶性ポリウレタンの弾性率が著しく低下する。これは、破線円(b)内のイメージに示すように、液晶性ポリウレタンのメソゲン基の配向が崩れることにより液晶相から等方相に相転移し、メソゲン基の応力負担能力が低下するためである。ここで、液晶性ポリウレタンが液晶相を含むときの弾性率をEとし、等方相を含むときの弾性率をEとしたとき、本発明の液晶性繊維材料は、以下の力学的条件1:
  <力学的条件1>: E/E ≦ 1000
を満たすように設計される。弾性率Eは、例えば、液晶性ポリウレタンの相転移温度(Ti)より10~30℃低い温度で測定した初期引張抵抗度(みなしヤング率)を採用することができる。弾性率Eは、例えば、液晶性ポリウレタンの相転移温度(Ti)より10~30℃高い温度で測定した初期引張抵抗度(みなしヤング率)を採用することができる。なお、初期引張抵抗度は、引張試験より求められるヤング率Eであってもよいし、動的粘弾性測定より求められる貯蔵弾性率E´であってもよい。以降の説明では、弾性率Eを初期引張抵抗度Eとして説明する。
(Relationship between phase structure and elastic modulus of liquid crystalline fiber material)
FIG. 1 is an explanatory diagram showing the relationship between the phase structure and the elastic modulus associated with a temperature change in the liquid crystalline fiber material of the present invention. When the liquid crystalline fiber material in a low temperature state is heated to continuously increase the temperature, the elastic modulus of the liquid crystalline polyurethane decreases with the glass transition temperature (Tg) as a boundary. However, in the region exceeding the glass transition temperature (Tg), the subsequent elastic modulus is maintained. This is because, as shown in the image in the broken circle (a), a liquid crystal phase appears due to the orientation of the mesogenic group of the liquid crystalline polyurethane above the glass transition temperature (Tg), and the mesogenic group is stressed in the orientation direction. It is because it can bear. When the liquid crystalline fiber material is further heated from this state, the elastic modulus of the liquid crystalline polyurethane is remarkably lowered at the phase transition temperature (Ti). This is because, as shown in the image in the broken-line circle (b), the orientation of the mesogenic group of the liquid crystalline polyurethane collapses to cause a phase transition from the liquid crystal phase to the isotropic phase, thereby reducing the stress bearing ability of the mesogenic group. is there. Here, when the liquid crystalline polyurethanes and E 1 the modulus of elasticity of when a liquid crystal phase, the modulus of the time, including an isotropic phase was E 2, liquid crystal fiber materials of the present invention, the following dynamic conditions 1:
<Mechanical conditions 1>: E 1 / E 2 ≦ 1000
Designed to meet. Modulus E 1 is, for example, can be adopted initial tensile resistance degree was measured at the phase transition temperature (Ti) from 10 ~ 30 ° C. lower temperature of the liquid crystalline polyurethane (deemed Young's modulus). Modulus E 2 are, for example, can be adopted initial tensile resistance degree were measured at 10 ~ 30 ° C. higher temperature than the phase transition temperature of the liquid crystalline polyurethane (Ti) a (deemed Young's modulus). The initial tensile resistance may be a Young's modulus E obtained from a tensile test or a storage elastic modulus E ′ obtained from a dynamic viscoelasticity measurement. In the following description, the elastic modulus E will be described as the initial tensile resistance E.
 上記の力学的条件1を満たす液晶性繊維材料は、液晶相と等方相との間で相転移が発生すると、液晶性ポリウレタンの初期引張抵抗度Eが最大で1000倍に変化する。具体的には、液晶相から等方相に相転移すると、液晶性ポリウレタンの初期引張抵抗度は1/1000倍まで低減し得る。このとき、相転移に伴って配向していたメソゲン基が不規則になるため、液晶性ポリウレタンの分子構造の秩序(エントロピー)が増大し、液晶性繊維材料は配向方向(すなわち、繊維方向)において縮むとともに非配向方向(すなわち、繊維の径方向)において伸びるように変位する。反対に、等方相から液晶相に相転移すると、液晶性ポリウレタンの初期引張抵抗度は1000倍まで増大し得る。このとき、相転移に伴って不規則であったメソゲン基が再び配向するため、液晶性ポリウレタンの分子構造の秩序(エントロピー)が低下し、液晶性繊維材料は配向方向において伸びるとともに非配向方向において縮むように変位する。なお、上記の力学的条件1において、E/Eの下限値は特に規定していないが、図1から理解されるように、初期引張抵抗度Eが初期引張抵抗度Eより小さくなることは現実的には考え難いため、E/Eは1より大きい値とするのが妥当である。従って、相転移に伴って液晶性ポリウレタンが変位しても、液晶性ポリウレタンの初期引張抵抗度の変化は、上記のとおり1000倍以内に維持される。このように、本発明の液晶性繊維材料は、液晶相と等方相との間で一定以上の強度(耐久性)を有するものでありながら、初期引張抵抗度を大きく変化させることができるため、相転移を利用した熱応答性を有する材料として有用である。 In the liquid crystalline fiber material satisfying the above-mentioned mechanical condition 1, when a phase transition occurs between the liquid crystal phase and the isotropic phase, the initial tensile resistance E of the liquid crystalline polyurethane changes up to 1000 times. Specifically, when the phase transition from the liquid crystal phase to the isotropic phase, the initial tensile resistance of the liquid crystalline polyurethane can be reduced to 1/1000 times. At this time, since the mesogenic groups that have been aligned with the phase transition become irregular, the order (entropy) of the molecular structure of the liquid crystalline polyurethane is increased, and the liquid crystalline fiber material is in the alignment direction (that is, the fiber direction). It shrinks and is displaced so as to extend in the non-orientation direction (that is, the fiber radial direction). Conversely, when the phase transition from the isotropic phase to the liquid crystal phase, the initial tensile resistance of the liquid crystalline polyurethane can increase up to 1000 times. At this time, the disordered mesogen groups are aligned again with the phase transition, so that the molecular structure order (entropy) of the liquid crystalline polyurethane is lowered, and the liquid crystalline fiber material extends in the alignment direction and in the non-alignment direction. Displace to shrink. In the above mechanical condition 1, the lower limit value of E 1 / E 2 is not particularly defined, but as understood from FIG. 1, the initial tensile resistance E 1 is smaller than the initial tensile resistance E 2. Therefore, it is appropriate to set E 1 / E 2 to a value larger than 1. Therefore, even if the liquid crystalline polyurethane is displaced along with the phase transition, the change in the initial tensile resistance of the liquid crystalline polyurethane is maintained within 1000 times as described above. As described above, the liquid crystalline fiber material of the present invention can greatly change the initial tensile resistance while having a certain level of strength (durability) between the liquid crystal phase and the isotropic phase. It is useful as a material having thermal response utilizing phase transition.
 液晶性繊維材料が実用的な強度を有するためには、先に定義したE及びEが所定以上の値であることが好ましい。本発明では、特に、液晶性ポリウレタンの相転移温度(Ti)より高い温度で測定されるEが0.01cN/dtex以上、好ましくは0.02cN/dtex以上となるように設定される。Eが0.01cN/dtex以上であれば、十分な耐久性を備えた実用的な液晶性繊維材料として好適に利用することができる。なお、Eの値については、上記の力学的条件1より、例えば、E=0.01cN/dtexの場合、E≦10cN/dtexとなる。 In order for the liquid crystalline fiber material to have a practical strength, it is preferable that E 1 and E 2 defined above have a predetermined value or more. In the present invention, in particular, E 2 measured at a temperature higher than the phase transition temperature (Ti) of the liquid crystalline polyurethane is set to 0.01 cN / dtex or more, preferably 0.02 cN / dtex or more. If E 2 is 0.01cN / dtex or more, it can be suitably used as a practical liquid crystal fiber materials with sufficient durability. Note that the value of E 1 is E 1 ≦ 10 cN / dtex in the case of E 2 = 0.01 cN / dtex, for example, from the mechanical condition 1 described above.
(液晶性繊維材料の相構造と破断応力との関係)
 図2は、本発明の液晶性繊維材料について、相構造の違いによる破断応力を示した説明図(応力-歪み曲線)である。本発明の液晶性繊維材料は、エラストマーであるため、例えば、繊維方向に引張応力を付与すると繊維方向に伸長し、引張応力をさらに増加させるとそれに伴って液晶性繊維材料はさらに伸長する。そして、引張応力が限界値を超えると、液晶性繊維材料は破断することになる。この液晶性繊維材料が破断したときの応力が破断応力である。本発明の液晶性繊維材料は、液晶性ポリウレタンが液晶相を含む状態にある場合、図2(a)に示すように、液晶性ポリウレタンのメソゲン基が配向することにより液晶相が発現し、配向方向においてメソゲン基が応力を負担できるため、比較的高い破断応力を有する。一方、液晶性ポリウレタンが等方相を含む状態にある場合、図2(b)に示すように、液晶性ポリウレタンのメソゲン基の配向が崩れることにより液晶相から等方相に相転移し、メソゲン基の応力負担能力が低下するため、破断応力が著しく低下する。ここで、液晶性ポリウレタンが液晶相を含むときの破断応力をσとし、等方相を含むときの破断応力をσとしたとき、本発明の液晶性繊維材料は、以下の力学的条件2:
  <力学的条件2>: σ/σ ≦ 40
を満たすように設計される。破断応力σは、例えば、液晶性ポリウレタンの相転移温度(Ti)より10~30℃低い温度で測定した破断応力を採用することができる。破断応力σは、例えば、液晶性ポリウレタンの相転移温度(Ti)より10~30℃高い温度で測定した破断応力を採用することができる。
(Relationship between phase structure of liquid crystalline fiber material and breaking stress)
FIG. 2 is an explanatory diagram (stress-strain curve) showing the breaking stress due to the difference in phase structure for the liquid crystalline fiber material of the present invention. Since the liquid crystalline fiber material of the present invention is an elastomer, for example, when a tensile stress is applied in the fiber direction, the liquid crystalline fiber material expands in the fiber direction, and when the tensile stress is further increased, the liquid crystalline fiber material further expands accordingly. When the tensile stress exceeds the limit value, the liquid crystalline fiber material is broken. The stress when the liquid crystalline fiber material breaks is the breaking stress. When the liquid crystalline fiber material of the present invention is in a state in which the liquid crystalline polyurethane contains a liquid crystal phase, as shown in FIG. 2 (a), the liquid crystalline phase is expressed by the orientation of the mesogenic groups of the liquid crystalline polyurethane. Since the mesogenic group can bear the stress in the direction, it has a relatively high breaking stress. On the other hand, when the liquid crystalline polyurethane is in a state containing an isotropic phase, as shown in FIG. 2 (b), the phase transition from the liquid crystal phase to the isotropic phase occurs due to the disruption of the orientation of the mesogenic group of the liquid crystalline polyurethane. Since the stress bearing ability of the base is reduced, the breaking stress is significantly reduced. Here, when the breaking stress when the liquid crystalline polyurethane contains a liquid crystal phase is σ 1 and the breaking stress when the liquid crystalline polyurethane contains an isotropic phase is σ 2 , the liquid crystalline fiber material of the present invention has the following mechanical conditions: 2:
<Mechanical condition 2>: σ 1 / σ 2 ≦ 40
Designed to meet. As the breaking stress σ 1 , for example, a breaking stress measured at a temperature lower by 10 to 30 ° C. than the phase transition temperature (Ti) of the liquid crystalline polyurethane can be employed. As the breaking stress σ 2 , for example, a breaking stress measured at a temperature 10 to 30 ° C. higher than the phase transition temperature (Ti) of the liquid crystalline polyurethane can be adopted.
 上記の力学的条件2を満たす液晶性繊維材料は、液晶相と等方相との間で相転移が発生すると、液晶性ポリウレタンの破断応力σが最大で40倍に変化する。具体的には、液晶相から等方相に相転移すると、液晶性ポリウレタンの破断応力は1/40倍まで低減し得る。このとき、相転移に伴って配向していたメソゲン基が不規則になるため、液晶性ポリウレタンの分子構造の秩序(エントロピー)が増大し、液晶性ポリウレタンは配向方向(すなわち、繊維方向)において縮むとともに非配向方向(すなわち、繊維の径方向)において伸びるように変位する。反対に、等方相から液晶相に相転移すると、液晶性ポリウレタンの破断応力は40倍まで増大し得る。このとき、相転移に伴って不規則であったメソゲン基が再び配向するため、液晶性ポリウレタンの分子構造の秩序(エントロピー)が低下し、液晶性ポリウレタンは配向方向において伸びるとともに非配向方向において縮むように変位する。なお、上記の力学的条件2において、σ/σの下限値は特に規定していないが、上述した初期引張抵抗度Eと初期引張抵抗度Eとの関係と同様に、破断応力σが破断応力σより小さくなることは現実的には考え難いため、σ/σは1より大きい値とするのが妥当である。従って、相転移に伴って液晶性ポリウレタンが変位しても、液晶性ポリウレタンの破断応力の変化は、上記のとおり40倍以内に維持される。このように、本発明の液晶性繊維材料は、液晶相と等方相との間で一定以上の強度(耐久性)を有するものでありながら、破断応力を大きく変化させることができるため、相転移を利用した熱応答性を有する材料として有用である。 When a phase transition occurs between the liquid crystal phase and the isotropic phase, the liquid crystalline fiber material satisfying the above-described mechanical condition 2 changes the breaking stress σ of the liquid crystalline polyurethane by a maximum of 40 times. Specifically, when the phase transition from the liquid crystal phase to the isotropic phase, the breaking stress of the liquid crystalline polyurethane can be reduced to 1/40 times. At this time, the mesogenic groups that have been aligned with the phase transition become irregular, so the order (entropy) of the molecular structure of the liquid crystalline polyurethane increases, and the liquid crystalline polyurethane shrinks in the alignment direction (that is, the fiber direction). At the same time, it is displaced so as to extend in the non-oriented direction (that is, the radial direction of the fiber). On the contrary, when the phase transition from the isotropic phase to the liquid crystal phase, the breaking stress of the liquid crystalline polyurethane can increase up to 40 times. At this time, the disordered mesogenic groups are realigned with the phase transition, so that the order (entropy) of the molecular structure of the liquid crystalline polyurethane is lowered, and the liquid crystalline polyurethane stretches in the alignment direction and shrinks in the non-alignment direction. Displaces like In the above mechanical condition 2, the lower limit value of σ 1 / σ 2 is not particularly defined, but the breaking stress is similar to the relationship between the initial tensile resistance degree E 1 and the initial tensile resistance degree E 2 described above. Since it is difficult to realistically think that σ 1 is smaller than the breaking stress σ 2 , it is appropriate to set σ 1 / σ 2 to a value larger than 1. Therefore, even if the liquid crystalline polyurethane is displaced along with the phase transition, the change in the breaking stress of the liquid crystalline polyurethane is maintained within 40 times as described above. As described above, the liquid crystalline fiber material of the present invention has a strength (durability) of a certain level or more between the liquid crystal phase and the isotropic phase, and can greatly change the breaking stress. It is useful as a material having thermal response utilizing the transition.
 液晶性繊維材料が実用的な強度を有するためには、先に定義したσ及びσが所定以上の値であることが好ましい。本発明では、特に、液晶性ポリウレタンの相転移温度(Ti)より高い温度で測定されるσが0.01cN/dtex以上、好ましくは0.02cN/dtex以上となるように設定される。σが0.01cN/dtex以上であれば、十分な耐久性を備えた実用的な液晶性繊維材料として好適に利用することができる。なお、σの値については、上記の力学的条件2より、例えば、σ=0.01cN/dtexの場合、σ≦0.4cN/dtexとなる。 In order for the liquid crystalline fiber material to have a practical strength, it is preferable that σ 1 and σ 2 defined above have a predetermined value or more. In the present invention, in particular, σ 2 measured at a temperature higher than the phase transition temperature (Ti) of the liquid crystalline polyurethane is set to be 0.01 cN / dtex or more, preferably 0.02 cN / dtex or more. When σ 2 is 0.01 cN / dtex or more, it can be suitably used as a practical liquid crystalline fiber material having sufficient durability. Note that the value of σ 1 is σ 1 ≦ 0.4 cN / dtex in the case of σ 2 = 0.01 cN / dtex, for example, from the above-described mechanical condition 2.
(液晶性ポリウレタンのガラス転移温度(Tg)及び相転移温度(Ti))
 液晶性繊維材料が常温を含む温度領域で使用可能であるためには、適切なガラス転移温度(Tg)及び相転移温度(Ti)を有する液晶性ポリウレタンをマトリックスとして選択する必要がある。本発明では、液晶性ポリウレタンとして、相転移温度(Ti)が、当該液晶性ポリウレタンのガラス転移温度(Tg)以上かつ100℃以下のものが好適に使用される。さらに、相転移温度(Ti)とガラス転移温度(Tg)との差は、20℃以上であることが好ましく、25℃以上であることがより好ましい。このような液晶性ポリウレタンを含む液晶性繊維材料は、常温を含む比較的低温の領域で液晶性ポリウレタンの初期引張抵抗度及び破断応力が大きく変化し、しかも初期引張抵抗度が大きくなる液晶相の領域が広く確保されるため、熱応答性に優れながら、使い勝手が良好な実用的な液晶性繊維材料となる。
(Glass transition temperature (Tg) and phase transition temperature (Ti) of liquid crystalline polyurethane)
In order for the liquid crystalline fiber material to be usable in a temperature range including normal temperature, it is necessary to select a liquid crystalline polyurethane having an appropriate glass transition temperature (Tg) and phase transition temperature (Ti) as a matrix. In the present invention, a liquid crystalline polyurethane having a phase transition temperature (Ti) of not less than the glass transition temperature (Tg) of the liquid crystalline polyurethane and not more than 100 ° C. is preferably used. Furthermore, the difference between the phase transition temperature (Ti) and the glass transition temperature (Tg) is preferably 20 ° C. or higher, and more preferably 25 ° C. or higher. The liquid crystalline fiber material containing such a liquid crystalline polyurethane has a liquid crystal phase in which the initial tensile resistance and breaking stress of the liquid crystalline polyurethane greatly change in a relatively low temperature region including normal temperature, and the initial tensile resistance increases. Since a wide area is secured, a practical liquid crystalline fiber material having excellent thermal response and good usability is obtained.
 上記の初期引張抵抗度E及び初期引張抵抗度Eに関する力学的条件1、上記の破断応力σ及び破断応力σに関する力学的条件2、並びに上記のガラス転移温度(Tg)及び相転移温度(Ti)を満たす、本発明の液晶性繊維材料の原材料として好ましい液晶性ポリウレタンは、先の「液晶性繊維材料の組成」の項目で説明した液晶性ポリウレタンであり、メソゲン基含有化合物と、イソシアネート化合物と、アルキレンオキシド及び/又はスチレンオキシドと、架橋剤とを反応させることにより生成されるものである。本発明において利用可能な液晶性ポリウレタンの好ましい物性値を以下に例示する。
  ・ガラス転移温度(Tg)       :-30~60℃
  ・相転移温度(Ti)         :0~100℃
  ・-30~60℃における初期引張抵抗度E  :2~25cN/dtex
  ・0~100℃における初期引張抵抗度E   :0.01~5cN/dtex
  ・-30~60℃における破断応力σ :0.06~1.6cN/dtex
  ・0~100℃における破断応力σ  :0.01~0.6cN/dtex
Mechanical condition 1 regarding the initial tensile resistance E 1 and initial tensile resistance E 2, mechanical condition 2 regarding the breaking stress σ 1 and breaking stress σ 2, and the glass transition temperature (Tg) and phase transition described above. A liquid crystalline polyurethane that satisfies the temperature (Ti) and is preferable as a raw material of the liquid crystalline fiber material of the present invention is the liquid crystalline polyurethane described in the above-mentioned item of “Composition of liquid crystalline fiber material”, a mesogenic group-containing compound, It is produced by reacting an isocyanate compound, alkylene oxide and / or styrene oxide, and a crosslinking agent. Preferred physical property values of the liquid crystalline polyurethane usable in the present invention are exemplified below.
・ Glass transition temperature (Tg)   : -30 ~ 60 ℃
-Phase transition temperature (Ti)   : 0 to 100 ° C
Initial tensile resistance E 1 at −30 to 60 ° C .: 2 to 25 cN / dtex
Initial tensile resistance E 2 at 0 to 100 ° C .: 0.01 to 5 cN / dtex
Breaking stress σ 1 at −30 to 60 ° C .: 0.06 to 1.6 cN / dtex
Breaking stress σ 2 at 0 to 100 ° C .: 0.01 to 0.6 cN / dtex
〔液晶性繊維材料の用途〕
 本発明の液晶性繊維材料は、液晶性ポリウレタンの液晶性と伸縮性とを利用して様々な用途に適用することができる。そのような適用例について説明する。
[Uses of liquid crystalline fiber materials]
The liquid crystalline fiber material of the present invention can be applied to various uses by utilizing the liquid crystallinity and stretchability of liquid crystalline polyurethane. Such an application example will be described.
 図3は、本発明の液晶性繊維材料を利用した繊維製品の説明図である。図3では、衣料製品の一例として、ソックス10を示してある。 FIG. 3 is an explanatory view of a fiber product using the liquid crystalline fiber material of the present invention. In FIG. 3, a sock 10 is shown as an example of a clothing product.
 ソックス10は、主に脛を覆う上段部12、主に足首を覆う中段部13、主につま先から踵を覆う下段部14を備えており、各部の伸長率が異なるように構成されている。上段部12、中段部13、及び下段部14は、夫々本発明の液晶性繊維材料を液晶紡糸して得られたマルチフィラメントからなる繊維11をチェーンステッチとして編み上げたものである。上段部12、中段部13、及び下段部14は、互いに異なる伸長率を有するように構成され、中段部13、上段部12、下段部14の順に伸長率が大きくなるように設定されている。 The sock 10 includes an upper step portion 12 that mainly covers the shin, a middle step portion 13 that mainly covers the ankle, and a lower step portion 14 that mainly covers the toes from the toes, and is configured to have different elongation rates. The upper step portion 12, the middle step portion 13, and the lower step portion 14 are knitted as chain stitches of fibers 11 made of multifilaments obtained by liquid crystal spinning of the liquid crystalline fiber material of the present invention. The upper stage part 12, the middle stage part 13, and the lower stage part 14 are configured to have different elongation rates, and the middle stage part 13, the upper stage part 12, and the lower stage part 14 are set so that the elongation rate increases in this order.
 液晶紡糸された繊維11は、その繊維長の方向に液晶性ポリウレタンの分子鎖が高度に配向し、優れた液晶性を示すものとなる。図3(a)に示すように、ソックス10が液晶性ポリウレタンの相転移温度(Ti)未満の環境にあり、破線円内のイメージに示すように、繊維11を構成する液晶性繊維材料が液晶相を含んでいる状態では、繊維11が伸長しているため、例えば、上段部12及び中段部13を構成する編地は比較的緩んだ状態となっている。このため、使用者は、ソックス10を足に容易に着用することができる。使用者がソックス10を着用した後、使用者の体温によりソックス10が温められ、液晶性ポリウレタンの相転移温度(Ti)を超えると、図3(b)の破線円内のイメージに示すように、繊維11を構成する液晶性繊維材料が等方相を含む状態となり、それに伴って繊維11が収縮する。繊維11の収縮に伴って、上段部12及び中段部13が夫々縮んだ状態となり、ソックス10は使用者の足にフィットする。ここで、上段部12及び中段部13を、夫々異なる伸長率で設定すれば、使用者の足にフィットするだけでなく、必要に応じて使用者の足の部位に応じて圧力を段階的に付与することができる。本適用例の場合、上段部12に比べて中段部13の伸長率を大きく設定しているため、上段部12に覆われている脛に比べて中段部13に覆われている足首は外側から強く圧迫される。下段部14は、上段部12及び中段部13と比べて伸長率が小さいため、外側からの圧迫は弱くなる。このように圧迫に強弱を持たせることにより、使用者の足の血流を効果的に促すことができる。特に、繊維11に使用する液晶性ポリウレタンの相転移温度(Ti)を、体温(約35~37℃)付近に設定すれば、例えば、医療用品等の微小な伸縮性が求められるものから、ソックス、スポーツウェア、サポーター等の大きな伸縮性が求められるものまで様々な繊維製品の素材として好適に利用することができる。また、伸長率又は収縮率が局所的に異なるように構成されているため、身体の締め付けたい箇所のみを局所的に締め付ける矯正下着や、マッサージ効果が得られる健康衣料品として利用することができる。 The liquid-spun fibers 11 have excellent liquid crystallinity because the molecular chains of liquid crystalline polyurethane are highly oriented in the fiber length direction. As shown in FIG. 3 (a), the sock 10 is in an environment lower than the phase transition temperature (Ti) of the liquid crystalline polyurethane, and the liquid crystalline fiber material constituting the fiber 11 is liquid crystal as shown in the image in the broken line circle. In the state containing the phase, since the fibers 11 are elongated, for example, the knitted fabric constituting the upper step portion 12 and the middle step portion 13 is in a relatively loose state. For this reason, the user can easily wear the socks 10 on the foot. After the user wears the sock 10, when the sock 10 is warmed by the body temperature of the user and exceeds the phase transition temperature (Ti) of the liquid crystalline polyurethane, as shown in the image in the broken line circle of FIG. The liquid crystalline fiber material constituting the fiber 11 includes an isotropic phase, and the fiber 11 contracts accordingly. As the fiber 11 contracts, the upper step portion 12 and the middle step portion 13 are contracted, and the sock 10 fits the user's foot. Here, if the upper step portion 12 and the middle step portion 13 are set at different elongation rates, not only will they fit the user's foot, but also the pressure will be stepwise depending on the location of the user's foot as necessary. Can be granted. In the case of this application example, since the extension rate of the middle step portion 13 is set larger than that of the upper step portion 12, the ankle covered by the middle step portion 13 from the outside is compared with the shin covered by the upper step portion 12. It is strongly squeezed. Since the lower step portion 14 has a smaller elongation rate than the upper step portion 12 and the middle step portion 13, compression from the outside is weakened. Thus, by giving strength to the compression, blood flow in the user's foot can be effectively promoted. In particular, if the phase transition temperature (Ti) of the liquid crystalline polyurethane used for the fiber 11 is set to around body temperature (about 35 to 37 ° C.), for example, from a material that requires microstretchability such as medical supplies, socks It can be suitably used as a material for various textile products, such as sportswear, supporters and the like that require great stretchability. Moreover, since it is comprised so that an expansion | extension rate or shrinkage | contraction rate may differ locally, it can utilize as correction | amendment underwear which tightens only the location which wants to clamp | tighten a body locally, and the health clothing goods from which a massage effect is acquired.
 本発明の液晶性繊維材料の有用性を確認するため、原材料の配合を変更して種々の液晶性ポリウレタンを含む液晶性繊維材料を調製し、それらの特性について評価を行った。以下、繊維材料の実施例として説明する。 In order to confirm the usefulness of the liquid crystalline fiber material of the present invention, liquid crystalline fiber materials containing various liquid crystalline polyurethanes were prepared by changing the composition of the raw materials, and their characteristics were evaluated. Hereinafter, it demonstrates as an Example of a fiber material.
〔液晶性繊維材料の調製〕
 本発明の条件に従って液晶性ポリウレタンを合成し、これを紡糸することにより液晶性繊維材料を得た(実施例1~5)。なお、以下の実施例では、液晶性ポリウレタンの各原材料の配合量の単位を「g」としているが、本発明は、任意の倍率でスケールアップが可能である。すなわち、液晶性ポリウレタンの各原材料の配合量の単位については、「重量部」と読み替えることができる。
[Preparation of liquid crystalline fiber material]
Liquid crystalline polyurethane materials were synthesized according to the conditions of the present invention and spun to obtain liquid crystalline fiber materials (Examples 1 to 5). In the following examples, the unit of the blending amount of each raw material of liquid crystalline polyurethane is “g”, but the present invention can be scaled up at an arbitrary magnification. That is, the unit of the blending amount of each raw material of the liquid crystalline polyurethane can be read as “parts by weight”.
<実施例1>
 反応容器に、活性水素基を有するメソゲン基含有化合物としてBH6(500g)、水酸化カリウム(19.0g)、及び溶媒としてN,N-ジメチルホルムアミド(3000ml)を入れて混合し、さらに、アルキレンオキシドとしてプロピレンオキシドを1モルのBH6に対して2当量添加し、これらの混合物を、加圧条件下、120℃で2時間反応させた(付加反応)。次いで、反応容器にシュウ酸(15.0g)を添加して付加反応を停止させ、反応液中の不溶な塩を吸引ろ過によって除去し、さらに、反応液中のN,N-ジメチルホルムアミドを減圧蒸留法により除去することにより、メソゲンジオールAを得た。メソゲンジオールAの合成スキームを式(2)に示す。なお、式(2)中に示したメソゲンジオールAは代表的なものであり、種々の構造異性体を含み得る。
<Example 1>
BH6 (500 g), potassium hydroxide (19.0 g) as a mesogen group-containing compound having an active hydrogen group, and N, N-dimethylformamide (3000 ml) as a solvent are mixed in a reaction vessel and further mixed. As a propylene oxide, 2 equivalents of 1 mol of BH6 were added, and the mixture was reacted at 120 ° C. for 2 hours under pressure (addition reaction). Next, oxalic acid (15.0 g) was added to the reaction vessel to stop the addition reaction, insoluble salts in the reaction solution were removed by suction filtration, and N, N-dimethylformamide in the reaction solution was further reduced in pressure. By removing by a distillation method, mesogenic diol A was obtained. A synthesis scheme of mesogenic diol A is shown in Formula (2). In addition, the mesogen diol A shown in Formula (2) is typical, and may contain various structural isomers.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 次に、メソゲンジオールA(500g)、触媒としてトリエチレンジアミン(東ソー株式会社製、商品名「TEDA(登録商標)-L33」)(5g)、及び一段階目のイソシアネート化合物として1,6-ヘキサメチレンジイソシアネート(158g)を混合して100℃で2時間加熱して液晶性ウレタン化合物Aを得た。一段階目のイソシアネート化合物は、NCO indexが83となるように添加した。次いで、この液晶性ウレタン化合物Aを予熱した押出成形機内に充填し溶融させ、サイドフィーダーを用いて架橋剤のトリメチロールプロパン(9g)、及び二段階目のイソシアネート化合物として1,6-ヘキサメチレンジイソシアネート(45g)を添加して100℃で混練しながら混練物を繊維状に押出した。二段階目のイソシアネート化合物は、最終的にNCO indexが107となるように添加した。原材料(メソゲンジオールA、イソシアネート化合物、及び架橋剤)の合計量を100重量部としたとき、架橋剤であるトリメチロールプロパンの含有量は1.3重量部であった。押出された繊維を20℃で延伸倍率が2倍となるように一軸延伸をかけながら巻き取った。巻き取られた繊維を室温で24時間養生し、液晶(メソゲン基)が配向した実施例1の液晶性繊維材料を得た。 Next, mesogenic diol A (500 g), triethylenediamine as a catalyst (trade name “TEDA (registered trademark) -L33” manufactured by Tosoh Corporation) (5 g), and 1,6-hexamethylene as the first-stage isocyanate compound Diisocyanate (158 g) was mixed and heated at 100 ° C. for 2 hours to obtain liquid crystalline urethane compound A. The first-stage isocyanate compound was added so that the NCO index was 83. Next, the liquid crystalline urethane compound A is filled in a preheated extrusion molding machine and melted. Using a side feeder, a trimethylolpropane (9 g) as a crosslinking agent and 1,6-hexamethylene diisocyanate as a second-stage isocyanate compound are used. (45 g) was added and the kneaded product was extruded into a fiber while being kneaded at 100 ° C. The second-stage isocyanate compound was added so that the NCO index was finally 107. When the total amount of raw materials (mesogenic diol A, isocyanate compound, and crosslinking agent) was 100 parts by weight, the content of trimethylolpropane as a crosslinking agent was 1.3 parts by weight. The extruded fiber was wound up at 20 ° C. while being uniaxially stretched so that the draw ratio was 2 times. The wound fiber was cured at room temperature for 24 hours to obtain a liquid crystalline fiber material of Example 1 in which liquid crystals (mesogenic groups) were aligned.
<実施例2>
 トリメチロールプロパンの配合量を18.5gとし、一段階目のイソシアネート化合物として1,6-ヘキサメチレンジイソシアネートの配合量を160gとし(NCO indexが77)、二段階目のイソシアネート化合物として1,6-ヘキサメチレンジイソシアネートの配合量を57gとした(最終のNCO indexが105)。原材料100重量部に対して、架橋剤であるトリメチロールプロパンの含有量は2.5重量部であった。その他の原材料、及びその配合量、並びに、反応条件、延伸条件、及び養生条件については、実施例1と同様とし、実施例2の液晶性繊維材料を得た。
<Example 2>
The amount of trimethylolpropane is 18.5 g, the amount of 1,6-hexamethylene diisocyanate is 160 g (NCO index is 77) as the first-stage isocyanate compound, and the amount of 1,6- The amount of hexamethylene diisocyanate was 57 g (the final NCO index was 105). The content of trimethylolpropane as a crosslinking agent was 2.5 parts by weight with respect to 100 parts by weight of the raw material. The other raw materials, the blending amount thereof, the reaction conditions, the stretching conditions, and the curing conditions were the same as in Example 1, and the liquid crystalline fiber material of Example 2 was obtained.
<実施例3>
 トリメチロールプロパンの配合量を1.5gとし、一段階目のイソシアネート化合物として1,6-ヘキサメチレンジイソシアネートの配合量を150gとし(NCO indexが86)、二段階目のイソシアネート化合物として1,6-ヘキサメチレンジイソシアネートの配合量を27gとした(最終のNCO indexが101)。原材料100重量部に対して、架橋剤であるトリメチロールプロパンの含有量は0.22重量部であった。その他の原材料、及びその配合量、並びに、反応条件、延伸条件、及び養生条件については、実施例1と同様とし、実施例3の液晶性繊維材料を得た。
<Example 3>
The amount of trimethylolpropane is 1.5 g, the amount of 1,6-hexamethylene diisocyanate is 150 g as the first-stage isocyanate compound (NCO index is 86), and the amount of 1,6- The amount of hexamethylene diisocyanate was 27 g (the final NCO index was 101). The content of trimethylolpropane as a crosslinking agent was 0.22 parts by weight with respect to 100 parts by weight of the raw material. The other raw materials, the blending amount thereof, the reaction conditions, the stretching conditions, and the curing conditions were the same as in Example 1, and the liquid crystalline fiber material of Example 3 was obtained.
<実施例4>
 架橋剤としてポリエーテルポリオール(旭硝子株式会社製、商品名「エクセノール(登録商標)400MP」)を150g配合し、一段階目のイソシアネート化合物として1,6-ヘキサメチレンジイソシアネートの配合量を173gとし(NCO indexが58)、二段階目のイソシアネート化合物として1,6-ヘキサメチレンジイソシアネートの配合量を132gとした(最終のNCO indexが102)。原材料100重量部に対して、架橋剤であるポリエーテルポリオールの含有量は16重量部であった。その他の原材料、及びその配合量、並びに、反応条件、延伸条件、及び養生条件については、実施例1と同様とし、実施例4の液晶性繊維材料を得た。
<Example 4>
150 g of polyether polyol (trade name “EXCENOL (registered trademark) 400MP”, manufactured by Asahi Glass Co., Ltd.) is blended as a crosslinking agent, and the blending amount of 1,6-hexamethylene diisocyanate is 173 g as the first-stage isocyanate compound (NCO index was 58), and the compounding amount of 1,6-hexamethylene diisocyanate as the second-stage isocyanate compound was 132 g (final NCO index was 102). The content of the polyether polyol as a crosslinking agent was 16 parts by weight with respect to 100 parts by weight of the raw material. The other raw materials, the blending amounts thereof, the reaction conditions, the stretching conditions, and the curing conditions were the same as in Example 1, and the liquid crystalline fiber material of Example 4 was obtained.
<実施例5>
 反応容器に、活性水素基を有するメソゲン基含有化合物としてBH6(500g)、水酸化カリウム(19.0g)、及び溶媒としてN,N-ジメチルホルムアミド(3000ml)を入れて混合し、さらに、アルキレンオキシドとしてプロピレンオキシドを2モルのBH6に対して7当量(すなわち、1モルのBH6に対して3.5当量)添加し、これらの混合物を、加圧条件下、120℃で2時間反応させた(付加反応)。次いで、反応容器にシュウ酸(15.0g)を添加して付加反応を停止させ、反応液中の不溶な塩を吸引ろ過によって除去し、さらに、反応液中のN,N-ジメチルホルムアミドを減圧蒸留法により除去することにより、メソゲンジオールBを得た。メソゲンジオールBの合成スキームを式(3)に示す。なお、式(3)中に示したメソゲンジオールBは代表的なものであり、種々の構造異性体を含み得る。
<Example 5>
BH6 (500 g), potassium hydroxide (19.0 g) as a mesogen group-containing compound having an active hydrogen group, and N, N-dimethylformamide (3000 ml) as a solvent are mixed in a reaction vessel and further mixed. 7 equivalents of propylene oxide to 2 moles of BH6 (ie, 3.5 equivalents to 1 mole of BH6) and these mixtures were reacted under pressure at 120 ° C. for 2 hours ( Addition reaction). Next, oxalic acid (15.0 g) was added to the reaction vessel to stop the addition reaction, insoluble salts in the reaction solution were removed by suction filtration, and N, N-dimethylformamide in the reaction solution was further reduced in pressure. By removing by a distillation method, mesogenic diol B was obtained. A synthesis scheme of mesogenic diol B is shown in Formula (3). In addition, the mesogen diol B shown in Formula (3) is typical, and may contain various structural isomers.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 次に、メソゲンジオールB(500g)、触媒としてトリエチレンジアミン(東ソー株式会社製、商品名「TEDA(登録商標)-L33」)(5g)、及び一段階目のイソシアネート化合物として1,6-ヘキサメチレンジイソシアネート(142g)を混合して100℃で2時間加熱して液晶性ウレタン化合物Bを得た。一段階目のイソシアネート化合物は、NCO indexが90となるように添加した。次いで、この液晶性ウレタン化合物Bを予熱した押出成形機内に充填し溶融させ、サイドフィーダーを用いて架橋剤のトリメチロールプロパン(9g)、及び二段階目のイソシアネート化合物として1,6-ヘキサメチレンジイソシアネート(35g)を添加して100℃で混練しながら混練物を繊維状に押出した。二段階目のイソシアネート化合物は、最終的にNCO indexが112となるように添加した。原材料(メソゲンジオールB、イソシアネート化合物、及び架橋剤)の合計量を100重量部としたとき、架橋剤であるトリメチロールプロパンの含有量は1.3重量部であった。押出された繊維を20℃で延伸倍率が2倍となるように一軸延伸をかけながら巻き取った。巻き取られた繊維を室温で24時間養生し、液晶(メソゲン基)が配向した実施例5の液晶性繊維材料を得た。 Next, mesogenic diol B (500 g), triethylenediamine as a catalyst (trade name “TEDA (registered trademark) -L33” manufactured by Tosoh Corporation) (5 g), and 1,6-hexamethylene as the first-stage isocyanate compound Diisocyanate (142 g) was mixed and heated at 100 ° C. for 2 hours to obtain liquid crystalline urethane compound B. The first-stage isocyanate compound was added so that the NCO index was 90. Next, this liquid crystalline urethane compound B is filled in a preheated extruder and melted, and a side feeder is used to crosslink trimethylolpropane (9 g) and 1,6-hexamethylene diisocyanate as the second-stage isocyanate compound. (35 g) was added and the kneaded product was extruded into a fiber while kneading at 100 ° C. The second-stage isocyanate compound was added so that the NCO index was finally 112. When the total amount of raw materials (mesogenic diol B, isocyanate compound, and crosslinking agent) was 100 parts by weight, the content of trimethylolpropane as a crosslinking agent was 1.3 parts by weight. The extruded fiber was wound up at 20 ° C. while being uniaxially stretched so that the draw ratio was 2 times. The wound fiber was cured at room temperature for 24 hours to obtain a liquid crystalline fiber material of Example 5 in which liquid crystals (mesogenic groups) were aligned.
<比較例1>
 トリメチロールプロパンの配合量を0.2gとし、一段階目のイソシアネート化合物として1,6-ヘキサメチレンジイソシアネートの配合量を147gとし(NCO indexが85)、二段階目のイソシアネート化合物として1,6-ヘキサメチレンジイソシアネートの配合量を29gとした(最終のNCO indexが102)。原材料100重量部に対して、架橋剤であるトリメチロールプロパンの含有量は2.5重量部であった。原材料100重量部に対して、架橋剤であるトリメチロールプロパンの含有量は0.03重量部であった。その他の原材料、及びその配合量、並びに、反応条件、延伸条件、及び養生条件については、実施例1と同様とし、比較例1の繊維材料を得た。
<Comparative Example 1>
The amount of trimethylolpropane is 0.2 g, the amount of 1,6-hexamethylene diisocyanate is 147 g as the first stage isocyanate compound (NCO index is 85), and the amount of 1,6- The amount of hexamethylene diisocyanate was 29 g (the final NCO index was 102). The content of trimethylolpropane as a crosslinking agent was 2.5 parts by weight with respect to 100 parts by weight of the raw material. The content of trimethylolpropane, which is a crosslinking agent, was 0.03 parts by weight with respect to 100 parts by weight of the raw material. The other raw materials, the blending amount thereof, the reaction conditions, the stretching conditions, and the curing conditions were the same as in Example 1, and the fiber material of Comparative Example 1 was obtained.
<比較例2>
 架橋剤としてポリエーテルポリオールを300g配合し、一段階目のイソシアネート化合物として1,6-ヘキサメチレンジイソシアネートの配合量を437gとし(NCO indexが103)、二段階目のイソシアネート化合物として1,6-ヘキサメチレンジイソシアネートの配合量を30gとした(最終のNCO indexが110)。原材料100重量部に対して、架橋剤であるトリメチロールプロパンの含有量は2.5重量部であった。原材料100重量部に対して、架橋剤であるポリエーテルポリオールの含有量は24重量部であった。その他の原材料、及びその配合量、並びに、反応条件、延伸条件、及び養生条件については、実施例4と同様とし、比較例2の繊維材料を得た。
<Comparative example 2>
300 g of polyether polyol is blended as a crosslinking agent, the amount of 1,6-hexamethylene diisocyanate is 437 g as the first stage isocyanate compound (NCO index is 103), and 1,6-hexa is blended as the second stage isocyanate compound. The blending amount of methylene diisocyanate was 30 g (the final NCO index was 110). The content of trimethylolpropane as a crosslinking agent was 2.5 parts by weight with respect to 100 parts by weight of the raw material. The content of the polyether polyol as a crosslinking agent was 24 parts by weight with respect to 100 parts by weight of the raw material. The other raw materials, the blending amount thereof, the reaction conditions, the stretching conditions, and the curing conditions were the same as in Example 4, and the fiber material of Comparative Example 2 was obtained.
〔液晶性繊維材料の特性測定〕
 実施例1~5の液晶性繊維材料の特性(物性)を確認するため、ガラス転移温度(Tg)、相転移温度(Ti)、液晶性、伸張率、初期引張抵抗度、破断応力、及び繊度について測定を行った。各測定項目の測定方法及び測定条件を以下に説明する。
[Characteristic measurement of liquid crystalline fiber material]
In order to confirm the properties (physical properties) of the liquid crystalline fiber materials of Examples 1 to 5, glass transition temperature (Tg), phase transition temperature (Ti), liquid crystallinity, elongation rate, initial tensile resistance, breaking stress, and fineness Was measured. The measurement method and measurement conditions for each measurement item will be described below.
<ガラス転移温度(Tg)、相転移温度(Ti)>
 示差走査熱量分析計[DSC](株式会社日立ハイテクサイエンス社製、X-DSC 7000)を使用し、各試料のガラス転移温度(Tg)、及び相転移温度(Ti)を測定した。測定時の昇温速度については、20℃/分とした。
<Glass transition temperature (Tg), phase transition temperature (Ti)>
Using a differential scanning calorimeter [DSC] (X-DSC 7000, manufactured by Hitachi High-Tech Science Co., Ltd.), the glass transition temperature (Tg) and the phase transition temperature (Ti) of each sample were measured. About the temperature increase rate at the time of a measurement, it was 20 degrees C / min.
<液晶性>
 偏光顕微鏡(株式会社ニコン社製、LV-100POL)によって各試料を観察し、液晶性の有無を確認した。さらに、示差走査熱量分析計[DSC](株式会社日立ハイテクサイエンス社製、X-DSC 7000)の測定結果からも液晶性の有無を確認した。
<Liquid crystal>
Each sample was observed with a polarizing microscope (manufactured by Nikon Corporation, LV-100POL) to confirm the presence or absence of liquid crystallinity. Furthermore, the presence or absence of liquid crystallinity was also confirmed from the measurement results of a differential scanning calorimeter [DSC] (Hitachi High-Tech Science Co., Ltd., X-DSC 7000).
<伸長率>
 各試料について、液晶相と等方相との間での相転移に伴って発生する配向方向におけるサイズの変化(試料の長さの変化)をスケールで測定した。測定にあたっては、液晶性ポリウレタンが最も収縮している状態(本実施例の場合、液晶性繊維材料の繊維方向の最短長)を基準(100%)として、繊維方向における伸長率%を算出した。
<Elongation rate>
For each sample, the change in size in the alignment direction (change in the length of the sample) generated with the phase transition between the liquid crystal phase and the isotropic phase was measured on a scale. In the measurement, the elongation percentage in the fiber direction was calculated based on the state (100%) in which the liquid crystalline polyurethane was most contracted (in this example, the shortest length in the fiber direction of the liquid crystalline fiber material).
<初期引張抵抗度>
 動的粘弾性測定装置(株式会社上島製作所社製、全自動粘弾性アナライザ VR-7110)を使用し、各試料の貯蔵弾性率E´を測定した。測定条件は、昇温速度を2℃/分とし、測定モードを引張モードとし、歪を2%とし、振動数を10Hzとした。各試料について、相転移温度(Ti)より20℃低い温度における貯蔵弾性率E´を初期引張抵抗度Eとし、相転移温度(Ti)より20℃高い温度における貯蔵弾性率E´を初期引張抵抗度Eとした。
<Initial tensile resistance>
The storage elastic modulus E ′ of each sample was measured using a dynamic viscoelasticity measuring device (manufactured by Ueshima Seisakusho Co., Ltd., fully automatic viscoelasticity analyzer VR-7110). The measurement conditions were a heating rate of 2 ° C./min, a measurement mode of tensile mode, a strain of 2%, and a frequency of 10 Hz. For each sample, the storage elastic modulus E ′ at a temperature 20 ° C. lower than the phase transition temperature (Ti) is the initial tensile resistance E 1, and the storage elastic modulus E ′ at a temperature 20 ° C. higher than the phase transition temperature (Ti) is the initial tensile strength. was the resistance of E 2.
<破断応力>
 引張試験装置(株式会社島津製作所社製、精密万能試験機 オートグラフAG-X)を使用し、各試料を、JIS L 1013に準拠して測定した。各試料について、相転移温度(Ti)より約20℃低い温度における破断応力σを破断応力σとし、相転移温度(Ti)より約20℃高い温度における破断応力σを破断応力σとした。
<Breaking stress>
Each sample was measured according to JIS L 1013 using a tensile tester (manufactured by Shimadzu Corporation, precision universal testing machine Autograph AG-X). For each sample, the breaking stress σ at a temperature about 20 ° C. lower than the phase transition temperature (Ti) is defined as the breaking stress σ 1, and the breaking stress σ at a temperature about 20 ° C. higher than the phase transition temperature (Ti) is defined as the breaking stress σ 2 . .
<繊度>
 各試料の繊度を、JIS L 1013に準拠して測定した。
<Fineness>
The fineness of each sample was measured according to JIS L 1013.
 各試料の測定結果を、以下の表1にまとめる。 The measurement results for each sample are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~5の液晶性繊維材料は、繊度が149~160dtexのものが得られ、液晶性ポリウレタンが液晶相から等方相に相転移するに伴って、配向方向のサイズ(繊維長)が減少(収縮)した。そして、液晶性ポリウレタンを等方相から液晶相に戻すと、繊維長が増大(伸張)した。このように、実施例1~5の液晶性繊維材料は、温度変化に応じて液晶相と等方相との間で可逆的に伸縮する性質を示した。液晶性繊維材料が最も収縮している液晶性ポリウレタンが等方相にあるときの繊維長を100%とすると、液晶性ポリウレタンが液晶相にあるときの繊維長(伸長率)は103~119%であった。ちなみに、この測定結果を収縮率に換算すると、液晶性ポリウレタンが液晶相にあるときの繊維長を100%とした場合、液晶性ポリウレタンが等方相にあるときの繊維長(収縮率)は97.08~84.03%となる。このように、実施例1~5の液晶性繊維材料は、熱応答材料として利用可能な変位量を示すことが確認された。実施例1~5の液晶性繊維材料は、何れも初期引張抵抗度Eが0.01cN/tdex以上であり、初期引張抵抗度Eと初期引張抵抗度Eとの比率(E/E)が6.32~875であり、上述の力学的条件1を満たすものであった。実施例1~5の液晶性ポリウレタンは、何れも破断応力σが0.01cN/tdex以上であり、破断応力σと破断応力σとの比率(σ/σ)が4.17~22.5であり、上述の力学的条件2を満たすものであった。このように、実施例1~5の液晶性ポリウレタンは、液晶相と等方相との間で一定以上の強度(耐久性)を有するものでありながら、相転移により初期引張抵抗度及び破断応力が大きく変化し得ることが確認された。従って、本発明の液晶性ポリウレタンを含む液晶性繊維材料は、熱応答性を有するとともに、一定以上の強度(耐久性)を有し、液晶性と伸縮性とを兼ね備えた材料として有用であることが示唆された。 The liquid crystalline fiber materials of Examples 1 to 5 are those having a fineness of 149 to 160 dtex. As the liquid crystalline polyurethane undergoes a phase transition from the liquid crystal phase to the isotropic phase, the size in the alignment direction (fiber length) is increased. It decreased (shrinked). When the liquid crystalline polyurethane was returned from the isotropic phase to the liquid crystal phase, the fiber length increased (stretched). Thus, the liquid crystalline fiber materials of Examples 1 to 5 exhibited the property of reversibly expanding and contracting between the liquid crystal phase and the isotropic phase in accordance with the temperature change. When the fiber length when the liquid crystalline polyurethane in which the liquid crystalline fiber material is most contracted is in the isotropic phase is 100%, the fiber length (elongation rate) when the liquid crystalline polyurethane is in the liquid crystal phase is 103 to 119%. Met. Incidentally, when this measurement result is converted into a shrinkage rate, when the fiber length when the liquid crystalline polyurethane is in the liquid crystal phase is 100%, the fiber length (shrinkage rate) when the liquid crystalline polyurethane is in the isotropic phase is 97. 0.08-84.03%. As described above, it was confirmed that the liquid crystalline fiber materials of Examples 1 to 5 exhibited a displacement amount usable as a heat responsive material. The liquid crystalline fiber materials of Examples 1 to 5 all have an initial tensile resistance E 2 of 0.01 cN / tdex or more, and the ratio of the initial tensile resistance E 1 and the initial tensile resistance E 2 (E 1 / E 2 ) was 6.32 to 875, and the above-mentioned mechanical condition 1 was satisfied. In all of the liquid crystalline polyurethanes of Examples 1 to 5, the breaking stress σ 2 is 0.01 cN / tdex or more, and the ratio of the breaking stress σ 1 to the breaking stress σ 21 / σ 2 ) is 4.17. 22.5, which satisfies the above-mentioned mechanical condition 2. Thus, the liquid crystalline polyurethanes of Examples 1 to 5 have a certain level of strength (durability) between the liquid crystal phase and the isotropic phase, but the initial tensile resistance and breaking stress due to the phase transition. It has been confirmed that can vary greatly. Therefore, the liquid crystalline fiber material containing the liquid crystalline polyurethane of the present invention has a thermal response and a certain level of strength (durability) and is useful as a material having both liquid crystallinity and stretchability. Was suggested.
 これに対し、比較例1の繊維材料は、初期引張抵抗度Eと初期引張抵抗度Eとの比率(E/E)が1400であり、上述の力学的条件1を満たさないものであった。また、比較例1の繊維材料は、破断応力σと破断応力σとの比率(σ/σ)が42.1であり、上述の力学的条件2を満たさないものであった。比較例1の繊維材料は、液晶性が確認されたが、温度変化に応じて液晶相と等方相との間で可逆的に伸縮する性質を示さなかった。また、比較例2の繊維材料は、液晶性が発現せず、温度変化に応じた伸縮性も確認されなかった。 In contrast, the fiber material of Comparative Example 1, the initial tensile resistance degree E 1 and the initial tensile ratio of the resistance of E 2 (E 1 / E 2 ) is 1400, which do not meet the mechanical condition 1 above Met. Further, the fiber material of Comparative Example 1 had a ratio (σ 1 / σ 2 ) between the breaking stress σ 1 and the breaking stress σ 2 of 42.1 and did not satisfy the mechanical condition 2 described above. The fiber material of Comparative Example 1 was confirmed to have liquid crystallinity, but did not exhibit the property of reversibly expanding and contracting between the liquid crystal phase and the isotropic phase in accordance with temperature changes. Moreover, the fiber material of the comparative example 2 did not express liquid crystallinity, and the stretchability according to the temperature change was not confirmed.
 本発明の液晶性繊維材料、及び繊維製品は、その優れた熱応答性、伸縮性、弾性率変化特性、破断応力変化特性を利用し、実施形態で説明した衣料製品(ソックス)の他にも様々な用途で利用することができる。例えば、本発明の液晶性繊維材料、及び繊維製品は、アクチュエータ、フィルター等の工業分野において利用できる。また、人工筋肉、カテーテル等の医学・医療分野においても利用できる可能性がある。 The liquid crystalline fiber material and fiber product of the present invention utilize the excellent thermal responsiveness, stretchability, elastic modulus change characteristics, and breaking stress change characteristics in addition to the clothing product (sock) described in the embodiment. It can be used for various purposes. For example, the liquid crystalline fiber material and fiber product of the present invention can be used in industrial fields such as actuators and filters. It may also be used in the medical and medical fields such as artificial muscles and catheters.
 10  ソックス
 11  繊維(液晶性繊維材料)
10 Socks 11 Fiber (Liquid crystalline fiber material)

Claims (10)

  1.  温度変化に応じて液晶相と等方相との間で可逆的に伸縮する液晶性ポリウレタンを含む液晶性繊維材料であって、
     前記液晶性ポリウレタンが最も収縮している状態を基準(100%)として、繊維方向における伸長率が102~200%に設定され、又は前記液晶性ポリウレタンが最も伸長している状態を基準(100%)として、繊維方向における収縮率が98.04~50%に設定されている液晶性繊維材料。
    A liquid crystalline fiber material comprising a liquid crystalline polyurethane that reversibly expands and contracts between a liquid crystal phase and an isotropic phase according to a temperature change,
    Based on the state in which the liquid crystalline polyurethane is most contracted (100%), the elongation in the fiber direction is set to 102 to 200%, or the state in which the liquid crystalline polyurethane is most expanded (100%). ), A liquid crystalline fiber material whose shrinkage in the fiber direction is set to 98.04 to 50%.
  2.  前記液晶性ポリウレタンは、モノフィラメント又はマルチフィラメントとして構成されている請求項1に記載の液晶性繊維材料。 The liquid crystalline fiber material according to claim 1, wherein the liquid crystalline polyurethane is configured as a monofilament or a multifilament.
  3.  前記繊維方向において、前記液晶性ポリウレタンが前記液晶相を含むときの弾性率をEとし、前記等方相を含むときの弾性率をEとしたとき、E/E ≦ 1000 を満たす請求項1又は2に記載の液晶性繊維材料。 In the fiber direction, the elastic modulus of when the liquid crystalline polyurethane comprising the liquid crystal phase and E 1, when the elastic modulus of the time including the isotropic phase was E 2, satisfying the E 1 / E 2 ≦ 1000 The liquid crystalline fiber material according to claim 1 or 2.
  4.  前記繊維方向において、前記液晶性ポリウレタンが前記液晶相を含むときの破断応力をσとし、前記等方相を含むときの破断応力をσとしたとき、σ/σ ≦ 40 を満たす請求項1~3の何れか一項に記載の液晶性繊維材料。 In the fiber direction, when rupture stress when the liquid crystalline polyurethane includes the liquid crystal phase is σ 1 and rupture stress when the isotropic phase is included is σ 2 , σ 1 / σ 2 ≦ 40 is satisfied. The liquid crystalline fiber material according to any one of claims 1 to 3.
  5.  前記液晶相と前記等方相との境界となる相転移温度(Ti)は、前記液晶性ポリウレタンのガラス転移温度(Tg)以上かつ100℃以下である請求項1~4の何れか一項に記載の液晶性繊維材料。 The phase transition temperature (Ti) serving as a boundary between the liquid crystal phase and the isotropic phase is not less than the glass transition temperature (Tg) of the liquid crystalline polyurethane and not more than 100 ° C. The liquid crystalline fiber material described.
  6.  前記相転移温度(Ti)と前記ガラス転移温度(Tg)との差は、20℃以上である請求項5に記載の液晶性繊維材料。 The liquid crystalline fiber material according to claim 5, wherein a difference between the phase transition temperature (Ti) and the glass transition temperature (Tg) is 20 ° C or more.
  7.  前記液晶性ポリウレタンは、活性水素基を有するメソゲン基含有化合物と、イソシアネート化合物と、アルキレンオキシド及び/又はスチレンオキシドと、架橋剤との反応物を含む請求項1~6の何れか一項に記載の液晶性繊維材料。 The liquid crystalline polyurethane includes a reaction product of a mesogen group-containing compound having an active hydrogen group, an isocyanate compound, an alkylene oxide and / or a styrene oxide, and a crosslinking agent. Liquid crystalline fiber material.
  8.  前記架橋剤は、少なくとも3つの反応性官能基を有するポリオールである請求項7に記載の液晶性繊維材料。 The liquid crystalline fiber material according to claim 7, wherein the crosslinking agent is a polyol having at least three reactive functional groups.
  9.  前記メソゲン基含有化合物、前記イソシアネート化合物、前記アルキレンオキシド及び/又は前記スチレンオキシド、並びに前記架橋剤の合計量を100重量部としたとき、前記架橋剤の配合量は、0.1~20重量部である請求項7又は8に記載の液晶性繊維材料。 When the total amount of the mesogenic group-containing compound, the isocyanate compound, the alkylene oxide and / or the styrene oxide, and the crosslinking agent is 100 parts by weight, the amount of the crosslinking agent is 0.1 to 20 parts by weight. The liquid crystalline fiber material according to claim 7 or 8.
  10.  請求項1~9の何れか一項に記載の液晶性繊維材料を用いた繊維製品であって、
     前記伸長率又は前記収縮率が局所的に異なるように構成されている繊維製品。
    A fiber product using the liquid crystalline fiber material according to any one of claims 1 to 9,
    The textile product comprised so that the said elongation rate or the said shrinkage | contraction rate may differ locally.
PCT/JP2017/013246 2016-09-09 2017-03-30 Liquid crystalline textile material and textile product WO2018047389A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018538011A JP6660474B2 (en) 2016-09-09 2017-03-30 Liquid crystalline fiber materials and textile products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-176504 2016-09-09
JP2016176504 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018047389A1 true WO2018047389A1 (en) 2018-03-15

Family

ID=61562231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013246 WO2018047389A1 (en) 2016-09-09 2017-03-30 Liquid crystalline textile material and textile product

Country Status (2)

Country Link
JP (1) JP6660474B2 (en)
WO (1) WO2018047389A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211108U (en) * 1988-07-01 1990-01-24
JPH07258369A (en) * 1994-03-18 1995-10-09 Nitta Ind Corp High-molecular liquid-crystal polyurethane
WO2008026509A1 (en) * 2006-08-29 2008-03-06 National Institute Of Advanced Industrial Science And Technology Thermoplastic elastomer composition having hierarchical structure and process for the production thereof
WO2017002682A1 (en) * 2015-07-01 2017-01-05 東洋ゴム工業株式会社 Single fibre including thermally responsive liquid-crystal elastomer, filament yarn, and fibre product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108137769A (en) * 2015-12-24 2018-06-08 东洋橡胶工业株式会社 Thermo-responsive material and the heat control device and fiber for having used thermo-responsive material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211108U (en) * 1988-07-01 1990-01-24
JPH07258369A (en) * 1994-03-18 1995-10-09 Nitta Ind Corp High-molecular liquid-crystal polyurethane
WO2008026509A1 (en) * 2006-08-29 2008-03-06 National Institute Of Advanced Industrial Science And Technology Thermoplastic elastomer composition having hierarchical structure and process for the production thereof
WO2017002682A1 (en) * 2015-07-01 2017-01-05 東洋ゴム工業株式会社 Single fibre including thermally responsive liquid-crystal elastomer, filament yarn, and fibre product

Also Published As

Publication number Publication date
JPWO2018047389A1 (en) 2019-06-24
JP6660474B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
JP6616600B2 (en) Monofilaments, filament yarns and textile products containing thermoresponsive liquid crystal elastomers
JP6568305B2 (en) Liquid crystalline elastomer precursor and liquid crystalline elastomer
US5811506A (en) Extrudable thermoplastic elastomeric urea-extended polyurethane
JP2502132B2 (en) Shape memory polyurethane elastomer molded body
JP6152056B2 (en) Elastomer resin, its fibers and fabrics, and their use
AU2016376548B2 (en) Thermoresponsive material, and heat control device and fiber using thermoresponsive material
JP2017014393A (en) Liquid crystal urethane compound, thermal responsive liquid crystal polyurethane elastomer and manufacturing method therefor
TWI645971B (en) Elastomeric fiber for enhanced bonding
US20070276115A1 (en) Thermoplastic polyurethane and use thereof
WO2018047389A1 (en) Liquid crystalline textile material and textile product
JP7008480B2 (en) Heat responsive fabric
EP1860132A2 (en) Thermoplastic polyurethane and use thereof
JP6937228B2 (en) Heat responsive fabric
JP6757135B2 (en) Heat-responsive materials, and heat control devices and fibers using heat-responsive materials
JP6237113B2 (en) Polyurethane elastomer and elastic fiber
JP6622082B2 (en) Thermally responsive material, and thermal control device and fiber using thermally responsive material
JP2019090138A (en) Heat-responsive fabric
EP1846470A1 (en) Polymer material showing a sharp dependency of tensile strength in relation to two external stimuli
JP2019112605A (en) Liquid crystalline polymer, and method for producing liquid crystalline polymer
JP3658733B2 (en) Durable polyurethane fiber and method for producing the same
JP2019090137A (en) Heat-responsive fabric
JP6150226B2 (en) Polyurethane elastic fiber, method for producing the same, and elastic fabric
JP2019112606A (en) Silicone-containing liquid crystalline polymer, and method for producing silicone-containing liquid crystalline polymer
JPH03237117A (en) Production of high molecular thermoplastic urethane elastomer and molding of high molecular thermoplastic urethane elastomer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018538011

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848336

Country of ref document: EP

Kind code of ref document: A1