WO2018045706A1 - 一种无级可变压缩比内燃机 - Google Patents

一种无级可变压缩比内燃机 Download PDF

Info

Publication number
WO2018045706A1
WO2018045706A1 PCT/CN2017/071893 CN2017071893W WO2018045706A1 WO 2018045706 A1 WO2018045706 A1 WO 2018045706A1 CN 2017071893 W CN2017071893 W CN 2017071893W WO 2018045706 A1 WO2018045706 A1 WO 2018045706A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankshaft
internal combustion
combustion engine
main bearing
compression ratio
Prior art date
Application number
PCT/CN2017/071893
Other languages
English (en)
French (fr)
Inventor
王祖军
Original Assignee
王祖军
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王祖军 filed Critical 王祖军
Publication of WO2018045706A1 publication Critical patent/WO2018045706A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/047Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of variable crankshaft position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2700/00Mechanical control of speed or power of a single cylinder piston engine
    • F02D2700/03Controlling by changing the compression ratio

Definitions

  • the present invention relates to an internal combustion engine, and more particularly to a stepless variable compression ratio internal combustion engine
  • the compression ratios of existing mass-produced internal combustion engines are fixed at the time of design and manufacture and cannot be adjusted during operation of the internal combustion engine, and the optimum compression ratio of the internal combustion engine under different operating conditions is different.
  • the compression ratio should not be too high to avoid knocking, and a higher compression ratio is required to improve the efficiency of the internal combustion engine under low load. Therefore, it is designed to determine a compression ratio at a low load according to high load without knocking.
  • the efficiency and fuel economy of the internal combustion engine are seriously affected.
  • the most widely used automobile in the internal combustion engine is operated under medium and small loads, so the compression ratio of the internal combustion engine can be adjusted according to the operating conditions. Since the current variable compression ratio technique is either too complicated, or too costly, and for other reasons, there is no variable compression ratio internal combustion engine technology that is widely used.
  • the present invention provides a stepless variable compression ratio internal combustion engine, wherein a crankshaft main bearing hole is eccentric with respect to a bearing outer circle, and a crankshaft main bearing is mounted on a main bearing housing on the cylinder block of the internal combustion engine and the bearing outer circle and the bearing housing It is a small clearance fit so that the main bearing of the crankshaft can rotate on the bearing housing.
  • a main gear is fixedly mounted on the main bearing to control the rotating main bearing.
  • the gear meshes with a control gear.
  • the control gear rotates and drives the main bearing to rotate in the main bearing housing.
  • a crossbar can also be extended on the main bearing of the crankshaft.
  • the main rod is rotated by the longitudinal rod of the control mechanism to rotate the main bearing of the crankshaft.
  • the main shaft of the crankshaft is installed in the main bearing hole, and the rotation of the main bearing drives the main shaft of the crankshaft relative to the cylinder block of the internal combustion engine.
  • crankshaft main journal of the variable compression ratio internal combustion engine of the present invention can be moved up and down.
  • the valve timing transmission system of the internal combustion engine of the present invention has two left and right tensioning pulleys, and the two tensioning pulley axles slide in a horizontal sliding passage, and
  • the left and right shaft holes of the parallelogram mechanism are also respectively mounted on the axes of the left and right tensioning wheels, and the axes of the upper and lower shaft holes of the parallelogram mechanism slide up and down in the vertical slides, such a mechanism ensures the crankshaft
  • the left and right tensioning pulleys can move symmetrically inward or outward under the push of the spring, and the tension between the left and right tensioning wheels on the chain or the belt is also bilaterally symmetrical, thus ensuring The relative phase angle between the valve camshaft and the crankshaft does not occur or slightly changes when the crankshaft main journal moves up and down without affecting the valve timing. Accuracy.
  • crankshaft main journal Since the internal combustion engine of the present invention is in operation, the center of the crankshaft main journal is rotated centered on the center of the cylinder crankcase, which causes the output end of the crankshaft to move in parallel, and the moving crankshaft output shaft must be converted into Such an internal combustion engine power output is only acceptable for use by a rear gearbox or other mechanism with respect to the fixed output shaft of the cylinder. Therefore, a crankshaft output gear is fixedly mounted on the output shaft of the crankshaft main journal, and the ring gear meshing with the gear is fixedly mounted on the power output shaft of the internal combustion engine, and the center of the ring gear is coincident with the center of the crankshaft main bearing seat on the cylinder block of the internal combustion engine.
  • the number of teeth of the ring gear is larger than the number of gear teeth, and the gear meshes with the ring gear in the ring gear.
  • the center distance between the gear and the ring gear is the same as the eccentric distance between the main bearing hole of the crankshaft and the main bearing housing of the crankshaft, so that the center of the gear is just around the ring gear.
  • the center can rotate without affecting the meshing of the gear with the ring gear, so that the power of the internal combustion engine is transmitted to the ring gear and the power output shaft of the internal combustion engine through the gear.
  • the moving crankshaft output shaft power is converted into a fixed-axis internal combustion engine power output and is controlled by the rear mechanism. Used.
  • the compression ratio of the internal combustion engine of the present invention is also continuously variable continuously in a wide range, and is easy to pass various kinds of sensors and controllers of the internal combustion engine according to various internal combustion engines. Condition to adjust the optimal compression ratio.
  • variable compression ratio internal combustion engine of the invention Compared with the existing variable compression ratio internal combustion engine technology, the variable compression ratio internal combustion engine of the invention has the advantages of simple structure, stable and reliable operation, and can realize large-scale production and manufacturing cost by slightly modifying the existing fixed compression ratio internal combustion engine production equipment. Not much, but because the compression ratio of the internal combustion engine can be adjusted in a wide range according to the working conditions, the internal combustion engine can ensure the high-load operation is stable and reliable, and can greatly improve the combustion at low load in the internal combustion engine. Efficiency and fuel economy, reducing pollutant emissions. The resulting economic and social benefits far exceed the increase in manufacturing costs.
  • the inner hole of the crankshaft main bearing 9 is eccentric with respect to the outer circumference of the bearing
  • 1 is the center of the main bearing hole of the crankshaft
  • 2 is the outer circle of the main bearing of the crankshaft and the center of the main bearing seat of the crankshaft
  • e is the eccentricity
  • the main bearing 9 is fixedly mounted.
  • a gear 13 As shown in Fig. 2, the crankshaft main bearing 9 is mounted on the main bearing housing 8 on the cylinder block 6 of the internal combustion engine and the outer circumference of the bearing 9 is slightly clearance-fitted with the bearing housing 8 so that the crank main bearing 9 can be rotated on the bearing housing 8.
  • a main gear 9 is fixedly mounted with a gear 13 for controlling the rotating main bearing, and the gear 13 is meshed with a control gear 12, and the control gear 12 rotates and drives the main bearing 9 to rotate in the main bearing housing 8, as shown in FIG.
  • a crossbar 27 extends from the main bearing 9 of the crankshaft, and the crossbar 27 is pulled by the longitudinal pull rod 28 of the control mechanism to rotate the main bearing of the crankshaft. Due to the eccentric structure of the hole of the main bearing 9, the main journal 11 of the crankshaft is mounted on the main bearing of the crankshaft.
  • the rotation of the main bearing 9 drives the crankshaft main journal 11 to move up and down with respect to the cylinder block 6 of the internal combustion engine, so that the position of the upper and lower dead ends of the piston 4 changes, so that the volume of the combustion chamber changes when the piston is at the top dead center position, and
  • the compression ratio (single cylinder displacement + top dead center combustion chamber volume) ⁇ top dead center combustion chamber volume, thereby causing a change in the compression ratio of the internal combustion engine.
  • Fig. 2 shows the position of the top dead center of the piston 4 when the main bearing bore of the crankshaft is rotated to a higher position. At this time, the volume of the combustion chamber 3 is small and the compression ratio is high.
  • FIG. 3 is the top dead center position of the piston 4 when the main bearing hole is turned to the horizontal eccentricity, which is lower than the drop M of Fig. 2, at which time the combustion chamber 3 has a moderate volume and the compression ratio is moderate, and Fig. 4 shows that the main bearing hole of the crankshaft rotates to a lower position.
  • the position of the top dead center of the piston 4 at the position is lower than that of FIG. 2, and the volume of the combustion chamber 3 is large at this time, and the compression ratio is relatively low.
  • Figure 6 is a timing diagram of the internal combustion engine of the present invention, the valve timing of the internal combustion engine is positively controlled by the crankshaft spindle
  • the crankshaft main journal of the variable compression ratio internal combustion engine of the present invention can be moved up and down, so that the crankshaft spindle end timing
  • the sprocket or the pulley 14 can also move up and down.
  • the valve timing transmission system of the internal combustion engine of the present invention has two left and right tensioning wheels 15 and 16, and the two tensioning wheel axles are at a level
  • the slide 21 is slid inside, and the left and right shaft holes of the parallelogram mechanism 20 are also respectively mounted on the axes of the left and right tensioning pulleys 15 and 16, and the axes of the upper and lower shaft holes of the parallelogram mechanism 20 are respectively
  • the upper and lower slides 22 slide up and down.
  • Fig. 6 is a valve timing system when the compression is relatively high
  • Fig. 7 is a valve timing system when the compression ratio is moderate
  • Fig. 8 is a valve timing system when the compression is relatively low. This ensures that the relative phase angle between the valve camshaft and the crankshaft does not occur or slightly changes when the crankshaft main journal moves up and down without affecting the accuracy of the valve timing.
  • Figure 9 is a power output end of the internal combustion engine, the center 1 of the crankshaft journal 11 is rotated centered on the center 2 of the cylinder crankcase, which causes the crankshaft output to move in parallel, and the moving crankshaft must be moved.
  • the output shaft is converted to an output shaft that is fixed relative to the cylinder so that the power output of the internal combustion engine is accepted by the rear gearbox or other mechanism.
  • the crankshaft output gear 25 is fixed to the crankshaft main journal 11, and the center is also the aforementioned one.
  • the ring gear 26 meshing with the gear 25 is fixed to the power output shaft of the internal combustion engine, and the center of the ring gear 26 is the same as the crankshaft on the cylinder block of the internal combustion engine.
  • the center of the main bearing housing 2 is identical, and the center distance of the gear 25 and the ring gear 26 is also the eccentricity e described above, so that the center of the gear 25 can rotate about the center of the ring gear 26 without affecting the gear 25 and the ring gear 26 Engagement, such that the power of the internal combustion engine is transmitted through the gear 25 to the ring gear 26 and the power output shaft of the internal combustion engine, and the moving crankshaft output shaft power is converted into a fixed-axis internal combustion engine power output and utilized by the rear mechanism.
  • 9 is an output diagram at a higher compression ratio
  • FIG. 10 is an output diagram at a moderate compression ratio
  • FIG. 11 is an output diagram at a lower compression ratio.
  • a variable compression ratio internal combustion engine includes a cylinder block 6, a crankshaft main bearing 9 mounted on a cylinder block crank main bearing housing 8.
  • the bearing hole of the crank main bearing 9 is eccentric with respect to the crank main bearing housing 8, and the eccentricity e is set to 5 mm.
  • the crankshaft main bearing 9 can be rotated on the crank main bearing housing 8, and the fixed gear 13 mounted on the crank main bearing 9 is meshed with a control gear 12, and the rotation of the control gear 12 drives the gear 13 to rotate, thereby driving the crankshaft main bearing.
  • 9 is rotated on the crankshaft main bearing housing 8, thereby causing the crankshaft main journal 11 to move up and down relative to the cylinder block.
  • the cylinder diameter of the internal combustion engine is 82 mm
  • the piston The stroke is 94.5mm
  • the design piston is up and down
  • the combustion chamber volume at the point is 30ml
  • the compression ratio of the variable compression ratio internal combustion engine of the present embodiment can be continuously adjusted steplessly
  • the axis of the crankshaft main journal is rotatable around the center of the main bearing housing of the crankshaft.
  • two chains or two chains are required to be placed in the valve timing transmission system.
  • the belt tensioning wheels 15 and 16, as shown in Fig. 5, can only be synchronized inward or outward simultaneously under the control of a parallelogram mechanism and the pulling force of the chain or belt plus the thrust of the spring. Movement, this ensures that when the crankshaft main shaft moves up and down, the phase relationship between the valve camshaft and the crankshaft is stable or very small, and will not affect the normal operation of the internal combustion engine.
  • crankshaft of the internal combustion engine of the present invention Since the internal combustion engine of the present invention is in operation, the axis of the crankshaft main journal is rotatable around the center of the main bearing housing of the crankshaft, and the moving power output shaft is disadvantageous for the utilization of the subsequent mechanism, and thus the crankshaft of the internal combustion engine of the present invention
  • a gear 25 is mounted on the output end to mesh with the gear 25 A ring gear 26, as shown in FIG.
  • the ring gear 26 is connected to the output shaft of the internal combustion engine, the center thereof coincides with the center of the main bearing housing of the crankshaft, so that the meshing of the gear 25 with the ring gear 26 is not performed when the axis of the main shaft of the crankshaft rotates around the center of the main bearing housing of the crankshaft.
  • the moving crankshaft power output of the internal combustion engine of the present invention is transmitted to the fixed internal combustion engine power take-off shaft by the meshing of the gear 25 and the ring gear 26, and is utilized by the rear mechanism.
  • the compression ratio of the internal combustion engine of the present invention can be continuously adjusted steplessly in accordance with various operating conditions of the internal combustion engine over a wide range.
  • the internal combustion engine of the present invention can appropriately reduce the compression ratio to avoid the occurrence of knocking, so that the internal combustion engine can stably operate normally.
  • the cylinder temperature of the internal combustion engine and the combustion chamber are not high and the intake air volume is also small. At this time, it is not easy to cause knocking, and the compression ratio can be appropriately increased, and the compression ratio directly affects the compression ratio.
  • the combustion efficiency of the internal combustion engine can increase the compression ratio as much as possible while ensuring that no knocking occurs, which can greatly improve the efficiency of the internal combustion engine, reduce fuel consumption, and reduce pollutant emissions. Since the compression ratio of the internal combustion engine of the present invention is continuously variable and continuously adjustable, the internal combustion engine can select the optimum compression ratio under all operating conditions to make the internal combustion engine have the best combustion efficiency over the full operating range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

一种无级可变压缩比内燃机,包括内燃机缸体(6)、曲轴轴承座(8)、曲轴轴承(9)和曲轴轴颈(11),曲轴轴承孔相对曲轴轴承座偏心,曲轴轴承在轴承座上转动。

Description

一种无级可变压缩比内燃机 技术领域
本发明涉及内燃机,特别涉及一种无级可变压缩比内燃机
背景技术
现有的已经量产的内燃机的压缩比都是在设计和制造时就已经固定而不能在内燃机运转工作时变化调节的,而内燃机在不同的运行工况下的最佳压缩比是不同的,在高负荷工况下为避免爆震则压缩比不能太高,而在低负荷下为提高内燃机效率就需要较高的压缩比,因此按照高负荷不爆震而设计确定一个压缩比在低负荷下就严重影响内燃机的效率和燃油经济性,而在内燃机运用最广泛的汽车大部分时间都是运行在中小负荷下,所以内燃机压缩比能根据运行工况变化调节的意义非常重要。由于目前的可变压缩比技术或者过于复杂、或成本太高及其他原因,还没有一种可变压缩比内燃机技术得到广泛应用。
发明内容
针对上述技术问题,本发明提供一种无级可变压缩比内燃机,其曲轴主轴承孔相对轴承外圆偏心,曲轴主轴承安装在内燃机缸体上的主轴承座上并且轴承外圆与轴承座是微小间隙配合,使得曲轴主轴承可以在轴承座上转动。主轴承上固定安装一个齿轮用来控制转动主轴承,这个齿轮与一个控制齿轮啮合,由这个控制齿轮旋转并带动主轴承在主轴承座内转动,也可以在曲轴主轴承上延伸出一个横杆,由控制机构的纵拉杆拉动横杆从而转动曲轴主轴承,由于主轴承孔的偏心结构,而曲轴主轴颈是安装在主轴承孔内的,主轴承的转动带动曲轴主轴颈相对于内燃机缸体上下移动,使得活塞运行的上下止点位置发生变化,从而使得活塞上止点位时的燃烧室容积发生变化,而压缩比=(单汽缸排量+上止点燃烧室容积)÷上止点燃烧室容积,因 单汽缸排量是不变的,所以上止点燃烧室容积的变化使得压缩比也发生变化。
由于内燃机的气门正时是由曲轴主轴正时链轮或皮带轮通过链条或皮带带动顶端的气门凸轮轴链轮或皮带轮的,而本发明之可变压缩比内燃机的曲轴主轴颈是可以上下移动的,为保证气门正时不受曲轴主轴颈上下移动的影响,本发明之内燃机的气门正时传动系统有左右两个张紧轮,这两个张紧轮轴心在一个水平的滑道内滑动,且平行四边形机构的左右两个转轴孔也分别安装在左右两个张紧轮的轴心上,而平行四边形机构的上下两个转轴孔之轴心在垂直滑道内上下滑动,这样的机构保证当曲轴主轴颈上下移动时,左右两个张紧轮在弹簧的推动下可以同步对称向内或向外移动,左右两个张紧轮对链条或皮带的张紧度也是左右对称的,这样就保证了在曲轴主轴颈上下移动时气门凸轮轴和曲轴之间的相对相位角不发生或发生很小的变化而不会影响气门正时的准确性。
由于本发明之内燃机在工作运行的时候,其曲轴主轴颈中心是以缸体曲轴轴承座中心为圆心转动的,这就造成曲轴输出端也是会平行移动的,必须将移动的曲轴输出轴转变为相对缸体固定的输出轴,这样的内燃机动力输出才好被后面的变速箱或其他机构所接受利用。为此在曲轴主轴颈输出轴上固定安装一个曲轴输出齿轮,同这个齿轮啮合的齿圈固定安装在内燃机的动力输出轴上,齿圈的中心同内燃机缸体上的曲轴主轴承座中心一致,齿圈齿数大于齿轮齿数,齿轮在齿圈内同齿圈啮合,齿轮和齿圈的中心距同上文所述曲轴主轴承孔与曲轴主轴承座的偏心距一样,这样齿轮中心正好绕齿圈的中心可以转动而不影响齿轮同齿圈的啮合,这样内燃机的动力就通过齿轮传动到齿圈以及内燃机动力输出轴,移动的曲轴输出轴动力就转化成了固定轴线的内燃机动力输出并被后面机构所利用。
由于曲轴主轴承的转动是无级连续的,所以本发明之内燃机的压缩比也是在很宽范围内无级连续可变的,且容易通过内燃机的多种传感器和控制器根据内燃机的各种工况调节出最佳压缩比。
本发明之可变压缩比内燃机相对现有可变压缩比内燃机技术,具有结构简单,运行稳定可靠,而且在现有固定压缩比内燃机生产设备上稍加改造即可实现大规模生产,制造成本提高不多,但因内燃机工作时压缩比在较宽范围内可以根据工况无级变化调节,由此带来内燃机既能保证高负荷工作稳定可靠,又能在内燃机中低负荷时大幅度提高燃烧效率和燃油经济性,降低污染物排放。由此带来的经济和社会效益远超制造成本的提高。
附图说明
如图1,曲轴主轴承9内孔相对轴承外圆偏心,1是曲轴主轴承孔中心,2是曲轴主轴承外圆也是曲轴主轴承座的中心,e是偏心距,主轴承9上固定安装一个齿轮13。如图2,曲轴主轴承9安装在内燃机缸体6上的主轴承座8上并且轴承9外圆与轴承座8是微小间隙配合,使得曲轴主轴承9可以在轴承座8上转动。主轴承9上固定安装一个齿轮13用来控制转动主轴承,齿轮13与一个控制齿轮12啮合,由这个控制齿轮12旋转并带动主轴承9在主轴承座8内转动,也可以如图5,在曲轴主轴承9上延伸出一个横杆27,由控制机构的纵拉杆28拉动横杆27从而转动曲轴主轴承,由于主轴承9孔的偏心结构,而曲轴主轴颈11是安装在曲轴主轴承9孔内的,主轴承9转动带动曲轴主轴颈11相对内燃机缸体6上下移动,使得在活塞4运行上下止点位置发生变化,从而使得活塞上止点位时的燃烧室容积发生变化,而压缩比=(单汽缸排量+上止点燃烧室容积)÷上止点燃烧室容积,由此使得内燃机的压缩比发生变化。图2是曲轴主轴承孔转动到较高位置时的活塞4上止点位置,此时燃烧室3容积较小,压缩比就较高。图3是主轴承孔转至水平偏心时的活塞4上止点位置,较图2的下降M,此时燃烧室3容积适中,压缩比就适中,图4是曲轴主轴承孔转动到较低位置时的活塞4上止点位置,较图2的下降N,此时燃烧室3容积较大,压缩比就比较低。
5:连杆 7:曲轴之曲柄销 10:曲轴之曲柄
图6是本内燃机正时端附图,内燃机气门正时是由曲轴主轴端正 时链轮或皮带轮14通过链条或皮带17带动顶端的气门凸轮轴链轮或皮带轮18和19的,而本发明之可变压缩比内燃机的曲轴主轴颈是可以上下移动的,使得曲轴主轴端正时链轮或皮带轮14也是可以上下移动的,为保证气门正时的准确,本发明之内燃机的气门正时传动系统有左右两个张紧轮15和16,这两个张紧轮轴心在一个水平的滑道21内滑动,且平行四边形机构20的左右两个转轴孔也分别安装在左右两个张紧轮15和16的轴心上,而平行四边形机构20的上下两个转轴孔之轴心在垂直滑道22内上下滑动,这样的机构保证当曲轴主轴颈上下移动时,左右两个张紧轮15和16在弹簧23和24的推动下可以同步对称向内或向外移动。图6是压缩比较高时的气门正时系统,图7是压缩比适中时的气门正时系统,图8是压缩比较低时的气门正时系统。这样就保证了在曲轴主轴颈上下移动时气门凸轮轴和曲轴之间的相对相位角不发生或发生很小的变化而不会影响气门正时的准确性。
图9是本内燃机动力输出端附图,其曲轴主轴颈11的中心1是以缸体曲轴轴承座中心2为圆心转动的,这就造成曲轴输出端也是会平行移动的,必须将移动的曲轴输出轴转变为相对缸体固定的输出轴,这样内燃机动力输出才好被后面的变速箱或其他机构所接受利用。为此曲轴输出齿轮25固定在曲轴主轴颈11上,中心同样是前述的1,同齿轮25啮合的齿圈26固定在内燃机的动力输出轴上,齿圈26的中心同内燃机缸体上的曲轴主轴承座中心2一致,齿轮25和齿圈26的中心距同样是上文所述的偏心距e,这样齿轮25中心正好绕齿圈26的中心可以转动而不影响齿轮25同齿圈26的啮合,这样内燃机的动力就通过齿轮25传动到齿圈26以及内燃机动力输出轴上,移动的曲轴输出轴动力就转化成了固定轴线的内燃机动力输出并被后面机构所利用。图9是较高压缩比时的输出端图,图10是适中压缩比时的输出端图,图11是较低压缩比时的输出端图。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明 的优点和特征能更易于被本领域技术人员理解。
如图2所示,一种可变压缩比内燃机,其包括汽缸体6,安装在汽缸体曲轴主轴承座8上的曲轴主轴承9。如图1所示,曲轴主轴承9的轴承孔相对于曲轴主轴承座8偏心,偏心距e设定为5mm。曲轴主轴承9可以在曲轴主轴承座8上转动,而曲轴主轴承9上安装固定的齿轮13和一个控制齿轮12相啮合,由控制齿轮12的旋转来带动齿轮13转动,进而带动曲轴主轴承9在曲轴主轴承座8上转动,由此就带动曲轴主轴颈11相对于汽缸体上下移动。如果设定曲轴主轴承转动角度范围为相对水平偏心上下各45°,由此活塞4运行的上止点发生变化,变化范围是偏心距5mm×1.414=7.07mm,如果内燃机的缸径是82mm,活塞行程是94.5mm,那么其单缸排气量为4.12×3.1416×9.45=499ml,活塞上止点时的燃烧室容积变化范围就是4.12×3.1416×0.707=37.34ml,如果设计活塞最高上止点时的燃烧室容积为30ml,因压缩比=(单汽缸排量+上止点燃烧室容积)÷上止点燃烧室容积,所以最高压缩比=(499+30)÷30=17.63,而最小压缩比=(499+30+37.34)÷(30+37.34)=8.41。本实施例之可变压缩比内燃机的压缩比就可以在8.41至17.63之间根据内燃机的各种工况数据无级连续调整,使内燃机可以高效稳定地工作。
由于本发明之内燃机在工作运行时,其曲轴主轴颈之轴线是绕曲轴主轴承座中心可以转动的,为保证气门正时相位的稳定正确,需在气门正时传动系统中安置两个链条或皮带张紧轮15和16,如图5,这两个张紧轮在一个平行四边形机构的控制以及链条或皮带的拉力加上弹簧的推力的共同作用下,只能同时向内或向外同步移动,这样就保证了当曲轴主轴颈上下移动时,气门凸轮轴和曲轴之间的相位关系稳定不变或变化非常微小,不会影响到内燃机的正常工作。
由于本发明之内燃机在工作运行时,其曲轴主轴颈之轴线是绕曲轴主轴承座中心可以转动的,而移动的动力输出轴是不利于后续机构的利用的,为此本发明之内燃机的曲轴输出端安装一个齿轮25,和齿轮25相啮合 的一个齿圈26,如图9所示,如果这组齿轮传动模数确定为2,齿轮25的齿数为50,其分度圆直径就是100mm,齿圈26的齿数为55,那么齿圈26的分度圆直径就是110mm,那么齿轮25和齿圈26的中心距刚好也是5mm,同前述的偏心距5mm是一样的。由于齿圈26同内燃机输出轴相连接,其中心正好同曲轴主轴承座中心一致,这样在曲轴主轴颈之轴线绕曲轴主轴承座中心转动时,齿轮25同齿圈26的啮合都是不受影响的,就此本发明之内燃机的移动的曲轴动力输出就通过齿轮25和齿圈26的啮合而传动到固定的内燃机动力输出轴上,并被后面机构所利用。
从以上所述可以看到,本发明之内燃机的压缩比可以在很宽范围根据内燃机的各种工况做无级连续的调节。在高负荷工况下,由于内燃机进气量大且汽缸以及燃烧室温度已经很高,此时本发明之内燃机就可以适当降低压缩比以避免爆震的发生,使内燃机能稳定正常工作。在冷启动、怠速以及低速小负荷工况下,内燃机汽缸以及燃烧室温度不高且进气量也小,此时不容易发生爆震,就可适当提高压缩比,而压缩比的高低直接影响内燃机的燃烧效率,在保证不发生爆震的前提下尽量提高压缩比可以较大幅度的提高内燃机的效率,降低燃油的消耗,也能降低污染物的排放。由于本发明之内燃机的压缩比是无级连续可调整的,那么在全部工况下本内燃机都可以选定最佳压缩比以使内燃机在全工况范围内拥有最好的燃烧效率。
以上仅为本发明的一个具体实施例,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明所揭露的技术范围内,不经过创造性的劳动想到的变化和替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。

Claims (9)

  1. 一种无级可变压缩比内燃机,其曲轴箱部分包括内燃机缸体(6)、曲轴主轴承座(8)、曲轴主轴承(9)和曲轴主轴颈(11),其特征在于曲轴主轴承(9)的轴承孔之中心相对于曲轴主轴承外圆之中心偏心。
  2. 根据权利要求1所述的无级可变压缩比内燃机,其特征在于曲轴主轴承(9)之外圆面同曲轴主轴承座(8)之间是间隙配合,曲轴主轴承(9)可以在曲轴主轴承座(8)内转动。
  3. 根据权利要求2所述的无级可变压缩比内燃机,其特征在于曲轴主轴承上固定一个齿轮(13),由一个同其啮合的齿轮(12)带动齿轮(13)和曲轴主轴承(9)在曲轴主轴承座(8)内转动。
  4. 根据权利要求2所述的无级可变压缩比内燃机,其特征在于曲轴主轴承上固定一个横杆(27),由一个同横杆(27)铰接的纵拉杆(28)拉动横杆(27)和曲轴主轴承(9)在曲轴主轴承座(8)内转动。
  5. 一种无级可变压缩比内燃机,其气门正时系统包括曲轴端链轮(14)、凸轮轴端链轮(18、19)、正时链条(17)和张紧轮(15、16),其特征在于两个并列的张紧轮(15、16)分别位于正时链条两侧压紧正时链条。
  6. 一种无级可变压缩比内燃机,其气门正时系统包括曲轴端皮带轮(14)、凸轮轴端皮带轮(18、19)、正时皮带(17)和张紧轮(15、16),其特征在于两个并列的张紧轮(15、16)分别位于正时皮带两侧压紧正时皮带。
  7. 根据权利要求5或6所述的无级可变压缩比内燃机,其特征在于其两个张紧轮(15、16)轴心分别同一个平行四边形机构(20)的左右两个转轴同轴并在一个水平滑道(21)内滑动,平行四边形机构的上下两个转轴在一个垂直滑道(22)内滑动。
  8. 一种无级可变压缩比内燃机,其特征在于曲轴动力输出端轴颈上安装齿轮(25),同齿轮(25)啮合的齿圈(26)连接内燃机输出轴。
  9. 根据权利要求8所述的无级可变压缩比内燃机,其特征在于齿圈(26)的中心同曲轴主轴承座(8)的中心一致。
PCT/CN2017/071893 2016-09-09 2017-01-20 一种无级可变压缩比内燃机 WO2018045706A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610824628.2 2016-09-09
CN201610824628.2A CN106438062A (zh) 2016-09-09 2016-09-09 一种无级可变压缩比内燃机

Publications (1)

Publication Number Publication Date
WO2018045706A1 true WO2018045706A1 (zh) 2018-03-15

Family

ID=58169060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071893 WO2018045706A1 (zh) 2016-09-09 2017-01-20 一种无级可变压缩比内燃机

Country Status (2)

Country Link
CN (1) CN106438062A (zh)
WO (1) WO2018045706A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220136431A1 (en) * 2019-07-28 2022-05-05 Almir Gonçalves Pereira Variable compression ratio device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106930831A (zh) * 2017-04-10 2017-07-07 陈光明 电控偏心齿轮式可变压缩比发动机
CN106930844A (zh) * 2017-04-13 2017-07-07 宁波星豪汽车维修有限公司 一种可变压缩比装置
DE102017207464A1 (de) * 2017-05-04 2018-11-08 Bayerische Motoren Werke Aktiengesellschaft Kurbeltrieb für eine Hubkolbenmaschine, sowie Hubkolbenmaschine mit einem solchen Kurbeltrieb
CN109386380A (zh) * 2017-08-08 2019-02-26 罗灿 花键输出变压缩比内燃机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860702A (en) * 1988-03-21 1989-08-29 Doundoulakis George J Compression ratio control in reciprocating piston engines
WO2000073641A1 (de) * 1999-06-01 2000-12-07 Fev Motorentechnik Gmbh Kettenspanner für eine kolbenbrennkraftmaschine mit variablem brennraum
US6247430B1 (en) * 1997-10-31 2001-06-19 Fev Motorentechnik Gmbh & Co. Kommandgesellschaft Compression ratio setting device for an internal-combustion engine
US6971342B1 (en) * 2005-06-01 2005-12-06 Grabbe Wallace W Adjustable compression ratio apparatus
DE102010055549A1 (de) * 2010-12-22 2012-06-28 Fev Gmbh Abtriebseinheit für Steuer- und Nebenantrieb eines VCR-Motors mit exentrisch gelagerter Kurbelwelle
CN104847506A (zh) * 2014-12-19 2015-08-19 北汽福田汽车股份有限公司 发动机可变压缩比结构及发动机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9607054A (pt) * 1995-02-28 1997-12-30 Tk Design Ag Motor de combustão interna do tipo de motor de êmbolo de movimento alterado com taxa de compressão variável
US7007640B2 (en) * 2003-07-25 2006-03-07 Masami Sakita Engine with a variable compression ratio
JP2008267301A (ja) * 2007-04-23 2008-11-06 Nissan Motor Co Ltd 内燃機関
US9133762B2 (en) * 2009-09-18 2015-09-15 GM Global Technology Operations LLC Drive belt tensioner for motor generator unit
CN103850809A (zh) * 2012-12-01 2014-06-11 郑力铭 一种连续可变压缩比发动机
CN206309483U (zh) * 2016-09-09 2017-07-07 王祖军 一种无级可变压缩比内燃机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860702A (en) * 1988-03-21 1989-08-29 Doundoulakis George J Compression ratio control in reciprocating piston engines
US6247430B1 (en) * 1997-10-31 2001-06-19 Fev Motorentechnik Gmbh & Co. Kommandgesellschaft Compression ratio setting device for an internal-combustion engine
WO2000073641A1 (de) * 1999-06-01 2000-12-07 Fev Motorentechnik Gmbh Kettenspanner für eine kolbenbrennkraftmaschine mit variablem brennraum
US6971342B1 (en) * 2005-06-01 2005-12-06 Grabbe Wallace W Adjustable compression ratio apparatus
DE102010055549A1 (de) * 2010-12-22 2012-06-28 Fev Gmbh Abtriebseinheit für Steuer- und Nebenantrieb eines VCR-Motors mit exentrisch gelagerter Kurbelwelle
CN104847506A (zh) * 2014-12-19 2015-08-19 北汽福田汽车股份有限公司 发动机可变压缩比结构及发动机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220136431A1 (en) * 2019-07-28 2022-05-05 Almir Gonçalves Pereira Variable compression ratio device
US11879400B2 (en) * 2019-07-28 2024-01-23 Almir Gonçalves Pereira Variable compression ratio device

Also Published As

Publication number Publication date
CN106438062A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2018045706A1 (zh) 一种无级可变压缩比内燃机
CA2212935C (en) Reciprocating piston type internal combustion engine with variable compression ratio
US9726078B2 (en) Apparatus with variable compression ratio and variable expansion ratio
CN106958488B (zh) 一种可变压缩比发动机
CN106837460B (zh) 一种内燃机连续可变气门正时装置
KR20090104498A (ko) 가변 압축비 장치
CN103850809A (zh) 一种连续可变压缩比发动机
CN100564829C (zh) 一种压比可调发动机
CN101865025A (zh) 连续可变容积压缩比发动机
WO2014139316A1 (zh) 可变压缩比发动机
CN101936229A (zh) 可变容积压缩比发动机
CN201588694U (zh) 连续可变容积压缩比发动机
CN205936832U (zh) 环式发动机
CN204060931U (zh) 内燃机的差动传动机构
CN104153881B (zh) 内燃机的差动传动机构
CN206309483U (zh) 一种无级可变压缩比内燃机
CN210178471U (zh) 一种发动机压缩比调节机构
CN109026461B (zh) 一种内燃机气口高度调节装置
JP2017227138A (ja) 可変圧縮比機械式アトキンソンサイクルエンジン
CN108757206A (zh) 一种可变压缩比活塞及可变压缩比发动机
CN100434668C (zh) 一种无曲轴内燃机
CN201627611U (zh) 内燃机连续可变气门机构
CN107387190B (zh) 一种摆动式可变气门驱动装置
WO2016110073A1 (zh) 内燃机
GB2478526A (en) Variable compression ratio (VCR) i.c. engine with variable length piston rod or connecting rod

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17847882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17847882

Country of ref document: EP

Kind code of ref document: A1