WO2018045656A1 - 一种设备配对方法及装置 - Google Patents

一种设备配对方法及装置 Download PDF

Info

Publication number
WO2018045656A1
WO2018045656A1 PCT/CN2016/109530 CN2016109530W WO2018045656A1 WO 2018045656 A1 WO2018045656 A1 WO 2018045656A1 CN 2016109530 W CN2016109530 W CN 2016109530W WO 2018045656 A1 WO2018045656 A1 WO 2018045656A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
vibration information
frequency
coding sequence
information
Prior art date
Application number
PCT/CN2016/109530
Other languages
English (en)
French (fr)
Inventor
王巍
杨林
张黔
Original Assignee
广州市香港科大霍英东研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市香港科大霍英东研究院 filed Critical 广州市香港科大霍英东研究院
Publication of WO2018045656A1 publication Critical patent/WO2018045656A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • H04W12/069Authentication using certificates or pre-shared keys
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a device pairing method and apparatus.
  • mobile payment means that the user needs to place the mobile phone or the wearable device in the vicinity of the non-contact sensor to perform payment
  • the wireless data transmission refers to the smart device that uploads the health and fitness data collected by the wearable device to the vicinity thereof.
  • Mobile phone or data center refers to sending a command to a door with a wireless chip through a nearby smartphone or wearable device to open and close the door.
  • smart door lock refers to sending a command to a door with a wireless chip through a nearby smartphone or wearable device to open and close the door.
  • the interaction between these devices contains sensitive information, making the wearable device require a secure communication channel to prevent eavesdropping.
  • the embodiment of the invention provides a device pairing method and device, which can improve the security of device pairing and has a wide application range.
  • An embodiment of the present invention provides a device pairing method, including:
  • vibration information of the vibration of the touch device and acquiring vibration information of the wearable device measuring the vibration of the wearable part of the user; wherein the touch device triggers the vibration by scanning the vibration frequency within the preset frequency range after being touched by the wearable part of the user The user touched part is triggered to vibrate by touching the touched device;
  • Each vibration information is separately encoded to obtain a coding sequence of each of the vibration information
  • the coded sequence is used as a shared key to establish a communication connection between the touch device and the wearable device.
  • each of the vibration information includes each vibration frequency in the preset frequency range and its corresponding Accelerometer data
  • Each of the vibration information is encoded to obtain a coding sequence of each of the vibration information, specifically including:
  • the identification of all the resonant frequencies and all the anti-resonant frequencies from the respective vibration frequencies in the vibration information and the corresponding accelerometer data thereof respectively includes:
  • each of the resonant frequencies and the relative positions of all the anti-resonant frequencies is performed to obtain a coding sequence of each of the vibration information, specifically including:
  • All code words of each of the vibration information are arranged to obtain a coding sequence of each of the vibration information.
  • the device pairing method further includes:
  • the method further includes:
  • Each of the vibration information is filtered separately.
  • an embodiment of the present invention further provides a device pairing device, including:
  • a vibration information acquisition module configured to acquire vibration information of vibration of the touch device, and obtain vibration information of the wearable device measuring vibration of the wearable part of the user; wherein the touch device scans the preset frequency after being touched by the wearable part of the user The vibration is triggered by a vibration frequency within a range that triggers vibration by touching the touched device of the vibration;
  • An encoding module configured to separately encode each vibration information to obtain a coding sequence of each of the vibration information
  • a communication establishing module configured to establish a communication connection between the touch device and the wearable device as a shared key when detecting that the coding sequences of the two vibration information are identical.
  • each of the vibration information includes each vibration frequency in the preset frequency range and its corresponding accelerometer data
  • the encoding module specifically includes:
  • a recognition unit configured to respectively identify all resonance frequencies and all anti-resonance frequencies from respective vibration frequencies in the each vibration information and corresponding accelerometer data
  • a coding unit configured to respectively encode a relative position of all the resonance frequencies and all the anti-resonance frequencies in each of the vibration information to obtain a coding sequence of each of the vibration information.
  • the identifying unit specifically includes:
  • Obtaining a subunit configured to use a vibration frequency corresponding to the local maximum accelerometer data as a resonance frequency, and use a vibration frequency corresponding to the local minimum accelerometer data as an anti-resonance frequency to obtain each vibration information All resonance frequencies and all anti-resonance frequencies.
  • the coding unit specifically includes:
  • a frequency band dividing subunit configured to divide the entire frequency range in each of the vibration information into N frequency bands; wherein, N ⁇ 1;
  • a detecting subunit configured to sequentially detect whether there is a resonant frequency or an anti-resonant frequency in each frequency band
  • a first encoding subunit configured to divide the frequency band into M sub-bands when the frequency band is detected to have a resonant frequency or an anti-resonant frequency, and encode the resonant frequency or the anti-resonant frequency into a sub-band thereof The code word corresponding to the frequency band; wherein, M ⁇ 1;
  • a second encoding subunit configured to encode the frequency band into a predefined codeword when detecting that the frequency band does not have a resonant frequency or an anti-resonant frequency
  • a coding sequence obtaining subunit for arranging all the code words of each of the vibration information to obtain a coding sequence of each of the vibration information.
  • the device pairing device further includes:
  • a codeword replacement module configured to replace, when the coding sequences of the two pieces of vibration information are different, codewords that are different in each coding sequence from codewords that are k bits away from the coding sequence, And continue to compare the two encoded sequences after the replacement.
  • the device pairing device further includes:
  • a filtering module configured to separately filter each of the vibration information.
  • the device pairing method and device provided by the embodiment of the present invention can cause the touch device to vibrate through the touch of the touch device by the user wearing part, and drive the vibration of the wearable part of the user, thereby acquiring the vibration information of the touch device and the wearable part of the user for encoding.
  • To establish a communication connection between the touch device and the wearable device to achieve pairing of the two devices, to effectively improve the security of the device pairing, and to install a special sensor in the two devices, and the scope of application is wide; when encoding the vibration information
  • the relative position of the resonant frequency and the anti-resonant frequency in the vibration information is encoded, which effectively prevents eavesdropping and further improves the security of device pairing.
  • FIG. 1 is a schematic flow chart of an embodiment of a device pairing method provided by the present invention.
  • FIG. 3 is a schematic structural diagram of an embodiment of a device pairing device provided by the present invention.
  • a schematic flowchart of an embodiment of a device pairing method provided by the present invention includes:
  • S1 acquiring vibration information of vibration of the touch device, and acquiring vibration information of the wearable device measuring vibration of the wearable part of the user; wherein the touch device scans a vibration frequency within a preset frequency range after being touched by the wearable part of the user; When the vibration is triggered, the user touches the part by triggering the vibration by touching the touch device;
  • the coding sequence is used as a shared key to establish a communication connection between the touch device and the wearable device.
  • the vibration device and the three-axis accelerometer are installed in the touch device, and the three-axis plus is installed in the wearable device.
  • Speedometer The wearable device is worn on the wearing part of the user, wherein the wearable part of the user is generally the user's hand, and the wearable device is generally worn on the wrist of the user's hand.
  • the vibration motor in the touch device emits a vibration signal that stimulates the touch device to vibrate, thereby stimulating the user's wear site on the touch device to vibrate.
  • a three-axis accelerometer in the touch device measures the vibration response of the touch device to obtain vibration information
  • a three-axis accelerometer in the wearable device measures the vibration response of the wearable portion of the user to obtain vibration information.
  • the touch posture, the strength and the touch point of the user wearing part on the touch device are different, and the measured vibration information is also different.
  • the vibration motor in the touch device emits a vibration signal by scanning a vibration frequency within a preset frequency range.
  • the larger the frequency range the more complete the acquired vibration information, but since the maximum frequency that the three-axis accelerometer can measure is limited by its sampling frequency, and for a given frequency scanning speed, the vibration duration is proportional to the frequency range, therefore, A reasonable frequency range needs to be set. After setting the frequency range, it is necessary to increase the frequency scanning speed as much as possible to reduce the vibration duration. However, since the vibration motor takes a period of time to reach the steady state after each frequency change, the measured data in the steady state is more accurate. Therefore, in order to make the three-axis accelerometer measure the data at steady state as much as possible, the vibration motor Leave enough time before changing the frequency each time.
  • the set frequency range from 20hz to 125hz
  • the vibration duration is set to 1.75s, that is, the vibration motor is set to scan from 20hz to 125hz within 1.75s.
  • each vibration information is separately encoded to extract mutual information between the two devices, and the mutual information is used as a shared key to establish a secure channel between the touch device and the wearable device. Pairing of two devices is achieved. After the pairing is successful, the information transmission between the two devices still uses the original communication channel, such as Bluetooth, WIFI, and the like.
  • the touch device and the wearable part of the user are used to realize the pairing of the touch device and the wearable device, thereby improving the security of device pairing, and most of the wearable devices have a three-axis accelerometer, and most of the smart devices have vibrations. Motors and three-axis accelerometers are widely used in wearables and smart devices.
  • each of the vibration information includes each vibration frequency in the preset frequency range and its corresponding accelerometer data
  • Each of the vibration information is encoded to obtain a coding sequence of each of the vibration information, specifically including:
  • the vibration motor in the touch device scans the vibration frequency within the preset frequency range
  • the three-axis accelerometer in the touch device and the wearable device respectively measure the accelerometer data corresponding to each vibration frequency thereof, thereby obtaining Each vibration frequency within the preset frequency range and its corresponding accelerometer data, ie vibration information.
  • After acquiring the vibration information scan the entire frequency range in the vibration information, mark all resonance frequencies and all anti-resonance frequencies, and then combine these resonance frequencies.
  • the relative position of the rate and the anti-resonance frequency is converted into a bit sequence, thereby obtaining a coding sequence of each vibration information.
  • the two vibration information are two pole-like curves in the frequency domain, and the relative positions of the resonance frequency and the anti-resonance frequency are used to encode, thereby improving the matching rate of the device.
  • the identification of all the resonant frequencies and all the anti-resonant frequencies from the respective vibration frequencies in the vibration information and the corresponding accelerometer data thereof respectively includes:
  • each vibration information is a sinusoid in the frequency domain, and the local maximum and the local minimum can be used to identify the resonant frequency and the anti-resonant frequency.
  • the extreme values in the whole frequency range from 20hz to 125hz are selected, and the vibration frequencies R1, R2, R3, and R4 corresponding to the maximum value are recognized as the resonance frequency, and the vibration frequency corresponding to the minimum value is A1.
  • A2, A3 are identified as anti-resonance frequencies, thereby acquiring all of the resonant frequency and anti-resonant frequency in each vibration information.
  • each of the resonant frequencies and the relative positions of all the anti-resonant frequencies is performed to obtain a coding sequence of each of the vibration information, specifically including:
  • All code words of each of the vibration information are arranged to obtain a coding sequence of each of the vibration information.
  • the entire frequency range in each vibration information is evenly divided into N frequency bands to encode the relative positions of the resonance frequency and the anti-resonance frequency in the frequency band.
  • the number of divisions N of the frequency band is positively correlated with the number of resonance frequencies (or anti-resonance frequencies), for example, the frequency band of 20-125 hz has 4-8 resonance frequencies (or anti-resonance frequencies), so the frequency range is divided into 6 Frequency bands.
  • each frequency band is detected in turn, if there is no resonance frequency or anti-resonance frequency in the frequency band Rate, the frequency band is encoded into a predefined codeword, such as encoding with two bits "00"; if the frequency band has a resonant frequency or an anti-resonant frequency, the frequency band is evenly divided into M sub-bands, generally divided For the three sub-bands, and set the corresponding code words for the three sub-bands, such as "01", "11” and "10", and then detect which sub-band the resonance frequency or anti-resonance frequency is in, and the resonance frequency or The anti-resonance frequency is encoded as the codeword corresponding to the sub-band.
  • a predefined codeword such as encoding with two bits "00"
  • a resonant frequency (or anti-resonant frequency) with a larger (or smaller) amplitude is selected for encoding.
  • all of the two vibration information are arranged in the same arrangement to obtain a coding sequence of two vibration information.
  • the relative position of the resonant frequency and the anti-resonant frequency is used to encode, which can prevent the eavesdropper from narrowing the information leakage caused by the codeword in the encoded sequence, thereby further improving the security of device pairing.
  • the device pairing method further includes:
  • the coding sequence of the two vibration information may be different in some bits due to the influence of noise and local variance of mismatch.
  • an error correction code such as a forward error correction code FEC
  • FEC forward error correction code
  • a decoder is used to map different bits to a codeword whose k-bit is located in the code sequence in which it is located. Since there are only a few different bits in the coding sequence, different bits are likely to be mapped onto the same codeword.
  • the two coding sequences are compared. If the two coding sequences are identical, the coding sequence is used as a shared key to establish a communication connection between the touch device and the wearable device; if the two coding sequences are still different , can continue to replace.
  • the method further includes:
  • Each of the vibration information is filtered separately.
  • the vibration information since the movement of the wearable part of the user is unavoidable during the pairing process, the acquisition of the vibration information receives the interference of the motion artifact.
  • the acceleration caused by motion is generally much larger than the acceleration caused by vibration, making it difficult to extract the acceleration caused by vibration when acquiring vibration information.
  • the frequency of motion artifacts is concentrated in the low frequency range of 30hz to 15hz. Therefore, before encoding the vibration information, the vibration information needs to be filtered to obtain the respective vibration frequencies in the required frequency range and their corresponding Accelerometer data.
  • the minimum vibration frequency of the required frequency range generally exceeds 20 hz to avoid overlapping with the motion frequency of the wearable portion of the user.
  • due to the influence of local variance there are multiple peaks near a resonant frequency or anti-resonant frequency, so a moving average filter is used to eliminate these local variances before encoding.
  • the device pairing method provided by the embodiment of the present invention can cause the touch device to vibrate through the touch of the touch device by the user wearing part, and drive the vibration of the wearable part of the user, thereby acquiring the vibration information of the touch device and the wearable part of the user.
  • the relative position of the resonant frequency and the anti-resonant frequency in the vibration information is encoded, which effectively prevents eavesdropping and further improves the security of device pairing.
  • the present invention further provides a device pairing device, which can implement all the processes of the device pairing method in the foregoing embodiment.
  • FIG. 3 is a schematic structural diagram of an embodiment of a device pairing device provided by the present invention, including:
  • the vibration information acquisition module 1 is configured to acquire vibration information of the vibration of the touch device, and acquire vibration information of the wearable device measuring the vibration of the wearable part of the user; wherein the touch device scans the preset frequency after being touched by the wearable part of the user The vibration is triggered by a vibration frequency within a range that triggers vibration by touching the touched device of the vibration;
  • the encoding module 2 is configured to separately encode each vibration information to obtain a coding sequence of each of the vibration information
  • the communication establishing module 3 is configured to establish a communication connection between the touch device and the wearable device as a shared key when detecting that the coding sequences of the two vibration information are identical.
  • each of the vibration information includes each vibration frequency in the preset frequency range and its corresponding accelerometer data
  • the encoding module specifically includes:
  • a recognition unit configured to respectively identify all resonance frequencies and all anti-resonance frequencies from respective vibration frequencies in the each vibration information and corresponding accelerometer data
  • a coding unit configured to respectively encode a relative position of all the resonance frequencies and all the anti-resonance frequencies in each of the vibration information to obtain a coding sequence of each of the vibration information.
  • the identifying unit specifically includes:
  • Obtaining a subunit configured to use a vibration frequency corresponding to the local maximum accelerometer data as a resonance frequency, and use a vibration frequency corresponding to the local minimum accelerometer data as an anti-resonance frequency to obtain each vibration information All resonance frequencies and all anti-resonance frequencies.
  • the coding unit specifically includes:
  • a frequency band dividing subunit configured to divide the entire frequency range in each of the vibration information into N frequency bands; N ⁇ 1;
  • a detecting subunit configured to sequentially detect whether there is a resonant frequency or an anti-resonant frequency in each frequency band
  • a first encoding subunit configured to divide the frequency band into M sub-bands when the frequency band is detected to have a resonant frequency or an anti-resonant frequency, and encode the resonant frequency or the anti-resonant frequency into a sub-band thereof The code word corresponding to the frequency band; wherein, M ⁇ 1;
  • a second encoding subunit configured to encode the frequency band into a predefined codeword when detecting that the frequency band does not have a resonant frequency or an anti-resonant frequency
  • a coding sequence acquisition subunit for arranging all codewords for each of the vibration information to obtain a coding sequence of each of the vibration information.
  • the device pairing device further includes:
  • a codeword replacement module configured to replace, when the coding sequences of the two pieces of vibration information are different, codewords that are different in each coding sequence from codewords that are k bits away from the coding sequence, And continue to compare the two encoded sequences after the replacement.
  • the device pairing device further includes:
  • a filtering module configured to separately filter each of the vibration information.
  • the device pairing device provided by the embodiment of the present invention can cause the touch device to vibrate through the touch of the touch device by the wearable portion of the user, and drive the vibration of the wearable portion of the user, thereby acquiring the vibration information of the touch device and the wearable portion of the user for encoding.
  • Establish a communication connection between the touch device and the wearable device realize pairing between the two devices, effectively improve the security of device pairing, and eliminate the need to install special sensors in the two devices, and have a wide application range; when encoding the vibration information, adopt The relative position of the resonant frequency and the anti-resonant frequency in the vibration information is encoded, which effectively prevents eavesdropping and further improves the security of device pairing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • User Interface Of Digital Computer (AREA)
  • Position Input By Displaying (AREA)
  • Telephone Function (AREA)

Abstract

本发明公开了一种设备配对方法,包括:获取触摸设备振动的振动信息,并获取可穿戴设备测量用户穿戴部位振动的振动信息;其中,所述触摸设备是在被所述用户穿戴部位触摸后扫描预设频率范围内的振动频率而触发振动的,所述用户触摸部位是通过触摸振动的所述触摸设备而触发振动的;分别对每个振动信息进行编码,获得所述每个振动信息的编码序列;在检测到两个振动信息的编码序列完全相同时,将所述编码序列作为共享密钥建立所述触摸设备和所述可穿戴设备的通信连接。相应的,本发明还公开了一种设备配对装置。采用本发明实施例,能够提高设备配对的安全性,且适用范围广。

Description

一种设备配对方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种设备配对方法及装置。
背景技术
与附近的设备进行交互成为如今可穿戴设备的固有特征,这源于许多创新性应用程序向用户提供的不显眼体验,例如移动支付、无线数据传输和智能门锁等。其中,移动支付是指用户近需将手机或可穿戴设备放置在非接触式感应器附近即可进行支付;无线数据传输是指将可穿戴设备采集到的健康、健身数据上传到其附近的智能手机或数据中心;智能门锁是指通过附近的智能手机或可穿戴设备发送指令给具有无线芯片的门以实现开门和关门。但是,这些设备之间的交互都包含了敏感信息,使得可穿戴设备需要安全的通信信道来防止窃听。
目前,在两个设备之间建立安全连接的方式是基于双方秘密共享的互信息,例如,手动输入PIN(Personal Identification Number)码、预先定义的手势、专用传感器使用的辅助信道所产生的比特和环境信号等。然而,现在的可穿戴设备缺少惯用的输入接口和用以支持安全配对技术的特殊传感器。例如,很多腕带健身追踪器仅仅配备振动马达和加速计,而不具有触摸屏来输入PIN码,也不具有光传感器来捕捉激光信号,更不具有麦克风来记录环境声音。此外,基于环境信号的方法严重依赖连续的环境信号,使其很容易受到窃听者的攻击。
发明内容
本发明实施例提出一种设备配对方法及装置,能够提高设备配对的安全性,且适用范围广。
本发明实施例提供一种设备配对方法,包括:
获取触摸设备振动的振动信息,并获取可穿戴设备测量用户穿戴部位振动的振动信息;其中,所述触摸设备是在被所述用户穿戴部位触摸后扫描预设频率范围内的振动频率而触发振动的,所述用户触摸部位是通过触摸振动的所述触摸设备而触发振动的;
分别对每个振动信息进行编码,获得所述每个振动信息的编码序列;
在检测到两个振动信息的编码序列完全相同时,将所述编码序列作为共享密钥建立所述触摸设备和所述可穿戴设备的通信连接。
进一步地,所述每个振动信息均包括所述预设频率范围内的各个振动频率及其所对应的 加速计数据;
所述分别对每个振动信息进行编码,获得所述每个振动信息的编码序列,具体包括:
分别从所述每个振动信息中的各个振动频率及其所对应的加速计数据中识别出所有共振频率和所有反共振频率;
分别对所述每个振动信息中的所有共振频率和所有反共振频率所处的相对位置进行编码,获得所述每个振动信息的编码序列。
进一步地,所述分别从所述每个振动信息中的各个振动频率及其所对应的加速计数据中识别出所有共振频率和所有反共振频率,具体包括:
采用预设的滑动窗分别在所述每个振动信息中的整个频率范围内滑动,并从每个滑动窗中最多选取一个局部最大加速计数据和一个局部最小加速计数据;
将所述局部最大加速计数据所对应的振动频率作为共振频率,并将所述局部最小加速计数据所对应的振动频率作为反共振频率,以获得所述每个振动信息中的所有共振频率和所有反共振频率。
进一步地,所述分别对所述每个振动信息中的所有共振频率和所有反共振频率所处的相对位置进行编码,获得所述每个振动信息的编码序列,具体包括:
将所述每个振动信息中的整个频率范围划分为N个频段;其中,N≥1;
依次检测每个频段中是否具有共振频率或反共振频率;
若是,则将所述频段划分为M个子频段,并将所述共振频率或所述反共振频率编码为其所处子频段所对应的码字;其中,M≥1;
若否,则将所述频段编码为预先定义的码字;
将所述每个振动信息的所有码字进行排列,获得所述每个振动信息的编码序列。
进一步地,所述设备配对方法还包括:
在检测到所述两个振动信息的编码序列不相同时,分别将每个编码序列中不相同的码字替换为所述编码序列中距离其k比特的码字,并继续对替换后的两个编码序列进行比较。
进一步地,在所述分别对每个振动信息进行编码,获得所述每个振动信息的编码序列之前,还包括:
分别对所述每个振动信息进行过滤。
相应地,本发明实施例还提供一种设备配对装置,包括:
振动信息获取模块,用于获取触摸设备振动的振动信息,并获取可穿戴设备测量用户穿戴部位振动的振动信息;其中,所述触摸设备是在被所述用户穿戴部位触摸后扫描预设频率 范围内的振动频率而触发振动的,所述用户触摸部位是通过触摸振动的所述触摸设备而触发振动的;
编码模块,用于分别对每个振动信息进行编码,获得所述每个振动信息的编码序列;以及,
通信建立模块,用于在检测到两个振动信息的编码序列完全相同时,将所述编码序列作为共享密钥建立所述触摸设备和所述可穿戴设备的通信连接。
进一步地,所述每个振动信息均包括所述预设频率范围内的各个振动频率及其所对应的加速计数据;
所述编码模块具体包括:
识别单元,用于分别从所述每个振动信息中的各个振动频率及其所对应的加速计数据中识别出所有共振频率和所有反共振频率;以及,
编码单元,用于分别对所述每个振动信息中的所有共振频率和所有反共振频率所处的相对位置进行编码,获得所述每个振动信息的编码序列。
进一步地,所述识别单元具体包括:
选取子单元,用于采用预设的滑动窗分别在所述每个振动信息中的整个频率范围内滑动,并从每个滑动窗中最多选取一个局部最大加速计数据和一个局部最小加速计数据;以及,
获取子单元,用于将所述局部最大加速计数据所对应的振动频率作为共振频率,并将所述局部最小加速计数据所对应的振动频率作为反共振频率,以获得所述每个振动信息中的所有共振频率和所有反共振频率。
进一步地,所述编码单元具体包括:
频段划分子单元,用于将所述每个振动信息中的整个频率范围划分为N个频段;其中,N≥1;
检测子单元,用于依次检测每个频段中是否具有共振频率或反共振频率;
第一编码子单元,用于在检测到所述频段具有共振频率或反共振频率时,将所述频段划分为M个子频段,并将所述共振频率或所述反共振频率编码为其所处子频段所对应的码字;其中,M≥1;
第二编码子单元,用于在检测到所述频段不具有共振频率或反共振频率时,将所述频段编码为预先定义的码字;以及,
编码序列获取子单元,用于将所述每个振动信息的所有码字进行排列,获得所述每个振动信息的编码序列。
进一步地,所述设备配对装置还包括:
码字替换模块,用于在检测到所述两个振动信息的编码序列不相同时,分别将每个编码序列中不相同的码字替换为所述编码序列中距离其k比特的码字,并继续对替换后的两个编码序列进行比较。
进一步地,所述设备配对装置还包括:
过滤模块,用于分别对所述每个振动信息进行过滤。
实施本发明实施例,具有如下有益效果:
本发明实施例提供的设备配对方法及装置,能够通过用户穿戴部位对触摸设备的触摸而引起触摸设备的振动,并带动用户穿戴部位的振动,进而获取触摸设备和用户穿戴部位的振动信息进行编码,以建立触摸设备和可穿戴设备的通信连接,实现两个设备的配对,有效提高设备配对的安全性,且无需在两个设备中安装特殊传感器,适用范围广;在对振动信息进行编码时,采用对振动信息中的共振频率和反共振频率的相对位置进行编码,有效防止窃听,进一步提高设备配对的安全性。
附图说明
图1是本发明提供的设备配对方法的一个实施例的流程示意图;
图2是本发明提供的振动信息中的频率与加速计数据的对应关系图;
图3是本发明提供的设备配对装置的一个实施例的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,本发明提供的设备配对方法的一个实施例的流程示意图,包括:
S1、获取触摸设备振动的振动信息,并获取可穿戴设备测量用户穿戴部位振动的振动信息;其中,所述触摸设备是在被所述用户穿戴部位触摸后扫描预设频率范围内的振动频率而触发振动的,所述用户触摸部位是通过触摸振动的所述触摸设备而触发振动的;
S2、分别对每个振动信息进行编码,获得所述每个振动信息的编码序列;
S3、在检测到两个振动信息的编码序列完全相同时,将所述编码序列作为共享密钥建立所述触摸设备和所述可穿戴设备的通信连接。
需要说明的是,触摸设备中安装有振动马达和三轴加速计,可穿戴设备中安装有三轴加 速计。可穿戴设备佩戴于用户穿戴部位上,其中,用户穿戴部位一般为用户手部,可穿戴设备一般佩戴于用户手部的手腕处。在用户穿戴部位触摸在触摸设备上时,触摸设备中的振动马达发出振动信号,该振动信号刺激触摸设备振动,进而刺激触摸在触摸设备上的用户穿戴部位振动。触摸设备中的三轴加速计测量触摸设备的振动响应以获得振动信息,可穿戴设备中的三轴加速计测量用户穿戴部位的振动响应以获得振动信息。其中,用户穿戴部位在触摸设备上的触摸姿势、力度和触摸点不同,测量到的振动信息也不同。
其中,触摸设备中的振动马达通过扫描预设频率范围内的振动频率以发出振动信号。频率范围越大,获取的振动信息越完整,但由于三轴加速计能够测量到的最大频率受限于其采样频率,且对于给定的频率扫描速度,振动时长与频率范围成正比,因此,需设定合理的频率范围。在设定好频率范围后,需尽可能提高频率扫描速度以降低振动时长。但由于振动马达在每次改变频率后,需一段时间才能达到稳态,而稳态时测量到的数据更加准确,因此,为了使三轴加速计尽可能测量稳态时的数据,在振动马达每次改变频率前都需留有足够长的时间。优选地,设定频率范围为20hz到125hz,设定振动时长为1.75s,即设定振动马达在1.75s内从20hz扫描到125hz。
在获取两个振动信息后,分别对每个振动信息进行编码以提取出两个设备之间的互信息,进而将该互信息作为共享密钥建立触摸设备和可穿戴设备之间的安全信道,实现两个设备的配对。在配对成功后,两个设备之间的信息传输仍使用原来的通信信道,如蓝牙、WIFI等。采用触摸设备与用户穿戴部位的共振方式来实现触摸设备和可穿戴设备的配对,提高设备配对的安全性,且大多数可穿戴设备中均具有三轴加速计,大多数智能设备中均具有振动马达和三轴加速计,从而广泛适用于可穿戴设备和智能设备中。
进一步地,所述每个振动信息均包括所述预设频率范围内的各个振动频率及其所对应的加速计数据;
所述分别对每个振动信息进行编码,获得所述每个振动信息的编码序列,具体包括:
分别从所述每个振动信息中的各个振动频率及其所对应的加速计数据中识别出所有共振频率和所有反共振频率;
分别对所述每个振动信息中的所有共振频率和所有反共振频率所处的相对位置进行编码,获得所述每个振动信息的编码序列。
需要说明的是,触摸设备中的振动马达在扫描预设频率范围内的振动频率时,触摸设备和可穿戴设备中的三轴加速计各自测量其各个振动频率所对应的加速计数据,从而获得预设频率范围内的各个振动频率及其所对应的加速计数据,即振动信息。在获取振动信息后,扫描振动信息中的整个频率范围,标记出所有共振频率和所有反共振频率,然后将这些共振频 率和反共振频率的相对位置转换为比特序列,从而获得每个振动信息的编码序列。两个振动信息在频域上为两条极相似的曲线,采用共振频率和反共振频率的相对位置进行编码,提高设备的匹配率。
进一步地,所述分别从所述每个振动信息中的各个振动频率及其所对应的加速计数据中识别出所有共振频率和所有反共振频率,具体包括:
采用预设的滑动窗分别在所述每个振动信息中的整个频率范围内滑动,并从每个滑动窗中最多选取一个局部最大加速计数据和一个局部最小加速计数据;
将所述局部最大加速计数据所对应的振动频率作为共振频率,并将所述局部最小加速计数据所对应的振动频率作为反共振频率,以获得所述每个振动信息中的所有共振频率和所有反共振频率。
需要说明的是,每个振动信息在频域上均为一条正弦曲线,可采用局部最大值和局部最小值的方式来识别共振频率和反共振频率。先设定一个滑动窗在振动信息的整个频率范围内滑动,并找到每个滑动窗的极大值和极小值。由于局部方差的影响,在共振频率或反共振频率附近可能会有多个极值,为避免极值的重复选取,在每个滑动窗中最多选取一个最优的极大值和一个最优的极小值,而舍弃其他极值。在选取极值后,将选取的极大值所对应的振动频率识别为共振频率,将选取的极小值所对应的振动频率识别为反共振频率。如图2所示,选取整个频率范围20hz到125hz内的极值,并将极大值所对应的振动频率R1、R2、R3、R4识别为共振频率,将极小值所对应的振动频率A1、A2、A3识别为反共振频率,从而获取每个振动信息中的所有共振频率和反共振频率。
进一步地,所述分别对所述每个振动信息中的所有共振频率和所有反共振频率所处的相对位置进行编码,获得所述每个振动信息的编码序列,具体包括:
将所述每个振动信息中的整个频率范围划分为N个频段;其中,N≥1;
依次检测每个频段中是否具有共振频率或反共振频率;
若是,则将所述频段划分为M个子频段,并将所述共振频率或所述反共振频率编码为其所处子频段所对应的码字;其中,M≥1;
若否,则将所述频段编码为预先定义的码字;
将所述每个振动信息的所有码字进行排列,获得所述每个振动信息的编码序列。
需要说明的是,将每个振动信息中的整个频率范围均匀划分为N个频段以对共振频率和反共振频率在频段中的相对位置进行编码。其中,频段的划分个数N与共振频率(或反共振频率)的个数呈正相关,例如,20-125hz频段具有4-8个共振频率(或反共振频率),因此将频率范围划分为6个频段。划分后,依次检测每个频段,若频段中没有共振频率或反共振频 率,则将该频段编码为预先定义的码字,如采用两个比特“00”进行编码;若频段中具有共振频率或反共振频率,则将该频段再均匀划分为M个子频段,一般划分为3个子频段,并给3个子频段分别设定相应的码字,如“01”、“11”和“10”,再检测共振频率或反共振频率位于哪个子频段中,并将共振频率或反共振频率编码为该子频段所对应的码字。若一个频段中具有多个共振频率(或反共振频率),则选择具有更大(或更小)振幅的共振频率(或反共振频率)来进行编码。编码后,采用相同的排列方式对两个振动信息中的所有码字进行排列,从而获得两个振动信息的编码序列。采用共振频率和反共振频率的相对位置进行编码,可以避免窃听者通过推测编码序列中的码字导致的信息泄露,进一步提高设备配对的安全性。
进一步地,所述设备配对方法还包括:
在检测到所述两个振动信息的编码序列不相同时,分别将每个编码序列中不相同的码字替换为所述编码序列中距离其k比特的码字,并继续对替换后的两个编码序列进行比较。
需要说明的是,在编码后,由于噪音和不匹配的局部方差的影响,两个振动信息的编码序列在一些比特位上可能存在不同。为了纠正这些不同的比特位,采用错误校正码,如前向纠错码FEC来将不同的比特位替换为统一的码字。具体为,采用一个解码器将不同的比特位映射到其所在编码序列中距离其k比特的码字上。由于编码序列中仅存在少数不同的比特位,因此不同的比特位很可能被映射到相同的码字上。替换后,再对两个编码序列进行比较,若两个编码序列完全相同,则将该编码序列作为共享密钥建立触摸设备和可穿戴设备之间的通信连接;若两个编码序列仍不相同,可继续进行替换。
进一步地,在所述分别对每个振动信息进行编码,获得所述每个振动信息的编码序列之前,还包括:
分别对所述每个振动信息进行过滤。
需要说明的是,由于在配对过程中,用户穿戴部位的运动是不可避免的,使得振动信息的获取收到运动伪影的干扰。而运动引起的加速度一般比振动引起的加速度大很多,使得在获取振动信息时很难提取振动引起的加速度。但是,运动伪影的频率集中在30hz到15hz的低频率范围内,因此,在对振动信息进行编码前,还需对振动信息进行过滤,获取所需频率范围内的各个振动频率及其对应的加速计数据。其中,所需频率范围的最小振动频率一般超过20hz,以避免与用户穿戴部位的运动频率重叠。同时,由于局部方差的影响,一个共振频率或反共振频率附近具有多个峰值,因此在编码前采用一个移动平均滤波器来消除这些局部方差。
本发明实施例提供的设备配对方法,能够通过用户穿戴部位对触摸设备的触摸而引起触摸设备的振动,并带动用户穿戴部位的振动,进而获取触摸设备和用户穿戴部位的振动信息 进行编码,以建立触摸设备和可穿戴设备的通信连接,实现两个设备的配对,有效提高设备配对的安全性,且无需在两个设备中安装特殊传感器,适用范围广;在对振动信息进行编码时,采用对振动信息中的共振频率和反共振频率的相对位置进行编码,有效防止窃听,进一步提高设备配对的安全性。
相应的,本发明还提供一种设备配对装置,能够实现上述实施例中的设备配对方法的所有流程。
参见图3,是本发明提供的设备配对装置的一个实施例的结构示意图,包括:
振动信息获取模块1,用于获取触摸设备振动的振动信息,并获取可穿戴设备测量用户穿戴部位振动的振动信息;其中,所述触摸设备是在被所述用户穿戴部位触摸后扫描预设频率范围内的振动频率而触发振动的,所述用户触摸部位是通过触摸振动的所述触摸设备而触发振动的;
编码模块2,用于分别对每个振动信息进行编码,获得所述每个振动信息的编码序列;以及,
通信建立模块3,用于在检测到两个振动信息的编码序列完全相同时,将所述编码序列作为共享密钥建立所述触摸设备和所述可穿戴设备的通信连接。
进一步地,所述每个振动信息均包括所述预设频率范围内的各个振动频率及其所对应的加速计数据;
所述编码模块具体包括:
识别单元,用于分别从所述每个振动信息中的各个振动频率及其所对应的加速计数据中识别出所有共振频率和所有反共振频率;以及,
编码单元,用于分别对所述每个振动信息中的所有共振频率和所有反共振频率所处的相对位置进行编码,获得所述每个振动信息的编码序列。
进一步地,所述识别单元具体包括:
选取子单元,用于采用预设的滑动窗分别在所述每个振动信息中的整个频率范围内滑动,并从每个滑动窗中最多选取一个局部最大加速计数据和一个局部最小加速计数据;以及,
获取子单元,用于将所述局部最大加速计数据所对应的振动频率作为共振频率,并将所述局部最小加速计数据所对应的振动频率作为反共振频率,以获得所述每个振动信息中的所有共振频率和所有反共振频率。
进一步地,所述编码单元具体包括:
频段划分子单元,用于将所述每个振动信息中的整个频率范围划分为N个频段;其中, N≥1;
检测子单元,用于依次检测每个频段中是否具有共振频率或反共振频率;
第一编码子单元,用于在检测到所述频段具有共振频率或反共振频率时,将所述频段划分为M个子频段,并将所述共振频率或所述反共振频率编码为其所处子频段所对应的码字;其中,M≥1;
第二编码子单元,用于在检测到所述频段不具有共振频率或反共振频率时,将所述频段编码为预先定义的码字;以及,
编码序列获取子单元,用于所述每个振动信息的将所有码字进行排列,获得所述每个振动信息的编码序列。
进一步地,所述设备配对装置还包括:
码字替换模块,用于在检测到所述两个振动信息的编码序列不相同时,分别将每个编码序列中不相同的码字替换为所述编码序列中距离其k比特的码字,并继续对替换后的两个编码序列进行比较。
进一步地,所述设备配对装置还包括:
过滤模块,用于分别对所述每个振动信息进行过滤。
本发明实施例提供的设备配对装置,能够通过用户穿戴部位对触摸设备的触摸而引起触摸设备的振动,并带动用户穿戴部位的振动,进而获取触摸设备和用户穿戴部位的振动信息进行编码,以建立触摸设备和可穿戴设备的通信连接,实现两个设备的配对,有效提高设备配对的安全性,且无需在两个设备中安装特殊传感器,适用范围广;在对振动信息进行编码时,采用对振动信息中的共振频率和反共振频率的相对位置进行编码,有效防止窃听,进一步提高设备配对的安全性。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (12)

  1. 一种设备配对方法,其特征在于,包括:
    获取触摸设备振动的振动信息,并获取可穿戴设备测量用户穿戴部位振动的振动信息;其中,所述触摸设备是在被所述用户穿戴部位触摸后扫描预设频率范围内的振动频率而触发振动的,所述用户触摸部位是通过触摸振动的所述触摸设备而触发振动的;
    分别对每个振动信息进行编码,获得所述每个振动信息的编码序列;
    在检测到两个振动信息的编码序列完全相同时,将所述编码序列作为共享密钥建立所述触摸设备和所述可穿戴设备的通信连接。
  2. 如权利要求1所述的设备配对方法,其特征在于,所述每个振动信息均包括所述预设频率范围内的各个振动频率及其所对应的加速计数据;
    所述分别对每个振动信息进行编码,获得所述每个振动信息的编码序列,具体包括:
    分别从所述每个振动信息中的各个振动频率及其所对应的加速计数据中识别出所有共振频率和所有反共振频率;
    分别对所述每个振动信息中的所有共振频率和所有反共振频率所处的相对位置进行编码,获得所述每个振动信息的编码序列。
  3. 如权利要求2所述的设备配对方法,其特征在于,所述分别从所述每个振动信息中的各个振动频率及其所对应的加速计数据中识别出所有共振频率和所有反共振频率,具体包括:
    采用预设的滑动窗分别在所述每个振动信息中的整个频率范围内滑动,并从每个滑动窗中最多选取一个局部最大加速计数据和一个局部最小加速计数据;
    将所述局部最大加速计数据所对应的振动频率作为共振频率,并将所述局部最小加速计数据所对应的振动频率作为反共振频率,以获得所述每个振动信息中的所有共振频率和所有反共振频率。
  4. 如权利要求2所述的设备配对方法,其特征在于,所述分别对所述每个振动信息中的所有共振频率和所有反共振频率所处的相对位置进行编码,获得所述每个振动信息的编码序列,具体包括:
    将所述每个振动信息中的整个频率范围划分为N个频段;其中,N≥1;
    依次检测每个频段中是否具有共振频率或反共振频率;
    若是,则将所述频段划分为M个子频段,并将所述共振频率或所述反共振频率编码为其 所处子频段所对应的码字;其中,M≥1;
    若否,则将所述频段编码为预先定义的码字;
    将所述每个振动信息的所有码字进行排列,获得所述每个振动信息的编码序列。
  5. 如权利要求4所述的设备配对方法,其特征在于,所述设备配对方法还包括:
    在检测到所述两个振动信息的编码序列不相同时,分别将每个编码序列中不相同的码字替换为所述编码序列中距离其k比特的码字,并继续对替换后的两个编码序列进行比较。
  6. 如权利要求1至5任一项所述的设备配对方法,其特征在于,在所述分别对每个振动信息进行编码,获得所述每个振动信息的编码序列之前,还包括:
    分别对所述每个振动信息进行过滤。
  7. 一种设备配对装置,其特征在于,包括:
    振动信息获取模块,用于获取触摸设备振动的振动信息,并获取可穿戴设备测量用户穿戴部位振动的振动信息;其中,所述触摸设备是在被所述用户穿戴部位触摸后扫描预设频率范围内的振动频率而触发振动的,所述用户触摸部位是通过触摸振动的所述触摸设备而触发振动的;
    编码模块,用于分别对每个振动信息进行编码,获得所述每个振动信息的编码序列;以及,
    通信建立模块,用于在检测到两个振动信息的编码序列完全相同时,将所述编码序列作为共享密钥建立所述触摸设备和所述可穿戴设备的通信连接。
  8. 如权利要求7所述的设备配对装置,其特征在于,所述每个振动信息均包括所述预设频率范围内的各个振动频率及其所对应的加速计数据;
    所述编码模块具体包括:
    识别单元,用于分别从所述每个振动信息中的各个振动频率及其所对应的加速计数据中识别出所有共振频率和所有反共振频率;以及,
    编码单元,用于分别对所述每个振动信息中的所有共振频率和所有反共振频率所处的相对位置进行编码,获得所述每个振动信息的编码序列。
  9. 如权利要求8所述的设备配对装置,其特征在于,所述识别单元具体包括:
    选取子单元,用于采用预设的滑动窗分别在所述每个振动信息中的整个频率范围内滑动, 并从每个滑动窗中最多选取一个局部最大加速计数据和一个局部最小加速计数据;以及,
    获取子单元,用于将所述局部最大加速计数据所对应的振动频率作为共振频率,并将所述局部最小加速计数据所对应的振动频率作为反共振频率,以获得所述每个振动信息中的所有共振频率和所有反共振频率。
  10. 如权利要求8所述的设备配对装置,其特征在于,所述编码单元具体包括:
    频段划分子单元,用于将所述每个振动信息中的整个频率范围划分为N个频段;其中,N≥1;
    检测子单元,用于依次检测每个频段中是否具有共振频率或反共振频率;
    第一编码子单元,用于在检测到所述频段具有共振频率或反共振频率时,将所述频段划分为M个子频段,并将所述共振频率或所述反共振频率编码为其所处子频段所对应的码字;其中,M≥1;
    第二编码子单元,用于在检测到所述频段不具有共振频率或反共振频率时,将所述频段编码为预先定义的码字;以及,
    编码序列获取子单元,用于将所述每个振动信息的所有码字进行排列,获得所述每个振动信息的编码序列。
  11. 如权利要求10所述的设备配对装置,其特征在于,所述设备配对装置还包括:
    码字替换模块,用于在检测到所述两个振动信息的编码序列不相同时,分别将每个编码序列中不相同的码字替换为所述编码序列中距离其k比特的码字,并继续对替换后的两个编码序列进行比较。
  12. 如权利要求7至11任一项所述的设备配对装置,其特征在于,所述设备配对装置还包括:
    过滤模块,用于分别对所述每个振动信息进行过滤。
PCT/CN2016/109530 2016-09-06 2016-12-12 一种设备配对方法及装置 WO2018045656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610806289.5 2016-09-06
CN201610806289.5A CN106255045B (zh) 2016-09-06 2016-09-06 一种设备配对方法及装置

Publications (1)

Publication Number Publication Date
WO2018045656A1 true WO2018045656A1 (zh) 2018-03-15

Family

ID=57598633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109530 WO2018045656A1 (zh) 2016-09-06 2016-12-12 一种设备配对方法及装置

Country Status (2)

Country Link
CN (1) CN106255045B (zh)
WO (1) WO2018045656A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111246458A (zh) * 2020-01-08 2020-06-05 广东小天才科技有限公司 穿戴设备的安全配对方法、装置、电子书设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7146425B2 (ja) * 2018-03-19 2022-10-04 ソニーグループ株式会社 情報処理装置、情報処理方法及び記録媒体
CN111405539B (zh) * 2020-05-20 2023-08-01 孙瑛楠 设备间建立无线连接的方法、装置、设备及其存储介质
CN114339710A (zh) * 2020-10-09 2022-04-12 华为技术有限公司 一种无线连接的方法、装置、电子设备以及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283175A (zh) * 2010-12-28 2013-09-04 日本电气株式会社 密钥的生成方法
CN103795537A (zh) * 2013-10-29 2014-05-14 清华大学 认证方法及终端设备
CN104618339A (zh) * 2014-12-31 2015-05-13 上海宵诺网络科技有限公司 一种用户线下配对的方法以及移动终端、服务器
CN104918208A (zh) * 2015-05-29 2015-09-16 努比亚技术有限公司 移动终端配对方法及移动终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104010268A (zh) * 2014-04-24 2014-08-27 英华达(上海)科技有限公司 一种穿戴式智能设备与终端之间配对的方法及系统
CN105207779A (zh) * 2015-08-13 2015-12-30 北京豪络科技有限公司 一种安全手环及信息加密与验证系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283175A (zh) * 2010-12-28 2013-09-04 日本电气株式会社 密钥的生成方法
CN103795537A (zh) * 2013-10-29 2014-05-14 清华大学 认证方法及终端设备
CN104618339A (zh) * 2014-12-31 2015-05-13 上海宵诺网络科技有限公司 一种用户线下配对的方法以及移动终端、服务器
CN104918208A (zh) * 2015-05-29 2015-09-16 努比亚技术有限公司 移动终端配对方法及移动终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111246458A (zh) * 2020-01-08 2020-06-05 广东小天才科技有限公司 穿戴设备的安全配对方法、装置、电子书设备及存储介质
CN111246458B (zh) * 2020-01-08 2024-02-27 广东小天才科技有限公司 穿戴设备的安全配对方法、装置、电子书设备及存储介质

Also Published As

Publication number Publication date
CN106255045B (zh) 2019-12-03
CN106255045A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
WO2018045656A1 (zh) 一种设备配对方法及装置
US9747433B2 (en) Wearable electronic device and method for securing same
US9654978B2 (en) Asset accessibility with continuous authentication for mobile devices
US20180068671A1 (en) System and method for authenticating voice commands for a voice assistant
CN106250751B (zh) 一种移动设备及调整体征信息检测阈值的方法
US20130257804A1 (en) Method, apparatus, and system for capacitive touch communication
CN109076077B (zh) 具有基于姿势的访问控制的安全系统
CN104919778A (zh) 将经加密帐户凭证从第一装置提供到第二装置
CN106796643A (zh) 对电子装置进行存取的自动授权
KR20080113102A (ko) 거리 기반 보안
US20170374065A1 (en) Method and apparatus for performing operations associated with biometric templates
WO2016089540A1 (en) Human motion detection
EP3140765B1 (en) User authentication based on body tremors
CN105011486A (zh) 一种智能手环及其解锁终端设备的方法
US20170118639A1 (en) Watches for use in time-dependent authentication systems, and methods of use thereof in authentication protocols
Vu et al. Capacitive touch communication: A technique to input data through devices' touch screen
US20230376151A1 (en) Systems, methods and apparatus for through skin communication and noise disambiguation
CN106658259A (zh) 一种耳机控制方法及耳机
US20220011113A1 (en) Inertial measurement units as vibroacoustic data receivers
Shang et al. AudioKey: a usable device pairing system using audio signals on smartwatches
Liu et al. Feasibility of using gyroscope to derive keys for mobile phone and smart wearable
US10581853B2 (en) Method and apparatus for password management
EP3657756B1 (en) Method for authenticated biometric transactions
CN118230372A (zh) 一种可穿戴设备的监测方法及相关装置
KR102063903B1 (ko) 기계 학습을 이용한 전자기 간섭 신호의 처리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915590

Country of ref document: EP

Kind code of ref document: A1