WO2018045557A1 - 一种光刻设备和光刻系统 - Google Patents

一种光刻设备和光刻系统 Download PDF

Info

Publication number
WO2018045557A1
WO2018045557A1 PCT/CN2016/098563 CN2016098563W WO2018045557A1 WO 2018045557 A1 WO2018045557 A1 WO 2018045557A1 CN 2016098563 W CN2016098563 W CN 2016098563W WO 2018045557 A1 WO2018045557 A1 WO 2018045557A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithographic apparatus
light
optical switch
sub
optical
Prior art date
Application number
PCT/CN2016/098563
Other languages
English (en)
French (fr)
Inventor
朗诺斯弗洛里安
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680058663.6A priority Critical patent/CN108139687B/zh
Priority to PCT/CN2016/098563 priority patent/WO2018045557A1/zh
Publication of WO2018045557A1 publication Critical patent/WO2018045557A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/213Exposing with the same light pattern different positions of the same surface at the same time

Definitions

  • the present invention relates to the field of semiconductor fabrication, and more particularly to a lithographic apparatus and a lithography system.
  • Lithography refers to a method of forming a circuit pattern on a substrate by photolithography using a mask or using interference light during the fabrication of a wafer.
  • lithographic apparatus forms an interference pattern by a single focusing lens, and when it is desired to prepare a periodic pattern on a larger substrate surface, it is necessary to translate the carrier carrying the substrate by a translational stepping device and requires a complicated alignment step due to The translational stepping device is expensive and inaccurate, and the existing lithographic apparatus has a problem of low processing efficiency and low pattern accuracy.
  • the present invention provides a lithographic apparatus and a lithography system, by using an optical switch and at least two photonic devices to form an interference pattern on a surface of a substrate, which can avoid translating the substrate, thereby improving lithography processing. Efficiency and accuracy of the interference pattern.
  • a lithographic apparatus comprising: an optical switch and N photonic devices, the optical switch comprising N sub-optical switches, the N sub-optical switches and the N photonic devices
  • the N is a positive integer and N ⁇ 2
  • the state of each sub-optical switch includes an on state and a off state, and the sub-optical switch in the on state is used to transmit the beam to the corresponding photonic device, in a closed state
  • the optical switch is unable to transmit the beam to the corresponding photonic device
  • each photonic device includes a beam splitting device and a focusing lens
  • the beam splitting device is configured to split a beam received from the corresponding sub-optical switch into at least two beams, and Transmitting the at least two beams to the focusing lens
  • the focusing lens is configured to focus the at least two beams onto a substrate to form an interference pattern.
  • the lithographic apparatus forms an interference pattern on the surface of the substrate by at least two photonic devices, and controls the incident light beam entering the photonic device through the sub-optical switches corresponding to the at least two photonic devices, so that the lithographic apparatus
  • the sub-optical switch can be turned on according to the pattern to be prepared or the sub-optical switch can be turned off, and the desired pattern can be prepared without changing the relative position of the lithographic apparatus and the substrate, thereby avoiding the translation step and the alignment step, thereby improving the lithographic apparatus.
  • the processing efficiency and the accuracy of the interference pattern formed on the substrate are examples of the interference pattern formed on the substrate.
  • the beam splitting device comprises a light receiver, a waveguide and a beam splitter, the light receiver receiving a light beam transmitted by the optical switch, the waveguide for transmitting a light beam from the light receiver to the A beam splitter is used to split a beam of light into two beams, the waveguide also being used to transmit a beam of light from the beam splitter to the focusing lens.
  • the lithographic apparatus provided by the embodiment of the invention can reduce the phase difference of the interference beam by reducing the optical path of the focusing lens after the beam is separated, thereby improving the accuracy of the interference pattern.
  • the beam splitting device further includes an optical router for controlling a transmission path of the light beam.
  • the lithographic apparatus provided by the embodiment of the invention can control the transmission direction of the beam in the beam splitting device through the optical router, and can flexibly select the output path of the interference beam according to actual needs.
  • the beam splitter is a non-polarization beam splitter, and at least two beams after the separation of the non-polarization beam splitter have the same polarization direction.
  • the lithographic apparatus provided by the embodiment of the invention improves the accuracy of the interference pattern by using the pair of non-polarizing beam splitters to make the polarization directions of the separated beams the same.
  • the aperture of the optical receiver is greater than the width or diameter of the incident beam, which is the beam of light transmitted by the optical switch to the photonic device.
  • the lithographic apparatus provided by the embodiment of the invention improves the alignment tolerance of the incident beam and the optical receiver by using an optical receiver having an aperture size larger than the diameter of the incident beam, so that the incident light can more easily enter the optical receiver.
  • the diameter of the waveguide is equal to the width or diameter of the incident beam, which is the beam of light transmitted by the optical switch to the photonic device.
  • the lithographic apparatus provided by the embodiment of the present invention can reduce the size of the photonic device while avoiding the loss of the light intensity of the incident light by using a waveguide having a diameter equal to the diameter of the incident beam.
  • the optical switch comprises a digital micromirror device DMD or an optical switch consisting of an electronically variable reflectance micro device.
  • the lithographic apparatus provided by the embodiments of the present invention improves the processing efficiency of the lithographic apparatus by using a programmable optical switch.
  • the lithographic apparatus comprises a light source apparatus for generating a light beam and transmitting the light beam to the optical switch.
  • the lithographic apparatus provided by the embodiment of the present invention can replace different light source devices according to actual needs, thereby being flexible to adapt to different application scenarios.
  • the lithographic apparatus includes a beam expander for expanding a width or diameter of a light beam generated by the light source apparatus.
  • a beam expander to enlarge the diameter or the width of the light beam, a larger size interference pattern can be formed by one exposure, the steps of translating the substrate and the step of aligning are avoided, and the light is improved.
  • the processing efficiency of the device and the accuracy of the interference pattern formed on the substrate are improved.
  • the light source device comprises a laser generator and a beam splitter for splitting a laser beam generated by the laser generator into at least two laser beams.
  • the lithographic apparatus provided by the embodiment of the invention is configured to divide a laser beam generated by the laser generator into at least two laser beams by a beam splitter, thereby reducing the number of light source devices and reducing the cost of the lithographic apparatus.
  • a lithography system comprising: a lithographic apparatus in a possible implementation of at least two of the first aspects.
  • the lithographic apparatus and the lithography system provided by the embodiments of the present invention form an interference pattern on the surface of the substrate by at least two photonic devices, and control the entrance photons through the sub-optical switches corresponding to the at least two photonic devices.
  • the incident beam of the device enables the lithographic apparatus to open the sub-optical switch or turn off the sub-optical switch according to the pattern prepared as needed, and the desired pattern can be prepared without changing the relative position of the lithographic apparatus and the substrate, thereby avoiding the translation step and the
  • the quasi-steps increase the processing efficiency of the lithographic apparatus and the accuracy of the interference pattern formed on the substrate.
  • FIG. 1 is a schematic plan view of a lithographic apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a beam splitting device in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an interference pattern formed by a lithographic apparatus according to an embodiment of the invention.
  • FIG. 4 is a schematic plan view of a beam splitting device according to another embodiment of the present invention.
  • 5A is a schematic diagram of an interference pattern formed by a lithographic apparatus according to another embodiment of the present invention.
  • 5B is a schematic diagram of an interference pattern formed by a lithographic apparatus according to still another embodiment of the present invention.
  • Figure 6 is a schematic plan view of a lithographic apparatus according to still another embodiment of the present invention.
  • Figure 7 is a schematic plan view of a lithography system in accordance with an embodiment of the present invention.
  • FIG. 1 shows a schematic plan view of a lithographic apparatus 100 in accordance with an embodiment of the present invention.
  • a lithographic apparatus 100 of an embodiment of the present invention includes an optical switch 110, a photonic device 120, and a photonic device 130.
  • the optical switch 110 includes a sub-optical switch 111 and a sub-optical switch 112.
  • the sub-optical switch 111 corresponds to the photonic device 120
  • the sub-optical switch 112 corresponds to the photonic device 130.
  • the state of the sub-optical switch 111 includes an on state and a off state
  • the sub-optical switch 111 in the on state is used to transmit the light beam to the photonic device 120
  • the sub-optical switch 111 in the off state is incapable of transmitting the beam. Transfer to photonic device 120.
  • the state of each sub-optical switch is controllable and independent of each other.
  • the photonic device 120 includes a beam splitting device 121 and a focusing lens 122.
  • the incident light is transmitted to the beam splitting device 121 through the sub-optical switch 111 in an open state, and the beam splitting device 121 can split one incident light into at least two light beams, and the focusing lens 122 At least two beams of light generated by the beam splitting device 121 are focused at the same point on the focal plane (wherein the substrate is on the focal plane), and the beam forms an interference pattern at this point of the focal plane.
  • the lithographic apparatus 100 may further include more one-to-one corresponding sub-optical switches and photonic devices, each of which The state of the optical switch is controllable and the states between the different sub-optical switches are independent of each other.
  • the sub-optical switch 111 can be turned on
  • the sub-optical switch 112 can be turned off
  • the sub-optical switch 111 can be turned off
  • the sub-optical switch 112 can be turned on.
  • the sub-optical switch 111 and the sub-optical switch 112 can also be turned on at the same time, and the sub-optical switch 111 and the sub-optical switch 112 can be simultaneously turned off, so that the sub-optical switch can be selectively turned on as needed.
  • the lithographic apparatus forms an interference pattern on the surface of the substrate by at least two photonic devices, and controls the incident light beam entering the photonic device through the sub-optical switches corresponding to the at least two photonic devices to make the light
  • the engraving device can open the sub-optical switch or close the sub-optical switch according to the pattern prepared, and can prepare the desired pattern without changing the relative position of the lithographic apparatus and the substrate, thereby avoiding the translation step and the alignment step, thereby improving the light.
  • the beam splitting apparatus includes:
  • a light receiver for receiving a light beam transmitted by the optical switch
  • a beam splitter for dividing a beam of light into two beams
  • a waveguide for transmitting a light beam from the light receiver to the beam splitter and transmitting the light beam from the beam splitter to a focusing lens.
  • the beam splitting device includes a light receiver 210, a beam splitter 230, a waveguide 221, a waveguide 222, and a waveguide 223.
  • the incident light enters the beam splitting device from the light receiver 210, is transmitted to the beam splitter 230 through the waveguide 221, and one beam is split into two beams, and then the two beams are respectively transmitted to the focusing lens through the waveguide 222 and the waveguide 223, through the focusing lens.
  • An interference pattern is formed.
  • the intensity distribution of the interference fringes is related to the optical path difference (also referred to as "phase difference") of the two beams: when the phase difference is an integer multiple of the wavelength period of the incident light, the interference fringes The light intensity is the largest; when the phase difference is an odd multiple of a half cycle of the wavelength of the incident light, the light intensity of the interference fringes is the smallest.
  • the smaller the phase difference between the two interfering lights the higher the accuracy of the interference pattern.
  • the light intensity I(r) at the point r can be expressed by the formula (1):
  • I 1 (r) represents the light intensity of the first interference beam at point r
  • I 2 (r) represents the light intensity of the second interference beam at point r
  • I 1 (r) represents the light intensity of the first interference beam at point r
  • I 2 (r) represents the light intensity of the second interference beam at point r
  • an incident light is split into two beams after passing through the beam splitting device, and the two beams directly enter the focusing lens through the waveguide, and the path length of the incident light from dividing into two beams to form an interference pattern (ie, The optical path length is shorter, thereby reducing the large phase difference caused by the long optical path, thereby improving the accuracy of the interference pattern.
  • the optical path length is shorter, thereby reducing the large phase difference caused by the long optical path, thereby improving the accuracy of the interference pattern.
  • the phase difference of the path beam further improves the accuracy of the interference pattern.
  • FIG. 3 is a schematic view showing the interference pattern formed by the interference of two beams. As shown in FIG. 3, for the interference pattern formed by the two beams on the surface of the substrate, the period length ⁇ of the interference pattern is determined by the formula (2):
  • is the wavelength of the dry beam
  • ⁇ 1 and ⁇ 2 are the incident angles of the two interference beams and the normal of the surface of the substrate, respectively.
  • the incident angle of the interference beam The angles are all equal, so the minimum period length of the interference pattern can be equal to half the wavelength of the interference beam (ie, the absolute values of ⁇ 1 and ⁇ 2 are both equal to 45 degrees and are respectively located on both sides of the normal).
  • the size of the interference pattern becomes smaller. For each pattern formed by a single focusing lens, the size of the pattern area is determined by the width W of the interference beam.
  • the output of the multiple beams can be realized by connecting a plurality of 1 ⁇ 2 beam splitters in series (that is, a beam splitter that splits one beam into two paths).
  • the beam splitting device further includes: an optical router, wherein the optical router is configured to control a transmission path of the light beam.
  • Figure 4 shows a schematic diagram of an apparatus for effecting multiple beam outputs. As shown in Figure 4, one path of incident light passes through beam splitter 411 and is split into two beams (i.e., a first beam and a second beam).
  • the optical router 421 can be adjusted to pass the first beam through the waveguide 2, the waveguide 4, the optical router 421 and the waveguide 8 into the beam splitter 412, and adjust the optical router 422 to separate the first beam.
  • the two beams are respectively output from the beam exit 1 and the beam exit 2 to the focus lens, and the optical router 423 is adjusted so that the second beam cannot be transmitted through the optical router 423, and finally two beams are output.
  • the optical router 421, the optical router 422, the optical router 423, and the optical router 424 may also be adjusted such that the first beam is directly transmitted to the beam exit 1 through the waveguide 2, the waveguide 4, the optical router 421, the waveguide 6, the waveguide 10, and the optical router 422, and the second The light beam is transmitted directly to the beam exit 4 through the waveguide 3, the waveguide 5, the optical router 423, the waveguide 7, the waveguide 11 and the optical router 424, and finally outputs two beams.
  • the first beam can be passed through the waveguide 2, the waveguide 4, the optical router 421 and the waveguide 8 into the beam splitter 412, and the separated two beams can pass through the waveguide 12 and the waveguide 14, respectively.
  • the beam exit 1 and the beam exit 2 are reached; the second beam can be transmitted through the waveguide 3, the waveguide 5, the optical router 423, the waveguide 7, the waveguide 11 and the optical router 424 to the beam exit 4, thus finally outputting three beams.
  • the first beam can pass through the waveguide 2, the waveguide 4, the optical router 421 and the waveguide 8 to enter the beam splitter 412, and the two beams after the first beam is separated can be respectively passed.
  • the waveguide 12 and the waveguide 14 pass through the beam exit 1 and the beam exit 2;
  • the second beam can pass through the waveguide 3, the waveguide 5, the optical router 423 and the waveguide 9 to enter the beam splitter 413, and the two beams after the second beam is separated can be
  • the beam exit 3 and the beam exit 4 are respectively passed through the waveguide 15 and the waveguide 13, so that four beams are finally output.
  • the above-mentioned embodiments are only exemplified, and the embodiment of the present invention is not limited thereto.
  • the multi-beam output can be realized by other means.
  • the beam splitting device including the optical router provided by the embodiment of the present invention can program the transmission direction of the light beam.
  • the diameter of the focusing lens is DL
  • the horizontal sections of the four beam exits shown in FIG. 4 are symmetrically distributed in the center, and the center of symmetry is the optical center of the focusing lens, the diameter of each beam exit is DL/2, correspondingly,
  • the four waveguides connected to the beam exit are also directly DL/2. If only two or four beams need to be output, the waveguide 10 and the waveguide 11 shown in FIG. 4 can be removed, so that the diameter of the photonic device is DL; If it is necessary to output three or four beams, the waveguide 10 and the waveguide 11 shown in Fig. 4 need to be retained, so that the horizontal section of the photonic device includes six waveguides having a diameter of DL/2, and the diameter of the photonic device can be 3DL. /2.
  • FIG. 5A shows an interference pattern that can be formed by four photonic devices that allow 2-way or 4-way beam interference
  • FIG. 5B shows an interference pattern that can be formed by four photonic devices that allow 2-way or 3-way or 4-way beam interference.
  • the pixel area is a projection area of the photonic device on the surface of the substrate
  • the interference pattern area is a region of the interference pattern formed by at least two light beams on the surface of the substrate.
  • the length and width of the formed interference pattern are both DL.
  • 5A and 5B only schematically depict the interference pattern formed by the two beams on the surface of the substrate.
  • the lithographic apparatus according to an embodiment of the present invention can also support more than two beams to form other interference patterns.
  • the beam splitter is a non-polarization beam splitter, and the polarization directions of the at least two beams after the separation of the non-polarization beam splitter are the same.
  • a beam splitter also known as a power splitter, is an optical device that splits an incident beam into at least two outgoing beams.
  • the separated two beams ie, the outgoing beams
  • the separated two beams need to have the same polarization direction to form interference fringes. If the polarization directions of the beams are different, they cannot cancel or superimpose each other, and a wave with a new polarization state is generated, resulting in a decrease in the accuracy of the interference pattern. Therefore, the beam separation mechanism should be insensitive to polarization, that is, regardless of the incident beam.
  • the polarization state of at least two outgoing beams after separation by a non-polarizing beam splitter should be Also, for example, the beam splitter in the embodiment of the present invention may be a multimode interference (MMI) coupler.
  • MMI multimode interference
  • the aperture of the optical receiver is larger than the width or diameter of the incident light beam, and the incident light beam is a light beam transmitted by the optical switch to the photonic device.
  • the aperture of the optical receiver is smaller than the diameter of the incident beam, then some of the incident light will not enter the optical receiver. If the aperture of the optical receiver is equal to the diameter of the incident beam, the incident beam and the light The receiver's alignment tolerance will be very low, and the incident beam will be difficult to fully enter the photoreceiver. Both of these conditions will result in a decrease in the intensity of the interference pattern, which may result in the interference pattern not being etched on the substrate surface.
  • the aperture of the optical receiver of the lithographic apparatus is larger than the diameter of the incident beam, which improves the alignment tolerance of the incident beam and the optical receiver, thereby improving the lithography success rate.
  • the diameter of the waveguide is equal to the width or diameter of the incident light beam, and the incident light beam is a light beam transmitted by the optical switch to the photonic device.
  • the diameter of the waveguide may be larger than the diameter of the incident beam or may be equal to or smaller than the diameter of the incident beam, but when the diameter of the waveguide is larger than the diameter of the incident beam, the size of the photonic device is larger, when the diameter of the waveguide is smaller than the diameter of the incident beam. The light intensity of the incident beam is lost. Therefore, selecting a waveguide having a diameter equal to the diameter of the incident beam can reduce the size of the photonic device while avoiding loss of light intensity.
  • the optical switch comprises a digital micromirror device DMD or an optical switch composed of an electronic variable reflectance micro device.
  • DMD Digital Micromirror Devices
  • DMD is a device that uses a digital voltage signal to control the microlens to perform mechanical motion to achieve optical functions.
  • DMD is a Micro-Opto-Electro-Mechanical Systems (MOEMS), each One MOEMS corresponds to one micromirror (ie, a sub-optical switch), and each micromirror can be switched in two or more stable states or directions by applying an appropriate voltage.
  • MOEMS Micro-Opto-Electro-Mechanical Systems
  • each One MOEMS corresponds to one micromirror (ie, a sub-optical switch), and each micromirror can be switched in two or more stable states or directions by applying an appropriate voltage.
  • the state of each micromirror Including the ON state and the OFF state, the micromirror in the on state can reflect the light beam to the photonic device, and the micromirror in the off state can reflect the light beam to the light absorber, and the DMD can control each micro by programming.
  • the optical switch may also be composed of N electronic-electrical reflectance micro-devices, where N is a positive integer and N ⁇ 2, for example,
  • the sub-optic switch can be an electrochromic device or a liquid crystal cell.
  • the lithographic apparatus comprises a light source apparatus for generating a light beam and transmitting the light beam to the optical switch.
  • the light source device may be a laser light source device, or may be an ultraviolet light source device or a mercury light source device, or may be a synchronous radiation source device, which is not limited by the embodiment of the present invention.
  • the lithographic apparatus provided by the embodiment of the present invention may be replaced according to actual needs.
  • the light source device can be flexibly adapted to different application scenarios.
  • the lithographic apparatus includes a beam expander for expanding a width or diameter of a light beam generated by the light source apparatus.
  • the width or diameter of the beam generated by the light source device is generally fixed and small in size. For some larger patterns, more photonic devices are needed to form an interference pattern on the substrate, and the beam expander can be used.
  • the one exposure forms a larger size pattern, avoiding the steps of translating the substrate and the step of aligning, improving the processing efficiency of the lithographic apparatus and the accuracy of the interference pattern formed on the substrate.
  • the light source device includes a laser generator and a beam splitter, and the beam splitter is configured to divide a laser beam generated by the laser generator into at least two laser beams, thereby reducing the number of light source devices and reducing the light.
  • the cost of engraving equipment includes a laser generator and a beam splitter, and the beam splitter is configured to divide a laser beam generated by the laser generator into at least two laser beams, thereby reducing the number of light source devices and reducing the light. The cost of engraving equipment.
  • FIG. 6 is a schematic plan view of a lithographic apparatus according to an embodiment of the present invention. As shown in FIG. 6, the lithographic apparatus includes:
  • a laser source 610 is used to generate a laser for forming an interference pattern on a substrate.
  • the optical fiber 620 is configured to transmit the laser light generated by the laser light source to the beam expander 630. Only one optical fiber is schematically illustrated in the figure.
  • the embodiment of the present invention may further include more optical fibers, so that the laser light source 610 can be generated.
  • a laser beam is split into multiple laser beams.
  • the beam expander 630 is for expanding the diameter or width of the laser light transmitted by the optical fiber 620, and transmits the expanded laser light to the DMD 640.
  • the DMD 640 is configured to determine whether laser light received from the beam expander 630 is allowed to enter the photonic device 650.
  • the DMD 640 includes N micromirrors, N is a positive integer and N ⁇ 2, and the distance between the micromirrors may be 17 micrometers ( ⁇ m). Wherein, a single micromirror can be a square with a side length of 16 ⁇ m, and adjacent micromirrors are separated by a distance of 1 ⁇ m.
  • the DMD 640 can programmatically determine the states of the N micromirrors, so that the final projection area of the laser can be selected.
  • the photonic device 650 is configured to receive the laser light transmitted by the DMD 640 and form an interference pattern on the surface of the substrate.
  • the photonic device 650 is collectively prepared to form an array on the silicon substrate, wherein each photonic device 650 further includes a beam splitting device 651 and a The microlens 652, the splitting device 651 is configured to divide a laser received from the DMD 640 into at least two lasers, and at least two lasers separated by the splitting device 651 have the same polarization, and the microlens 652 is a focusing lens for At least two laser beams separated by the beam splitting device 651 are focused on the surface of the substrate to form an interference pattern.
  • the lithographic apparatus provided by the embodiments of the present invention supports nano-scale pattern preparation without using an expensive mask, and each functional unit of the lithographic apparatus is a modular unit, which can be replaced as needed, for example, according to resolution and pattern
  • the structural requirements replace the photonic device, and the photonic device supports programmatic control of the pattern shape.
  • a lithographic apparatus according to an embodiment of the present invention, an interference pattern is formed on a surface of a substrate by at least two photonic devices, and an incident light beam entering the photonic device is controlled by a sub-optical switch corresponding to the at least two photonic devices, so that the lithographic apparatus
  • the sub-optical switch can be turned on or the sub-optical switch can be turned off according to the pattern to be prepared, and the desired pattern can be prepared without changing the relative position of the lithographic apparatus and the substrate, and the translation step and the alignment step are avoided, and only one exposure step is needed.
  • the pattern can be transferred to the entire substrate, thereby increasing the processing efficiency of the lithographic apparatus and the accuracy of the interference pattern formed on the substrate.
  • FIG. 7 shows a schematic plan view of a lithography system according to an embodiment of the present invention, as shown in FIG.
  • the engraving system includes:
  • the lithographic apparatus shown in FIG. 7 may further include more laser light sources, beam expanders, DMDs, and photonic device arrays.
  • the lithographic apparatus shown in FIG. 7 may also generate a laser light source using a beam splitter (for example, an optical fiber). The beams are split into multiple beams and transmitted to the respective beam expanders, thereby reducing the number of laser sources and reducing the manufacturing cost of the lithographic apparatus.
  • a beam splitter for example, an optical fiber
  • FIG. 7 is merely a exemplifying method for assembling a plurality of units together, and the embodiment of the present invention is not limited thereto. Therefore, the lithography system according to an embodiment of the present invention forms an interference pattern on the surface of the substrate by at least two photonic devices.
  • the incident beam of the photonic device enables the lithography system to open the sub-optical switch or turn off the sub-optical switch according to the pattern prepared as needed, and the desired pattern can be prepared without changing the relative position of the lithography system and the substrate, thereby avoiding the translation step and In the alignment step, only one exposure step is required to transfer the pattern onto the entire substrate, thereby improving the processing efficiency of the lithography system and the accuracy of the interference pattern formed on the substrate.
  • the devices, and methods disclosed in the embodiments provided herein may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, ie may be located in one place or may be distributed in multiple locations. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. The above description is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Integrated Circuits (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种光刻设备(100)和光刻系统,该光刻设备(100)包括:光开关(110)和N个光子器件(120),光开关(110)包括N个子光开关(111,112),N个子光开关(111,112)与N个光子器件(120,130)一一对应,N为正整数且N≥2;每个子光开关(111,112)的状态包括开启状态和关闭状态,处于开启状态的子光开关(111,112)用于将光束传输至对应的光子器件(120,130),处于关闭状态的子光开关(111,112)不能将光束传输至对应的光子器件(120,130);每个光子器件(120,130)包括分束装置(121,131)和聚焦透镜(122,132)。该光刻设备(100)无需改变光刻设备(100)与基材的相对位置即可制备出需要的图案,避免了平移步骤和对准步骤,从而提高了处理效率以及在基材上形成的干涉图案的精确度。

Description

一种光刻设备和光刻系统 技术领域
本发明涉及半导体制备领域,尤其涉及一种光刻设备和光刻系统。
背景技术
光刻(Lithography)是指在晶圆(wafer)的制造过程中,利用掩模照相复制或者利用干涉光在基材上形成电路图案的方法。当前,光刻设备通过单个聚焦透镜形成干涉图案,当需要在较大的基材表面上制备周期性图案时,需要通过平移步进装置平移承载基材的支架并需要复杂的对准步骤,由于平移步进装置价格昂贵且精确度不高,现有的光刻设备存在处理效率较低以及形成的图案精确度不高的问题。
发明内容
有鉴于此,本发明实施提供了一种光刻设备和光刻系统,通过使用光开关和至少两个光子器件在基材表面形成干涉图案,可以避免平移基材,从而提高了光刻处理的效率和干涉图案的精确度。
第一方面,提供了一种光刻设备,该光刻设备包括:光开关和N个光子器件,所述光开关包括N个子光开关,所述N个子光开关与所述N个光子器件一一对应,所述N为正整数且N≥2;每个子光开关的状态包括开启状态和关闭状态,处于开启状态的子光开关用于将光束传输至对应的光子器件,处于关闭状态的子光开关不能将光束传输至对应的光子器件;每个光子器件包括分束装置和聚焦透镜;所述分束装置用于将从对应的子光开关接收的一路光束分为至少两路光束,并将所述至少两路光束传输至所述聚焦透镜;所述聚焦透镜用于将所述至少两路光束聚焦到基底上形成干涉图案。
本发明实施例提供的光刻设备,通过至少两个光子器件在基材表面形成干涉图案,并通过与该至少两个光子器件对应的子光开关控制进入光子器件的入射光束,使光刻设备能够根据需要制备的图案打开子光开关或者关闭子光开关,无需改变光刻设备与基材的相对位置即可制备出需要的图案,避免了平移步骤和对准步骤,从而提高了光刻设备的处理效率以及在基材上形成的干涉图案的精确度。
可选地,该分束装置包括光接收器、波导和分束器,所述光接收器于接收所述光开关传输的光束,所述波导用于将光束从所述光接收器传输至所述分束器,所述分束器用于将一路光束分为两路光束,所述波导还用于将光束从所述分束器传输至所述聚焦透镜。
本发明实施例提供的光刻设备,通过减小光束分离后到聚焦透镜的光程,可以减小干涉光束的相位差,从而提高了干涉图案的精确度。
可选地,所述分束装置还包括光路由器,所述光路由器用于控制光束的传输路径。
本发明实施例提供的光刻设备,通过光路由器控制分束装置中光束的传输方向,可以根据实际需求灵活选择干涉光束的输出路径。
可选地,所述分束器为非偏振分束器,所述非偏振分束器分离后的至少两路光束的偏振方向相同。
本发明实施例提供的光刻设备,通过使用对非偏振分束器,使分离后的光束的偏振方向相同,从而提高了干涉图案的精确度。
可选地,所述光接收器的孔径大于入射光束的宽度或直径,所述入射光束为所述光开关传输至所述光子器件的光束。
本发明实施例提供的光刻设备,通过使用孔径尺寸大于入射光束的直径的光接收器,提高了入射光束与光接收器的对准容错度,使入射光更容易进入光接收器。
可选地,所述波导的直径等于入射光束的宽度或直径,所述入射光束为所述光开关传输至所述光子器件的光束。
本发明实施例提供的光刻设备,通过使用直径等于入射光束的直径的波导,可以在避免损失入射光的光强度的同时减小光子器件的尺寸。
可选地,所述光开关包括数字微镜器件DMD或由电子可变反射比微器件组成的光开关。
本发明实施例提供的光刻设备,通过使用可以编程的光开关,提高了光刻设备的处理效率。
可选地,所述光刻设备包括光源设备,所述光源设备用于生成光束并将光束发射至所述光开关。
本发明实施例提供的光刻设备,可以根据实际需要更换不同的光源设备,从而可以灵活适应不同的应用场景。
可选地,所述光刻设备包括扩束器,所述扩束器用于扩大所述光源设备生成的光束的宽度或直径。
本发明实施例提供的光刻设备,通过使用扩束器扩大光束的直径或宽度,可以通过一次曝光形成尺寸较大的干涉图案,避免了平移基材的步骤以及对准的步骤,提高了光刻设备的处理效率以及在基材上形成的干涉图案的精确度。
可选地,所述光源设备包括激光产生器和光束分离器,所述光束分离器用于将所述激光产生器生成的一束激光分成至少两束激光。
本发明实施例提供的光刻设备,通过光束分离器用于将所述激光产生器生成的一束激光分成至少两束激光,从而可以减少光源设备的数量,降低光刻设备的成本。
第二方面,提供了一种光刻系统,该光刻系统包括:至少两个第一方面中任意一项可能实现方式中的光刻设备。
基于上述技术方案,本发明实施例提供的光刻设备和光刻系统,通过至少两个光子器件在基材表面形成干涉图案,并通过与该至少两个光子器件对应的子光开关控制进入光子器件的入射光束,使光刻设备能够根据需要制备的图案打开子光开关或者关闭子光开关,无需改变光刻设备与基材的相对位置即可制备出需要的图案,避免了平移步骤和对准步骤,从而提高了光刻设备的处理效率以及在基材上形成的干涉图案的精确度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例的附图。
图1是根据本发明一实施例的光刻设备的示意性平面图;
图2是根据本发明一实施例的分束装置的示意性平面图;
图3是根据本发明一实施例的光刻设备形成的干涉图案的示意图;
图4是根据本发明另一实施例的分束装置的示意性平面图;
图5A是根据本发明另一实施例的光刻设备形成的干涉图案的示意图;
图5B是根据本发明再一实施例的光刻设备形成的干涉图案的示意图;
图6是根据本发明再一实施例的光刻设备的示意性平面图;
图7是根据本发明一实施例的光刻系统的示意性平面图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。
图1示出了根据本发明实施例的光刻设备100的示意性平面图。如图1所示,本发明实施例的光刻设备100包括:光开关110、光子器件120和光子器件130。
光开关110包括子光开关111和子光开关112,子光开关111与光子器件120对应,子光开关112与光子器件130对应。以子光开关111为例,子光开关111的状态包括开启状态和关闭状态,处于开启状态的子光开关111用于将光束传输至光子器件120,处于关闭状态的子光开关111不能将光束传输至光子器件120。每个子光开关的状态是可控的并且是相互独立的。
光子器件120包括分束装置121和聚焦透镜122,入射光通过处于开启状态的子光开关111传输至分束装置121,分束装置121可以将一路入射光分成至少两路光束,聚焦透镜122用于将分束装置121生成的至少两路光束聚焦在焦平面的同一点上(其中,基材位于焦平面上),光束在焦平面的这个点上形成干涉图案。
图1中仅示意性的描述了两个子光开关和两个光子器件,本发明实施例不限于此,光刻设备100还可以包括更多个一一对应的子光开关和光子器件,每个子光开关的状态是可控的并且不同子光开关之间的状态是相互独立的,例如,可以打开子光开关111,关闭子光开关112,也可以关闭子光开关111,打开子光开关112,还可以同时打开子光开关111和子光开关112,还可以同时关闭子光开关111和子光开关112,从而可以根据需要选择打开子光开关。
因此,本发明实施例提供的光刻设备,通过至少两个光子器件在基材表面形成干涉图案,并通过与该至少两个光子器件对应的子光开关控制进入光子器件的入射光束,使光刻设备能够根据需要制备的图案打开子光开关或者关闭子光开关,无需改变光刻设备与基材的相对位置即可制备出需要的图案,避免了平移步骤和对准步骤,从而提高了光刻设备的处理效率以及在基 材上形成的干涉图案的精确度。
可选地,在本发明实施例中,分束装置包括:
光接收器,用于接收光开关传输的光束;
分束器,用于将一路光束分为两路光束;
波导,用于将光束从所述光接收器传输至所述分束器,以及将光束从所述分束器传输至聚焦透镜。
举例说明,如图2所示,该分束装置包括:光接收器210、分束器230、波导221、波导222和波导223。
入射光从光接收器210进入分束装置,通过波导221传输至分束器230,一路光束被分为两路光束,之后两路光束分别通过波导222和波导223传输至聚焦透镜,通过聚焦透镜形成干涉图案。
两束光发生干涉后,干涉条纹的光强分布与两束光的光程差(也可称为“相位差”)有关:当相位差为入射光的波长周期的整数倍时,干涉条纹的光强度最大;当相位差为入射光的波长的半周期的奇数倍时,干涉条纹的光强度最小。此外,两路干涉光的相位差越小,干涉图案的精确度越高。对于两路光束(例如,第一干涉光束和第二干涉光束)形成的干涉图案上的一个点r来说,点r处的光强度I(r)可用公式(1)表示:
Figure PCTCN2016098563-appb-000001
其中,I1(r)表示第一干涉光束在r点的光强度,I2(r)表示第二干涉光束在r点的光强度,
Figure PCTCN2016098563-appb-000002
表示第一干涉光束在r点的相位,
Figure PCTCN2016098563-appb-000003
表示第二干涉光束在r点的相位,由上述公式可知,当第一干涉光束与第二干涉光束的相位差为0时,光强度I(r)的值最大,即,两路相位相等的干涉光形成的图案的光强度最大。本发明实施例中,一路入射光经过分束装置后分为两路光束,该两路光束通过波导直接进入聚焦透镜,入射光从分成两路光束到形成干涉图案所经历的路径长度(即,光程)较短,从而减小了长光程导致的较大的相位差,进而提高了干涉图案的精确度,此外,还可以通过调整波导222和波导223的长度减小进入聚焦透镜的两路光束的相位差,进一步提高干涉图案的精确度。
图3示出了两路光束干涉形成干涉图案的示意图,如图3所示,对于两路光束在基材表面形成的干涉图案,该干涉图案的周期长度Λ由公式(2)决定:
Figure PCTCN2016098563-appb-000004
其中,λ是干射光束的波长,θ1和θ2分别是两路干涉光束与基材表面的法线形成的入射角,在本发明实施例提供的光刻设备中,干涉光束的入射角的角度都是相等的,因此干涉图案的周期长度的最小值可以等于干涉光束的波长的一半(即,θ1和θ2的绝对值都等于45度且分别位于法线两侧时)。当更多光束相交时,干涉图案的尺寸变得更小。对于每个由单个聚焦透镜形成的图案,图案区域的大小由干涉光束的宽度W决定。
两路光束干涉形成平行线条,三路光束干涉形成圆点,四路光束干涉形成圆圈,光束越多,则生成的图形的形状越复杂。为了实现两路以上的光束,可以通过串联多个1×2分束器(即,将一路光束分为两路的分束器)实现多路光束的输出。
可选地,在本发明实施例中,分束装置还包括:光路由器,所述光路由器用于控制光束的传输路径。
图4示出了一种实现多路光束输出的装置的示意图,如图4所示,一路入射光通过分束器411后分为两路光束(即,第一光束和第二光束)。
当需要输出两路光束时,可以调节光路由器421,使第一光束通过波导2、波导4、光路由器421和波导8进入分束器412,并调节光路由器422,使第一光束分离后的两路光束分别由光束出口1和光束出口2输出到聚焦透镜,同时调节光路由器423,使第二光束无法通过光路由器423继续传输,最终输出两路光束。也可以调节光路由器421、光路由器422、光路由器423和光路由器424,使得第一光束通过波导2、波导4、光路由器421、波导6、波导10和光路由器422直接传输至光束出口1,第二光束通过波导3、波导5、光路由器423、波导7、波导11和光路由器424直接传输至光束出口4,最终输出两路光束。
当需要输出三路光束时,可以使第一光束通过波导2、波导4、光路由器421和波导8进入分束器412,第一光束被分离后的两路光束可以分别通过波导12和波导14到达光束出口1和光束出口2;可以使第二光束通过波导3、波导5、光路由器423、波导7、波导11和光路由器424传输至光束出口4,这样,最终输出三路光束。
当需要输出四路光束时,可以使第一光束通过波导2、波导4、光路由器421和波导8进入分束器412,第一光束被分离后的两路光束可以分别通 过波导12和波导14到达光束出口1和光束出口2;可以使第二光束通过波导3、波导5、光路由器423和波导9进入分束器413,第二光束被分离后的两路光束可以分别通过波导15和波导13到达光束出口3和光束出口4,这样,最终输出四路光束。
上述实施例仅是举例说明,本发明实施例不限于此,还可以通过其它方式实现多路光束输出,本发明实施例提供的包括光路由器的分束装置可以通过编程控制光束的传输方向。
假设聚焦透镜的直径是DL,如果图4所示的四个光束出口的水平截面成中心对称分布,对称中心为聚焦透镜的光心,则每个光束出口的直径为DL/2,相应的,与光束出口相连的四个波导的直接也是DL/2,如果仅需要输出两路光束或者四路光束,则图4所示的波导10和波导11可以去除,这样,光子器件的直径就是DL;如果需要输出三路或四路光束,则需要保留图4所示的波导10和波导11,这样,光子器件的水平截面就包括6个直径为DL/2的波导,光子器件的直径可以为3DL/2。
图5A示出了四个允许2路或4路光束干涉的光子器件可以形成的干涉图案,图5B示出了四个允许2路或3路或4路光束干涉的光子器件可以形成的干涉图案,其中,像素区域为光子器件在基材表面的投影区域,干涉图案区域为至少两路光束在基材表面形成的干涉图案的区域。
如图5A和图5B所示,假设入射光的直径大于或等于DL/2,由于光束出口的直径最大为DL/2,因此,形成的干涉图案的长宽均为DL。通过减小入射光的直径,还可以形成长宽小于DL/2的干涉图案。图5A和图5B仅示意性的描述了两路光束在基材表面形成的干涉图案,根据本发明实施例的光刻设备还可以支持大于两路的光束形成其它干涉图案。
可选地,本发明实施例中,分束器为非偏振分束器,所述非偏振分束器分离后的至少两路光束的偏振方向相同。
分束器也可以称为功率分配器,是一种可以将一路入射光束分为至少两路出射光束的光学器件。分离后的两路光束(即,出射光束)需要拥有相同的偏振方向,才能形成干涉条纹。如果光束的偏振方向不同,则无法相互抵消或叠加,会生成一个具有新的偏振状态的波,从而导致干涉图案的精确度下降,因此,光束分离机制应当对偏振不敏感,即,无论入射光束的偏振状态如何,经过非偏振分束器分离后的至少两路出射光束的偏振方向应当相 同,例如,本发明实施例中的分束器可以是多模干涉(multimode interference,MMI)耦合器。
可选地,本发明实施例中,所述光接收器的孔径大于入射光束的宽度或直径,所述入射光束为所述光开关传输至所述光子器件的光束。
仍以图4为例进行说明,如果光接收器的孔径小于入射光束的直径,那么有一部分入射光将无法进入光接收器,如果光接收器的孔径等于入射光束的直径,则入射光束与光接收器的对准容错度将非常低,入射光束很难完全进入光接收器,这两种情况都会导致干涉图案的光强度下降,进而可能导致干涉图案无法刻蚀在基材表面。
因此,本发明实施例提供的光刻设备的光接收器的孔径大于入射光束的直径,提高了入射光束与光接收器的对准容错度,从而提高了光刻成功率。
可选地,本发明实施例中,所述波导的直径等于入射光束的宽度或直径,所述入射光束为所述光开关传输至所述光子器件的光束。
波导的直径可以大于入射光束的直径,也可以等于或小于入射光束的直径,但是,当波导的直径大于入射光束的直径时,光子器件的尺寸较大,当波导的直径小于入射光束的直径时,入射光束的光强度会有损失,因此,选择直径等于入射光束的直径的波导可以在避免损失光强度的同时减小光子器件的尺寸。
可选地,本发明实施例中,所述光开关包括数字微镜器件DMD或由电子可变反射比微器件组成的光开关。
数字微镜器件(Digital Micromirror Devices,DMD)是用数字电压信号控制微镜片执行机械运动来实现光学功能的装置,DMD是一个微光机电系统(Micro-Opto-Electro-Mechanical Systems,MOEMS),每个MOEMS对应一个微镜(即,子光开关),每个微镜可以通过施加适当的电压在两个或更多个稳定状态或方向进行切换,本发明实施例中,每个微镜的状态包括开启(ON)状态和关闭(OFF)状态,处于开启状态的微镜可以将光束反射至光子器件,处于关闭状态的微镜可以将光束反射至光吸收器,DMD可以通过编程控制每个微镜的状态,从而可以在基材表面需要进行光刻的区域形成干涉图案。微镜还可以覆膜以增强反射比。
光开关也可以是由N个电子可变反射比微器件(Micro-device with electrically variable reflectance)组成的,其中,N为正整数且N≥2,例如, 子光开关可以是电致变色器件或者液晶晶元。上述实施例仅是举例说明,本发明实施例不限于此。
可选地,所述光刻设备包括光源设备,所述光源设备用于生成光束并将光束发射至所述光开关。
光源设备可以是激光光源设备,也可以是紫外线光源设备或水银灯光源设备,还可以是同步辐射源设备,本发明实施例对此不作限定,本发明实施例提供的光刻设备可以根据实际需要更换光源设备,从而可以灵活适应不同的应用场景。
可选地,所述光刻设备包括扩束器,所述扩束器用于扩大所述光源设备生成的光束的宽度或直径。
光源设备生成的光束的宽度或直径通常都是固定的且尺寸较小,对于一些尺寸较大的图案来说,需要使用较多的光子器件在基材上形成干涉图案,使用扩束器可以通过一次曝光形成尺寸较大的图案,避免了平移基材的步骤以及对准的步骤,提高了光刻设备的处理效率以及在基材上形成的干涉图案的精确度。
可选地,所述光源设备包括激光产生器和光束分离器,所述光束分离器用于将所述激光产生器生成的一束激光分成至少两束激光,从而可以减少光源设备的数量,降低光刻设备的成本。
图6示出了本发明实施例提供的一种光刻设备的示意性平面图,如图6所示,光刻设备包括:
激光光源610,用于产生激光,所述激光用于在基材上形成干涉图案。
光纤620,用于将激光光源产出的激光传输至扩束器630,图中仅示意性的描述了一个光纤,本发明实施例还可以包括更多个光纤,从而可以将激光光源610生成的一束激光分离成多束激光。
扩束器630,用于扩大光纤620传输的激光的直径或宽度,并将扩束后的激光传输至DMD640。
DMD640,用于确定是否允许从扩束器630接收的激光进入光子器件650,DMD640包括N个微镜,N为正整数且N≥2,微镜之间的距离可以是17微米(μm),其中,单个微镜可以为边长16μm的正方形,相邻微镜以1μm的距离隔开,DMD640可以通过编程确定N个微镜的状态,从而可以选择激光最终投射的区域。
光子器件650,用于接收DMD640传输的激光,并在基材表面形成干涉图案,光子器件650集体制备在硅基上形成一个阵列,其中,每个光子器件650还包括一个分束装置651和一个微透镜652,分束装置651用于将从DMD640接收的一路激光分为至少两路激光,分束装置651分离后的至少两路激光具有相同的偏振,微透镜652是一个聚焦透镜,用于将分束装置651分离后的至少两路激光聚焦在基材表面形成干涉图案。
本发明实施例提供的光刻设备支持纳米级的图案制备,无需使用昂贵的掩模,并且光刻设备的各个功能单元均为模块化单元,可以根据需要更换,例如,可以根据分辨率和图案结构的需求更换光子器件,光子器件支持通过编程控制图案形状。
图6所示的仅是举例说明,本发明实施例不限于此。根据本发明实施例的光刻设备,通过至少两个光子器件在基材表面形成干涉图案,并通过与该至少两个光子器件对应的子光开关控制进入光子器件的入射光束,使光刻设备能够根据需要制备的图案打开子光开关或者关闭子光开关,无需改变光刻设备与基材的相对位置即可制备出需要的图案,避免了平移步骤和对准步骤,只需要一个曝光步骤就可以将图案转移到整个基材上,从而提高了光刻设备的处理效率以及在基材上形成的干涉图案的精确度。
实际工作中,仅使用一个DMD和一组光子器件可能仍然无法覆盖整个基材表面,图7示出了本发明实施例提供的一种光刻系统的示意性平面图,如图7所示,光刻系统包括:
激光光源711,扩束器721,DMD731,光子器件阵列741,以及激光光源712,扩束器722,DMD732,光子器件阵列742,其中,光子器件阵列741以及光子器件阵列742中的任意一个光子器件可以聚焦四路光束,也可以聚焦两路光束。
图7所示的光刻设备还可以包括更多激光光源、扩束器、DMD以及光子器件阵列,图7所示的光刻设备也可以使用光束分离器(例如,光纤)将一个激光光源产生光束分离成多束并分别传输至各个扩束器,从而可以减少激光光源的数量,降低光刻设备的制造成本。
图7仅是示例性说明将多套单元组装在一起的方法,本发明实施例不限于此,因此,根据本发明实施例的光刻系统,通过至少两个光子器件在基材表面形成干涉图案,并通过与该至少两个光子器件对应的子光开关控制进入 光子器件的入射光束,使光刻系统能够根据需要制备的图案打开子光开关或者关闭子光开关,无需改变光刻系统与基材的相对位置即可制备出需要的图案,避免了平移步骤和对准步骤,只需要一个曝光步骤就可以将图案转移到整个基材上,从而提高了光刻系统的处理效率以及在基材上形成的干涉图案的精确度。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的实施例中所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个地方。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此。

Claims (11)

  1. 一种光刻设备,其特征在于,包括:
    光开关和N个光子器件,所述光开关包括N个子光开关,所述N个子光开关与所述N个光子器件一一对应,所述N为正整数且N≥2;
    每个子光开关的状态包括开启状态和关闭状态,处于开启状态的子光开关用于将光束传输至对应的光子器件,处于关闭状态的子光开关不能将光束传输至对应的光子器件;
    每个光子器件包括分束装置和聚焦透镜;
    所述分束装置用于将从对应的子光开关接收的一路光束分为至少两路光束,并将所述至少两路光束传输至所述聚焦透镜;
    所述聚焦透镜用于将所述至少两路光束聚焦到基底上形成干涉图案。
  2. 根据权利要求1所述的光刻设备,其特征在于,所述分束装置包括光接收器、波导和分束器,
    所述光接收器于接收所述光开关传输的光束,所述波导用于将光束从所述光接收器传输至所述分束器,所述分束器用于将一路光束分为两路光束,所述波导还用于将光束从所述分束器传输至所述聚焦透镜。
  3. 根据权利要求2所述的光刻设备,其特征在于,所述分束装置还包括光路由器,所述光路由器用于控制光束的传输路径。
  4. 根据权利要求2或3所述的光刻设备,其特征在于,所述分束器为非偏振分束器,所述非偏振分束器分离后的至少两路光束的偏振方向相同。
  5. 根据权利要求2至4中任一项所述的光刻设备,其特征在于,所述光接收器的孔径大于入射光束的宽度或直径,所述入射光束为所述光开关传输至所述光子器件的光束。
  6. 根据权利要求2至5中任一项所述的光刻设备,其特征在于,所述波导的直径等于入射光束的宽度或直径,所述入射光束为所述光开关传输至所述光子器件的光束。
  7. 根据权利要求1至6中任一项所述的光刻设备,其特征在于,所述光开关包括数字微镜器件DMD或由电子可变反射比微器件组成的光开关。
  8. 根据权利要求1至7中任一项所述的光刻设备,其特征在于,所述光刻设备包括光源设备,所述光源设备用于生成光束并将光束发射至所述光 开关。
  9. 根据权利要求8所述的光刻设备,其特征在于,所述光刻设备包括扩束器,所述扩束器用于扩大所述光源设备生成的光束的宽度或直径。
  10. 根据权利要求8或9所述的光刻设备,其特征在于,所述光源设备包括激光产生器和光束分离器,所述光束分离器用于将所述激光产生器生成的一束激光分成至少两束激光。
  11. 一种光刻系统,其特征在于,所述光刻系统包括:至少两个根据权利要求1至10中任一项所述的光刻设备。
PCT/CN2016/098563 2016-09-09 2016-09-09 一种光刻设备和光刻系统 WO2018045557A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680058663.6A CN108139687B (zh) 2016-09-09 2016-09-09 一种光刻设备和光刻系统
PCT/CN2016/098563 WO2018045557A1 (zh) 2016-09-09 2016-09-09 一种光刻设备和光刻系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/098563 WO2018045557A1 (zh) 2016-09-09 2016-09-09 一种光刻设备和光刻系统

Publications (1)

Publication Number Publication Date
WO2018045557A1 true WO2018045557A1 (zh) 2018-03-15

Family

ID=61561690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098563 WO2018045557A1 (zh) 2016-09-09 2016-09-09 一种光刻设备和光刻系统

Country Status (2)

Country Link
CN (1) CN108139687B (zh)
WO (1) WO2018045557A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11531280B2 (en) 2018-08-29 2022-12-20 Asml Holding N.V. Compact alignment sensor arrangements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1658072A (zh) * 2004-02-18 2005-08-24 Asml荷兰有限公司 光刻装置和器件制造方法
US20090268210A1 (en) * 2008-04-28 2009-10-29 James Prince Compact Littrow Encoder
CN102203674A (zh) * 2008-09-22 2011-09-28 Asml荷兰有限公司 光刻设备、可编程图案形成装置和光刻方法
CN102368138A (zh) * 2011-10-19 2012-03-07 广东工业大学 一种大面积tft光刻装置及其光刻方法
CN202306140U (zh) * 2011-10-19 2012-07-04 广东工业大学 一种大面积tft光刻装置
CN102981380A (zh) * 2011-09-07 2013-03-20 上海微电子装备有限公司 用于光刻设备的预对准装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1658072A (zh) * 2004-02-18 2005-08-24 Asml荷兰有限公司 光刻装置和器件制造方法
US20090268210A1 (en) * 2008-04-28 2009-10-29 James Prince Compact Littrow Encoder
CN102203674A (zh) * 2008-09-22 2011-09-28 Asml荷兰有限公司 光刻设备、可编程图案形成装置和光刻方法
CN102981380A (zh) * 2011-09-07 2013-03-20 上海微电子装备有限公司 用于光刻设备的预对准装置及方法
CN102368138A (zh) * 2011-10-19 2012-03-07 广东工业大学 一种大面积tft光刻装置及其光刻方法
CN202306140U (zh) * 2011-10-19 2012-07-04 广东工业大学 一种大面积tft光刻装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11531280B2 (en) 2018-08-29 2022-12-20 Asml Holding N.V. Compact alignment sensor arrangements

Also Published As

Publication number Publication date
CN108139687A (zh) 2018-06-08
CN108139687B (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
US9225458B2 (en) Wavelength-selective cross-connect device having a variable number of common ports
JP5935852B2 (ja) 光学ユニット、照明光学装置、露光装置、およびデバイス製造方法
US8105758B2 (en) Microphotonic maskless lithography
US10678151B2 (en) Control device
US9188831B2 (en) Compact wavelength-selective cross-connect device having multiple input ports and multiple output ports
JP2015111672A (ja) マイクロリソグラフィ投影露光装置の照明系
JP2002353105A (ja) 照明光学装置,該照明光学装置を備えた露光装置,およびマイクロデバイスの製造方法
KR20040036929A (ko) 인터리브된 채널들을 갖는 자유공간 파장 라우팅 시스템
JPWO2008007633A1 (ja) 照明光学装置、露光装置、およびデバイス製造方法
Lee et al. Surface‐micromachined free‐space micro‐optical systems containing three‐dimensional microgratings
JP2018508839A (ja) クロストークを回避するために周波数分離を増大させた波長選択スイッチ
US9369783B2 (en) Wavelength-selective cross-connect device having astigmatic optics
WO2018045557A1 (zh) 一种光刻设备和光刻系统
JP6510979B2 (ja) マイクロリソグラフィ投影露光装置の光学系
CN100483257C (zh) 一种采用白激光的成像干涉光刻方法和系统
JP4883482B2 (ja) 照明光学装置、露光装置、およびデバイス製造方法
US10073221B2 (en) Beamforming for an optical switch
WO2012017783A1 (ja) 伝送光学系、照明光学系、露光装置、及びデバイス製造方法
US11953802B2 (en) Optical switch employing a virtually imaged phase-array disperser
JP2018124402A (ja) 光入出力装置
JP5327715B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
US11506884B2 (en) MEMS optical circuit switch
KR101832874B1 (ko) 광 교차연결 장치
WO2010016288A1 (ja) 照明光学系、露光装置、およびデバイス製造方法
US9535331B2 (en) Optical system for a microlithographic projection exposure apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915491

Country of ref document: EP

Kind code of ref document: A1