WO2018045514A1 - 生物传感器及其制作方法 - Google Patents

生物传感器及其制作方法 Download PDF

Info

Publication number
WO2018045514A1
WO2018045514A1 PCT/CN2016/098354 CN2016098354W WO2018045514A1 WO 2018045514 A1 WO2018045514 A1 WO 2018045514A1 CN 2016098354 W CN2016098354 W CN 2016098354W WO 2018045514 A1 WO2018045514 A1 WO 2018045514A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
biosensor
dielectric layer
layer
bottom gate
Prior art date
Application number
PCT/CN2016/098354
Other languages
English (en)
French (fr)
Inventor
徐挽杰
杨喜超
张臣雄
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/098354 priority Critical patent/WO2018045514A1/zh
Priority to CN201680089091.8A priority patent/CN109690305A/zh
Publication of WO2018045514A1 publication Critical patent/WO2018045514A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Definitions

  • the present invention relates to the field of semiconductors, and more particularly to a biosensor in the field of semiconductors and a method of fabricating the same.
  • the basic principle of a biosensor is to combine a specific receptor with the detected biological substance, and then convert the detected substance concentration information into an electrical signal. It integrates biology, chemistry, physics and electronic technology and is widely used in clinical diagnosis, disease prevention, environmental monitoring and other fields.
  • the biosensor is composed of an immobilized bio-sensitive material as a recognition element and a suitable physical and chemical transducer (such as an oxygen electrode, a phototube, a field effect transistor, a piezoelectric crystal, etc.).
  • a biosensor based on a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) converts charge information of a detected object into a change in drain current.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the MOSFET is limited by the subthreshold swing, and the drain current varies smoothly with the gate voltage, limiting the sensitivity of the sensor.
  • the Tunneling Field-Effect Transistor (TFET) has a smaller subthreshold swing than the MOSFET, which can be used in biosensors to improve sensitivity.
  • the TFET-based biosensor generally adopts a point tunneling structure. Only a small area near the tunneling junction between the source region and
  • the embodiments of the present invention provide a bio-sensor, which adopts a line tunneling structure in which a first semiconductor layer and a second semiconductor layer are partially overlapped, and has a subthreshold swing smaller than a point tunneling structure, which is easy to manufacture. And can greatly increase the effective signal sensing area, thereby increasing the sensitivity of the biosensor.
  • a biosensor in a first aspect, includes: a bottom gate connected to an external power source; a first dielectric layer, the first dielectric layer covering the bottom gate; formed on the first a line tunneling structure on the dielectric layer, wherein the line tunneling structure is partially overlapped by the first semiconductor layer and the second semiconductor layer; a source and a drain, the source and the drain are respectively disposed on the first semiconductor layer and Two sides of the overlapping portion of the second semiconductor layer, the source and the upper surface of the first semiconductor layer Contacting, the drain is in contact with an upper surface of the second semiconductor layer, a spacing between the source and the drain is greater than a width of the overlapping portion; a second dielectric layer overlying the overlapping portion; and A biomaterial receptor on the second dielectric layer for binding to the analyte for selective detection.
  • the line tunneling structure formed by partially overlapping the first semiconductor layer and the second semiconductor layer is relatively easy to fabricate. Since the subthreshold swing is not limited by the carrier heat distribution, a smaller subthreshold swing can be realized at room temperature. And the entire overlapping area is an effective signal sensing area, thereby improving the sensitivity of the sensor. In addition, the bottom gate can be used to conveniently set the static working point of the sensor to achieve optimal sensitivity performance.
  • the material type of the first semiconductor layer is a two-dimensional semiconductor material
  • the material type of the second semiconductor layer is a two-dimensional semiconductor material
  • the material type of the first semiconductor layer is a bulk semiconductor material
  • the material type of the second semiconductor layer is a two-dimensional semiconductor material
  • a wire tunneling structure including a two-dimensional semiconductor material since the thickness of the two-dimensional semiconductor material is small, better gate control can be achieved, and the carrier tunneling distance is small, so that a smaller subthreshold can be further realized. Swing.
  • the two-dimensional semiconductor material comprises at least one of the following materials: graphene nanoribbon, bilayer graphene, Molybdenum sulfide MoS 2 and tungsten disilicide WSe 2 and the like.
  • the second dielectric layer further covers the source and the drain, and the coverage of the biological substance receptor is greater than Or equal to the width of the overlapping portion of the two layers of semiconductor material.
  • the coverage of the biological substance receptor is greater than or equal to the width of the overlapping portion of the two layers of semiconductor material, and the line tunneling structure can be better utilized to convert the detected object concentration information into an electrical signal.
  • the material of the bottom gate is a semiconductor material, and the doping type of the bottom gate is N-type or P-type.
  • the material of the first dielectric layer and/or the second dielectric layer is silicon dioxide, boron nitride or high dielectric Electrical constant material.
  • the first dielectric layer and the second dielectric layer are made of the same material.
  • the biosensor further includes: a substrate having a recess formed therein, the bottom gate being formed in the recess Inside.
  • the width of the groove is greater than or equal to the width of the overlapping portion.
  • a method of fabricating a biosensor for producing the biosensor of any of the first aspect or the first aspect of the first aspect is provided.
  • the first dielectric layer and/or the second dielectric layer may be formed by chemical vapor deposition, atomic layer deposition, or the like.
  • FIG. 1 is a schematic diagram of a biosensor provided by an embodiment of the present invention.
  • FIG. 2 shows another schematic diagram of a biosensor provided by an embodiment of the present invention.
  • 3(a) to 3(f) are explanatory views showing the fabrication of a biosensor according to an embodiment of the present invention.
  • the subthreshold swing in the MOSFET is limited by the carrier Boltzmann thermal profile and also limits the sensitivity of the MOSFET-based biosensor.
  • the working principle of Tunneling Field-Effect Transistor (TFET) is fundamentally different from that of MOSFET.
  • the working principle of MOSFET is the diffusion drift mechanism of carriers.
  • the working principle of TFET is inter-band tunneling of carriers. Through the mechanism, the TFET can achieve a subthreshold swing of less than 60mV/dec at room temperature, breaking through the subthreshold swing limit of the MOSFET, and applying it to the biosensor can improve the sensitivity of the sensor.
  • the bipolar conductivity of the TFET the same device can be used to compare the bidirectional detection results to avoid false positive (yin) signals.
  • point tunneling means that its tunneling junction is located at the junction of the channel and the source region, so the TFET effective signal transition region is limited to a smaller portion near the point tunneling junction.
  • the line tunneling structure can make the tunneling area larger under a suitable gate voltage.
  • FIG. 1 and FIG. 2 are schematic diagrams showing the structure of a tunneling field effect transistor-based biosensor 100 according to an embodiment of the present invention.
  • the biosensor 100 includes a bottom gate 110 connected to an external power source, and a first dielectric layer 140 overlying the bottom gate 110.
  • a line tunneling structure on the first dielectric layer 140, the line tunneling structure is partially overlapped by the first semiconductor layer 161 and the second semiconductor layer 162; a source 120 and a drain 130, the source 120 and the drain
  • the electrodes 130 are respectively disposed on two sides of the overlapping portion of the first semiconductor layer 161 and the second semiconductor layer 162.
  • the source 120 is in contact with the upper surface of the first semiconductor layer 161, and the drain 130 and the second semiconductor layer
  • the upper surface of the 162 is in contact, the spacing between the source 120 and the drain 130 is greater than the width of the overlapping portion; the second dielectric layer 150 covering the overlapping portion; and the biological material disposed on the second dielectric layer 150 Receptor 170, which is used for selective detection in conjunction with the analyte.
  • the line tunneling structure in the embodiment of the present invention is formed by partially overlapping the first semiconductor layer and the second semiconductor layer, and all overlapping portions can be tunneled under a suitable gate voltage, in other words, At the appropriate gate voltage, the entire overlap is the effective signal sensing area.
  • the source electrode 120 and the drain electrode 130 may be electrically contacted on the surfaces of the first semiconductor layer and the second semiconductor layer as described in FIG. 1 or FIG. 2, or may be first.
  • the semiconductor layer and the side surface of the second semiconductor layer are electrically contacted.
  • the present invention does not limit the manner in which the source/drain electrode is in electrical contact with the first semiconductor layer and the second semiconductor layer. The larger the contact area, the smaller the contact resistance is expected to be.
  • first semiconductor layer and the second semiconductor layer in the embodiments of the present invention may be the same material but different doping types and concentrations, or the materials of the first semiconductor layer and the second semiconductor layer may be completely different, and the present invention This is not limited to this, as long as inter-band tunneling occurs between the first semiconductor layer and the second semiconductor layer under a suitable gate voltage.
  • the material types of the first semiconductor layer and the second semiconductor layer may be two-dimensional semiconductor materials as shown in FIG. 1 , and the material types of the first semiconductor layer and the second semiconductor layer may also be One of the components shown in Figure 2 is a two-dimensional semiconductor material and the other is a bulk semiconductor material.
  • the two-dimensional semiconductor material includes at least one of the following materials: graphene nanoribbon, bilayer graphene, molybdenum disulfide MoS 2 , and tungsten diselenide WSe 2 and the like. Based on the two-dimensional semiconductor material, the wire tunneling junction structure can achieve stronger gate control due to the smaller material thickness, and the tunneling distance is smaller, achieving a smaller subthreshold swing.
  • the biosensor implemented by the bottom gate can conveniently set the static working point of the sensor to achieve optimal sensitivity performance.
  • the spacing between the source and the drain refers to the distance between the inner edges of the source and the drain, and does not refer to the distance between the center lines of the two objects.
  • the second dielectric layer may cover only the overlapping portion of the first semiconductor layer and the second semiconductor layer, and the second dielectric layer may further cover the source, the two semiconductor layers, and the drain.
  • the coverage of the biological substance receptor is greater than or equal to the width of the overlapping portion, and the line tunneling junction can be better utilized to convert the detected object concentration information into an electrical signal.
  • the bottom gate may also be formed of a substrate having conductive properties, for example, a highly doped substrate may be used as the bottom gate. It is also possible to form a layer of metal on the substrate by sputtering to form a bottom gate.
  • the bottom gate may also be formed in a recess of the substrate, the recess having a width greater than or equal to an overlap of the first semiconductor layer and the second semiconductor layer.
  • biosensor provided by the embodiment of the present invention is only an example, and any structure that can implement line tunneling may be part of the embodiment of the present invention.
  • the biosensor provided by the embodiment of the invention adopts a first semiconductor layer and a second semiconductor
  • the line tunneling structure formed by partial overlap of the bulk layers is relatively easy to fabricate. Since the subthreshold swing is not limited by the carrier heat distribution, a smaller subthreshold swing can be achieved at room temperature, and the entire overlap region is effective. Signal sensing area to increase sensor sensitivity.
  • the bottom gate can be used to conveniently set the static working point of the sensor to achieve optimal sensitivity performance.
  • FIG. 3 is an explanatory view of the biosensor shown in FIG. 1 according to an embodiment of the present invention. It should be understood that, in order to illustrate the process effect, the illustration is not drawn according to the actual device structure ratio, and the specific manufacturing process steps are as follows:
  • Step 1 As shown in FIG. 3(a), a bottom gate is provided.
  • the bottom gate needs to be electrically conductive, and the semiconductor substrate can be heavily doped.
  • the material of the bottom gate can be common silicon Si, germanium Ge or compound semiconductor.
  • the doping type may be N-type or P-type; it may also be a layer of metal formed by sputtering or electron beam evaporation (or subsequent annealing to form a metal silicide).
  • the bottom gate needs to cover overlapping regions formed between the two-dimensional semiconductor materials or between the two-dimensional semiconductor material and the bulk semiconductor material.
  • Step 2 As shown in FIG. 3(b), a first dielectric layer is formed on the bottom gate, and the material may be silicon dioxide, boron nitride or a high dielectric constant dielectric, etc., and the fabrication method may be chemical vapor deposition or atomic layer. Deposition, thermal oxidation, etc.
  • Step 3 as shown in FIG. 3(c), transferring and patterning the second two-dimensional semiconductor layer, then transferring the first two-dimensional semiconductor layer and patterning the first two-dimensional semiconductor layer and the second two-dimensional semiconductor layer portion
  • the first two-dimensional semiconductor layer and/or the second two-dimensional semiconductor layer may be doped before or after the transfer.
  • materials of the first two-dimensional semiconductor layer and/or the second two-dimensional semiconductor layer include, but are not limited to, graphene nanoribbon, double-layer graphene, molybdenum disulfide MoS 2 , and tungsten selenide WSe 2 , and the like.
  • the materials of the first two-dimensional semiconductor layer and the second two-dimensional semiconductor layer may be the same or different materials.
  • the method for fabricating the first two-dimensional semiconductor layer and/or the second two-dimensional semiconductor layer in the embodiment of the present invention is not limited.
  • it can be prepared by chemical vapor deposition on a metal substrate and then transferred to the first dielectric layer.
  • a source and a drain are formed.
  • the material is a metal, and the source and drain electrodes may be formed by deposition after deposition on both ends of the first two-dimensional semiconductor layer and the second two-dimensional semiconductor layer.
  • Step 5 as shown in FIG. 3(e), fabricating a second dielectric layer covering the first two-dimensional semiconductor layer and the second two-dimensional semiconductor layer, the source and the drain, and the material of the second dielectric layer may be Dioxide
  • the silicon, boron nitride or high dielectric constant dielectric may be the same as or different from the material of the first dielectric layer, and the fabrication method may be chemical vapor deposition, atomic layer deposition or the like.
  • Step 6 is modified on the second dielectric layer with a probe-specific receptor, and the acceptor may cover the overlapping region of the first two-dimensional semiconductor layer and the second two-dimensional semiconductor layer.
  • the second dielectric layer can be surface modified with Biotin to achieve a specific measurement of streptavidin concentration.
  • FIG. 4 is another explanatory diagram of the biosensor shown in FIG. 2 according to an embodiment of the present invention. It should be understood that, in order to illustrate the process effect, the illustration is not drawn according to the actual device structure ratio, and the specific manufacturing process steps are as follows. :
  • Step 1 forming a structure as shown in FIG. 4(a) by a wafer bonding technique, wherein the highly doped semiconductor material serves as a bottom gate, and the upper portion sequentially covers the first dielectric layer and the thinner bulk semiconductor layer, wherein the block
  • the material semiconductor layer may be silicon, germanium or a compound semiconductor (for example, InGaAs, GaSb).
  • Step 2 as shown in FIG. 4(b), etches the top bulk semiconductor layer.
  • Step 3 As shown in FIG. 4(c), a dielectric is deposited and the top is flattened.
  • the dielectric material can be the same or different than the first dielectric layer.
  • Step 4 transfers the two-dimensional semiconductor layer and patterns it so that a part thereof overlaps with the bulk semiconductor layer.
  • the material type of the two-dimensional semiconductor layer is graphene nanoribbon, bilayer graphene, MoS 2 , WSe 2 , etc., which may be doped or undoped before or after transfer.
  • Step 5 as shown in FIG. 4(e), a source and a drain are formed, the material is a metal, and the etching is performed such that the source and the drain are respectively located on the upper surfaces of the bulk semiconductor layer and the two-dimensional semiconductor layer.
  • Step 6 depositing a second dielectric layer covering the two-dimensional semiconductor layer, the bulk semiconductor layer, the gate and the drain, and the material of the second dielectric layer may be silicon dioxide,
  • the boron nitride or the high dielectric constant dielectric material and the like may be the same or different materials as the first dielectric layer, and may be formed by chemical vapor deposition, atomic layer deposition or the like.
  • Step 7, Figure 4(g) is modified on the second dielectric layer with a probe-specific receptor.
  • the acceptor needs to cover the overlap region of the two-dimensional semiconductor layer and the bulk semiconductor layer.
  • the manufacturing method of the biosensor provided by the embodiment of the present invention is only a schematic description, and the manufacturing process of each component is not limited in the present invention.
  • a layer of metal may be sputtered on the substrate and then annealed to form a metal silicide as a bottom gate; a hexagonal boron nitride h-BN film grown by CVD is transferred to the bottom gate as a first dielectric layer;
  • the source or the drain or the like is formed by electron beam evaporation or photolithography and etching.
  • the biosensor and the method for fabricating the same use a line tunneling structure formed by overlapping a first semiconductor layer and a second semiconductor layer, which is relatively easy to fabricate, since the subthreshold swing is not subject to carriers.
  • a smaller subthreshold swing can be achieved at room temperature, and the entire overlap region is an effective signal sensing region, thereby improving the sensitivity of the sensor.
  • the bottom gate can be used to conveniently set the static working point of the sensor to achieve optimal sensitivity performance.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种生物传感器及其制作方法,该生物传感器包括:底栅(110);第一电介质层(140);线隧穿结构,该线隧穿结构由第一半导体层(161)和第二半导体层(162)部分重叠构成;源极(120)和漏极(130);第二电介质层(150);以及生物物质受体(170),该生物物质受体(170)用于与被探测物结合进行选择性探测。该生物传感器采用第一半导体层(161)和第二半导体层(162)重叠构成的线隧穿结构,制作较为容易,由于亚阈值摆幅不受载流子热分布的限制,在室温下可以实现更小的亚阈值摆幅,并且整个重叠区域均是有效信号感测区域,从而提高传感器的灵敏度。另外,采用底栅,可以方便的设置传感器的静态工作点,实现最优的灵敏度性能。

Description

生物传感器及其制作方法 技术领域
本发明涉及半导体领域,尤其涉及半导体领域中的生物传感器及其制作方法。
背景技术
生物传感器的基本原理是利用特异性的受体与被探测的生物物质结合,然后将被探测物浓度信息转换为电信号。它融合生物学、化学、物理学、电子技术于一体,广泛应用于临床诊断、疾病预防、环境监测等领域。
具体地,生物传感器是由固定化的生物敏感材料作识别元件与适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等)组成。基于金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)的生物传感器,将被探测物的电荷信息转化为漏极电流的变化。MOSFET受到亚阈值摆幅的限制,漏极电流随栅极电压的变化比较平稳,限制了传感器的灵敏度。隧穿场效应晶体管(Tunneling Field-Effect Transistor,TFET)具有比MOSFET更小的亚阈值摆幅,应用于生物传感器中可以提高灵敏度。而基于TFET的生物传感器普遍采用点隧穿(point tunneling)结构,传感器中只有源区和沟道之间隧穿结附近很小的区域是有效信号感测区域,限制了传感器的灵敏度。
发明内容
有鉴于此,本发明实施例提供了一种生物传感器,采用第一半导体层和第二半导体层部分重叠构成的线隧穿结构,具有比点隧穿结构更小的亚阈值摆幅,制作容易,并且可以大幅提升有效信号感测区域面积,从而提高生物传感器的灵敏度。
第一方面,提供了一种生物传感器,该生物传感器包括:底栅,该底栅与外部电源相连接;第一电介质层,该第一电介质层覆盖在该底栅上;形成于该第一电介质层上的线隧穿结构,该线隧穿结构由第一半导体层和第二半导体层部分重叠构成;源极和漏极,该源极和该漏极分别设置于该第一半导体层与该第二半导体层重叠部分的两侧,该源极与该第一半导体层的上表面 接触,该漏极与该第二半导体层的上表面接触,该源极和该漏极之间的间距大于该重叠部分的宽度;覆盖于该重叠部分上的第二电介质层;以及设置于该第二电介质层上的生物物质受体,该生物物质受体用于与被探测物结合进行选择性探测。
采用第一半导体层和第二半导体层部分重叠构成的线隧穿结构,制作较为容易,由于亚阈值摆幅不受载流子热分布的限制,在室温下可以实现更小的亚阈值摆幅,并且整个重叠区域均是有效信号感测区域,从而提高传感器的灵敏度。另外,采用底栅,可以方便的设置传感器的静态工作点,实现最优的灵敏度性能。
结合第一方面,在第一方面的第一种可能的实现方式中,该第一半导体层的材料类型为二维半导体材料,该第二半导体层的材料类型为二维半导体材料。
结合上述第一方面的一些实现方式,在第一方面的第二种可能的实现方式中,该第一半导体层的材料类型为块材半导体材料,该第二半导体层的材料类型为二维半导体材料。
在包含有二维半导体材料的线隧穿结构中,由于二维半导体材料厚度很小,能够实现更好的栅控,而且载流子隧穿距离较小,从而可以进一步实现更小的亚阈值摆幅。
结合上述第一方面的一些实现方式,在第一方面的第三种可能的实现方式中,该二维半导体材料包括以下材料中的至少一种材料:石墨烯纳米带、双层石墨烯、二硫化钼MoS2以及二硒化钨WSe2等。
结合上述第一方面的一些实现方式,在第一方面的第四种可能的实现方式中,该第二电介质层还覆盖于该源极和该漏极上,该生物物质受体的覆盖范围大于或等于两层半导体材料重叠部分的宽度。
生物物质受体的覆盖范围大于或等于两层半导体材料重叠部分的宽度,可以更好地利用线隧穿结构将被探测物浓度信息转换为电信号。
结合上述第一方面的一些实现方式,在第一方面的第五种可能的实现方式中,该底栅的材料是半导体材料,该底栅的掺杂类型为N型或P型。
结合上述第一方面的一些实现方式,在第一方面的第六种可能的实现方式中,该第一电介质层和/或该第二电介质层的材料为二氧化硅、氮化硼或高介电常数材料。
可选地,该第一电介质层和该第二电介质层的材料相同。
结合上述第一方面的一些实现方式,在第一方面的第七种可能的实现方式中,该生物传感器还包括:衬底,该衬底上设有凹槽,该底栅形成于该凹槽内。
可选地,该凹槽的宽度大于或等于该重叠部分的宽度。
第二方面,提供了一种生物传感器的制作方法,该方法用于制作上述第一方面或第一方面的任一种可能实现方式的生物传感器。
可以采用化学气相沉积法、原子层沉积法等制作该第一电介质层和/或该第二电介质层。
更多的方面和实施例将通过下面的详细描述加以呈现。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例提供的生物传感器的一种示意图。
图2示出了本发明实施例提供的生物传感器的另一示意图。
图3(a)~3(f)示出了制作本发明实施例提供的生物传感器的说明图。
图4(a)~4(g)示出了制作本发明实施例提供的生物传感器的另一说明图。
具体实施方式
以下将参照附图详细描述本发明的实施例,在各个附图中,相同的元件采用类似的附图标记来表示。以下所述实施例是示例性的,为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,这些仅仅是示例,旨在解释本发明而不能理解为对本发明的限制。此外,本发明提供了各种特定的工艺和材料的例子,但是正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本发明。除非在下文中特别指出,器件的各部分均可采用本领域公知的工艺和材料实现。另外,在本发明的描述中,需要理解的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示 所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
MOSFET中亚阈值摆幅受载流子玻尔兹曼热分布限制,同时也限制了基于MOSFET的生物传感器的灵敏度。隧穿场效应晶体管(Tunneling Field-Effect Transistor,TFET)的工作原理与MOSFET有着根本的不同,MOSFET的工作原理是载流子的扩散漂流机制,而TFET的工作原理是载流子的带间隧穿机制,因此TFET在室温下可以实现小于60mV/dec的亚阈值摆幅,突破MOSFET的亚阈值摆幅限制,将其应用于生物传感器中,能够提高传感器的灵敏度。另外利用TFET的双极导电特性,采用同一器件将双向检测结果进行对照,可以避免假阳(阴)性信号。
本领域技术人员理解,点隧穿(point tunneling)是指其隧穿结位于沟道和源区交界处,因此TFET有效信号转换区域仅限于点隧穿结附近的较小的一部分。而线隧穿(line tunneling)结构可以在合适的栅压下,能够使得发生隧穿的面积更大一些。
图1和图2示出了本发明实施例提供的基于隧穿场效应晶体管的生物传感器100的结构示意图。如图1和图2所示,该生物传感器100包括:底栅110,该底栅110与外部电源相连接;第一电介质层140,该第一电介质层140覆盖在该底栅110上;形成于该第一电介质层140上的线隧穿结构,该线隧穿结构由第一半导体层161和第二半导体层162部分重叠构成;源极120和漏极130,该源极120和该漏极130分别设置于该第一半导体层161与该第二半导体层162重叠部分的两侧,该源极120与该第一半导体层161的上表面接触,该漏极130与该第二半导体层162的上表面接触,该源极120和该漏极130之间的间距大于该重叠部分的宽度;覆盖该重叠部分的第二电介质层150;以及设置于该第二电介质层150上的生物物质受体170,该生物物质受体170用于与被探测物结合进行选择性探测。
应理解,本发明实施例中的线隧穿结构,是通过第一半导体层与第二半导体层部分重叠构成的,并且所有重叠部分在合适的栅压下都可实现隧穿,换句话说,在合适的栅压下,整个重叠部分都是有效信号感测区域。
应理解,本发明实施例提供的生物传感器,源电极120和漏电极130可以采用如图1或图2所述的在第一半导体层和第二半导体层表面制作电接触,也可以在第一半导体层和第二半导体层的侧面制作电接触,本发明对源漏电极与第一半导体层和第二半导体层的电接触方式不作限定,接触面积越大,接触电阻有望做的越小。
还应理解,本发明实施例中的第一半导体层和第二半导体层可以是材料相同但掺杂种类和浓度不同,也可以是第一半导体层和第二半导体层的材料完全不同,本发明对此不够成限定,只要第一半导体层和第二半导体层之间在合适的栅压下发生带间隧穿即可。
可选地,该第一半导体层和该第二半导体层的材料类型可以是如图1所示的都为二维半导体材料,该第一半导体层和该第二半导体层的材料类型还可以是如图2所示的一个是二维半导体材料,另一个是块材半导体材料。具体地,该二维半导体材料包括以下材料中的至少一种材料:石墨烯纳米带、双层石墨烯、二硫化钼MoS2以及二硒化钨WSe2等。基于二维半导体材料实现的线隧穿结结构,由于材料厚度比较小,可以实现更强的栅控,而且隧穿距离较小,实现更小的亚阈值摆幅。
在本发明实施例中,采用底栅的方式实现的生物传感器,可以方便的设置传感器的静态工作点,实现最优的灵敏度性能。
需要说明的是,该源极和该漏极之间的间距是指源极和漏极的内侧边沿之间的距离,并不是指两个物体中心线之间的距离。
可选地,该第二电介质层可以是只覆盖于第一半导体层和第二半导体层的重叠部分上,该第二电介质层还可以是覆盖于源极、两层半导体层以及漏极上,该生物物质受体的覆盖范围大于或等于该重叠部分的宽度,可以更好地利用线隧穿结将被探测物浓度信息转换为电信号。
可选地,该底栅还可以是由具有导电性质的衬底形成,例如可以是利用高掺杂的衬底作为底栅。也可以是溅射的方式在衬底上形成一层金属构成底栅。该底栅还可以在衬底的凹槽中形成,该凹槽的宽度可以大于或等于该第一半导体层和该第二半导体层的重叠部分。
需要说明的是,本发明实施例提供的生物传感器仅仅只是一种示例,任何可以实现线隧穿的结构都可以是本发明实施例的一部分。
因此,本发明实施例提供的生物传感器,采用第一半导体层和第二半导 体层部分重叠构成的线隧穿结构,制作较为容易,由于亚阈值摆幅不受载流子热分布的限制,在室温下可以实现更小的亚阈值摆幅,并且整个重叠区域均是有效信号感测区域,从而提高传感器的灵敏度。另外,采用底栅,可以方便的设置传感器的静态工作点,实现最优的灵敏度性能。
下面将结合图3和图4详细描述本发明实施例提供的生物传感器的制作方法。
图3是本发明实施例提供的制作如图1所示的生物传感器的说明图,应理解,为了说明工艺效果,说明图中并不是按照实际器件结构比例所画,具体制作工艺步骤如下:
步骤1:如图3(a)所示,提供底栅,该底栅需要能够导电,可以对半导体衬底进行重掺杂,该底栅的材料可以是常见的硅Si,锗Ge或者化合物半导体,掺杂类型可以是N型或者P型;还可以是通过溅射或电子束蒸发形成一层金属(或者随后进行退火形成金属硅化物)。底栅需要覆盖二维半导体材料之间或者二维半导体材料和块材半导体材料之间形成的重叠区域。
步骤2:如图3(b)所示,在底栅上制作第一电介质层,材料可以是二氧化硅、氮化硼或高介电常数电介质等,制作方法可以是化学气相沉积、原子层沉积、热氧化等。
步骤3,如图3(c)所示,转移第二二维半导体层并图形化,然后转移第一二维半导体层并图形化,使第一二维半导体层和第二二维半导体层部分区域相互重叠。第一二维半导体层和/或第二二维半导体层在转移之前或之后可以进行掺杂。具体地,该第一二维半导体层和/或第二二维半导体层的材料包括但不限于是石墨烯纳米带、双层石墨烯、二硫化钼MoS2以及二硒化钨WSe2等,该第一二维半导体层和第二二维半导体层的材料可以为相同的或不同的材料。
应理解,本发明实施例中对第一二维半导体层和/或第二二维半导体层的制作方法不作限定。例如,可以在金属衬底上采用化学气相沉积的方法制备然后转移到第一电介质层上。
步骤4,如图3(d)所示,形成源极和漏极。材料是金属,可以在第一二维半导体层和第二二维半导体层的两端通过沉积后刻蚀形成源漏电极。
步骤5,如图3(e)所示,制作第二电介质层,使之覆盖第一二维半导体层和第二二维半导体层、源极和漏极,该第二电介质层的材料可以是二氧化 硅、氮化硼或高介电常数电介质等,与第一电介质层的材料可以相同也可以不同,制作方法可以同样是化学气相沉积、原子层沉积等。
步骤6,如图3(f)所示,在第二电介质层上用被探测物特异性受体进行修饰,受体可以覆盖第一二维半导体层和第二二维半导体层的重叠区。
例如,可以采用生物素(Biotin)对第二电介质层进行表面修饰,从而实现对链霉亲和素(Streptavidin)浓度的特异性测量。
图4是本发明实施例提供的制作如图2所示的生物传感器的另一说明图,应理解,为了说明工艺效果,说明图中并不是按照实际器件结构比例所画,具体制作工艺步骤如下:
步骤1,通过晶圆键合技术形成如图4(a)所示的结构,高掺杂的半导体材料作为底栅,上方依次覆盖第一电介质层和较薄的块材半导体层,其中,块材半导体层可以是硅、锗或者化合物半导体(例如InGaAs,GaSb)。
步骤2,如图4(b)所示,刻蚀顶部的块材半导体层。
步骤3,如图4(c)所示,沉积电介质,并将顶部平整化。该电介质材料可以与第一电介质层相同或不同。
步骤4,如图4(d)所示,转移二维半导体层,并图形化,使其一部分与块材半导体层发生重叠。二维半导体层的材料类型为石墨烯纳米带、双层石墨烯、MoS2,WSe2等,可以在转移前或转移后进行掺杂或者不掺杂。
步骤5,如图4(e)所示,形成源极和漏极,材料是金属,并刻蚀,使源极和漏极分别位于块材半导体层和二维半导体层的上表面。
步骤6,如图4(f)所示,沉积第二电介质层,使之覆盖二维半导体层、块材半导体层、栅极和漏极,该第二电介质层的材料可以是二氧化硅、氮化硼或高介电常数电介质等,与第一电介质层可以是相同或者不同的材料,制作方法可以是化学气相沉积、原子层沉积等。
步骤7,图4(g),在第二电介质层上用被探测物特异性受体进行修饰。受体需覆盖二维半导体层和块材半导体层的重叠区。
需要说明的是,本发明实施例提供的生物传感器的制作方法仅是示意性说明,本发明对每个部件的制作工艺并不限定。例如,可以在衬底上溅射一层金属,而后退火形成金属硅化物作为底栅;用CVD法生长六方氮化硼h-BN薄膜转移到所述底栅上作为第一电介质层;采用溅射或电子束蒸发和光刻并刻蚀的方法形成源极和漏极等。
综上所述,本发明实施例提供的生物传感器及其制作方法,采用第一半导体层和第二半导体层重叠构成的线隧穿结构,制作较为容易,由于亚阈值摆幅不受载流子热分布的限制,在室温下可以实现更小的亚阈值摆幅,并且整个重叠区域均是有效信号感测区域,从而提高传感器的灵敏度。另外,采用底栅,可以方便的设置传感器的静态工作点,实现最优的灵敏度性能。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
还应理解,在本文中使用的,除非上下文清楚地支持例外情况,单数形式“一个”(“a”、“an”、“the”)旨在也包括复数形式。还应当理解的是,在本文中使用的“和/或”是指包括一个或者一个以上相关联地列出的项目的任意和所有可能组合。
虽然现在本发明优选的实施例已经在此处描述,应理解,所用的术语的目的是具有描述性而非限制性词语的本质。对于本领域技术人员显然的是,根据上述教导,可以得出本发明的许多改型和变体。因此,应该理解,在附带的权利要求书的范围内,其中附图标记仅为方便而使用,并非以任何方式进行限制,本发明可以采用除上面具体描述之外的其他方式实施。

Claims (10)

  1. 一种生物传感器,其特征在于,包括:
    底栅,所述底栅与外部电源相连接;
    第一电介质层,所述第一电介质层覆盖在所述底栅上;
    形成于所述第一电介质层上的线隧穿结构,所述线隧穿结构由第一半导体层和第二半导体层部分重叠构成;
    源极和漏极,所述源极和所述漏极分别设置于所述第一半导体层与所述第二半导体层的重叠部分的两侧,所述源极设置于所述第一半导体层的上表面,所述漏极设置于所述第二半导体层的上表面,所述源极和所述漏极之间的间距大于所述重叠部分的宽度;
    第二电介质层,所述第二电介质层覆盖在所述重叠部分上;以及
    设置于所述第二电介质层上的生物物质受体,所述生物物质受体用于与被探测物结合进行选择性探测。
  2. 根据权利要求1所述的生物传感器,其特征在于,所述第一半导体层的材料类型为二维半导体材料,所述第二半导体层的材料类型为二维半导体材料。
  3. 根据权利要求1所述的生物传感器,其特征在于,所述第一半导体层的材料类型为块材半导体材料,所述第二半导体层的材料类型为二维半导体材料。
  4. 根据权利要求2或3所述的生物传感器,其特征在于,所述二维半导体材料包括以下材料中的至少一种材料:石墨烯纳米带、双层石墨烯、二硫化钼MoS2以及二硒化钨WSe2
  5. 根据权利要求1至4中任一项所述的生物传感器,其特征在于,所述第二电介质层还覆盖于所述源极和所述漏极上,所述生物物质受体的覆盖范围大于或等于所述重叠部分的宽度。
  6. 根据权利要求1至5中任一项所述的生物传感器,其特征在于,所述底栅的材料是半导体材料,所述底栅的掺杂类型为N型或P型。
  7. 根据权利要求1至6中任一项所述的生物传感器,其特征在于,所述第一电介质层和/或所述第二电介质层的材料为二氧化硅、氮化硼或高介电常数材料。
  8. 根据权利要求1至7中任一项所述的生物传感器,其特征在于,所 述生物传感器还包括:
    衬底,所述衬底上设有凹槽,所述底栅形成于所述凹槽内。
  9. 一种生物传感器的制作方法,其特征在于,所述生物传感器包括如权利要求1至权利要求8中任一项所述的生物传感器。
  10. 根据权利9所述的制作方法,其特征在于,采用化学气相沉积法或原子层沉积法制作所述生物传感器中的第一电介质层和/或第二电介质层。
PCT/CN2016/098354 2016-09-07 2016-09-07 生物传感器及其制作方法 WO2018045514A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/098354 WO2018045514A1 (zh) 2016-09-07 2016-09-07 生物传感器及其制作方法
CN201680089091.8A CN109690305A (zh) 2016-09-07 2016-09-07 生物传感器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/098354 WO2018045514A1 (zh) 2016-09-07 2016-09-07 生物传感器及其制作方法

Publications (1)

Publication Number Publication Date
WO2018045514A1 true WO2018045514A1 (zh) 2018-03-15

Family

ID=61561257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098354 WO2018045514A1 (zh) 2016-09-07 2016-09-07 生物传感器及其制作方法

Country Status (2)

Country Link
CN (1) CN109690305A (zh)
WO (1) WO2018045514A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406601A (zh) * 2018-12-06 2019-03-01 清华大学 一种二维材料异质结传感器
CN113196049A (zh) * 2018-11-16 2021-07-30 剑桥企业有限公司 用于感测靶分子的场效应晶体管
CN114507714A (zh) * 2022-04-20 2022-05-17 华中科技大学 一种基于miRNA检测的二维材料半导体传感器制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672699A (zh) * 2019-09-18 2020-01-10 天津师范大学 全固态场效应晶体管及应用其的生物传感器和检测方法
CN110672700B (zh) * 2019-10-18 2022-06-03 广东省半导体产业技术研究院 一种生物电子芯片及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070295988A1 (en) * 2006-06-26 2007-12-27 Canon Kabushiki Kaisha Dual-gate sensor
US20140138673A1 (en) * 2012-08-02 2014-05-22 Chan- Long Shieh Self-aligned metal oxide tft with reduced number of masks and with reduced power consumption
CN104345082A (zh) * 2013-08-06 2015-02-11 中国科学院苏州纳米技术与纳米仿生研究所 生物传感器、生物传感器的制作方法及其检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419114B2 (en) * 2014-01-17 2016-08-16 Imec Vzw Tunnel field-effect transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070295988A1 (en) * 2006-06-26 2007-12-27 Canon Kabushiki Kaisha Dual-gate sensor
US20140138673A1 (en) * 2012-08-02 2014-05-22 Chan- Long Shieh Self-aligned metal oxide tft with reduced number of masks and with reduced power consumption
CN104345082A (zh) * 2013-08-06 2015-02-11 中国科学院苏州纳米技术与纳米仿生研究所 生物传感器、生物传感器的制作方法及其检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAM, H. ET AL.: "Multiple MoS2 transistors for sensing molecule interaction kinetics", SCIENTIFIC REPORTS, vol. 5, no. 1, 27 May 2015 (2015-05-27), pages 1 - 13, XP055497398 *
SARKAR, D. ET AL.: "A subthermionic tunnel field-effect transistor with an atomically thin channel", NATURE, vol. 526, no. 7571, 1 October 2015 (2015-10-01), pages 91 - 95, XP055454184 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113196049A (zh) * 2018-11-16 2021-07-30 剑桥企业有限公司 用于感测靶分子的场效应晶体管
CN109406601A (zh) * 2018-12-06 2019-03-01 清华大学 一种二维材料异质结传感器
CN114507714A (zh) * 2022-04-20 2022-05-17 华中科技大学 一种基于miRNA检测的二维材料半导体传感器制备方法
CN114507714B (zh) * 2022-04-20 2022-07-05 华中科技大学 一种基于miRNA检测的二维材料半导体传感器制备方法

Also Published As

Publication number Publication date
CN109690305A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
WO2018045514A1 (zh) 生物传感器及其制作方法
JP6918442B2 (ja) 金属−二次元物質−半導体の接合を含む半導体素子
CN109682863B (zh) 基于TMDCs-SFOI异质结的气体传感器及其制备方法
JP5181837B2 (ja) センサ及びその製造方法
US8394657B2 (en) Biosensor using nanodot and method of manufacturing the same
CN102272934B (zh) 场效应晶体管、场效应晶体管的制造方法以及生物传感器
US10261067B2 (en) Method of forming a field effect based nanopore device
CN107449812B (zh) 一种在cmos标准工艺下的生物化学传感器
US7182914B2 (en) Structure and manufacturing process of a nano device transistor for a biosensor
US20170059513A1 (en) Hybrid ion-sensitive field-effect transistor
US20170336347A1 (en) SiNW PIXELS BASED INVERTING AMPLIFIER
KR20080067276A (ko) 유전율-변화 전계효과 트랜지스터 및 그 제조 방법
US9540234B2 (en) Nanogap device and method of processing signal from the nanogap device
Biswas et al. Sensitivity analysis of physically doped, charge plasma and electrically doped TFET biosensors
JP2016103577A (ja) 半導体バイオセンサ装置
US9846139B2 (en) Nanowire field-effect sensor including nanowires having network structure and fabrication method thereof
US9034265B2 (en) Biomolecular sensor with plural metal plates and manufacturing method thereof
US8022444B2 (en) Biosensor and method of manufacturing the same
Rahmani et al. Ultrasensitive immunosensor for monitoring of CA 19-9 pancreatic cancer marker using electrolyte-gated TiS3 nanoribbons field-effect transistor
CN103424457A (zh) 生物传感器及其dna测序方法
US10254244B1 (en) Biosensor having a sensing gate dielectric and a back gate dielectric
EP2629086B1 (en) Molecule sensing and identification
JP5737655B2 (ja) 半導体センサ
Jayakumar et al. Utilizing the superior etch stop quality of HfO2 in the front end of line wafer scale integration of silicon nanowire biosensors
Hossain et al. Multilayer graphene nanoribbon based BioFET sensor design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915450

Country of ref document: EP

Kind code of ref document: A1