WO2018043725A1 - Organic semiconductor material, organic compound and organic semiconductor device - Google Patents

Organic semiconductor material, organic compound and organic semiconductor device Download PDF

Info

Publication number
WO2018043725A1
WO2018043725A1 PCT/JP2017/031671 JP2017031671W WO2018043725A1 WO 2018043725 A1 WO2018043725 A1 WO 2018043725A1 JP 2017031671 W JP2017031671 W JP 2017031671W WO 2018043725 A1 WO2018043725 A1 WO 2018043725A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
group
semiconductor material
aliphatic chain
organic semiconductor
Prior art date
Application number
PCT/JP2017/031671
Other languages
French (fr)
Japanese (ja)
Inventor
純一 半那
タンジョウ ヤン
裕明 飯野
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to JP2018537575A priority Critical patent/JPWO2018043725A1/en
Publication of WO2018043725A1 publication Critical patent/WO2018043725A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to an organic semiconductor material and an organic compound exhibiting liquid crystallinity, and an organic semiconductor device. More specifically, the present invention exhibits liquid crystallinity and can be suitably used as an organic semiconductor (for example, an n-type organic semiconductor) in at least one of a liquid crystal phase and a crystal phase, and an organic semiconductor material and an organic semiconductor material thereof.
  • the present invention relates to an organic semiconductor device using an organic compound.
  • a substance having a “rod-like” molecular structure and exhibiting liquid crystallinity having an extended aromatic ⁇ -conjugated site is characterized by a relatively flexible long-chain hydrocarbon chain.
  • it has a structure similar to a soluble organic transistor material.
  • Non-patent Document 1 Since an organic transistor using a pentacene crystal material (Non-patent Document 1) was reported, oligothiophene (Non-patent Document 2), TIPS-pentacene (Non-patent Document 13), and benzothienobenzothiophene [ 5,10] derivatives and the like are synthesized to produce transistors.
  • n-type organic semiconductor material requires a material having a low LUMO level (deep LUMO level)
  • organic semiconductor materials capable of n-type operation (electron transportable) in the atmosphere are extremely limited.
  • Non-Patent Documents 4 to 6 There are limited reports of materials that can operate n-type transistors. For this reason, an n-type organic transistor material necessary for manufacturing a CMOS is still eagerly searched.
  • the main object of the present invention is to provide an organic semiconductor material exhibiting liquid crystallinity, which has a deep LUMO level and can be preferably used as an n-type organic semiconductor, which can eliminate the above-mentioned drawbacks of the prior art. It is in.
  • Another object of the present invention is to provide an organic semiconductor device and a novel compound using the organic semiconductor material.
  • IQIQ isoquinolino-isoquinoline
  • the organic semiconductor material of the present invention is based on the above knowledge, and more specifically, a unit A having a IQIQ (isoquinolino-isoquinoline) type skeleton structure; and a carbon main chain linked to the unit A by a single bond.
  • An aliphatic chain unit B in which one or more of the constituent carbon atoms may be substituted with an oxygen atom; a group containing an aliphatic chain and / or a cyclic structure connected to the unit A with a single bond; Or an organic semiconductor material having at least a unit C which is a hydrogen atom; wherein the organic semiconductor material exhibits liquid crystallinity.
  • IQIQ isoquinolinoisoquinoline
  • the unit A is represented by the following formula (2) (In the formula, each a is independently a hydrogen atom, a single bond, or a saturated and / or unsaturated cyclic group, and the saturated and / or unsaturated cyclic group is a hydrocarbon group. Or it may contain one or more heteroatoms.)
  • the unit B and the unit C are each connected to two a by a single bond, and when the a is a single bond, the unit B and / or the unit C is connected to IQIQ.
  • the organic semiconductor material according to [1] which is directly bonded by a single bond.
  • each a independently represents the following structural formula (In the formula, R is a hydrogen atom or an aliphatic chain group.)
  • R in the above formula is a hydrogen atom In the case, it is substituted with R, or when R is an aliphatic chain group, the hydrogen atom of the aliphatic chain group of R can be substituted and bonded to the unit A.
  • the aliphatic chain of the unit C is an aliphatic chain group having 3 to 20 carbon atoms, and the group including the cyclic structure of the unit C is an aromatic group, a heterocyclic group or an aliphatic ring group.
  • Unit A including a skeleton structure based on isoquinolino-isoquinoline (IQIQ) represented by the following formula (1), an aliphatic chain unit B linked to the unit A by a single bond, and the unit A An organic compound having at least a group containing an aliphatic chain and / or a cyclic structure, or a unit C which is a hydrogen atom, connected by a single bond.
  • IQIQ isoquinolino-isoquinoline
  • the unit A is represented by the following formula (2) (In the formula, each a is independently a hydrogen atom, a single bond, or a saturated and / or unsaturated cyclic group, and the saturated and / or unsaturated cyclic group is a hydrocarbon group. Or it may contain one or more heteroatoms.)
  • Each of unit B and unit C is bonded to two a by a single bond, and when the a is a single bond, unit B and / or unit C is an IQIQ skeleton.
  • the organic compound according to the above [12] which is directly bonded to a single bond.
  • a in the formula (2) is each independently the following structural formula (In the formula, R is a hydrogen atom or an aliphatic chain group.)
  • R is a hydrogen atom or an aliphatic chain group.
  • Each of unit B and unit C is substituted with R when R is a hydrogen atom, or R is an aliphatic chain group.
  • the aliphatic chain of the unit C is an aliphatic chain group having 3 to 20 carbon atoms, and the group including the cyclic structure of the unit C is an aromatic group, a heterocyclic group, or an aliphatic cyclic group.
  • a layer formed by using the organic semiconductor material according to any one of [1] to [11] or the organic compound according to any one of [12] to [20] A semiconductor device comprising: a positive electrode and a negative electrode electrically connected to the semiconductor layer.
  • an organic semiconductor material exhibiting suitable characteristics for example, liquid crystallinity, solvent solubility, deep LUMO level, excellent semiconductor characteristics, particularly n-type organic semiconductor characteristics
  • suitable characteristics for example, liquid crystallinity, solvent solubility, deep LUMO level, excellent semiconductor characteristics, particularly n-type organic semiconductor characteristics
  • a semiconductor device using the organic semiconductor material is also provided.
  • a novel compound having a skeleton structure based on IQIQ is provided.
  • FIG. 3 is a schematic diagram of an Sm phase X-ray diffraction pattern of H12-IQIQ-12 at 150 ° C. and a liquid crystal molecule arrangement in a liquid crystal layer. It is a UV spectrum of a chloroform solution of 12-Chrysene-12 and 12-IQIQ-12. 2 is a photoelectron yield spectrum of 12-Chrysene-12 and 12-IQIQ-12 measured at 25 ° C. by photoelectron spectroscopy. It is a transient photocurrent waveform plotted by logarithm plotting measured by TOF method at 146 ° C. of 12-IQIQ-12, and is a result of (a) positive charge and (b) negative charge photocurrent. The insets in the photocurrent waveform diagrams of (a) and (b) show the respective linear plots. Electric field strength of 12-IQIQ-12: Temperature dependence of mobility of positive charge and negative charge at 6.6 ⁇ 10 4 V / cm.
  • the organic semiconductor material of the present invention comprises a unit A having an isoquinolino-isoquinoline (IQIQ) type skeleton structure; an aliphatic chain unit B (carbon atoms constituting a carbon main chain) linked to the unit A by a single bond; One or more of them may be substituted with “O (oxygen atom)”; a group containing an aliphatic chain and / or a cyclic structure connected to the unit A by a single bond, or a hydrogen atom
  • IQIQ isoquinolino-isoquinoline
  • the organic semiconductor material exhibits liquid crystallinity means that the organic semiconductor material exhibits liquid crystallinity at any temperature.
  • the organic semiconductor material of the present invention exhibits electron transport properties, and can be used as an excellent semiconductor particularly in a liquid crystal phase or a (solid) crystal phase.
  • the organic compound constituting the organic semiconductor material of the present invention is preferably a compound in which unit B and unit C are bonded to both ends of unit A by a single bond. That is, the organic compound constituting the organic semiconductor material of the present invention can have a configuration of ⁇ unit C> ⁇ ⁇ unit A> ⁇ ⁇ unit B>.
  • the “unit A” of the organic compound constituting the organic semiconductor material of the present invention will be described.
  • the unit A is a unit including a skeleton structure based on isoquinolino-isoquinoline (IQIQ) represented by the following formula (1).
  • the skeleton structure based on isoquinolino-isoquinoline (IQIQ) can have a group as described below.
  • Unit A has a modified structure of IQIQ of formula (1) in that unit B and unit C are connected by a single bond.
  • the organic semiconductor material of the present invention includes a skeletal structure based on isoquinolino-isoquinoline (IQIQ) as an extended aromatic ⁇ -conjugated system, so that a semiconductor property having a deeper LUMO level, particularly a LUMO level deeper than 3 eV can be obtained. It has the effect that it can utilize suitably as an n-type organic semiconductor.
  • IQIQ isoquinolino-isoquinoline
  • “Unit A” may be composed of “IQIQ” represented by the formula (1) alone, and the following formula (2) Wherein each a is independently a hydrogen atom, a single bond, or a saturated and / or unsaturated cyclic group, the cyclic group being a hydrocarbon group or one or more May include heteroatoms; at least one a is the cyclic group.) As shown in the above, at least one “cyclic group a” (since at least one a is a cyclic group, all a or a that is a cyclic group may be referred to as “cyclic group a”) is included in the IQIQ. Some may be connected by a single bond.
  • each of the unit B and the unit C is bonded to two a in the above formula by a single bond, so that the unit B and / or When the a to which unit C is bonded is a saturated and / or unsaturated cyclic group, unit B and / or unit C will be bonded to the cyclic group with a single bond, and unit B and When the a itself to which the unit C is bonded is a single bond, the unit B and / or the unit C is directly bonded to the IQIQ skeleton of the unit A with a single bond.
  • the liquid crystallinity is effectively expressed by the property of the cyclic group a.
  • unit A includes at least one other substitution in the IQIQ skeleton in place of the cyclic group a or in addition to the cyclic group a, particularly at positions R 5 to R 8 in the following formula (4).
  • a group, particularly an aliphatic group may be linked by a single bond.
  • This substituent, particularly an aliphatic group can be the same as the substituent and the aliphatic group constituting the units B and C described later. In the embodiment in which the unit A has such a substituent, it is effective to suitably exhibit liquid crystallinity depending on the nature of the substituent.
  • Suitable cyclic group a In the above formula (2), at least one of the cyclic groups a is a saturated and / or unsaturated cyclic group.
  • the cyclic structure constituting the cyclic group a is preferably a 5-membered ring and / or a 6-membered ring and / or a composite structure thereof.
  • the cyclic group a may be a hydrocarbon group or may contain one or more heteroatoms (for example, O, N and / or S).
  • the “suitable cyclic group a” can include, for example, the following structure.
  • R is a hydrogen atom or an aliphatic chain group. It is preferably a hydrogen atom.
  • the aliphatic chain group may contain an oxygen atom in the main chain, and the number of carbon atoms in R is preferably 20 or less.
  • Each of the units B and C is substituted when R in the above formula is a hydrogen atom, or when R is an aliphatic chain group, the aliphatic chain group of the R It may be bonded to the unit A in the form of substitution with a hydrogen atom.
  • unit B and unit C are bonded to unit A by a single bond.
  • the unit B and the unit C are “coupled by a single bond” to the unit A, the unit B and the unit C are single-bonded to the carbon atom constituting the skeleton structure including the IQIQ of the unit A. Therefore, a single bond (directly between unit B and unit C and the carbon atom is used in the form of substitution with a hydrogen atom bonded to the carbon atom in the skeleton structure represented by the above formulas (1) to (3). Bond) is formed. That is, it should be noted that the structures represented by the formulas (1) to (3) are structures before the unit B and the unit C are substituted and bonded.
  • the carbon atom constituting the skeletal structure in which the unit B and the unit C are bonded by a single bond is the carbon atom constituting the IQIQ itself represented by the formula (1), as well as represented by the formula (2) and the formula (3). It may be a cyclic group a bonded to IQIQ or a carbon atom constituting the substituents R 5 to R 8 .
  • the organic compound has a structure of ⁇ unit C>- ⁇ unit A>- ⁇ unit B>, that is, a chain molecule in which unit B is bonded to one end of unit A and unit C is bonded to the other end. It preferably has a structure.
  • the both ends of the unit A are the 2, 3, 8, and 9 positions of IQIQ (positions where a is bonded to the pyridine ring of the formula (2)).
  • Unit B is coupled to one end of unit A (eg, at least one of positions 2 and 3 of IQIQ), and unit C is coupled to the other end (eg, at least one of positions 8 and 9 of IQIQ).
  • the unit at the remaining end (the position of a in formula (2), that is, if there are positions where units B and C are not coupled among positions 2, 3, 8, and 9 of IQIQ) B and / or unit C may or may not be combined.
  • the unit B and the unit C are bonded directly to the carbon atoms at the 2nd and 8th positions (position to which a is bonded) of IQIQ represented by the following formula (5) or bonded to the 2nd and 8th position carbon atoms. It is preferably bonded to a carbon atom of the cyclic group a.
  • Unit B is an aliphatic chain group connected to unit A by a single bond.
  • the unit B is indispensable, and the unit B, which is a relatively flexible long chain, is bonded to the rigid unit A, so that the liquid crystallinity of the material can be suitably expressed. , Effective in improving solubility.
  • the aliphatic chain group may be either a saturated or unsaturated aliphatic chain group.
  • the main chain is a saturated or unsaturated group (for example, an alkyl group) composed of carbon atoms, or the carbon thereof. It is preferably a saturated or unsaturated aliphatic chain group containing “O (oxygen atom)” in the main chain composed of atoms.
  • the number of carbon atoms constituting the aliphatic chain of unit B is preferably 3-20, more preferably 10-14, and particularly preferably 12. If the number of atoms of the aliphatic chain group is 2 or less, it is difficult to impart flexibility to the molecule, and it may exceed 20, but if it exceeds 20, it may be difficult to obtain.
  • the aliphatic chain group constituting “unit B” is a C 3 to C 20 alkyl group.
  • one or more “O (oxygen) atoms” in the aliphatic chain group of “unit B” may be present in the carbon main chain.
  • a preferable “unit B” in this embodiment has one or more structures represented by the following formula as its partial structure.
  • the terminal of the aliphatic chain group having this partial structure is —CH 3 . (-X 1- (CH 2 ) r -X 2- ), (In the formula, X 1 and X 2 ⁇ O or CH 2 , and r is an integer of 1 to 19, except for the aspect of X 1 ⁇ X 2 ⁇ O (oxygen atom)).
  • the number of carbon atoms in the main chain is preferably 3-20.
  • X O or CH 2
  • n + m 3 to 19
  • the number of carbon atoms in the main chain is preferably 3-20.
  • -(CH 2 ) n -X- (CH 2 ) m -CH 3 — (CH 2 ) p —X— (CH 2 ) n —X— (CH 2 ) m —CH 3
  • X O or CH 2
  • n + m 3 to 19
  • p + n + m 3 to 19
  • p +... + N + m 3 to 19
  • m and n may include 0 Good.
  • the number of carbon atoms in the main chain is preferably
  • unit B is bonded to one of the ends of unit A, that is, any of positions 2, 3, 8, and 9 (positions where a is bonded to the pyridine ring of formula (2)) of IQIQ. Is preferred.
  • unit A is present at the end of those structures in the structures shown in the above formulas (1) to (3) or the structure shown as an example of cyclic group a.
  • a structure in which unit B is substituted for a hydrogen atom bonded to a carbon atom can be obtained.
  • the aliphatic chain group constituting the unit B can be the same group as the aliphatic chain group that may be contained in the unit A. Therefore, when unit A includes an aliphatic chain group and the aliphatic chain group satisfies the requirements of unit B, the aliphatic chain group of unit B is different from the aliphatic chain group of unit A. It may be additionally present, or the aliphatic chain group of the unit A itself may be the aliphatic chain group of the unit B, but the aliphatic chain group of the unit A When itself constitutes the aliphatic chain group of unit B, the aliphatic chain group constituting the aliphatic chain group of unit B is not regarded as a part constituting unit A.
  • the cyclic group a When the unit A has a cyclic group a added to the IQIQ skeleton, the cyclic group a has an aliphatic chain group R, and the unit B is linked to the aliphatic chain group of the cyclic group a, the cyclic group a
  • the aliphatic chain group R and the aliphatic chain group of the unit B preferably have 3 to 20 carbon atoms in their main chain.
  • the reason why the total length of the aliphatic chain group formed by combining unit A and unit B is preferably 3 to 20 carbon atoms is that the length of the aliphatic chain group of unit B is described. The same reason as above.
  • unit C is a group containing a hydrogen atom, an aliphatic chain, or a cyclic structure connected to unit A by a single bond.
  • the unit C can suitably exhibit the liquid crystal properties of the organic semiconductor material according to the properties of the unit C.
  • the “group containing a cyclic structure” includes an aromatic group (for example, a phenyl group), a heterocyclic group (for example, a thiophene group), or an aliphatic group (for example, a cyclohexyl group). it can.
  • the “group containing a cyclic structure” in the unit C can be the same as the cyclic group a in the unit A.
  • the meaning of the “aliphatic chain” in the “group containing an aliphatic chain” in the unit C is the same as that described for the aliphatic chain group in the “unit B”.
  • Examples of the aromatic group in the group containing a cyclic structure include phenyl, naphthyl, anthranyl, phenanthrenyl, fluorenyl, indenyl, azulenyl, biphenyl, terphenyl, cyclohexylphanyl, and naphthylphenyl.
  • heterocyclic group in the group containing a cyclic structure examples include thienyl, benzothienyl, naphthothienyl, furyl, oxadiazolyl, thiazoyl, thiadiazoyl, benzofuranyl, pyrrolyl, pyrazolyl, imidazolyl, pyridyl, pyrazinyl, pyrimidunyl, pyridazinyl, indolyl, quinolyl, Examples include isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, tinolinyl, carbazoyl, acridinyl, phenanthridinyl, phenazinyl, and fetalidinyl.
  • Examples of the aliphatic group in the group including a cyclic structure include cyclopentyl, cyclohexyl, cycloheptyl, phenylcyclohexyl, and the like, and some of the structures include heteroatoms such as O, S, and N and unsaturated bonds. .
  • the unit C is preferably bonded to the end of the unit A, particularly to IQIQ positions 2, 3, 8, and 9 (positions where a is bonded to the pyridine ring of the formula (2)).
  • unit C is bonded to unit A by a single bond, unit C is bonded to unit A by substituting hydrogen atoms bonded to the carbon atoms constituting unit A shown in formulas (1) to (3). become.
  • the unit C is preferably connected to the end of the unit A opposite to the end to which the unit B is connected.
  • the group containing a cyclic structure or the group containing an aliphatic chain constituting the unit C can be the same group as the cyclic group or the aliphatic chain group that may be contained in the unit A. Therefore, when the unit A includes a cyclic group or an aliphatic chain group, and the cyclic group or the aliphatic chain group satisfies the requirements of the unit C, the cyclic group or the aliphatic chain group of the unit C is The cyclic group or aliphatic chain group may be present separately from the cyclic group or aliphatic chain group that the unit A has, or the cyclic group or aliphatic chain group of the unit A itself is the cyclic group or aliphatic chain group of the unit C.
  • the cyclic group or aliphatic chain group of unit A itself constitutes the cyclic group or aliphatic chain group of unit C
  • the cyclic group or aliphatic system of unit C may be used.
  • the cyclic group or aliphatic chain group constituting the chain group is not regarded as a part constituting the unit A.
  • the cyclic group a When the unit A has a cyclic group a added to the IQIQ skeleton, the cyclic group a has an aliphatic chain group R, and the unit C is linked to the aliphatic chain group of the cyclic group a, the cyclic group a
  • the aliphatic chain group R and the aliphatic chain group of unit C preferably have 3 to 20 carbon atoms in their main chain.
  • the reason why the total length of the aliphatic chain group formed by combining unit A and unit C is preferably 3 to 20 carbon atoms is that the length of the aliphatic chain group of unit B is described. The same reason as above.
  • a preferred example of the structure of an organic compound having a configuration of the organic semiconductor material of the present invention that is, an organic compound having a configuration of ⁇ unit C> ⁇ ⁇ unit A> ⁇ ⁇ unit B> is represented by the following structural formula (3). Street.
  • a 1 , a 2 , a 3 and a 4 are each independently a hydrogen atom, a single bond, or a saturated and / or unsaturated cyclic group
  • the unsaturated cyclic group may be a hydrocarbon group or may contain one or more heteroatoms, but at least one of a 1 , a 2 , a 3 and a 4 is a single bond Or a saturated and / or unsaturated cyclic group; at least one of R 1 , R 2 , R 3 and R 4 is each independently an aliphatic chain group, R 1 , R When any of 2 , R 3 and R 4 is not an aliphatic chain group, the remaining R 1 , R 2 , R 3 and R 4 can be hydrogen atoms.
  • the organic compound in which the units A, B, and C are bonded in such a form is preferable.
  • R 1 and R 3 may be the same (ie, symmetric) or different (ie, asymmetric).
  • R 2 and R 4 may be a hydrogen atom, an aliphatic chain, or a group containing a cyclic structure.
  • R 2 and R 4 may be the same (ie, symmetric) or different (ie, asymmetric).
  • the unit A is IQIQ alone.
  • at least one of R 1 to R 4 , particularly R 1 and R 3 is located. Two cyclic groups a may be bonded.
  • Suitable structures of the organic compound having the structure of the organic semiconductor material of the present invention that is, the organic compound having the structure of ⁇ unit C> ⁇ ⁇ unit A> ⁇ ⁇ unit B> are exemplified below.
  • H- ⁇ unit A> -alkyl group alkyl group- ⁇ unit A> -alkyl group phenyl group- ⁇ unit A> -alkyl group thiophene group- ⁇ unit A> -alkyl group
  • unit A is IQIQ skeleton alone
  • a 1 and a 3 are each independently a hydrogen atom, a single bond, or a saturated and / or unsaturated cyclic group, and the saturated and / or unsaturated
  • the cyclic group may be a hydrocarbon group or may contain one or more heteroatoms; one of R 1 and R 3 is an aliphatic chain group (eg, an alkyl group), and R 1 and R
  • the remainder of 3 is a hydrogen atom, an aliphatic chain group (eg, an alkyl group), a group containing a cyclic structure (eg, a phenyl group), or a cyclic hydrocarbon group containing one or more heteroatoms (eg, a thiophene group).
  • a 1 and a 3 are each independently a hydrogen atom, a single bond, or a saturated and / or unsaturated cyclic group, and the saturated and / or unsaturated
  • the cyclic group may be a hydrocarbon group or may contain one or more hetero
  • the organic semiconductor material exhibits liquid crystallinity means that the organic semiconductor material exhibits liquid crystallinity in “any temperature range” in which the organic semiconductor material exhibits semiconductivity.
  • the liquid crystallinity can be confirmed by various methods, and can be confirmed by, for example, observation with a polarizing microscope, or a combination of observation with a polarizing microscope, suggested thermal analysis, and X-ray diffraction.
  • the organic material is a material capable of exhibiting liquid crystallinity, it is possible to control molecular orientation in an aggregated state and realize excellent semiconductor characteristics. Although it has solubility as an excellent characteristic of liquid crystallinity, solubility can be easily confirmed by dissolving in a solvent.
  • the organic semiconductor material of the present invention exhibits liquid crystallinity, but is preferably in a liquid crystal or solid crystal state. It is more preferable to use higher-order smectic liquid crystals such as smectic liquid crystals, SmE, SmI, SmH, and SmK. Since the organic semiconductor material of the present invention is in a state of either a liquid crystal or a solid crystal, it can control molecular orientation and exhibits excellent semiconductor characteristics as compared with a case where liquid crystallinity is not exhibited.
  • the liquid crystal can be confirmed by, for example, polarization microscope texture (texture) observation, a combination of a polarization microscope, suggested thermal analysis, and X-ray diffraction analysis.
  • the solid crystal phase can be confirmed by, for example, X-ray diffraction analysis. Can do. Refer to the following literature for details.
  • the organic semiconductor material of the present invention “shows electronic conductivity”.
  • a well-known general evaluation method for semiconductor characteristics is a method in which mobility is directly obtained by the TOF method or a mobility is obtained by fabricating a transistor (FET).
  • FET transistor
  • the latter is a widely used method for evaluating crystalline thin film materials.
  • n-channels that is, when electrons are carriers, there are significant restrictions, and it is necessary to select electrode materials and insulating film materials appropriately. There is.
  • liquid crystal substances include high-molecular liquid crystals and low-molecular liquid crystals.
  • the liquid crystal phase generally has a high viscosity, so that ion conduction tends not to occur.
  • a low-order liquid crystal having a strong liquid property such as a nematic phase (N phase), a smectic A phase (SmA phase, hereinafter described in the same manner) or an SmC phase. In the phase, ionic conduction tends to be induced.
  • ionized impurity refers to an electrically active impurity (that is, a HOMO level, a LUMO level, or both of them, which can become a trap of ions and charges generated by dissociation of ionic impurities.
  • An impurity whose level is between the HOMO and LUMO levels of a liquid crystal substance is ionized by photoionization or charge trapping (for example, M. Funahashi and J. Hanna, Impurity effect on charge carrier transport in smectic liquid crystals, Chem. Phys. Lett., 397,319-323 (2004), H. Ahn, A. Ohno, and J. Hanna, Detection of Trace Amount of Impurity in Smectic Liquid Cry Appl. Phys., Vol. 44, No.6a, 2005, pp.3764-37687).
  • the HOMO and LUMO of the core part (in the present invention, the ⁇ -electron conjugate part including the IQIQ skeleton part, that is, the part related to charge transport, particularly IQIQ itself).
  • the energy level of becomes important.
  • the HOMO level of an organic semiconductor is determined by dissolving a test substance in a dehydrated organic solvent such as dichloromethane to a concentration of, for example, 1 mmol / L to 10 mmol / L, and adding a supporting electrolyte such as a tetrabutylammonium salt.
  • the HOMO level and LUMO level can be estimated from the difference between the peak potential and the reference potential, for example, a known substance such as ferrocene.
  • the HOMO-LUMO energy gap is determined from the absorption edge of the UV-visible absorption spectrum, and subtracted from the measured level.
  • the level and LUMO level can be estimated. This method can be referred to J. Pommerehne, H. Vestweber, W.ussGuss, R. F.rtMahrt, H. Bassler, M. Porsch, and J. Daub, Adv. Mater., 7, 551 (1995). it can.
  • the HOMO and LUMO levels of an organic semiconductor material provide a measure of electrical contact with the anode and cathode, respectively, and charge injection is limited by the size of the energy barrier determined by the difference from the work function of the electrode material. So be careful.
  • the work function of a metal is often silver (Ag) 4.0 eV, aluminum (Al) 4.28 eV, gold (Au) 5.1 eV, calcium (Ca) 2.87 eV, as examples of materials used as electrodes.
  • the difference in work function between the organic semiconductor material and the electrode substance is preferably 1 eV or less, more preferably 0.8 eV or less, and still more preferably 0.6 eV or less.
  • the work function of the metal the following documents can be referred to as necessary. Literature A: Handbook of Chemistry Fundamentals Revised 5th Edition II-608-61014.1b Work Function (Maruzen Publishing Co., Ltd.) (2004)
  • the size of the conjugated system can be used as a reference when selecting materials.
  • a method for changing the HOMO and LUMO energy levels it is effective to introduce, for example, an electron-withdrawing group such as F, another halogen element, or a cyano group into the core portion.
  • a substance that exhibits a higher-order smectic liquid crystal phase and is useful as an organic semiconductor can be screened as necessary from among compounds satisfying the above-described molecular design.
  • this screening basically, when used as an organic semiconductor in a liquid crystal phase, a higher order smectic phase is expressed, and when used as an organic semiconductor in a crystal phase, when cooled from a temperature higher than the crystal phase temperature, It is preferable to select one that does not develop a low-order liquid crystal phase adjacent to the crystal phase.
  • This selection method can select a substance useful as an organic semiconductor material by making a determination according to a “screening method” described later.
  • test substance After the isolated test substance is purified by column chromatography and recrystallization, it is confirmed by thin layer chromatography on silica gel that the test substance shows a single spot (that is, not a mixture).
  • a characteristic schlieren texture expressed as a pincushion is observed (see FIG. 3: typical schlieren texture).
  • a sample shows a SmA phase or an SmC phase a fan-like texture A characteristic texture having a uniform structure is observed in the fan-shaped area (see FIG. 4: a typical fan-like texture), and can be easily determined from the characteristic texture.
  • the visual field changes instantaneously at the phase transition temperature, but the phase transition texture almost changes.
  • the texture of the formed SmB phase, SmF phase, and SmI phase may be mistaken for the SmA phase and the SmC phase, so care should be taken.
  • the LUMO energy level is obtained by dissolving a test substance in an organic solvent such as dehydrated THF, adding about 0.2 mol / L of a supporting electrolyte such as tetrabutylammonium salt, and adding a working electrode such as Pt and Pt to this solution. After inserting a counter electrode and a reference electrode such as Ag / AgCl, the potentiostat is swept at a speed of about 50 mV / sec, and a CV curve is drawn, and the peak potential appears at a voltage lower than about -1.8V. It can be estimated that the LUMO level is deeper than about -3 eV.
  • solubility screening To measure the presence or absence of solubility of 0.1 wt% or more in toluene at room temperature, put about 5 mg of the test substance and about 5 g of toluene in a sample tube, heat it moderately on a hot stage, etc., and then dissolve it in toluene once. After cooling to room temperature (25 ° C.) and holding at room temperature for 1 hour, if no crystals appear, it can be judged that the solubility is 0.1 wt% or more.
  • a liquid crystal material having an isoquino [8,7-h] isoquinoline (IQIQ) skeleton which is a nitrogen-containing condensed ring, is designed and actually synthesized, and its phase transition behavior, energy level, optical characteristics, The charge transport properties were investigated.
  • An organic semiconductor material (or organic compound) having such a skeleton and also having liquid crystallinity is a novel organic compound by itself in that it has an isoquino [8,7-h] isoquinoline (IQIQ) skeleton. .
  • a unit A including a skeleton structure based on isoquinolino-isoquinoline (IQIQ) represented by the following formula (1) and a carbon main chain linked to the unit A by a single bond are formed.
  • An organic compound having at least unit C as an atom is provided.
  • One preferred embodiment of the novel organic compound of the present invention is represented by the following formula (3).
  • a 1 , a 2 , a 3 and a 4 are each independently a hydrogen atom, a single bond, or a saturated and / or unsaturated cyclic group, And / or the unsaturated cyclic group may be a hydrocarbon group or may contain one or more heteroatoms, but at least one of a 1 , a 2 , a 3 and a 4 is a single bond Or a saturated and / or unsaturated cyclic hydrocarbon group; at least one of R 1 , R 2 , R 3 and R 4 is each independently an aliphatic chain group, R 1 , When any of R 2 , R 3 and R 4 is not an aliphatic chain group, the remaining R 1 , R 2 , R 3 and R 4 can be hydrogen atoms.
  • the organic compound of the present invention has the following formula (6): (In the formula, at least one of R 1 , R 2 , R 3 and R 4 is each independently an alkyl group having 3 to 20 carbon atoms or other aliphatic chain group, and R 1 , R 2 , R 3 and R 4 are not aliphatic chain groups, the remaining R 1 , R 2 , R 3 and R 4 can be hydrogen atoms.) Can be.
  • R 1 , R 2 , R 3 and R 4 is each independently an aliphatic chain group described in Unit B or Unit C, particularly a carbon atom.
  • An aliphatic chain group having a number of 3 to 20 and containing one or more oxygen atoms, such as — (CH 2 ) n —X— (CH 2 ) m —CH 3 (wherein X ⁇ O or CH 2 N + m 3 to 19, and m and n may include 0), but any of R 1 , R 2 , R 3 and R 4 is not an aliphatic chain group
  • the remaining R 1 , R 2 , R 3 and R 4 can be hydrogen atoms.
  • Suitable examples of the organic compound of the present invention include 2,8-didecylisoquino [8,7-h] isoquinoline (10-IQIQ-10), 2.8-didodecylisoquino [8,7-h] isoquinoline ( 12-IQIQ-12) or 2.8-ditetradecylisoquino [8,7-h] isoquinoline (14-IQIQ-14).
  • the organic compound of the present invention (and / or the organic semiconductor material of the present invention) is useful as a liquid crystal material, an organic semiconductor material, or the like.
  • the method for producing the organic compound of the present invention (and / or the organic semiconductor material of the present invention) is not particularly limited, but the following production method can be suitably used from the viewpoint of simplicity.
  • the raw material compounds (compound 1, compound 2 and compound 3 shown in the synthesis scheme) can be prepared, and then the compound of the present invention (compound 4 shown in the synthesis scheme I) can be synthesized.
  • alkynes having various substituents R in the compound 1 obtained above for example, 1-alkynes such as 1-dodecine and 1-tetradecine, so-called Sonogashira reaction from 1-alkyne.
  • 1-alkynes such as 1-dodecine and 1-tetradecine
  • Sonogashira reaction from 1-alkyne can give 2,6-diarsynylnaphthalene-1,5-dicarbaldehyde (compound 2).
  • the Sonogashira reaction 2,6-Diorganylnaphthalene-1,5-dicarbaldehyde (Compound 2) having various substituents (organo groups) R other than alkyl groups can be obtained.
  • “typical Sonogashira reaction conditions” the literature (A. V. Malkov, M. M. Westwater, A. Gutnov, P. Ramirez-Lopez, F. Friscourt, A. Kadicikova, J. Hodacova, Z. Randkovic, M. Kotora, P. Kocovsky, Tetrahedron, 2008, 64, 11335).
  • an asymmetric compound is produced using the mixture of R, it is separated by a recrystallization method, column chromatography, or a combination thereof.
  • the target compound 4 is obtained by a cyclization reaction of the compound 3 with a cocatalyst of AgOTf and TfOH. They can be easily isolated as colorless crystals and purified by column chromatography and recrystallization. The structure of the resulting compound can be confirmed by a 1H NMR spectrum and a high resolution mass spectrometer.
  • the synthesis method is basically the same as that in Scheme 1, but only one bromine is supported in the Sonogashira reaction of compound 1, which is a key intermediate.
  • the product reacted with the alkyne compound is first isolated and then used to synthesize the remaining bromo group and the alkyne compound corresponding to the final product by the same coupling reaction by Sonogashira reaction. Can do.
  • various substituents such as an alkyl group and an aryl cage can be introduced at positions 3 and 9 of IQIQ by performing various known substitution reactions on the heterocyclic ring with respect to compound 4.
  • Known substitution reactions include those that selectively substitute the 3-position of pyridine and the 4-position of isoquinoline, such as J. Org. Chem., 53 (11), 2653-5 (1988) and J. Amer. Chem. Soc., 93 (5) 1294-6 (1971) can be used to synthesize compounds in which two B and C are substituted on the same pyridine unit of IQIQ.
  • organic compound of the present invention can be suitably obtained by “Synthesis route 1” or “Synthesis route 2” shown below.
  • the organic semiconductor material of the present invention is an organic semiconductor material that exhibits liquid crystallinity, has excellent solubility in a solvent, has high mobility, and has a deep LUMO level. In addition, since it has a deep LUMO level, it can be used not only as an organic transistor but also as an n-type organic semiconductor having an electron transport property.
  • the semiconductor device includes a layer formed using the novel organic semiconductor material or the novel organic compound of the present invention as a semiconductor layer, and includes a positive electrode and a negative electrode electrically coupled to the semiconductor layer.
  • the organic semiconductor material of the present invention is expected to be used as a high-mobility charge injection / transport layer when used in an organic EL, and also has a deep HOMO level, so it works as a hole blocking layer and is advantageous for charge containment. Furthermore, since it is a liquid crystal material, it can be controlled in parallel and can be used for a vertical device.
  • the organic semiconductor material of the present invention is used as a material for an n-channel transistor having a LUMO level of about 3 to 5 eV in combination with a p-channel transistor material having a HOMO level of about 5 to 6 eV. It can be used and is also useful as an n-channel transistor material for realizing a CMOS.
  • Such a semiconductor device using the organic semiconductor material of the present invention has a layer formed using the organic semiconductor material of the present invention as a semiconductor layer, and a positive electrode and a negative electrode electrically coupled to the semiconductor layer. It is characterized by comprising.
  • N-bromosuccinimide (6.8 g, 38.2 mmol) and AIBN (0.1 g, 0.64 mmol) were added to a carbon tetrachloride solution of 2,6-dibromo-1,5-dimethylnaphthalene (2 g, 6.35 mmol) under reflux conditions. ) was added in three portions, and the mixture was further heated under reflux for 12 hours. After cooling, the mixture solution was filtered and washed with methanol and ethyl acetate to obtain 2,6-dibromo-1,5-dibromodimethylnaphthalene as a white powder in 94% yield.
  • 1 HNMR (CDCl 3 , 400 MHz): 7.97 (d, 2H), 7.77 (d, 2H), 5.06 (s, 4H).
  • Measuring instrument High-resolution mass spectrum measuring device (HRMS: JEOL JMS-700) Measurement conditions: As the ionization method, a fast atom bombardment (FAB) method was used.
  • HRMS High-resolution mass spectrum measuring device
  • FAB fast atom bombardment
  • Example 4 Synthesis of Compound IV
  • a dichloroethane solution of compound III (1 eq) obtained in Example 3 was added to a Pyrex (registered trademark) glass flask.
  • AgOTf (0.1 eq) and TfOH (0.1 eq .; 0.10 M in dichloroethane) were added to an inert gas in the dark with respect to a dichloroethane solution of the compound III (1 eq) under stirring by a magnetic stirrer.
  • the mixture was added and further heated at 75 ° C. for 12 hours under the same stirring.
  • AgOTf / TfOH (0.1 eq) was further added under the same stirring.
  • the completion of the reaction was confirmed by TLC (trade name: silica gel 70F 254 manufactured by Wako Pure Chemical Industries, Ltd.).
  • silica column chromatography conditions used at this time are as follows. Column size: ID 3.5 cm x length 18 cm Silica filler: manufactured by Kanto Chemical Co., Ltd., trade name: silica gel 60 100-210 ⁇ m
  • Example 5 (Suggested thermal analysis of compound IVa, structure by polarizing microscope, X-ray diffraction)
  • the phase transition behavior of 10-IQIQ-10 (Compound IVa) was measured by suggested thermal analysis (DSC), structural observation with a polarizing microscope, and X-ray diffraction measurement.
  • DSC suggested thermal analysis
  • Optiphot 2-pol manufactured by Nikon hot stage: manufactured by Mettler: FP900 thermo-system was used, and an observed image was recorded.
  • Rigaku RAD-2B manufactured by Rigaku Corporation was used to identify phases.
  • FIGS. According to the DSC chart in FIG. 1, 10-IQIQ-10 (compound IVa) exhibits a plurality of exothermic and endothermic peaks in the temperature lowering and temperature rising processes, respectively, and has a clear phase transition to a liquid crystal phase around 160 ° C. Behavior is seen. Further, according to the polarizing microscope of FIG. 1 and the X-ray diffraction of FIG. 2, a fan-shaped structure characteristic to a low-order liquid crystal phase such as SmA or SmC phase was observed. FIG. 2 is an X-ray diffraction image in the crystal phase.
  • Example 6 (Suggested thermal analysis of compound 4b, organization by polarizing microscope, X-ray diffraction)
  • the phase transition behavior of 12-IQIQ-12 was measured by suggestive thermal analysis (DSC), structure observation with a polarizing microscope, and X-ray diffraction measurement under the same conditions as in Example 5.
  • FIG. 4 shows X-ray diffraction charts of 12-IQIQ-12 (Compound IVb) at 150 ° C. (upper diagram) and 130 ° C. (lower diagram).
  • FIG. 5 showing an X-ray diffraction chart at 150 ° C. of 12-IQIQ-12 (compound IVb), which is the same as the upper diagram in FIG. 4, when the interlayer distance is estimated from the diffraction peak of (111) plane, This value is shorter than the molecular length of 38.16 mm of 12-IQIQ-12 (compound IVb) calculated by MOPAC PM7, and the molecule is arranged at an angle of about 42.5 ° with respect to the molecular layer.
  • the alignment state of the liquid crystal molecules forming the liquid crystal layer is schematically shown on the right side of FIG.
  • this liquid crystal phase was identified as the SmH phase.
  • Several other peaks in the wide-angle diffraction are difficult to identify and some of these are believed to be due to diffraction from the crystalline domains remaining in the sample. This is because it was difficult to control the temperature of the sample in a narrow temperature range of about 10 ° C. from 140 ° C. to 150 ° C. in X-ray diffraction measurement. From the X-ray diffraction peak at 130 ° C. shown in FIG. 4, the crystal phase was identified in the temperature region of 140 ° C. or lower.
  • phase transition temperatures of 10-IQIQ-10 (compound IVa) and 12-IQIQ-12 (compound IVb) determined from DSC analysis are shown in Table 1 below.
  • Table 1 also shows the rearrangement temperature of 14-IQIQ-14 prepared in Example 10.
  • Iso represents an isotropic phase
  • SmC and “SmH” represent a smectic C phase and a smectic H phase
  • Cr represents a crystalline (solid) phase.
  • Example 7 Measurement of optical absorption characteristics and ionization potential of compound IVb
  • 12-IQIQ-12 Compound IVb
  • UV spectrum optical absorption characteristics
  • IP ionization potential
  • a solution in which the sample is dissolved is drop-cast on a glass substrate with ITO to form a film, and under a vacuum of 1.3 ⁇ 10 ⁇ 2 Pa, a Xe light source (HAMAMATSU C9559) and a deuterium light source (USHIO, XB-50101AA) -A) was irradiated with light (3 eV to 9 eV), and the emitted photoelectrons were measured at room temperature using a photoelectron yield spectrometer PYS-202 manufactured by Sumitomo Heavy Industries, Ltd.
  • FIG. 6 shows the UV spectra of the chloroform solutions of 12-Chrysene-12 and 12-IQIQ-12 obtained as described above.
  • FIG. 7 shows photoelectron yield spectra of 12-Chrysene-12 and 12-IQIQ-12 measured by photoelectron spectroscopy at 25 ° C.
  • the horizontal axis in FIG. 7 is the irradiation photon energy, and the vertical axis is the signal intensity corresponding to the photoelectron yield.
  • the ionization potentials (IP) of 12-IQIQ-12 and 12-Chrysene-12 were determined to be ⁇ 6.47 eV and ⁇ 5.85 eV, respectively. Further, as expected from the aza-acene skeleton, the LUMO level of 12-IQIQ-12 is 0.85 eV lower than 12-Chrysene-12, and the HOMO level is 0.62 eV lower as well. It became clear.
  • Example 8 Measurement of charge transport properties of compound IVb
  • the charge transport property of 12-IQIQ-12 was evaluated by the time-of-flight (TOF) method.
  • TOF time-of-flight
  • “12-IQIQ-12” to be measured was purified by repeating column chromatography and recrystallization several times (more than 6 times).
  • the column chromatography conditions and recrystallization conditions used at this time are as follows.
  • the sample purified as described above was injected into a liquid crystal cell having an ITO electrode having a thickness of 9 ⁇ m to obtain a sample.
  • a cell with a cell thickness of 9 ⁇ m (commercially available product: manufactured by EHC), in which two glass substrates with ITO transparent electrodes are bonded together with a thermosetting resin containing a spacer, is heated to the isotropic phase temperature of each compound, and a small amount of sample is prepared.
  • the sample was injected into the cell by contacting the cell opening and utilizing capillary action.
  • the cell was fixed to a sample stage having a heater, and a DC voltage was applied to the electrode.
  • a nitrogen pulse laser with a pulse width of 600 ps was irradiated, and the current flowing at that time was measured with a digital oscilloscope.
  • the intensity of light irradiation is adjusted so that the integral value (charge amount) of the photocurrent flowing by light irradiation is within 10% of the geometric electric capacity of the cell so as not to cause waveform distortion due to space charge. Noted that.
  • FIG. 8 (a) and 8 (b) show the logarithmically plotted transient photocurrent waveforms measured by the 12-IQIQ-12 TOF method at 164 ° C. and 130 ° C., respectively.
  • FIG. 8A shows the result by the positively charged photocurrent
  • FIG. 8B shows the result by the negatively charged photocurrent.
  • the “inset” in each figure shows the respective “linear plot”.
  • FIG. 9 shows the temperature dependence of the mobility of positive and negative charges at an electric field strength of 6.6 ⁇ 10 4 V / cm of 12-IQIQ-12 determined by the above-described measurement of charge transport characteristics.
  • the mobility of electrons and the mobility of holes in the Sm liquid crystal phase are 1.86 ⁇ 10 ⁇ 4 cm 2 / Vs and 1.08, respectively. It was estimated to be ⁇ 10 ⁇ 4 cm 2 / Vs. Although these mobilities have a limited temperature of 10K, the temperature dependence of the mobility was not observed in this region. In addition, no electric field dependency was observed.
  • both negative and positive charge mobilities in the isotropic phase are on the order of 10 ⁇ 5 cm 2 / Vs, and a slight electric field dependence It was observed.
  • the crystalline phase a significant decrease in photocurrent was observed, suggesting the formation of deep levels due to grain boundaries.
  • Example 10 In the same manner as in Examples 1 to 9, 2.8-ditetradecylisoquino [8,7-h] isoquinoline (14-IQIQ-14) was synthesized, and its physical properties and semiconductor properties were measured. Similar to 10-IQIQ-10 and 12-IQIQ-12, it exhibits a smectic phase around 150 ° C., and its LUMO level is deeper than ⁇ 3 eV, so this material is effective for electron conduction. Similarly, it can be determined that 10-IQIQ-10 and 14-IQIQ-14 have LUMO levels deeper than -3 eV.
  • 2,8-didecylisoquino is a new rod-like liquid crystal having a low electron density isoquino [8,7-h] isoquinoline (IQIQ) skeleton at the core and an IQIQ derivative expected as an organic semiconductor.
  • [8,7-h] isoquinoline (10-IQIQ-10) and 2.8-didodecylisoquino [8,7-h] isoquinoline (12-IQIQ-12) and 2.8-ditetradecylisoquinolino [8,7-h] isoquinoline (14-IQIQ-14) was synthesized in a relatively high yield using a simple technique.
  • 10-IQIQ-10 and 2.8-ditetradecylisoquinolino [8,7-h] isoquinoline are low-order smectic liquid crystals in a limited temperature range.
  • 12-IQIQ-12 developed a high-order smectic phase around 140 ° C. to 150 ° C., its LUMO level was ⁇ 3.33 eV. This material is expected to conduct electrons.
  • the LUMO level of 10-IQIQ-10 and 2.8-ditetradecylisoquinolino [8,7-h] isoquinoline (14-IQIQ-14) having the same skeleton structure as 12-IQIQ-12 is 12 Similar to -IQIQ-12, it is confirmed to be deeper than -3 eV.
  • the mobility of both electrons and holes was in the order of 10 ⁇ 4 cm 2 / Vs in the high-order smectic phase, and was in the order of 10 ⁇ 5 cm 2 / Vs in the isotropic phase.
  • This IQIQ material is expected to be applied to organic transistors.
  • Example 11 In the same manner as in the above example, 2-phenyl-8-decyl-benzothienobenzothiophene (Ph-BTBT-10) was synthesized and the LUMO level was measured and found to be -2.5 eV, and 12-Chrysene-12 The results were as expected by the BTBT skeleton structure, as was the shallow LUMO level of 3 eV or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This organic semiconductor material contains at least the following: a unit A including a skeleton structure based on isoquinolino-isoquinoline (IQIQ) represented by formula (1); a fatty acid-based chain unit B connected by a single bond with unit A; and a unit C which is a hydrogen atom, or a group containing a fatty acid chain and/or a cyclic structure, unit c being connected by a single bond with unit A. The organic semiconductor material exhibits liquid crystal properties, has a deep LUMO level, and can be preferably used as an n-type organic transistor material. This invention also provides a novel compound.

Description

有機半導体材料及び有機化合物並びに有機半導体装置Organic semiconductor material, organic compound, and organic semiconductor device
 本発明は、液晶性を示す有機半導体材料及び有機化合物並びに有機半導体装置に関する。より詳しくは、本発明は液晶性を示し、且つ液晶相および結晶相の少なくとも一方において有機半導体(例えば、n型有機半導体)として好適に使用可能な有機半導体材料及び有機化合物並びにその有機半導体材料及び有機化合物を用いた有機半導体装置に関する。 The present invention relates to an organic semiconductor material and an organic compound exhibiting liquid crystallinity, and an organic semiconductor device. More specifically, the present invention exhibits liquid crystallinity and can be suitably used as an organic semiconductor (for example, an n-type organic semiconductor) in at least one of a liquid crystal phase and a crystal phase, and an organic semiconductor material and an organic semiconductor material thereof. The present invention relates to an organic semiconductor device using an organic compound.
 一般的に、「棒状」の分子構造を有し、且つ、拡張された芳香族π-共役部位をもつ液晶性を示す物質は、比較的に柔軟な長鎖の炭化水素鎖からなる特徴的な構造をしており、液晶性有機半導体として有用であるばかりでなく、可溶性の有機トランジスタ材料と類似した構造を有している。 In general, a substance having a “rod-like” molecular structure and exhibiting liquid crystallinity having an extended aromatic π-conjugated site is characterized by a relatively flexible long-chain hydrocarbon chain. In addition to being useful as a liquid crystal organic semiconductor, it has a structure similar to a soluble organic transistor material.
 実際に、多くの有機トランジスタ材料(例えば、クオータチオフェン、ベンゾチエノベンゾチオフェン(BTBT)、アントラセン誘導体)は、ある温度領域でスメクチック液晶相を示す傾向がある。加えて、最近の報告では、これらのスメクチック液晶相などの液晶相は、ウェットプロセスによる均一製膜ができ、さらに高移動度の材料であり、また高耐熱性を実現できることが報告され、スメクチック液晶相などの液晶相は有機トランジスタ材料として好適な材料として注目されている(特許文献1,2)。 Actually, many organic transistor materials (eg, quarterthiophene, benzothienobenzothiophene (BTBT), anthracene derivatives) tend to exhibit a smectic liquid crystal phase in a certain temperature range. In addition, a recent report reports that these smectic liquid crystal phases and other liquid crystal phases can be uniformly formed by a wet process, are high mobility materials, and can realize high heat resistance. A liquid crystal phase such as a phase attracts attention as a material suitable as an organic transistor material (Patent Documents 1 and 2).
 有機トランジスタにおいては、ペンタセンの結晶材料を用いた有機トランジスタ(非特許文献1)が報告されて以来、オリゴチオフェン(非特許文献2)、TIPS-ペンタセン(非特許文献13)およびベンゾチエノベンゾチオフェン[5,10]誘導体などが合成され、トランジスタが作製されている。 In organic transistors, since an organic transistor using a pentacene crystal material (Non-patent Document 1) was reported, oligothiophene (Non-patent Document 2), TIPS-pentacene (Non-patent Document 13), and benzothienobenzothiophene [ 5,10] derivatives and the like are synthesized to produce transistors.
 しかし、n型有機半導体材料は低いLUMO準位(深いLUMO準位)を持つ材料が必要であるため、大気下でn型動作できる(電子輸送可能な)有機半導体材料はきわめてかぎられ、また、n型のトランジスタ動作できる材料の報告も限られている(非特許文献4~非特許文献6)。このため、CMOSの作製に必要なn型有機トラジスタ材料に関しては、依然として熱心に探索が行われている。 However, since an n-type organic semiconductor material requires a material having a low LUMO level (deep LUMO level), organic semiconductor materials capable of n-type operation (electron transportable) in the atmosphere are extremely limited. There are limited reports of materials that can operate n-type transistors (Non-Patent Documents 4 to 6). For this reason, an n-type organic transistor material necessary for manufacturing a CMOS is still eagerly searched.
 深いLUMO準位を有する半導体材料としてフラーレンなどの材料が報告されているが、フラーレンは溶解性が乏しいのでウェットプロセスによる均一製膜が困難である。 As a semiconductor material having a deep LUMO level, materials such as fullerene have been reported, but since fullerene has poor solubility, uniform film formation by a wet process is difficult.
WO2012/121393号パンフレットWO2012 / 121393 pamphlet WO2008/047896号パンフレットWO2008 / 047896 pamphlet
 本発明の主たる目的は、上記した従来技術の欠点を解消することができる、深いLUMO準位を有し、好適にはn型有機半導体として使用できる、液晶性を示す有機半導体材料を提供することにある。本発明はまたその有機半導体材料を用いた有機半導体装置及び新規化合物を提供することも目的としている。 The main object of the present invention is to provide an organic semiconductor material exhibiting liquid crystallinity, which has a deep LUMO level and can be preferably used as an n-type organic semiconductor, which can eliminate the above-mentioned drawbacks of the prior art. It is in. Another object of the present invention is to provide an organic semiconductor device and a novel compound using the organic semiconductor material.
 本発明者は鋭意研究の結果、特定のイソキノリノ・イソキノリン(以下、「IQIQ」と略称することがある)骨格構造を有する新規な化合物は深いLUMO準位を持つ「有機半導体材料」として用いることができ、上記目的の達成のために極めて効果的なことを見出した。 As a result of diligent research, the present inventor has found that a novel compound having a specific isoquinolino-isoquinoline (hereinafter sometimes abbreviated as “IQIQ”) skeleton structure is used as an “organic semiconductor material” having a deep LUMO level. And found that it is extremely effective for achieving the above-mentioned purpose.
 本発明の有機半導体材料は上記知見に基づくものであり、より詳しくは、IQIQ(イソキノリノ・イソキノリン)タイプの骨格構造を有するユニットAと;該ユニットAと単結合で連結された、炭素主鎖を構成する炭素原子の1以上が酸素原子で置換されていても良い、脂肪族系鎖ユニットBと;該ユニットAと単結合で連結された、脂肪族系鎖および/又は環状構造を含む基、または水素原子であるユニットCとを少なくとも有する有機半導体材料であって;前記有機半導体材料が液晶性を示すことを特徴とするものである。 The organic semiconductor material of the present invention is based on the above knowledge, and more specifically, a unit A having a IQIQ (isoquinolino-isoquinoline) type skeleton structure; and a carbon main chain linked to the unit A by a single bond. An aliphatic chain unit B in which one or more of the constituent carbon atoms may be substituted with an oxygen atom; a group containing an aliphatic chain and / or a cyclic structure connected to the unit A with a single bond; Or an organic semiconductor material having at least a unit C which is a hydrogen atom; wherein the organic semiconductor material exhibits liquid crystallinity.
 本発明は、例えば、以下の態様を包含することができる。
 [1]下記式(1)で表されるイソキノリノ・イソキノリン(IQIQ)に基づく骨格構造を含むユニットAと、該ユニットAと単結合で連結された脂肪族系鎖ユニットBと、該ユニットAと単結合で連結された、脂肪族系鎖および/又は環状構造を含む基、または水素原子であるユニットCとを少なくとも有する有機半導体材料であって;前記有機半導体材料が液晶性を示すことを特徴とする有機半導体材料。
Figure JPOXMLDOC01-appb-C000006
The present invention can include, for example, the following aspects.
[1] A unit A including a skeleton structure based on isoquinolinoisoquinoline (IQIQ) represented by the following formula (1), an aliphatic chain unit B linked to the unit A by a single bond, and the unit A An organic semiconductor material having at least a group containing an aliphatic chain and / or a cyclic structure connected by a single bond, or a unit C which is a hydrogen atom; wherein the organic semiconductor material exhibits liquid crystallinity Organic semiconductor material.
Figure JPOXMLDOC01-appb-C000006
 [2]前記ユニットAは下記式(2)
Figure JPOXMLDOC01-appb-C000007
(式中、aはそれぞれ独立して水素原子であるか、または単結合であるか、または飽和及び/又は不飽和の環状基であり、該飽和および/又は不飽和の環状基は炭化水素基であるか又は1以上のヘテロ原子を含んでいても良い。)
で表される構造を有し、ユニットB及びユニットCの夫々が、2つのaにそれぞれ単結合で結合されており、当該aが単結合であるときはユニットB及び/又はユニットCはIQIQに直接に単結合で結合される、上記[1]に記載の有機半導体材料。
[2] The unit A is represented by the following formula (2)
Figure JPOXMLDOC01-appb-C000007
(In the formula, each a is independently a hydrogen atom, a single bond, or a saturated and / or unsaturated cyclic group, and the saturated and / or unsaturated cyclic group is a hydrocarbon group. Or it may contain one or more heteroatoms.)
The unit B and the unit C are each connected to two a by a single bond, and when the a is a single bond, the unit B and / or the unit C is connected to IQIQ. The organic semiconductor material according to [1], which is directly bonded by a single bond.
 [3]前記式(2)のaが、それぞれ独立して、下記構造式
Figure JPOXMLDOC01-appb-C000008
(式中、Rは水素原子又は脂肪族系鎖基である。)
のいずれかで表される構造を有し、ユニットB及びユニットCの夫々は、上記構造の置換可能な部位又は原子と置換する形でaに結合し、上記式中のRが水素原子である場合にはRに置換して、又はRが脂肪族系鎖基である場合にはRの脂肪族系鎖基が有する水素原子に置換して、前記ユニットAに結合されることができる、上記[2]に記載の有機半導体材料。
[3] In the formula (2), each a independently represents the following structural formula
Figure JPOXMLDOC01-appb-C000008
(In the formula, R is a hydrogen atom or an aliphatic chain group.)
Each of unit B and unit C is bonded to a in such a way as to replace a substitutable site or atom of the above structure, and R in the above formula is a hydrogen atom In the case, it is substituted with R, or when R is an aliphatic chain group, the hydrogen atom of the aliphatic chain group of R can be substituted and bonded to the unit A. The organic semiconductor material according to [2].
 [4]ユニットBが炭素原子数3~20の脂肪族系鎖基である、上記[1]~[3]のいずれか1項に記載の有機半導体材料。 [4] The organic semiconductor material according to any one of [1] to [3] above, wherein the unit B is an aliphatic chain group having 3 to 20 carbon atoms.
 [5]前記ユニットCの脂肪族系鎖は炭素原子数3~20の脂肪族系鎖基であり、ユニットCの環状構造を含む基は、芳香族基、複素環基又は脂肪族環基を含む基である、上記[1]~[4]のいずれか1項に記載の有機半導体材料。 [5] The aliphatic chain of the unit C is an aliphatic chain group having 3 to 20 carbon atoms, and the group including the cyclic structure of the unit C is an aromatic group, a heterocyclic group or an aliphatic ring group. The organic semiconductor material according to any one of the above [1] to [4], which is a group containing the organic semiconductor material.
 [6]LUMOの準位が-3eVよりも深い、上記[1]~[5]のいずれか1項に記載の有機半導体材料。 [6] The organic semiconductor material according to any one of [1] to [5], wherein the LUMO level is deeper than −3 eV.
 [7]室温(25℃)において、トルエンへの溶解度が0.1wt%以上である、上記[1]~[6]のいずれか1項に記載の有機半導体材料。 [7] The organic semiconductor material according to any one of [1] to [6] above, wherein the solubility in toluene is 0.1 wt% or more at room temperature (25 ° C.).
 [8]電子および/又は正孔の移動度が10-4cm2/Vsよりも大きい、上記[1]~[7]のいずれか1項に記載の有機半導体材料。 [8] The organic semiconductor material according to any one of the above [1] to [7], wherein the mobility of electrons and / or holes is greater than 10 −4 cm 2 / Vs.
 [9]n型有機半導体の性質を示す、上記[1]~[8]のいずれか1項に記載の有機半導体材料。 [9] The organic semiconductor material according to any one of [1] to [8], which exhibits properties of an n-type organic semiconductor.
 [10]液晶状態および結晶状態の少なくとも一方においてn型有機半導体の性質を示す、上記[1]~[9]のいずれか1項に記載の有機半導体材料。 [10] The organic semiconductor material according to any one of [1] to [9], wherein the organic semiconductor material exhibits properties of an n-type organic semiconductor in at least one of a liquid crystal state and a crystalline state.
 [11]発現する液晶相として、スメクチック(Sm)液晶相を示す、上記[1]~[10]のいずれか1項に記載の有機半導体材料。 [11] The organic semiconductor material according to any one of the above [1] to [10], which shows a smectic (Sm) liquid crystal phase as a developed liquid crystal phase.
 [12] 下記式(1)で表されるイソキノリノ・イソキノリン(IQIQ)に基づく骨格構造を含むユニットAと、該ユニットAと単結合で連結された脂肪族系鎖ユニットBと、該ユニットAと単結合で連結された、脂肪族系鎖および/又は環状構造を含む基、または水素原子であるユニットCとを少なくとも有する有機化合物。
Figure JPOXMLDOC01-appb-C000009
[12] Unit A including a skeleton structure based on isoquinolino-isoquinoline (IQIQ) represented by the following formula (1), an aliphatic chain unit B linked to the unit A by a single bond, and the unit A An organic compound having at least a group containing an aliphatic chain and / or a cyclic structure, or a unit C which is a hydrogen atom, connected by a single bond.
Figure JPOXMLDOC01-appb-C000009
 [13]前記ユニットAは下記式(2)
Figure JPOXMLDOC01-appb-C000010
(式中、aはそれぞれ独立して水素原子であるか、または単結合であるか、または飽和及び/又は不飽和の環状基であり、該飽和および/又は不飽和の環状基は炭化水素基であるか又は1以上のヘテロ原子を含んでいても良い。)
で表される構造を有し、ユニットB及びユニットCの夫々が、2つのaにそれぞれ単結合で結合されており、当該aが単結合であるときはユニットB及び/又はユニットCはIQIQ骨格に直接に単結合で結合される、上記[12]に記載の有機化合物。
[13] The unit A is represented by the following formula (2)
Figure JPOXMLDOC01-appb-C000010
(In the formula, each a is independently a hydrogen atom, a single bond, or a saturated and / or unsaturated cyclic group, and the saturated and / or unsaturated cyclic group is a hydrocarbon group. Or it may contain one or more heteroatoms.)
Each of unit B and unit C is bonded to two a by a single bond, and when the a is a single bond, unit B and / or unit C is an IQIQ skeleton. The organic compound according to the above [12], which is directly bonded to a single bond.
 [14]前記式(2)のaが、それぞれ独立して、下記構造式
Figure JPOXMLDOC01-appb-C000011
(式中、Rは水素原子又は脂肪族系鎖基である。)
のいずれかで表される構造を有し、ユニットB及びユニットCの夫々は、上記式中のRが水素原子である場合にはRに置換して、又はRが脂肪族系鎖基である場合にはRの脂肪族系鎖基の水素原子に置換して、前記ユニットAに結合されることができる、上記[13]に記載の有機化合物。
[14] a in the formula (2) is each independently the following structural formula
Figure JPOXMLDOC01-appb-C000011
(In the formula, R is a hydrogen atom or an aliphatic chain group.)
Each of unit B and unit C is substituted with R when R is a hydrogen atom, or R is an aliphatic chain group. In some cases, the organic compound according to [13] above, which can be bonded to the unit A by substituting for a hydrogen atom of an aliphatic chain group of R.
 [15]ユニットBが、炭素原子数3~20の脂肪族系鎖基である、上記[12]~[14]のいずれか1項に記載の有機半導体材料。 [15] The organic semiconductor material according to any one of [12] to [14] above, wherein the unit B is an aliphatic chain group having 3 to 20 carbon atoms.
 [16]前記ユニットCの脂肪族系鎖は炭素原子数3~20の脂肪族系鎖基であり、ユニットCの環状構造を含む基は、芳香族基、複素環基又は脂肪族環基を含む基である、上記[12]~[15]のいずれか1項に記載の有機半導体材料。 [16] The aliphatic chain of the unit C is an aliphatic chain group having 3 to 20 carbon atoms, and the group including the cyclic structure of the unit C is an aromatic group, a heterocyclic group, or an aliphatic cyclic group. The organic semiconductor material according to any one of [12] to [15], which is a group containing the organic semiconductor material.
 [17] 下記式(3)で表される、上記[12]に記載の有機化合物。
Figure JPOXMLDOC01-appb-C000012
 (式中、a、a、a及びaは、それぞれ独立して、水素原子であるか、または単結合であるか、または飽和及び/又は不飽和の環状基であり、該飽和及び/又は不飽和の環状基は炭化水素基であるか又は1以上のヘテロ原子を含んでいても良いが、a、a、a及びaの少なくとも1つは、単結合であるか、または飽和及び/又は不飽和の環状基であり;R、R,R及びRの少なくとも1つは、それぞれ独立して、脂肪族系鎖基であり、R、R,R及びRのいずれかが脂肪族系鎖基でないとき、その残りのR、R,R及びRは水素原子であることができる。)
[17] The organic compound according to [12], which is represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000012
(Wherein a 1 , a 2 , a 3 and a 4 are each independently a hydrogen atom, a single bond, or a saturated and / or unsaturated cyclic group, And / or the unsaturated cyclic group may be a hydrocarbon group or may contain one or more heteroatoms, but at least one of a 1 , a 2 , a 3 and a 4 is a single bond Or a saturated and / or unsaturated cyclic group; at least one of R 1 , R 2 , R 3 and R 4 is each independently an aliphatic chain group, and R 1 , R 2 , R 3 and R 4 are not aliphatic chain groups, the remaining R 1 , R 2 , R 3 and R 4 can be hydrogen atoms.)
 [18]上記式(3)中、R及びRの少なくとも一方が脂肪族系鎖基である、上記[17]に記載の有機化合物。 [18] The organic compound according to [17] above, wherein in formula (3), at least one of R 1 and R 3 is an aliphatic chain group.
 [19]前記脂肪族系鎖ユニットB又は前記脂肪族系鎖基が、炭素原子数3~20の脂肪族系鎖基である、上記[17]~[18]のいずれか1項に記載の有機化合物。 [19] The above [17] to [18], wherein the aliphatic chain unit B or the aliphatic chain group is an aliphatic chain group having 3 to 20 carbon atoms. Organic compounds.
 [20]2,8-ジデシルイソキノ[8,7-h]イソキノリン(10-IQIQ-10)、2.8-ジドデシルイソキノ[8,7-h]イソキノリン(12-IQIQ-12)又は2.8-ジテトラデシルイソキノ[8,7-h]イソキノリン(14-IQIQ-14)である、上記[12]~[19]のいずれか1項に記載の有機化合物。 [20] 2,8-didecylisoquino [8,7-h] isoquinoline (10-IQIQ-10), 2.8-didodecylisoquino [8,7-h] isoquinoline (12-IQIQ-12) or 2. The organic compound according to any one of [12] to [19] above, which is 8-ditetradecylisoquino [8,7-h] isoquinoline (14-IQIQ-14).
 [21]上記[1]~11]のいずれか1項に記載の有機半導体材料又は上記[12]~[20]のいずれか1項に記載の有機化合物を用いて形成された層を半導体層として有し、該半導体層に電気的に結合された正電極及び負電極を具備することを特徴とする半導体装置。 [21] A layer formed by using the organic semiconductor material according to any one of [1] to [11] or the organic compound according to any one of [12] to [20] A semiconductor device comprising: a positive electrode and a negative electrode electrically connected to the semiconductor layer.
 上述したように本発明によれば、好適な特性(例えば、液晶性、溶媒溶解性、深いLUMO準位、優れた半導体特性、特にn型有機半導体特性)を示す有機半導体材料を得ることができる。またその有機半導体材料を用いた半導体装置も提供される。さらに本発明によれば、IQIQに基づく骨格構造を有する新規な化合物が提供される。 As described above, according to the present invention, an organic semiconductor material exhibiting suitable characteristics (for example, liquid crystallinity, solvent solubility, deep LUMO level, excellent semiconductor characteristics, particularly n-type organic semiconductor characteristics) can be obtained. . A semiconductor device using the organic semiconductor material is also provided. Furthermore, according to the present invention, a novel compound having a skeleton structure based on IQIQ is provided.
10-IQIQ-10の示唆熱分析による測定DSCカーブ、及び10-IQIQ-10の偏光顕微鏡により観察した組織の写真である。It is a DSC curve measured by thermal analysis suggested by 10-IQIQ-10, and a photograph of the structure observed with a polarizing microscope of 10-IQIQ-10. 10-IQIQ-10の140℃(固体結晶)におけるX線回折チャートである。2 is an X-ray diffraction chart of 10-IQIQ-10 at 140 ° C. (solid crystal). H12-IQIQ-12の示唆熱分析による測定DSCカーブ、及び12-IQIQ-12の150℃で偏光顕微鏡により観察した組織の写真である。It is a DSC curve measured by suggestive thermal analysis of H12-IQIQ-12, and a photograph of the structure of 12-IQIQ-12 observed at 150 ° C. with a polarizing microscope. H12-IQIQ-12のX線回折パターンであるが、(a)は150℃のSm相、(b)は130℃での結晶(固体)のX線回折パターンである。It is an X-ray diffraction pattern of H12-IQIQ-12, where (a) is an Sm phase at 150 ° C. and (b) is an X-ray diffraction pattern of a crystal (solid) at 130 ° C. H12-IQIQ-12の150℃のSm相のX線回折パターンと、液晶層における液晶分子配列の模式図である。FIG. 3 is a schematic diagram of an Sm phase X-ray diffraction pattern of H12-IQIQ-12 at 150 ° C. and a liquid crystal molecule arrangement in a liquid crystal layer. 12-Chrysene-12および12-IQIQ-12のクロロフォルム溶液のUVスペクトルである。It is a UV spectrum of a chloroform solution of 12-Chrysene-12 and 12-IQIQ-12. 12-Chrysene-12および12-IQIQ-12の25℃において、光電子分光法により測定した光電子収量スペクトルである。2 is a photoelectron yield spectrum of 12-Chrysene-12 and 12-IQIQ-12 measured at 25 ° C. by photoelectron spectroscopy. 12-IQIQ-12の146℃において、TOF法により測定された両対数プロットした過渡光電流波形であり、(a)正電荷、(b)負電荷の光電流による結果である。(a)(b)の光電流波形図中の挿入図はそれぞれのリニアプロットを示す。It is a transient photocurrent waveform plotted by logarithm plotting measured by TOF method at 146 ° C. of 12-IQIQ-12, and is a result of (a) positive charge and (b) negative charge photocurrent. The insets in the photocurrent waveform diagrams of (a) and (b) show the respective linear plots. 12-IQIQ-12の電界強度:6.6×104V/cmにおける正電荷、および、負電荷の移動度の温度依存性である。Electric field strength of 12-IQIQ-12: Temperature dependence of mobility of positive charge and negative charge at 6.6 × 10 4 V / cm.
 以下、必要に応じて図面を参照しつつ本発明を更に具体的に説明する。以下の記載において量比を表す「部」および「%」は、特に断らない限り質量基準とする。 Hereinafter, the present invention will be described more specifically with reference to the drawings as necessary. In the following description, “parts” and “%” representing the quantity ratio are based on mass unless otherwise specified.
(有機半導体材料)
 本発明の有機半導体材料は、イソキノリノ・イソキノリン(IQIQ)タイプの骨格構造を有するユニットAと;該ユニットAと単結合で連結された、脂肪族系鎖ユニットB(炭素主鎖を構成する炭素原子の1以上が「O(酸素原子)」で置換されていても良い)と;該ユニットAと単結合で連結された、脂肪族系鎖および/又は環状構造を含む基、または水素原子であるユニットCとを少なくとも有する有機化合物を含む有機半導体材料であって;前記有機半導体材料が液晶性を示すことを特徴とするものである。「有機半導体材料が液晶性を示す」とは、有機半導体材料がいずれかの温度で液晶性を示すことをいう。本発明の有機半導体材料は電子輸送特性を示すものであり、特に液晶相又は(固体)結晶相で優れた半導体として利用可能なものである。
(Organic semiconductor materials)
The organic semiconductor material of the present invention comprises a unit A having an isoquinolino-isoquinoline (IQIQ) type skeleton structure; an aliphatic chain unit B (carbon atoms constituting a carbon main chain) linked to the unit A by a single bond; One or more of them may be substituted with “O (oxygen atom)”; a group containing an aliphatic chain and / or a cyclic structure connected to the unit A by a single bond, or a hydrogen atom An organic semiconductor material containing an organic compound having at least a unit C, wherein the organic semiconductor material exhibits liquid crystallinity. “The organic semiconductor material exhibits liquid crystallinity” means that the organic semiconductor material exhibits liquid crystallinity at any temperature. The organic semiconductor material of the present invention exhibits electron transport properties, and can be used as an excellent semiconductor particularly in a liquid crystal phase or a (solid) crystal phase.
 本発明の有機半導体材料を構成する有機化合物は、ユニットAの両端部にユニットB及びユニットCがそれぞれ単結合で結合した化合物であることが好ましい。すなわち、本発明の有機半導体材料を構成する有機化合物は<ユニットC>-<ユニットA>-<ユニットB>の構成を有することができる。 The organic compound constituting the organic semiconductor material of the present invention is preferably a compound in which unit B and unit C are bonded to both ends of unit A by a single bond. That is, the organic compound constituting the organic semiconductor material of the present invention can have a configuration of <unit C> − <unit A> − <unit B>.
(ユニットA)
 本発明の有機半導体材料を構成する有機化合物の「ユニットA」について述べる。
 ユニットAは、下記式(1)で表されるイソキノリノ・イソキノリン(IQIQ)に基づく骨格構造を含むユニットである。イソキノリノ・イソキノリン(IQIQ)に基づく骨格構造は後記のような基を付加して有することができる。ユニットAはユニットB及びユニットCが単結合で結合している点で式(1)のIQIQは修正された構造を有する。本発明の有機半導体材料は、拡張された芳香族πー共役系としてイソキノリノ・イソキノリン(IQIQ)に基づく骨格構造を含むことで、より深いLUMO準位、特に3eVより深いLUMO準位の半導体特性を示し、n型有機半導体として好適に利用できるという効果がある。
Figure JPOXMLDOC01-appb-C000013
(Unit A)
The “unit A” of the organic compound constituting the organic semiconductor material of the present invention will be described.
The unit A is a unit including a skeleton structure based on isoquinolino-isoquinoline (IQIQ) represented by the following formula (1). The skeleton structure based on isoquinolino-isoquinoline (IQIQ) can have a group as described below. Unit A has a modified structure of IQIQ of formula (1) in that unit B and unit C are connected by a single bond. The organic semiconductor material of the present invention includes a skeletal structure based on isoquinolino-isoquinoline (IQIQ) as an extended aromatic π-conjugated system, so that a semiconductor property having a deeper LUMO level, particularly a LUMO level deeper than 3 eV can be obtained. It has the effect that it can utilize suitably as an n-type organic semiconductor.
Figure JPOXMLDOC01-appb-C000013
 「ユニットA」は、式(1)で示される「IQIQ」単独で構成されるものであってもよく、また、下記式(2)
Figure JPOXMLDOC01-appb-C000014
(式中、aはそれぞれ独立して水素原子であるか、または単結合であるか、または飽和及び/又は不飽和の環状基であり、該環状基は炭化水素基であるか又は1以上のヘテロ原子を含んでいても良く;少なくとも1つのaは該環状基である。)
で示さるように、少なくとも1つの「環状基a」(少なくとも1つのaが環状基であるので、a全部を又は環状基であるaを「環状基a」ということがある)が該IQIQに単結合で連結されているものあっても良い。なお、この環状基aを含むユニットAの場合、本発明の有機半導体材料ではユニットB及びユニットCの夫々が上記式中の2つのaにそれぞれ単結合で結合されるので、ユニットB及び/又はユニットCが結合される当該aが飽和及び/又は不飽和の環状基であるときは、ユニットB及び/又はユニットCはその環状基に単結合で結合されることになり、また、ユニットB及び/又はユニットCが結合される当該a自体が単結合であるときは、そのユニットB及び/又はユニットCはユニットAのIQIQ骨格に直接に単結合で結合されることになる。ユニットAにこのような環状基aを有する態様においては、環状基aの性質によって、液晶性を好適に発現させるのに有効である。
“Unit A” may be composed of “IQIQ” represented by the formula (1) alone, and the following formula (2)
Figure JPOXMLDOC01-appb-C000014
Wherein each a is independently a hydrogen atom, a single bond, or a saturated and / or unsaturated cyclic group, the cyclic group being a hydrocarbon group or one or more May include heteroatoms; at least one a is the cyclic group.)
As shown in the above, at least one “cyclic group a” (since at least one a is a cyclic group, all a or a that is a cyclic group may be referred to as “cyclic group a”) is included in the IQIQ. Some may be connected by a single bond. In the case of the unit A including the cyclic group a, in the organic semiconductor material of the present invention, each of the unit B and the unit C is bonded to two a in the above formula by a single bond, so that the unit B and / or When the a to which unit C is bonded is a saturated and / or unsaturated cyclic group, unit B and / or unit C will be bonded to the cyclic group with a single bond, and unit B and When the a itself to which the unit C is bonded is a single bond, the unit B and / or the unit C is directly bonded to the IQIQ skeleton of the unit A with a single bond. In the embodiment in which the unit A has such a cyclic group a, the liquid crystallinity is effectively expressed by the property of the cyclic group a.
 また、「ユニットA」は、IQIQ骨格に、環状基aに代えて、あるいは環状基aに加えて、特に下記式(4)のR5~R8の位置で、少なくとも1個の他の置換基、特に脂肪族基が単結合で連結されているものあっても良い。この置換基、特に脂肪族基は、後述のユニットB及びユニットCを構成する置換基、脂肪族基と同様であることができる。ユニットAにこのような置換基を有する態様においては、置換基の性質に応じて、液晶性を好適に発現させるのに有効である。
Figure JPOXMLDOC01-appb-C000015
In addition, “unit A” includes at least one other substitution in the IQIQ skeleton in place of the cyclic group a or in addition to the cyclic group a, particularly at positions R 5 to R 8 in the following formula (4). A group, particularly an aliphatic group, may be linked by a single bond. This substituent, particularly an aliphatic group, can be the same as the substituent and the aliphatic group constituting the units B and C described later. In the embodiment in which the unit A has such a substituent, it is effective to suitably exhibit liquid crystallinity depending on the nature of the substituent.
Figure JPOXMLDOC01-appb-C000015
(好適な環状基a)
 上記式(2)において、環状基aの少なくとも1つは、飽和および/又は不飽和の環状基である。該環状基aを構成する環状構造は、5員環および/又は6員環および/又はそれらの複合構造であることが好ましい。該環状基aは、炭化水素基であるか、1以上のヘテロ原子(例えば、O、Nおよび/又はS)を含んでいても良い。
(Suitable cyclic group a)
In the above formula (2), at least one of the cyclic groups a is a saturated and / or unsaturated cyclic group. The cyclic structure constituting the cyclic group a is preferably a 5-membered ring and / or a 6-membered ring and / or a composite structure thereof. The cyclic group a may be a hydrocarbon group or may contain one or more heteroatoms (for example, O, N and / or S).
 本発明において、「好適な環状基a」は、例えば、以下の構造を含むことができる。
Figure JPOXMLDOC01-appb-C000016
上記式中、Rは水素原子又は脂肪族系鎖基である。水素原子であることは好ましい。また脂肪族系鎖基はアルキル基のほか、主鎖に酸素原子を含むものでもよく、Rの炭素原子数は20以下が好ましい。ユニットB及びユニットCの夫々は、上記式中のRが水素原子である場合にはそのRに置換して、又はRが脂肪族系鎖基である場合にはそのRの脂肪族系鎖基の水素原子に置換する形で、ユニットAに結合されてもよい。
In the present invention, the “suitable cyclic group a” can include, for example, the following structure.
Figure JPOXMLDOC01-appb-C000016
In the above formula, R is a hydrogen atom or an aliphatic chain group. It is preferably a hydrogen atom. In addition to the alkyl group, the aliphatic chain group may contain an oxygen atom in the main chain, and the number of carbon atoms in R is preferably 20 or less. Each of the units B and C is substituted when R in the above formula is a hydrogen atom, or when R is an aliphatic chain group, the aliphatic chain group of the R It may be bonded to the unit A in the form of substitution with a hydrogen atom.
 本発明の有機半導体材料では、ユニットAに対してユニットB及びユニットCが単結合で結合される。ユニットAにユニットB及びユニットCが「単結合で結合」されると、ユニットB及びユニットCはユニットAの上記IQIQを含む骨格構造を構成する炭素原子に単結合される。そのため、上記式(1)~(3)に示される骨格構造における該炭素原子に結合していた水素原子に置換する形で、ユニットB及びユニットCと該炭素原子との間で単結合(直接結合)が形成される。すなわち、式(1)~(3)で示される構造はユニットB及びユニットCが置換結合される前の構造であることに留意されるべきである。ユニットB及びユニットCが単結合で結合される骨格構造を構成する炭素原子は、式(1)で示されるIQIQ自体を構成する炭素原子であるほか、式(2)及び式(3)で示されるIQIQに結合した環状基aあるいは置換基R5~R8を構成する炭素原子であってもよい。 In the organic semiconductor material of the present invention, unit B and unit C are bonded to unit A by a single bond. When the unit B and the unit C are “coupled by a single bond” to the unit A, the unit B and the unit C are single-bonded to the carbon atom constituting the skeleton structure including the IQIQ of the unit A. Therefore, a single bond (directly between unit B and unit C and the carbon atom is used in the form of substitution with a hydrogen atom bonded to the carbon atom in the skeleton structure represented by the above formulas (1) to (3). Bond) is formed. That is, it should be noted that the structures represented by the formulas (1) to (3) are structures before the unit B and the unit C are substituted and bonded. The carbon atom constituting the skeletal structure in which the unit B and the unit C are bonded by a single bond is the carbon atom constituting the IQIQ itself represented by the formula (1), as well as represented by the formula (2) and the formula (3). It may be a cyclic group a bonded to IQIQ or a carbon atom constituting the substituents R 5 to R 8 .
 本発明において有機化合物は<ユニットC>-<ユニットA>-<ユニットB>の構成、すなわち、ユニットAの一方の端部にユニットB、他方の端部にユニットCが結合した鎖状の分子構造を有していることが好ましい。ユニットAの両端部とは、IQIQの2,3,8,9位(式(2)のピリジン環にaが結合している位置)である。ユニットAの一方の端部(たとえばIQIQの2,3位の少なくとも1つ)にユニットBが結合し、他方の端部(たとえばIQIQの8,9位の少なくとも1つ)にユニットCが結合していればよく、残りの端部(式(2)のaの位置、すなわち、IQIQの2,3,8,9位のうちユニットB、Cが結合していない位置があれば)にはユニットB及び/又はユニットCが結合し、あるいは結合しないことができる。さらに、ユニットB及びユニットCは、下記式(5)で示すIQIQの2,8位の炭素原子(aが結合している位置)に直接に又はその2,8位の炭素原子に結合している環状基aの炭素原子に結合していることが好ましい。
Figure JPOXMLDOC01-appb-C000017
In the present invention, the organic compound has a structure of <unit C>-<unit A>-<unit B>, that is, a chain molecule in which unit B is bonded to one end of unit A and unit C is bonded to the other end. It preferably has a structure. The both ends of the unit A are the 2, 3, 8, and 9 positions of IQIQ (positions where a is bonded to the pyridine ring of the formula (2)). Unit B is coupled to one end of unit A (eg, at least one of positions 2 and 3 of IQIQ), and unit C is coupled to the other end (eg, at least one of positions 8 and 9 of IQIQ). And the unit at the remaining end (the position of a in formula (2), that is, if there are positions where units B and C are not coupled among positions 2, 3, 8, and 9 of IQIQ) B and / or unit C may or may not be combined. Further, the unit B and the unit C are bonded directly to the carbon atoms at the 2nd and 8th positions (position to which a is bonded) of IQIQ represented by the following formula (5) or bonded to the 2nd and 8th position carbon atoms. It is preferably bonded to a carbon atom of the cyclic group a.
Figure JPOXMLDOC01-appb-C000017
(ユニットB)
 本発明の有機半導体材料において、「ユニットB」はユニットAと単結合で連結された脂肪族系鎖基である。本発明の有機半導体材料においてユニットBは必須であり、剛直なユニットAに比較的柔軟な長鎖であるユニットBが結合することで、本材料の液晶性を好適に発現させることができ、また、溶解度の向上に有効である。
(Unit B)
In the organic semiconductor material of the present invention, “unit B” is an aliphatic chain group connected to unit A by a single bond. In the organic semiconductor material of the present invention, the unit B is indispensable, and the unit B, which is a relatively flexible long chain, is bonded to the rigid unit A, so that the liquid crystallinity of the material can be suitably expressed. , Effective in improving solubility.
 該脂肪族系鎖基は、飽和および不飽和の脂肪族系鎖基のいずれでもよく、たとえば、主鎖が炭素原子からなる飽和又は不飽和の基(たとえばアルキル基)であるか、又はその炭素原子からなる主鎖に「O(酸素原子)」を含む飽和又は不飽和の脂肪族系鎖基であることが好ましい。ユニットBの脂肪族系鎖を構成する炭素原子数は3~20であることが好ましく、さらには10~14、特に12であることが好ましい。脂肪族系鎖基の原子数が2以下では分子に柔軟性を付与することが困難であり、20を超えてもよいが、20を超えると入手が困難となる可能性がある。 The aliphatic chain group may be either a saturated or unsaturated aliphatic chain group. For example, the main chain is a saturated or unsaturated group (for example, an alkyl group) composed of carbon atoms, or the carbon thereof. It is preferably a saturated or unsaturated aliphatic chain group containing “O (oxygen atom)” in the main chain composed of atoms. The number of carbon atoms constituting the aliphatic chain of unit B is preferably 3-20, more preferably 10-14, and particularly preferably 12. If the number of atoms of the aliphatic chain group is 2 or less, it is difficult to impart flexibility to the molecule, and it may exceed 20, but if it exceeds 20, it may be difficult to obtain.
 本発明において好適な一態様においては、「ユニットB」を構成する脂肪族系鎖基は、C3~C20のアルキル基である。 In one preferred embodiment of the present invention, the aliphatic chain group constituting “unit B” is a C 3 to C 20 alkyl group.
 本発明において好適な他の態様においては、「ユニットB」の脂肪族系鎖基において1以上「O(酸素)原子」が、炭素主鎖中に存在してもよい。この態様における好適な「ユニットB」は、その部分構造として、下記式で示される1以上の構造を有するものである。この部分構造を有する脂肪族系鎖基の末端は-CH3である。
 (-X1-(CH2r-X2-)、
 (式中、X1およびX2=OまたはCH2であり、r=1~19の整数である。ただし、X1=X2=O(酸素原子)の態様を除く)。主鎖の炭素原子の数は3~20であることが好ましい。
In another aspect suitable for the present invention, one or more “O (oxygen) atoms” in the aliphatic chain group of “unit B” may be present in the carbon main chain. A preferable “unit B” in this embodiment has one or more structures represented by the following formula as its partial structure. The terminal of the aliphatic chain group having this partial structure is —CH 3 .
(-X 1- (CH 2 ) r -X 2- ),
(In the formula, X 1 and X 2 ═O or CH 2 , and r is an integer of 1 to 19, except for the aspect of X 1 ═X 2 ═O (oxygen atom)). The number of carbon atoms in the main chain is preferably 3-20.
 更に詳細には、このような好適な「ユニットB」の構造を例示すれば、以下の通りである。以下の式中、X=OまたはCH2であり、n+m=3~19、p+n+m=3~19、またはp+・・・・・+n+m=3~19であり、mおよびnなどは0を含んでもよい。主鎖の炭素原子の数は3~20であることが好ましい。
 -(CH2n-X-(CH2m-CH3
 -(CH2p-X-(CH2n-X-(CH2m-CH3
    (中略)
 -(CH2p-X-・・・・・・-X-(CH2n-X-(CH2m-CH3
More specifically, the structure of such a suitable “unit B” is exemplified as follows. In the following formula, X = O or CH 2 , n + m = 3 to 19, p + n + m = 3 to 19, or p +... + N + m = 3 to 19, and m and n may include 0 Good. The number of carbon atoms in the main chain is preferably 3-20.
-(CH 2 ) n -X- (CH 2 ) m -CH 3 ,
— (CH 2 ) p —X— (CH 2 ) n —X— (CH 2 ) m —CH 3 ,
(Omitted)
— (CH 2 ) p —X—... —X— (CH 2 ) n —X— (CH 2 ) m —CH 3 ,
 本発明において、「ユニットB」の構造中に「O原子」が入った場合、本発明の有機半導体材料と、有機溶媒との相性(溶解性)が、より良好となるという利点がある。有機溶媒(純粋な炭化水素溶媒を除く)は、一般的には、全くの無極性ではなく、ある程度の極性を有することが多いからである。 In the present invention, when “O atom” is included in the structure of “unit B”, there is an advantage that the compatibility (solubility) between the organic semiconductor material of the present invention and the organic solvent becomes better. This is because organic solvents (excluding pure hydrocarbon solvents) are generally not apolar at all and often have a certain degree of polarity.
 上記のごとく、ユニットBは、ユニットAの端部、すなわち、IQIQの2,3,8,9位(式(2)のピリジン環にaが結合している位置)のいずれかに結合することが好ましい。ユニットBがユニットAの端部に結合すると、ユニットAは、上記式(1)~(3)で示した構造あるいは環状基aの例示として示した構造において、それらの構造の端部に存在する炭素原子に結合している水素原子に対してユニットBが置換した構造になることができる。 As described above, unit B is bonded to one of the ends of unit A, that is, any of positions 2, 3, 8, and 9 (positions where a is bonded to the pyridine ring of formula (2)) of IQIQ. Is preferred. When unit B is coupled to the end of unit A, unit A is present at the end of those structures in the structures shown in the above formulas (1) to (3) or the structure shown as an example of cyclic group a. A structure in which unit B is substituted for a hydrogen atom bonded to a carbon atom can be obtained.
 ユニットBを構成する脂肪族系鎖基は、ユニットAに含まれることがある脂肪族系鎖基と同様の基であることができる。したがって、ユニットAが脂肪族系鎖基を含み、その脂肪族系鎖基がユニットBの要件を満たす場合、ユニットBの脂肪族系鎖基は、ユニットAが有する脂肪族系鎖基とは別に追加的に存在してもよく、あるいはユニットAが有する脂肪族系鎖基自体がユニットBの脂肪族系鎖基であってもよいことになるが、しかし、ユニットAが有する脂肪族系鎖基自体がユニットBの脂肪族系鎖基を構成する場合には、ユニットBの脂肪族系鎖基を構成するその脂肪族系鎖基はユニットAを構成する部分とは見做さない。 The aliphatic chain group constituting the unit B can be the same group as the aliphatic chain group that may be contained in the unit A. Therefore, when unit A includes an aliphatic chain group and the aliphatic chain group satisfies the requirements of unit B, the aliphatic chain group of unit B is different from the aliphatic chain group of unit A. It may be additionally present, or the aliphatic chain group of the unit A itself may be the aliphatic chain group of the unit B, but the aliphatic chain group of the unit A When itself constitutes the aliphatic chain group of unit B, the aliphatic chain group constituting the aliphatic chain group of unit B is not regarded as a part constituting unit A.
 ユニットAがIQIQ骨格に付加した環状基aを有し、環状基aに脂肪族系鎖基Rを有し、その環状基aの脂肪族系鎖基にユニットBが連結する場合、環状基aの脂肪族系鎖基RとユニットBの脂肪族系鎖基とは、それらの主鎖の炭素原子の数が3~20であることが好ましい。ユニットAとユニットBとが結合して形成される脂肪族系鎖基の合計長さが炭素原子数3~20であることが好ましい理由は、ユニットBの脂肪族系鎖基の長さについて述べた上記の理由と同じである。 When the unit A has a cyclic group a added to the IQIQ skeleton, the cyclic group a has an aliphatic chain group R, and the unit B is linked to the aliphatic chain group of the cyclic group a, the cyclic group a The aliphatic chain group R and the aliphatic chain group of the unit B preferably have 3 to 20 carbon atoms in their main chain. The reason why the total length of the aliphatic chain group formed by combining unit A and unit B is preferably 3 to 20 carbon atoms is that the length of the aliphatic chain group of unit B is described. The same reason as above.
(ユニットC)
 本発明の有機半導体材料において、「ユニットC」は、ユニットAと単結合で連結された、水素原子、脂肪族系鎖、または環状構造を含む基である。本発明の有機半導体材料においてユニットCは、ユニットCの性質に応じて本有機半導体材料の液晶性を好適に発現させることができる。
(Unit C)
In the organic semiconductor material of the present invention, “unit C” is a group containing a hydrogen atom, an aliphatic chain, or a cyclic structure connected to unit A by a single bond. In the organic semiconductor material of the present invention, the unit C can suitably exhibit the liquid crystal properties of the organic semiconductor material according to the properties of the unit C.
 ユニットCの定義において、「環状構造を含む基」とは、芳香族基(例えば、フェニル基)、複素環基(例えば、チオフェン基)、または脂肪族基(例えば、シクロヘキシル基)を含むことができる。このユニットCにおける「環状構造を含む基」は、ユニットAにおける上記環状基aと同様であることができる。このユニットCにおける「脂肪族系鎖を含む基」における「脂肪族系鎖」の意義は、上記「ユニットB」において脂肪族系鎖基について記載したものと同様である。 In the definition of the unit C, the “group containing a cyclic structure” includes an aromatic group (for example, a phenyl group), a heterocyclic group (for example, a thiophene group), or an aliphatic group (for example, a cyclohexyl group). it can. The “group containing a cyclic structure” in the unit C can be the same as the cyclic group a in the unit A. The meaning of the “aliphatic chain” in the “group containing an aliphatic chain” in the unit C is the same as that described for the aliphatic chain group in the “unit B”.
 環状構造を含む基における芳香族基としては、フェニル、ナフチル、アントラニル、フェナントレニル、フルオレニル、インデニル、アズレニル、ビフェニル、ターフェニル、シクロヘキシルファニル、ナフチルフェニルなどがある。
 環状構造を含む基における複素環基としては、チエニル、ベンゾチエニル、ナフトチエニル、フルイル、オキサジアゾリル、チアゾイル、チアジアゾイル、ベンゾフラニル、ピローリル、ピラゾリル、イミダゾリル、ピリジル、ピラジニル、ピリミデュニル(Pyrimidunyl)、ピリダジニル、インドリル、キノリル、イソキノリル、フタラジニル、ナフチリジニル、キノクサリニル、キナゾリニル、チノリニル、カルバゾイル、アクリジニル、フェナントリジニル、フェナジニル、フェタリジニル(Pteridinyl)などがある。
 環状構造を含む基における脂肪族基としては、シクロペンチル、シクロヘキシル、シクロヘプチル、フェニルシクロヘキシルなどの他、その構造の一部にO, S, Nなどのヘテロ原子や不飽和結合を含むものなどがある。
Examples of the aromatic group in the group containing a cyclic structure include phenyl, naphthyl, anthranyl, phenanthrenyl, fluorenyl, indenyl, azulenyl, biphenyl, terphenyl, cyclohexylphanyl, and naphthylphenyl.
Examples of the heterocyclic group in the group containing a cyclic structure include thienyl, benzothienyl, naphthothienyl, furyl, oxadiazolyl, thiazoyl, thiadiazoyl, benzofuranyl, pyrrolyl, pyrazolyl, imidazolyl, pyridyl, pyrazinyl, pyrimidunyl, pyridazinyl, indolyl, quinolyl, Examples include isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, tinolinyl, carbazoyl, acridinyl, phenanthridinyl, phenazinyl, and fetalidinyl.
Examples of the aliphatic group in the group including a cyclic structure include cyclopentyl, cyclohexyl, cycloheptyl, phenylcyclohexyl, and the like, and some of the structures include heteroatoms such as O, S, and N and unsaturated bonds. .
 上記のごとく、ユニットCは、ユニットAの端部、特にIQIQの2,3,8,9位(式(2)のピリジン環にaが結合している位置)に結合することが好ましい。ユニットCがユニットAに単結合で結合すると、ユニットCは式(1)~(3)で示したユニットAを構成する炭素原子に結合している水素原子と置換してユニットAに結合した構造になる。ユニットCは、ユニットAのユニットBが結合している端部と反対側の端部に結合していることが好ましい。 As described above, the unit C is preferably bonded to the end of the unit A, particularly to IQIQ positions 2, 3, 8, and 9 (positions where a is bonded to the pyridine ring of the formula (2)). When unit C is bonded to unit A by a single bond, unit C is bonded to unit A by substituting hydrogen atoms bonded to the carbon atoms constituting unit A shown in formulas (1) to (3). become. The unit C is preferably connected to the end of the unit A opposite to the end to which the unit B is connected.
 ユニットCを構成する環状構造を含む基又は脂肪族系鎖を含む基は、ユニットAに含まれることがある環状基又は脂肪族系鎖基と同様の基であることができる。したがって、ユニットAが環状基又は脂肪族系鎖基を含み、その環状基又は脂肪族系鎖基がユニットCの要件を満たす場合、ユニットCの環状基又は脂肪族系鎖基は、ユニットAが有する環状基又は脂肪族系鎖基とは別に追加的に存在してもよく、あるいはユニットAが有する環状基又は脂肪族系鎖基自体がユニットCの環状基又は脂肪族系鎖基であってもよいことになるが、しかし、ユニットAが有する環状基又は脂肪族系鎖基自体がユニットCの環状基又は脂肪族系鎖基を構成する場合には、ユニットCの環状基又は脂肪族系鎖基を構成するその環状基又は脂肪族系鎖基はユニットAを構成する部分とは見做さない。 The group containing a cyclic structure or the group containing an aliphatic chain constituting the unit C can be the same group as the cyclic group or the aliphatic chain group that may be contained in the unit A. Therefore, when the unit A includes a cyclic group or an aliphatic chain group, and the cyclic group or the aliphatic chain group satisfies the requirements of the unit C, the cyclic group or the aliphatic chain group of the unit C is The cyclic group or aliphatic chain group may be present separately from the cyclic group or aliphatic chain group that the unit A has, or the cyclic group or aliphatic chain group of the unit A itself is the cyclic group or aliphatic chain group of the unit C. However, when the cyclic group or aliphatic chain group of unit A itself constitutes the cyclic group or aliphatic chain group of unit C, the cyclic group or aliphatic system of unit C may be used. The cyclic group or aliphatic chain group constituting the chain group is not regarded as a part constituting the unit A.
 ユニットAがIQIQ骨格に付加した環状基aを有し、環状基aに脂肪族系鎖基Rを有し、その環状基aの脂肪族系鎖基にユニットCが連結する場合、環状基aの脂肪族系鎖基RとユニットCの脂肪族系鎖基とは、それらの主鎖の炭素原子の数が3~20であることが好ましい。ユニットAとユニットCとが結合して形成される脂肪族系鎖基の合計長さが炭素原子数3~20であることが好ましい理由は、ユニットBの脂肪族系鎖基の長さについて述べた上記の理由と同じである。 When the unit A has a cyclic group a added to the IQIQ skeleton, the cyclic group a has an aliphatic chain group R, and the unit C is linked to the aliphatic chain group of the cyclic group a, the cyclic group a The aliphatic chain group R and the aliphatic chain group of unit C preferably have 3 to 20 carbon atoms in their main chain. The reason why the total length of the aliphatic chain group formed by combining unit A and unit C is preferably 3 to 20 carbon atoms is that the length of the aliphatic chain group of unit B is described. The same reason as above.
(好適な有機半導体材料の具体的な構造例)
 本発明の有機半導体材料を構成を有する有機化合物、すなわち<ユニットC>-<ユニットA>-<ユニットB>の構成を有する有機化合物の構造の好ましい一例は、以下の構造式(3)に示す通りである。
(Specific structural example of suitable organic semiconductor material)
A preferred example of the structure of an organic compound having a configuration of the organic semiconductor material of the present invention, that is, an organic compound having a configuration of <unit C> − <unit A> − <unit B> is represented by the following structural formula (3). Street.
Figure JPOXMLDOC01-appb-C000018
 式中、a、a、a及びaは、それぞれ独立して、水素原子であるか、または単結合であるか、または飽和及び/又は不飽和の環状基であり、該飽和及び/又は不飽和の環状基は炭化水素基であるか又は1以上のヘテロ原子を含んでいても良いが、a、a、a及びaの少なくとも1つは、単結合であるか、または飽和及び/又は不飽和の環状基であり;R、R,R及びRの少なくとも1つは、それぞれ独立して、脂肪族系鎖系鎖基であり、R、R,R及びRのいずれかが脂肪族系鎖基でないとき、その残りのR、R,R及びRは水素原子であることができる。
Figure JPOXMLDOC01-appb-C000018
In the formula, a 1 , a 2 , a 3 and a 4 are each independently a hydrogen atom, a single bond, or a saturated and / or unsaturated cyclic group, The unsaturated cyclic group may be a hydrocarbon group or may contain one or more heteroatoms, but at least one of a 1 , a 2 , a 3 and a 4 is a single bond Or a saturated and / or unsaturated cyclic group; at least one of R 1 , R 2 , R 3 and R 4 is each independently an aliphatic chain group, R 1 , R When any of 2 , R 3 and R 4 is not an aliphatic chain group, the remaining R 1 , R 2 , R 3 and R 4 can be hydrogen atoms.
 上記式中、R1=<ユニットC>、R3=<ユニットB>であるか、または逆にR1=<ユニットB>、R3=<ユニットC>が可能である。このような形にユニットA,B,Cが結合した有機化合物は、上記したように、好ましい。なお、R1とR3は同一(すなわち、対称的)であってもよく、また異なって(すなわち、非対称的)であっても良い。他方、R2とR4は、水素原子、脂肪族系鎖、または環状構造を含む基のいずれであっても良い。例えば、好ましくR2=R4=Hであっても良い。R2とR4も同一(すなわち、対称的)であってもよく、また異なって(すなわち、非対称的)であっても良い。また、上記ではユニットAがIQIQ単体である例を示したが、上記したように、構造式(5)において、R1~R4、特にR1とR3のいずれかの位置に、少なくとも1つの環状基aが結合したものであってもよい。 In the above formula, R 1 = <unit C>, R 3 = <unit B>, or conversely, R 1 = <unit B>, R 3 = <unit C> is possible. As described above, the organic compound in which the units A, B, and C are bonded in such a form is preferable. Note that R 1 and R 3 may be the same (ie, symmetric) or different (ie, asymmetric). On the other hand, R 2 and R 4 may be a hydrogen atom, an aliphatic chain, or a group containing a cyclic structure. For example, R 2 = R 4 = H may be preferable. R 2 and R 4 may be the same (ie, symmetric) or different (ie, asymmetric). In the above description, the unit A is IQIQ alone. However, as described above, in the structural formula (5), at least one of R 1 to R 4 , particularly R 1 and R 3 is located. Two cyclic groups a may be bonded.
 本発明の有機半導体材料の構成を有する有機化合物、すなわち<ユニットC>-<ユニットA>-<ユニットB>の構成を有する有機化合物の好適な構造を、以下に例示する。
 H-<ユニットA>-アルキル基
 アルキル基-<ユニットA>-アルキル基
 フェニル基-<ユニットA>-アルキル基
 チオフェン基-<ユニットA>-アルキル基
 上記において、ユニットAは、IQIQ骨格単独であるか、または、たとえばIQIQ骨格-(環状基、たとえばフェニレン基)のように複合構造であってもよい。このとき、たとえば、チオフェン基-IQIQ骨格-フェニレン基-アルキル基の構造を有する。
Suitable structures of the organic compound having the structure of the organic semiconductor material of the present invention, that is, the organic compound having the structure of <unit C> − <unit A> − <unit B> are exemplified below.
H- <unit A> -alkyl group alkyl group- <unit A> -alkyl group phenyl group- <unit A> -alkyl group thiophene group- <unit A> -alkyl group In the above, unit A is IQIQ skeleton alone There may be a composite structure such as IQIQ skeleton- (cyclic group, for example, phenylene group). At this time, for example, it has a structure of thiophene group-IQIQ skeleton-phenylene group-alkyl group.
 このような好ましい構造を有する有機化合物の例は、下記構造式(3’)で表すことができる。
Figure JPOXMLDOC01-appb-C000019
(式中、a及びaは、それぞれ独立して、水素原子であるか、または単結合であるか、または飽和及び/又は不飽和の環状基であり、該飽和及び/又は不飽和の環状基は炭化水素基であるか又は1以上のヘテロ原子を含んでいても良く;R及びRの1つは脂肪族系鎖系鎖基(たとえばアルキル基)であり、R及びRの残りは水素原子、脂肪族系鎖系鎖基(たとえばアルキル基)、環状構造を含む基(たとえばフェニル基)又は1以上のヘテロ原子を含む環状炭化水素基(たとえばチオフェン基)であることができる。)
An example of the organic compound having such a preferable structure can be represented by the following structural formula (3 ′).
Figure JPOXMLDOC01-appb-C000019
(Wherein, a 1 and a 3 are each independently a hydrogen atom, a single bond, or a saturated and / or unsaturated cyclic group, and the saturated and / or unsaturated The cyclic group may be a hydrocarbon group or may contain one or more heteroatoms; one of R 1 and R 3 is an aliphatic chain group (eg, an alkyl group), and R 1 and R The remainder of 3 is a hydrogen atom, an aliphatic chain group (eg, an alkyl group), a group containing a cyclic structure (eg, a phenyl group), or a cyclic hydrocarbon group containing one or more heteroatoms (eg, a thiophene group). Can do.)
(液晶性、結晶性)
 本発明において、「有機半導体材料が液晶性を示す」とは、該有機半導体材料が半導体性を示す「いずれかの温度領域」において、液晶性を示すことを言う。液晶性を示すことは、様々な方法で確認できるが、たとえば偏光顕微鏡観察、さらには偏光顕微鏡観察と示唆熱分析、X線回折との組合せによって確認できる。有機材料が液晶性を示すことが可能な材料であることで、凝集状態において分子配向を制御し、優れた半導体特性を実現することが可能にされる。液晶性の優れた特性として溶解性があるが、溶解性は溶媒に溶解することによって簡単に確認できる。
(Liquid crystalline, crystalline)
In the present invention, “the organic semiconductor material exhibits liquid crystallinity” means that the organic semiconductor material exhibits liquid crystallinity in “any temperature range” in which the organic semiconductor material exhibits semiconductivity. The liquid crystallinity can be confirmed by various methods, and can be confirmed by, for example, observation with a polarizing microscope, or a combination of observation with a polarizing microscope, suggested thermal analysis, and X-ray diffraction. When the organic material is a material capable of exhibiting liquid crystallinity, it is possible to control molecular orientation in an aggregated state and realize excellent semiconductor characteristics. Although it has solubility as an excellent characteristic of liquid crystallinity, solubility can be easily confirmed by dissolving in a solvent.
 本発明の有機半導体材料は液晶性を示すものであるが、液晶又は固体結晶の状態であることが好ましい。スメクチック液晶、SmE,SmI,SmH,SmK ,などのより高次スメクチック液晶のであることがより好ましい。本発明の有機半導体材料は、液晶又は固体結晶のいずれかの状態であることで、液晶性を示さない場合と比べて、分子配向の制御が可能で優れた半導体特性が発現される。液晶であることはたとえば偏光顕微鏡組織(テクスチャー)観察、さらには偏光顕微鏡と示唆熱分析、X線回折分析との組合せによって確認でき、固体結晶相であることはたとえばX線回折分析で確認することができる。詳細は後出の文献が参照される。 The organic semiconductor material of the present invention exhibits liquid crystallinity, but is preferably in a liquid crystal or solid crystal state. It is more preferable to use higher-order smectic liquid crystals such as smectic liquid crystals, SmE, SmI, SmH, and SmK. Since the organic semiconductor material of the present invention is in a state of either a liquid crystal or a solid crystal, it can control molecular orientation and exhibits excellent semiconductor characteristics as compared with a case where liquid crystallinity is not exhibited. The liquid crystal can be confirmed by, for example, polarization microscope texture (texture) observation, a combination of a polarization microscope, suggested thermal analysis, and X-ray diffraction analysis. The solid crystal phase can be confirmed by, for example, X-ray diffraction analysis. Can do. Refer to the following literature for details.
(半導体特性)
 本発明の有機半導体材料は「電子性の伝導特性を示す」ものである。半導体特性の良く知られた一般的な評価方法は、TOF法により直接、移動度を求めるか、あるいは、トランジスタ(FET)を作製して、移動度を求める方法である。後者は結晶薄膜材料の評価に広く用いられる方法であるが、特に、n-チャネル、すなわち、電子がキャリアとなる場合には、制約が大きく、電極材料や絶縁膜材料の選択を適切に行う必要がある。
(Semiconductor characteristics)
The organic semiconductor material of the present invention “shows electronic conductivity”. A well-known general evaluation method for semiconductor characteristics is a method in which mobility is directly obtained by the TOF method or a mobility is obtained by fabricating a transistor (FET). The latter is a widely used method for evaluating crystalline thin film materials. However, especially in the case of n-channels, that is, when electrons are carriers, there are significant restrictions, and it is necessary to select electrode materials and insulating film materials appropriately. There is.
「イオン伝導/電子性伝導」
 液晶相の伝導においては、「イオン伝導/電子性伝導」の評価は重要で、流動性の高い液晶を有機半導体として用いる場合には、その確認が必要となる。
"Ion conduction / Electronic conduction"
In the conduction of the liquid crystal phase, the evaluation of “ion conduction / electronic conduction” is important, and when using a liquid crystal having high fluidity as an organic semiconductor, confirmation thereof is necessary.
 一般的に、液晶物質には、高分子液晶と低分子液晶があるが、高分子液晶の場合は液晶相においては一般に粘性が高いため、イオン伝導は起きにくい傾向を有する。他方、低分子液晶の場合は、イオン化した不純物が存在する場合、ネマティック相(N相)やスメクチックA相(SmA相、以下同様に記載する)やSmC相などの液体性の強い低次の液晶相では、イオン伝導が誘起される傾向がある。ここで言う「イオン化した不純物」とは、イオン性の不純物が解離して生成したイオンや電荷のトラップとなりうる電気的に活性な不純物(つまり、HOMO準位、LUMO準位、あるいは、その両方の準位が、液晶物質のHOMO,LUMO準位の間に準位を持つ不純物)が、光イオン化や電荷の捕獲によって生成したイオン化したものをいう(例えば、M. Funahashi and J. Hanna, Impurity effect on charge carrier transport in smectic liquid crystals, Chem. Phys. Lett., 397,319-323(2004)、H. Ahn, A. Ohno, and J. Hanna, Detection of Trace Amount of Impurity in Smectic Liquid Crystals, Jpn. J. Appl. Phys., Vol. 44, No.6a,2005,pp.3764-37687を参照)。 Generally, liquid crystal substances include high-molecular liquid crystals and low-molecular liquid crystals. In the case of high-molecular liquid crystals, the liquid crystal phase generally has a high viscosity, so that ion conduction tends not to occur. On the other hand, in the case of a low-molecular liquid crystal, when ionized impurities are present, a low-order liquid crystal having a strong liquid property such as a nematic phase (N phase), a smectic A phase (SmA phase, hereinafter described in the same manner) or an SmC phase. In the phase, ionic conduction tends to be induced. The term “ionized impurity” as used herein refers to an electrically active impurity (that is, a HOMO level, a LUMO level, or both of them, which can become a trap of ions and charges generated by dissociation of ionic impurities. An impurity whose level is between the HOMO and LUMO levels of a liquid crystal substance is ionized by photoionization or charge trapping (for example, M. Funahashi and J. Hanna, Impurity effect on charge carrier transport in smectic liquid crystals, Chem. Phys. Lett., 397,319-323 (2004), H. Ahn, A. Ohno, and J. Hanna, Detection of Trace Amount of Impurity in Smectic Liquid Cry Appl. Phys., Vol. 44, No.6a, 2005, pp.3764-37687).
(LUMO準位)
 本発明に関わる有機半導体材料をデバイスに応用する観点からみると、コア部(本発明ではIQIQ骨格部分を含むπー電子共役部位、つまり、電荷輸送に関わる部位、特にIQIQ自体)のHOMO、LUMOのエネルギー準位が重要となる。一般に、有機半導体のHOMOレベルは、脱水されたジクロロメタンなどの有機溶媒に被検物質を、例えば、1mmol/Lから10mmol/Lの濃度となるように溶解し、テトラブチルアンモニウム塩などの支持電解質を0.2mol/L程度加え、この溶液にPtなどの作用電極とPtなどの対向電極、およびAg/AgClなど参照電極を挿入後、ポテンショスタットにて50mV/sec程度の速度で掃引し、CV曲線を書かせ、ピークの電位および基準となる、例えばフェロセンなどの既知物質との電位の差より、HOMOレベル、LUMOレベルを見積ることができる。
(LUMO level)
From the viewpoint of applying the organic semiconductor material according to the present invention to a device, the HOMO and LUMO of the core part (in the present invention, the π-electron conjugate part including the IQIQ skeleton part, that is, the part related to charge transport, particularly IQIQ itself). The energy level of becomes important. In general, the HOMO level of an organic semiconductor is determined by dissolving a test substance in a dehydrated organic solvent such as dichloromethane to a concentration of, for example, 1 mmol / L to 10 mmol / L, and adding a supporting electrolyte such as a tetrabutylammonium salt. Add about 0.2 mol / L, insert a working electrode such as Pt, a counter electrode such as Pt, and a reference electrode such as Ag / AgCl into this solution, then sweep at a rate of about 50 mV / sec with a potentiostat, and CV curve The HOMO level and LUMO level can be estimated from the difference between the peak potential and the reference potential, for example, a known substance such as ferrocene.
 HOMOレベル、あるいは、LUMOレベルが用いた有機溶媒の電位窓よりも外れている場合、紫外可視吸収スペクトラムの吸収端より、HOMO-LUMO間のエネルギーギャップを求め、測定できたレベルから差し引くことでHOMOレベルやLUMOレベルを見積ることができる。この方法は、J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bassler, M. Porsch, and J. Daub, Adv. Mater.,7,551(1995)を参照にすることができる。 If the HOMO level or LUMO level is outside the potential window of the organic solvent used, the HOMO-LUMO energy gap is determined from the absorption edge of the UV-visible absorption spectrum, and subtracted from the measured level. The level and LUMO level can be estimated. This method can be referred to J. Pommerehne, H. Vestweber, W.ussGuss, R. F.rtMahrt, H. Bassler, M. Porsch, and J. Daub, Adv. Mater., 7, 551 (1995). it can.
 一般に、有機半導体材料のHOMO,LUMOレベルは、それぞれ陽極、陰極と電気的な接触の目安を与え、電極材料の仕事関数との差によって決まるエネルギー障壁の大きさによって電荷注入が制限されることになるので、注意が必要である。金属の仕事関数は、しばしば、電極として用いられる物質の例をあげると、銀(Ag)4.0eV、アルミニウム(Al)4.28eV、金(Au)5.1eV、カルシウム(Ca)2.87eV、クロム(Cr)4.5eV、銅(Cu)4.65eV、マグネシウム(Mg)3.66eV、モリブデン(Mo)4.6eV、白金(Pt)5.65eV、インジウムスズ酸化物(ITO)4.35~4.75eV、酸化亜鉛(ZnO)4.68eVである。前述の観点から、有機半導体材料と電極物質との仕事関数の差は1eV以下が好ましく、より、好ましくは0.8eV以下、さらに好ましくは、0.6eV以下である。金属の仕事関数は、必要に応じて、下記の文献を参照することができる。
文献A:化学便覧 基礎編 改訂第5版II-608-61014.1b仕事関数 (丸善出版株式会社)(2004)
In general, the HOMO and LUMO levels of an organic semiconductor material provide a measure of electrical contact with the anode and cathode, respectively, and charge injection is limited by the size of the energy barrier determined by the difference from the work function of the electrode material. So be careful. The work function of a metal is often silver (Ag) 4.0 eV, aluminum (Al) 4.28 eV, gold (Au) 5.1 eV, calcium (Ca) 2.87 eV, as examples of materials used as electrodes. Chromium (Cr) 4.5 eV, copper (Cu) 4.65 eV, magnesium (Mg) 3.66 eV, molybdenum (Mo) 4.6 eV, platinum (Pt) 5.65 eV, indium tin oxide (ITO) 4. 35 to 4.75 eV and zinc oxide (ZnO) 4.68 eV. From the above viewpoint, the difference in work function between the organic semiconductor material and the electrode substance is preferably 1 eV or less, more preferably 0.8 eV or less, and still more preferably 0.6 eV or less. As for the work function of the metal, the following documents can be referred to as necessary.
Literature A: Handbook of Chemistry Fundamentals Revised 5th Edition II-608-61014.1b Work Function (Maruzen Publishing Co., Ltd.) (2004)
 コア部の共役したπ-電子系の大きさによりHOMO,LUMOエネルギー準位は影響を受けるため、共役系の大きさは材料を選択する際に参考となる。また、HOMO、LUMOエネルギー準位を変化させる方法として、コア部に、例えば、Fや他のハロゲン元素、シアノ基などの電子吸引性基を導入することは有効である。 Since the HOMO and LUMO energy levels are affected by the size of the conjugated π-electron system in the core, the size of the conjugated system can be used as a reference when selecting materials. As a method for changing the HOMO and LUMO energy levels, it is effective to introduce, for example, an electron-withdrawing group such as F, another halogen element, or a cyano group into the core portion.
(スクリーニング法)
 本発明において、上記の分子設計を満足する化合物中から、高次のスメクチック液晶相を発現し、有機半導体として有用な物質を、必要に応じてスクリーニングすることができる。このスクリーニングにおいて、基本的には、液晶相で有機半導体として用いる場合は高次のスメクチック相を発現すること、結晶相で有機半導体として用いる場合は、結晶相温度より高い温度から冷却したときに、結晶相に隣接して低次の液晶相を発現しないものを選ぶことが好ましい。この選択の方法は、後述する「スクリーニング法」にしたがって判定することにより、有機半導体材料として有用な物質を選択することが出来る。
(Screening method)
In the present invention, a substance that exhibits a higher-order smectic liquid crystal phase and is useful as an organic semiconductor can be screened as necessary from among compounds satisfying the above-described molecular design. In this screening, basically, when used as an organic semiconductor in a liquid crystal phase, a higher order smectic phase is expressed, and when used as an organic semiconductor in a crystal phase, when cooled from a temperature higher than the crystal phase temperature, It is preferable to select one that does not develop a low-order liquid crystal phase adjacent to the crystal phase. This selection method can select a substance useful as an organic semiconductor material by making a determination according to a “screening method” described later.
(具体的なスクリーニング法)
 これは、以下に述べるスクリーニング法(判定法)によって、容易に判定することが出来る。このスクリーニング法に用いる各測定法の詳細に関しては、必要に応じて、下記の文献を参照することができる。
(Specific screening method)
This can be easily determined by the screening method (determination method) described below. For details of each measurement method used in this screening method, the following documents can be referred to as necessary.
文献B:偏光顕微鏡の使い方:実験化学講第4版1巻、丸善、P429~435
文献C:液晶材料の評価:実験化学講座第5版27巻、P295~300、丸善
文献D:「液晶科学実験入門」日本液晶学会編、P1~P10、シグマ出版
Reference B: How to use a polarizing microscope: Experimental Chemistry 4th Edition, Volume 1, Maruzen, P429-435
Literature C: Evaluation of liquid crystal materials: Experimental Chemistry Course 5th edition, Volume 27, P295-300, Maruzen Literature D: "Introduction to Liquid Crystal Science Experiments", Japanese Liquid Crystal Society, P1-P10, Sigma Publishing
 (S1)単離した被検物質をカラムクロマトグラフィーと再結晶により精製した後、シリカゲルの薄層クロマトグラフィーにより、該被検物質が単一スポットを示す(すなわち、混合物でない)ことを確認する。 (S1) After the isolated test substance is purified by column chromatography and recrystallization, it is confirmed by thin layer chromatography on silica gel that the test substance shows a single spot (that is, not a mixture).
 (S2)等方相に加熱したサンプルを毛細管現象を利用して、スライドガラスをスペーサーを介して貼り合わせた15μm厚のセルに注入する。一旦、セルを等方相温度まで加熱し、偏光顕微鏡でそのテクスチャーを観察し、等方相より低い温度領域で暗視野とならないことを確認する。これは、分子長軸が基板に対して水平配向していることを示すもので、以後のテクスチャー観察に必要な要件となる。 (S2) Using a capillary phenomenon, the sample heated in the isotropic phase is injected into a 15 μm-thick cell in which a slide glass is bonded through a spacer. Once the cell is heated to the isotropic phase temperature, the texture is observed with a polarizing microscope, and it is confirmed that no dark field is formed in a temperature region lower than the isotropic phase. This indicates that the molecular long axis is horizontally oriented with respect to the substrate, which is a requirement for subsequent texture observation.
 (S3)適当な降温速度、例えば、5℃/分程度の速度でセルを冷却しながら、顕微鏡によるテクスチャーを観察する。その際、冷却速度が速すぎると、形成される組織が小さくなり、詳細な観察が難しくなるので、再度、等方相まで温度を上げて、冷却速度を調整して、組織が容易に観察しやすい、組織のサイズが50μm以上となる条件を設定する。 (S3) While cooling the cell at an appropriate temperature drop rate, for example, a rate of about 5 ° C./min, observe the texture with a microscope. At this time, if the cooling rate is too high, the formed structure becomes small and detailed observation becomes difficult, so the temperature is increased to the isotropic phase again, the cooling rate is adjusted, and the structure is easily observed. The condition that the size of the tissue is easily 50 μm or more is set.
 (S4)上記(S3)項で設定した条件で、等方相から室温(20℃)まで冷却しながらテクスチャーを観察する。この間にセル中で試料が結晶化すると、格子の収縮に伴い、亀裂や空隙が生じ、観察されるテクスチャーに黒い線、または、ある大きさを有する領域が現れる。サンプルを注入する際に空気がはいると同様の黒い領域(一般には丸い)が局所的に生じるが、結晶化によって生じた黒い線や領域は組織内や境界に分布して現われるので容易に区別できる。これらは、偏光子、及び、検光子を回転させても、消失や色の変化が見られないことから、テクスチャーに見られるこれ以外の組織とは容易に識別できる。サンプルがネマチック相を示す場合は、糸巻き状と表現される特徴的なシュリーレンテクスチャー(図3参照:典型的なシュリーレンテクスチャー)が観察され、SmA相やSmC相を示す場合は、fan-likeテクスチャーと呼ばれる扇型でその領域内は均一組織を有する特徴的なテクスチャー(図4参照:典型的なFan-likeテクスチャー)が観察されるので、その特徴的なテクスチャーから容易に判定することができる。 (S4) Under the conditions set in (S3) above, the texture is observed while cooling from the isotropic phase to room temperature (20 ° C.). When the sample crystallizes in the cell during this period, cracks and voids are generated as the lattice contracts, and black lines or regions having a certain size appear in the observed texture. When a sample is injected, a black area (generally round) similar to the presence of air is generated locally, but the black lines and areas generated by crystallization appear distributed in the tissue and at the boundary so that they can be easily distinguished. it can. These can be easily distinguished from other tissues found in the texture because no disappearance or color change is observed even when the polarizer and the analyzer are rotated. When the sample shows a nematic phase, a characteristic schlieren texture expressed as a pincushion is observed (see FIG. 3: typical schlieren texture). When a sample shows a SmA phase or an SmC phase, a fan-like texture A characteristic texture having a uniform structure is observed in the fan-shaped area (see FIG. 4: a typical fan-like texture), and can be easily determined from the characteristic texture.
 特殊なケースとして、SmA相からSmB相、SmC相からSmF、SmI相に転移する物質では、相転移温度で一瞬に、視野の変化が見られるが、相転移したテクスチャーにはほとんど変化が見られない場合があり、形成されたSmB相やSmF相、SmI相のテクスチャーをSmA相、SmC相と誤認する場合があるので注意が必要である。その場合は、相転移温度で見られる一瞬の視野の変化に気をつけることが重要である。この確認が必要な場合は、DSCにより、中間相の数を確認した後、それぞれの温度領域でX線回折を測定し、各相に特有の高角度領域(θ-2θの判定において15~30度)においてピークの有無を確認すれば、SmA相、SmC相(いずれもピークなし)とSmB相、SmF相、SmI相(いずれもピーク有り)を容易に判定することができる。 As a special case, in the material that transitions from SmA phase to SmB phase, SmC phase to SmF, SmI phase, the visual field changes instantaneously at the phase transition temperature, but the phase transition texture almost changes. In some cases, the texture of the formed SmB phase, SmF phase, and SmI phase may be mistaken for the SmA phase and the SmC phase, so care should be taken. In that case, it is important to be aware of the instantaneous visual field changes seen at the phase transition temperature. When this confirmation is necessary, after confirming the number of intermediate phases by DSC, X-ray diffraction is measured in each temperature region, and a high angle region peculiar to each phase (15-30 in the determination of θ-2θ). If the presence or absence of a peak is confirmed, the SmA phase, the SmC phase (no peak), the SmB phase, the SmF phase, and the SmI phase (all have a peak) can be easily determined.
 (S5)室温(20℃)で、偏光顕微鏡によるテクスチャー観察によって、黒い組織が見られないものは、有機半導体材料として利用可能であるので、この物質が室温で高次の液晶相、あるいは、結晶相(準安定な結晶相を含む)の如何に関わらず、本発明の範疇として取り扱うものとする。 (S5) A material in which no black structure is observed by texture observation with a polarizing microscope at room temperature (20 ° C.) can be used as an organic semiconductor material. Therefore, this substance is a higher-order liquid crystal phase or crystal at room temperature. Regardless of the phase (including metastable crystalline phase), it shall be treated as a category of the present invention.
(LUMOのスクリーニング)
 LUMOのエネルギー準位は、脱水THFなどの有機溶媒に被検物質を、溶解し、テトラブチルアンモニウム塩などの支持電解質を0.2mol/L程度加え、この溶液にPtなどの作用電極とPtなどの対向電極、およびAg/AgClなど参照電極を挿入後、ポテンショスタットにて50mV/sec程度の速度で掃引し、CV曲線を書かせ、ピークの電位が約-1.8Vよりも低い電圧で現れたときLUMOレベルがおおよそ-3eVよりも深いことが見積ることができる。
(LUMO screening)
The LUMO energy level is obtained by dissolving a test substance in an organic solvent such as dehydrated THF, adding about 0.2 mol / L of a supporting electrolyte such as tetrabutylammonium salt, and adding a working electrode such as Pt and Pt to this solution. After inserting a counter electrode and a reference electrode such as Ag / AgCl, the potentiostat is swept at a speed of about 50 mV / sec, and a CV curve is drawn, and the peak potential appears at a voltage lower than about -1.8V. It can be estimated that the LUMO level is deeper than about -3 eV.
(溶解度のスクリーニング)
 室温、トルエンへの0.1wt%以上の溶解度の有無の測定は、サンプル管に約5mgの被検物質と約5gのトルエンをいれ、ホットステージなどで適度に加熱後、一度均一にトルエンに溶かした上で、室温(25℃)に冷却し、1時間、室温で保持し、結晶が現れなければ、0.1wt%以上の溶解度を有する判断することができる。
(Solubility screening)
To measure the presence or absence of solubility of 0.1 wt% or more in toluene at room temperature, put about 5 mg of the test substance and about 5 g of toluene in a sample tube, heat it moderately on a hot stage, etc., and then dissolve it in toluene once. After cooling to room temperature (25 ° C.) and holding at room temperature for 1 hour, if no crystals appear, it can be judged that the solubility is 0.1 wt% or more.
 本発明においては、窒素含有縮環であるイソキノ[8,7-h]イソキノリン(IQIQ)骨格をもつ液晶材料を設計し且つ実際に合成し、その相転移の挙動、エネルギー準位、光学特性、電荷輸送特性を調べた。このような骨格を有し、且つ液晶性をも有する有機半導体材料(ないし有機化合物)は、イソキノ[8,7-h]イソキノリン(IQIQ)骨格をもつ点でそれ自体で新規な有機化合物である。 In the present invention, a liquid crystal material having an isoquino [8,7-h] isoquinoline (IQIQ) skeleton, which is a nitrogen-containing condensed ring, is designed and actually synthesized, and its phase transition behavior, energy level, optical characteristics, The charge transport properties were investigated. An organic semiconductor material (or organic compound) having such a skeleton and also having liquid crystallinity is a novel organic compound by itself in that it has an isoquino [8,7-h] isoquinoline (IQIQ) skeleton. .
(新規化合物)
 本発明によれば、上記した液晶性を示す新規な有機半導体材料が提供されるが、上記の有機半導体材料は有機化合物自体として新規な化合物である。
(New compound)
According to the present invention, a novel organic semiconductor material exhibiting the above-described liquid crystallinity is provided. However, the organic semiconductor material is a novel compound as the organic compound itself.
 したがって、本発明によれば、下記式(1)で表されるイソキノリノ・イソキノリン(IQIQ)に基づく骨格構造を含むユニットAと、該ユニットAと単結合で連結された、炭素主鎖を構成する炭素原子の1以上が酸素原子で置換されていても良い、脂肪族系鎖ユニットBと、該ユニットAと単結合で連結された、脂肪族系鎖および/又は環状構造を含む基、または水素原子であるユニットCとを少なくとも有する有機化合物が提供される。
Figure JPOXMLDOC01-appb-C000020
Therefore, according to the present invention, a unit A including a skeleton structure based on isoquinolino-isoquinoline (IQIQ) represented by the following formula (1) and a carbon main chain linked to the unit A by a single bond are formed. One or more carbon atoms optionally substituted with an oxygen atom, an aliphatic chain unit B, a group containing an aliphatic chain and / or a cyclic structure connected to the unit A with a single bond, or hydrogen An organic compound having at least unit C as an atom is provided.
Figure JPOXMLDOC01-appb-C000020
 この新規な有機化合物の化学構造は、上記した本発明の有機半導体材料について説明したと同様であることができるので、繰り返しの説明は省略するが、必要に応じて上記あるいは後記の記載が参照される。 Since the chemical structure of this novel organic compound can be the same as that described for the organic semiconductor material of the present invention described above, repeated description is omitted, but the description above or below is referred to as necessary. The
 本発明の新規な有機化合物の1つの好ましい態様は、下記式(3)で表されることを特徴とする。
Figure JPOXMLDOC01-appb-C000021
(式中、a、a、a及びaは、それぞれ独立して、水素原子であるか、または単結合であるか、または飽和及び/又は不飽和の環状基であり、該飽和及び/又は不飽和の環状基は炭化水素基であるか又は1以上のヘテロ原子を含んでいても良いが、a、a、a及びaの少なくとも1つは、単結合であるか、または飽和及び/又は不飽和の環状炭化水素基であり;R、R,R及びRの少なくとも1つは、それぞれ独立して、脂肪族系鎖基であり、R、R,R及びRのいずれかが脂肪族系鎖基でないとき、その残りのR、R,R及びRは水素原子であることができる。)
One preferred embodiment of the novel organic compound of the present invention is represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000021
(Wherein a 1 , a 2 , a 3 and a 4 are each independently a hydrogen atom, a single bond, or a saturated and / or unsaturated cyclic group, And / or the unsaturated cyclic group may be a hydrocarbon group or may contain one or more heteroatoms, but at least one of a 1 , a 2 , a 3 and a 4 is a single bond Or a saturated and / or unsaturated cyclic hydrocarbon group; at least one of R 1 , R 2 , R 3 and R 4 is each independently an aliphatic chain group, R 1 , When any of R 2 , R 3 and R 4 is not an aliphatic chain group, the remaining R 1 , R 2 , R 3 and R 4 can be hydrogen atoms.)
 本発明の有機化合物は、1つの態様において、下記式(6)
Figure JPOXMLDOC01-appb-C000022
(式中、R1、R2,R3及びR4の少なくとも1つは、それぞれ独立して、炭素原子数3~20のアルキル基その他の脂肪族系鎖基であり、R、R,R及びRのいずれかが脂肪族系鎖基でないとき、その残りのR1、R2,R3及びR4は水素原子であることができる。)
であることができる。
In one embodiment, the organic compound of the present invention has the following formula (6):
Figure JPOXMLDOC01-appb-C000022
(In the formula, at least one of R 1 , R 2 , R 3 and R 4 is each independently an alkyl group having 3 to 20 carbon atoms or other aliphatic chain group, and R 1 , R 2 , R 3 and R 4 are not aliphatic chain groups, the remaining R 1 , R 2 , R 3 and R 4 can be hydrogen atoms.)
Can be.
 上記式(3)及び(6)中、R1、R2,R3及びR4の少なくとも1つは、それぞれ独立して、ユニットB又はユニットCにおいて述べた脂肪族系鎖基、特に炭素原子数3~20で1以上の酸素原子を含む脂肪族系鎖基であり、たとえば、-(CH2n-X-(CH2m-CH3(式中、X=OまたはCH2で、n+m=3~19であり、mおよびnは0を含んでもよい)で表される基であるが、R、R,R及びRのいずれかが脂肪族系鎖基でないとき、その残りのR1、R2,R3及びR4は水素原子であることができる。 In the above formulas (3) and (6), at least one of R 1 , R 2 , R 3 and R 4 is each independently an aliphatic chain group described in Unit B or Unit C, particularly a carbon atom. An aliphatic chain group having a number of 3 to 20 and containing one or more oxygen atoms, such as — (CH 2 ) n —X— (CH 2 ) m —CH 3 (wherein X═O or CH 2 N + m = 3 to 19, and m and n may include 0), but any of R 1 , R 2 , R 3 and R 4 is not an aliphatic chain group The remaining R 1 , R 2 , R 3 and R 4 can be hydrogen atoms.
 本発明の有機化合物の好適な例には、2,8-ジデシルイソキノ[8,7-h]イソキノリン(10-IQIQ-10)、2.8-ジドデシルイソキノ[8,7-h]イソキノリン(12-IQIQ-12)又は2.8-ジテトラデシルイソキノ[8,7-h]イソキノリン(14-IQIQ-14)などがある。 Suitable examples of the organic compound of the present invention include 2,8-didecylisoquino [8,7-h] isoquinoline (10-IQIQ-10), 2.8-didodecylisoquino [8,7-h] isoquinoline ( 12-IQIQ-12) or 2.8-ditetradecylisoquino [8,7-h] isoquinoline (14-IQIQ-14).
 本発明の有機化合物(及び/又は本発明の有機半導体材料)は液晶材料、有機半導体材料などとして有用である。本発明の有機化合物(及び/又は本発明の有機半導体材料)の製造方法は特に制限されないが、簡便さの点からは、以下の製造方法を好適に使用することができる。 The organic compound of the present invention (and / or the organic semiconductor material of the present invention) is useful as a liquid crystal material, an organic semiconductor material, or the like. The method for producing the organic compound of the present invention (and / or the organic semiconductor material of the present invention) is not particularly limited, but the following production method can be suitably used from the viewpoint of simplicity.
(製造方法)
 後述する実施例に示すように、以下の「合成スキームI」に沿って、本発明の有機化合物を好適に得ることができる。
(Production method)
As shown in Examples described later, the organic compound of the present invention can be suitably obtained according to the following “Synthesis Scheme I”.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 上記の合成スキームに従って、原料化合物(合成スキームに示す化合物1、化合物2および化合物3)を調製し、次いで本発明の化合物(合成スキームIに示す化合物4)を合成することができる。 According to the above synthesis scheme, the raw material compounds (compound 1, compound 2 and compound 3 shown in the synthesis scheme) can be prepared, and then the compound of the present invention (compound 4 shown in the synthesis scheme I) can be synthesized.
 より具体的には、上記化合物(化合物1、化合物2、化合物3、化合物4)の合成法の概要は、以下の通りである。 More specifically, the outline of the synthesis method of the above compounds (Compound 1, Compound 2, Compound 3, Compound 4) is as follows.
 鍵となる合成中間体、2,6-ジブロモナフタレン-1,5-ジカルバルデヒド(化合物1)は、(i)先ず、臭素を含む塩化メチレン溶液に1,5-ジメチルナフタレンを滴下して反応させて2,6-ジブロモ-1,5-ジメチルナフタレンを得;(ii)次に、2,6-ジブロモ-1,5-ジメチルナフタレンの四塩化炭素溶液にN-ブロモスクシンイミドとAIBNを加え、加熱還流して2,6-ジブロモ-1,5-ジブロモメチルナフタレンを得;(iii)次に、2,6-ジブロモ-1,5-ジブロモメチルナフタレンと炭酸カルシウム、1,4-ジオキサンの混合物を加熱還流して、2,6-ジブロモ-1,5-ジヒドロキシメチルナフタレンを得;(iv)次に、シリカゲルとクロロクロム酸ピリジニウムの無水塩化メチレンのスラリーに2,6-ジブロモ-1,5-ジヒドロキシメチルナフタレンを加え、加熱還流して、2,6-ジブロモ-1,5-ジホルミルナフタレン(化合物1)を得ることができる。これらの合成反応の条件については、文献(Y.Ma,Q.Zheng,Z.Yin,D.Cai,S.Chen,C.Tang.Macromolecules.2013,46,4813)を参照することができる。 The key synthetic intermediate, 2,6-dibromonaphthalene-1,5-dicarbaldehyde (compound 1), (i) First, 1,5-dimethylnaphthalene was added dropwise to a bromine-containing methylene chloride solution. To give 2,6-dibromo-1,5-dimethylnaphthalene; (ii) N-bromosuccinimide and AIBN are then added to a carbon tetrachloride solution of 2,6-dibromo-1,5-dimethylnaphthalene; Heat to reflux to obtain 2,6-dibromo-1,5-dibromomethylnaphthalene; (iii) Next, a mixture of 2,6-dibromo-1,5-dibromomethylnaphthalene and calcium carbonate, 1,4-dioxane Is heated to reflux to obtain 2,6-dibromo-1,5-dihydroxymethylnaphthalene; (iv) Next, the slurry of silica gel and pyridinium chlorochromate in anhydrous methylene chloride is subjected to 2,6- Dibromo-1,5-dihydroxymethylnaphthalene can be added and heated to reflux to obtain 2,6-dibromo-1,5-diformylnaphthalene (Compound 1). Reference can be made to the literature (Y. Ma, Q. Zheng, Z. Yin, D. Cai, S. Chen, C. Tang. Macromolecules. 2013, 46, 4813) for conditions of these synthetic reactions.
 次いで、上記により得た化合物1に、様々な置換基Rを有するアルキンの例として、たとえば、1-ドデシン、1-テトラデシンなどの1-アルキンであれば、1-アルキンから、所謂、薗頭反応によって、2,6-ジアルシニルナフタレン-1,5-ジカルバルデヒド(化合物2)を得ることができる。また、置換基Rを有するR-1-アルキンの置換基Rがアルキル基以外の様々な有機基(オルガノ基)、特にユニットB,ユニットCを構成する有機基であれば、薗頭反応によって、アルキル基以外の様々な置換基(オルガノ基)Rを有する2,6-ジオルガニルナフタレン-1,5-ジカルバルデヒド(化合物2)を得ることができる。「典型的な薗頭反応の条件」に関しては、必要に応じて、文献(A. V. Malkov, M. M. Westwater, A. Gutnov, P. Ramirez-Lopez, F. Friscourt, A. Kadicikova, J. Hodacova, Z. Randkovic, M. Kotora, P. Kocovsky, Tetrahedron, 2008,64,11335)を参照することができる。 Next, as examples of alkynes having various substituents R in the compound 1 obtained above, for example, 1-alkynes such as 1-dodecine and 1-tetradecine, so-called Sonogashira reaction from 1-alkyne. Can give 2,6-diarsynylnaphthalene-1,5-dicarbaldehyde (compound 2). If the substituent R of the R-1-alkyne having the substituent R is various organic groups (organo groups) other than alkyl groups, particularly organic groups constituting the units B and C, the Sonogashira reaction 2,6-Diorganylnaphthalene-1,5-dicarbaldehyde (Compound 2) having various substituents (organo groups) R other than alkyl groups can be obtained. For “typical Sonogashira reaction conditions”, the literature (A. V. Malkov, M. M. Westwater, A. Gutnov, P. Ramirez-Lopez, F. Friscourt, A. Kadicikova, J. Hodacova, Z. Randkovic, M. Kotora, P. Kocovsky, Tetrahedron, 2008, 64, 11335).
 Rの混合物を用いて、非対称の化合物を生成させた場合は、再結晶法やカラムクロマトグラフィー、あるいは、それを組み合わせることにより分離する。 When an asymmetric compound is produced using the mixture of R, it is separated by a recrystallization method, column chromatography, or a combination thereof.
 次に、上記により得た化合物2をNaOAcの存在下でベンジルオキシアンモニウムクロリド(BnONH2・HCl)と縮合し、オキシム誘導体(化合物3)を得る。この際の反応条件に関しては、必要に応じて、文献(S. Hwang, Y. Lee, P. H. Lee, S. Shin, Tetrahedron Lett. 2009,50,2305)を参照することができる。 Next, the compound 2 obtained above is condensed with benzyloxyammonium chloride (BnONH 2 .HCl) in the presence of NaOAc to obtain an oxime derivative (compound 3). Regarding the reaction conditions in this case, literature (S. Hwang, Y. Lee, P. H. Lee, S. Shin, Tetrahedron Lett. 2009, 50, 2305) can be referred to if necessary.
 最後に、AgOTfとTfOHとの共触媒による化合物3の環化反応により目的物である化合物4を得る。それらは、無色の結晶として容易に単離でき、カラムクロマトと再結晶による精製することができる。得られる化合物の構造は1HNMRスペクトルと高分解能質量分析器により確認できる。 Finally, the target compound 4 is obtained by a cyclization reaction of the compound 3 with a cocatalyst of AgOTf and TfOH. They can be easily isolated as colorless crystals and purified by column chromatography and recrystallization. The structure of the resulting compound can be confirmed by a 1H NMR spectrum and a high resolution mass spectrometer.
 ユニットB,Cの種類,またユニットAの環状基aの場合は、基本的に合成法はスキーム1に準ずるが、鍵中間体である化合物1の園頭反応において、一方のブロムのみ、対応するアルキン化合物と反応させた生成物をまず単離し、それを用いて、残りブロム基と、最終生成物に対応したアルキン化合物とを同様に園頭反応によるカップリング反応を行うことによって、合成することができる。 In the case of the types of units B and C and the cyclic group a of unit A, the synthesis method is basically the same as that in Scheme 1, but only one bromine is supported in the Sonogashira reaction of compound 1, which is a key intermediate. The product reacted with the alkyne compound is first isolated and then used to synthesize the remaining bromo group and the alkyne compound corresponding to the final product by the same coupling reaction by Sonogashira reaction. Can do.
 上記の合成スキームにおいて、化合物4に対して複素環に公知の各種の置換反応をすることで、IQIQの3位及び9位の位置にアルキル基やアリール碁などの置換基を導入することができる。公知の置換反応としては、ピリジンの3位やイソキノリンの4位を選択的に置換する反応が知られており、例えば、J.Org.Chem.,53(11),2653-5(1988]やJ.Amer.Chem.Soc.,93(5)1294-6(1971)を利用して、IQIQの同一のピリジンユニットに二つのB,Cが置換した化合物を合成することができる。 In the above synthesis scheme, various substituents such as an alkyl group and an aryl cage can be introduced at positions 3 and 9 of IQIQ by performing various known substitution reactions on the heterocyclic ring with respect to compound 4. . Known substitution reactions include those that selectively substitute the 3-position of pyridine and the 4-position of isoquinoline, such as J. Org. Chem., 53 (11), 2653-5 (1988) and J. Amer. Chem. Soc., 93 (5) 1294-6 (1971) can be used to synthesize compounds in which two B and C are substituted on the same pyridine unit of IQIQ.
 また、以下に示す「合成ルート1」または「合成ルート2」によっても、本発明の有機化合物を好適に得ることができる。 Also, the organic compound of the present invention can be suitably obtained by “Synthesis route 1” or “Synthesis route 2” shown below.
<合成ルート1および合成ルート2>
Figure JPOXMLDOC01-appb-C000024
<Synthesis route 1 and synthesis route 2>
Figure JPOXMLDOC01-appb-C000024
 これらの合成ルートは、上記合成スキームIの変形例であり、鍵中間体である化合物1を用いずに、別ルートで、スキーム1の化合物2を得るもので、入手が容易なナフタレンジオールの出発物質とした合成スキームである。
These synthetic routes are modifications of the above-mentioned synthetic scheme I, and without using compound 1 which is a key intermediate, compound 2 of scheme 1 is obtained by another route. It is a synthetic scheme as a substance.
(有機半導体装置)
 本発明の有機半導体材料は、液晶性を示し、溶媒への溶解性に優れ、高移動度であり、深いLUMO準位を有する有機半導体材料であるので、ウェットプロセスで容易に均一な製膜でき、かつ優れた半導体特性を示すことができ、特に深いLUMO準位を有するので有機トランジスタへの応用ばかりでなく、電子輸送性のn型有機半導体としても利用できる利点がある。この半導体装置は、本発明の新規な有機半導体材料又は新規な有機化合物を用いて形成された層を半導体層とし、その半導体層に電気的に結合された正電極及び負電極を具備することを特徴とする。
(Organic semiconductor device)
The organic semiconductor material of the present invention is an organic semiconductor material that exhibits liquid crystallinity, has excellent solubility in a solvent, has high mobility, and has a deep LUMO level. In addition, since it has a deep LUMO level, it can be used not only as an organic transistor but also as an n-type organic semiconductor having an electron transport property. The semiconductor device includes a layer formed using the novel organic semiconductor material or the novel organic compound of the present invention as a semiconductor layer, and includes a positive electrode and a negative electrode electrically coupled to the semiconductor layer. Features.
 したがって、本発明の有機半導体材料を用いて、有機ELや有機太陽電池などのトランジスタ以外の有用な半導体装置を作製することが可能である。 Therefore, it is possible to produce useful semiconductor devices other than transistors, such as organic EL and organic solar cells, using the organic semiconductor material of the present invention.
 たとえば、本発明の有機半導体材料は、有機ELに用いられて、高移動度の電荷注入・輸送層として期待され、HOMO準位も深いので正孔のブロッキング層としても働き電荷の封じ込めにも有利であり、さらに液晶材料であるために平行制御も可能で、縦型デバイスにも対応可能である。 For example, the organic semiconductor material of the present invention is expected to be used as a high-mobility charge injection / transport layer when used in an organic EL, and also has a deep HOMO level, so it works as a hole blocking layer and is advantageous for charge containment. Furthermore, since it is a liquid crystal material, it can be controlled in parallel and can be used for a vertical device.
 また、有機トランジスタにおいて、本発明の有機半導体材料は、HOMO準位が5~6eV程度であるp-チャンネルトランジスタの材料と組み合わせて、LUMO位が3~5eV程度であるn-チャンネルトランジスタの材料として利用でき、CMOSを実現するn-チャンネルトランジスタの材料としても有用である。 In the organic transistor, the organic semiconductor material of the present invention is used as a material for an n-channel transistor having a LUMO level of about 3 to 5 eV in combination with a p-channel transistor material having a HOMO level of about 5 to 6 eV. It can be used and is also useful as an n-channel transistor material for realizing a CMOS.
 このような本発明の有機半導体材料を用いる半導体装置は、本発明の有機半導体材料を用いて形成された層を半導体層として有し、その半導体層に電気的に結合された正電極及び負電極を具備することを特徴とする。 Such a semiconductor device using the organic semiconductor material of the present invention has a layer formed using the organic semiconductor material of the present invention as a semiconductor layer, and a positive electrode and a negative electrode electrically coupled to the semiconductor layer. It is characterized by comprising.
 以下、実施例により本発明を更に具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
 以下の実施例においては、下記の<合成スキーム(実施例)>に従って、原料化合物(化合物I、化合物IIおよび化合物III)を調製し、次いで本発明の化合物(化合物4)を合成した。なお、化合物IIは化合物IIa及び化合物IIb、化合物IIIは化合物IIIa及び化合物IIIb、化合物IVは化合物IVa及び化合物IVbを、それぞれまとめて指すものである。以下の実施例において、化合物I、化合物II、化合物III、化合物IVなどはいずれも<合成スキーム(実施例)>にそれぞれの番号で指定されている化合物である。 In the following Examples, the raw material compounds (Compound I, Compound II and Compound III) were prepared according to the following <Synthesis scheme (Example)>, and then the compound of the present invention (Compound 4) was synthesized. Compound II refers to Compound IIa and Compound IIb, Compound III refers to Compound IIIa and Compound IIIb, and Compound IV refers to Compound IVa and Compound IVb, respectively. In the following Examples, Compound I, Compound II, Compound III, Compound IV and the like are all compounds designated by respective numbers in <Synthesis Scheme (Example)>.
 化合物IV(化合物IVaおよび化合物IVb)について、それぞれの「半導体特性」に関する種々の物性を測定した。
Figure JPOXMLDOC01-appb-C000025
For compound IV (compound IVa and compound IVb), various physical properties relating to the respective “semiconductor properties” were measured.
Figure JPOXMLDOC01-appb-C000025
<原料調製>
 特に記載のない限り、試薬や溶媒は、(特に記載しない限り)Aldrich Chemical,東京化成、和光純薬のいずれかのメーカーから購入し、そのまま使用した。
<Raw material preparation>
Unless otherwise specified, reagents and solvents were purchased from Aldrich Chemical, Tokyo Kasei and Wako Pure Chemicals (unless otherwise specified) and used as they were.
例1
(化合物Iの合成)
 合成中間体(化合物I)たる、2,6-ジブロモ-1,5-ジホルミルナフタレンは、文献(Y.Ma,Q.Zheng,Z.Yin,D.Cai,S.Chen,C.Tang.Macromolecules.2013,46,4813)に従って合成した。具体的には、下記のとおりである。
Example 1
(Synthesis of Compound I)
2,6-Dibromo-1,5-diformylnaphthalene, which is a synthetic intermediate (compound I), is described in the literature (Y. Ma, Q. Zheng, Z. Yin, D. Cai, S. Chen, C. Tang. Macromolecules. 2013, 46, 4813). Specifically, it is as follows.
 臭素(3ml,9.3g,60mmol)を含む10mlの塩化メチレン溶液を1時間かけて室温にて,1,5-ジメチルナフタレン(3.9g,25mmol)を含む50mlの塩化メチレン溶液に滴下した。2時間後、溶液を-20℃まで冷却し,析出物をろ過下した後、エタノールで再結晶することにより、2,6-ジブロモ-1,5-ジメチルナフタレン(1.49g,19%)を白色結晶として得た。1HNMR (CDCl3, 400MHz): 7.75 (d, 2H), 7.64 (d, 2H), 2.77 (s, 6H)であった。 A 10 ml methylene chloride solution containing bromine (3 ml, 9.3 g, 60 mmol) was added dropwise to a 50 ml methylene chloride solution containing 1,5-dimethylnaphthalene (3.9 g, 25 mmol) at room temperature over 1 hour. After 2 hours, the solution was cooled to −20 ° C., the precipitate was filtered off, and recrystallized with ethanol to give 2,6-dibromo-1,5-dimethylnaphthalene (1.49 g, 19%) in white. Obtained as crystals. 1 HNMR (CDCl 3 , 400 MHz): 7.75 (d, 2H), 7.64 (d, 2H), 2.77 (s, 6H).
 次に、還流条件下,2,6-ジブロモ-1,5-ジメチルナフタレン(2g,6.35mmol)の四塩化炭素溶液にN-ブロモスクシンイミド(6.8g,38.2mmol)とAIBN(0.1g,0.64mmol)を3回に分けて加え、さらに、12時間、加熱還流を行った。冷却後、混合物溶液を濾別し、メタノール、酢酸エチルで洗浄し、94%の収率で、2,6-ジブロモ-1,5-ジブロモジメチルナフタレンを白色粉末として得た。1HNMR (CDCl3, 400MHz): 7.97 (d, 2H), 7.77 (d, 2H), 5.06 (s, 4H)であった。 Next, N-bromosuccinimide (6.8 g, 38.2 mmol) and AIBN (0.1 g, 0.64 mmol) were added to a carbon tetrachloride solution of 2,6-dibromo-1,5-dimethylnaphthalene (2 g, 6.35 mmol) under reflux conditions. ) Was added in three portions, and the mixture was further heated under reflux for 12 hours. After cooling, the mixture solution was filtered and washed with methanol and ethyl acetate to obtain 2,6-dibromo-1,5-dibromodimethylnaphthalene as a white powder in 94% yield. 1 HNMR (CDCl 3 , 400 MHz): 7.97 (d, 2H), 7.77 (d, 2H), 5.06 (s, 4H).
 2,6-ジブロモ-1,5-ジブロモジメチルナフタレン(1.72g,3.62mmol)と炭酸カルシウム(3.62g、36.2mmol),1,4-ジオキサン(75ml)の混合物を48時間、加熱還流した。その混合物を熱時濾過し、濾紙に残った残留物を加熱ジオキサンで洗浄し、濾液を真空下で濃縮し後、希塩酸(1M、10ml)を加え、析出物を分離した。得られた析出物を水で洗浄後、乾燥して、収率92%で,2,6-ジブロモ-1,5-ジヒドロオキシメチルナフタレンをワックス状の白色固体として得た。1HNMR (CDCl3, 400MHz): 8.16 (d, 2H), 7.77 (d, 2H), 5.38 (t, 2H), 5.06 (d, 4H)であった。 A mixture of 2,6-dibromo-1,5-dibromodimethylnaphthalene (1.72 g, 3.62 mmol), calcium carbonate (3.62 g, 36.2 mmol) and 1,4-dioxane (75 ml) was heated to reflux for 48 hours. The mixture was filtered while hot, the residue remaining on the filter paper was washed with heated dioxane, the filtrate was concentrated under vacuum, diluted hydrochloric acid (1M, 10 ml) was added, and the precipitate was separated. The obtained precipitate was washed with water and dried to obtain 2,6-dibromo-1,5-dihydroxymethylnaphthalene as a waxy white solid in a yield of 92%. 1 HNMR (CDCl 3 , 400 MHz): 8.16 (d, 2H), 7.77 (d, 2H), 5.38 (t, 2H), 5.06 (d, 4H).
 次に、10gのシリカゲルとクロロクロム酸ピリジニウム(PCC, 8.57g, 40mmol)の無水塩化メチレンのスラーリーに、2,6-ジブロモ-1,5-ジヒドロオキシメチルナフタレン(3.44g,10mmol)を加え,4時間加熱還流した。冷却後,同量のエチルエーテルを加え,混合物を8cmのシリカゲルを通した後、加熱クロロフォルムでシリカゲルを洗浄後、洗液を加え、溶媒を溜去後、残渣をクロロフォルムから再結晶し、中間体化合物である2,6-ジブロモ-1,5-ジホルミルナフタレン(下記式(7)で表される化合物I)を収率74%で得た。1HNMR (CDCl3, 400MHz): 10.74 (s, 2H), 9.21 (d, 2H), 7.90 (d, 2H)であった。
Figure JPOXMLDOC01-appb-C000026
Next, to a slurry of 10 g of silica gel and pyridinium chlorochromate (PCC, 8.57 g, 40 mmol) in anhydrous methylene chloride, add 2,6-dibromo-1,5-dihydroxymethylnaphthalene (3.44 g, 10 mmol), Heated to reflux for 4 hours. After cooling, add the same amount of ethyl ether, pass the mixture through 8 cm of silica gel, wash the silica gel with heated chloroform, add the washing liquid, distill off the solvent, recrystallize the residue from chloroform, intermediate The compound 2,6-dibromo-1,5-diformylnaphthalene (compound I represented by the following formula (7)) was obtained in a yield of 74%. 1 HNMR (CDCl 3 , 400 MHz): 10.74 (s, 2H), 9.21 (d, 2H), 7.90 (d, 2H).
Figure JPOXMLDOC01-appb-C000026
例2
(化合物IIの合成)
 2,6-ジブロモ-1,5-ジホルミルナフタレン(1eq.)と1-テトラデシン(2.2eq.)の乾燥トリエチルエミン溶液に(Ph3P)2PdCl2(0.1eq.)とCuI(0.1eq.)を加え、得られた混合物をAr雰囲気下、55℃に4時間加熱し、室温まで冷却した。生成したアンモニウム塩をろ過により除去し、ろ液を減圧下で濃縮し、得られた残渣をシリカゲルカラムクロマトで(展開溶媒:DCM:Hex=1:3)により精製し、2,6-ジテトラデシニルナフタレン-1,5-ジカルバルデヒド(化合物IIb)を得た。
Example 2
(Synthesis of Compound II)
To a dry triethylemine solution of 2,6-dibromo-1,5-diformylnaphthalene (1 eq.) And 1-tetradecine (2.2 eq.), (Ph 3 P) 2 PdCl 2 (0.1 eq.) And CuI ( 0.1 eq.) Was added and the resulting mixture was heated to 55 ° C. under Ar atmosphere for 4 hours and cooled to room temperature. The produced ammonium salt was removed by filtration, the filtrate was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (developing solvent: DCM: Hex = 1: 3) to obtain 2,6-ditetra Decynylnaphthalene-1,5-dicarbaldehyde (Compound IIb) was obtained.
 上記において、1-テトラデシンに代えて1-ドデシンを用いて、2,6-ジドデシニル-1,5-ジカルバルデヒド(化合物IIa)を得た。 In the above, 2,6-didodecynyl-1,5-dicarbaldehyde (Compound IIa) was obtained by using 1-dodecin instead of 1-tetradecine.
1HNMRスペクトルおよび高分解能質量分析器による分析)
 以下の条件で、対象化合物(化合物II)を、1HNMRスペクトルと高分解能質量分析器による分析に供した。
(Analysis by 1 HNMR spectra and high resolution mass spectrometer)
The target compound (Compound II) was subjected to analysis by 1 HNMR spectrum and a high resolution mass spectrometer under the following conditions.
1HNMRの測定条件)
 測定機器:1HNMR(400MHz Bruker biospin・AVANCEIII 400A型)
 測定条件:
 ・測定周波数:400MHz
 ・NMR用の溶媒:CDCl3
(Measurement conditions for 1 HNMR)
Measuring instrument: 1 HNMR (400 MHz Bruker biospin / AVANCEIII 400A type)
Measurement condition:
・ Measurement frequency: 400MHz
• Solvent for NMR: CDCl 3
(高分解能質量分析の測定条件)
 測定機器:高分解能マススペクトル測定装置(HRMS:JEOL JMS-700)
 測定条件:イオン化法は高速原子衝撃(FAB)法を用いた。
(Measurement conditions for high-resolution mass spectrometry)
Measuring instrument: High-resolution mass spectrum measuring device (HRMS: JEOL JMS-700)
Measurement conditions: As the ionization method, a fast atom bombardment (FAB) method was used.
(測定結果)
 上記の1HNMRスペクトルによる分析結果を、以下に示す。
 化合物IIa:1HNMR(CDCl3,400MHz):10.97(s,2H),9.47(d,2H),7.70(d,2H),2.56(t,4H),1.69(m,4H),1.50(m,4H),1.25-1.48(m,28H),0.92(t,6H).
 化合物IIb:1HNMR(CDCl3,400MHz):10.96(s,2H),9.46(d,2H),7.69(d,2H),2.55(t,4H),1.68(m,4H),1.49(m,4H),1.24-1.40(m,36H),0.92(t,6H).
(Measurement result)
The results of analysis by the above 1 HNMR spectrum are shown below.
Compound IIa: 1 HNMR (CDCl 3 , 400 MHz): 10.97 (s, 2H), 9.47 (d, 2H), 7.70 (d, 2H), 2.56 (t, 4H), 1. 69 (m, 4H), 1.50 (m, 4H), 1.25-1.48 (m, 28H), 0.92 (t, 6H).
Compound IIb: 1 HNMR (CDCl 3 , 400 MHz): 10.96 (s, 2H), 9.46 (d, 2H), 7.69 (d, 2H), 2.55 (t, 4H), 1. 68 (m, 4H), 1.49 (m, 4H), 1.24-1.40 (m, 36H), 0.92 (t, 6H).
例3
(化合物IIIの合成)
 化合物IIのジアルデヒド(1eq.)をMeOH/CHCl3(1:2)に溶解し、BnONH2・HCl(2.4eq.)とNaOAc(2.4eq.)を加え、得られた混合物を室温で5時間撹拌し、その後、celite(登録商標)を用いてろ過した。ロ液を減圧下で濃縮し、残渣をシリカゲルカラムクトマトグラフィー(展開溶媒:DCM:Hex=1:1)により精製し、化合物IIIを得た。
Example 3
(Synthesis of Compound III)
Compound II dialdehyde (1 eq.) Is dissolved in MeOH / CHCl 3 (1: 2), BnONH 2 .HCl (2.4 eq.) And NaOAc (2.4 eq.) Are added, and the resulting mixture is stirred at room temperature. For 5 hours and then filtered using celite (registered trademark). The filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (developing solvent: DCM: Hex = 1: 1) to obtain Compound III.
 上記例2と同様の測定条件により、化合物IIIを1HNMRスペクトルおよび高分解能質量分析器により分析した。得られた結果を、以下に示す。 Under the same measurement conditions as in Example 2, Compound III was analyzed using a 1 H NMR spectrum and a high resolution mass spectrometer. The obtained results are shown below.
 化合物IIIa:1HNMR(CDCl3,400MHz):9.01(s,2H),8.79(d,2H),7.52-7.37(m,12H),5.32(s,4H),2.52(t,4H),1.69(t,4H),1.52(t,4H)1.27-1.48(m,24H),0.93(t,6H).
 化合物IIIb:1HNMR(CDCl3,400MHz):8.99(s,2H),8.77(d,2H),7.50-7.35(m,12H),5.30(s,4H),2.50(t,4H),1.67(t,4H),1.50(t,4H)1.25-1.40(m,32H),0.90(t,6H).
Compound IIIa: 1 HNMR (CDCl 3 , 400 MHz): 9.01 (s, 2H), 8.79 (d, 2H), 7.52-7.37 (m, 12H), 5.32 (s, 4H) ), 2.52 (t, 4H), 1.69 (t, 4H), 1.52 (t, 4H) 1.27-1.48 (m, 24H), 0.93 (t, 6H).
Compound IIIb: 1 HNMR (CDCl 3 , 400 MHz): 8.99 (s, 2H), 8.77 (d, 2H), 7.50-7.35 (m, 12H), 5.30 (s, 4H) ), 2.50 (t, 4H), 1.67 (t, 4H), 1.50 (t, 4H) 1.25-1.40 (m, 32H), 0.90 (t, 6H).
例4
(化合物IVの合成)
 本発明の化合物4a=10-IQIQ-10(化合物IVa)、および化合物4b=12-IQIQ-12(化合物IVb)を、以下の方法により合成した。
Example 4
(Synthesis of Compound IV)
Compound 4a = 10-IQIQ-10 (compound IVa) and compound 4b = 12-IQIQ-12 (compound IVb) of the present invention were synthesized by the following method.
 パイレックス(登録商標)製ガラスフラスコに、例3で得られた化合物III(1eq)のジクロロエタン溶液を加えた。磁気スタ-ラによる攪拌下で該化合物III(1eq)のジクロロエタン溶液に対して、AgOTf(0.1eq)とTfOH(0.1eq.;0.10M inジクロロエタン)を、暗所下、不活性ガス(Ar)雰囲気下で、加え、更に、同様の攪拌下、75℃で12h加熱した。その後、さらに、AgOTf/TfOH(0.1eq)を、同様の攪拌下、追加した。さらに、75℃で12時間加熱後、TLC(和光純薬社製、商品名:シリカゲル70F254)により、反応の完結を確かめた。 A dichloroethane solution of compound III (1 eq) obtained in Example 3 was added to a Pyrex (registered trademark) glass flask. AgOTf (0.1 eq) and TfOH (0.1 eq .; 0.10 M in dichloroethane) were added to an inert gas in the dark with respect to a dichloroethane solution of the compound III (1 eq) under stirring by a magnetic stirrer. In an (Ar) atmosphere, the mixture was added and further heated at 75 ° C. for 12 hours under the same stirring. Thereafter, AgOTf / TfOH (0.1 eq) was further added under the same stirring. Furthermore, after heating at 75 ° C. for 12 hours, the completion of the reaction was confirmed by TLC (trade name: silica gel 70F 254 manufactured by Wako Pure Chemical Industries, Ltd.).
 上記により得られた反応混合物を室温まで自然冷却した後、Et3Nを加え、溶媒を濃縮し、残渣を、シリカカラムクロマトグラフィ―(展開溶媒:ジクロロエタン)により、精製・単離した。化合物IVa及び化合物IVbの収率は70%であった。 The reaction mixture obtained above was naturally cooled to room temperature, Et 3 N was added, the solvent was concentrated, and the residue was purified and isolated by silica column chromatography (developing solvent: dichloroethane). The yield of compound IVa and compound IVb was 70%.
 この際に用いたシリカカラムクロマトグラフィ―の条件は、以下の通りである。
 ・カラムのサイズ:内径3.5cm×長さ18cm
 ・シリカ充填剤:関東化学社製、商品名:シリカゲル60 100-210μm
The silica column chromatography conditions used at this time are as follows.
Column size: ID 3.5 cm x length 18 cm
Silica filler: manufactured by Kanto Chemical Co., Ltd., trade name: silica gel 60 100-210 μm
 最終生成物である10-IQIQ-10(化合物IVa)と、12-IQIQ-12(化合物IVb)とは、カラムクロトマトと再結晶により精製し、その構造を1HNMR(400MHz Bruker biospin・AVANCEIII 400A型)と高分解能マススペクトル測定装置(HRMS:JEOL JMS-700)により測定した。この際の測定条件は、例2と同様の条件を使用した。 The final products, 10-IQIQ-10 (compound IVa) and 12-IQIQ-12 (compound IVb), were purified by recrystallization from column cherry tomato, and the structure was analyzed by 1 HNMR (400 MHz Bruker biospin / AVANCEIII 400A). Type) and a high-resolution mass spectrum measurement apparatus (HRMS: JEOL JMS-700). The measurement conditions at this time were the same as in Example 2.
 10-IQIQ-10(化合物IVa):
 1HNMR(CDCl3,400MHz):10.07(s,2H),8.95(d,2H),7.98(d,2H),7.64(s,2H),(d,2H),3.04(t,4H),1.89(m,4H),1.24-1.45(m,28H),0.95(t,6H).
 HRMS:Calcd.For C36H50N2 [M+]:510.3974; Found:510.3974.
 12-IQIQ-12(化合物IVb):
 1HNMR(CDCl3,400MHz):10.04(s,2H),8.93(d,2H),7.96(d,2H),7.62(s,2H),(d,2H),3.02(t,4H),1.87(m,4H),1.31-1.55(m,36H),0.93(t,6H).
 HRMS:Calcd.For C40H58N2 [M+]:566.4600; Found:566.4598.
10-IQIQ-10 (Compound IVa):
1 HNMR (CDCl 3 , 400 MHz): 10.07 (s, 2H), 8.95 (d, 2H), 7.98 (d, 2H), 7.64 (s, 2H), (d, 2H) , 3.04 (t, 4H), 1.89 (m, 4H), 1.24-1.45 (m, 28H), 0.95 (t, 6H).
HRMS: Calcd. For C36H50N2 [M +]: 510.3974; Found: 510.3974.
12-IQIQ-12 (Compound IVb):
1 HNMR (CDCl 3 , 400 MHz): 10.04 (s, 2H), 8.93 (d, 2H), 7.96 (d, 2H), 7.62 (s, 2H), (d, 2H) , 3.02 (t, 4H), 1.87 (m, 4H), 1.31-1.55 (m, 36H), 0.93 (t, 6H).
HRMS: Calcd. For C40H58N2 [M +]: 566.4600; Found: 566.4598.
例5
(化合物IVaの示唆熱分析、偏光顕微鏡による組織、X線回折)
 10-IQIQ-10(化合物IVa)の相転移挙動を、示唆熱分析(DSC),偏光顕微鏡による組織観察、X線回折測定により測定した。
<示唆熱分析の方法>
 示唆熱分析は島津製作所製 SHIMAZU DSC-60 を用いた。偏光顕微鏡による組織観察はニコン社製 Optiphot2-pol,ホットステージ:Mettler社製:FP900 thermo-systemを用い、観察像を記録した。X線回折はリガク社製Rigaku RAD-2Bを用い、相の同定を行った。
Example 5
(Suggested thermal analysis of compound IVa, structure by polarizing microscope, X-ray diffraction)
The phase transition behavior of 10-IQIQ-10 (Compound IVa) was measured by suggested thermal analysis (DSC), structural observation with a polarizing microscope, and X-ray diffraction measurement.
<Suggested thermal analysis method>
For the suggested thermal analysis, SHIMAZU DSC-60 manufactured by Shimadzu Corporation was used. For observation of the structure with a polarizing microscope, Optiphot 2-pol manufactured by Nikon, hot stage: manufactured by Mettler: FP900 thermo-system was used, and an observed image was recorded. For X-ray diffraction, Rigaku RAD-2B manufactured by Rigaku Corporation was used to identify phases.
<示唆熱分析の条件>
 ・装置:SHIMAZU DSC-60
2mgから5mgを秤取ったサンプルをアルムニウムクリンプセルにいれサンプルとする。その後、リファレンスに空のアルミニウムクリンプセルとして、10℃/minの昇温過程、降温過程でのDSC測定を行った。
<Suggested thermal analysis conditions>
・ Device: SHIMAZU DSC-60
A sample obtained by weighing 2 mg to 5 mg is put into an aluminum crimp cell as a sample. Then, DSC measurement was performed in a temperature rising process and a temperature falling process of 10 ° C./min using an empty aluminum crimp cell as a reference.
<偏光顕微鏡分析の条件>
 ・装置:偏光顕微鏡:ニコン社製 Optiphot2-pol,ホットステージ:Mettler社製:FP900 thermo-system
ガラス基板2枚に挟んだサンプルを等方相温度まで加熱し、上記装置にて、冷却過程で偏光顕微鏡観察を行った。
<X線回折の条件>
 ・装置:リガク社製Rigaku RAD-2B
ガラス基板上に、サンプルを等方相温度で塗布し、上記装置にて、測定を行った。
<Conditions for polarizing microscope analysis>
・ Apparatus: Polarizing microscope: Nikon Optiphot 2-pol, Hot stage: Mettler: FP900 thermo-system
A sample sandwiched between two glass substrates was heated to an isotropic phase temperature, and was observed with a polarizing microscope in the cooling process using the above apparatus.
<Conditions for X-ray diffraction>
・ Device: Rigaku RAD-2B manufactured by Rigaku
On the glass substrate, the sample was applied at an isotropic phase temperature, and measurement was performed with the above-described apparatus.
<分析の結果>
 上記分析により得られた結果を、図1および図2に示す。図1のDSCチャートによれば、10-IQIQ-10(化合物IVa)は、それぞれ降温、昇温過程で複数の発熱と吸熱ピークをそれぞれ示し、160℃付近で明確な液晶相への相転移の挙動が見られる。また図1の偏光顕微鏡及び図2のX線回折によれば、SmAあるいはSmC相等の低次の液晶相に特徴的な扇形組織が観測された。図2はその結晶相におけるX線回折像である。
<Result of analysis>
The results obtained by the above analysis are shown in FIGS. According to the DSC chart in FIG. 1, 10-IQIQ-10 (compound IVa) exhibits a plurality of exothermic and endothermic peaks in the temperature lowering and temperature rising processes, respectively, and has a clear phase transition to a liquid crystal phase around 160 ° C. Behavior is seen. Further, according to the polarizing microscope of FIG. 1 and the X-ray diffraction of FIG. 2, a fan-shaped structure characteristic to a low-order liquid crystal phase such as SmA or SmC phase was observed. FIG. 2 is an X-ray diffraction image in the crystal phase.
例6
(化合物4bの示唆熱分析、偏光顕微鏡による組織、X線回折)
 12-IQIQ-12(化合物IVb)の相転移挙動を、例5と同様の条件を用いて、示唆熱分析(DSC),偏光顕微鏡による組織観察、X線回折測定により測定した。
Example 6
(Suggested thermal analysis of compound 4b, organization by polarizing microscope, X-ray diffraction)
The phase transition behavior of 12-IQIQ-12 (Compound IVb) was measured by suggestive thermal analysis (DSC), structure observation with a polarizing microscope, and X-ray diffraction measurement under the same conditions as in Example 5.
(計算機ミュレーション)
 MOPAC PM7により、液晶分子長のシミュレーションを、以下の条件で行った。
 ・使用機器:汎用のパーソナルコンピュータ
 ・使用ソフトウエア:設計した各分子の分子長は、MOPAC 2012.MOPAC(Molecular Orbital PACkage)を用いて、Dewar- ThielによるNDDO 近似による半経験的量子化学計算(PM7)を行い、見積もった。このような「MOPAC PM7によるシミュレーション」の詳細に関しては、必要に応じて、文献(J.J.P. Stewart, J. Comp. Chem. 10, 209-264 (1989). J.J.P. Stewart, J. Mol. Modelling 10, 6-12 (2004). J.J.P. Stewart, J. Phys. Chem. Ref. Data 33, 713-724 (2004). G.B. Rocha et al J. Comp. Chem. 27, 1101-1111 (2006).)を参照することができる。
(Computer simulation)
Simulation of liquid crystal molecular length was performed under the following conditions using MOPAC PM7.
-Equipment used: general-purpose personal computer-Software used: The molecular length of each designed molecule is MOPAC 2012. Using MOPAC (Molecular Orbital PACkage), semi-empirical quantum chemical calculation (PM7) by NDDO approximation by Dewar-Thiel was performed and estimated. Regarding the details of such “simulation with MOPAC PM7”, if necessary, documents (JJP Stewart, J. Comp. Chem. 10, 209-264 (1989). JJP Stewart, J. Mol. Modeling 10, 6 -12 (2004). JJP Stewart, J. Phys. Chem. Ref. Data 33, 713-724 (2004). GB Rocha et al J. Comp. Chem. 27, 1101-1111 (2006).) be able to.
<分析の結果>
 12-IQIQ-12(化合物IVb)においては,図3のDSCチャートに示すように、150℃付近(153.9~141.6℃)で明確な液晶相への相転移の挙動が見られ、偏光顕微鏡による組織観察でも、高次の液晶相の存在が確認できた。
<Result of analysis>
In 12-IQIQ-12 (compound IVb), as shown in the DSC chart of FIG. 3, a clear behavior of the phase transition to the liquid crystal phase is observed around 150 ° C. (153.9 to 141.6 ° C.). The presence of a higher-order liquid crystal phase could also be confirmed by structural observation with a polarizing microscope.
 図4に12-IQIQ-12(化合物IVb)の150℃(上図)及び130℃(下図)におけるX線回折チャートを示す。 FIG. 4 shows X-ray diffraction charts of 12-IQIQ-12 (Compound IVb) at 150 ° C. (upper diagram) and 130 ° C. (lower diagram).
 12-IQIQ-12(化合物IVb)においては,図4のX線回折チャートに見られるように、低角度側のX線観測では(001),(002),(003),(004)(005)面からの回折ピークが観測され、明らかにこの凝集相が層状構造を持つことが判明した。加えて、広角度領域にみられる小さな回折ピークが観測された。 In 12-IQIQ-12 (Compound IVb), as seen in the X-ray diffraction chart of FIG. 4, in the X-ray observation on the low angle side, (001), (002), (003), (004) (005) ) Diffraction peaks from the surface were observed, and it was clearly found that this aggregated phase had a layered structure. In addition, a small diffraction peak observed in a wide angle region was observed.
 図4上図と同じ12-IQIQ-12(化合物IVb)の150℃におけるX線回折チャートを示す図5をも参照すると、(111)面の回折ピークから層間距離を見積もると、25.8Å(オングストローム)で、この値は上記のMOPAC PM7により計算された12-IQIQ-12(化合物IVb)の分子長38.16Åよりも短く、分子は分子層に対しておよそ42.5°傾いて配置していることが判明した。図5の右側に液晶層を形成している液晶分子の配列状態を模式的に示す。(200),(110),(210)に対応する広角度側の回折ピークから、この液晶相はSmH相と同定した。広角度側の回折にみられる他のいくつかのピークは同定が困難で、これらのいくつかは試料中に残留した結晶のドメインからの回折によるものであると考えられる。これはX線回折の測定において、試料温度を140℃~150℃のおよそ10℃の狭い温度領域での温度制御することが困難であったためである。図4に示す130℃でのX線回折ピークから、140℃以下の温度領域では結晶相と同定した。 Referring also to FIG. 5 showing an X-ray diffraction chart at 150 ° C. of 12-IQIQ-12 (compound IVb), which is the same as the upper diagram in FIG. 4, when the interlayer distance is estimated from the diffraction peak of (111) plane, This value is shorter than the molecular length of 38.16 mm of 12-IQIQ-12 (compound IVb) calculated by MOPAC PM7, and the molecule is arranged at an angle of about 42.5 ° with respect to the molecular layer. Turned out to be. The alignment state of the liquid crystal molecules forming the liquid crystal layer is schematically shown on the right side of FIG. From the diffraction peaks on the wide angle side corresponding to (200), (110), and (210), this liquid crystal phase was identified as the SmH phase. Several other peaks in the wide-angle diffraction are difficult to identify and some of these are believed to be due to diffraction from the crystalline domains remaining in the sample. This is because it was difficult to control the temperature of the sample in a narrow temperature range of about 10 ° C. from 140 ° C. to 150 ° C. in X-ray diffraction measurement. From the X-ray diffraction peak at 130 ° C. shown in FIG. 4, the crystal phase was identified in the temperature region of 140 ° C. or lower.
 DSC分析から求められた10-IQIQ-10(化合物IVa)及び12-IQIQ-12(化合物IVb)の相転位温度を下記表1に示す。なお、表1には、例10で作成した14-IQIQ-14の転位温度も示す。表1中、「Iso」は等方相、「SmC」及び「SmH」はスメクチックC相及びスメクチックH相、「Cr」は結晶(固体)相を表す。
Figure JPOXMLDOC01-appb-T000027
The phase transition temperatures of 10-IQIQ-10 (compound IVa) and 12-IQIQ-12 (compound IVb) determined from DSC analysis are shown in Table 1 below. Table 1 also shows the rearrangement temperature of 14-IQIQ-14 prepared in Example 10. In Table 1, “Iso” represents an isotropic phase, “SmC” and “SmH” represent a smectic C phase and a smectic H phase, and “Cr” represents a crystalline (solid) phase.
Figure JPOXMLDOC01-appb-T000027
例7
(化合物IVbの光学吸収特性とイオン化ポテンシャルの測定)
 HOMO,LUIMO準位を見積もるため、12-IQIQ-12(化合物IVb)を、光学吸収特性(UVスペクトル)、およびイオン化ポテンシャル(IP)の測定(光電子分光法による光電子収量スペクトル)に供した。これらの測定においては、以下の条件を用いた。
Example 7
(Measurement of optical absorption characteristics and ionization potential of compound IVb)
In order to estimate the HOMO and LUIMO levels, 12-IQIQ-12 (Compound IVb) was subjected to measurement of optical absorption characteristics (UV spectrum) and ionization potential (IP) (photoelectron yield spectrum by photoelectron spectroscopy). In these measurements, the following conditions were used.
<UVスペクトル測定>
 ・測定機器:日立ハイテク社製 HITACHI U-3900H
UV-VISセル(角形セル:光路長1cm)にクロロホルムに溶かしたサンプルを入れ、上記測定機器にて測定した。
<光電子分光法による光電子収量スペクトル測定>
 ・測定機器:住友重機械工業社製 光電子収量分光装置 PYS-202
試料を溶かした溶液をITO付きガラス基板にドロップキャストして製膜し、1.3×10-2Paの真空下で、Xe光源(HAMAMATSU C9559)、および、重水素光源(USHIO,XB-50101AA-A)により光照射(3eV~9eV)を行い、放射される光電子を住友重機械工業社製 光電子収量分光装置PYS-202を用いて、室温で測定した。
<UV spectrum measurement>
・ Measurement equipment: Hitachi High-Tech HITACHI U-3900H
A sample dissolved in chloroform was placed in a UV-VIS cell (rectangular cell: optical path length 1 cm), and the measurement was performed using the above measuring instrument.
<Measurement of photoelectron yield spectrum by photoelectron spectroscopy>
Measuring instrument: Photoelectron yield spectrometer PYS-202 manufactured by Sumitomo Heavy Industries, Ltd.
A solution in which the sample is dissolved is drop-cast on a glass substrate with ITO to form a film, and under a vacuum of 1.3 × 10 −2 Pa, a Xe light source (HAMAMATSU C9559) and a deuterium light source (USHIO, XB-50101AA) -A) was irradiated with light (3 eV to 9 eV), and the emitted photoelectrons were measured at room temperature using a photoelectron yield spectrometer PYS-202 manufactured by Sumitomo Heavy Industries, Ltd.
(対照化合物の合成)
 上記特性の測定に際しては、12-IQIQ-12との比較のため、窒素を含まない12-Chrysene-12を別途、文献[M.Kawamura,K.Nishimura,T.Iwakuma,K.Fukuoka,C.Hosokawa,M.Funahashi,T.Inoue,Y.Jinde,Y.Kawamura,M.Ito,Y.Tkashima,T.Ogiwara.U.S.Patent 2010194270,2010.18]に従って合成した。
(Synthesis of control compound)
In the measurement of the above characteristics, for comparison with 12-IQIQ-12, 12-Chrysene-12 not containing nitrogen was separately described in the literature [M. Kawamura, K. Nishimura, T. Iwakuma, K. Fukuoka, C.I. Hosokawa, M.A. Funahashi, T. Inoue, Y. Jinde, Y. Kawamura, M .; Ito, Y. Tkashima, T. Ogiwara. US. Patent 2010194270, 2010.18].
 上記により得られた12-Chrysene-12、および12-IQIQ-12のクロロフォルム溶液のUVスペクトルを、図6に示す。また、12-Chrysene-12および12-IQIQ-12の25℃における、光電子分光法により測定した光電子収量スペクトルを、図7に示す。図7の横軸は照射フォトンエネルギー、縦軸は光電子収量に対応するシグナル強度である。 FIG. 6 shows the UV spectra of the chloroform solutions of 12-Chrysene-12 and 12-IQIQ-12 obtained as described above. In addition, FIG. 7 shows photoelectron yield spectra of 12-Chrysene-12 and 12-IQIQ-12 measured by photoelectron spectroscopy at 25 ° C. The horizontal axis in FIG. 7 is the irradiation photon energy, and the vertical axis is the signal intensity corresponding to the photoelectron yield.
 上記の光電子分光測定の結果から、12-IQIQ-12、及び12-Chrysene-12のイオン化ポテンシャル(IP)は、それぞれ、-6.47eV、及び-5.85eVと決定された。また、12-IQIQ-12のLUMO準位はアザ-アセンの骨格から期待したように、12-Chrysene-12に比べて、0.85eVと低く、HOMO準位は同様に0.62eV低いことが明らかとなった。 From the results of the above photoelectron spectroscopy measurement, the ionization potentials (IP) of 12-IQIQ-12 and 12-Chrysene-12 were determined to be −6.47 eV and −5.85 eV, respectively. Further, as expected from the aza-acene skeleton, the LUMO level of 12-IQIQ-12 is 0.85 eV lower than 12-Chrysene-12, and the HOMO level is 0.62 eV lower as well. It became clear.
 上記により得られた12-IQIQ-12および12-Chrysene-12の光学特性、および、エネルギー準位に関する諸特性を下記表2に示す。 The optical characteristics of 12-IQIQ-12 and 12-Chrysene-12 obtained as described above and various characteristics relating to energy levels are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
例8
(化合物IVbの電荷輸送特性の測定)
 次に、12-IQIQ-12(化合物IVb)の電荷輸送特性を、time-of-flight(TOF)法により評価した。この測定に際して、測定対象たる「12-IQIQ-12」を、カラムクロマトグラフィー(column chromatography)と再結晶を数回(6回以上)繰り返すことにより精製した。この際に使用したカラムクロマトグラフィー条件、および再結晶条件は、以下の通りである。
Example 8
(Measurement of charge transport properties of compound IVb)
Next, the charge transport property of 12-IQIQ-12 (Compound IVb) was evaluated by the time-of-flight (TOF) method. In this measurement, “12-IQIQ-12” to be measured was purified by repeating column chromatography and recrystallization several times (more than 6 times). The column chromatography conditions and recrystallization conditions used at this time are as follows.
<カラムクロマトグラフィー条件>
 ・カラム材料・寸法:パイレックスガラス(登録商標)、内径3.5cm×充填剤を充填した部分の長さ18cm
 ・カラム充填剤:関東化学社製、商品名:シリカゲル60(100-210μm)
 ・溶媒:ジクロロメタン
<再結晶条件>
 ・再結晶溶媒:エタノールとクロロホルムもしくはヘキサン
<Column chromatography conditions>
-Column material-Dimensions: Pyrex glass (registered trademark), inner diameter 3.5 cm x length of the part filled with filler 18 cm
Column filler: manufactured by Kanto Chemical Co., Ltd., trade name: silica gel 60 (100-210 μm)
Solvent: dichloromethane <recrystallization conditions>
-Recrystallization solvent: ethanol and chloroform or hexane
 上記により精製した試料を、厚さ9μmのITO電極を持つ液晶セルに注入し、試料とした。 The sample purified as described above was injected into a liquid crystal cell having an ITO electrode having a thickness of 9 μm to obtain a sample.
 上記測定は、以下の方法によって行った。ITO透明電極つきのガラス基板2枚をスペーサーを含む熱硬化性樹脂で張り合わせたセル厚9μmのセル(市販品:EHC社製)を各化合物の等方相温度に加熱しておき、少量のサンプルをセルの開口部に接触させ、毛細管現象を利用して、サンプルをセルに注入した。ヒーターを内在した試料ステージにセルを固定し、電極に直流電圧を印加した。パルス幅600psの窒素パルスレーザーを照射し、その際に流れる電流をデジタルオシロスコープで測定した。その際に、光照射によって流れる光電流の積分値(電荷量)がセルの幾何学的電気容量の10%以内となるように、光照射強度を調整し空間電荷による波形のゆがみを起こさないように注意した。 The above measurement was performed by the following method. A cell with a cell thickness of 9 μm (commercially available product: manufactured by EHC), in which two glass substrates with ITO transparent electrodes are bonded together with a thermosetting resin containing a spacer, is heated to the isotropic phase temperature of each compound, and a small amount of sample is prepared. The sample was injected into the cell by contacting the cell opening and utilizing capillary action. The cell was fixed to a sample stage having a heater, and a DC voltage was applied to the electrode. A nitrogen pulse laser with a pulse width of 600 ps was irradiated, and the current flowing at that time was measured with a digital oscilloscope. At that time, the intensity of light irradiation is adjusted so that the integral value (charge amount) of the photocurrent flowing by light irradiation is within 10% of the geometric electric capacity of the cell so as not to cause waveform distortion due to space charge. Noted that.
 該測定により得られた結果を、図8に示す。図8の(a)及び(b)は、それぞれ164℃及び130℃において、12-IQIQ-12のTOF法により測定された両対数プロットした過渡光電流波形を示す。ここに、図8(a)は正電荷の光電流による結果を示し、図8(b)は負電荷の光電流による結果を示す。各図への「挿入図」は、それぞれの「リニアプロット」を示す。 The results obtained by the measurement are shown in FIG. 8 (a) and 8 (b) show the logarithmically plotted transient photocurrent waveforms measured by the 12-IQIQ-12 TOF method at 164 ° C. and 130 ° C., respectively. Here, FIG. 8A shows the result by the positively charged photocurrent, and FIG. 8B shows the result by the negatively charged photocurrent. The “inset” in each figure shows the respective “linear plot”.
 SmH相では分散性波形であったが、図8に示す様に、両対数プロットすることにより走行時間が決定できた。この伝導は、高次の液晶相であることからイオン伝導ではなく電子性伝導と考えることができる。なお、このような「イオン伝導/電子性伝導」決定方法詳細に関しては、以下の各文献を参照することができる(文献[19-21])。
 ・M.Funahashi,J.I.Hanna,Phys.Rev.Lett.1997,78,2184.
 ・H.Ahn,A.Ohno,J.Hanna.Jpn.J.Appl.Phys.2005,44,3764.
 ・.M.Funahashi,J.I.Hanna,Adv.Mater.2005,17,594.
Although it was a dispersive waveform in the SmH phase, as shown in FIG. 8, the running time could be determined by performing a log-log plot. Since this conduction is a high-order liquid crystal phase, it can be considered as electronic conduction instead of ionic conduction. For details of the method for determining such “ion conduction / electronic conduction”, the following documents can be referred to (Documents [19-21]).
・ M. Funahashi, J.A. I. Hanna, Phys. Rev. Lett. 1997, 78, 2184.
・ H. Ahn, A. Ohno, J .; Hanna. Jpn. J. Appl. Phys. 2005, 44, 3764.
・. M. Funahashi, J.A. I. Hanna, Adv. Mater. 2005, 17, 594.
 図9に上記の電荷輸送特性の測定により求めた12-IQIQ-12の電界強度6.6×104V/cmにおける正電荷及び負電荷の移動度の温度依存性を示す。図11の左側の約140~150℃の温度領域に示されるように、Sm液晶相における電子の移動度および正孔の移動度はそれぞれ1.86×10-4cm2/Vsおよび1.08×10-4cm2/Vsと見積もることが出来た。これらの移動度は、10Kの限られた温度ではあるが、この領域では移動度の温度依存性は見られなかった。また、電界依存性も見られなかった。 FIG. 9 shows the temperature dependence of the mobility of positive and negative charges at an electric field strength of 6.6 × 10 4 V / cm of 12-IQIQ-12 determined by the above-described measurement of charge transport characteristics. As shown in the temperature range of about 140 to 150 ° C. on the left side of FIG. 11, the mobility of electrons and the mobility of holes in the Sm liquid crystal phase are 1.86 × 10 −4 cm 2 / Vs and 1.08, respectively. It was estimated to be × 10 −4 cm 2 / Vs. Although these mobilities have a limited temperature of 10K, the temperature dependence of the mobility was not observed in this region. In addition, no electric field dependency was observed.
 他方、図9の右側の約155℃以上の温度領域に示されるように、等方相における、負、正電荷の移動度は共に10-5cm2/Vsのオーダーで、わずかな電界依存性が見られた。結晶相では光電流の顕著な低下が見られ、結晶粒界による深い準位の形成が示唆された。 On the other hand, as shown in the temperature region of about 155 ° C. or more on the right side of FIG. 9, both negative and positive charge mobilities in the isotropic phase are on the order of 10 −5 cm 2 / Vs, and a slight electric field dependence It was observed. In the crystalline phase, a significant decrease in photocurrent was observed, suggesting the formation of deep levels due to grain boundaries.
(例10)
 例1~9と同様にして、2.8-ジテトラデシルイソキノ[8,7-h]イソキノリン(14-IQIQ-14)を合成し、その物性及び半導体特性等を測定した。10-IQIQ-10及び12-IQIQ-12と同様に、150℃付近でスメクチック相を発現し、そのLUMO準位は-3eVより深いことから、この材料は電子伝導に有効である。10-IQIQ-10及び14-IQIQ-14も同様に、-3eVより深いLUMO準位をもつと判断できる。
(Example 10)
In the same manner as in Examples 1 to 9, 2.8-ditetradecylisoquino [8,7-h] isoquinoline (14-IQIQ-14) was synthesized, and its physical properties and semiconductor properties were measured. Similar to 10-IQIQ-10 and 12-IQIQ-12, it exhibits a smectic phase around 150 ° C., and its LUMO level is deeper than −3 eV, so this material is effective for electron conduction. Similarly, it can be determined that 10-IQIQ-10 and 14-IQIQ-14 have LUMO levels deeper than -3 eV.
(例1~10のまとめ)
 結論、上記したように、低電子密度のイソキノ[8,7-h]イソキノリン(IQIQ)骨格をコア部に持つ新しい棒状液晶かつ有機半導体としても期待されるIQIQ誘導体である、2,8-ジデシルイソキノ[8,7-h]イソキノリン(10-IQIQ-10)と2.8-ジドデシルイソキノ[8,7-h]イソキノリン(12-IQIQ-12)と2.8-ジテトラデシルイソキノリノ[8,7-h]イソキノリン(14-IQIQ-14)を簡便な手法を用いて比較的高い収率で合成した。
(Summary of Examples 1 to 10)
In conclusion, as described above, 2,8-didecylisoquino is a new rod-like liquid crystal having a low electron density isoquino [8,7-h] isoquinoline (IQIQ) skeleton at the core and an IQIQ derivative expected as an organic semiconductor. [8,7-h] isoquinoline (10-IQIQ-10) and 2.8-didodecylisoquino [8,7-h] isoquinoline (12-IQIQ-12) and 2.8-ditetradecylisoquinolino [8,7-h] isoquinoline (14-IQIQ-14) was synthesized in a relatively high yield using a simple technique.
 図5に示すように、10-IQIQ-10と2.8-ジテトラデシルイソキノリノ[8,7-h]イソキノリン(14-IQIQ-14)は限られた温度範囲で低次のスメクチック液晶相を発現したが、12-IQIQ-12は140℃~150℃付近で高次のスメクチック相を発現し、そのLUMO準位は-3.33eVであった。この材料は電子伝導が期待される。 As shown in FIG. 5, 10-IQIQ-10 and 2.8-ditetradecylisoquinolino [8,7-h] isoquinoline (14-IQIQ-14) are low-order smectic liquid crystals in a limited temperature range. Although 12-IQIQ-12 developed a high-order smectic phase around 140 ° C. to 150 ° C., its LUMO level was −3.33 eV. This material is expected to conduct electrons.
 12-IQIQ-12と骨格構造が同じである10-IQIQ-10と2.8-ジテトラデシルイソキノリノ[8,7-h]イソキノリン(14-IQIQ-14)のLUMO準位が、12-IQIQ-12と同様に-3eVより深いことは確認されている。 The LUMO level of 10-IQIQ-10 and 2.8-ditetradecylisoquinolino [8,7-h] isoquinoline (14-IQIQ-14) having the same skeleton structure as 12-IQIQ-12 is 12 Similar to -IQIQ-12, it is confirmed to be deeper than -3 eV.
 TOF法による移動度の測定から、高次のスメクチック相では電子、正孔とも10-4cm2/Vs台の移動度で、等方相では10-5cm2/Vs台であった。このIQIQ材料は有機トランジスタへの応用が期待される。 From the measurement of the mobility by the TOF method, the mobility of both electrons and holes was in the order of 10 −4 cm 2 / Vs in the high-order smectic phase, and was in the order of 10 −5 cm 2 / Vs in the isotropic phase. This IQIQ material is expected to be applied to organic transistors.
例11
 上記例と同様にして、2-フェニル-8-デシル-ベンゾチエノベンゾチオフェン(Ph-BTBT-10)を合成し、LUMO準位を測定したところ、-2.5eVであり、12-Chrysene-12と同様に3eV以下の浅いLUMO準位であり、BTBT骨格構造によって予想されるとおりの結果であった。
Example 11
In the same manner as in the above example, 2-phenyl-8-decyl-benzothienobenzothiophene (Ph-BTBT-10) was synthesized and the LUMO level was measured and found to be -2.5 eV, and 12-Chrysene-12 The results were as expected by the BTBT skeleton structure, as was the shallow LUMO level of 3 eV or less.
<参考文献>
 本発明における用語の解釈、合成、実験、測定等の詳細な条件等に関しては、必要に応じて、以下の文献を参照することができる。
<References>
Regarding detailed conditions such as interpretation, synthesis, experiment, and measurement of terms in the present invention, the following documents can be referred to as necessary.
 1. M. Sawamoto, M. J. Kang, E. Miyazaki, H. Sugino, I. Osaka, K. Takimiya. ACS Appl. Mater. Interfaces. 2016, 8, 3810. 2 
 2. H. Okamoto, S. Hamao, H. Goto, Y. Sakai, M. Izumi, S. Gohda, Y. Kubozono, R. Eguchi. Sci Rep. 2014, 4, 5048.
 3. C. Mitsui, T. Okamoto, M. Yamagishi, J. Tsurumi, K. Yoshimoto, K. Nakahara, J. Soeda, Y. Hirose, H. Sato, A. Yamano,T. Uemura, J. Takeya. Adv. Mater. 2014, 26, 4546. 
 4. K. Nakano, H. Iino, T. Usui, J. Hanna. Appl. Phys. Lett. 2011, 98, 103302. 
 5. H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T. Yui. J. Am. Chem. Soc. 2007, 129, 15732.
1. M. Sawamoto, M. J. Kang, E. Miyazaki, H. Sugino, I. Osaka, K. Takimiya. ACS Appl. Mater. Interfaces. 2016, 8, 3810. 2
2. H. Okamoto, S. Hamao, H. Goto, Y. Sakai, M. Izumi, S. Gohda, Y. Kubozono, R. Eguchi. Sci Rep. 2014, 4, 5048.
3. C. Mitsui, T. Okamoto, M. Yamagishi, J. Tsurumi, K. Yoshimoto, K. Nakahara, J. Soeda, Y. Hirose, H. Sato, A. Yamano, T. Uemura, J. Takeya. Adv. Mater. 2014, 26, 4546.
4. K. Nakano, H. Iino, T. Usui, J. Hanna. Appl. Phys. Lett. 2011, 98, 103302.
5. H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T. Yui. J. Am. Chem. Soc. 2007, 129, 15732.
 6. H. Meng, F. Sun , M. B. Goldfinger, G. D. Jaycox, Z. Li , W. J. Marshall, G. S. Blackman. J. Am. Chem. Soc. 2005, 127, 2406.
 7. H. Iino, J. Hanna. J. Appl. Phys. 2011, 109, 074505.
 8. H. Iino, J. Hanna. Adv. Mater. 2011, 23, 1748.
 9. H. Iino, J. Hanna. Jpn. J. Appl. Phys. 2006, 45,867.
 10.H. Iino, T. Usui and J. Hanna, Nat. Commun. 2015, 6, 6828.
6. H. Meng, F. Sun, M. B. Goldfinger, G. D. Jaycox, Z. Li, W. J. Marshall, G. S. Blackman. J. Am. Chem. Soc. 2005, 127, 2406.
7. H. Iino, J. Hanna. J. Appl. Phys. 2011, 109, 07505.
8. H. Iino, J. Hanna. Adv. Mater. 2011, 23, 1748.
9. H. Iino, J. Hanna. Jpn. J. Appl. Phys. 2006, 45, 867.
10. H. Iino, T. Usui and J. Hanna, Nat. Commun. 2015, 6, 6828.
 11.Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson. IEEE Trans. Electr. Dev. 1997, 44, 1325.
 12.A. J. J. M. van Breemen, P. T. Herwig, C. H. T. Chlon, J. Sweelssen, H. F. M. Schoo, S. Setayesh, W. M. Hardeman, C. A. Martin, D. M. de Leeuw, J. J. P. Valeton, C. W. M. Bastiaansen, D. J. Broer, A. R. Popa-Merticaru, and S. C. J. Meskers, J. Am. Chem. Soc. 2006, 128, 2336.
 13. H. T. Yi, M. M. Payne, J. E. Anthony, V. Podzorov. Nat. Commun. 2012, 3, 1259.
 14. S.Tatemichi, M.Ichikawa, T. Koyama,Y.Taniguchi. Appl. Phys. Lett. 2006, 89, 112108.
 15. C. Wang, J. Zhang, G. Long, N. Aratani, H. Yamada, Y. Zhao, Q. Zhang. Angew.Chem. Int. Ed. 2015, 54, 6292.
11. Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson. IEEE Trans. Electr. Dev. 1997, 44, 1325.
12. AJJM van Breemen, PT Herwig, CHT Chlon, J. Sweelssen, HFM Schoo, S. Setayesh, WM Hardeman, CA Martin, DM de Leeuw, JJP Valeton, CWM Bastiaansen, DJ Broer, AR Popa-Merticaru, and SCJ Meskers , J. Am. Chem. Soc. 2006, 128, 2336.
13. H. T. Yi, M. M. Payne, J. E. Anthony, V. Podzorov. Nat. Commun. 2012, 3, 1259.
14. S. Tatemichi, M. Ichikawa, T. Koyama, Y. Taniguchi. Appl. Phys. Lett. 2006, 89, 112108.
15. C. Wang, J. Zhang, G. Long, N. Aratani, H. Yamada, Y. Zhao, Q. Zhang. Angew. Chem. Int. Ed. 2015, 54, 6292.
 16. G. Gruntz, H. Lee, L. Hirsch, F. Castet, T. Toupance, A. L. Briseno, Y. Nicolas. Adv. Electron. Mater. 2015, 1, 1500072.
 17. Y. Ma, Q. Zheng, Z. Yin, D. Cai, S. Chen, C. Tang. Macromolecules. 2013, 46, 4813.
 18. M. Kawamura, K. Nishimura, T. Iwakuma, K. Fukuoka, C. Hosokawa, M. Funahashi, T. Inoue, Y. Jinde, Y. Kawamura, M. Ito, Y. Tkashima, T. Ogiwara. U.S. Patent 2010194270, 2010.
 19. M. Funahashi, J. I. Hanna, Phys. Rev. Lett. 1997, 78, 2184.
 20. H. Ahn, A. Ohno, J. Hanna. Jpn. J. Appl. Phys. 2005, 44, 3764.
16. G. Gruntz, H. Lee, L. Hirsch, F. Castet, T. Toupance, A. L. Briseno, Y. Nicolas. Adv. Electron. Mater. 2015, 1, 1500072.
17. Y. Ma, Q. Zheng, Z. Yin, D. Cai, S. Chen, C. Tang. Macromolecules. 2013, 46, 4813.
18. M. Kawamura, K. Nishimura, T. Iwakuma, K. Fukuoka, C. Hosokawa, M. Funahashi, T. Inoue, Y. Jinde, Y. Kawamura, M. Ito, Y. Tkashima, T. Ogiwara. US Patent 2010194270, 2010.
19. M. Funahashi, J. I. Hanna, Phys. Rev. Lett. 1997, 78, 2184.
20. H. Ahn, A. Ohno, J. Hanna. Jpn. J. Appl. Phys. 2005, 44, 3764.
 21. M. Funahashi, J. I. Hanna, Adv. Mater. 2005, 17, 594. 21. M. Funahashi, J. I. Hanna, Adv. Mater. 2005, 17, 594.

Claims (15)

  1.  下記式(1)で表されるイソキノリノ・イソキノリン(IQIQ)に基づく骨格構造を含むユニットAと、該ユニットAと単結合で連結された脂肪族系鎖ユニットBと、該ユニットAと単結合で連結された、脂肪族系鎖および/又は環状構造を含む基、または水素原子であるユニットCとを少なくとも有する有機半導体材料であって;前記有機半導体材料が液晶性を示すことを特徴とする有機半導体材料。
    Figure JPOXMLDOC01-appb-C000001
    A unit A containing a skeleton structure based on isoquinolino-isoquinoline (IQIQ) represented by the following formula (1), an aliphatic chain unit B linked to the unit A by a single bond, and a single bond to the unit A An organic semiconductor material having at least a group containing an aliphatic chain and / or a cyclic structure, or a unit C which is a hydrogen atom; the organic semiconductor material exhibiting liquid crystallinity Semiconductor material.
    Figure JPOXMLDOC01-appb-C000001
  2.  前記ユニットAは下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、aはそれぞれ独立して水素原子であるか、または単結合であるか、または飽和及び/又は不飽和の環状基であり、該環状基は炭化水素基であるか又は1以上のヘテロ原子を含んでいても良く、少なくとも1つのaは該環状基である。)
    で表される構造を有し、ユニットB及びユニットCの夫々が、2つのaにそれぞれ単結合で結合されており、当該aが単結合であるときはユニットB及び/又はユニットCはIQIQに直接に単結合で結合される、請求項1に記載の有機半導体材料。
    The unit A has the following formula (2)
    Figure JPOXMLDOC01-appb-C000002
    Wherein each a is independently a hydrogen atom, a single bond, or a saturated and / or unsaturated cyclic group, the cyclic group being a hydrocarbon group or one or more (It may contain a hetero atom, and at least one a is the cyclic group.)
    The unit B and the unit C are each connected to two a by a single bond, and when the a is a single bond, the unit B and / or the unit C is connected to IQIQ. The organic-semiconductor material of Claim 1 couple | bonded with a single bond directly.
  3.  前記式(2)のaが、それぞれ独立して、下記構造式
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは水素原子又は脂肪族系鎖基である。)
    のいずれかで表される構造を有し、ユニットB及びユニットCの夫々は、上記構造の置換可能な部位又は原子と置換する形でaに結合し、上記式中のRが水素原子である場合にはRに置換して、又はRが脂肪族系鎖基である場合にはRの脂肪族系鎖基が有する水素原子に置換して、前記ユニットAに結合されることができる、請求項2に記載の有機半導体材料。
    A in the formula (2) each independently represents the following structural formula
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R is a hydrogen atom or an aliphatic chain group.)
    Each of unit B and unit C is bonded to a in such a way as to replace a substitutable site or atom of the above structure, and R in the above formula is a hydrogen atom In some cases, it can be bonded to the unit A by substituting R, or when R is an aliphatic chain group, by substituting a hydrogen atom of the aliphatic chain group of R. Item 3. The organic semiconductor material according to Item 2.
  4.  ユニットBが、炭素原子数3~20の脂肪族系鎖基である、請求項1~3のいずれか1項に記載の有機半導体材料。 The organic semiconductor material according to any one of claims 1 to 3, wherein the unit B is an aliphatic chain group having 3 to 20 carbon atoms.
  5.  ユニットCの脂肪族系鎖は、炭素原子数3~20の脂肪族系鎖基であり、ユニットCの環状構造を含む基は、芳香族基、複素環基又は脂肪族環基を含む基である、請求項1~4のいずれか1項に記載の有機半導体材料。 The aliphatic chain of unit C is an aliphatic chain group having 3 to 20 carbon atoms, and the group including a cyclic structure of unit C is a group including an aromatic group, a heterocyclic group, or an aliphatic ring group. The organic semiconductor material according to any one of claims 1 to 4, wherein
  6.  LUMOの準位が-3eVよりも深い、請求項1~5のいずれか1項に記載の有機半導体材料。 6. The organic semiconductor material according to claim 1, wherein the LUMO level is deeper than −3 eV.
  7.  室温において、トルエンへの溶解度が0.1wt%以上である、請求項1~6のいずれか1項に記載の有機半導体材料。 The organic semiconductor material according to any one of claims 1 to 6, wherein the solubility in toluene is 0.1 wt% or more at room temperature.
  8.  電子および/又は正孔の移動度が10-4cm/Vsよりも大きい、請求項1~7のいずれか1項に記載の有機半導体材料。 The organic semiconductor material according to any one of claims 1 to 7, wherein the mobility of electrons and / or holes is greater than 10 -4 cm 2 / Vs.
  9.  N型半導体の性質を示す、請求項1~8のいずれか1項に記載の有機半導体材料。 The organic semiconductor material according to any one of claims 1 to 8, which exhibits properties of an N-type semiconductor.
  10.  液晶状態および結晶状態の少なくとも一方においてN型半導体の性質を示す、請求項1~9のいずれか1項に記載の有機半導体材料。 The organic semiconductor material according to any one of claims 1 to 9, which exhibits the properties of an N-type semiconductor in at least one of a liquid crystal state and a crystal state.
  11.  発現する液晶相としてスメクチック(Sm)液晶相を示す、請求項1~10のいずれか1項に記載の有機半導体材料。 The organic semiconductor material according to any one of claims 1 to 10, which exhibits a smectic (Sm) liquid crystal phase as a liquid crystal phase to be developed.
  12.  下記式(1)で表されるイソキノリノ・イソキノリン(IQIQ)に基づく骨格構造を含むユニットAと、該ユニットAと単結合で連結された脂肪族系鎖ユニットBと、該ユニットAと単結合で連結された、脂肪族系鎖および/又は環状構造を含む基、または水素原子であるユニットCとを少なくとも有する有機化合物。
    Figure JPOXMLDOC01-appb-C000004
    A unit A containing a skeleton structure based on isoquinolino-isoquinoline (IQIQ) represented by the following formula (1), an aliphatic chain unit B linked to the unit A by a single bond, and a single bond to the unit A An organic compound having at least a linked group containing an aliphatic chain and / or a cyclic structure, or a unit C which is a hydrogen atom.
    Figure JPOXMLDOC01-appb-C000004
  13.  下記式(3)で表される、請求項12に記載の有機化合物。
    Figure JPOXMLDOC01-appb-C000005
    (式中、a、a、a及びaは、それぞれ独立して、水素原子であるか、または単結合であるか、または飽和及び/又は不飽和の環状基であり、該飽和及び/又は不飽和の環状基は炭化水素基であるか又は1以上のヘテロ原子を含んでいても良いが、a、a、a及びaの少なくとも1つは単結合であるか、または飽和及び/又は不飽和の環状基であり;R、R,R及びRの少なくとも1つは、それぞれ独立して、脂肪族系鎖基であり、R、R,R及びRのいずれかが脂肪族系鎖基でないとき、その残りのR、R,R及びRは水素原子であることができる。)
    The organic compound of Claim 12 represented by following formula (3).
    Figure JPOXMLDOC01-appb-C000005
    (Wherein a 1 , a 2 , a 3 and a 4 are each independently a hydrogen atom, a single bond, or a saturated and / or unsaturated cyclic group, And / or the unsaturated cyclic group may be a hydrocarbon group or may contain one or more heteroatoms, but at least one of a 1 , a 2 , a 3 and a 4 is a single bond Or a saturated and / or unsaturated cyclic group; at least one of R 1 , R 2 , R 3 and R 4 is each independently an aliphatic chain group, R 1 , R 2 , When any of R 3 and R 4 is not an aliphatic chain group, the remaining R 1 , R 2 , R 3 and R 4 can be hydrogen atoms.)
  14.  請求項12に記載の前記脂肪族系鎖ユニットB又は請求項13に記載の前記脂肪族系鎖基が、炭素原子数3~20の脂肪族系鎖基である、請求項12又は13に記載の有機化合物。 The aliphatic chain unit B according to claim 12 or the aliphatic chain group according to claim 13 is an aliphatic chain group having 3 to 20 carbon atoms. Organic compounds.
  15.  請求項1~11のいずれか1項に記載の有機半導体材料又は請求項12~14に記載の有機化合物を用いて形成された層を半導体層として有し、該半導体層に電気的に結合された正電極及び負電極を具備することを特徴とする半導体装置。 A layer formed using the organic semiconductor material according to any one of claims 1 to 11 or the organic compound according to claims 12 to 14 is provided as a semiconductor layer, and is electrically coupled to the semiconductor layer. A semiconductor device comprising a positive electrode and a negative electrode.
PCT/JP2017/031671 2016-09-02 2017-09-01 Organic semiconductor material, organic compound and organic semiconductor device WO2018043725A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018537575A JPWO2018043725A1 (en) 2016-09-02 2017-09-01 Organic semiconductor material, organic compound and organic semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-172322 2016-09-02
JP2016172322 2016-09-02

Publications (1)

Publication Number Publication Date
WO2018043725A1 true WO2018043725A1 (en) 2018-03-08

Family

ID=61301171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031671 WO2018043725A1 (en) 2016-09-02 2017-09-01 Organic semiconductor material, organic compound and organic semiconductor device

Country Status (2)

Country Link
JP (1) JPWO2018043725A1 (en)
WO (1) WO2018043725A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121393A1 (en) * 2011-03-10 2012-09-13 国立大学法人東京工業大学 Organic semiconductor material
WO2013058844A1 (en) * 2011-07-06 2013-04-25 Northwestern University System and method for generating and/or screening potential metal-organic frameworks
JP2014506246A (en) * 2010-12-15 2014-03-13 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Electroactive materials and devices manufactured using such materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506246A (en) * 2010-12-15 2014-03-13 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Electroactive materials and devices manufactured using such materials
WO2012121393A1 (en) * 2011-03-10 2012-09-13 国立大学法人東京工業大学 Organic semiconductor material
WO2013058844A1 (en) * 2011-07-06 2013-04-25 Northwestern University System and method for generating and/or screening potential metal-organic frameworks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, TENGZHOU ET AL.: "Novel Calamitic Liquid Crystals Based on Electron-deficient Mesogen of Isoquino[8,7-h]isoquinoline: Synthesis, Mesomorphism, and Charge-transport Properties", CHEMISTRY LETTERS, vol. 45, no. 9, 5 September 2016 (2016-09-05), pages 1129 - 1131, XP055470810, DOI: doi:10.1246/cl.160559 *

Also Published As

Publication number Publication date
JPWO2018043725A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP6188663B2 (en) Organic semiconductor materials
JP6008158B2 (en) Chalcogen-containing organic compounds and uses thereof
EP2894685B1 (en) Benzothienobenzothiophene derivative, organic semiconductor material, and organic transistor
Reghu et al. Air stable electron-transporting and ambipolar bay substituted perylene bisimides
TWI658120B (en) Organic film, manufacturing method thereof, organic semiconductor device using the same, and organic transistor
Pandolfi et al. Synthesis and characterization of new D–π-A and A–π-D–π-A type oligothiophene derivatives
Khan et al. Highly uniform supramolecular nano-films derived from carbazole-containing perylene diimide via surface-supported self-assembly and their electrically bistable memory behavior
WO2018043725A1 (en) Organic semiconductor material, organic compound and organic semiconductor device
Hoang et al. New π-extended triphenylene-based organic semiconductors in field-effect transistors
Hu et al. Novel nematic and glassy liquid crystalline oligomers as electroluminescent organic semiconductors
Kim et al. Synergistic Enhancement of Luminescent and Ferroelectric Properties through Multi‐Clipping of Tetraphenylethenes
Nabasov et al. 2-Difluoroboryl-3-(quinolin-2-ylmethylene) isoindolin-1-one: Efficient Synthesis Method, TD-DFT Analysis and Electrical Properties of Thin Films
JP5964703B2 (en) Organic semiconductor material and organic transistor
Kojima et al. Benzopyrazine-fused tetracene derivatives: Thin-film formation at the crystalline mesophase for solution-processed hole transporting devices
Kim et al. Tuning the charge transport properties of dicyanodistyrylbenzene derivatives by the number of fluorine substituents
JP2014175392A (en) Method for producing organic thin film and organic semiconductor device
JP5009716B2 (en) Field-effect transistor using hexabenzocoronene nanotubes
JP6004293B2 (en) Torquesen derivative and organic semiconductor device using the same
JP7133750B2 (en) Iodine-containing condensed ring compound and organic electronic material using iodine-containing condensed ring compound
JP5529439B2 (en) Fullerene derivative composition and field effect transistor device using the same
Keruckas et al. Influence of methoxy substitution on the properties of 9, 9-fluorenylidene-linked triphenylamine derivatives
JP2005091231A (en) Method for examining organic semiconductor material
Kirkus Diketopyrrolopyrrole based molecular materials: synthesis, optical characterization, and application in photovoltaics
JP2001089740A (en) Liquid crystalline electroconductive and photoconductive material and its element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846728

Country of ref document: EP

Kind code of ref document: A1