WO2018043720A1 - レドックスフロー二次電池及びその電極 - Google Patents

レドックスフロー二次電池及びその電極 Download PDF

Info

Publication number
WO2018043720A1
WO2018043720A1 PCT/JP2017/031656 JP2017031656W WO2018043720A1 WO 2018043720 A1 WO2018043720 A1 WO 2018043720A1 JP 2017031656 W JP2017031656 W JP 2017031656W WO 2018043720 A1 WO2018043720 A1 WO 2018043720A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
metal
exchange membrane
carbon
ion exchange
Prior art date
Application number
PCT/JP2017/031656
Other languages
English (en)
French (fr)
Inventor
雅敏 市川
恵三 井関
健三 塙
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to EP17846723.9A priority Critical patent/EP3509148A4/en
Priority to US16/329,516 priority patent/US20190198904A1/en
Priority to JP2018520635A priority patent/JP6373539B2/ja
Priority to CN201780052849.5A priority patent/CN109643818A/zh
Publication of WO2018043720A1 publication Critical patent/WO2018043720A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow secondary battery and its electrode.
  • This application claims priority based on Japanese Patent Application No. 2016-172243 filed in Japan on September 2, 2016, the contents of which are incorporated herein by reference.
  • a redox flow secondary battery is known as a large capacity storage battery.
  • a redox flow secondary battery generally has an ion exchange membrane that separates an electrolytic solution and electrodes provided on both sides of the ion exchange membrane.
  • a positive electrode electrolyte and a negative electrode electrolyte are supplied to each side of the ion exchange membrane, that is, the positive electrode chamber and the negative electrode chamber.
  • Charging / discharging is performed by simultaneously carrying out an oxidation reaction and a reduction reaction on these electrodes.
  • the generated hydrogen ions can move to the opposite electrode side through the ion exchange membrane, The electrical neutrality of the liquid can be maintained.
  • Carbon members are widely used for electrodes (for example, Patent Documents 1 and 2).
  • a metal such as titanium or zirconium for the electrode (for example, Patent Documents 3 and 4).
  • the electrode is stored in each electrode chamber.
  • the redox flow secondary battery operates while supplying an electrolyte solution into the electrode chamber and circulating the electrolyte solution. For example, when ions in the electrolytic solution pass electrons to the electrode, the electrons are transferred from the electrode through the outside. Protons are exchanged through the ion exchange membrane. In this way, the redox flow secondary battery is charged and discharged.
  • carbon fibers or the like used for the electrode may pierce the ion exchange membrane, and a crack or a through-hole may be generated in the ion exchange membrane.
  • a crack or a through-hole may be generated in the ion exchange membrane.
  • the positive electrode electrolyte supplied to the positive electrode chamber (positive electrode chamber) and the negative electrode electrolyte supplied to the negative electrode chamber (negative electrode chamber) are mixed.
  • a part of the redox flow secondary battery is short-circuited. Such a problem causes a decrease in coulomb efficiency and a shortened life of the redox flow secondary battery.
  • Patent Document 5 As a means of preventing damage to the ion exchange membrane, a method of preventing the ion exchange membrane from penetrating even if the carbon fiber is pierced by increasing the thickness of the ion exchange membrane, or an electrode containing the carbon fiber and the ion exchange membrane In the meantime, a method of providing a porous sheet material composed of a material softer than the electrode has been proposed (for example, Patent Document 5).
  • the redox flow secondary battery described above has room for further performance improvement in terms of cell resistance and the like.
  • the redox flow secondary battery described in Patent Document 3 suggests the use of organic materials such as fluororesin, phenolic resin, and engineering plastic as shown below as softer materials than the positive electrode and the negative electrode.
  • organic materials such as fluororesin, phenolic resin, and engineering plastic as shown below as softer materials than the positive electrode and the negative electrode.
  • these non-conductive organic materials are provided between the positive electrode or the negative electrode and the ion exchange membrane, the distance between the electrode material and the ion exchange membrane is increased, and a portion that does not contribute to conduction is generated. Therefore, the cell resistance of the redox flow secondary battery increases.
  • the present invention has been made in view of the above problems, and an object thereof is to obtain a redox flow secondary battery having low resistance and excellent coulomb efficiency.
  • this invention provides the following means in order to solve the said subject.
  • the redox flow secondary battery according to the first aspect of the present invention includes a positive electrode, a negative electrode facing the positive electrode, and an ion exchange membrane provided between the positive electrode and the negative electrode. And one or both of the negative electrodes have a metal protective film and a carbon electrode containing carbon fibers in order from the ion exchange membrane side, and the first main surface of the metal protective film is on the ion exchange membrane side.
  • the metal protective film is a redox flow secondary battery having an opening and a protruding peak height (Rpk) on the surface of the first main surface of 0.1 to 2 ⁇ m.
  • the redox flow secondary battery according to the first aspect of the present invention preferably includes the following features. The following features are also preferably combined with each other as necessary. (2) The metal protective film and the carbon electrode may be provided on both the positive electrode and the negative electrode.
  • the protruding peak height of the metal protective membrane may satisfy the following relational expression (1).
  • T is the thickness ( ⁇ m) of the ion-exchange membrane
  • Rpk (A) is the height of the protruding peak of the metal protective film of the positive electrode ( ⁇ m)
  • Rpk (B) is the metal protective film of the negative electrode. Represents the height of the protruding peak ( ⁇ m).
  • the metal protective film may be a conductive metal electrode.
  • the surface of the positive electrode metal electrode may be coated with a noble metal or a noble metal oxide.
  • the surface of the metal electrode of the negative electrode may be coated with carbon.
  • a second metal electrode having an opening is further provided between the metal electrode and the carbon electrode, and the position of the opening between the metal electrode and the second metal electrode. May be off.
  • a second aspect of the present invention is a redox flow secondary battery metal electrode of a redox flow secondary battery, having an opening, and at least a protruding ridge height (Rpk on the surface of the first main surface). ) Is a metal electrode having a thickness of 0.1 to 2 ⁇ m.
  • the metal electrode of the second aspect preferably includes the following features. The following features are also preferably combined with each other as necessary. (9)
  • the metal electrode may be made of titanium or an alloy thereof.
  • the metal electrode may be an expanded metal.
  • the metal electrode may have a thickness of 0.2 mm or less.
  • the surface of the metal electrode may be coated with a noble metal or a noble metal oxide.
  • the noble metal element constituting the noble metal or the noble metal oxide is one or more elements selected from the group consisting of iridium (Ir), rhodium (Rh), platinum (Pt), and ruthenium (Ru). May be.
  • the average thickness of the noble metal or noble metal oxide coating may be 0.05 to 0.5 ⁇ m.
  • the surface of the metal electrode may be coated with carbon.
  • the carbon may be sputtered carbon, conductive diamond, diamond-like carbon, or a mixture thereof.
  • the carbon coating may have an average thickness of 0.03 to 0.3 ⁇ m.
  • the redox flow secondary battery of the present invention has low resistance and excellent coulomb efficiency.
  • FIG. 1 is a schematic cross-sectional schematic diagram of a redox flow secondary battery according to a first embodiment. It is the schematic perspective view which expanded a part of metal electrode of the redox flow secondary battery concerning 2nd Embodiment.
  • the present invention provides an excellent metal electrode having an opening and at least a protruding ridge height on the surface of the first main surface of 0.1 to 2 ⁇ m. Furthermore, the excellent secondary battery and electrode using this electrode are provided.
  • the drawings used in the following description in order to make the characteristics of the present invention easier to understand, there are cases where the characteristic parts are enlarged for the sake of convenience, and the dimensional ratios of the respective components are different from actual ones. is there.
  • the materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be appropriately modified and implemented without changing the gist thereof.
  • FIG. 1 is a schematic cross-sectional view of a redox flow secondary battery according to the first embodiment.
  • the number of stacked cells 10 can be appropriately changed according to the application. Note that a structure having only a single cell may be used. When a cell stack structure is used and a plurality of cells 10 are connected in series, a practical voltage can be obtained from the battery.
  • the electrolytes from the positive electrode electrolyte tank and the negative electrode electrolyte tank may be circulated to each cell using the respective pumps (not shown). The liquid can be distributed to each cell. For this reason, it is possible to equalize the state of charge of each battery and to equalize the state of charge of each battery.
  • the cell 10 includes an ion exchange membrane 6 which is a diaphragm, a positive electrode 3 (carbon electrode 2 and metal protective film electrode 5), and a negative electrode 4 (metal protective film 5 and carbon electrode 2).
  • a pair of bipolar plates 1 is provided on the surface side of each electrode that is not on the ion exchange membrane side. The ends of the electrodes and the bipolar plate are covered with the cell frame 20.
  • FIG. 1 there are spaces in the cell 10 where the electrolyte solution flows on the negative electrode side and the anode side electrode material, respectively, and the electrolyte solution is between the ion exchange membrane 6 and the electrode depending on the cell configuration. Or can flow inside the electrode.
  • FIG. 1 shows a state in which two cell frames 20 sandwich the ion exchange membrane 6 from both sides.
  • the cell frame 20 is a structure having a frame shape, for example, and exists between the ion exchange membranes 6 adjacent to each other in the stacking direction of the cell stack structure.
  • a set of cell frames 20 together with a set of bipolar plates 1 and a single ion exchange membrane 6 form two electrode chambers K (Kc, Ka) surrounded by them in the cell 10.
  • One of the electrode chambers K becomes a positive electrode chamber Kc, and the other becomes a negative electrode chamber Ka.
  • the cell frame 20 prevents the electrolyte supplied to the positive electrode chamber Kc and the negative electrode chamber Ka from leaking outside.
  • the cell frame 20 and the bipolar plate 1 may form part of another cell 10 adjacent to the cell 10.
  • stacking direction of the cell stack structure in which the cells 10 are stacked may be simply referred to as “stacking direction”, and the plane direction perpendicular to the stacking direction of the cell stack structure may be referred to as “in-plane direction”.
  • one cell 10 includes a pair of bipolar plates 1, one positive electrode 3, one negative electrode 4, and one ion exchange membrane 6. Between the adjacent bipolar plates 1, a positive electrode 3, an ion exchange membrane 6, and a negative electrode 4 are disposed in this order.
  • the ion exchange membrane 6 blocks the movement of the electrolytic solution between the positive electrode chamber Kc and the negative electrode chamber Ka, and allows protons (hydrogen ions) to pass therethrough.
  • the bipolar plate 1 is a conductive plate that passes current but does not pass electrolyte, and is a current collector plate.
  • the bipolar plate 1 is a current collector having a role of transferring electrons to and from an electrode.
  • the bipolar plate 1 has a positive electrode portion 1A and a negative electrode portion 1B.
  • the positive electrode part 1 ⁇ / b> A and the negative electrode part 1 ⁇ / b> B are not clearly distinguished, but are distinguished for convenience as the configuration range of the cell 10.
  • the side adjacent to the positive electrode of the cell is a positive electrode portion 1A
  • the side adjacent to the negative electrode of another cell is a negative electrode portion 1B.
  • the material of the bipolar plate 1 can be arbitrarily selected and is not particularly limited as long as it has conductivity, is resistant to the electrolyte, and can form the electrode quality.
  • a conductive material containing carbon can be used.
  • the positive electrode 3 includes an electrode 2 (hereinafter referred to as a carbon electrode) 2 made of a layer containing carbon fibers, and a metal protective film having an opening, in this example, an electrode (hereinafter referred to as a metal electrode) 5 made of a metal foil having an opening. And having.
  • the negative electrode 4 is composed of a carbon electrode 2 and a metal electrode 5. In both of the positive electrode 3 and the negative electrode 4, the metal electrode 5 and the carbon electrode 2 are disposed in this order from the ion exchange membrane 6 side, and the metal electrode 5 has a first main surface to be described later on the ion exchange membrane 6 side. It is arranged toward.
  • the carbon electrode 2 can be selected arbitrarily, for example, a conductive sheet containing carbon fiber is given as an example.
  • the carbon fiber referred to here is fibrous carbon, and examples thereof include carbon fiber and carbon nanotube. Among these, it is particularly preferable to use a carbon fiber having a diameter of 1 ⁇ m or more because the conductive sheet is not easily damaged.
  • the carbon electrode 2 contains carbon fiber, the contact area between the electrolytic solution and the carbon electrode 2 is increased, and the reactivity of the redox flow secondary battery 100 is increased.
  • the conductive sheet containing carbon fiber for example, carbon felt, carbon paper, or the like can be used.
  • the edge part of carbon fiber may protrude from the electroconductive sheet.
  • the conductive sheet and the ion exchange membrane are directly pressed against each other. Therefore, if there is an end portion of the carbon fiber jumping out from the conductive sheet, this end portion may pierce the ion exchange membrane, and may cause a crack or a through hole in the ion exchange membrane.
  • the metal electrode 5 exists between the sheet and the membrane, so that the ion exchange membrane 6 is protected.
  • the metal electrode 5 which is also a metal protective film is a conductive metal foil having an opening.
  • the metal electrode 5 is a part of an electrode constituting a positive electrode or a negative electrode.
  • the metal electrode 5 is provided in the electrode chamber K (the positive electrode chamber Kc and the negative electrode chamber Ka).
  • the metal electrode 5 is disposed on at least one of the ion exchange membranes 6, preferably on both sides.
  • the metal electrode 5 functions as a protective film that prevents the carbon fibers constituting the carbon electrode 2 from being stuck in the ion exchange membrane 6. If the carbon fiber contained in the carbon electrode pierces the ion exchange membrane 6 and a crack or a through hole is formed in the ion exchange membrane 6, the Coulomb efficiency may be lowered. However, in the present invention, the presence of the metal protective film makes it difficult for cracks and through-holes to occur, and the Coulomb efficiency is unlikely to decrease.
  • the protrusion peak height (Rpk) of the metal protective film will be described.
  • the protruding peak height (Rpk) of at least one main surface of the metal electrode 5 is controlled to 0.1 to 2 ⁇ m.
  • the surface of the metal electrode 5 whose protrusion peak height (Rpk) is controlled in this way is referred to as a “first main surface”.
  • the second main surface is the back surface of the electrode, that is, the surface opposite to the first main surface, and this surface may be similarly controlled as necessary.
  • the metal electrode 5 is disposed with the first main surface facing the ion exchange membrane 6 side. This is to prevent the metal electrode 5 itself, which is also a metal protective film, from causing a crack or a through hole in the ion exchange film 6.
  • the protruding peak height means the average height of the protruding peak protruding above the core defined on the load curve, obtained by measuring the surface shape.
  • the core portion is a region between two height positions where the equivalent straight line obtained from the load curve intersects the vertical axis at the load length rate 0% position and the vertical axis at the 100% position. means. In the load curve, the vertical axis is the height, and the horizontal axis is the load length ratio.
  • the equivalent straight line is obtained at the central portion of the load curve including 40% of the measurement points of the roughness curve.
  • the equivalent straight line is a straight line in which the secant of the load curve drawn with the load length ratio difference ⁇ Mr of 40% has the most gentle inclination.
  • the protruding peak height (Rpk) is a value that takes into account the occurrence probability of protrusions on the surface of the metal electrode 5 in contact with the ion exchange membrane 6.
  • a measuring device such as a laser microscope; manufactured by Keyence (trade name: VK-X150) can be used.
  • a laser microscope an arbitrary surface other than the opening of the metal electrode 5 can be measured with a visual field of 100 ⁇ m ⁇ 100 ⁇ m square, and a load curve can be obtained for the surface roughness.
  • Rpk can be calculated from the load curve.
  • the Rpk measurement value is an average value of each Rpk obtained by measuring three points at an arbitrary location.
  • the “load curve” is defined in JIS B 0601: 2013 “Product Geometric Specification (GPS) —Surface Properties: Contour Curve Method—Terminology, Definitions, and Surface Property Parameters”. Height data is calculated from all measurement points.
  • GPS Global System for the measurement of “Ridge Height (Rpk)”
  • GPS Product Geometrical Specification
  • the metal electrode 5 is manufactured by processing so that its surface becomes flat. Therefore, the occurrence probability of the protrusion is very small.
  • Ra and Rz used in the conventional evaluation of the surface state are defined on the contour curve (curved surface).
  • Ra (arithmetic mean height of the roughness curve) is a parameter representing an average state and is not suitable for evaluation of protrusions.
  • Rz the maximum height of the roughness curve
  • a projection having a low probability of occurrence may be out of the measurement field of view, and the projection may be overlooked.
  • the projections with low probability of occurrence The state can be evaluated appropriately.
  • the thickness of the metal electrode 5 can be arbitrarily set, it is preferably 0.2 mm or less, more preferably 0.001 to 0.2 mm, and further preferably 0.003 to 0.03 mm.
  • the thickness other than the opening is preferably constant, but may be changed as necessary.
  • the aperture ratio of the metal electrode 5 is preferably 50 to 85%, more preferably 60 to 80%, and further preferably 65 to 75%. If the thickness and the aperture ratio of the metal electrode 5 are within this range, the ion exchange membrane can be prevented from being damaged by the carbon fiber.
  • the aperture ratio is obtained by dividing [the total area of the openings of the metal electrode] by [the area of one surface of the metal electrode including the openings].
  • the metal electrode 5 when the metal electrode 5 is sandwiched between the carbon electrode 2 and the ion exchange membrane 6, it can be suppressed that the carbon fibers constituting the carbon electrode 2 form a through hole in the ion exchange membrane 6. Further, if the protruding peak height (Rpk) of the surface of the metal electrode 5 in contact with the ion exchange membrane 6 is 0.1 to 2 ⁇ m, the first main surface of the metal electrode 5 is flat enough to suppress the generation of protrusions. It can be said that it is a surface. That is, the metal electrode 5 does not cause cracks or through holes in the ion exchange membrane 6. Therefore, the thickness of the ion exchange membrane 6 can be reduced, and the cell resistance of the redox flow secondary battery 100 can be reduced.
  • Ra is preferably 0.05 to 0.4 ⁇ m. If Rpk satisfies the above range and Ra is within the range, it is possible to avoid the formation of a through hole in the ion exchange membrane 6 from a more macro viewpoint.
  • the metal electrode 5 is used in the positive electrode chamber Kc and the negative electrode chamber Ka.
  • the electrolytic solution used contains sulfuric acid. Therefore, it is preferable that the metal or alloy which comprises the metal electrode 5 has corrosion resistance. Therefore, it is preferable to use a material having high corrosion resistance, such as titanium or an alloy thereof, for the metal electrode 5.
  • a material having high corrosion resistance such as titanium or an alloy thereof, for the metal electrode 5.
  • the metal foil that constitutes the metal electrode 5 is of a type and material as long as the protruding peak height (Rpk) is within the above-described range and has a metal sheet having an opening (hereinafter referred to as “opening sheet”).
  • the opening diameter and the opening shape are not particularly limited and can be arbitrarily selected.
  • an expanded metal in which an opening is formed by cutting and stretching a metal sheet, a punching metal in which an opening is formed by hollowing a metal sheet, and the like can be given as examples.
  • the expanded metal is easy to ensure the flatness of the metal sheet before cutting, and the protruding peak height (Rpk) is easy to be within a predetermined range even after the opening is formed.
  • the coating of the metal electrode will be described.
  • the surface of the metal electrode 5 is preferably coated with a coating film.
  • a coating film As an effect of coating, for example, in the case of a titanium metal electrode, it is avoided that titanium is oxidized and passivated.
  • the protrusion peak part height (Rpk) of the 1st main surface of the electrode is in the above-mentioned range.
  • the coating described below if the coating described below is used, if the protruding peak height (Rpk) of the first main surface of the opening sheet constituting the metal electrode 5 is within the above numerical range, the coating is usually performed. The subsequent first main surface also satisfies the same range.
  • the metal electrode 5 provided on the positive electrode 3 is preferably coated on the surface of the metal electrode 5 with a noble metal or a noble metal oxide, and more preferably with a noble metal oxide.
  • the noble metal oxide itself has an activity of changing the valence of vanadium contained in the electrolytic solution. Therefore, generation
  • the metal electrode 5 provided on the negative electrode 4 is preferably coated with carbon on the surface of the metal electrode 5. By covering with carbon, an unnecessary reaction in which hydrogen ions become hydrogen can be suppressed, and generation of hydrogen in the negative electrode chamber Ka can be suppressed.
  • the noble metal or noble metal oxide covering the metal electrode 5 of the positive electrode 3 can be arbitrarily selected, but one or more selected from the group consisting of iridium (Ir), rhodium (Rh), platinum (Pt) and ruthenium (Ru) It is preferable to have these elements.
  • the carbon covering the metal electrode 5 of the negative electrode 4 can be arbitrarily selected, but is preferably sputtered carbon, conductive diamond, diamond-like carbon, or a mixture thereof. Since these substances are stable even in the electrolytic solution and can flow electricity, they can be suitably used as a coating film. Note that these carbon films can be obtained by a vacuum deposition method, a sputtering film formation method, a plasma ion implantation film formation method (DLC), or the like.
  • DLC plasma ion implantation film formation method
  • the coating thickness is arbitrarily selected.
  • the average thickness of the noble metal or noble metal oxide covering the metal electrode 5 of the positive electrode 3 is preferably 0.05 to 0.5 ⁇ m.
  • the average thickness of the carbon covering the metal electrode 5 of the negative electrode 4 is preferably 0.03 to 0.3 ⁇ m.
  • the thickness of the coating film is within the range, it is possible to sufficiently avoid the occurrence of pinholes or the like in the coating film. Since carbon can form a denser film than noble metals or noble metal oxides, the film thickness may be small.
  • a cation exchange membrane or an anion exchange membrane can be used.
  • a perfluorocarbon polymer having a sulfonic acid group a hydrocarbon polymer compound having a sulfonic acid group, a polymer compound doped with an inorganic acid such as phosphoric acid, and some Examples thereof include an organic / inorganic hybrid polymer substituted with a proton conductive functional group, and a membrane made of a proton conductor obtained by impregnating a polymer matrix with a phosphoric acid solution or a sulfuric acid solution.
  • perfluorocarbon polymers having sulfonic acid groups are preferred.
  • a perfluorocarbon polymer comprising a perfluoro side chain having a hydrophobic Teflon skeleton (hydrophobic polytetrafluoroethylene skeleton) composed of carbon-fluorine and a sulfonic acid group, such as Nafion (registered trademark), can be more preferably used.
  • a hydrophobic Teflon skeleton hydrophobic polytetrafluoroethylene skeleton
  • Nafion registered trademark
  • the thickness of the ion exchange membrane 6 can be arbitrarily selected, but is preferably 120 ⁇ m or less, more preferably 60 ⁇ m or less, and even more preferably 10 to 40 ⁇ m. If the thickness of the ion exchange membrane 6 is reduced, the cell resistance of the redox flow secondary battery 100 can be reduced.
  • the height of the protruding peak portion of the first main surface of the metal electrode 5 that is also a metal protective film is set so as to satisfy the following relational expression (1). Is preferred. (Rpk (A) + Rpk (B)) ⁇ ⁇ ⁇ T (1)
  • T is the thickness of the ion exchange membrane
  • Rpk (A) is the height of the protruding peak of the positive metal electrode
  • Rpk (B) is the height of the protruding peak of the negative metal electrode
  • is It is a multiplier. ⁇ is preferably 1.2, more preferably 1.4, and even more preferably 1.8.
  • Rpk is the height of the protruding peak of the metal electrode.
  • is a multiplier, and T and ⁇ are the same as in equation (1).
  • the thickness of the ion exchange membrane 6 satisfies the above relational expressions (1) and (2), the probability that through holes are formed in the ion exchange membrane 6 by the metal electrode 5 can be further reduced. Further, by providing the metal electrode 5, the thickness of the ion exchange membrane 6 can be reduced to 60 ⁇ m or less.
  • the metal electrode 5 between the carbon electrode 2 and the ion exchange membrane 6, a through hole is formed in the ion exchange membrane 6, It can prevent that a positive electrode electrolyte solution and a negative electrode electrolyte solution mix and short-circuit.
  • the first main surface of the metal electrode 5 in contact with the ion exchange membrane 6 is a predetermined surface, there is almost no possibility that carbon fibers or the like used for the electrode will pierce the ion exchange membrane and cause cracks or through holes.
  • the thickness of the ion exchange membrane 6 can be reduced, and the cell resistance of the redox flow secondary battery 100 can be reduced.
  • the ion exchange membrane 6 may be distributed as a composite provided with the metal electrode 5.
  • the composite includes the ion exchange membrane 6 and the metal electrode 5 provided on at least one surface of the ion exchange membrane 6.
  • the protruding peak height (Rpk) of the surface of the metal electrode 5 in contact with the ion exchange membrane 6 is 0.1 to 2 ⁇ m.
  • Electrolytic solution is supplied from the inlet (not shown) to the electrode chamber K of the redox flow secondary battery 100 (in the drawing, the flow of the electrolytic solution is indicated as Fin (Flow in)).
  • the electrolytic solution supplied into the electrode chamber K reacts with the carbon electrode 2 in the electrode chamber K. Ions generated during the reaction flow between the positive electrode 3 and the negative electrode 4 through the ion exchange membrane 6 and are charged and discharged.
  • the electrolytic solution after the reaction is discharged from the outlet (not shown) (in the figure, the flow of the electrolytic solution is indicated as Fout (Flow out)).
  • Fout Flow out
  • the position and number of the inlet and outlet may be arbitrarily set as long as the electrolyte can be passed through the electrode chamber K.
  • the inflow port, the outflow port, and the flow path may be provided in the cell frame 20.
  • a channel is formed by providing a groove or the like on the surface of the bipolar plate 1 on the electrode chamber K side or by providing a through hole in the bipolar plate 1, an inlet connected to the groove or the channel of the bipolar plate 1 And an outlet may be provided.
  • the supply of the electrolytic solution may be discharged through a flow path connecting the cell frame 20 and the bipolar plate 1.
  • the carbon electrode 2 pushes the ion exchange membrane 6 by the flow of the electrolyte supplied into the electrode chamber K. Without the metal electrode 5, a through hole may be formed in the ion exchange membrane 6 by the carbon fiber constituting the carbon electrode 2. Since the redox flow secondary battery according to the present embodiment has the predetermined metal electrode 5, even if the metal electrode 5 is in close contact with the ion exchange membrane 6 due to the flow of the electrolytic solution, there are through holes or the like in the ion exchange membrane. Formation is suppressed.
  • each member is prepared.
  • the bipolar plate 1 As the bipolar plate 1, the ion exchange membrane 6 and the cell frame 20, known ones can be used. As long as there is no problem in particular, you may select arbitrarily a size, a kind, etc. as needed. For example, you may purchase a commercial item.
  • the carbon electrode 2 can be arbitrarily selected according to need as long as there is no particular problem.
  • a known product such as a commercial product may be obtained.
  • the metal electrode 5 as a metal protective film having an opening can be obtained by processing the material so that the protruding peak height (Rpk) of the surface in contact with the ion exchange membrane 6 is 0.1 to 2 ⁇ m.
  • Rpk protruding peak height
  • a metal sheet on which a predetermined surface is formed by rolling may be prepared, and an opening sheet may be produced by further cutting and stretching the metal sheet.
  • after making a hole in a metal sheet it may roll after that and may obtain the metal protective film which has an opening part.
  • rolling using a special mold with very high flatness or rolling under special compression conditions may be performed.
  • the metal sheet 5 having the first main surface described above can be obtained by processing the aperture sheet.
  • the shape of the opening of the metal protective film can be arbitrarily selected, and examples thereof include a polygon such as a square and a rectangle, a circle and an ellipse.
  • the openings may be arranged randomly, but are preferably arranged regularly.
  • An example of the metal protective film is 5A in FIG.
  • the number of openings can also be arbitrarily selected as necessary.
  • An example is 10 to 1000 per 1 cm 2 area, and 100 to 300 are preferably used.
  • a cell frame 20 is provided on the ion exchange membrane 6.
  • a laminate in which the metal electrode 5, the carbon electrode 2, the bipolar plate 1, the carbon electrode 2, and the metal electrode 5 are laminated in this order is prepared.
  • the laminated body in which the metal electrode 5, the carbon electrode 2, the bipolar plate 1, the carbon electrode 2, and the metal electrode 5 are laminated in this order is inserted into the opening of the cell frame 20.
  • the ion exchange membrane 6 is disposed thereon. Subsequently, the same configuration is sequentially laminated so that a laminated body is provided with the ion exchange membrane 6 interposed therebetween. A gasket or the like is provided on the joint surface between the cell frames 20. Then, after stacking the required number, end plates are provided at both ends in the stacking direction. Finally, by tightening and fixing the end plates, the laminate is compressed so as to fit within the opening of the cell frame 20. As a result, since each member which comprises a laminated body mutually_contact
  • the carbon electrode 2 having carbon fibers is strongly pressed against the ion exchange membrane 6 side during the assembly process and operation of the redox flow secondary battery. Even if it is made, it can prevent that a through-hole arises in the ion exchange membrane 6. FIG.
  • FIG. 2 is an enlarged perspective view of a part of the metal electrode of the redox flow secondary battery according to the second embodiment.
  • the number of metal protective films may be 1, or any number selected from two or more arbitrarily selected, for example, any number selected from 2 to 10, such as 2, 3 and 4 It may be.
  • This redox flow secondary battery is different from the redox flow secondary battery according to the first embodiment in that a second metal electrode 5B is further provided between the metal electrode 5 and the carbon electrode 2.
  • the metal electrode on the ion exchange membrane 6 side is referred to as a first metal electrode 5A
  • the metal electrode on the bipolar plate 1 side is referred to as a second metal electrode 5B.
  • These have the same opening shape and the same distance between the openings, and basically have the same pattern, but the opening shape and the distance between the openings may be different from each other.
  • the first metal electrode 5A is the same electrode as the metal electrode 5 according to the first embodiment.
  • the range of the protruding peak height (RpK) is not particularly limited to 0.1 to 2 ⁇ m. Except for this point, the metal electrode 5B is the same as the metal electrode 5A. It should be noted that there is no particular problem even if the second metal electrode 5B has the protruding peak height of the present invention.
  • the positions where the openings are formed in the first metal electrode 5A and the second metal electrode 5B are shifted in the stacking direction.
  • the positions of the openings are shifted.
  • the electrolyte flowing in from the opening 5Aa of the first metal electrode 5A flows, for example, between the first metal electrode 5A and the second metal electrode 5B in the in-plane direction, and then the second metal electrode 5B. It flows out from the opening 5Ba.
  • a plurality of metal electrodes 5 are stacked to form an in-plane flow path between adjacent metal electrodes 5.
  • the electrolytic solution after the reaction can be quickly discharged to the outlet.
  • the first main surface of the metal electrode in contact with the ion exchange membrane 6 has a predetermined shape set in the present invention. Therefore, formation of a through hole in the ion exchange membrane 6 is suppressed.
  • any configuration of the redox flow secondary battery according to the first embodiment and the redox flow secondary battery according to the second embodiment can be selected depending on the application.
  • Example 1 [Preparation of parts] A 50 mm ⁇ 50 mm flat bipolar plate made of a carbon-resin molding was prepared. A cell frame 20 was prepared. The size of the cross section in the in-plane direction of the electrode chamber K surrounded by the cell frame 20 was 50 mm ⁇ 50 mm.
  • the carbon electrode used was 50 mm ⁇ 50 mm carbon fiber paper (SDL, GDL10AA).
  • Nafion N212 registered trademark, manufactured by DuPont
  • the thickness of this ion exchange membrane was about 50 ⁇ m.
  • an expanded metal made of titanium having a thickness of 0.02 mm was used as an opening sheet as a metal protective film.
  • the aperture ratio is about 70%, the numerical aperture is about 200 per cm 2 , and the size is 50 mm ⁇ 50 mm.
  • This expanded metal was chemically polished to make Rpk 1 ⁇ m or less.
  • the opening sheet used for the positive electrode side was coated with iridium oxide to form a coating film.
  • the opening sheet used on the negative electrode side was coated with sputtered carbon to form a coating film. In this way, metal electrodes (metal protective films) on the positive electrode side and the negative electrode side were obtained.
  • the thickness of the coating film of the metal electrode on the positive electrode side was 0.1 ⁇ m, and the thickness of the coating film of the metal electrode on the negative electrode side was 0.05 ⁇ m. Further, the protruding peak height (Rpk) of the surface of the metal electrode in contact with the ion exchange membrane was 0.8 ⁇ m on both the positive electrode side and the negative electrode side.
  • the redox flow secondary battery of Example 1 including two cells was assembled by sequentially stacking the prepared members. That is, the redox flow secondary battery has a cell stack structure in which one layer of cells is further stacked on one cell.
  • Comparative Example 1 differs from Example 1 in that no metal electrode was provided. Other configurations were the same as those in Example 1.
  • Comparative Example 2 In Comparative Example 2, the expanded metal on either the positive electrode side or the negative electrode side was not polished. For this reason, the protruding peak height (Rpk) of the surface of the metal electrode in contact with the ion exchange membrane was 3.2 ⁇ m. This point is different from the first embodiment. Other configurations were the same as those in Example 1.
  • Example 2 In Example 2, neither the positive electrode nor the negative electrode opening sheet was coated. This point is different from the first embodiment. Other configurations were the same as those in Example 1.
  • Examples 3 to 5 In Examples 3 to 5, the film thickness of the coating film covering the positive and negative opening sheets was changed as shown in Table 1. This point is different from the first embodiment. Other configurations are the same as those in the first embodiment.
  • Example 6 and 7 In Example 6 and Example 7, the film thickness of the ion exchange membrane was changed as shown in Table 1. This point is different from the first embodiment. Other configurations are the same as those in the first embodiment.
  • Comparative Examples 3 and 4 In Comparative Example 3 and Comparative Example 4, the film thickness of the ion exchange membrane was changed as shown in Table 1. This point is different from Comparative Example 1. Other configurations were the same as those in Comparative Example 1.
  • Example 1 When Example 1 was compared with Comparative Example 1 and Comparative Example 2, Coulomb efficiency of Example 1 was large and cell resistance was small. This is considered to be because a through-hole or a crack did not enter the ion exchange membrane by providing a predetermined metal electrode.
  • the difference of 1% in Coulomb efficiency in redox flow secondary batteries is significant. In a redox flow secondary battery, charge and discharge are repeated. Therefore, the difference of 1% contributes cumulatively for each charge / discharge, and greatly affects the performance when the redox flow secondary battery is actually used. That is, the difference of several percent in Coulomb efficiency between Example 1 and Comparative Examples 1 and 2 has a great influence on the actual performance.
  • Examples 1 to 5 when Examples 1 to 5 were compared, in Examples 2 and 3, the cell resistance increased due to continuous operation. Thereafter, when the redox flow secondary batteries of Examples 2 and 3 were disassembled, titanium used for the metal electrode was passivated. In Examples 1, 4 and 5, the cell resistance did not increase. That is, it was found that the redox flow secondary battery can be stably operated for a long period of time by coating the surface of the metal electrode with a predetermined film thickness as in Examples 1, 4 and 5. Note that the redox flow secondary batteries of Examples 2 and 3 operate with high Coulomb efficiency, and can be used sufficiently depending on applications such as no large current.
  • Example 7 the cell resistivity can be reduced by reducing the thickness of the ion exchange membrane. Moreover, according to Example 7, even if the thickness of an ion exchange membrane is as thin as 20 micrometers, it turns out that the fall of Coulomb efficiency can be suppressed by providing a metal electrode. That is, it can be said that the thickness of the ion exchange membrane can be reduced by providing the metal electrode.
  • the present invention can provide a redox flow secondary battery with low resistance and excellent coulomb efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

このレドックスフロー二次電池は、正極と、前記正極に対向する負極と、前記正極と前記負極との間に設けられたイオン交換膜とを備え、前記正極と前記負極の少なくとも一方の電極は、開口部を有する金属保護膜と、炭素繊維を含む炭素電極とをイオン交換膜側から順に有し、前記金属保護膜の前記イオン交換膜と接触する面の突出山部高さが0.1~2μmである。

Description

レドックスフロー二次電池及びその電極
 本発明は、レドックスフロー二次電池及びその電極に関する。
 本願は、2016年9月2日に、日本に出願された特願2016-172243号に基づき優先権を主張し、その内容をここに援用する。
 大容量蓄電池としてレドックスフロー二次電池が知られている。レドックスフロー二次電池は、一般に、電解液を隔てるイオン交換膜と、そのイオン交換膜の両側にそれぞれ設けられた電極とを有する。イオン交換膜を挟んだそれぞれの側、すなわち正極室と負極室には、正極電解液及び負極電解液が供給される。これら電極上で酸化反応と還元反応をそれぞれ同時に進めることにより、充放電が行われる。充放電の際には、例えば、どちらか一方の電極で水素イオンが生成される構成の際には、発生した水素イオンはイオン交換膜を通って反対の電極側に移動することができ、電解液の電気的中性を保つことができる。電極には、炭素部材が広く用いられている(例えば、特許文献1及び2)。またこの他、電極にチタニウムやジルコニウムのような金属を用いることも知られている(例えば、特許文献3及び4)。
 レドックスフロー二次電池では、電極は各電極室内に格納されている。レドックスフロー二次電池は、電極室内に電解液を供給し、電解液を循環させながら動作する。例えば、電解液中のイオンが、電子を電極に渡すと、この電子は電極から外部を通って授受される。またイオン交換膜を介してプロトンの授受が行われる。このようにして、レドックスフロー二次電池は充放電を行う。
 このようなレドックスフロー二次電池では、電極に用いられる炭素繊維等がイオン交換膜に突き刺さり、イオン交換膜に亀裂や貫通孔等が生じることがある。イオン交換膜に亀裂や貫通孔が生じると、正極側の電極室(正極室)に供給される正極電解液と、負極側の電極室(負極室)に供給される負極電解液と、が混ざり、レドックスフロー二次電池の一部が短絡する。このような問題は、レドックスフロー二次電池のクーロン効率の低下、短寿命化の原因となる。
 イオン交換膜の破損を防ぐ手段として、イオン交換膜を厚くすることにより、炭素繊維が突き刺さってもイオン交換膜を貫通しないようにしたりする方法や、炭素繊維等を含む電極とイオン交換膜との間に、電極よりも柔らかい材料から構成される多孔質シート材を設ける方法が提案されている(例えば、特許文献5)。
 しかしながら、上述のレドックスフロー二次電池は、セル抵抗等の面で、更なる性能改善の余地があった。
 例えば、特許文献3に記載のレドックスフロー二次電池は、正極及び負極よりも柔らかい材料として、フッ素樹脂、フェノール樹脂及びエンジニアリングプラスチック等の有機材料の下記に示すような使用を提示している。しかしながら、これらの導電性を有さない有機材料を、正極又は負極とイオン交換膜との間に設けると、電極材とイオン交換膜との距離が広がると共に、伝導に寄与しない部分が生じる。そのため、レドックスフロー二次電池のセル抵抗が上昇する。
特許第3560181号公報 国際公開第2014/033238号公報 特開2015-228364号公報 国際公開第2015-156076号公報 特開2013-65530号公報
 本発明は上記問題に鑑みてなされたものであり、低抵抗でクーロン効率に優れたレドックスフロー二次電池を得ることを目的とする。
 本発明者らは、鋭意検討の結果、イオン交換膜と正極及び負極との間に開口部を有する金属保護膜を設け、その金属保護膜の表面状態を規定することで、イオン交換膜の損傷を防いで短絡を抑制し、かつ、レドックスフロー二次電池のセル抵抗の上昇を抑制できることを見出した。
 すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。
(1)本発明の第一の態様のレドックスフロー二次電池は、正極と、前記正極に対向する負極と、前記正極と前記負極との間に設けられたイオン交換膜とを備え、前記正極及前記負極の一方又は両方が、金属保護膜と、炭素繊維を含む炭素電極と、を前記イオン交換膜側から順に有し、前記金属保護膜の第1主面が、前記イオン交換膜側に設けられており、
前記金属保護膜は、開口部を有し、第1主面の表面の突出山部高さ(Rpk)が0.1~2μmである、レドックスフロー二次電池である。
 本発明の第一の態様のレドックスフロー二次電池は、以下の特徴を好ましく含む。下記特徴は必要に応じて互いに組み合わせることも好ましい。
(2)前記金属保護膜及び炭素電極は、前記正極及び前記負極の両方に設けられていてもよい。
(3)前記イオン交換膜の厚みをTとした時に、前記金属保護膜の突出山部高さが以下の関係式(1)を満たしてもよい。
 (Rpk(A)+Rpk(B))×1.2≦T≦60μm…(1)
 (式(1)において、Tはイオン交換膜の厚さ(μm)、Rpk(A)は正極の金属保護膜の突出山部高さ(μm)、Rpk(B)は負極の金属保護膜の突出山部高さ(μm)、をそれぞれ表す。)
(4)上記金属保護膜は導電性を有する金属電極であってもよい。
(5)前記正極の金属電極は、表面が貴金属又は貴金属酸化物で被覆されていてもよい。
(6)前記負極の金属電極は、表面がカーボンで被覆されていてもよい。
(7)前記金属電極と前記炭素電極との間に、開口部を有する第2の金属電極をさらに有し、前記金属電極と前記第2の金属電極との間で、互いの開口部の位置がずれていてもよい。
 (8)本発明の第二の態様は、レドックスフロー二次電池のレドックスフロー二次電池金属電極であって、開口部を有し、少なくとも第1主面の表面の突出山部高さ(Rpk)が0.1~2μmである金属電極である。
 第二の態様の金属電極は、以下の特徴を好ましく含む。下記特徴は必要に応じて互いに組み合わせることも好ましい。
(9)前記金属電極は、チタン又はその合金により構成されていてもよい。
(10)前記金属電極は、エキスパンドメタルであってもよい。
(11)前記金属電極は、厚みが0.2mm以下であってもよい。
(12)前記金属電極は、表面が貴金属又は貴金属酸化物で被覆されていてもよい。
(13)前記貴金属又は前記貴金属酸化物を構成する貴金属元素は、イリジウム(Ir)、ロジウム(Rh)、プラチナ(Pt)及びルテニウム(Ru)からなる群から選択された1種以上の元素であってもよい。
(14)前記貴金属又は貴金属酸化物の被覆の平均厚みが、0.05~0.5μmであってもよい。
(15)前記金属電極は、表面がカーボンで被覆されていてもよい。
(16)前記カーボンは、スパッタカーボン、導電性ダイヤモンド、ダイヤモンドライクカーボン又はこれらの混合物であってもよい。
(17)前記カーボンの被覆の平均厚みが、0.03~0.3μmであってもよい。
 本発明のレドックスフロー二次電池は、低抵抗でクーロン効率に優れる。
第1実施形態にかかるレドックスフロー二次電池の概略断面模式図である。 第2実施形態にかかるレドックスフロー二次電池の金属電極の一部を拡大した概略斜視図である。
 以下、本発明のレドックスフロー二次電池及び電極の好ましい例について、図を適宜参照しながら詳細に説明する。本発明では、開口部を有し、少なくとも第1主面の表面の突出山部高さが0.1~2μmである、優れた金属電極が提供される。さらにこの電極を用いた、優れた二次電池や電極が提供される。
 以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
(第1実施形態)
 図1は、第1実施形態にかかるレドックスフロー二次電池の断面模式図である。
 図1に示すレドックスフロー二次電池100は、セル10を含む。より具体的には、複数のセル10が積層されたセルスタック構造を有する。セル10の積層数は、用途に応じて適宜変更することができる。なお単セルのみの構造としてもよい。セルスタック構造とし、さらにセル10を複数直列接続する場合、電池から実用的な電圧を得ることができる。
 このような構造では、正極電解液のタンクと負極電解液のタンク(図示略)からの電解液を、それぞれのポンプ(図示略)を用いて、各セルに循環させてよく、同じ状態の電解液を各セルに流通できる。このため、各電池の充電状態等を均等とし、各電池の充電状態などを均等にすることが可能である。
 セル10は、隔膜であるイオン交換膜6と、正極3(炭素電極2と金属保護膜極5)と負極4(金属保護膜5と炭素電極2)を含む。各電極のイオン交換膜側でない表面側には、それぞれ一対の双極板1が設けられる。電極や双極板の端部はセルフレーム20で覆われる。図1ではあまり明確ではないが、セル10内には電解液が流れる空間が負極側と陽極側の電極質のそれぞれあり、セルの構成に応じて、電解液はイオン交換膜6と電極の間や、電極の内部などを流れることができる。
 セル10は、セルフレーム20によって外周を覆われている。
図1では、2つのセルフレーム20が、イオン交換膜6を両側から挟んでいる状態が示される。セルフレーム20は、例えば額縁形状を有する構造体であり、セルスタック構造の積層方向において、互いに隣接するイオン交換膜6の間に存在する。1組のセルフレーム20は、1組の双極板1及び1つのイオン交換膜6と共に、これらに囲まれた二つの電極室K(Kc,Ka)を、セル10内に形成する。電極室Kの一方は正極室Kcとなり、他方は負極室Kaとなる。セルフレーム20は、正極室Kc及び負極室Kaに供給される電解液が、外部に漏れだすのを防ぐ。なおセルフレーム20や双極板1は、セル10に隣接する他のセル10の一部を形成しても良い。
 以下、セル10が積層されるセルスタック構造の積層方向を単に「積層方向」、セルスタック構造の積層方向に垂直な面方向を「面内方向」と言うことがある。
 (セル)
 一つのセル10は、上述したように、一組の双極板1と、一つの正極3と、一つの負極4と、一つのイオン交換膜6とを有する。隣接する双極板1の間には、正極3と、イオン交換膜6と、負極4が順に配設される。イオン交換膜6は、正極室Kcと負極室Kaとの間の電解液の移動を遮断し、プロトン(水素イオン)は通過させる。
 <双極板>
 双極板1は、電流は通すが電解液を通さない導電性の板であり、集電板である。双極板1は、電極に電子を授受する役割を持つ集電体である。双極板1は、正極部1Aと負極部1Bを有する。正極部1Aと負極部1Bは明確な区別がされるものではなく、セル10の構成範囲として便宜上区別した。双極板1においては、セルの正極に隣接している側を正極部1Aとし、別のセルの負極に隣接している側を負極部1Bとしている。
 双極板1の材質は任意に選択でき、導電性を有し、電解液に対して耐性を有し、電極質を形成できるものであれば特に問わない。例えば炭素を含有する導電性材料を用いることができる。具体的には、黒鉛と有機高分子化合物とからなる導電性樹脂、もしくは黒鉛の一部をカーボンブラックとダイヤモンドライクカーボンの少なくとも1つに置換した導電性樹脂、カーボンと樹脂とを混練成形した成形材等が挙げられる。これらのうち、カーボンと樹脂とを混練成形した成形材を用いることが好ましい。
 <正極及び負極>
 正極3は、炭素繊維を含む層からなる電極(以下、炭素電極という)2と、開口部を有する金属保護膜、本例では開口部を有する金属箔からなる電極(以下、金属電極という)5とを、を有する。負極4は、炭素電極2と、金属電極5とによって構成されている。正極3及び負極4のいずれにおいても、イオン交換膜6側から、金属電極5、炭素電極2の順で配設され、かつ、金属電極5は後述する第1主面をイオン交換膜6側に向けて配置されている。
 <炭素電極>
 炭素電極2は任意に選択できるが、例えば、炭素繊維を含む導電性シートが例として挙げられる。ここで言う炭素繊維とは、繊維状炭素であり、例えばカーボンファイバー、カーボンナノチューブ等が挙げられる。これらの中でも、特に径が1μm以上のカーボンファイバーを用いると、導電性シートが破損しにくなるので好ましい。炭素電極2が炭素繊維を含むことで、電解液と炭素電極2の接触面積を増し、レドックスフロー二次電池100の反応性が高まる。
 炭素繊維を含む導電性のシートとしては、例えば、カーボンフェルト、カーボンペーパー等を用いることができる。炭素繊維を含む導電性シートは、炭素繊維の端部が導電性シートから飛び出ていることがある。
 一般的な構造では、この導電性シートとイオン交換膜とは、直接互いに押し付けられている。従って導電性シートから飛び出た炭素繊維の端部があると、この端部がイオン交換膜に突き刺さり、イオン交換膜に亀裂や貫通孔を生じさせる可能性がある。しかしながら、本発明の構成では、金属電極5が前記シートと膜の間に存在することで、イオン交換膜6が保護される。
 <金属保護膜>
 金属保護膜でもある金属電極5は、開口部を有する導電性の金属箔である。金属電極5は、正極または負極を構成する電極の一部である。金属電極5は、電極室K(正極室Kc及び負極室Ka)内に設けられる。金属電極5は、イオン交換膜6の少なくともいずれか一方、好ましくは両側に配設される。
 金属電極5は、イオン交換膜6に炭素電極2を構成する炭素繊維が刺さるのを防ぐ保護膜として機能する。炭素電極に含まれる炭素繊維がイオン交換膜6に突き刺さり、イオン交換膜6に亀裂や貫通孔を生じると、クーロン効率が低下することがある。しかしながら、本発明では、金属保護膜があることにより、亀裂や貫通孔が生じにくく、クーロン効率が低下しにくい。
 金属保護膜の突出山部高さ(Rpk)について説明する。
 金属電極5の少なくとも一方の主面の突出山部高さ(Rpk)は、0.1~2μmに制御されている。以下、このように突出山部高さ(Rpk)の制御された金属電極5の面を「第1主面」と言う。第2主面はこの電極の裏側の面、すなわち第1主面とは逆側の面であり、必要に応じて、こちらの面も同様に制御されても良い。金属電極5は第1主面をイオン交換膜6側に向けて配置される。これは、金属保護膜でもある金属電極5自体が、イオン交換膜6に亀裂や貫通孔を生み出す原因とならないようにするためである。
 突出山部高さ(Rpk)とは、表面形状を計測して得られた、負荷曲線上で定義されるコア部より上側に突出した突出山部の平均高さを意味する。前記コア部とは、負荷曲線から得られた等価直線が、負荷長さ率0%の位置での縦軸と100%の位置での縦軸と交わる、二つの高さ位置の間の領域を意味する。なお負荷曲線では、縦軸が高さであり、横軸が負荷長さ率である。
 前記等価直線は、粗さ曲線の測定点の40%を含む負荷曲線の中央部分において求める。前記等価直線は、負荷長さ率の差ΔMrを40%にして引いた負荷曲線の割線が、最もゆるい傾斜となる直線である。
 負荷曲線は、輪郭曲線の高さの分布(確率密度)を積分したものとして考えることができるので、負荷曲線より算出した。突出山部高さ(Rpk)は、金属電極5のイオン交換膜6と接する面における突起の発生確率を考慮した値である。
 なお、Rpk値を得るための金属電極の表面形状の計測には、例えば、レーザー顕微鏡;キーエンス(商品名:VK-X150)社製などの測定装置を用いることができる。レーザー顕微鏡を用いて、金属電極5の開口部以外の任意の表面を、視野100μm×100μm四方で測定し、表面の粗さについて、負荷曲線を求めることができる。Rpkは、その負荷曲線から算出できる。Rpk測定値は、任意の箇所3点を測定して求めた各々のRpkの平均値とする。
 「負荷曲線」はJIS B 0601:2013「製品の幾何特性仕様(GPS)-表面性状:輪郭曲線方式-用語、定義及び表面性状パラメータ」にて定義されており、観測視野画像の各画素における表面高さデータ全測定点から算出されたものである。
 「突出山部高さ(Rpk)」の詳細は、JIS B 0671-2:2002「製品の幾何特性仕様 (GPS)-表面性状:輪郭曲線方式;プラトー構造表面の特性評価-第2部:線形表現の負荷曲線による高さの特性評価」に規定されている。
 金属電極5は、その表面が平坦になるように処理して製造される。そのため、突起の発生確率は非常に小さくなっている。なお、従来の表面状態の評価で用いられるRa、Rzは、輪郭曲線(曲面)上で定義されるものである。Ra(粗さ曲線の算術平均高さ)は平均的な状態を表すパラメータであり、突起の評価には不向きである。また、Rz(粗さ曲線の最大高さ)では発生確率の低い突起は測定視野から外れる可能性があり、突起を見過ごす恐れがある。しかし、粗さ分布を基にした負荷曲線上で定義されるRpk(突出山部高さ:コア部の上にある突出山部の平均高さ)を評価することで、発生確率の低い突起の状態を適切に評価することができる。
 金属電極5の厚さは任意に設定できるがが、0.2mm以下が好ましく、0.001~0.2mmであることがより好ましく、0.003~0.03mmであることがさらに好ましい。開口部以外の厚さは一定であることが好ましいが、必要に応じて変更しても良い。また、金属電極5の開口率は、50~85%が好ましく、60~80%がより好ましく、65~75%がさらに好ましい。金属電極5の厚さ及び開口率がこの範囲内であれば、炭素繊維によるイオン交換膜の損傷をより防止できる。なお、開口率は、[金属電極の開口部の面積の合計]を[開口部を含む金属電極の一面の面積]で割ったものである。
 上述のように、金属電極5が、炭素電極2とイオン交換膜6との間に挟まることで、炭素電極2を構成する炭素繊維がイオン交換膜6に貫通孔を形成することも抑制できる。また金属電極5のイオン交換膜6と接する面の突出山部高さ(Rpk)が0.1~2μmであれば、金属電極5の第1主面は、充分に突起の発生を抑えた平坦面であると言える。すなわち、金属電極5が、イオン交換膜6の亀裂や貫通孔の原因とはならない。そのため、イオン交換膜6の厚みを薄くすることができ、レドックスフロー二次電池100のセル抵抗を低減できる。
 なお、Raは0.05~0.4μmであることが好ましい。Rpkが上記範囲を満たした上で、更にRaが当該範囲内であれば、よりマクロな視点でもイオン交換膜6に貫通孔が生じることが避けられる。
 次に、金属電極の好ましい材料について説明する。
 金属電極5は、正極室Kc及び負極室Ka内で使用される。例えば、バナジウムイオンを用いたレドックスフロー二次電池の場合、用いられる電解液は硫酸を含む。そのため、金属電極5を構成する金属又は合金は、耐腐食性を有することが好ましい。そのため、金属電極5には高い耐腐食性を有する材料、例えばチタン又はその合金を用いることが好ましい。このような金属を金属電極5に用いると、レドックスフロー二次電池100の安定的な動作が可能となる。
 次に、金属電極に好ましく使用される金属箔を説明する。
 金属電極5を構成する金属箔は、突出山部高さ(Rpk)が上述の範囲内であって、開口部を有する金属シート(以下、「開口シート」という。)であれば、種類や材料や開口径や開口形などは特に問わず、任意に選択できる。例えば、金属シートに切り目を入れ引き延ばすことで開口部が形成されたエキスパンドメタルや、金属シートをくりぬいて開口部が形成されたパンチングメタル等が、例として挙げられる。エキスパンドメタルは、切り目を入れる前の金属シートの平坦性が確保しやすく、開口部を形成した後でも突出山部高さ(Rpk)を所定の範囲内に収めやすい。
 次に、金属電極のコーティングを説明する。
 金属電極5が、電解液等で変質することを防ぐために、金属電極5の表面は、好ましくは全ての表面は、被覆膜でコーティングされていることが好ましい。コーティングの効果としては、例えばチタンの金属電極の場合は、チタンが酸化し不動態化することが避けられる。
 なお、コーティングをされた金属電極5であっても、その電極の第1主面の突出山部高さ(Rpk)は、上述の範囲内である。なお以下に述べるような被覆が用いられていれば、金属電極5を構成する開口シートの第1主面の突出山部高さ(Rpk)が上述の数値範囲内であれば、通常は、被覆後の第1主面も、同範囲を満たす。
 正極3に設けられる金属電極5は、金属電極5の表面が、貴金属又は貴金属酸化物で被覆されていることが好ましく、貴金属酸化物で被覆されていることがより好ましい。貴金属酸化物は、それ自身が電解液に含まれているバナジウムの価数を変える活性がある。そのため、正極室Kc内で、酸化物イオンが酸素になるという不要な還元反応の発生を抑制し、正極室Kc内で酸素が発生することを抑制できる。電解液中のガス発生は、レドックスフロー二次電池のセル抵抗の増加に繋がる。
 また負極4に設けられる金属電極5は、金属電極5の表面がカーボンで被覆されていることが好ましい。カーボンで被覆することで、水素イオンが水素になるという不要な反応を抑制し、負極室Ka内で水素が発生することを抑制できる。
 正極3の金属電極5を被覆する貴金属又は貴金属酸化物は任意に選択できるが、イリジウム(Ir)、ロジウム(Rh)、プラチナ(Pt)及びルテニウム(Ru)からなる群から選択された1種以上の元素を有することが好ましい。
 また負極4の金属電極5を被覆するカーボンは任意に選択できるが、スパッタカーボン、導電性ダイヤモンド、ダイヤモンドライクカーボン又はこれらの混合物であることが好ましい。これらの物質は、電解液中でも安定であり、電気を流すことができるので、被覆膜として好適に用いることができる。なお、これらのカーボン膜は、真空蒸着法、スパッタリング成膜法、プラズマイオン注入成膜法(DLC)等により得ることができる。
 コーティングの厚さは任意に選択される。しかしながら、正極3の金属電極5を被覆する貴金属又は貴金属酸化物の平均厚みは、0.05~0.5μmであることが好ましい。また負極4の金属電極5を被覆するカーボンの平均厚みは、0.03~0.3μmであることが好ましい。
 これら被覆膜の厚みが当該範囲内であれば、被覆膜にピンホール等が発生することが十分に避けられる。カーボンは、貴金属又は貴金属酸化物よりも緻密な膜を形成できるため、膜厚は薄くてもよい。
 <イオン交換膜>
 イオン交換膜6としては、陽イオン交換膜や陰イオン交換膜を用いることができる。任意に選択できるが、具体的には、スルホン酸基を有するパーフルオロカーボン重合体、スルホン酸基を有する炭化水素系高分子化合物、リン酸などの無機酸をドープさせた高分子化合物、一部がプロトン伝導性の官能基で置換された有機/無機ハイブリッドポリマー、及び、高分子マトリックスにリン酸溶液や硫酸溶液を含浸させたプロトン伝導体などからなる膜が挙げられる。これらのうち、スルホン酸基を有するパーフルオロカーボン重合体が好ましい。炭素-フッ素からなる疎水性テフロン骨格(疎水性ポリテトラフルオロエチレン骨格)とスルホン酸基を持つパーフルオロ側鎖から構成されるパーフルオロカーボン重合体、例えばナフィオン(登録商標)、はより好ましく使用できる。
 イオン交換膜6の厚みは任意に選択できるが、120μm以下であることが好ましく、60μm以下であることがより好ましく、10~40μmであることがさらに好ましい。イオン交換膜6の厚みが薄くなれば、レドックスフロー二次電池100のセル抵抗を低減できる。
 なお、イオン交換膜6の厚み(T)が決定したら、金属保護膜でもある金属電極5の第1主面の突出山部高さを、以下の関係式(1)を満たすように設定することが好ましい。
 (Rpk(A)+Rpk(B))×α≦T…(1)
 式(1)において、Tはイオン交換膜の厚み、Rpk(A)は正極の金属電極の突出山部高さ、Rpk(B)は負極の金属電極の突出山部高さであり、αは乗数である。αは、1.2であることが好ましく、1.4であることがより好ましく、1.8であることがさらに好ましい。
 一方の電極に炭素繊維等含むカーボンシート等の炭素電極を使用しない等の理由で、正極3又は負極4のいずれか一方にのみ金属電極5を設ければよい場合は、イオン交換膜6の厚みと、金属電極5の第1主面の突出山部高さは、以下の関係式(2)を満たすように設定することが好ましい。
 Rpk×α≦T/2…(2)
 式(2)において、Rpkは金属電極の突出山部高さである。αは乗数であり、T,αは式(1)と同じである。
 イオン交換膜6の厚みが、上記関係式(1)及び(2)を満たすことで、金属電極5によりイオン交換膜6に貫通孔が形成される確率をより低減できる。また金属電極5を設けることで、イオン交換膜6の厚みを60μm以下にできる。
 上述のように、本実施形態にかかるレドックスフロー二次電池100は、金属電極5を炭素電極2とイオン交換膜6の間に配設することで、イオン交換膜6に貫通孔が形成され、正極電解液と負極電解液とが混ざり、短絡することを防止できる。
 また金属電極5のイオン交換膜6と接する第1主面を所定の面とすることで、電極に用いられる炭素繊維等がイオン交換膜に突き刺さり亀裂や貫通孔を生じる可能性がほとんどなくなったので、イオン交換膜6の厚みを薄くすることができ、レドックスフロー二次電池100のセル抵抗を低減できる。
 なお、市場の流通の態様によっては、イオン交換膜6に金属電極5を設けた複合体として流通させる場合もある。この場合、複合体は、イオン交換膜6と、イオン交換膜6の少なくともいずれか一面に設けられた金属電極5と、を備える。金属電極5のイオン交換膜6と接する面の突出山部高さ(Rpk)は0.1~2μmとなる。
[レドックスフロー電池の動作]
 図1を用いて、レドックスフロー二次電池100の動作の一例を説明する。レドックスフロー二次電池100の電極室Kには、流入口(図視略)から、電解液が供給される(図中、電解液の流れをFin(Flow in)として表示)。電極室K内に供給された電解液は、電極室K内の炭素電極2と反応する。反応時に生じたイオンは、イオン交換膜6を介して正極3と負極4との間を流通し、充放電を行う。反応後の電解液は、流出口(図視略)から排出される(図中、電解液の流れをFout(Flow out)として表示)。なお図1中の矢印部分に該当する位置において、セルフレーム20に流入口と流出口を設けても良い。
 流入口及び流出口の位置や数は、電極室K内に電解液を通液できれば特に問わず、任意に設定できる。流入口及び流出口及び流路は、セルフレーム20に設けても良い。双極板1の電極室K側の面に溝部等を設けたり、双極板1内に貫通孔を設けたりして、流路を形成する場合は、双極板1の溝部や流路に繋がる流入口及び流出口を設けてもよい。電解液は、セルフレーム20と双極板1の連通する流路を介して供給は排出されても良い。
 レドックスフロー二次電池100を動作すると、電極室K内に供給される電解液の流れにより、炭素電極2はイオン交換膜6を押す。金属電極5が無いと、炭素電極2を構成する炭素繊維により、イオン交換膜6に貫通孔が形成される場合がある。本実施形態にかかるレドックスフロー二次電池は、所定の金属電極5を有するので、電解液の流れによりイオン交換膜6に対して金属電極5が密着しても、イオン交換膜に貫通孔等が形成されることが抑制される。
[レドックスフロー電池の製造方法]
 レドックスフロー電池の製造方法の例を説明する。まず、各部材を準備する。
 双極板1、イオン交換膜6及びセルフレーム20は公知のものを使用できる。特に問題のない限り、サイズ及び種類などを必要に応じで任意に選択してよい。例えば、市販品などを購入してもよい。
 炭素電極2も、特に問題のない限り、サイズ及び種類などを必要に応じで任意に選択できる。炭素電極2として、カーボンフェルト、カーボンペーパー等を用いる場合、例えば、市販品等の公知のものを入手してもよい。
 開口部を有する金属保護膜としての金属電極5は、イオン交換膜6と接する面の突出山部高さ(Rpk)が、0.1~2μmとなるように、材料を加工して得ることも好ましい。例えば、圧延して所定の面が形成された金属シートを用意し、これに更に切り目を入れて、引き伸ばすことで開口シートを作製してもよい。また金属シートに穴をあけてから、その後圧延して、開口部を有する金属保護膜を得てもよい。なお、圧延後のRpkを0.1~2μmの範囲にするために、非常に平坦性の高い特別な金型を用いる圧延や、特別な圧縮条件の圧延を行っても良い。また圧延後に、ケミカル研磨、バフ研磨、電解研磨等の研磨を行い、Rpkを所定の範囲にすることもできる。このように開口シート加工し、前述の第1主面を有する金属電極5を得ることができる。
 金属保護膜の開口部の形状は任意に選択でき、正方形や長方形などの多角形、円形や楕円形などが挙げられる。開口部はランダムに配置されていても良いが、規則的に配置されていることも好ましい。金属保護膜の一例としては図2の5Aが挙げられる。
 開口の数も必要に応じて任意に選択できる。一例を挙げれば、1cmの面積当たり10~1000個が挙げられ、100~300個が好ましく用いられる。
 そして、図1に示すように、イオン交換膜6上にセルフレーム20を設ける。金属電極5、炭素電極2、双極板1、炭素電極2、金属電極5の順に積層した積層体を用意する。セルフレーム20の開口部内に、金属電極5、炭素電極2、双極板1、炭素電極2、金属電極5の順に積層した前記積層体を挿入する。
 次いで、イオン交換膜6をその上に配置する。続いて、このイオン交換膜6を挟んで積層体が設けられるように、同様の構成を、順次積層していく。
セルフレーム20同士の接合面には、ガスケット等が設けられる。そして、必要な数を積層した後、積層方向の両端にエンドプレートを設ける。最後に、エンドプレート同士を締め付けて固定することで、積層体はセルフレーム20の開口部内に納まるように圧縮される。その結果、積層体を構成する各部材は互いに密着するので、電気伝導性が高まる。セルフレーム20同士は、ガスケットを介して密着し、セルフレーム20内から電解液が漏れることを防ぐ。
 上述のように、本実施形態にかかるレドックスフロー二次電池によれば、レドックスフロー二次電池の組み立て過程、及び動作中等において、イオン交換膜6側に、炭素繊維を有する炭素電極2が強く押し付けられたとしても、イオン交換膜6に貫通孔が生じることを防ぐことができる。
(第2実施形態)
 第2実施形態として、2層の金属電極が積層した構造を有するレドックスフロー二次電池の例を説明する。
 図2は、第2実施形態にかかるレドックスフロー二次電池の金属電極の一部を拡大した、斜視図である。本発明において、金属保護膜の数は、1であってもよく、あるいは、任意に選択される2以上の数、例えば、2や3や4など、2~10から選択されるいずれかの数などであっても良い。このレドックスフロー二次電池は、金属電極5と炭素電極2との間に、更に第2の金属電極5Bが設けられている点が、第1実施形態にかかるレドックスフロー二次電池とは異なる。以下、2枚の金属電極のうち、イオン交換膜6側の金属電極を第1の金属電極5A、双極板1側の金属電極を第2の金属電極5Bという。これらは、開口の形状や開口間の距離は同じであり、基本的に同じパターンを有しているが、開口の形状や開口間の距離が互いに異なっていても良い。
 第1の金属電極5Aは、第1実施形態にかかる金属電極5と同様の電極である。これに対し、第2の金属電極5Bは、イオン交換膜6と直接接触しないため、突出山部高さ(RpK)の範囲は0.1~2μm内に特に制限されない。この点を除き、金属電極5Bは金属電極5Aと同様である。なお第2の金属電極5Bが、本発明の突出山部高さを有していても特に問題はない。
 図2に示すように、第1金属電極5Aと第2金属電極5Bは、開口部の形成されている位置が、積層方向でずれている。このように開口部どうしの位置が、ずれていることが好ましい。この構成では、第1金属電極5Aの開口部5Aaから流入した電解液は、例えば、第1金属電極5Aと第2金属電極5Bの間を面内方向に流れた後に、第2金属電極5Bの開口部5Baから流出する。
 すなわち、複数の金属電極5が積層されることで、隣接する金属電極5の間には、面内方向の流路が形成されている、とみなすことができる。面内方向の流路が形成されることで、反応後の電解液を素早く流出口へ排出することができる。
 第2実施形態にかかるレドックスフロー二次電池では、イオン交換膜6と接する金属電極の第1主面が、本発明で設定されている所定の形状である。そのため、イオン交換膜6に貫通孔が形成されることが抑制される。
 また金属電極が2層あることで、金属電極の延在方向に沿った面内方向の電解液の流れを生み出し、電解液の流れをスムーズにできる。一方で、イオン交換膜と炭素電極の距離が遠くなり、セル抵抗が増加するという弊害が生じる可能性はある。そこで、用途に応じて第1実施形態にかかるレドックスフロー二次電池と、第2実施形態にかかるレドックスフロー二次電池のいずれの構成も選択可能である。
 以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではない。特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形や変更、追加、省略等が可能である。
 次に、実施例、比較例を挙げて、本発明の好ましい例をより具体的に説明する。ただし本発明は以下の例のみに限定されない。
(実施例1)
[部材の準備]
 カーボン-樹脂成形体からなる50mm×50mmの平板の双極板を用意した。
 セルフレーム20を用意した。セルフレーム20によって囲まれる、電極室Kの面内方向の断面の大きさは50mm×50mmとした。
 炭素電極には、50mm×50mmのカーボンファイバーペーパー(SGL社製、GDL10AA)を用いた。
 イオン交換膜には、ナフィオンN212(登録商標、デュポン社製)を用いた。このイオン交換膜の厚みは、約50μmであった。
 また金属保護膜としての開口シートとして、厚み0.02mmのチタンからなるエキスパンドメタルを用いた。開口率は約70%、開口数は1cm当り約200個、大きさは50mm×50mmである。このエキスパンドメタルをケミカル研磨して、Rpkを1μm以下にした。その後、正極側用に用いた開口シートは、酸化イリジウムで被覆して被覆膜を形成した。負極側に用いた開口シートは、スパッタカーボンで被覆して被覆膜を形成した。このようにして、それぞれ正極側及び負極側の金属電極(金属保護膜)を得た。正極側の金属電極の被覆膜の厚みは0.1μmであり、負極側の金属電極の被覆膜の厚みは0.05μmであった。また、金属電極のイオン交換膜と接する面の突出山部高さ(Rpk)は、正極側も負極側も、0.8μmであった。
 準備した部材を用い順に積層して、2つのセルを含む実施例1のレドックスフロー二次電池を組み上げた。すなわち、レドックスフロー二次電池は、1つのセルの上にセルがさらに1層積層された、セルスタック構造を有していた。
(比較例1)
 比較例1は、金属電極を設けなかった点が、実施例1とは異なる。その他の構成は、実施例1と同じとした。
(比較例2)
 比較例2では、正極側、負極側のいずれのエキスパンドメタルも、研磨をしなかった。その為、金属電極のイオン交換膜と接する面の突出山部高さ(Rpk)は、いずれも3.2μmであった。この点が実施例1とは異なる。その他の構成は、実施例1と同じとした。
(実施例2)
 実施例2は、正極及び負極の開口シートのいずれも被覆しなかった。この点が実施例1とは異なる。その他の構成は、実施例1と同じとした。
(実施例3~5)
 実施例3~5は、正極及び負極の開口シートを被覆する被覆膜の膜厚を表1に示したように変更した。この点が実施例1と異なる。その他の構成は実施例1と同じとした。
(実施例6、7)
 実施例6及び実施例7は、イオン交換膜の膜厚を表1に示したように変更した。この点が実施例1と異なる。その他の構成は実施例1と同じとした。
(比較例3、4)
 比較例3及び比較例4は、イオン交換膜の膜厚は、表1に示したように変更した。この点が比較例1と異なる。その他の構成は比較例1と同じとした。
 (測定及び評価)
 各実施例及び各比較例のレドックスフロー二次電池には、正極側にバナジウムイオン(IV価)と硫酸を含む水溶液を、負極側にバナジウムイオン(III価)と硫酸を含む水溶液を、電解液として導入し、それぞれ25mlの電解液をチューブポンプで循環させた。電解液の流量は28ml/minに設定した。充放電時の電流は2A(80mA/cm)とし、充電停止電圧を1.75V、放電停止電圧を1.00Vとした。電池特性としては、セル抵抗率と、クーロン効率を計測し比較した。また、1か月間連続動作させた際のセル抵抗の増加を確認した。
Figure JPOXMLDOC01-appb-T000001
                  
 実施例1と比較例1及び比較例2とを比較すると、実施例1のクーロン効率は大きく、セル抵抗が小さかった。これは、所定の金属電極を設けることで、イオン交換膜に貫通孔や亀裂等が入らなかったためであると判断される。
 ここで、レドックスフロー二次電池においてクーロン効率の1%の違いは大きな意味を有する。レドックスフロー二次電池では、充放電を繰り返し行う。そのため、1%の違いは充放電ごとに累積的に寄与し、レドックスフロー二次電池を実使用する際の性能に大きな影響を及ぼす。つまり、実施例1と比較例1及び比較例2のクーロン効率の数%の違いは、実性能に大きな影響を及ぼす。
 また実施例1~5を比較すると、実施例2及び3は、連続動作によりセル抵抗が上昇した。その後、実施例2及び3のレドックスフロー二次電池を分解すると、金属電極に用いたチタンが不動態化していた。実施例1、4及び5では、セル抵抗は上昇しなかった。すなわち、実施例1、4、及び実施例5のように、金属電極の表面を所定の膜厚でコーティングすると、レドックスフロー二次電池を長期的に安定的に動作させることができることが分かった。なお、実施例2及び3のレドックスフロー二次電池は高いクーロン効率で動作はしており、大電流を伴わない等の用途によっては充分使用可能である。
 また比較例3の結果によると、イオン交換膜の厚みが充分厚いと金属電極を設けなくても、クーロン効率の低下は、金属電極を設けた実施例6に比べ、1%程度の差となることが分かる。しかしながら、イオン交換膜の厚みが厚すぎるとセル抵抗率が大きくなる。
 これに対し、実施例7及び比較例4の結果によると、イオン交換膜の厚みを薄くするとセル抵抗率を小さくできる。また実施例7によると、イオン交換膜の厚みが20μmと薄くても、金属電極を設けることでクーロン効率の低下を抑えられることが分かる。すなわち、金属電極を設けることで、イオン交換膜の厚みを薄膜化できたと言える。
 本発明は、低抵抗でクーロン効率に優れたレドックスフロー二次電池を得ることができる。
1…双極板
1A…正極部
1B…負極部
2…炭素電極
3…正極
4…負極
5…金属電極
5A…第1金属電極
5B…第2金属電極
5Aa,5Ba…開口部
6…イオン交換膜
10…セル
20…セルフレーム
100…レドックスフロー二次電池
Kc…正極室
Ka…負極室
K…電極室

Claims (17)

  1.  正極と、
     前記正極に対向する負極と、
     前記正極と前記負極との間に設けられたイオン交換膜とを備え、
     前記正極及び前記負極の一方又は両方が、
     金属保護膜と、炭素繊維を含む炭素電極と、を前記イオン交換膜側から順に有し、
     該金属保護膜の第1主面が、前記イオン交換膜側に設けられており、
     前記金属保護膜は、開口部を有し、前記第1主面の表面の突出山部高さが0.1~2μmである、
     レドックスフロー二次電池。
  2.  前記金属保護膜及び炭素電極が、前記正極及び前記負極の両方に設けられている請求項1に記載のレドックスフロー二次電池。
  3.  前記イオン交換膜の厚みをTとした時に、前記金属保護膜の突出山部高さが以下の関係式(1)を満たす、請求項2に記載のレドックスフロー二次電池。
     (Rpk(A)+Rpk(B))×1.2≦T≦60μm…(1)
     (式(1)において、Tはイオン交換膜の厚さ(μm)、Rpk(A)は正極の金属保護膜の突出山部高さ(μm)、Rpk(B)は負極の金属保護膜の突出山部高さ(μm)、をそれぞれ表す。)
  4.  前記金属保護膜が導電性を有する金属電極である請求項1~3のいずれか一項に記載のレドックスフロー二次電池。
  5.  前記正極の金属電極は、表面が貴金属又は貴金属酸化物で被覆されている請求項4に記載のレドックスフロー二次電池。
  6.  前記負極の金属電極は、表面がカーボンで被覆されている請求項4に記載のレドックスフロー二次電池。
  7.  前記金属電極と前記炭素電極との間に、開口部を有する第2の金属電極をさらに有し、
     前記金属電極と前記第2の金属電極との間で、互いの開口部の位置がずれている請求項4~6のいずれか一項に記載のレドックスフロー二次電池。
  8.  請求項1~7のレドックスフロー二次電池のレドックスフロー二次電池金属電極であって、
     開口部を有し、少なくとも第1主面の表面の突出山部高さが0.1~2μmである、金属電極。
  9.  チタン又はその合金により構成されている請求項8に記載の金属電極。
  10.  エキスパンドメタルにより構成されている請求項9に記載の金属電極。
  11.  前記金属電極の厚みが0.2mm以下である請求項8~10のいずれか一項に記載の金属電極。
  12.  前記金属電極の表面が貴金属又は貴金属酸化物で被覆されている請求項8~11のいずれか一項に記載の金属電極。
  13.  前記貴金属又は前記貴金属酸化物を構成する貴金属元素は、イリジウム(Ir)、ロジウム(Rh)、プラチナ(Pt)及びルテニウム(Ru)からなる群から選択された1種以上の元素である請求項12に記載の金属電極。
  14.  前記貴金属又は貴金属酸化物の被覆の平均厚みが、0.05~0.5μmである請求項12または13に記載の金属電極。
  15.  前記金属電極の表面がカーボンで被覆されている請求項8~11のいずれか一項に記載の金属電極。
  16.  前記カーボンは、スパッタカーボン、導電性ダイヤモンド、ダイヤモンドライクカーボン又はこれらの混合物である請求項15に記載の金属電極。
  17.  前記カーボンの被覆の平均厚みが、0.03~0.3μmである請求項15または16に記載の金属電極。
PCT/JP2017/031656 2016-09-02 2017-09-01 レドックスフロー二次電池及びその電極 WO2018043720A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17846723.9A EP3509148A4 (en) 2016-09-02 2017-09-01 REDOX FLOW SECONDARY BATTERY AND ELECTRODE FOR IT
US16/329,516 US20190198904A1 (en) 2016-09-02 2017-09-01 Redox flow secondary battery and electrode thereof
JP2018520635A JP6373539B2 (ja) 2016-09-02 2017-09-01 レドックスフロー二次電池及びその電極
CN201780052849.5A CN109643818A (zh) 2016-09-02 2017-09-01 氧化还原流动二次电池及其电极

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016172243 2016-09-02
JP2016-172243 2016-09-02

Publications (1)

Publication Number Publication Date
WO2018043720A1 true WO2018043720A1 (ja) 2018-03-08

Family

ID=61301156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031656 WO2018043720A1 (ja) 2016-09-02 2017-09-01 レドックスフロー二次電池及びその電極

Country Status (5)

Country Link
US (1) US20190198904A1 (ja)
EP (1) EP3509148A4 (ja)
JP (1) JP6373539B2 (ja)
CN (1) CN109643818A (ja)
WO (1) WO2018043720A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400332A (zh) * 2018-03-09 2018-08-14 中国科学院青岛生物能源与过程研究所 一种有机双离子嵌入型液流电池
KR20210116043A (ko) * 2020-03-17 2021-09-27 한국에너지기술연구원 내부 단락 방지형 아연 요오드 흐름전지

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102610184B1 (ko) 2018-11-30 2023-12-04 퓨얼셀 에너지, 인크 용융 탄산염 연료 전지를 위한 연료 전지 스테이징
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
WO2020112812A1 (en) 2018-11-30 2020-06-04 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with enhanced co 2 utilization
WO2020112774A1 (en) 2018-11-30 2020-06-04 Exxonmobil Research And Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced co2 utilization
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
JP2023503995A (ja) 2019-11-26 2023-02-01 エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー 燃料電池モジュールのアセンブリおよびそれを使用するシステム
EP4066301A1 (en) 2019-11-26 2022-10-05 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11978931B2 (en) 2021-02-11 2024-05-07 ExxonMobil Technology and Engineering Company Flow baffle for molten carbonate fuel cell

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148658A (ja) * 1988-11-30 1990-06-07 Toyobo Co Ltd 液流通型電解槽
JP3560181B2 (ja) 1995-04-13 2004-09-02 東洋紡績株式会社 液流通型電解槽用電極材
JP2005158383A (ja) * 2003-11-25 2005-06-16 Sumitomo Electric Ind Ltd レドックス電池
US8343646B1 (en) * 2012-02-23 2013-01-01 Zinc Air Incorporated Screen arrangement for an energy storage system
JP2013065530A (ja) 2011-09-20 2013-04-11 Sumitomo Electric Ind Ltd レドックスフロー電池
JP2014033238A (ja) 2009-02-16 2014-02-20 Hitachi Chemical Co Ltd 研磨剤
JP2015156076A (ja) 2014-02-20 2015-08-27 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 生成装置、生成方法、及び、プログラム
JP2015530709A (ja) * 2012-09-03 2015-10-15 ティッセンクルップ インダストリアル ソリューションズ アクツィエンゲゼルシャフトThyssenKrupp Industrial Solutions AG フロー型電気化学セル
JP2015228364A (ja) 2014-05-02 2015-12-17 昭和電工株式会社 レドックスフロー電池
JP5890561B1 (ja) * 2015-05-01 2016-03-22 株式会社ギャラキシー 電解槽及び電池
JP2016172243A (ja) 2015-03-18 2016-09-29 象印マホービン株式会社 除湿機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1051766T3 (da) * 1998-01-28 2001-12-03 Squirrel Holdings Ltd Redox strømningsbatterisystem og cellestak
AUPR722101A0 (en) * 2001-08-24 2001-09-13 Skyllas-Kazacos, Maria Vanadium chloride/polyhalide redox flow battery
JP4781818B2 (ja) * 2003-06-24 2011-09-28 旭硝子株式会社 固体高分子型燃料電池用膜電極接合体の製造方法
US7282295B2 (en) * 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
DK2387092T3 (da) * 2010-03-12 2013-06-10 Sumitomo Electric Industries Redox-flow-batteri
ES2429359T3 (es) * 2010-04-27 2013-11-14 Sumitomo Electric Industries, Ltd. Batería de flujo redox
CN203007441U (zh) * 2012-12-13 2013-06-19 苏州新区化工节能设备厂 水电解槽

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148658A (ja) * 1988-11-30 1990-06-07 Toyobo Co Ltd 液流通型電解槽
JP3560181B2 (ja) 1995-04-13 2004-09-02 東洋紡績株式会社 液流通型電解槽用電極材
JP2005158383A (ja) * 2003-11-25 2005-06-16 Sumitomo Electric Ind Ltd レドックス電池
JP2014033238A (ja) 2009-02-16 2014-02-20 Hitachi Chemical Co Ltd 研磨剤
JP2013065530A (ja) 2011-09-20 2013-04-11 Sumitomo Electric Ind Ltd レドックスフロー電池
US8343646B1 (en) * 2012-02-23 2013-01-01 Zinc Air Incorporated Screen arrangement for an energy storage system
JP2015530709A (ja) * 2012-09-03 2015-10-15 ティッセンクルップ インダストリアル ソリューションズ アクツィエンゲゼルシャフトThyssenKrupp Industrial Solutions AG フロー型電気化学セル
JP2015156076A (ja) 2014-02-20 2015-08-27 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 生成装置、生成方法、及び、プログラム
JP2015228364A (ja) 2014-05-02 2015-12-17 昭和電工株式会社 レドックスフロー電池
JP2016172243A (ja) 2015-03-18 2016-09-29 象印マホービン株式会社 除湿機
JP5890561B1 (ja) * 2015-05-01 2016-03-22 株式会社ギャラキシー 電解槽及び電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3509148A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400332A (zh) * 2018-03-09 2018-08-14 中国科学院青岛生物能源与过程研究所 一种有机双离子嵌入型液流电池
CN108400332B (zh) * 2018-03-09 2021-03-05 中国科学院青岛生物能源与过程研究所 一种有机双离子嵌入型液流电池
KR20210116043A (ko) * 2020-03-17 2021-09-27 한국에너지기술연구원 내부 단락 방지형 아연 요오드 흐름전지
KR102310206B1 (ko) 2020-03-17 2021-10-08 한국에너지기술연구원 내부 단락 방지형 아연 요오드 흐름전지

Also Published As

Publication number Publication date
EP3509148A4 (en) 2020-05-20
JP6373539B2 (ja) 2018-08-15
US20190198904A1 (en) 2019-06-27
JPWO2018043720A1 (ja) 2018-09-06
EP3509148A1 (en) 2019-07-10
CN109643818A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
JP6373539B2 (ja) レドックスフロー二次電池及びその電極
US8129065B2 (en) Electrochemical cell assemblies including a region of discontinuity
US7745063B2 (en) Fuel cell stack
US8192856B2 (en) Flow field
TWI595699B (zh) 用於可逆燃料電池之組合件
JP6971534B2 (ja) 膜電極複合体および電気化学セル
JP6773053B2 (ja) 燃料電池
JP2004087311A (ja) 燃料電池スタックおよび燃料電池スタック用金属製セパレータ
WO2013137102A1 (ja) 流路付ガス拡散層
US20140287343A1 (en) Fuel cell electrode catalyst layer, fuel cell electrode, fuel cell membrane electrode assembly, and fuel cell
US20100248069A1 (en) Fuel cell
US20200119382A1 (en) Method for manufacturing reinforced separator, reinforced separator manufactured using the same and redox flow battery
US11990625B2 (en) Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JP2006522446A (ja) 燃料電池用複合電解質
JP2015079639A (ja) 電解質膜・電極構造体
CN110679022B (zh) 用于混合液流电池的替代低成本电极
JP6546951B2 (ja) 電解質膜・電極構造体
WO2018105634A1 (ja) 集電板及びレドックスフロー電池
US10297850B2 (en) Membrane electrode assembly
WO2023233740A1 (ja) 膜電極接合体、電解セル、電解装置、及び膜電極接合体の製造方法
JP2018133240A (ja) 燃料電池スタック
JP2020047446A (ja) 膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体
JP2013157227A (ja) 直接アルコール型燃料電池
KR20230070598A (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
JP2021086691A (ja) 燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018520635

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017846723

Country of ref document: EP

Effective date: 20190402