WO2018043548A1 - Pigment composition for color filters, and color filter - Google Patents

Pigment composition for color filters, and color filter Download PDF

Info

Publication number
WO2018043548A1
WO2018043548A1 PCT/JP2017/031119 JP2017031119W WO2018043548A1 WO 2018043548 A1 WO2018043548 A1 WO 2018043548A1 JP 2017031119 W JP2017031119 W JP 2017031119W WO 2018043548 A1 WO2018043548 A1 WO 2018043548A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
parts
color filter
green
composition
Prior art date
Application number
PCT/JP2017/031119
Other languages
French (fr)
Japanese (ja)
Inventor
圭亮 坂本
木村 亮
望 嶋田
祐奈 千葉
融 石井
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201780051904.9A priority Critical patent/CN109642970B/en
Priority to JP2018530919A priority patent/JP6477977B2/en
Priority to KR1020197005587A priority patent/KR102383525B1/en
Publication of WO2018043548A1 publication Critical patent/WO2018043548A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/085Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex substituting the central metal atom
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a color filter pigment composition and a color filter.
  • the color filter used in the liquid crystal display is a member that realizes the color display of the display by transmitting the white light of the backlight.
  • green colorants for color filters are required to have high brightness and high color reproduction.
  • Pigment Green 58 is used as a main pigment.
  • three-color LEDs as backlight LEDs have little cost merit.
  • a pseudo white LED (a combination of a blue LED and a yellow phosphor (B-YAG) or a combination of a blue LED, a red phosphor and a green phosphor (B) is formed by applying a phosphor on the surface of the blue LED.
  • B-YAG yellow phosphor
  • a red phosphor and a green phosphor B
  • -RG green phosphor
  • a pigment capable of displaying a vivid color in addition to high brightness is selected.
  • the film thickness of the color filter may be increased.
  • the film thickness must be suppressed to about 3 ⁇ m or less.
  • High color reproduction displays that are expected to become popular in the future are expected to be designed with DCI-P3.
  • pigment green 36 or 58 is used, the film thickness greatly exceeds 3 ⁇ m, so that pigment green 7 is selected as the main pigment.
  • Pigment Green 59 As a new high color reproduction pigment, and when compared with the case where a color filter having the same film thickness is produced, the use of Pigment Green 59 has higher luminance than the use of Pigment Green 7 (for example, Patent Documents). 1).
  • Pigment Green 58 for the color filter for high-luminance display and Pigment Green 59 for the color filter for high-color reproduction display.
  • the major difference between the color filter for a high luminance display and the color filter for a high color reproduction display is the chromaticity and the type of backlight for designing the green pixel.
  • Pigment Green 58 As described above, it is recognized that it is better to use Pigment Green 58 as a color filter for a high brightness display. However, in order to supplement the characteristics of B-YAG, which is a backlight having a weak green emission intensity, it has been desired to further increase the brightness of the green pigment.
  • the present invention has been made in view of the above circumstances, and provides a novel color filter pigment composition capable of producing a high-luminance color filter and a color filter containing the color filter pigment composition.
  • the color filter pigment composition according to the first aspect of the present invention has a transmittance of 45% or more at a wavelength of 555 nm when a coating film is formed so that the spectral transmittance at a maximum transmission wavelength is 80%. It contains a green pigment having spectral characteristics such that the ratio of the transmittance at a wavelength of 505 nm to the transmittance at a wavelength of 555 nm (T (505 nm) / T (555 nm)) is 1.40 or more and the half width is 80 nm or less.
  • the green pigment may be brominated chlorinated zinc phthalocyanine.
  • the green pigment may be brominated chlorinated zinc phthalocyanine containing an average of 13 to 15 bromine and an average of 1 to 3 chlorine in one molecule.
  • the color filter pigment composition according to the first aspect may further contain a yellow pigment.
  • the color filter according to the second aspect of the present invention contains the color filter pigment composition according to the first aspect.
  • a high-luminance color filter can be produced.
  • FIG. 3 is a view showing spectral transmission spectra (wavelengths of 480 to 580 nm) of evaluation compositions 1 to 7 and 9 to 12 in Example 1 and Comparative Example 1.
  • FIG. 3 is a view showing spectral transmission spectra (wavelengths of 440 to 480 nm) of evaluation compositions 1 to 7 and 9 to 12 in Example 1 and Comparative Example 1.
  • FIG. 3 is a view showing spectral transmission spectra (wavelengths of 580 to 620 nm) of evaluation compositions 1 to 7, 9, 10, and 12 in Example 1 and Comparative Example 1.
  • the present invention contains a green pigment having the following spectral characteristics (a) to (c) when a coating film is formed so that the spectral transmittance at a maximum transmission wavelength is 80%.
  • a pigment composition for a color filter is provided.
  • the transmittance at a wavelength of 555 nm is 45% or more.
  • the ratio of the transmittance at a wavelength of 505 nm to the transmittance at a wavelength of 555 nm (T (505 nm) / T (555 nm)) is 1.40 or more
  • Half width is 80nm or less
  • the color filter pigment composition of the present embodiment it is possible to provide a high-luminance color filter that can supplement the characteristics of LED-YAG, which is a backlight with a small amount of green light.
  • the spectral transmittance in this specification can be obtained by measuring a spectral transmission spectrum.
  • the “spectral transmission spectrum” is obtained according to a first-class spectrophotometer according to Japanese Industrial Standard JIS Z 8722 (color measurement method—reflection and transmission object color).
  • the resin film containing the pigment formed on the glass substrate or the like with the predetermined dry film thickness is obtained by plotting each transmittance value at each wavelength by scanning and irradiating light in a predetermined wavelength region. .
  • the green pigment contained in the color filter pigment composition of the present embodiment has the following spectral (a) to (c) when the coating film is formed so that the spectral transmittance at the maximum transmission wavelength is 80%.
  • (B) The ratio of the transmittance at a wavelength of 505 nm to the transmittance at a wavelength of 555 nm (T (505 nm) / T (555 nm)) is 1.40 or more
  • Half width is 80nm or less
  • the green color filter it is important to increase the transmittance in the range from 510 nm to 560 nm in order to ensure the brightness. Moreover, when toning with a yellow pigment, it shifts to the long wavelength side by about 5 nm by blending the yellow pigment. Therefore, it is important to obtain a bright display by increasing the transmission wavelength at 505 nm while keeping the transmittance at 555 nm high.
  • the transmittance at 460 nm is high, the value of chromaticity y is greatly reduced and the green vividness (saturation) is lost. Therefore, it is preferable that the transmittance at 460 nm after toning with a yellow pigment is low.
  • the yellow pigment Y138 is a pigment that absorbs a shorter wavelength than 460 nm.
  • the green pigment has a high transmittance of 460 nm, it is necessary to design the amount of Y138 to be extremely increased.
  • the green pigment has a low transmittance at 460 nm. From the viewpoint of increasing the value of chromaticity y, it is preferable that when the coating film is formed so that the spectral transmittance at the maximum transmission wavelength is 80%, the transmittance of 460 nm of the green pigment is 3% or less. It is more preferably 2% or less, and further preferably 1% or less.
  • the transmittance at 605 nm after toning with a yellow pigment is preferably low. Toning with a yellow pigment shifts to the long wavelength side by about 5 nm, so the green pigment preferably has a low transmittance of 600 nm. From the viewpoint of reducing the value of chromaticity x, it is preferable that when the coating film is formed so that the spectral transmittance at the maximum transmission wavelength is 80%, the transmittance of the green pigment at 600 nm is 1% or less. It is more preferably 0.5% or less, and further preferably 0.3% or less. That is, a green pigment having a large transmission spectrum of T (505 nm) / T (555 nm) and low transmittance at 460 nm and 600 nm is required for realizing high luminance and excellent color reproducibility.
  • the green pigment contained in the color filter pigment composition of the present embodiment has the spectral characteristics (a) to (c) described above.
  • the green pigment contained in the color filter pigment composition of the present embodiment has a low transmittance at 460 nm and 600 nm when a coating film is formed so that the spectral transmittance at the maximum transmission wavelength is 80%.
  • a color filter having color reproducibility superior to that of the conventional green pigment can be obtained.
  • the green pigment contained in the color filter pigment composition of the present embodiment has a maximum transmission wavelength of 515 nm when the coating film is formed so that the spectral transmittance at the maximum transmission wavelength is 80%.
  • the thickness is preferably in the range of 530 nm or less.
  • the green pigment having the above spectral characteristics may be an inorganic pigment or an organic pigment.
  • the green pigment is preferably an organic pigment, more preferably a phthalocyanine compound, and further preferably a phthalocyanine compound having a metal atom at the center.
  • the “phthalocyanine compound” is a cyclic compound having a structure in which four phthalimides are cross-linked by nitrogen atoms.
  • the “phthalocyanine compound having a metal atom at the center” is a compound having a structure in which four nitrogen atoms at the center of the phthalocyanine compound and a metal atom are chemically bonded (for example, covalent bond, coordinate bond, etc.).
  • the metal atom present at the center of the phthalocyanine compound is not particularly limited, and examples thereof include Zn, Mg, Al, Si, Ti, V, Mn, Fe, Co, Ni, Ge, and Sn. Among these, the metal atom present at the center of the phthalocyanine compound is preferably Zn (zinc).
  • the phthalocyanine compound having a metal atom at the center of the green pigment is preferably zinc phthalocyanine, more preferably zinc halide phthalocyanine, and further preferably brominated chlorinated zinc phthalocyanine.
  • the green pigment is brominated chlorinated zinc phthalocyanine, from the point of having the above spectral characteristics, an average of 14 to 16 halogen atoms, an average of 13 to 15 bromine atoms, and an average of chlorine in one molecule It is preferable to contain 1 or more and 3 or less.
  • the hue of the pigment is yellowed only by increasing the halogenation rate, increasing the number of bromines in one molecule of brominated chlorinated zinc phthalocyanine than the number of chlorines while maintaining the green hue, A green pigment with high brightness can be obtained.
  • the bromine number in one molecule of brominated chlorinated zinc phthalocyanine is preferably 7 times or more on average, more preferably 7 to 9 times on average, The average is more preferably 7.8 times or more and 9 times or less.
  • the number of halogen atoms in one molecule of the brominated chlorinated zinc phthalocyanine can be measured by using a method (fluorescence X-ray analysis) shown in Examples described later.
  • the halogenated metal phthalocyanine in the green pigment can be produced by a known production method such as a chlorosulfonic acid method, a halogenated phthalonitrile method, or a melting method.
  • Examples of the chlorosulfonic acid method include a method in which metal phthalocyanine is dissolved in a sulfur oxide-based solvent such as chlorosulfonic acid, and chlorine gas and bromine are added thereto to perform halogenation.
  • the reaction at this time is performed at a temperature of 20 ° C. or higher and 120 ° C. or lower and a range of 3 hours or longer and 20 hours or shorter.
  • halogenated phthalonitrile method for example, phthalic acid or phthalodinitrile in which part or all of the hydrogen atoms of the aromatic ring are substituted with halogen atoms such as bromine and chlorine, and a metal or metal salt of zinc are appropriately used as starting materials. And a method for synthesizing a corresponding metal halide phthalocyanine. In this case, a catalyst such as ammonium molybdate may be used as necessary. The reaction at this time is performed at a temperature of 100 ° C. or more and 300 ° C. or less and in a range of 7 hours or more and 35 hours or less.
  • Examples of the melting method include aluminum halides such as aluminum chloride and aluminum bromide, titanium halides such as titanium tetrachloride, alkali metal halides such as sodium chloride and sodium bromide, or alkaline earth metal halides (hereinafter, About 10 ° C to 170 ° C, consisting of one or a mixture of two or more compounds that serve as solvents during various halogenations, such as "alkaline (earth) metal halides”) and thionyl chloride And a method of halogenating metal phthalocyanine with a halogenating agent.
  • aluminum halides such as aluminum chloride and aluminum bromide
  • titanium halides such as titanium tetrachloride
  • alkali metal halides such as sodium chloride and sodium bromide
  • alkaline earth metal halides hereinafter, About 10 ° C to 170 ° C, consisting of one or a mixture of two or more compounds that serve as solvents during various halogenations,
  • the aluminum halide is preferably aluminum chloride.
  • the amount of aluminum halide added is usually 3 times mol or more, preferably 10 times mol or more and 20 times mol or less with respect to zinc phthalocyanine.
  • Aluminum halide may be used alone, but when an alkali (earth) metal halide is used in combination with aluminum halide, the melting temperature can be further lowered, which is advantageous in operation.
  • the alkali (earth) metal halide is preferably sodium chloride.
  • the amount of the alkali (earth) metal halide to be added is preferably 5 parts by mass or more and 15 parts by mass or less of the alkali (earth) metal halide with respect to 10 parts by mass of the aluminum halide within the range in which the molten salt is formed.
  • examples of the halogenating agent include chlorine gas, sulfuryl chloride, bromine and the like.
  • the halogenation temperature is preferably 10 ° C. or higher and 170 ° C. or lower, and more preferably 30 ° C. or higher and 140 ° C. or lower. Furthermore, pressurization may be performed to increase the reaction rate.
  • the reaction time is preferably 5 hours or more and 100 hours or less, and more preferably 30 hours or more and 45 hours or less.
  • a melting method in which two or more kinds of compounds that become a solvent in the halogenation are used in combination is preferable.
  • the content ratio of the halogenated zinc phthalocyanine having a specific halogen atom composition in the zinc halide phthalocyanine can be arbitrarily controlled.
  • the metal phthalocyanine that is a suitable raw material in the present embodiment is zinc phthalocyanine.
  • the melting method is suitable because the raw material during the reaction is less decomposed and the yield from the raw material is better, and the reaction can be carried out in an inexpensive apparatus without using a strong acid.
  • Zinc halide phthalocyanine having a halogen atom composition different from that of existing zinc halide phthalocyanine can be obtained by optimizing the raw material charging method, catalyst type and amount, reaction temperature and reaction time.
  • the produced metal halide phthalocyanine is precipitated.
  • the metal halide phthalocyanine it may be used as it is, but then filtered or washed with water, sodium hydrogen sulfate aqueous solution, sodium hydrogen carbonate aqueous solution or sodium hydroxide aqueous solution, if necessary acetone, toluene, methyl It is preferably used after washing with an organic solvent such as alcohol, ethyl alcohol, dimethylformamide, and after-treatment such as drying.
  • Halogenated metal phthalocyanine is pigmented by dry grinding in a pulverizer such as an attritor, ball mill, vibration mill, vibration ball mill, etc. Compared to the former, it is possible to obtain a pigment that is excellent in dispersibility and coloring power and has a high lightness to develop a green color.
  • the metal halide phthalocyanine before pigmentation may be dispersed in a dispersion medium and pigmented at the same time.
  • a method for forming a halogenated metal phthalocyanine pigment particles that can easily suppress crystal growth and have a large specific surface area can be obtained compared to a solvent treatment in which a halogenated metal phthalocyanine is heated and stirred in a large amount of an organic solvent.
  • This solvent salt milling means kneading and grinding a crude pigment, which is a halogenated metal phthalocyanine that has not undergone pigmentation, ground immediately after synthesis or after that, an inorganic salt, and an organic solvent.
  • a crude pigment, an inorganic salt, and an organic solvent that does not dissolve it are charged into a kneader and kneaded and ground therein.
  • a kneader at this time for example, a kneader, a mix muller, or the like can be used.
  • a water-soluble inorganic salt can be preferably used.
  • an inorganic salt such as sodium chloride, potassium chloride, sodium sulfate is preferably used.
  • Such an inorganic salt can be easily obtained by pulverizing a normal inorganic salt.
  • the amount of inorganic salt used is preferably 5 parts by mass or more and 20 parts by mass or less, and more preferably 7 parts by mass or more and 15 parts by mass or less with respect to 1 part by mass of the crude pigment.
  • an organic solvent that can suppress crystal growth is preferable to use an organic solvent that can suppress crystal growth as the organic solvent.
  • a water-soluble organic solvent can be preferably used.
  • the water-soluble organic solvent include diethylene glycol, glycerin, ethylene glycol, propylene glycol, liquid polyethylene glycol, liquid polypropylene glycol, 2- (methoxymethoxy) ethanol, 2-butoxyethanol, 2- (isopentyloxy).
  • the usage-amount of the said water-soluble organic solvent is not specifically limited, 0.01 mass part or more and 5 mass parts or less are preferable with respect to 1 mass part of crude pigments.
  • the temperature during solvent salt milling is preferably 30 ° C. or higher and 150 ° C. or lower, and more preferably 80 ° C. or higher and 100 ° C. or lower.
  • the solvent salt milling time is preferably 5 hours or more and 20 hours or less, and more preferably 8 hours or more and 18 hours or less.
  • a mixture containing a metal halide phthalocyanine pigment, an inorganic salt, and an organic solvent as main components having an average primary particle size of 50 nm or less is obtained.
  • the organic solvent and the inorganic salt are removed from the mixture, and the solid material mainly containing the halogenated metal phthalocyanine pigment is washed, filtered, dried, pulverized, etc. as necessary to obtain a powder of the halogenated metal phthalocyanine pigment. Can be obtained.
  • washing either water washing or hot water washing can be adopted. What is necessary is just to repeat the frequency
  • the organic solvent and the inorganic salt can be easily removed by washing with water. If necessary, acid cleaning, alkali cleaning, or organic solvent cleaning may be performed so as not to change the crystal state.
  • drying after the filtration and washing described above for example, batchwise or continuous in which at least one of dehydration or desolvation of the pigment is performed by heating at 80 ° C. or more and 120 ° C. or less by a heating source installed in a dryer. And drying of the formula.
  • the dryer generally include a box-type dryer, a band dryer, and a spray dryer.
  • spray dry drying is preferable because it is easily dispersed during paste preparation.
  • pulverization after drying is not an operation for increasing the specific surface area or reducing the average particle size of the primary particles.
  • the pulverization after drying is performed in order to break the pigment into powder when the pigment is in a lamp shape or the like, for example, in the case of drying using a box dryer or a band dryer.
  • the pulverizer used after drying include a mortar, a hammer mill, a disk mill, a pin mill, and a jet mill. In this way, a dry powder of a pigment containing a metal halide phthalocyanine pigment as a main component is obtained.
  • the green pigment may contain one kind of compound that is derived from coloring, or may contain two or more kinds. When two or more types are included, each compound contained in the green pigment may be mixed and then pigmented, or each compound contained in the green pigment may be pigmented and then mixed.
  • the pigment composition for color filters of this embodiment can contain at least 1 or more yellow pigment with the said green pigment.
  • yellow pigments examples include C.I. I. Pigment Yellow (PY) 1, 2, 3, 4, 5, 6, 10, 12, 13, 14, 15, 16, 17, 18, 24, 31, 32, 34, 35, 35: 1, 36, 36 : 1, 37, 37: 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 93, 94, 95, 97, 98, 100 , 101, 104, 106, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 126, 127, 128, 129, 138, 139, 150, 151, 152, 153, 154 155, 156, 161, 162, 164, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 182, 85,187,199,231, and the like.
  • the yellow pigment PY83, 138, 139, 150, 185, or 231 is preferable because it has high luminance or a small amount of pigment and is suitable for thinning, and PY138, 150, 185, or 231 is preferable. Is particularly preferred. These can be used alone or in combination of two or more.
  • the mixing ratio of the green pigment and the yellow pigment is such that the yellow pigment is 1 part by mass or more and 400 parts by mass or less per 100 parts by mass of the green pigment. I just need it.
  • the color filter pigment composition of the present embodiment even when a yellow pigment is used together for toning, a high-luminance color filter green pixel portion is produced as compared with the case of using a conventional green pigment. Can do.
  • the color filter pigment composition of the present embodiment can be produced using a known production method.
  • the method for producing the green pigment is as described above. Specifically, a green pigment and, if necessary, a yellow pigment are dry-ground in a pulverizer such as an attritor, ball mill, vibration mill, vibration ball mill, etc., and then a solvent salt milling method or a solvent boiling method is used. Can be pigmented.
  • a pulverizer such as an attritor, ball mill, vibration mill, vibration ball mill, etc.
  • the pigment composition for a color filter of the present embodiment has an average primary particle size of 50 nm or less, preferably 1 nm or more and 50 nm or less, relatively weak pigment aggregation, and dispersibility in a synthetic resin to be colored. Is better. Moreover, it is more preferable that it is 1 nm or more and 20 nm or less.
  • the “average particle diameter of primary particles” can be calculated using the following measurement method. First, the particles of the color filter pigment composition of the present embodiment in the field of view are photographed with a transmission electron microscope JEM-2010 (manufactured by JEOL Ltd.). Next, the longer diameter (major diameter) of 50 primary particles of the color filter pigment composition of the present embodiment constituting the aggregate on the two-dimensional image is determined. Next, the average particle diameter of the primary particles can be calculated by averaging the obtained long diameters. At this time, the color filter pigment composition of the present embodiment as a sample is ultrasonically dispersed in a solvent and then photographed with a microscope. A scanning electron microscope may be used instead of the transmission electron microscope.
  • a color filter can be obtained by forming a green pixel using the color filter pigment composition of the present embodiment.
  • the green pixel formed using the color filter pigment composition of the present embodiment has high luminance. Therefore, it is possible to manufacture a liquid crystal display device including a color filter having a high display performance and a liquid crystal panel including the green pixel.
  • the pigment composition for a color filter of this embodiment can be used for forming a pattern of a green pixel portion of a color filter by a known method.
  • the color filter green pixel part photosensitive composition containing the pigment composition for color filters of this embodiment and the photosensitive resin as an essential component can be obtained.
  • Examples of the method for producing a color filter include a method called photolithography shown below. Specifically, first, the color filter pigment composition of the present embodiment is dispersed in a dispersion medium made of a photosensitive resin. Next, this dispersion is applied onto a transparent substrate such as glass by a spin coating method, a roll coating method, a slit coating method, an ink jet method or the like to obtain a coating film. Subsequently, pattern exposure with ultraviolet rays is performed on the coating film through a photomask. Next, the unexposed portion is washed with a solvent or the like to obtain a green pattern.
  • a method called photolithography shown below. Specifically, first, the color filter pigment composition of the present embodiment is dispersed in a dispersion medium made of a photosensitive resin. Next, this dispersion is applied onto a transparent substrate such as glass by a spin coating method, a roll coating method, a slit coating method, an ink jet method or the like to obtain a coating film.
  • Examples of other manufacturing methods include a method of manufacturing a color filter by forming a pattern of a green pixel portion by a method such as an electrodeposition method, a transfer method, a micellar electrolysis method, a PVED (Photovoltaic Electrodeposition) method, or the like. .
  • the red pixel portion pattern and the blue pixel portion pattern can also be formed by a similar method using a known pigment.
  • the photosensitive composition for the color filter green pixel portion for example, the color filter pigment composition of the present embodiment, a photosensitive resin, a photopolymerization initiator, and an organic solvent that dissolves the resin. Mix as an essential ingredient. More specifically, there is a method of preparing a dispersion by using a pigment composition for a color filter of the present embodiment, an organic solvent, and a dispersant as required, and then adding a photosensitive resin or the like to the dispersion. It is common.
  • dispersing agent examples include Disperbyk (registered trademark) 130, 161, 162, 163, 170, LPN-6919, LPN-21116, etc. manufactured by BYK Chemie. Further, a leveling agent, a coupling agent, a cationic surfactant and the like may be used in combination.
  • organic solvent examples include aromatic solvents such as toluene, xylene and methoxybenzene, acetate solvents such as ethyl acetate and butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, and ethoxyethyl propionate.
  • Propionate solvents such as methanol, ethanol solvents such as methanol, ether solvents such as butyl cellosolve, propylene glycol monomethyl ether, diethylene glycol ethyl ether, diethylene glycol dimethyl ether, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, hexane, etc.
  • Aliphatic hydrocarbon solvents N, N-dimethylformamide, ⁇ -butyrolactam, N-methyl-2-pyrrolidone Aniline, nitrogen compound-based solvent such as pyridine, a lactone-based solvents such as ⁇ - butyrolactone, carbamic acid esters such as a mixture of 48:52 of methyl carbamate and ethyl carbamate, there is water.
  • nitrogen compound-based solvent such as pyridine
  • a lactone-based solvents such as ⁇ - butyrolactone
  • carbamic acid esters such as a mixture of 48:52 of methyl carbamate and ethyl carbamate
  • organic solvent polar solvents such as propionate-based, alcohol-based, ether-based, ketone-based, nitrogen compound-based, lactone-based, and water-soluble ones are particularly suitable.
  • a high boiling point solvent having a boiling point of 150 ° C. or higher can also be used as appropriate.
  • the organic solvent of 300 parts by weight or more and 1000 parts by weight or less and, if necessary, the dispersant of 0 parts by weight or more and 100 parts by weight or less per 100 parts by weight of the color filter pigment composition of the present embodiment are made uniform.
  • the dispersion can be obtained by stirring and dispersing.
  • the following photopolymerization initiator and, if necessary, an organic solvent may be further added and stirred and dispersed so as to be uniform to obtain a photosensitive composition for a color filter green pixel portion.
  • thermoplastic resins such as urethane resins, acrylic resins, polyamic acid resins, polyimide resins, styrene maleic acid resins, styrene maleic anhydride resins, and 1,6-hexane, for example.
  • Bifunctional monomers such as diol diacrylate, ethylene glycol diacrylate, neopentyl glycol diacrylate, triethylene glycol diacrylate, bis (acryloxyethoxy) bisphenol A, 3-methylpentanediol diacrylate, trimethylolpropane triacrylate , Pentaerythritol triacrylate, tris (2-hydroxyethyl) isocyanate, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, etc. Photopolymerizable monomer, such monomers.
  • photopolymerization initiator examples include acetophenone, benzophenone, benzyldimethyl ketal, benzoyl peroxide, 2-chlorothioxanthone, 1,3-bis (4′-azidobenzal) -2-propane, 1,3-bis (4 ′).
  • acetophenone benzophenone, benzyldimethyl ketal, benzoyl peroxide, 2-chlorothioxanthone, 1,3-bis (4′-azidobenzal) -2-propane, 1,3-bis (4 ′).
  • -Azidobenzal) -2-propane-2'-sulfonic acid 4,4'-diazidostilbene-2,2'-disulfonic acid, and the like.
  • the prepared photosensitive composition for the color filter green pixel portion is subjected to pattern exposure with ultraviolet rays through a photomask, and then the unexposed portion is washed with an organic solvent or alkaline water to obtain a color filter. Can do.
  • the average number of chlorine atoms and the average number of bromine atoms were measured by fluorescent X-ray analysis using ZSX100E manufactured by Rigaku Corporation. From the mass ratio of zinc atoms, chlorine atoms and bromine atoms, per one zinc atom was calculated as a relative value.
  • 1 g of zinc halide phthalocyanine was pressure-molded (25 mm ⁇ ) as a measurement sample, and measurement was performed in a measurement diameter of 20 mm ⁇ in a vacuum atmosphere.
  • a halogenated zinc phthalocyanine pigment having an average number of halogen atoms in one molecule of 15.73, of which the average number of bromine atoms is 14.13 and the average number of chlorine atoms is 1.60. Met.
  • the average particle size of the primary particles was 0.02 ⁇ m from the particle size measurement with a transmission electron microscope JEM-2010 manufactured by JEOL Ltd.
  • the average number of halogen atoms in one molecule was 11.15, of which the average number of bromine atoms was 8.63 and the average number of chlorine atoms was 2.52. It was a phthalocyanine pigment.
  • the obtained pigment 2-2 was subjected to fluorescent X-ray analysis using the same method as in Production Example 1.
  • the average number of halogen atoms in one molecule was 15.30, of which the average number of bromine atoms was 13.59 and the average number of chlorine atoms was 1.71 It was a phthalocyanine pigment.
  • the obtained pigment 2-2 had an average primary particle size of 0.02 ⁇ m as determined by measuring the particle size with a transmission electron microscope JEM-2010 manufactured by JEOL Ltd.
  • the obtained pigment 3 was subjected to fluorescent X-ray analysis using the same method as in Production Example 1.
  • a halogenated zinc phthalocyanine pigment having an average number of halogen atoms in one molecule of 15.10, of which the average number of bromine atoms is 13.36 and the average number of chlorine atoms is 1.74. Met.
  • the average particle diameter of primary particles was 0.02 ⁇ m from the measurement of the particle diameter with a transmission electron microscope JEM-2010 manufactured by JEOL Ltd.
  • Pigment 5 20 parts of crude pigment 1 of Production Example 1, 1.5 parts of VS-1028 manufactured by Seiko PMC, 140 parts of crushed sodium chloride, 32 parts of diethylene glycol, and 1.8 parts of xylene were charged into a 1 L double arm kneader at 30 ° C. Kneaded for 15 hours. After kneading, it was taken out in 2 kg of water at 30 ° C., stirred for 1 hour, filtered, washed with hot water, dried and pulverized to obtain pigment 5. The obtained pigment 5 was found to have an average primary particle size of 0.02 ⁇ m as measured by a transmission electron microscope JEM-2010 manufactured by JEOL Ltd.
  • Example 1 Toning with a yellow pigment
  • Toning composition and evaluation composition 1, evaluation composition 2, evaluation composition 3, evaluation composition 3, evaluation so that coating film chromaticity is (x, y) (0.275, 0.570)
  • the glass substrate for evaluation was obtained by mixing the composition 4 for evaluation, the composition 5 for evaluation, the composition 6 for evaluation, or the composition 7 for evaluation, and forming into a film.
  • the luminance at C light source was measured with U-3900 manufactured by Hitachi High-Technologies Corporation. The results are shown in Table 1 below.
  • Pigment Green 58 (FASTOGEN Green A110) Pigment Green 58 (FASTOGEN Green A110) 2.48 parts, BYK-LPN6919 1.24 parts, Unidic ZL-295 1.86 parts, propylene glycol monomethyl ether acetate 10.92 parts, 0.3 to 0.4 mm Using zircon beads, the mixture was dispersed with a paint shaker for 2 hours to obtain a colored composition 9. Coloring composition 9 4.0 parts, Unidic ZL-295 0.98 parts, propylene glycol monomethyl ether acetate 0.22 parts are added and mixed with a paint shaker to form a green pixel part for a color filter A composition 9 for evaluation was obtained.
  • This evaluation composition 9 was spin-coated on soda glass and dried at 90 ° C. for 3 minutes to obtain an evaluation glass substrate.
  • the monochromatic spectral transmission spectrum of this glass substrate for evaluation was measured using U-3900 manufactured by Hitachi High-Technologies Corporation. Spectral transmission spectra are shown in FIGS. 1A, 1B and 1C.
  • Pigment Green 59 (FASTOGEN Green C100) Pigment Green 59 (FASTOGEN Green C100) 2.48 parts, BYK-LPN6919 1.24 parts, Unidic ZL-295 1.86 parts, propylene glycol monomethyl ether acetate 10.92 parts, 0.3 to 0.4 mm Using zircon beads, the mixture was dispersed for 2 hours with a paint shaker to obtain a colored composition 10. Coloring composition 10 4.0 parts, Unidic ZL-295 0.98 parts, propylene glycol monomethyl ether acetate 0.22 parts are added and mixed with a paint shaker to form a green pixel part for a color filter A composition for evaluation 10 was obtained.
  • This evaluation composition 10 was spin-coated on soda glass and dried at 90 ° C. for 3 minutes to obtain an evaluation glass substrate.
  • the monochromatic spectral transmission spectrum of this glass substrate for evaluation was measured using U-3900 manufactured by Hitachi High-Technologies Corporation. Spectral transmission spectra are shown in FIGS. 1A, 1B and 1C.
  • Pigment Green 7 (FASTOGEN Green S) Pigment Green 7 (FASTOGEN Green S) 1.65 parts, BYK-LPN6919 1.93 parts, propylene glycol monomethyl ether acetate 12.93 parts, and 0.3 to 0.4 mm zircon beads, 2 in a paint shaker After time dispersion, a colored composition 11 was obtained. Coloring composition 11 6.0 parts, Unidic ZL-295 1.47 parts, propylene glycol monomethyl ether acetate 0.33 parts are added and mixed with a paint shaker to form a green pixel part for a color filter A composition for evaluation 11 was obtained. This evaluation composition 11 was spin-coated on soda glass and dried at 90 ° C. for 3 minutes to obtain an evaluation glass substrate.
  • the monochromatic spectral transmission spectrum of this glass substrate for evaluation was measured using U-3900 manufactured by Hitachi High-Technologies Corporation. Spectral transmission spectra are shown in FIGS. 1A and 1B. Since Pigment Green 7 is a pigment having a low transmittance, it floats when the coating film is formed so that the spectral transmittance at the maximum transmission wavelength is 80%. Therefore, the pigment green 7 has a wavelength of 580 to 620 nm shown in FIG. 1C. No data is shown in the spectral transmission spectrum of the range.
  • Pigment Green 36 (FASTOGEN Green 2YK-50) CI Pigment Green 36 (FASTOGEN Green 2YK-50) 2.48 parts together with BYK-LPN6919 1.24 parts, Unidic ZL-295 1.86 parts, propylene glycol monomethyl ether acetate 10.92 parts and 0.3-0.
  • the mixture was dispersed with a paint shaker for 2 hours to obtain a colored composition 12.
  • Coloring composition 12 4.0 parts, Unidic ZL-295 0.98 parts, propylene glycol monomethyl ether acetate 0.22 parts are added and mixed with a paint shaker to form a green pixel part for a color filter A composition for evaluation 12 was obtained.
  • This evaluation composition 12 was spin-coated on soda glass and dried at 90 ° C. for 3 minutes to obtain an evaluation glass substrate.
  • the monochromatic spectral transmission spectrum of this glass substrate for evaluation was measured using U-3900 manufactured by Hitachi High-Technologies Corporation. Spectral transmission spectra are shown in FIGS. 1A, 1B and 1C.
  • the compositions for evaluation 1 to 7 had transmittances of 555 nm of 50.47%, 50.28%, 47.41%, 45.73%, 46. They were 45%, 50.07%, and 45.89%, and were 45% or more. Further, the ratio of the transmittance at a wavelength of 505 nm to the transmittance at a wavelength of 555 nm ((A) / (B)) is 1.40, 1.44, 1.53, 1.57, 1.56, 1.42, and 1.59, 1.4 or more.
  • the half widths were 73 nm, 75 nm, 73 nm, 68 nm, 68 nm, 71 nm and 68 nm, and were 80 nm or less.
  • Table 2 shows a summary of the halogen ratio in one molecule of zinc halide phthalocyanine of pigments 1 to 3.
  • pigments 1 to 3 From Table 2, in pigments 1 to 3, the average number of bromine atoms was 14.13, 13.59, and 13.36 in one molecule of zinc halide phthalocyanine, which was in the range of 13 to 15. In addition, the average number of chlorine atoms in one molecule of zinc halide phthalocyanine was 1.60, 1.71, and 1.74, which was in the range of 1 to 3. Further, the ratio of the average number of bromine atoms to the average number of chlorine atoms in one molecule of zinc halide phthalocyanine ((E) / (F)) was 8.83, 7.94, and 7.69, which was 7 or more. It was. Due to the halogen ratio, pigments 1 to 3 can be green pigments having higher brightness than pigment green 58 and 59, which are conventional green pigments, while maintaining a green hue.
  • a color filter having higher luminance than the conventional one can be formed by using a green pigment having specific spectral characteristics.
  • the pigment composition for a color filter of the present embodiment it is possible to provide a high-intensity color filter that can supplement the characteristics of B-YAG, which is a backlight having a weak green emission intensity. Moreover, since the green pixel formed using the pigment composition for color filters of this embodiment has high brightness

Abstract

Provided are: a novel pigment composition for color filters, which is capable of forming a color filter having high luminance; and a color filter which contains this pigment composition for color filters. This pigment composition for color filters contains a green pigment that has such spectral characteristics that the transmittance at the wavelength of 555 nm is 45% or more, the ratio of the transmittance at the wavelength of 505 nm to the transmittance at the wavelength of 555 nm, namely T(505 nm)/T(555 nm) is 1.40 or more, and the half-value width is 80 nm or less, if formed into a coating film wherein the spectral transmittance at the maximum transmission wavelength is 80%. A color filter according to the present invention contains this pigment composition for color filters.

Description

カラーフィルタ用顔料組成物及びカラーフィルタPigment composition for color filter and color filter
 本発明は、カラーフィルタ用顔料組成物及びカラーフィルタに関する。 The present invention relates to a color filter pigment composition and a color filter.
 液晶ディスプレイに用いるカラーフィルタは、バックライトの白色光を透過させることでディスプレイのカラー表示を実現する部材である。そのうちのカラーフィルタ用緑色着色剤に対して、高輝度化及び高色再現化が要求されている。 The color filter used in the liquid crystal display is a member that realizes the color display of the display by transmitting the white light of the backlight. Of these, green colorants for color filters are required to have high brightness and high color reproduction.
高輝度化を達成するためには、バックライト光に対する透過率の高い顔料を選択することが重要であり、ピグメントグリーン58が主顔料として使用されている。顔料の高輝度化により、バックライトの白色光を効率的に使用できるようになるため、ディスプレイの省エネ化や製造コストダウンが可能となる。現行のディスプレイはsRGBで設計されるため、グリーン画素は(x、y)=(0.300,0.600)で輝度が高くなるように設計される。現在、バックライト用のLEDとしては、3色LEDではコストメリットが小さい。そのため、青色LEDの表面に蛍光体を塗布することによって形成される擬似白色LED(青色LEDと黄色蛍光体の組み合わせ(B-YAG)や青色LEDと赤色蛍光体と緑色蛍光体との組み合わせ(B-RG))が主流となっている。このような白色LEDバックライトを使用した場合、青色発光強度と比較して緑色発光強度が微弱であることから、緑色着色層の透過率が落ちてしまう。そのため、緑色着色層の高輝度化が求められている。 In order to achieve high brightness, it is important to select a pigment having a high transmittance with respect to backlight, and Pigment Green 58 is used as a main pigment. By increasing the brightness of the pigment, it becomes possible to efficiently use the white light of the backlight, which makes it possible to save energy and reduce manufacturing costs of the display. Since the current display is designed with sRGB, the green pixel is designed to have high brightness at (x, y) = (0.300, 0.600). Currently, three-color LEDs as backlight LEDs have little cost merit. Therefore, a pseudo white LED (a combination of a blue LED and a yellow phosphor (B-YAG) or a combination of a blue LED, a red phosphor and a green phosphor (B) is formed by applying a phosphor on the surface of the blue LED. -RG)) is the mainstream. When such a white LED backlight is used, since the green emission intensity is weak compared to the blue emission intensity, the transmittance of the green colored layer is lowered. Therefore, high brightness of the green colored layer is required.
 また、高色再現化を達成するためには、輝度が高いことに加えて鮮やかな色表示が可能な顔料が選択される。鮮やかな色表示を達成するためにはカラーフィルタの膜厚を厚くすれば良いが、露光工程で十分に塗膜を硬化するためには膜厚を3μm以下程度までに抑えなければならない。今後普及すると予測されている高色再現ディスプレイはDCI-P3で設計される見込みである。しかしながら、ピグメントグリーン36や58を使用すると膜厚が3μmを大きく超えてしまうため、ピグメントグリーン7が主顔料として選択される。例えば、ピグメントグリーン7、ピグメントイエロー185を含有する緑色感光性樹脂組成物を用いて緑色画素を形成し、2.2μm以下の薄膜で高色再現を達成する提案がなされている。しかし、ピグメントグリーン7はピグメントグリーン36、58と比べて透過率が低い。そのため、得られるディスプレイの輝度が低下してしまうという問題があった。 Also, in order to achieve high color reproduction, a pigment capable of displaying a vivid color in addition to high brightness is selected. In order to achieve vivid color display, the film thickness of the color filter may be increased. However, in order to sufficiently cure the coating film in the exposure process, the film thickness must be suppressed to about 3 μm or less. High color reproduction displays that are expected to become popular in the future are expected to be designed with DCI-P3. However, when pigment green 36 or 58 is used, the film thickness greatly exceeds 3 μm, so that pigment green 7 is selected as the main pigment. For example, it has been proposed to form a green pixel using a green photosensitive resin composition containing Pigment Green 7 and Pigment Yellow 185, and achieve high color reproduction with a thin film of 2.2 μm or less. However, the pigment green 7 has a lower transmittance than the pigment greens 36 and 58. For this reason, there is a problem that the luminance of the obtained display is lowered.
輝度に関してはバックライトの光量アップで補うことも可能であるが、消費電力量の増大という新たな問題が生じる。そのため、輝度と色再現性との両立が求められる。新規高色再現顔料としてピグメントグリーン59があり、同じ膜厚のカラーフィルタを作製した場合で比較すると、ピグメントグリーン7を用いるよりもピグメントグリーン59を用いた方が高輝度となる(例えば、特許文献1参照。)。 Although it is possible to compensate for the luminance by increasing the amount of light of the backlight, a new problem of increased power consumption arises. For this reason, both luminance and color reproducibility are required. There is Pigment Green 59 as a new high color reproduction pigment, and when compared with the case where a color filter having the same film thickness is produced, the use of Pigment Green 59 has higher luminance than the use of Pigment Green 7 (for example, Patent Documents). 1).
 以上のことから、高輝度ディスプレイ用のカラーフィルタにはピグメントグリーン58を使用し、高色再現ディスプレイ用のカラーフィルタにはピグメントグリーン59を使用するのが良いと認識されている。 From the above, it is recognized that it is preferable to use Pigment Green 58 for the color filter for high-luminance display and Pigment Green 59 for the color filter for high-color reproduction display.
なお、高輝度ディスプレイ用のカラーフィルタと高色再現ディスプレイ用のカラーフィルタとの大きな違いは、グリーン画素を設計する色度及びバックライトの種類である。 Note that the major difference between the color filter for a high luminance display and the color filter for a high color reproduction display is the chromaticity and the type of backlight for designing the green pixel.
現行の高輝度ディスプレイ用のカラーフィルタでは、色度はsRGB(x、y)=(0.300,0.600)であり、バックライトはB-YAGが主流である。ただし、B-YAGは製造会社によって異なるため、C光源を使用して(x,y)=(0.275,0.570)でカラーフィルタの評価を行う(例えば、特許文献2参照。)。 In the current color filter for high-brightness display, the chromaticity is sRGB (x, y) = (0.300, 0.600), and the backlight is mainly B-YAG. However, since B-YAG differs depending on the manufacturer, the color filter is evaluated using a C light source at (x, y) = (0.275, 0.570) (see, for example, Patent Document 2).
また、高色再現ディスプレイ用のカラーフィルタとして予測されるのは、色度がDCI-P3であり、バックライトがB-RGである。ただし、B-RGも製造会社によって異なるため、C光源を使用して、(x,y)=(0.250,0.615)でカラーフィルタの評価を行う(例えば、特許文献3参照。)。 Further, what is predicted as a color filter for a high color reproduction display is DCI-P3 for chromaticity and B-RG for backlight. However, since B-RG also varies depending on the manufacturer, the color filter is evaluated using (x, y) = (0.250, 0.615) using a C light source (see, for example, Patent Document 3). .
特開2016-057635号公報JP 2016-057635 A 特開2014-085562号公報JP 2014-085562 A 特開2011-117986号公報JP 2011-117986 A
 上述のとおり、高輝度ディスプレイ用のカラーフィルタにはピグメントグリーン58を使用するのが良いと認識されている。しかしながら、緑色発光強度が微弱なバックライトであるB-YAGの特性を補うために、緑色顔料のさらなる高輝度化が望まれていた。 As described above, it is recognized that it is better to use Pigment Green 58 as a color filter for a high brightness display. However, in order to supplement the characteristics of B-YAG, which is a backlight having a weak green emission intensity, it has been desired to further increase the brightness of the green pigment.
 従って、本発明は上記事情を鑑みてなされたものであり、高輝度のカラーフィルタを作製可能な新規のカラーフィルタ用顔料組成物及び前記カラーフィルタ用顔料組成物を含有するカラーフィルタを提供する。 Therefore, the present invention has been made in view of the above circumstances, and provides a novel color filter pigment composition capable of producing a high-luminance color filter and a color filter containing the color filter pigment composition.
 本発明者らは、上記課題を解決すべく鋭意研究した結果、特定の分光特性を有するカラーフィルタ用顔料組成物を用いることにより、従来よりも輝度が高いカラーフィルタを形成できることを見出し、本発明を完成させた。 As a result of diligent research to solve the above-mentioned problems, the present inventors have found that a color filter having higher luminance than the conventional one can be formed by using a color filter pigment composition having specific spectral characteristics, and the present invention. Was completed.
 すなわち、本発明は、以下の態様を含む。
本発明の第1態様に係るカラーフィルタ用顔料組成物は、極大透過波長における分光透過率が80%になるように塗膜を形成した際に、波長555nmの透過率が45%以上であり、波長505nmの透過率と波長555nmの透過率の比(T(505nm)/T(555nm))が1.40以上であり、半値幅が80nm以下となる分光特性を有する緑色顔料を含有する。
That is, the present invention includes the following aspects.
The color filter pigment composition according to the first aspect of the present invention has a transmittance of 45% or more at a wavelength of 555 nm when a coating film is formed so that the spectral transmittance at a maximum transmission wavelength is 80%. It contains a green pigment having spectral characteristics such that the ratio of the transmittance at a wavelength of 505 nm to the transmittance at a wavelength of 555 nm (T (505 nm) / T (555 nm)) is 1.40 or more and the half width is 80 nm or less.
前記緑色顔料が臭素化塩素化亜鉛フタロシアニンであってもよい。
前記緑色顔料が1分子中に臭素を平均13個以上15個以下、塩素を平均1個以上3個以下含有する臭素化塩素化亜鉛フタロシアニンであってもよい。
上記第1態様に係るカラーフィルタ用顔料組成物は、さらに、黄色顔料を含有してもよい。
The green pigment may be brominated chlorinated zinc phthalocyanine.
The green pigment may be brominated chlorinated zinc phthalocyanine containing an average of 13 to 15 bromine and an average of 1 to 3 chlorine in one molecule.
The color filter pigment composition according to the first aspect may further contain a yellow pigment.
本発明の第2態様に係るカラーフィルタは、上記第1態様に係るカラーフィルタ用顔料組成物を含有する。 The color filter according to the second aspect of the present invention contains the color filter pigment composition according to the first aspect.
 上記態様のカラーフィルタ用顔料組成物によれば、高輝度のカラーフィルタを作製することができる。 According to the color filter pigment composition of the above aspect, a high-luminance color filter can be produced.
実施例1及び比較例1における評価用組成物1~7、9~12の分光透過スペクトル(波長480~580nm)を示す図である。FIG. 3 is a view showing spectral transmission spectra (wavelengths of 480 to 580 nm) of evaluation compositions 1 to 7 and 9 to 12 in Example 1 and Comparative Example 1. 実施例1及び比較例1における評価用組成物1~7、9~12の分光透過スペクトル(波長440~480nm)を示す図である。FIG. 3 is a view showing spectral transmission spectra (wavelengths of 440 to 480 nm) of evaluation compositions 1 to 7 and 9 to 12 in Example 1 and Comparative Example 1. 実施例1及び比較例1における評価用組成物1~7、9、10、12の分光透過スペクトル(波長580~620nm)を示す図である。FIG. 3 is a view showing spectral transmission spectra (wavelengths of 580 to 620 nm) of evaluation compositions 1 to 7, 9, 10, and 12 in Example 1 and Comparative Example 1.
≪カラーフィルタ用顔料組成物≫
 一実施形態において、本発明は、極大透過波長における分光透過率が80%になるように塗膜を形成した際に、以下の(a)~(c)の分光特性を有する緑色顔料を含有するカラーフィルタ用顔料組成物を提供する。
(a)波長555nmの透過率が45%以上である
(b)波長505nmの透過率と波長555nmの透過率の比(T(505nm)/T(555nm))が1.40以上である
(c)半値幅が80nm以下となる
≪Color filter pigment composition≫
In one embodiment, the present invention contains a green pigment having the following spectral characteristics (a) to (c) when a coating film is formed so that the spectral transmittance at a maximum transmission wavelength is 80%. A pigment composition for a color filter is provided.
(A) The transmittance at a wavelength of 555 nm is 45% or more. (B) The ratio of the transmittance at a wavelength of 505 nm to the transmittance at a wavelength of 555 nm (T (505 nm) / T (555 nm)) is 1.40 or more (c ) Half width is 80nm or less
 本実施形態のカラーフィルタ用顔料組成物によれば、緑色の光量が少ないバックライトであるLED-YAGの特性を補うことが可能な高輝度のカラーフィルタを提供することができる。 According to the color filter pigment composition of the present embodiment, it is possible to provide a high-luminance color filter that can supplement the characteristics of LED-YAG, which is a backlight with a small amount of green light.
 本明細書における分光透過率は分光透過スペクトルを測定することにより得ることができる。
「分光透過スペクトル」とは、日本工業規格JIS Z 8722(色の測定方法-反射及び透過物体色)の第一種分光測光器に準じて求められるものである。具体的には、ガラス基板等の上に前記所定乾燥膜厚に製膜した顔料を含む樹脂被膜について所定波長領域の光を走査照射して、各波長における各透過率値をプロットしたものである。
The spectral transmittance in this specification can be obtained by measuring a spectral transmission spectrum.
The “spectral transmission spectrum” is obtained according to a first-class spectrophotometer according to Japanese Industrial Standard JIS Z 8722 (color measurement method—reflection and transmission object color). Specifically, the resin film containing the pigment formed on the glass substrate or the like with the predetermined dry film thickness is obtained by plotting each transmittance value at each wavelength by scanning and irradiating light in a predetermined wavelength region. .
<構成材料>
[緑色顔料]
 本実施形態のカラーフィルタ用顔料組成物に含まれる緑色顔料は、極大透過波長における分光透過率が80%になるように塗膜を形成した際に、以下の(a)~(c)の分光特性を有する。
(a)波長555nmの透過率が45%以上である
(b)波長505nmの透過率と波長555nmの透過率の比(T(505nm)/T(555nm))が1.40以上である
(c)半値幅が80nm以下となる
<Constituent materials>
[Green pigment]
The green pigment contained in the color filter pigment composition of the present embodiment has the following spectral (a) to (c) when the coating film is formed so that the spectral transmittance at the maximum transmission wavelength is 80%. Has characteristics.
(A) The transmittance at a wavelength of 555 nm is 45% or more. (B) The ratio of the transmittance at a wavelength of 505 nm to the transmittance at a wavelength of 555 nm (T (505 nm) / T (555 nm)) is 1.40 or more (c ) Half width is 80nm or less
 緑色のカラーフィルタでは、510nm以上560nm以下の範囲での透過率を高くすることが明るさを確保する上で重要である。また、黄色顔料による調色を行う場合には、黄色顔料の配合により5nm程度長波長側にシフトする。そのため、555nmでの透過率を高く維持したままで、505nmでの透過波長を高めることが明るい表示を得るために重要である。 In the green color filter, it is important to increase the transmittance in the range from 510 nm to 560 nm in order to ensure the brightness. Moreover, when toning with a yellow pigment, it shifts to the long wavelength side by about 5 nm by blending the yellow pigment. Therefore, it is important to obtain a bright display by increasing the transmission wavelength at 505 nm while keeping the transmittance at 555 nm high.
一方で、460nmの透過率が高いと色度yの値が大幅に低下し緑色の鮮明さ(彩度)を失うため、黄色顔料による調色後の460nmの透過率は低い方が好ましい。例えば、黄色顔料Y138は460nmよりも短波長側を吸収する顔料であるが、緑顔料の460nmの透過率が高いとY138の使用量を極端に増やす設計が必要となる。これにより、(x,y)=(0.275, 0.570)を表示するためにはカラーフィルタを厚膜化せざるを得なくなる。カラーフィルタの厚膜化は、輝度の低下を起こすため好ましくない。つまり、緑色顔料の460nmの透過率は低い方が好ましい。極大透過波長における分光透過率が80%になるように塗膜を形成した際に、緑色顔料の460nmの透過率が3%以下となることが色度yの値を大きくする観点から好ましい。2%以下であることがより好ましく、1%以下であることがさらに好ましい。 On the other hand, when the transmittance at 460 nm is high, the value of chromaticity y is greatly reduced and the green vividness (saturation) is lost. Therefore, it is preferable that the transmittance at 460 nm after toning with a yellow pigment is low. For example, the yellow pigment Y138 is a pigment that absorbs a shorter wavelength than 460 nm. However, if the green pigment has a high transmittance of 460 nm, it is necessary to design the amount of Y138 to be extremely increased. Thus, in order to display (x, y) = (0.275, 0.570), the color filter must be thickened. Increasing the thickness of the color filter is not preferable because it causes a decrease in luminance. That is, it is preferable that the green pigment has a low transmittance at 460 nm. From the viewpoint of increasing the value of chromaticity y, it is preferable that when the coating film is formed so that the spectral transmittance at the maximum transmission wavelength is 80%, the transmittance of 460 nm of the green pigment is 3% or less. It is more preferably 2% or less, and further preferably 1% or less.
また、605nmの透過率が高いと色度xの値が大きくなり緑色の鮮明さ(彩度)を失うため、黄色顔料による調色後の605nmの透過率は低い方が好ましい。黄色顔料による調色で、5nm程度長波長側にシフトするため、緑色顔料の600nmの透過率は低い方が好ましい。極大透過波長における分光透過率が80%になるように塗膜を形成した際に、緑色顔料の600nmの透過率が1%以下となることが色度xの値を小さくする観点から好ましい。0.5%以下であることがより好ましく、0.3%以下であることがさらに好ましい。
 すなわち、T(505nm)/T(555nm)が大きい透過スペクトルを有し、460nm及び600nmでの透過率が低い緑色顔料が、高輝度で、優れた色再現性を実現するために求められる。
Further, when the transmittance at 605 nm is high, the value of chromaticity x increases and the green vividness (saturation) is lost. Therefore, the transmittance at 605 nm after toning with a yellow pigment is preferably low. Toning with a yellow pigment shifts to the long wavelength side by about 5 nm, so the green pigment preferably has a low transmittance of 600 nm. From the viewpoint of reducing the value of chromaticity x, it is preferable that when the coating film is formed so that the spectral transmittance at the maximum transmission wavelength is 80%, the transmittance of the green pigment at 600 nm is 1% or less. It is more preferably 0.5% or less, and further preferably 0.3% or less.
That is, a green pigment having a large transmission spectrum of T (505 nm) / T (555 nm) and low transmittance at 460 nm and 600 nm is required for realizing high luminance and excellent color reproducibility.
 本実施形態のカラーフィルタ用顔料組成物に含まれる緑色顔料は、極大透過波長における分光透過率が80%になるように塗膜を形成した際に、上記(a)~(c)の分光特性を有することにより、後述の実施例に示すとおり、従来の緑色顔料より高輝度のカラーフィルタを得ることができる。また、本実施形態のカラーフィルタ用顔料組成物に含まれる緑色顔料は、極大透過波長における分光透過率が80%になるように塗膜を形成した際に、460nm及び600nmでの透過率が低くなる。そのため、後述の実施例に示すとおり、従来の緑色顔料より優れた色再現性を有するカラーフィルタを得ることができる。 When the coating film is formed so that the spectral transmittance at the maximum transmission wavelength is 80%, the green pigment contained in the color filter pigment composition of the present embodiment has the spectral characteristics (a) to (c) described above. Thus, as shown in the examples described later, it is possible to obtain a color filter with higher luminance than the conventional green pigment. In addition, the green pigment contained in the color filter pigment composition of the present embodiment has a low transmittance at 460 nm and 600 nm when a coating film is formed so that the spectral transmittance at the maximum transmission wavelength is 80%. Become. Therefore, as shown in the examples described later, a color filter having color reproducibility superior to that of the conventional green pigment can be obtained.
 また、本実施形態のカラーフィルタ用顔料組成物に含まれる緑色顔料は、極大透過波長における分光透過率が80%になるように塗膜を形成した際に、当該塗膜における極大透過波長が515nm以上530nm以下の範囲にあることが好ましい。 The green pigment contained in the color filter pigment composition of the present embodiment has a maximum transmission wavelength of 515 nm when the coating film is formed so that the spectral transmittance at the maximum transmission wavelength is 80%. The thickness is preferably in the range of 530 nm or less.
 上記分光特性を有する緑色顔料としては、無機顔料であってもよく、有機顔料であってもよい。中でも、緑色顔料としては、有機顔料であることが好ましく、フタロシアニン化合物であることがより好ましく、中心に金属原子を有するフタロシアニン化合物であることがさらに好ましい。 The green pigment having the above spectral characteristics may be an inorganic pigment or an organic pigment. Among them, the green pigment is preferably an organic pigment, more preferably a phthalocyanine compound, and further preferably a phthalocyanine compound having a metal atom at the center.
 なお、本明細書において、「フタロシアニン化合物」とは、4つのフタル酸イミドが窒素原子で架橋された構造をもつ環状化合物である。「中心に金属原子を有するフタロシアニン化合物」とは、前記フタロシアニン化合物の中心の4つの窒素原子と金属原子とが化学結合(例えば、共有結合、配位結合等)した構造をもつ化合物である。 In the present specification, the “phthalocyanine compound” is a cyclic compound having a structure in which four phthalimides are cross-linked by nitrogen atoms. The “phthalocyanine compound having a metal atom at the center” is a compound having a structure in which four nitrogen atoms at the center of the phthalocyanine compound and a metal atom are chemically bonded (for example, covalent bond, coordinate bond, etc.).
フタロシアニン化合物の中心に存在する金属原子としては、特別な限定はなく、例えば、Zn、Mg、Al、Si、Ti、V、Mn、Fe、Co、Ni、Ge、Sn等が挙げられる。中でも、フタロシアニン化合物の中心に存在する金属原子としては、Zn(亜鉛)であることが好ましい。 The metal atom present at the center of the phthalocyanine compound is not particularly limited, and examples thereof include Zn, Mg, Al, Si, Ti, V, Mn, Fe, Co, Ni, Ge, and Sn. Among these, the metal atom present at the center of the phthalocyanine compound is preferably Zn (zinc).
 緑色顔料における中心に金属原子を有するフタロシアニン化合物としては、亜鉛フタロシアニンであることが好ましく、ハロゲン化亜鉛フタロシアニンであることがより好ましく、臭素化塩素化亜鉛フタロシアニンであることがさらに好ましい。 The phthalocyanine compound having a metal atom at the center of the green pigment is preferably zinc phthalocyanine, more preferably zinc halide phthalocyanine, and further preferably brominated chlorinated zinc phthalocyanine.
 前記緑色顔料が臭素化塩素化亜鉛フタロシアニンである場合、上記分光特性を有する点から、1分子中にハロゲン原子を平均14個以上16個以下、臭素を平均13個以上15個以下、塩素を平均1個以上3個以下含有することが好ましい。 When the green pigment is brominated chlorinated zinc phthalocyanine, from the point of having the above spectral characteristics, an average of 14 to 16 halogen atoms, an average of 13 to 15 bromine atoms, and an average of chlorine in one molecule It is preferable to contain 1 or more and 3 or less.
 また、ハロゲン化率を高めるだけでは、顔料の色相が黄味化してしまうことから、臭素化塩素化亜鉛フタロシアニン1分子中の臭素数を塩素数よりも増やすことで、緑色の色相を保ちながら、明度の高い緑色顔料とすることができる。中でも、本実施形態の緑色顔料において、臭素化塩素化亜鉛フタロシアニン1分子中の臭素数が塩素数の平均7倍以上であることが好ましく、平均7倍以上9倍以下であることがより好ましく、平均7.8倍以上9倍以下であることがさらに好ましい。 In addition, since the hue of the pigment is yellowed only by increasing the halogenation rate, increasing the number of bromines in one molecule of brominated chlorinated zinc phthalocyanine than the number of chlorines while maintaining the green hue, A green pigment with high brightness can be obtained. Among them, in the green pigment of this embodiment, the bromine number in one molecule of brominated chlorinated zinc phthalocyanine is preferably 7 times or more on average, more preferably 7 to 9 times on average, The average is more preferably 7.8 times or more and 9 times or less.
 なお、上記臭素化塩素化亜鉛フタロシアニン1分子中のハロゲン原子の数は、後述の実施例に示す方法(蛍光X線分析)を用いて、測定することができる。 In addition, the number of halogen atoms in one molecule of the brominated chlorinated zinc phthalocyanine can be measured by using a method (fluorescence X-ray analysis) shown in Examples described later.
(緑色顔料の製造方法)
 緑色顔料におけるハロゲン化金属フタロシアニンは、例えば、クロルスルホン酸法、ハロゲン化フタロニトリル法、溶融法等の様な公知の製造方法で製造できる。
(Method for producing green pigment)
The halogenated metal phthalocyanine in the green pigment can be produced by a known production method such as a chlorosulfonic acid method, a halogenated phthalonitrile method, or a melting method.
 クロルスルホン酸法としては、例えば、金属フタロシアニンを、クロロスルホン酸等の硫黄酸化物系の溶剤に溶解し、これに塩素ガス、臭素を仕込みハロゲン化する方法等が挙げられる。この際の反応は、温度20℃以上120℃以下、且つ、3時間以上20時間以下の範囲で行われる。 Examples of the chlorosulfonic acid method include a method in which metal phthalocyanine is dissolved in a sulfur oxide-based solvent such as chlorosulfonic acid, and chlorine gas and bromine are added thereto to perform halogenation. The reaction at this time is performed at a temperature of 20 ° C. or higher and 120 ° C. or lower and a range of 3 hours or longer and 20 hours or shorter.
ハロゲン化フタロニトリル法としては、例えば、芳香環の水素原子の一部又は全部が臭素、塩素等のハロゲン原子で置換されたフタル酸やフタロジニトリルと、亜鉛の金属又は金属塩を適宜出発原料として使用して、対応するハロゲン化金属フタロシアニンを合成する方法が挙げられる。この場合、必要に応じてモリブデン酸アンモニウム等の触媒を用いてもよい。この際の反応は、温度100℃以上300℃以下、且つ、7時間以上35時間以下の範囲で行われる。 As the halogenated phthalonitrile method, for example, phthalic acid or phthalodinitrile in which part or all of the hydrogen atoms of the aromatic ring are substituted with halogen atoms such as bromine and chlorine, and a metal or metal salt of zinc are appropriately used as starting materials. And a method for synthesizing a corresponding metal halide phthalocyanine. In this case, a catalyst such as ammonium molybdate may be used as necessary. The reaction at this time is performed at a temperature of 100 ° C. or more and 300 ° C. or less and in a range of 7 hours or more and 35 hours or less.
 溶融法としては、例えば、塩化アルミニウム、臭化アルミニウム等のハロゲン化アルミニウム、四塩化チタン等のハロゲン化チタン、塩化ナトリウム、臭化ナトリウム等のアルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物(以下、「アルカリ(土類)金属ハロゲン化物」と称する場合がある。)、塩化チオニル等、各種のハロゲン化の際に溶剤となる化合物の一種又は二種以上の混合物からなる10℃以上170℃以下程度の溶融物中で、金属フタロシアニンをハロゲン化剤にてハロゲン化する方法等が挙げられる。 Examples of the melting method include aluminum halides such as aluminum chloride and aluminum bromide, titanium halides such as titanium tetrachloride, alkali metal halides such as sodium chloride and sodium bromide, or alkaline earth metal halides (hereinafter, About 10 ° C to 170 ° C, consisting of one or a mixture of two or more compounds that serve as solvents during various halogenations, such as "alkaline (earth) metal halides") and thionyl chloride And a method of halogenating metal phthalocyanine with a halogenating agent.
 前記ハロゲン化アルミニウムとしては、塩化アルミニウムであることが好ましい。ハロゲン化アルミニウムを用いる上記溶融法における、ハロゲン化アルミニウムの添加量は、亜鉛フタロシアニンに対して、通常は、3倍モル以上であり、好ましくは10倍モル以上20倍モル以下である。 The aluminum halide is preferably aluminum chloride. In the melting method using aluminum halide, the amount of aluminum halide added is usually 3 times mol or more, preferably 10 times mol or more and 20 times mol or less with respect to zinc phthalocyanine.
 ハロゲン化アルミニウムは単独で用いてもよいが、アルカリ(土類)金属ハロゲン化物をハロゲン化アルミニウムに併用すると溶融温度をより下げることができ、操作上有利になる。前記アルカリ(土類)金属ハロゲン化物としては、塩化ナトリウムであることが好ましい。加えるアルカリ(土類)金属ハロゲン化物の量は溶融塩を生成する範囲内でハロゲン化アルミニウム10質量部に対してアルカリ(土類)金属ハロゲン化物が5質量部以上15質量部以下が好ましい。 Aluminum halide may be used alone, but when an alkali (earth) metal halide is used in combination with aluminum halide, the melting temperature can be further lowered, which is advantageous in operation. The alkali (earth) metal halide is preferably sodium chloride. The amount of the alkali (earth) metal halide to be added is preferably 5 parts by mass or more and 15 parts by mass or less of the alkali (earth) metal halide with respect to 10 parts by mass of the aluminum halide within the range in which the molten salt is formed.
 また、ハロゲン化剤としては、例えば、塩素ガス、塩化スルフリル、臭素等が挙げられる。 Also, examples of the halogenating agent include chlorine gas, sulfuryl chloride, bromine and the like.
 ハロゲン化の温度は10℃以上170℃以下が好ましく、30℃以上140℃以下がより好ましい。さらに、反応速度を速くするため、加圧してもよい。反応時間は、5時間以上100時間以下であることが好ましく、30時間以上45時間以下であることがより好ましい。 The halogenation temperature is preferably 10 ° C. or higher and 170 ° C. or lower, and more preferably 30 ° C. or higher and 140 ° C. or lower. Furthermore, pressurization may be performed to increase the reaction rate. The reaction time is preferably 5 hours or more and 100 hours or less, and more preferably 30 hours or more and 45 hours or less.
 ハロゲン化金属フタロシアニンの製造方法としては、前記ハロゲン化の際に溶剤となる化合物の二種以上を併用する溶融法が好ましい。理由としては、この方法では、溶融塩中の塩化物と臭化物とヨウ素化物との比率を調節したり、塩素ガスや臭素やヨウ素の導入量や反応時間を変化させたりすることによって、生成するハロゲン化亜鉛フタロシアニン中における、特定ハロゲン原子組成のハロゲン化亜鉛フタロシアニンの含有比率を任意にコントロールすることができるためである。 As a method for producing the metal halide phthalocyanine, a melting method in which two or more kinds of compounds that become a solvent in the halogenation are used in combination is preferable. This is because, in this method, the halogen produced by adjusting the ratio of chloride, bromide and iodide in the molten salt, or by changing the introduction amount and reaction time of chlorine gas, bromine and iodine. This is because the content ratio of the halogenated zinc phthalocyanine having a specific halogen atom composition in the zinc halide phthalocyanine can be arbitrarily controlled.
 本実施形態における好適な原料となる金属フタロシアニンは、亜鉛フタロシアニンである。反応中の原料の分解が少なく原料からの収率がより優れ、強酸を用いず安価な装置にて反応を行えるので、ハロゲン化亜鉛フタロシアニンを得る上では、溶融法が好適である。 The metal phthalocyanine that is a suitable raw material in the present embodiment is zinc phthalocyanine. In order to obtain a halogenated zinc phthalocyanine, the melting method is suitable because the raw material during the reaction is less decomposed and the yield from the raw material is better, and the reaction can be carried out in an inexpensive apparatus without using a strong acid.
 原料仕込方法、触媒種や使用量、反応温度や反応時間の最適化により、既存のハロゲン化亜鉛フタロシアニンとは異なるハロゲン原子組成のハロゲン化亜鉛フタロシアニンを得ることができる。 亜 鉛 Zinc halide phthalocyanine having a halogen atom composition different from that of existing zinc halide phthalocyanine can be obtained by optimizing the raw material charging method, catalyst type and amount, reaction temperature and reaction time.
 上記いずれの製造方法にせよ、反応終了後、得られた混合物を水又は塩酸等の酸性水溶液中に投入すると、生成したハロゲン化金属フタロシアニンが沈殿する。ハロゲン化金属フタロシアニンとしては、これをそのまま用いてもよいが、その後、濾過、又は水、硫酸水素ナトリウム水、炭酸水素ナトリウム水、若しくは水酸化ナトリウム水による洗浄、必要に応じてアセトン、トルエン、メチルアルコール、エチルアルコール、ジメチルホルムアミド等の有機溶剤洗浄を行い、乾燥等の後処理を行ってから用いるのが好ましい。 In any of the above production methods, after the completion of the reaction, when the obtained mixture is poured into an acidic aqueous solution such as water or hydrochloric acid, the produced metal halide phthalocyanine is precipitated. As the metal halide phthalocyanine, it may be used as it is, but then filtered or washed with water, sodium hydrogen sulfate aqueous solution, sodium hydrogen carbonate aqueous solution or sodium hydroxide aqueous solution, if necessary acetone, toluene, methyl It is preferably used after washing with an organic solvent such as alcohol, ethyl alcohol, dimethylformamide, and after-treatment such as drying.
 ハロゲン化金属フタロシアニンは、必要に応じてアトライター、ボールミル、振動ミル、振動ボールミル等の粉砕機内で乾式磨砕し、ついで、ソルベントソルトミリング法やソルベントボイリング法等で顔料化することによって、顔料化前よりは、分散性や着色力に優れ、且つ、明度の高い緑色を発色する顔料が得られる。 Halogenated metal phthalocyanine is pigmented by dry grinding in a pulverizer such as an attritor, ball mill, vibration mill, vibration ball mill, etc. Compared to the former, it is possible to obtain a pigment that is excellent in dispersibility and coloring power and has a high lightness to develop a green color.
 ハロゲン化金属フタロシアニンの顔料化方法には特に制限はなく、例えば、顔料化前のハロゲン化金属フタロシアニンを分散媒に分散させると同時に顔料化を行ってもよい。中でも、ハロゲン化金属フタロシアニンの顔料化方法としては、多量の有機溶剤中でハロゲン化金属フタロシアニンを加熱攪拌するソルベント処理よりも、容易に結晶成長を抑制でき、かつ比表面積の大きい顔料粒子が得られる点で、ソルベントソルトミリング処理を採用するのが好ましい。 There are no particular restrictions on the method of pigmenting the metal halide phthalocyanine, and for example, the metal halide phthalocyanine before pigmentation may be dispersed in a dispersion medium and pigmented at the same time. Among them, as a method for forming a halogenated metal phthalocyanine, pigment particles that can easily suppress crystal growth and have a large specific surface area can be obtained compared to a solvent treatment in which a halogenated metal phthalocyanine is heated and stirred in a large amount of an organic solvent. In this respect, it is preferable to employ a solvent salt milling process.
 このソルベントソルトミリングとは、合成直後またはその後に磨砕を行った、顔料化を経ていないハロゲン化金属フタロシアニンである粗顔料と、無機塩と、有機溶剤とを混練磨砕することを意味する。この場合、後者の粗顔料を用いるほうが好ましい。具体的には、粗顔料と、無機塩と、それを溶解しない有機溶剤とを混練機に仕込み、その中で混練磨砕を行う。この際の混練機としては、例えばニーダーやミックスマーラー等が使用できる。 This solvent salt milling means kneading and grinding a crude pigment, which is a halogenated metal phthalocyanine that has not undergone pigmentation, ground immediately after synthesis or after that, an inorganic salt, and an organic solvent. In this case, it is preferable to use the latter crude pigment. Specifically, a crude pigment, an inorganic salt, and an organic solvent that does not dissolve it are charged into a kneader and kneaded and ground therein. As a kneader at this time, for example, a kneader, a mix muller, or the like can be used.
 上記無機塩としては、水溶性無機塩が好適に使用でき、例えば塩化ナトリウム、塩化カリウム、硫酸ナトリウム等の無機塩を用いることが好ましい。また、平均粒子径0.5μm以上50μm以下の無機塩を用いることがより好ましい。この様な無機塩は、通常の無機塩を微粉砕することにより容易に得られる。 As the inorganic salt, a water-soluble inorganic salt can be preferably used. For example, an inorganic salt such as sodium chloride, potassium chloride, sodium sulfate is preferably used. Moreover, it is more preferable to use an inorganic salt having an average particle size of 0.5 μm or more and 50 μm or less. Such an inorganic salt can be easily obtained by pulverizing a normal inorganic salt.
 本実施形態において、一次粒子の平均粒子径が50nm以下のハロゲン化金属フタロシアニン顔料をカラーフィルタ用途に用いるのが好ましい。本実施形態における前記した好ましいハロゲン化金属フタロシアニンを得るために、ソルベントソルトミリングにおける粗顔料使用量に対する無機塩使用量を高くすることが好ましい。すなわち、当該無機塩の使用量は、粗顔料1質量部に対して5質量部以上20質量部以下とするのが好ましく、7質量部以上15質量部以下とするのがより好ましい。 In this embodiment, it is preferable to use a metal halide phthalocyanine pigment having an average primary particle size of 50 nm or less for color filter use. In order to obtain the preferred metal halide phthalocyanine described above in the present embodiment, it is preferable to increase the amount of inorganic salt used relative to the amount of crude pigment used in solvent salt milling. That is, the amount of the inorganic salt used is preferably 5 parts by mass or more and 20 parts by mass or less, and more preferably 7 parts by mass or more and 15 parts by mass or less with respect to 1 part by mass of the crude pigment.
 有機溶剤としては、結晶成長を抑制し得る有機溶剤を使用することが好ましい。このような有機溶剤としては水溶性有機溶剤が好適に使用できる。水溶性有機溶剤として具体的には、例えば、ジエチレングリコール、グリセリン、エチレングリコール、プロピレングリコール、液体ポリエチレングルコール、液体ポリプロピレングリコール、2-(メトキシメトキシ)エタノール、2-ブトキシエタノール、2ー(イソペンチルオキシ)エタノール、2-(ヘキシルオキシ)エタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル等が挙げられる。当該水溶性有機溶剤の使用量は、特に限定されず、粗顔料1質量部に対して0.01質量部以上5質量部以下が好ましい。 It is preferable to use an organic solvent that can suppress crystal growth as the organic solvent. As such an organic solvent, a water-soluble organic solvent can be preferably used. Specific examples of the water-soluble organic solvent include diethylene glycol, glycerin, ethylene glycol, propylene glycol, liquid polyethylene glycol, liquid polypropylene glycol, 2- (methoxymethoxy) ethanol, 2-butoxyethanol, 2- (isopentyloxy). ) Ethanol, 2- (hexyloxy) ethanol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol, triethylene glycol monomethyl ether, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, Examples include dipropylene glycol and dipropylene glycol monomethyl ether. The usage-amount of the said water-soluble organic solvent is not specifically limited, 0.01 mass part or more and 5 mass parts or less are preferable with respect to 1 mass part of crude pigments.
 ソルベントソルトミリング時の温度は、30℃以上150℃以下が好ましく、80℃以上100℃以下がより好ましい。ソルベントソルトミリングの時間は、5時間以上20時間以下が好ましく、8時間以上18時間以下がより好ましい。 The temperature during solvent salt milling is preferably 30 ° C. or higher and 150 ° C. or lower, and more preferably 80 ° C. or higher and 100 ° C. or lower. The solvent salt milling time is preferably 5 hours or more and 20 hours or less, and more preferably 8 hours or more and 18 hours or less.
 こうして、一次粒子の平均粒子径が50nm以下のハロゲン化金属フタロシアニン顔料、無機塩、有機溶剤を主成分として含む混合物が得られる。この混合物から有機溶剤と無機塩を除去し、必要に応じてハロゲン化金属フタロシアニン顔料を主体とする固形物を洗浄、濾過、乾燥、粉砕等をすることにより、ハロゲン化金属フタロシアニン顔料の粉体を得ることが出来る。 In this way, a mixture containing a metal halide phthalocyanine pigment, an inorganic salt, and an organic solvent as main components having an average primary particle size of 50 nm or less is obtained. The organic solvent and the inorganic salt are removed from the mixture, and the solid material mainly containing the halogenated metal phthalocyanine pigment is washed, filtered, dried, pulverized, etc. as necessary to obtain a powder of the halogenated metal phthalocyanine pigment. Can be obtained.
 洗浄としては、水洗、湯洗のいずれも採用できる。洗浄回数は、1回以上5回以下の範囲で繰り返せばよい。水溶性無機塩及び水溶性有機溶剤を用いた前記混合物の場合は、水洗することで容易に有機溶剤と無機塩を除去することができる。必要であれば、結晶状態を変化させないように、酸洗浄、アルカリ洗浄、有機溶剤洗浄を行ってもよい。 As washing, either water washing or hot water washing can be adopted. What is necessary is just to repeat the frequency | count of washing | cleaning in the range of 1 time or more and 5 times or less. In the case of the mixture using a water-soluble inorganic salt and a water-soluble organic solvent, the organic solvent and the inorganic salt can be easily removed by washing with water. If necessary, acid cleaning, alkali cleaning, or organic solvent cleaning may be performed so as not to change the crystal state.
 上記した濾別、洗浄後の乾燥としては、例えば、乾燥機に設置した加熱源による80℃以上120℃以下の加熱等により、顔料の脱水又は脱溶剤のうち少なくともいずれかを行う回分式又は連続式の乾燥等が挙げられる。前記乾燥機としては一般に箱型乾燥機、バンド乾燥機、スプレードライアー等が挙げられる。特にスプレードライ乾燥はペースト作成時に易分散であるため好ましい。また、乾燥後の粉砕は、比表面積を大きくするため、又は一次粒子の平均粒子径を小さくするための操作ではない。乾燥後の粉砕は、例えば箱型乾燥機、バンド乾燥機を用いた乾燥の場合のように、顔料がランプ状等となった際に顔料を解して粉末化するために行うものである。乾燥後に使用する粉砕機としては、例えば、乳鉢、ハンマーミル、ディスクミル、ピンミル、ジェットミル等が挙げられる。こうして、ハロゲン化金属フタロシアニン顔料を主成分として含む顔料の乾燥粉末が得られる。 As the drying after the filtration and washing described above, for example, batchwise or continuous in which at least one of dehydration or desolvation of the pigment is performed by heating at 80 ° C. or more and 120 ° C. or less by a heating source installed in a dryer. And drying of the formula. Examples of the dryer generally include a box-type dryer, a band dryer, and a spray dryer. In particular, spray dry drying is preferable because it is easily dispersed during paste preparation. Further, pulverization after drying is not an operation for increasing the specific surface area or reducing the average particle size of the primary particles. The pulverization after drying is performed in order to break the pigment into powder when the pigment is in a lamp shape or the like, for example, in the case of drying using a box dryer or a band dryer. Examples of the pulverizer used after drying include a mortar, a hammer mill, a disk mill, a pin mill, and a jet mill. In this way, a dry powder of a pigment containing a metal halide phthalocyanine pigment as a main component is obtained.
 緑色顔料は、着色の由来となる化合物を1種含んでいてもよく、2種以上含んでいてもよい。2種以上含む場合、緑色顔料に含まれる各化合物を混合後顔料化してもよく、緑色顔料に含まれる各化合物を顔料化した後に混合してもよい。 The green pigment may contain one kind of compound that is derived from coloring, or may contain two or more kinds. When two or more types are included, each compound contained in the green pigment may be mixed and then pigmented, or each compound contained in the green pigment may be pigmented and then mixed.
[黄色顔料]
 また、本実施形態のカラーフィルタ用顔料組成物は、緑色画素を形成するために、上記緑色顔料と共に、少なくとも1以上の黄色顔料を含有させることができる。
[Yellow pigment]
Moreover, in order to form a green pixel, the pigment composition for color filters of this embodiment can contain at least 1 or more yellow pigment with the said green pigment.
 黄色顔料としては、例えば、C.I.ピグメントイエロー(PY)1、2、3、4、5、6、10、12、13、14、15、16、17、18、24、31、32、34、35、35:1、36、36:1、37、37:1、40、42、43、53、55、60、61、62、63、65、73、74、77、81、83、93、94、95、97、98、100、101、104、106、108、109、110、113、114、115、116、117、118、119、120、126、127、128、129、138、139、150、151、152、153、154、155、156、161、162、164、166、167、168、169、170、171、172、173、174、175、176、177、179、180、181、182、185、187、199、231等が挙げられる。中でも、黄色顔料としては、輝度が高い、又は、顔料が少量で済み薄膜化に適している点から、PY83、138、139、150、185、又は231が好ましく、PY138、150、185、又は231が特に好ましい。これらは、1種又は2種以上組み合わせて用いることができる。 Examples of yellow pigments include C.I. I. Pigment Yellow (PY) 1, 2, 3, 4, 5, 6, 10, 12, 13, 14, 15, 16, 17, 18, 24, 31, 32, 34, 35, 35: 1, 36, 36 : 1, 37, 37: 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 93, 94, 95, 97, 98, 100 , 101, 104, 106, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 126, 127, 128, 129, 138, 139, 150, 151, 152, 153, 154 155, 156, 161, 162, 164, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 182, 85,187,199,231, and the like. Among them, as the yellow pigment, PY83, 138, 139, 150, 185, or 231 is preferable because it has high luminance or a small amount of pigment and is suitable for thinning, and PY138, 150, 185, or 231 is preferable. Is particularly preferred. These can be used alone or in combination of two or more.
 黄色顔料を混合してカラーフィルタ用顔料組成物を調製する場合には、緑色顔料と黄色顔料との混合比は、前記緑色顔料100質量部当たり、黄色顔料が1質量部以上400質量部以下であればよい。 When a pigment composition for a color filter is prepared by mixing a yellow pigment, the mixing ratio of the green pigment and the yellow pigment is such that the yellow pigment is 1 part by mass or more and 400 parts by mass or less per 100 parts by mass of the green pigment. I just need it.
 また、本実施形態のカラーフィルタ用顔料組成物において、黄色顔料を調色のために併用した場合でも、従来の緑色顔料を用いる場合に比べて、高輝度のカラーフィルタ緑色画素部を作製することができる。 In addition, in the color filter pigment composition of the present embodiment, even when a yellow pigment is used together for toning, a high-luminance color filter green pixel portion is produced as compared with the case of using a conventional green pigment. Can do.
<カラーフィルタ用顔料組成物の製造方法>
 本実施形態のカラーフィルタ用顔料組成物は、公知の製造方法を用いて製造することができる。
<Method for producing pigment composition for color filter>
The color filter pigment composition of the present embodiment can be produced using a known production method.
 緑色顔料の製造方法については、上述のとおりである。
具体的には、緑色顔料と、必要に応じて黄色顔料とを、アトライター、ボールミル、振動ミル、振動ボールミル等の粉砕機内で乾式磨砕し、ついで、ソルベントソルトミリング法やソルベントボイリング法等で顔料化することができる。
The method for producing the green pigment is as described above.
Specifically, a green pigment and, if necessary, a yellow pigment are dry-ground in a pulverizer such as an attritor, ball mill, vibration mill, vibration ball mill, etc., and then a solvent salt milling method or a solvent boiling method is used. Can be pigmented.
顔料化の詳細な方法については、上述の(緑色顔料の製造方法)において記載したとおりである。 The detailed method of pigmentation is as described in the above (Method for producing green pigment).
 本実施形態のカラーフィルタ用顔料組成物は、一次粒子の平均粒子径が50nm以下であり、好ましくは1nm以上50nm以下であり、顔料凝集も比較的弱く、着色すべき合成樹脂等への分散性がより良好である。また、1nm以上20nm以下であることが、さらに好ましい。 The pigment composition for a color filter of the present embodiment has an average primary particle size of 50 nm or less, preferably 1 nm or more and 50 nm or less, relatively weak pigment aggregation, and dispersibility in a synthetic resin to be colored. Is better. Moreover, it is more preferable that it is 1 nm or more and 20 nm or less.
 本実施形態において、「一次粒子の平均粒子径」は、以下の測定方法を用いて算出することができる。まず、透過型電子顕微鏡JEM-2010(日本電子株式会社製)で視野内の本実施形態のカラーフィルタ用顔料組成物の粒子を撮影する。次いで、二次元画像上の、凝集体を構成する本実施形態のカラーフィルタ用顔料組成物の一次粒子50個につき、その長い方の径(長径)を各々求める。次いで、求められた長径を平均することで、一次粒子の平均粒子径を算出することができる。この際、試料である本実施形態のカラーフィルタ用顔料組成物は、これを溶剤に超音波分散させてから顕微鏡で撮影する。また、透過型電子顕微鏡の代わりに走査型電子顕微鏡を使用してもよい。 In this embodiment, the “average particle diameter of primary particles” can be calculated using the following measurement method. First, the particles of the color filter pigment composition of the present embodiment in the field of view are photographed with a transmission electron microscope JEM-2010 (manufactured by JEOL Ltd.). Next, the longer diameter (major diameter) of 50 primary particles of the color filter pigment composition of the present embodiment constituting the aggregate on the two-dimensional image is determined. Next, the average particle diameter of the primary particles can be calculated by averaging the obtained long diameters. At this time, the color filter pigment composition of the present embodiment as a sample is ultrasonically dispersed in a solvent and then photographed with a microscope. A scanning electron microscope may be used instead of the transmission electron microscope.
<用途>
 本実施形態のカラーフィルタ用顔料組成物を用いて、緑色画素を形成することで、カラーフィルタを得ることができる。
 本実施形態のカラーフィルタ用顔料組成物を用いて形成された緑色画素は輝度が高い。そのため、係る緑色画素を備えた表示性能の高いカラーフィルタ及び液晶パネルを備える液晶表示装置を製造することができる。
<Application>
A color filter can be obtained by forming a green pixel using the color filter pigment composition of the present embodiment.
The green pixel formed using the color filter pigment composition of the present embodiment has high luminance. Therefore, it is possible to manufacture a liquid crystal display device including a color filter having a high display performance and a liquid crystal panel including the green pixel.
(カラーフィルタの製造方法)
 本実施形態のカラーフィルタ用顔料組成物は、公知の方法でカラーフィルタの緑色画素部のパターンの形成に用いることができる。典型的には、本実施形態のカラーフィルタ用顔料組成物と、感光性樹脂とを必須成分として含むカラーフィルタ緑色画素部用感光性組成物を得ることができる。
(Color filter manufacturing method)
The pigment composition for a color filter of this embodiment can be used for forming a pattern of a green pixel portion of a color filter by a known method. Typically, the color filter green pixel part photosensitive composition containing the pigment composition for color filters of this embodiment and the photosensitive resin as an essential component can be obtained.
 カラーフィルタの製造方法としては、例えば、以下に示すフォトリソグラフィーと呼ばれる方法等が挙げられる。具体的には、まず、本実施形態のカラーフィルタ用顔料組成物を感光性樹脂からなる分散媒に分散させる。次いで、この分散液をスピンコート法、ロールコート法、スリットコート法、インクジェット法等でガラス等の透明基板上に塗布して塗膜を得る。次いで、この塗布膜に対して、フォトマスクを介して紫外線によるパターン露光を行う。次いで、未露光部分を溶剤等で洗浄して緑色パターンを得る。 Examples of the method for producing a color filter include a method called photolithography shown below. Specifically, first, the color filter pigment composition of the present embodiment is dispersed in a dispersion medium made of a photosensitive resin. Next, this dispersion is applied onto a transparent substrate such as glass by a spin coating method, a roll coating method, a slit coating method, an ink jet method or the like to obtain a coating film. Subsequently, pattern exposure with ultraviolet rays is performed on the coating film through a photomask. Next, the unexposed portion is washed with a solvent or the like to obtain a green pattern.
 その他の製造方法としては、例えば、電着法、転写法、ミセル電解法、PVED(Photovoltaic Electrodeposition)法等の方法で緑色画素部のパターンを形成して、カラーフィルタを製造する方法等が挙げられる。なお、赤色画素部のパターン及び青色画素部のパターンも公知の顔料を使用して、同様の方法で形成できる。 Examples of other manufacturing methods include a method of manufacturing a color filter by forming a pattern of a green pixel portion by a method such as an electrodeposition method, a transfer method, a micellar electrolysis method, a PVED (Photovoltaic Electrodeposition) method, or the like. . The red pixel portion pattern and the blue pixel portion pattern can also be formed by a similar method using a known pigment.
 カラーフィルタ緑色画素部用感光性組成物を調製するには、例えば、本実施形態のカラーフィルタ用顔料組成物と、感光性樹脂と、光重合開始剤と、前記樹脂を溶解する有機溶剤とを必須成分として混合する。より具体的には、本実施形態のカラーフィルタ用顔料組成物と有機溶剤と必要に応じて分散剤を用いて分散液を調製してから、そこに感光性樹脂等を加えて調製する方法が一般的である。 To prepare the photosensitive composition for the color filter green pixel portion, for example, the color filter pigment composition of the present embodiment, a photosensitive resin, a photopolymerization initiator, and an organic solvent that dissolves the resin. Mix as an essential ingredient. More specifically, there is a method of preparing a dispersion by using a pigment composition for a color filter of the present embodiment, an organic solvent, and a dispersant as required, and then adding a photosensitive resin or the like to the dispersion. It is common.
 前記分散剤としては、例えば、ビックケミー社のディスパービック(DISPERBYK登録商標)130、同161、同162、同163、同170、同LPN-6919、同LPN-21116等が挙げられる。また、レベリング剤、カップリング剤、カチオン系の界面活性剤等も併せて使用してもよい。 Examples of the dispersing agent include Disperbyk (registered trademark) 130, 161, 162, 163, 170, LPN-6919, LPN-21116, etc. manufactured by BYK Chemie. Further, a leveling agent, a coupling agent, a cationic surfactant and the like may be used in combination.
 前記有機溶剤としては、例えばトルエンやキシレン、メトキシベンゼン等の芳香族系溶剤、酢酸エチルや酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等の酢酸エステル系溶剤、エトキシエチルプロピオネート等のプロピオネート系溶剤、メタノール、エタノール等のアルコール系溶剤、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、ヘキサン等の脂肪族炭化水素系溶剤、N,N-ジメチルホルムアミド、γ-ブチロラクタム、N-メチル-2-ピロリドン、アニリン、ピリジン等の窒素化合物系溶剤、γ-ブチロラクトン等のラクトン系溶剤、カルバミン酸メチルとカルバミン酸エチルの48:52の混合物のようなカルバミン酸エステル、水等がある。有機溶剤としては、特にプロピオネート系、アルコール系、エーテル系、ケトン系、窒素化合物系、ラクトン系、水等の極性溶剤で水可溶のものが適している。沸点が150℃以上の高沸点溶剤も適宜使用できる。 Examples of the organic solvent include aromatic solvents such as toluene, xylene and methoxybenzene, acetate solvents such as ethyl acetate and butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, and ethoxyethyl propionate. Propionate solvents such as methanol, ethanol solvents such as methanol, ether solvents such as butyl cellosolve, propylene glycol monomethyl ether, diethylene glycol ethyl ether, diethylene glycol dimethyl ether, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, hexane, etc. Aliphatic hydrocarbon solvents, N, N-dimethylformamide, γ-butyrolactam, N-methyl-2-pyrrolidone Aniline, nitrogen compound-based solvent such as pyridine, a lactone-based solvents such as γ- butyrolactone, carbamic acid esters such as a mixture of 48:52 of methyl carbamate and ethyl carbamate, there is water. As the organic solvent, polar solvents such as propionate-based, alcohol-based, ether-based, ketone-based, nitrogen compound-based, lactone-based, and water-soluble ones are particularly suitable. A high boiling point solvent having a boiling point of 150 ° C. or higher can also be used as appropriate.
 本実施形態のカラーフィルタ用顔料組成物100質量部当たり、300質量部以上1000質量部以下の有機溶剤と、必要に応じて0質量部以上100質量部以下の分散剤とを、均一となる様に攪拌分散して分散液を得ることができる。次いでこの分散液に、本実施形態のカラーフィルタ用顔料組成物100質量部当たり、3質量部以上20質量部以下の感光性樹脂、感光性樹脂1質量部当たり0.05質量部以上3質量部以下の光重合開始剤と、必要に応じてさらに有機溶剤を添加し、均一となる様に攪拌分散してカラーフィルタ緑色画素部用感光性組成物を得ることができる。 The organic solvent of 300 parts by weight or more and 1000 parts by weight or less and, if necessary, the dispersant of 0 parts by weight or more and 100 parts by weight or less per 100 parts by weight of the color filter pigment composition of the present embodiment are made uniform. The dispersion can be obtained by stirring and dispersing. Next, in this dispersion, 3 to 20 parts by mass of a photosensitive resin per 100 parts by mass of the pigment composition for a color filter of the present embodiment, 0.05 to 3 parts by mass per 1 part by mass of the photosensitive resin. The following photopolymerization initiator and, if necessary, an organic solvent may be further added and stirred and dispersed so as to be uniform to obtain a photosensitive composition for a color filter green pixel portion.
 前記感光性樹脂としては、例えばウレタン系樹脂、アクリル系樹脂、ポリアミド酸系樹脂、ポリイミド系樹脂、スチレンマレイン酸系樹脂、スチレン無水マレイン酸系樹脂等の熱可塑性樹脂や、例えば1,6-ヘキサンジオールジアクリレート、エチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリエチレングリコールジアクリレート、ビス(アクリロキシエトキシ)ビスフェノールA、3-メチルペンタンジオールジアクリレート等のような2官能モノマー、トリメチルロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、トリス(2-ヒドロキシエチル)イソシアネート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレート等のような多官能モノマー等の光重合性モノマーが挙げられる。 Examples of the photosensitive resin include thermoplastic resins such as urethane resins, acrylic resins, polyamic acid resins, polyimide resins, styrene maleic acid resins, styrene maleic anhydride resins, and 1,6-hexane, for example. Bifunctional monomers such as diol diacrylate, ethylene glycol diacrylate, neopentyl glycol diacrylate, triethylene glycol diacrylate, bis (acryloxyethoxy) bisphenol A, 3-methylpentanediol diacrylate, trimethylolpropane triacrylate , Pentaerythritol triacrylate, tris (2-hydroxyethyl) isocyanate, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, etc. Photopolymerizable monomer, such monomers.
 前記光重合開始剤としては、例えばアセトフェノン、ベンゾフェノン、ベンジルジメチルケタール、ベンゾイルパーオキサイド、2-クロロチオキサントン、1,3-ビス(4'-アジドベンザル)-2-プロパン、1,3-ビス(4'-アジドベンザル)-2-プロパン-2'-スルホン酸、4,4'-ジアジドスチルベン-2,2'-ジスルホン酸等が挙げられる。 Examples of the photopolymerization initiator include acetophenone, benzophenone, benzyldimethyl ketal, benzoyl peroxide, 2-chlorothioxanthone, 1,3-bis (4′-azidobenzal) -2-propane, 1,3-bis (4 ′). -Azidobenzal) -2-propane-2'-sulfonic acid, 4,4'-diazidostilbene-2,2'-disulfonic acid, and the like.
 調製されたカラーフィルタ緑色画素部用感光性組成物は、フォトマスクを介して紫外線によるパターン露光を行った後、未露光部分を有機溶剤やアルカリ水等で洗浄することにより、カラーフィルタを得ることができる。 The prepared photosensitive composition for the color filter green pixel portion is subjected to pattern exposure with ultraviolet rays through a photomask, and then the unexposed portion is washed with an organic solvent or alkaline water to obtain a color filter. Can do.
 以下、実施例及び比較例等を挙げて本発明をさらに詳述するが、本発明はこれらの実施例等に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples and the like.
[製造例1](顔料1)
 300mLフラスコに、塩化スルフリル 45部、塩化アルミニウム 109部、塩化ナトリウム 15部、亜鉛フタロシアニン 30部、臭素 300部を仕込んだ。145℃まで40時間かけて昇温し、水に取り出した後、ろ過することにより粗顔料1を得た。得られた粗顔料1 20部、粉砕した塩化ナトリウム 140部、ジエチレングリコール 32部、キシレン 1.8部を1L双腕型ニーダーに仕込み、30℃で15時間混練した。混練後、30℃の水 2kgに取り出し、1時間攪拌後、ろ過、湯洗、乾燥、粉砕することにより、顔料1を得た。
[Production Example 1] (Pigment 1)
A 300 mL flask was charged with 45 parts of sulfuryl chloride, 109 parts of aluminum chloride, 15 parts of sodium chloride, 30 parts of zinc phthalocyanine, and 300 parts of bromine. The temperature was raised to 145 ° C. over 40 hours, taken out into water, and filtered to obtain crude pigment 1. 20 parts of the obtained crude pigment 1, 140 parts of crushed sodium chloride, 32 parts of diethylene glycol, and 1.8 parts of xylene were charged into a 1 L double arm kneader and kneaded at 30 ° C. for 15 hours. After kneading, it was taken out in 2 kg of 30 ° C. water, stirred for 1 hour, filtered, washed with hot water, dried, and pulverized to obtain Pigment 1.
得られた顔料1について、平均塩素原子数及び平均臭素原子数は、リガク社製ZSX100Eを使用した蛍光X線分析を行い、亜鉛原子、塩素原子及び臭素原子の質量比から、亜鉛原子1個当たりの相対値として算出した。なお、ハロゲン化亜鉛フタロシアニン 1gを加圧成型(25mmφ)したものを測定試料とし、測定径20mmφ、真空雰囲気下にて測定した。その結果、顔料1では、1分子中のハロゲン原子数が平均15.73個であり、そのうち臭素原子数が平均14.13個、塩素原子数が平均1.60個であるハロゲン化亜鉛フタロシアニン顔料であった。また、得られた顔料1は、日本電子社製透過電子顕微鏡JEM-2010による粒子径測定から、一次粒子の平均粒子径は0.02μmであった。 For the obtained pigment 1, the average number of chlorine atoms and the average number of bromine atoms were measured by fluorescent X-ray analysis using ZSX100E manufactured by Rigaku Corporation. From the mass ratio of zinc atoms, chlorine atoms and bromine atoms, per one zinc atom Was calculated as a relative value. In addition, 1 g of zinc halide phthalocyanine was pressure-molded (25 mmφ) as a measurement sample, and measurement was performed in a measurement diameter of 20 mmφ in a vacuum atmosphere. As a result, in the pigment 1, a halogenated zinc phthalocyanine pigment having an average number of halogen atoms in one molecule of 15.73, of which the average number of bromine atoms is 14.13 and the average number of chlorine atoms is 1.60. Met. In addition, according to the obtained pigment 1, the average particle size of the primary particles was 0.02 μm from the particle size measurement with a transmission electron microscope JEM-2010 manufactured by JEOL Ltd.
 得られた顔料1 2.48部を、BYK-LPN6919 1.24部、ユニディック ZL-295 1.86部、プロピレングリコールモノメチルエーテルアセテート 10.92部と共に0.3~0.4mmのジルコンビーズを用いて、ペイントシェーカーで2時間分散して、着色組成物1を得た。着色組成物1 4.0部、ユニディックZL-295 0.98部、プロピレングリコールモノメチルエーテルアセテート 0.22部を加えて、ペイントシェーカーで混合することでカラーフィルタ用緑色画素部を形成するための評価用組成物1を得た。この評価用組成物1をソーダガラスにスピンコートし、90℃で3分乾燥して評価用ガラス基板を得た。この評価用ガラス基板を、日立ハイテクノロジーズ社製U-3900を用いて、単色分光透過スペクトルを測定した。分光透過スペクトルを図1A、図1B及び図1Cに示す。 2.48 parts of the obtained pigment 1 were combined with 1.24 parts of BYK-LPN6919, 1.86 parts of Unidic ZL-295, 10.92 parts of propylene glycol monomethyl ether acetate, and 0.3 to 0.4 mm zircon beads. And colored composition 1 was obtained by dispersing in a paint shaker for 2 hours. Coloring composition 1 4.0 parts, Unidic ZL-295 0.98 parts, propylene glycol monomethyl ether acetate 0.22 parts are added and mixed with a paint shaker to form a green pixel part for a color filter A composition 1 for evaluation was obtained. This evaluation composition 1 was spin-coated on soda glass and dried at 90 ° C. for 3 minutes to obtain an evaluation glass substrate. The monochromatic spectral transmission spectrum of this glass substrate for evaluation was measured using U-3900 manufactured by Hitachi High-Technologies Corporation. Spectral transmission spectra are shown in FIGS. 1A, 1B and 1C.
[製造例2](顔料2-2:顔料1+顔料2-1)
 300mLフラスコに、塩化スルフリル 91部、塩化アルミニウム 109部、塩化ナトリウム 15部、亜鉛フタロシアニン 30部、臭素 41部を仕込んだ。130℃まで40時間かけて昇温し、水に取り出した後、ろ過することにより粗顔料2を得た。得られた粗顔料2 20部、粉砕した塩化ナトリウム 140部、ジエチレングリコール 32部、キシレン 1.8部を1L双腕型ニーダーに仕込み、100℃で6時間混練した。混練後、80℃の水 2kgに取り出し、1時間攪拌後、ろ過、湯洗、乾燥、粉砕することにより、顔料2-1を得た。得られた顔料2-1について、製造例1と同様の方法を用いて、蛍光X線分析を行った。その結果、顔料2-1では、1分子中のハロゲン原子数が平均11.15個であり、そのうち臭素原子数が平均8.63個、塩素原子数が平均2.52個であるハロゲン化亜鉛フタロシアニン顔料であった。
[Production Example 2] (Pigment 2-2: Pigment 1 + Pigment 2-1)
A 300 mL flask was charged with 91 parts of sulfuryl chloride, 109 parts of aluminum chloride, 15 parts of sodium chloride, 30 parts of zinc phthalocyanine, and 41 parts of bromine. The temperature was raised to 130 ° C. over 40 hours, taken out into water, and filtered to obtain crude pigment 2. 20 parts of the obtained crude pigment 2, 140 parts of crushed sodium chloride, 32 parts of diethylene glycol, and 1.8 parts of xylene were charged into a 1 L double-arm kneader and kneaded at 100 ° C. for 6 hours. After kneading, it was taken out into 2 kg of 80 ° C. water, stirred for 1 hour, filtered, washed with hot water, dried and pulverized to obtain pigment 2-1. The obtained pigment 2-1 was subjected to fluorescent X-ray analysis using the same method as in Production Example 1. As a result, in the pigment 2-1, the average number of halogen atoms in one molecule was 11.15, of which the average number of bromine atoms was 8.63 and the average number of chlorine atoms was 2.52. It was a phthalocyanine pigment.
次いで、得られた顔料2-1 0.12部と顔料1 1.86部をよく混合して顔料2-2を得た。得られた顔料2-2について、製造例1と同様の方法を用いて、蛍光X線分析を行った。その結果、顔料2-2では、1分子中のハロゲン原子数が平均15.30個であり、そのうち臭素原子数が平均13.59個、塩素原子数が平均1.71個であるハロゲン化亜鉛フタロシアニン顔料であった。また、得られた顔料2-2は、日本電子社製透過電子顕微鏡JEM-2010による粒子径測定から、一次粒子の平均粒子径は0.02μmであった。 Next, 0.12 part of the obtained pigment 2-1 and 1.86 parts of the pigment 1 were mixed well to obtain a pigment 2-2. The obtained pigment 2-2 was subjected to fluorescent X-ray analysis using the same method as in Production Example 1. As a result, in pigment 2-2, the average number of halogen atoms in one molecule was 15.30, of which the average number of bromine atoms was 13.59 and the average number of chlorine atoms was 1.71 It was a phthalocyanine pigment. In addition, the obtained pigment 2-2 had an average primary particle size of 0.02 μm as determined by measuring the particle size with a transmission electron microscope JEM-2010 manufactured by JEOL Ltd.
 得られた顔料2-2 2.48部を、BYK-LPN6919 1.24部、ユニディック ZL-295 1.86部、プロピレングリコールモノメチルエーテルアセテート 10.92部と共に0.3~0.4mmのジルコンビーズを用いて、ペイントシェーカーで2時間分散して、着色組成物2を得た。着色組成物2 4.0部、ユニディックZL-295 0.98部、プロピレングリコールモノメチルエーテルアセテート 0.22部を加えて、ペイントシェーカーで混合することでカラーフィルタ用緑色画素部を形成するための評価用組成物2を得た。この評価用組成物2をソーダガラスにスピンコートし、90℃で3分乾燥して評価用ガラス基板を得た。この評価用ガラス基板を、日立ハイテクノロジーズ社製U-3900を用いて、単色分光透過スペクトルを測定した。分光透過スペクトルを図1A、図1B及び図1Cに示す。 2.48 parts of the obtained pigment 2-2, 1.24 parts of BYK-LPN6919, 1.86 parts of Unidic ZL-295, 10.92 parts of propylene glycol monomethyl ether acetate, 0.3 to 0.4 mm zircon Using beads, the mixture was dispersed for 2 hours with a paint shaker to obtain a colored composition 2. Coloring composition 2 4.0 parts, Unidic ZL-295 0.98 parts, propylene glycol monomethyl ether acetate 0.22 parts are added and mixed with a paint shaker to form a green pixel part for a color filter A composition 2 for evaluation was obtained. This evaluation composition 2 was spin-coated on soda glass and dried at 90 ° C. for 3 minutes to obtain an evaluation glass substrate. The monochromatic spectral transmission spectrum of this glass substrate for evaluation was measured using U-3900 manufactured by Hitachi High-Technologies Corporation. Spectral transmission spectra are shown in FIGS. 1A, 1B and 1C.
[製造例3](顔料3)
 300mLフラスコに、塩化スルフリル 60部、塩化アルミニウム 109部、塩化ナトリウム 15部、亜鉛フタロシアニン 30部、臭素 230部を仕込んだ。145℃まで40時間かけて昇温し、水に取り出した後、ろ過することにより粗顔料3を得た。得られた粗顔料3 20部、粉砕した塩化ナトリウム 140部、ジエチレングリコール 32部、キシレン 1.8部を1L双腕型ニーダーに仕込み、30℃で15時間混練した。混練後、30℃の水 2kgに取り出し、1時間攪拌後、ろ過、湯洗、乾燥、粉砕することにより、顔料3を得た。得られた顔料3について、製造例1と同様の方法を用いて、蛍光X線分析を行った。その結果、顔料3では、1分子中のハロゲン原子数が平均15.10個であり、そのうち臭素原子数が平均13.36個、塩素原子数が平均1.74個であるハロゲン化亜鉛フタロシアニン顔料であった。また、得られた顔料3は、日本電子社製透過電子顕微鏡JEM-2010による粒子径測定から、一次粒子の平均粒子径は0.02μmであった。
[Production Example 3] (Pigment 3)
A 300 mL flask was charged with 60 parts of sulfuryl chloride, 109 parts of aluminum chloride, 15 parts of sodium chloride, 30 parts of zinc phthalocyanine, and 230 parts of bromine. The temperature was raised to 145 ° C. over 40 hours, taken out into water, and filtered to obtain crude pigment 3. 20 parts of the obtained crude pigment 3, 140 parts of crushed sodium chloride, 32 parts of diethylene glycol, and 1.8 parts of xylene were charged into a 1 L double arm kneader and kneaded at 30 ° C. for 15 hours. After kneading, it was taken out in 2 kg of water at 30 ° C., stirred for 1 hour, filtered, washed with hot water, dried and pulverized to obtain pigment 3. The obtained pigment 3 was subjected to fluorescent X-ray analysis using the same method as in Production Example 1. As a result, in the pigment 3, a halogenated zinc phthalocyanine pigment having an average number of halogen atoms in one molecule of 15.10, of which the average number of bromine atoms is 13.36 and the average number of chlorine atoms is 1.74. Met. In addition, according to the obtained pigment 3, the average particle diameter of primary particles was 0.02 μm from the measurement of the particle diameter with a transmission electron microscope JEM-2010 manufactured by JEOL Ltd.
 得られた顔料3 2.48部を、BYK-LPN6919 1.24部、ユニディック ZL-295 1.86部、プロピレングリコールモノメチルエーテルアセテート 10.92部と共に0.3~0.4mmのジルコンビーズを用いて、ペイントシェーカーで2時間分散して、着色組成物3を得た。着色組成物3 4.0部、ユニディックZL-295 0.98部、プロピレングリコールモノメチルエーテルアセテート 0.22部を加えて、ペイントシェーカーで混合することでカラーフィルタ用緑色画素部を形成するための評価用組成物3を得た。この評価用組成物3をソーダガラスにスピンコートし、90℃で3分乾燥して評価用ガラス基板を得た。この評価用ガラス基板を、日立ハイテクノロジーズ社製U-3900を用いて、単色分光透過スペクトルを測定した。分光透過スペクトルを図1A、図1B及び図1Cに示す。 2.48 parts of the obtained pigment 3 were combined with 1.24 parts of BYK-LPN6919, 1.86 parts of Unidic ZL-295, 10.92 parts of propylene glycol monomethyl ether acetate, and 0.3 to 0.4 mm zircon beads. Then, it was dispersed for 2 hours with a paint shaker to obtain a colored composition 3. Coloring composition 3 4.0 parts, Unidic ZL-295 0.98 parts, propylene glycol monomethyl ether acetate 0.22 parts are added and mixed with a paint shaker to form a green pixel part for a color filter A composition 3 for evaluation was obtained. This evaluation composition 3 was spin-coated on soda glass and dried at 90 ° C. for 3 minutes to obtain an evaluation glass substrate. The monochromatic spectral transmission spectrum of this glass substrate for evaluation was measured using U-3900 manufactured by Hitachi High-Technologies Corporation. Spectral transmission spectra are shown in FIGS. 1A, 1B and 1C.
[製造例4](顔料4)
 製造例1の粗顔料1 20部、星光PMC社製TS-1316 1.5部、粉砕した塩化ナトリウム 140部、ジエチレングリコール 32部、キシレン 1.8部を1L双腕型ニーダーに仕込み、30℃で15時間混練した。混練後、30℃の水 2kgに取り出し、1時間攪拌後、ろ過、湯洗、乾燥、粉砕することにより、顔料4を得た。得られた顔料4は、日本電子社製透過電子顕微鏡JEM-2010による粒子径測定から、一次粒子の平均粒子径は0.02μmであった。
[Production Example 4] (Pigment 4)
20 parts of crude pigment 1 of Production Example 1, 1.5 parts of TS-1316 manufactured by Seiko PMC, 140 parts of crushed sodium chloride, 32 parts of diethylene glycol, and 1.8 parts of xylene were charged into a 1 L double arm kneader at 30 ° C. Kneaded for 15 hours. After kneading, it was taken out in 2 kg of water at 30 ° C., stirred for 1 hour, filtered, washed with hot water, dried and pulverized to obtain pigment 4. The obtained pigment 4 was found to have an average primary particle size of 0.02 μm as measured by a JEM-2010 transmission electron microscope manufactured by JEOL Ltd.
 得られた顔料4 2.48部を、BYK-LPN6919 1.24部、ユニディック ZL-295 1.86部、プロピレングリコールモノメチルエーテルアセテート 10.92部と共に0.3~0.4mmのジルコンビーズを用いて、ペイントシェーカーで2時間分散して、着色組成物4を得た。着色組成物4 4.0部、ユニディックZL-295 0.98部、プロピレングリコールモノメチルエーテルアセテート 0.22部を加えて、ペイントシェーカーで混合することでカラーフィルタ用緑色画素部を形成するための評価用組成物4を得た。この評価用組成物4をソーダガラスにスピンコートし、90℃で3分乾燥して評価用ガラス基板を得た。この評価用ガラス基板を、日立ハイテクノロジーズ社製U-3900を用いて、単色分光透過スペクトルを測定した。分光透過スペクトルを図1A、図1B及び図1Cに示す。 2.48 parts of the obtained pigment 4 were combined with 1.24 parts of BYK-LPN6919, 1.86 parts of Unidic ZL-295, 10.92 parts of propylene glycol monomethyl ether acetate, and 0.3 to 0.4 mm zircon beads. Then, it was dispersed for 2 hours with a paint shaker to obtain a colored composition 4. Coloring composition 4 4.0 parts, Unidic ZL-295 0.98 parts, propylene glycol monomethyl ether acetate 0.22 parts are added and mixed with a paint shaker to form a green pixel part for a color filter A composition 4 for evaluation was obtained. This evaluation composition 4 was spin-coated on soda glass and dried at 90 ° C. for 3 minutes to obtain an evaluation glass substrate. The monochromatic spectral transmission spectrum of this glass substrate for evaluation was measured using U-3900 manufactured by Hitachi High-Technologies Corporation. Spectral transmission spectra are shown in FIGS. 1A, 1B and 1C.
[製造例5](顔料5)
 製造例1の粗顔料1 20部、星光PMC社製VS-1028 1.5部、粉砕した塩化ナトリウム 140部、ジエチレングリコール 32部、キシレン 1.8部を1L双腕型ニーダーに仕込み、30℃で15時間混練した。混練後、30℃の水 2kgに取り出し、1時間攪拌後、ろ過、湯洗、乾燥、粉砕することにより、顔料5を得た。得られた顔料5は、日本電子社製透過電子顕微鏡JEM-2010による粒子径測定から、一次粒子の平均粒子径は0.02μmであった。
[Production Example 5] (Pigment 5)
20 parts of crude pigment 1 of Production Example 1, 1.5 parts of VS-1028 manufactured by Seiko PMC, 140 parts of crushed sodium chloride, 32 parts of diethylene glycol, and 1.8 parts of xylene were charged into a 1 L double arm kneader at 30 ° C. Kneaded for 15 hours. After kneading, it was taken out in 2 kg of water at 30 ° C., stirred for 1 hour, filtered, washed with hot water, dried and pulverized to obtain pigment 5. The obtained pigment 5 was found to have an average primary particle size of 0.02 μm as measured by a transmission electron microscope JEM-2010 manufactured by JEOL Ltd.
 得られた顔料5 2.48部を、BYK-LPN6919 1.24部、ユニディック ZL-295 1.86部、プロピレングリコールモノメチルエーテルアセテート 10.92部と共に0.3~0.4mmのジルコンビーズを用いて、ペイントシェーカーで2時間分散して、着色組成物5を得た。着色組成物5 4.0部、ユニディックZL-295 0.98部、プロピレングリコールモノメチルエーテルアセテート 0.22部を加えて、ペイントシェーカーで混合することでカラーフィルタ用緑色画素部を形成するための評価用組成物5を得た。この評価用組成物5をソーダガラスにスピンコートし、90℃で3分乾燥して評価用ガラス基板を得た。この評価用ガラス基板を、日立ハイテクノロジーズ社製U-3900を用いて、単色分光透過スペクトルを測定した。分光透過スペクトルを図1A、図1B及び図1Cに示す。 2.48 parts of the obtained pigment 5 were mixed with 1.24 parts of BYK-LPN6919, 1.86 parts of Unidic ZL-295, 10.92 parts of propylene glycol monomethyl ether acetate, and 0.3 to 0.4 mm zircon beads. Then, it was dispersed for 2 hours with a paint shaker to obtain a colored composition 5. Coloring composition 5 4.0 parts, Unidic ZL-295 0.98 parts, propylene glycol monomethyl ether acetate 0.22 parts are added and mixed with a paint shaker to form a green pixel part for a color filter A composition 5 for evaluation was obtained. This evaluation composition 5 was spin-coated on soda glass and dried at 90 ° C. for 3 minutes to obtain an evaluation glass substrate. The monochromatic spectral transmission spectrum of this glass substrate for evaluation was measured using U-3900 manufactured by Hitachi High-Technologies Corporation. Spectral transmission spectra are shown in FIGS. 1A, 1B and 1C.
[製造例6](顔料6)
 製造例1の粗顔料1 20部、星光PMC社製X-1 1.5部、粉砕した塩化ナトリウム 140部、ジエチレングリコール 32部、キシレン 1.8部を1L双腕型ニーダーに仕込み、30℃で15時間混練した。混練後、30℃の水 2kgに取り出し、1時間攪拌後、ろ過、湯洗、乾燥、粉砕することにより、顔料6を得た。得られた顔料6は、日本電子社製透過電子顕微鏡JEM-2010による粒子径測定から、一次粒子の平均粒子径は0.02μmであった。
[Production Example 6] (Pigment 6)
20 parts of crude pigment 1 of Production Example 1, 1.5 parts of X-1 manufactured by Starlight PMC, 140 parts of crushed sodium chloride, 32 parts of diethylene glycol, and 1.8 parts of xylene were charged into a 1 L double arm kneader at 30 ° C. Kneaded for 15 hours. After kneading, the mixture was taken out into 2 kg of water at 30 ° C., stirred for 1 hour, filtered, washed with hot water, dried and pulverized to obtain pigment 6. The obtained pigment 6 was found to have an average primary particle size of 0.02 μm as measured by a transmission electron microscope JEM-2010 manufactured by JEOL Ltd.
 得られた顔料6 2.48部を、BYK-LPN6919 1.24部、ユニディック ZL-295 1.86部、プロピレングリコールモノメチルエーテルアセテート 10.92部と共に0.3~0.4mmのジルコンビーズを用いて、ペイントシェーカーで2時間分散して、着色組成物6を得た。着色組成物6 4.0部、ユニディックZL-295 0.98部、プロピレングリコールモノメチルエーテルアセテート 0.22部を加えて、ペイントシェーカーで混合することでカラーフィルタ用緑色画素部を形成するための評価用組成物6を得た。この評価用組成物6をソーダガラスにスピンコートし、90℃で3分乾燥して評価用ガラス基板を得た。この評価用ガラス基板を、日立ハイテクノロジーズ社製U-3900を用いて、単色分光透過スペクトルを測定した。分光透過スペクトルを図1A、図1B及び図1Cに示す。 2.48 parts of the obtained pigment 6 were mixed with 1.24 parts of BYK-LPN6919, 1.86 parts of Unidic ZL-295, 10.92 parts of propylene glycol monomethyl ether acetate, and 0.3 to 0.4 mm zircon beads. Then, it was dispersed in a paint shaker for 2 hours to obtain a colored composition 6. Coloring composition 6 4.0 parts, Unidic ZL-295 0.98 parts, propylene glycol monomethyl ether acetate 0.22 parts are added and mixed with a paint shaker to form a green pixel part for a color filter A composition 6 for evaluation was obtained. This evaluation composition 6 was spin-coated on soda glass and dried at 90 ° C. for 3 minutes to obtain an evaluation glass substrate. The monochromatic spectral transmission spectrum of this glass substrate for evaluation was measured using U-3900 manufactured by Hitachi High-Technologies Corporation. Spectral transmission spectra are shown in FIGS. 1A, 1B and 1C.
[製造例7](顔料7)
 製造例1の粗顔料1 20部、BASF社製JONCRYL690 1.5部、粉砕した塩化ナトリウム 140部、ジエチレングリコール 32部、キシレン 1.8部を1L双腕型ニーダーに仕込み、30℃で15時間混練した。混練後、30℃の水 2kgに取り出し、1時間攪拌後、ろ過、湯洗、乾燥、粉砕することにより、顔料7を得た。得られた顔料7は、日本電子社製透過電子顕微鏡JEM-2010による粒子径測定から、一次粒子の平均粒子径は0.02μmであった。
[Production Example 7] (Pigment 7)
20 parts of the crude pigment 1 of Production Example 1, 1.5 parts of BASF JONCRYL 690, 140 parts of crushed sodium chloride, 32 parts of diethylene glycol and 1.8 parts of xylene were charged into a 1 L double arm kneader and kneaded at 30 ° C. for 15 hours. did. After kneading, it was taken out in 2 kg of water at 30 ° C., stirred for 1 hour, filtered, washed with hot water, dried and pulverized to obtain pigment 7. The obtained pigment 7 had an average primary particle size of 0.02 μm as measured by a particle size measurement using a transmission electron microscope JEM-2010 manufactured by JEOL Ltd.
 得られた顔料7 2.48部を、BYK-LPN6919 1.24部、ユニディック ZL-295 1.86部、プロピレングリコールモノメチルエーテルアセテート 10.92部と共に0.3~0.4mmのジルコンビーズを用いて、ペイントシェーカーで2時間分散して、着色組成物7を得た。着色組成物7 4.0部、ユニディックZL-295 0.98部、プロピレングリコールモノメチルエーテルアセテート 0.22部を加えて、ペイントシェーカーで混合することでカラーフィルタ用緑色画素部を形成するための評価用組成物7を得た。この評価用組成物7をソーダガラスにスピンコートし、90℃で3分乾燥して評価用ガラス基板を得た。この評価用ガラス基板を、日立ハイテクノロジーズ社製U-3900を用いて、単色分光透過スペクトルを測定した。分光透過スペクトルを図1A、図1B及び図1Cに示す。 2.48 parts of the obtained pigment 7 were mixed with 1.24 parts of BYK-LPN6919, 1.86 parts of Unidic ZL-295, 10.92 parts of propylene glycol monomethyl ether acetate, and 0.3 to 0.4 mm zircon beads. Then, it was dispersed for 2 hours with a paint shaker to obtain a colored composition 7. Coloring composition 7 4.0 parts, Unidic ZL-295 0.98 parts, propylene glycol monomethyl ether acetate 0.22 parts are added and mixed with a paint shaker to form a green pixel part for a color filter A composition 7 for evaluation was obtained. This evaluation composition 7 was spin-coated on soda glass and dried at 90 ° C. for 3 minutes to obtain an evaluation glass substrate. The monochromatic spectral transmission spectrum of this glass substrate for evaluation was measured using U-3900 manufactured by Hitachi High-Technologies Corporation. Spectral transmission spectra are shown in FIGS. 1A, 1B and 1C.
[製造例8](黄色顔料の分散)
 ピグメントイエロー138(BASF社製Paliotol Yellow L0960 HD) 1.65部を、DISPERBYK-161(ビックケミー社製) 3.85部、プロピレングリコールモノメチルエーテルアセテート 11.00部と共に0.3~0.4mmのジルコンビーズを用いて、ペイントシェーカーで2時間分散して、着色組成物Aを得た。着色組成物A 4.0部、ユニディックZL-295 0.98部、プロピレングリコールモノメチルエーテルアセテート 0.22部を加えて、ペイントシェーカーで混合することで調色用組成物を得た。
[Production Example 8] (dispersion of yellow pigment)
Pigment Yellow 138 (BASF Pariotol Yellow L0960 HD) 1.65 parts, DISPERBYK-161 (Big Chemie) 3.85 parts, propylene glycol monomethyl ether acetate 11.00 parts, 0.3-0.4 mm zircon Using beads, the mixture was dispersed for 2 hours with a paint shaker to obtain a colored composition A. Coloring composition A 4.0 parts, Unidic ZL-295 0.98 parts, propylene glycol monomethyl ether acetate 0.22 parts were added and mixed with a paint shaker to obtain a toning composition.
[実施例1](黄色顔料による調色)
 塗膜色度が(x,y)=(0.275,0.570)となるように、調色用組成物と評価用組成物1、評価用組成物2、評価用組成物3、評価用組成物4、評価用組成物5、評価用組成物6、又は評価用組成物7とを混合し、製膜することにより評価用ガラス基板を得た。このガラス基板を用いて、C光源における輝度を日立ハイテクノロジーズ社製U-3900で測定した。結果を以下の表1に示す。
[Example 1] (Toning with a yellow pigment)
Toning composition and evaluation composition 1, evaluation composition 2, evaluation composition 3, evaluation composition 3, evaluation so that coating film chromaticity is (x, y) = (0.275, 0.570) The glass substrate for evaluation was obtained by mixing the composition 4 for evaluation, the composition 5 for evaluation, the composition 6 for evaluation, or the composition 7 for evaluation, and forming into a film. Using this glass substrate, the luminance at C light source was measured with U-3900 manufactured by Hitachi High-Technologies Corporation. The results are shown in Table 1 below.
[製造例9]ピグメントグリーン58(FASTOGEN Green A110)
 ピグメントグリーン58(FASTOGEN Green A110) 2.48部を、BYK-LPN6919 1.24部、ユニディック ZL-295 1.86部、プロピレングリコールモノメチルエーテルアセテート 10.92部と共に0.3~0.4mmのジルコンビーズを用いて、ペイントシェーカーで2時間分散して、着色組成物9を得た。着色組成物9 4.0部、ユニディックZL-295 0.98部、プロピレングリコールモノメチルエーテルアセテート 0.22部を加えて、ペイントシェーカーで混合することでカラーフィルタ用緑色画素部を形成するための評価用組成物9を得た。この評価用組成物9をソーダガラスにスピンコートし、90℃で3分乾燥して評価用ガラス基板を得た。この評価用ガラス基板を、日立ハイテクノロジーズ社製U-3900を用いて、単色分光透過スペクトルを測定した。分光透過スペクトルを図1A、図1B及び図1Cに示す。
[Production Example 9] Pigment Green 58 (FASTOGEN Green A110)
Pigment Green 58 (FASTOGEN Green A110) 2.48 parts, BYK-LPN6919 1.24 parts, Unidic ZL-295 1.86 parts, propylene glycol monomethyl ether acetate 10.92 parts, 0.3 to 0.4 mm Using zircon beads, the mixture was dispersed with a paint shaker for 2 hours to obtain a colored composition 9. Coloring composition 9 4.0 parts, Unidic ZL-295 0.98 parts, propylene glycol monomethyl ether acetate 0.22 parts are added and mixed with a paint shaker to form a green pixel part for a color filter A composition 9 for evaluation was obtained. This evaluation composition 9 was spin-coated on soda glass and dried at 90 ° C. for 3 minutes to obtain an evaluation glass substrate. The monochromatic spectral transmission spectrum of this glass substrate for evaluation was measured using U-3900 manufactured by Hitachi High-Technologies Corporation. Spectral transmission spectra are shown in FIGS. 1A, 1B and 1C.
[製造例10]ピグメントグリーン59(FASTOGEN Green C100)
 ピグメントグリーン59(FASTOGEN Green C100) 2.48部を、BYK-LPN6919 1.24部、ユニディック ZL-295 1.86部、プロピレングリコールモノメチルエーテルアセテート 10.92部と共に0.3~0.4mmのジルコンビーズを用いて、ペイントシェーカーで2時間分散して、着色組成物10を得た。着色組成物10 4.0部、ユニディックZL-295 0.98部、プロピレングリコールモノメチルエーテルアセテート 0.22部を加えて、ペイントシェーカーで混合することでカラーフィルタ用緑色画素部を形成するための評価用組成物10を得た。この評価用組成物10をソーダガラスにスピンコートし、90℃で3分乾燥して評価用ガラス基板を得た。この評価用ガラス基板を、日立ハイテクノロジーズ社製U-3900を用いて、単色分光透過スペクトルを測定した。分光透過スペクトルを図1A、図1B及び図1Cに示す。
[Production Example 10] Pigment Green 59 (FASTOGEN Green C100)
Pigment Green 59 (FASTOGEN Green C100) 2.48 parts, BYK-LPN6919 1.24 parts, Unidic ZL-295 1.86 parts, propylene glycol monomethyl ether acetate 10.92 parts, 0.3 to 0.4 mm Using zircon beads, the mixture was dispersed for 2 hours with a paint shaker to obtain a colored composition 10. Coloring composition 10 4.0 parts, Unidic ZL-295 0.98 parts, propylene glycol monomethyl ether acetate 0.22 parts are added and mixed with a paint shaker to form a green pixel part for a color filter A composition for evaluation 10 was obtained. This evaluation composition 10 was spin-coated on soda glass and dried at 90 ° C. for 3 minutes to obtain an evaluation glass substrate. The monochromatic spectral transmission spectrum of this glass substrate for evaluation was measured using U-3900 manufactured by Hitachi High-Technologies Corporation. Spectral transmission spectra are shown in FIGS. 1A, 1B and 1C.
[製造例11]ピグメントグリーン7(FASTOGEN Green S)
ピグメントグリーン7(FASTOGEN Green S) 1.65部を、BYK-LPN6919 1.93部、プロピレングリコールモノメチルエーテルアセテート 12.93部と共に0.3~0.4mmのジルコンビーズを用いて、ペイントシェーカーで2時間分散して、着色組成物11を得た。着色組成物11 6.0部、ユニディックZL-295 1.47部、プロピレングリコールモノメチルエーテルアセテート 0.33部を加えて、ペイントシェーカーで混合することでカラーフィルタ用緑色画素部を形成するための評価用組成物11を得た。この評価用組成物11をソーダガラスにスピンコートし、90℃で3分乾燥して評価用ガラス基板を得た。この評価用ガラス基板を、日立ハイテクノロジーズ社製U-3900を用いて、単色分光透過スペクトルを測定した。分光透過スペクトルを図1A及び図1Bに示す。なお、ピグメントグリーン7は透過率が低い顔料であるため、極大透過波長における分光透過率が80%になるように塗膜を形成した際に浮いてしまうことから、図1Cに示す580~620nmの範囲の分光透過スペクトルにデータを示していない。
[Production Example 11] Pigment Green 7 (FASTOGEN Green S)
Pigment Green 7 (FASTOGEN Green S) 1.65 parts, BYK-LPN6919 1.93 parts, propylene glycol monomethyl ether acetate 12.93 parts, and 0.3 to 0.4 mm zircon beads, 2 in a paint shaker After time dispersion, a colored composition 11 was obtained. Coloring composition 11 6.0 parts, Unidic ZL-295 1.47 parts, propylene glycol monomethyl ether acetate 0.33 parts are added and mixed with a paint shaker to form a green pixel part for a color filter A composition for evaluation 11 was obtained. This evaluation composition 11 was spin-coated on soda glass and dried at 90 ° C. for 3 minutes to obtain an evaluation glass substrate. The monochromatic spectral transmission spectrum of this glass substrate for evaluation was measured using U-3900 manufactured by Hitachi High-Technologies Corporation. Spectral transmission spectra are shown in FIGS. 1A and 1B. Since Pigment Green 7 is a pigment having a low transmittance, it floats when the coating film is formed so that the spectral transmittance at the maximum transmission wavelength is 80%. Therefore, the pigment green 7 has a wavelength of 580 to 620 nm shown in FIG. 1C. No data is shown in the spectral transmission spectrum of the range.
[製造例12]ピグメントグリーン36(FASTOGEN Green 2YK-50)
ピグメントグリーン36(FASTOGEN Green 2YK-50) 2.48部を、BYK-LPN6919 1.24部、ユニディック ZL-295 1.86部、プロピレングリコールモノメチルエーテルアセテート 10.92部と共に0.3~0.4mmのジルコンビーズを用いて、ペイントシェーカーで2時間分散して、着色組成物12を得た。着色組成物12 4.0部、ユニディックZL-295 0.98部、プロピレングリコールモノメチルエーテルアセテート 0.22部を加えて、ペイントシェーカーで混合することでカラーフィルタ用緑色画素部を形成するための評価用組成物12を得た。この評価用組成物12をソーダガラスにスピンコートし、90℃で3分乾燥して評価用ガラス基板を得た。この評価用ガラス基板を、日立ハイテクノロジーズ社製U-3900を用いて、単色分光透過スペクトルを測定した。分光透過スペクトルを図1A、図1B及び図1Cに示す。
[Production Example 12] Pigment Green 36 (FASTOGEN Green 2YK-50)
CI Pigment Green 36 (FASTOGEN Green 2YK-50) 2.48 parts together with BYK-LPN6919 1.24 parts, Unidic ZL-295 1.86 parts, propylene glycol monomethyl ether acetate 10.92 parts and 0.3-0. Using 4 mm zircon beads, the mixture was dispersed with a paint shaker for 2 hours to obtain a colored composition 12. Coloring composition 12 4.0 parts, Unidic ZL-295 0.98 parts, propylene glycol monomethyl ether acetate 0.22 parts are added and mixed with a paint shaker to form a green pixel part for a color filter A composition for evaluation 12 was obtained. This evaluation composition 12 was spin-coated on soda glass and dried at 90 ° C. for 3 minutes to obtain an evaluation glass substrate. The monochromatic spectral transmission spectrum of this glass substrate for evaluation was measured using U-3900 manufactured by Hitachi High-Technologies Corporation. Spectral transmission spectra are shown in FIGS. 1A, 1B and 1C.
[比較例1](黄色顔料による調色)
 塗膜色度が(x,y)=(0.275,0.570)となるように、調色用組成物と評価用組成物9、評価用組成物10、評価用組成物11、又は評価用組成物12とを混合し、製膜することにより評価用ガラス基板を得た。このガラス基板を用いて、C光源における輝度を日立ハイテクノロジーズ社製U-3900で測定した。結果を以下の表1に示す。
[Comparative Example 1] (Toning with a yellow pigment)
Toning composition and evaluation composition 9, evaluation composition 10, evaluation composition 11, or evaluation composition so that the coating film chromaticity is (x, y) = (0.275, 0.570) A glass substrate for evaluation was obtained by mixing the composition for evaluation 12 and forming a film. Using this glass substrate, the luminance at C light source was measured with U-3900 manufactured by Hitachi High-Technologies Corporation. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1、並びに図1A、図1B及び図1Cから、評価用組成物1~7では、555nmの透過率が50.47%、50.28%、47.41%、45.73%、46.45%、50.07%及び45.89%であり、45%以上であった。また、波長505nmの透過率と波長555nmとの透過率の比((A)/(B))が1.40、1.44、1.53、1.57、1.56、1.42及び1.59であり、1.4以上であった。さらに、半値幅が73nm、75nm、73nm、68nm、68nm、71nm及び68nmであり、80nm以下であった。
 上記分光特性を有することにより、評価用組成物1~7では、従来の緑色顔料を含む評価用組成物9~12よりも、C光源で(x,y)=(0.275,0.570)となるように調色用組成物と混合した後の輝度が高かった。
From Table 1 and FIGS. 1A, 1B, and 1C, the compositions for evaluation 1 to 7 had transmittances of 555 nm of 50.47%, 50.28%, 47.41%, 45.73%, 46. They were 45%, 50.07%, and 45.89%, and were 45% or more. Further, the ratio of the transmittance at a wavelength of 505 nm to the transmittance at a wavelength of 555 nm ((A) / (B)) is 1.40, 1.44, 1.53, 1.57, 1.56, 1.42, and 1.59, 1.4 or more. Further, the half widths were 73 nm, 75 nm, 73 nm, 68 nm, 68 nm, 71 nm and 68 nm, and were 80 nm or less.
By having the above spectral characteristics, the evaluation compositions 1 to 7 are (x, y) = (0.275, 0.570) with a C light source, compared to the conventional evaluation compositions 9 to 12 containing a green pigment. The brightness after mixing with the toning composition was high.
 また、顔料1~3のハロゲン化亜鉛フタロシアニン1分子におけるハロゲン率をまとめたものを表2に示す。 In addition, Table 2 shows a summary of the halogen ratio in one molecule of zinc halide phthalocyanine of pigments 1 to 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表2から、顔料1~3では、ハロゲン化亜鉛フタロシアニン1分子中に、平均臭素原子数が14.13、13.59、及び13.36個であり、13~15個の範囲であった。また、ハロゲン化亜鉛フタロシアニン1分子中に、平均塩素原子数が1.60、1.71、及び1.74であり、1~3個の範囲であった。また、ハロゲン化亜鉛フタロシアニン1分子中の平均臭素原子数と平均塩素原子数の比((E)/(F))が8.83、7.94、及び7.69であり、7以上であった。
 上記ハロゲン率であることにより、顔料1~3は、緑色の色相を保ちながら、従来の緑色顔料であるピグメントグリーン58、及び59よりも明度の高い緑色顔料となり得る。
From Table 2, in pigments 1 to 3, the average number of bromine atoms was 14.13, 13.59, and 13.36 in one molecule of zinc halide phthalocyanine, which was in the range of 13 to 15. In addition, the average number of chlorine atoms in one molecule of zinc halide phthalocyanine was 1.60, 1.71, and 1.74, which was in the range of 1 to 3. Further, the ratio of the average number of bromine atoms to the average number of chlorine atoms in one molecule of zinc halide phthalocyanine ((E) / (F)) was 8.83, 7.94, and 7.69, which was 7 or more. It was.
Due to the halogen ratio, pigments 1 to 3 can be green pigments having higher brightness than pigment green 58 and 59, which are conventional green pigments, while maintaining a green hue.
 以上のことから、特定の分光特性を有する緑色顔料を用いることにより、従来よりも輝度が高いカラーフィルタを形成できることが明らかとなった。 From the above, it has been clarified that a color filter having higher luminance than the conventional one can be formed by using a green pigment having specific spectral characteristics.
 本実施形態のカラーフィルタ用顔料組成物によれば、緑色発光強度が微弱なバックライトであるB-YAGの特性を補うことが可能な高輝度のカラーフィルタを提供することができる。また、本実施形態のカラーフィルタ用顔料組成物を用いて形成された緑色画素は輝度が高いため、係る緑色画素を備えた表示性能の高いカラーフィルタ及び液晶パネルを備える液晶表示装置を製造することができる。 According to the pigment composition for a color filter of the present embodiment, it is possible to provide a high-intensity color filter that can supplement the characteristics of B-YAG, which is a backlight having a weak green emission intensity. Moreover, since the green pixel formed using the pigment composition for color filters of this embodiment has high brightness | luminance, manufacturing a liquid crystal display device provided with the color filter with a high display performance provided with the said green pixel, and a liquid crystal panel. Can do.

Claims (5)

  1.  極大透過波長における分光透過率が80%になるように塗膜を形成した際に、
    波長555nmの透過率が45%以上であり、
    波長505nmの透過率と波長555nmの透過率の比(T(505nm)/T(555nm))が1.40以上であり、
    半値幅が80nm以下となる分光特性を有する緑色顔料を含有するカラーフィルタ用顔料組成物。
    When the coating film was formed so that the spectral transmittance at the maximum transmission wavelength was 80%,
    The transmittance at a wavelength of 555 nm is 45% or more,
    The ratio of the transmittance at a wavelength of 505 nm to the transmittance at a wavelength of 555 nm (T (505 nm) / T (555 nm)) is 1.40 or more,
    A color filter pigment composition containing a green pigment having a spectral characteristic with a half-value width of 80 nm or less.
  2. 前記緑色顔料が臭素化塩素化亜鉛フタロシアニンである請求項1に記載のカラーフィルタ用顔料組成物。 The pigment composition for a color filter according to claim 1, wherein the green pigment is brominated chlorinated zinc phthalocyanine.
  3.  前記緑色顔料が1分子中に臭素を平均13個以上15個以下、塩素を平均1個以上3個以下含有する臭素化塩素化亜鉛フタロシアニンである請求項1又は2に記載のカラーフィルタ用顔料組成物。 The pigment composition for a color filter according to claim 1 or 2, wherein the green pigment is a brominated chlorinated zinc phthalocyanine containing an average of 13 to 15 bromine and an average of 1 to 3 chlorine in one molecule. object.
  4.  さらに、黄色顔料を含有する請求項1~3のいずれか一項に記載のカラーフィルタ用顔料組成物。 The color filter pigment composition according to any one of claims 1 to 3, further comprising a yellow pigment.
  5.  請求項1~4のいずれか一項に記載のカラーフィルタ用顔料組成物を含有するカラーフィルタ。 A color filter containing the color filter pigment composition according to any one of claims 1 to 4.
PCT/JP2017/031119 2016-08-31 2017-08-30 Pigment composition for color filters, and color filter WO2018043548A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780051904.9A CN109642970B (en) 2016-08-31 2017-08-30 Pigment composition for color filter and color filter
JP2018530919A JP6477977B2 (en) 2016-08-31 2017-08-30 Pigment composition for color filter and color filter
KR1020197005587A KR102383525B1 (en) 2016-08-31 2017-08-30 Pigment composition for color filter and color filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-169928 2016-08-31
JP2016169928 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043548A1 true WO2018043548A1 (en) 2018-03-08

Family

ID=61301456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031119 WO2018043548A1 (en) 2016-08-31 2017-08-30 Pigment composition for color filters, and color filter

Country Status (4)

Country Link
JP (1) JP6477977B2 (en)
KR (1) KR102383525B1 (en)
CN (1) CN109642970B (en)
WO (1) WO2018043548A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6744002B1 (en) * 2019-12-09 2020-08-19 Dic株式会社 Zinc halide phthalocyanine pigment for color filter and method for producing zinc halide phthalocyanine pigment for color filter
WO2020204210A1 (en) * 2019-12-09 2020-10-08 Dic株式会社 Halogenated zinc phthalocyanine pigment for color filters, and method for manufacturing halogenated zinc phthalocyanine pigment for color filters
CN113272389A (en) * 2020-09-02 2021-08-17 Dic株式会社 Method for producing pigment for color filter
WO2022004261A1 (en) * 2020-07-01 2022-01-06 Dic株式会社 Halogenated zinc phthalocyanine pigment and production method for same
WO2022080002A1 (en) * 2020-10-15 2022-04-21 Dic株式会社 Pigment for color filter, coloring composition, and color filter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161827A (en) * 2001-02-23 2003-06-06 Dainippon Ink & Chem Inc Color filter
JP2003185825A (en) * 2001-12-19 2003-07-03 Dainippon Ink & Chem Inc Pigment composition, pigment dispersion resist and color filter
JP2007018902A (en) * 2005-07-08 2007-01-25 Pentax Corp Multi-color light-emitting display device
JP2007284589A (en) * 2006-04-18 2007-11-01 Dainippon Ink & Chem Inc Polyhalogenated zinc phthalocyanine pigment composition and color filter
JP2012507743A (en) * 2008-10-29 2012-03-29 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー Color filter element with improved colorant dispersion
JP2016051176A (en) * 2014-09-01 2016-04-11 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Colored photosensitive resin composition
WO2016158668A1 (en) * 2015-03-27 2016-10-06 三菱化学株式会社 Coloring resin composition, color filter and image display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839573B1 (en) * 2001-02-23 2008-06-19 디아이씨 가부시끼가이샤 Color filter
JP2011117986A (en) 2008-03-19 2011-06-16 Jsr Corp Radiation-sensitive composition for forming green pixel, color filter and color liquid crystal display element
JP6160061B2 (en) 2012-10-25 2017-07-12 東洋インキScホールディングス株式会社 Coloring composition for color filter
JP6099213B2 (en) 2014-02-07 2017-03-29 Dic株式会社 Green pigment for color filter and color filter
CN105388705B (en) * 2014-09-01 2020-09-22 东友精细化工有限公司 Colored photosensitive resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161827A (en) * 2001-02-23 2003-06-06 Dainippon Ink & Chem Inc Color filter
JP2003185825A (en) * 2001-12-19 2003-07-03 Dainippon Ink & Chem Inc Pigment composition, pigment dispersion resist and color filter
JP2007018902A (en) * 2005-07-08 2007-01-25 Pentax Corp Multi-color light-emitting display device
JP2007284589A (en) * 2006-04-18 2007-11-01 Dainippon Ink & Chem Inc Polyhalogenated zinc phthalocyanine pigment composition and color filter
JP2012507743A (en) * 2008-10-29 2012-03-29 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー Color filter element with improved colorant dispersion
JP2016051176A (en) * 2014-09-01 2016-04-11 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Colored photosensitive resin composition
WO2016158668A1 (en) * 2015-03-27 2016-10-06 三菱化学株式会社 Coloring resin composition, color filter and image display device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6744002B1 (en) * 2019-12-09 2020-08-19 Dic株式会社 Zinc halide phthalocyanine pigment for color filter and method for producing zinc halide phthalocyanine pigment for color filter
WO2020204210A1 (en) * 2019-12-09 2020-10-08 Dic株式会社 Halogenated zinc phthalocyanine pigment for color filters, and method for manufacturing halogenated zinc phthalocyanine pigment for color filters
WO2022004261A1 (en) * 2020-07-01 2022-01-06 Dic株式会社 Halogenated zinc phthalocyanine pigment and production method for same
JPWO2022004261A1 (en) * 2020-07-01 2022-01-06
CN115667416A (en) * 2020-07-01 2023-01-31 Dic株式会社 Halogenated zinc phthalocyanine pigment and process for producing the same
JP7464630B2 (en) 2020-07-01 2024-04-09 Dic株式会社 Halogenated zinc phthalocyanine pigment and its manufacturing method
CN113272389A (en) * 2020-09-02 2021-08-17 Dic株式会社 Method for producing pigment for color filter
JP6923106B1 (en) * 2020-09-02 2021-08-18 Dic株式会社 Manufacturing method of pigments for color filters
WO2022049686A1 (en) * 2020-09-02 2022-03-10 Dic株式会社 Method for manufacturing color filter pigment
WO2022080002A1 (en) * 2020-10-15 2022-04-21 Dic株式会社 Pigment for color filter, coloring composition, and color filter
JPWO2022080002A1 (en) * 2020-10-15 2022-04-21
JP7236567B2 (en) 2020-10-15 2023-03-09 Dic株式会社 Color filter pigment, coloring composition, and color filter

Also Published As

Publication number Publication date
JP6477977B2 (en) 2019-03-06
CN109642970A (en) 2019-04-16
JPWO2018043548A1 (en) 2018-09-20
KR20190045183A (en) 2019-05-02
KR102383525B1 (en) 2022-04-06
CN109642970B (en) 2021-09-10

Similar Documents

Publication Publication Date Title
JP6020701B2 (en) Green pigment for color filter and color filter
JP5141939B2 (en) Polyhalogenated zinc phthalocyanine pigment composition and color filter
JP4752590B2 (en) Polyhalogenated zinc phthalocyanine pigment composition and color filter
JP4882515B2 (en) Polyhalogenated zinc phthalocyanine pigment composition and color filter
JP6451022B2 (en) Polyhalogenated zinc phthalocyanine, polyhalogenated zinc phthalocyanine pigment, and color filter having the same in a pixel portion
JP6477977B2 (en) Pigment composition for color filter and color filter
JP6041179B1 (en) Green pigment composition for color filter and color filter
JP4992321B2 (en) Polyhalogenated zinc phthalocyanine, photosensitive composition and color filter
JP2018180023A (en) Pigment composition for color filters and color filter
JP4539477B2 (en) Pigment composition for color filter, method for producing the same, and color filter
JP2006184427A (en) Method for producing green semi-crude for color filter, green pigment composition and color filter containing the semi-crude and pigment composition in green pixel part
JP5167602B2 (en) Polyhalogenated zinc phthalocyanine, photosensitive composition and color filter
JP2019038958A (en) Chlorinated brominated zinc phthalocyanine pigment and color filter containing the same
JP6711213B2 (en) Pigment composition for color filter and color filter
WO2022080002A1 (en) Pigment for color filter, coloring composition, and color filter
CN110402404B (en) Pigment composition for color filter and color filter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018530919

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197005587

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846552

Country of ref document: EP

Kind code of ref document: A1