WO2018043533A1 - Detection device and cell-containing matter - Google Patents

Detection device and cell-containing matter Download PDF

Info

Publication number
WO2018043533A1
WO2018043533A1 PCT/JP2017/031079 JP2017031079W WO2018043533A1 WO 2018043533 A1 WO2018043533 A1 WO 2018043533A1 JP 2017031079 W JP2017031079 W JP 2017031079W WO 2018043533 A1 WO2018043533 A1 WO 2018043533A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
gel
detection device
substance
Prior art date
Application number
PCT/JP2017/031079
Other languages
French (fr)
Japanese (ja)
Inventor
昌治 竹内
雄矢 森本
昭太郎 吉田
垠列 南
誠司 田畑
優介 平田
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2018537329A priority Critical patent/JP6785476B2/en
Publication of WO2018043533A1 publication Critical patent/WO2018043533A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to a cell technology, and relates to a detection device and a cell-containing object.
  • the present invention provides a detection device capable of easily detecting fluorescence in a cell, a cell-containing object, a method for producing a cell-containing object, an array of cell-containing objects, and a method for producing an array of cell-containing objects.
  • a detection device capable of easily detecting fluorescence in a cell, a cell-containing object, a method for producing a cell-containing object, an array of cell-containing objects, and a method for producing an array of cell-containing objects.
  • a gel a plurality of cells arranged in the gel and stained with a fluorescent reagent, and light detection for detecting fluorescence emitted from the fluorescent reagent when the plurality of cells react with a substance And a detector.
  • a plurality of cells may be dispersed in the gel.
  • a plurality of cells may form a cell spheroid.
  • the gel may have a three-dimensional shape.
  • the gel may have a cylindrical shape.
  • the gel may contain collagen.
  • the substance may be permeable through the gel.
  • the gel may be disposed on the photodetector.
  • the detection device may further include a culture container, and the gel may be disposed in the culture container.
  • the detection device may include a plurality of gels.
  • different types of cells may be held in a plurality of gels.
  • cells expressing different types of receptors may be retained in a plurality of gels.
  • cells expressing different types of receptors may be stained with different types of fluorescent reagents.
  • the apparatus includes a cell spheroid composed of a plurality of cells stained with a fluorescent reagent, and a photodetector that detects fluorescence emitted from the fluorescent reagent when the cell spheroid reacts with a substance.
  • a detection device is provided.
  • the detection device may further include a culture container, and the cell spheroid may be disposed in the culture container.
  • the solution may be put in a culture container.
  • the solution may be a culture solution.
  • the culture vessel may be disposed on the photodetector.
  • the photodetector may include an image sensor.
  • the image sensor may be a solid-state image sensor.
  • the solid-state imaging device may be a CMOS image sensor.
  • the substance may be an odor substance, and a plurality of cells may express a receptor for the odor substance.
  • the substance may be a drug or a pesticide.
  • the fluorescent reagent may be a calcium indicator.
  • the detection device may further include a perfusion device that perfuses the solution in the culture vessel.
  • the detection device described above may further include a temperature control device that controls the temperature of the solution.
  • a cell-containing object comprising a gel and a plurality of cells arranged in the gel and stained with a fluorescent reagent.
  • a plurality of cells may be dispersed in the gel.
  • a plurality of cells may form a cell spheroid.
  • the gel may have a three-dimensional shape.
  • the gel may have a cylindrical shape.
  • the gel may contain collagen.
  • a plurality of cells may express a receptor.
  • the receptor may be a receptor for an odor substance.
  • the fluorescent reagent may be a calcium indicator.
  • a solution containing a plurality of cells stained with a fluorescent reagent is placed in a mold, the solution is made into a gel, the gel and the mold are separated, and the gel and the gel And obtaining a cell-containing object comprising a plurality of cells stained with a fluorescent reagent, and a method for producing a cell-containing object.
  • a plurality of cells may be dispersed in the gel.
  • a plurality of cells may form a cell spheroid.
  • the gel may have a three-dimensional shape.
  • the gel may have a cylindrical shape.
  • the gel may contain collagen.
  • a plurality of cells may express a receptor.
  • the receptor may be an odor substance receptor.
  • the fluorescent reagent may be a calcium indicator.
  • an array of cell-containing objects comprising a plurality of gels and a plurality of cells stained in a fluorescent reagent arranged in each of the plurality of gels.
  • a plurality of cells may be dispersed in the gel.
  • a plurality of cells may form cell spheroids.
  • each of the plurality of gels may have a three-dimensional shape.
  • each of the plurality of gels may have a cylindrical shape.
  • each of the plurality of gels may contain collagen.
  • different types of cells may be held in a plurality of gels.
  • cells expressing different types of receptors may be retained in a plurality of gels.
  • cells expressing different types of receptors may be stained with different types of fluorescent reagents.
  • each of different types of receptors may be a receptor for an odor substance.
  • fluorescent reagents may emit fluorescence in different wavelength bands.
  • each of the different types of fluorescent reagents may be a calcium indicator.
  • the first solution containing the first type of cells stained with the first type of fluorescent reagent is placed in the mold, and the first solution is used using the first photomask.
  • Forming a part of the solution into a first gel, placing a second solution containing cells of the second type stained with the second type of fluorescent reagent into a mold, and a second photomask A method for producing an array of cell-containing objects comprising: forming a second gel from a portion of the second solution.
  • the first type of cells may be dispersed in the first gel.
  • the first type of cells may form a cell spheroid in the first gel.
  • the second type of cells may be dispersed in the second gel.
  • the second type of cells may form cell spheroids in the second gel.
  • the first and second gels may have a three-dimensional shape.
  • the first and second gels may have a cylindrical shape.
  • the first and second gels may contain collagen.
  • the first and second types of cells may express different types of receptors.
  • each of the different types of receptors may be a receptor for an odor substance.
  • the first and second types of fluorescent reagents may emit fluorescence in different wavelength bands.
  • the first and second types of fluorescent reagents may be calcium indicators.
  • the detection apparatus which can detect the fluorescence in a cell easily, a cell containing object, the manufacturing method of a cell containing object, the array of a cell containing object, and the manufacturing method of the array of a cell containing object can be provided. .
  • FIG. 23A is a bright-field image of a gel formed by UV irradiation according to an example of the first embodiment.
  • FIG. 23A is a bright-field image of a gel formed by UV irradiation according to an example of the first embodiment.
  • FIG. 23B is a composite image of a bright field image and a fluorescence image of a gel formed by UV irradiation according to the example of the first embodiment.
  • the cells were stained with Calcein-AM and Ethidium Homodimer.
  • Calcein-AM penetrates the cell membrane of living cells and emits green fluorescence.
  • Ethidium Homodimer permeates the membrane damage part of dead cells and emits red fluorescence. In the original color image of FIG. 23, the majority of cells emitted green fluorescence, confirming that the cells were alive.
  • FIG. 24A is a bright-field image of a gel formed by UV irradiation according to an example of the first embodiment.
  • FIG. 24B is a fluorescence image of a gel formed by UV irradiation according to an example of the first embodiment and including cells stained with different fluorescent reagents.
  • FIG. 24C is a graph showing the position of a gel containing cells stained with different fluorescent reagents and the fluorescence intensity. It is a schematic diagram of the detection apparatus which concerns on 2nd Embodiment. It is a schematic diagram of the detection apparatus which concerns on 2nd Embodiment. It is an image of the spheroid which concerns on the Example of 2nd Embodiment.
  • FIG. 28A is a bright field image of a spheroid according to an example of the second embodiment.
  • FIG. 28B is a fluorescent image of spheroids according to an example of the second embodiment.
  • FIG. 28C is a composite image of a bright field image of a spheroid and a fluorescence image according to an example of the second embodiment.
  • FIG. 28 (d) is a graph showing the fluorescence intensity along the broken line AA ′ in FIG. 28 (b).
  • FIG. 29A is a fluorescence image of a single cell according to an example of the second embodiment.
  • FIG. 29B is a fluorescence image of a spheroid according to an example of the second embodiment.
  • FIG. 29C is a graph showing the intensity of fluorescence emitted from the single cell and spheroid according to the example of the second embodiment.
  • FIG. 30A is a fluorescence image of a spheroid before addition of eugenol using a confocal microscope according to an example of the second embodiment.
  • FIG. 30B is a fluorescence image after addition of eugenol to spheroids using a confocal microscope according to an example of the second embodiment.
  • FIG. 30C is a graph showing the fluorescence intensity before and after the addition of eugenol according to an example of the second embodiment.
  • FIG. 30D is a bright field image of a spheroid using a CMOS image sensor.
  • FIG. 30E is a binary spheroid fluorescence image using a CMOS image sensor.
  • the detection apparatus As shown in FIG. 1, the detection apparatus according to the first embodiment includes a gel 11, a plurality of cells 1 arranged in the gel 11, and stained with a fluorescent reagent, and the plurality of cells 1 reacted to a substance. And a photodetector 2 that detects fluorescence emitted from the fluorescent reagent.
  • a plurality of cells 1 may be dispersed in the gel 11. Alternatively, the plurality of cells 1 may form a cell spheroid.
  • a cell spheroid is a cell mass composed of a plurality of cells. In the cell spheroid, cells are adhered to each other.
  • the substance that reacts with the plurality of cells 1 is, for example, a ligand and an odor substance.
  • Each cell of the plurality of cells 1 expresses an odor substance receptor that binds to a specific odor substance.
  • the odorant receptor is also called an olfactory receptor and belongs to the G protein coupled receptor family.
  • the cells are mammalian cells such as HEK293T cells, but are not particularly limited.
  • the cell may be an olfactory receptor cell or a cell in which a specific receptor is expressed by genetic engineering.
  • the cell incorporates a fluorescent reagent that emits fluorescence when the cell reacts with the substance.
  • the fluorescent reagent taken up by the cells is, for example, a calcium indicator.
  • a signal is transmitted within the cell, and the calcium ion concentration increases.
  • Calcium indicators fluoresce as the calcium ion concentration increases.
  • the fluorescent reagent can visualize a chemical reaction in the cell that occurs when the cell reacts with the substance. Examples of calcium indicators include Fura2-AM, Fluo-3-AM, Fluo-4-AM, and Fluo-8-AM.
  • Fluorescent reagent is not limited to calcium indicator.
  • the fluorescent reagent may be a membrane potential sensitive fluorescent reagent or a neurotransmitter sensitive fluorescent reagent.
  • the membrane potential sensitive fluorescent reagent emits fluorescence in response to a change in membrane potential that occurs when a cell reacts with a substance.
  • membrane potential sensitive fluorescent reagents include di-4-ANEPPS and DiBAC4.
  • a neurotransmitter-sensitive fluorescent reagent emits fluorescence in response to a neurotransmitter such as glutamate produced in a cell when the cell reacts with the substance.
  • An example of a neurotransmitter sensitive fluorescent reagent is EOS (glutamate optical sensor).
  • the gel 11 containing a plurality of cells 1 has an arbitrary three-dimensional shape such as a cylindrical shape.
  • the gel 11 is a hydrogel, for example.
  • the material of the gel 11 is not particularly limited as long as a substance that reacts with cells can permeate the inside of the gel 11.
  • the gel 11 may be permeable to culture components such as nutrient components of the culture solution.
  • the plurality of cells 1 and the gel 11 constitute a cell-containing object.
  • the gel 11 including a plurality of cells 1 is disposed on a transparent substrate 21 that can transmit fluorescence generated in the plurality of cells 1, for example.
  • One gel 11 or a plurality of gels 11 may be arranged on the transparent substrate 21.
  • the plurality of gels 11 may be arranged in an array.
  • the surface of the transparent substrate 21 may be coated with the same material as that of the gel 11. Thereby, the adhesiveness of the gel 11 to the transparent substrate 21 is improved.
  • the detection apparatus includes a plurality of gels 11, different types of cells may be held in the plurality of gels 11. In different types of cells, for example, different types of receptors may be expressed.
  • a gel that holds a plurality of cells that react with the first odor substance a gel that holds a plurality of cells that react with the second odor substance, and a plurality of substances that react with the third odor substance.
  • a gel for holding cells may be disposed. You may identify the kind of odorous substance from the position of the gel from which fluorescence was emitted. Moreover, you may identify the kind of odor from the combination of the position of the gel in which fluorescence was emitted. Alternatively, the type of odor substance may be specified from the wavelength band or color of fluorescence by staining different types of cells with different types of fluorescent reagents. Further, the type of odor may be specified from the combination of the fluorescent wavelength band and the color.
  • a frame 22 may be disposed on the transparent substrate 21.
  • the transparent substrate 21 and the frame 22 constitute a culture vessel.
  • the frame 22 is made of, for example, dimethylpolysiloxane (PDMS), but is not particularly limited.
  • the gel 11 including a plurality of cells 1 is placed in a culture container formed by the transparent substrate 21 and the frame 22.
  • a solution 23 such as a culture solution or a buffer solution may be placed in the culture vessel formed by the transparent substrate 21 and the frame 22. By putting the solution in the frame 22, it is possible to prevent the moisture of the gel 11 from evaporating and supply nutrients to the plurality of cells 1.
  • the culture vessel formed by the transparent substrate 21 and the frame 22 is placed on the photodetector 2. Therefore, the gel 11 including the plurality of cells 1 is arranged on the photodetector 2.
  • a lens barrel 31 may be disposed between the photodetector 2 and the transparent substrate 21. In the lens barrel 31, a lens 32 that converts the fluorescence generated in the plurality of cells 1 into parallel light, and a lens 33 that converges the fluorescence transmitted through the lens 32 on the photodetector 2 may be disposed.
  • a band-pass filter 34 that transmits fluorescence generated in a plurality of cells 1 and does not transmit light having a wavelength band different from that of the fluorescence may be disposed on the photodetector 2.
  • the photodetector 2 is disposed on the circuit board 3, for example.
  • the photodetector 2 may include an image sensor such as a solid-state image sensor.
  • an image sensor such as a solid-state image sensor.
  • a CMOS (Complementary Metal Oxide Semiconductor) image sensor, a CCD (Charge-Coupled Device) image sensor, or the like can be used.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-Coupled Device
  • a processing device may be connected to the photodetector 2.
  • the processing apparatus may calculate the concentration of the odor substance based on the fluorescence intensity detected by the photodetector 2 using the relationship between the fluorescence intensity acquired in advance and the concentration of the odor substance. .
  • the detection apparatus includes an excitation light source 4 that emits excitation light toward a plurality of cells 1, and a light source 5 that emits light including wavelengths other than excitation light such as white light toward the plurality of cells 1. And may be further provided.
  • the excitation light source 4 emits excitation light having an excitation wavelength corresponding to the fluorescent reagent taken into the cells constituting the plurality of cells 1.
  • the excitation light source 4 emits excitation light, it is possible to take an image of fluorescence emitted by the plurality of cells 1 with the photodetector 2.
  • the photodetector 2 can capture images such as bright field images and dark field images of the shape of the plurality of cells 1.
  • the gel 11 including a plurality of cells 1 may be arranged on the photodetector 2 without using a lens or the like.
  • the solution 23 filling the periphery of the gel 11 containing a plurality of cells 1 may be perfused with a perfusion device 71 such as a motor pump. Further, the temperature of the solution 23 may be controlled by a temperature control device 72 such as a heater.
  • the culture vessel in which the gel 11 including a plurality of cells 1 is arranged may be covered with a semipermeable membrane 73 that allows gas to permeate and does not allow liquid to permeate. Thereby, it is possible to prevent evaporation of the solution 23 while supplying components necessary for cell culture such as oxygen dioxide and oxygen to the solution 23.
  • the intensity of fluorescence generated in a single cell or in a cell cultured in a single layer is weak, it may be difficult to detect with a conventional detector or large light that is not easy to carry. Sometimes a detector is required.
  • a plurality of cells 1 are three-dimensionally arranged in the gel 11, and the plurality of cells 1 are stacked vertically with respect to the photodetector 2. Yes. Therefore, since the fluorescence emitted by the plurality of cells 1 in the gel 11 is superimposed, the fluorescence having a higher intensity than the fluorescence emitted by the cells cultured in the single layer reaches the photodetector 2.
  • the detection device according to the first embodiment can be made small enough to be portable.
  • a plurality of cells 1 are held in the gel 11.
  • the gel 11 can be easily bonded to the transparent substrate 21. Therefore, since the gel 11 can be fixed to the transparent substrate 21, even if the solution 23 around the gel 11 is exchanged or a substance that reacts with cells is dropped into the solution 23, the plurality of cells 1 It is possible to suppress the position and orientation from changing with respect to the photodetector 2. Therefore, it is possible to improve reproducibility at the time of fluorescence measurement.
  • a method for producing a gel 11 containing a plurality of cells 1 will be described.
  • a plasmid incorporating a DNA encoding an odorant receptor is introduced into the cell, and the odorant receptor 13 is expressed in the cell 12, as shown in FIG.
  • the cells are suspended in a gel raw material solution such as a collagen solution to obtain a cell suspension.
  • a mold 51 provided with a plurality of wells 52a, 52b, 52c.
  • the inner diameter and depth of each of the plurality of wells 52a, 52b, 52c... are designed based on the diameter and height of the gel to be produced.
  • the mold 51 is made of, for example, dimethylpolysiloxane (PDMS), but is not particularly limited.
  • the surface of the mold 51 may be coated with bovine serum albumin (BSA) or the like so that the gel can be easily removed.
  • BSA bovine serum albumin
  • a transparent substrate 21 coated with the same gel material as the gel material of the gel raw material solution is prepared, and the surface of the mold 51 on which the wells 52a, 52b, 52c. Is adhered to the surface of the transparent substrate 21.
  • the plurality of cells 12 are cultured in the wells 52a, 52b, 52c.
  • the plurality of cells 12 may be cultured in a dispersed state.
  • the cell spheroid 1 may be formed in a plurality of cells 12. Different types of cells may be cultured in the wells 52a, 52b, 52c.
  • the gel raw material solution is heated.
  • the heating temperature is 37 ° C., for example, and the heating time is 15 minutes, for example.
  • a solution 23 such as a culture solution or a buffer solution is placed around the mold 51. Thereby, it becomes easy to peel off the mold 51 from the transparent substrate 21. Thereafter, as shown in FIG. 9, although not particularly limited, when the mold 51 is pulled up with tweezers 61 or the like, the gel 11 containing a plurality of cells 1 remains on the transparent substrate 21 as shown in FIG.
  • a mold 151 provided with one well 152 is prepared, and the well 152 is filled with a cell suspension 14 containing a gelling agent that gels by light irradiation such as PEGDA.
  • the cell suspension 14 contains the first type of cells stained with the first type of fluorescent reagent.
  • the transparent substrate 21 is prepared, and the surface of the mold 151 on the side where the well 152 is provided is brought into close contact with the surface of the transparent substrate 21. Thereafter, the first type of cells 12 are cultured in the well 152 of the mold 151.
  • cell spheroids may be formed.
  • light is irradiated from a light source 82 such as a UV irradiation device through the first photomask 81 or the like, and a part of the cell suspension 14 is gelled.
  • a plurality of gels including a plurality of cells of the first type are placed on the transparent substrate 21 by removing the cell suspension 14 that has not been irradiated with light and has not gelled. Further, the well 152 of the mold 151 is filled with a cell suspension containing a second type of cell different from the first type of cell. The second type of cells are stained with a second type of fluorescent reagent different from the first type of fluorescent reagent. Next, as shown in FIG. 13, a part of the cell suspension is gelled using a second photomask 83 having an opening pattern different from that of the first photomask 81.
  • a plurality of gels including a plurality of cells of the second type are arranged on the transparent substrate 21 by removing the cell suspension that has not been irradiated with light and has not gelled. Thereafter, the same method may be repeated to arrange a plurality of gels each containing different types of cells on the transparent substrate 21.
  • HEK293T cells in which mOR-EG, an olfactory receptor, was genetically engineered were prepared.
  • the cells were stained with Fluo-8 AM (AAT Bioquest), a calcium indicator.
  • Fluo-8 AM AAT Bioquest
  • Cellmatrix Type I-A (Nitta Gelatin Co., Ltd.), 10-fold Hanks buffer, and reconstitution buffer were mixed at a ratio of 8: 1: 1 to prepare a collagen solution containing collagen at a concentration of 2.4 mg / mL. did.
  • a mold made of PDMS provided with an array of wells having a diameter of 200 ⁇ m and a depth of 200 ⁇ m was prepared. The mold surface was coated with 1% BSA for 30 minutes.
  • Cells were suspended in a collagen solution to a concentration of 10 8 cells / mL to obtain a cell suspension.
  • the obtained cell suspension was put into a mold well, and the surface provided with the mold well was attached to the frame of the glass plate.
  • Cells were cultured for 3 hours in the wells. Thereafter, the collagen solution was heated at 37 ° C. for 30 to 40 minutes in order to gel the collagen solution. After the gel was formed, the culture solution was put in a frame and the mold was peeled off from the surface of the glass plate.
  • FIG. 14 it was confirmed with an inverted microscope that columnar gels were arranged in an array on a glass plate.
  • the diameters of a plurality of cylindrical gels formed from wells having the same shape were almost uniform as shown in FIG.
  • FIG. 16 the columnar gel is observed with a shape analysis laser microscope (VK-X21, Keyence), and the height distribution of a plurality of columnar gels formed from wells having the same shape is observed. As a result, as shown in FIG. 17, the height was almost uniform.
  • eugenol was prepared as an odor substance.
  • the chemical formula of eugenol is shown below.
  • Eugenol is generally extracted from cinnamon and used in spices and perfumes.
  • Eugenol was dissolved in dimethyl sulfoxide (DMSO) at a concentration of 50 mmol / L to obtain an odor substance solution.
  • DMSO dimethyl sulfoxide
  • a detection device having a structure similar to that shown in FIG. 1 was prepared using a CMOS image sensor.
  • a plurality of cylindrical gels having the same diameter and different heights were prepared using molds having different well depths.
  • a fluorescence image was taken with a CMOS image sensor.
  • the concentration of the odor substance solution was appropriately diluted and half the amount of the culture solution was sucked so that the liquid level did not change, the same amount of the odor substance solution was dropped into the culture solution.
  • a fluorescence image was taken with a CMOS image sensor. Further, a difference image between the fluorescence images before and after the odor substance solution was dropped was obtained as a corrected fluorescence image in which background noise was canceled.
  • the obtained bright field image and corrected fluorescence image are shown in FIG. In the bright field image, the outline of the cylindrical gel was observed. In the corrected fluorescence image, the fluorescence emitted by calcein was observed.
  • the concentration of the odor substance in the odor substance solution was changed, as shown in FIG. 22, it was observed that the higher the odor substance concentration, the stronger the fluorescence intensity. Therefore, it was shown that if the relationship between the concentration of the odor substance and the fluorescence intensity is acquired in advance, the concentration of the odor substance can be calculated from the intensity of the fluorescence observed by the detection apparatus.
  • the cell spheroid in the detection apparatus according to the second embodiment shown in FIG. 25, the cell spheroid composed of a plurality of cells 1 may be directly placed in the solution 23. Also in FIG. 25, the transparent substrate 21 and the frame 22 constitute a culture container, and the cell spheroid composed of a plurality of cells 1 and the solution 23 such as a culture solution or a buffer solution are the transparent substrate 21 and the frame 22. Is placed in a culture vessel formed. As shown in FIG. 26, in the detection apparatus according to the second embodiment, when a substance 15 such as an odor substance enters the solution 23, a cell spheroid composed of a plurality of cells 1 reacts with the substance 15 and emits fluorescence.
  • a substance 15 such as an odor substance enters the solution 23
  • a cell spheroid composed of a plurality of cells 1 reacts with the substance 15 and emits fluorescence.
  • Dulbecco's modified Eagle's medium (DMEM, Sigma-Aldrich), 10 vol% fetal bovine serum (FBS, Biosera), 100 U / mL penicillin (Kanto Chemical or Wako Pure Chemical), and 100 ⁇ g / mL streptomycin (Kanto Chemical or Japanese) Photopure drug) was added and the culture solution was adjusted.
  • phosphate buffered saline PBS, Sigma-Aldrich
  • eugenol as an odor substance were prepared.
  • HEK293T cells were treated with lipofectamine 3000 or 2000 (registered trademark, Invitrogen) with mOR-EG, which is an olfactory receptor, G ⁇ 15 , which is a G protein ⁇ subunit, and a receptor transporter protein. It was transformed to express a certain RTP1 and a signal amplification molecule, Ric-8.
  • lipofectamine 3000 or 2000 registered trademark, Invitrogen
  • the amount of gene added per mL of medium was 1.5 ⁇ g for pME18S-Rho-mOR-EG (when using Lipofectamine 3000) or 1.45 ⁇ g (when using Lipofectamine 2000), 1.0 ⁇ g for pME18S-G a15 (Lipofectamine 3000) Used) or 0.87 ⁇ g (when using Lipofectamine 2000), pME18S-RTP1 is 0.5 ⁇ g (when using Lipofectamine 3000) or 0.58 ⁇ g (when using Lipofectamine 2000), pEGFP-N3-Myr-Ric-8A is 0. It was 5 ⁇ g (when using Lipofectamine 3000) or 0.29 ⁇ g (when using Lipofectamine 2000).
  • the transformed cells subjected to the adhesion culture were treated with a trypsin-EDTA solution at 37 ° C. for 5 minutes to release the cells from the incubator. Furthermore, the culture solution was added to suspend the cells, followed by centrifugation at 2G for 5 minutes. After centrifugation, the cells were resuspended in the culture solution, and the suspension was dropped into each well of a PDMS incubator in which wells having a diameter of 200 ⁇ m and a depth of 200 ⁇ m were provided in an array. Thereafter, cell spheroids composed of transformed cells were formed by culturing for 3 hours. A bright field image of the cell spheroid is shown in FIG. Furthermore, cell spheroids were stained with calcium indicator calcein-AM (Thermo Fisher Scientific) or Fluo-8-AM (AAT bioquest).
  • CMOS image sensor WAT-01U2, Watec
  • a white light source OSW4XME3C1E, OptoSupply
  • a blue excitation light source OEHB220, OptoSupply
  • Cell spheroids collected from the incubator with a pipette were placed in the culture solution in the culture vessel of the detection apparatus.
  • white light was irradiated to the spheroid through a pinhole.
  • eugenol was put into the culture solution and a fluorescent image of spheroids was taken, the cell spheroids were irradiated with blue excitation light, and the color in the green wavelength band was extracted.
  • Fig. 28 (a) shows a bright field image of a cell spheroid
  • Fig. 28 (b) shows a fluorescence image of the cell spheroid
  • Fig. 28 (c) shows a composite image of the bright field image and the fluorescence image.
  • FIG. 28 (d) shows a distribution graph of fluorescence intensity along the broken line AA ′ in FIG. 28 (c). It has been shown that a fluorescence reaction in a cell spheroid can be detected using a CMOS image sensor. Furthermore, as shown in FIG. 29, the intensity of the fluorescence emitted by the cell spheroids was about 4 times stronger than the intensity of the fluorescence emitted by one cell (single cell). Thus, cell spheroids have been shown to improve the sensitivity of the detection device.
  • FIG. 30D shows a bright field image of a cell spheroid imaged by a CMOS image sensor
  • FIG. 30E shows an image obtained by binarizing a fluorescent image of the cell spheroid with an image J that is image processing software. From the results of this example, it was shown that a detection apparatus using a CMOS image sensor can be used to detect a reaction between a cell spheroid olfactory receptor and eugenol, which is an odor substance.
  • an odor substance is given as an example of a substance with which cells react, but the substance is not limited to this.
  • the substance may be various ligands, ions, or cell membrane permeable substances. The presence of these substances can be detected by detecting the fluorescence emitted due to the intracellular response reaction of these substances.
  • the substance with which the cell reacts may be a drug such as a medicine or an agrochemical. It is possible to verify or screen whether or not the drug or pesticide affects the cells by detecting the fluorescence emitted due to the cell response to the drug or pesticide.
  • the present invention includes various embodiments and the like not described herein.
  • the detection device according to the embodiment is not particularly limited, but can be used for detection of food contaminants, medical care, environmental measurement, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Zoology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

The purpose of the present invention is to provide a detection device capable of easily detecting intracellular fluorescence. The present invention provides a detection device comprising a gel 11, a plurality of cells 1 that are disposed in the gel 11 and stained with a fluorescent reagent, and a photodetector 2 that detects fluorescence emitted from the fluorescent reagent when the plurality of cells 1 react to a substance.

Description

検出装置及び細胞含有物体Detection device and cell-containing object
 本発明は細胞技術に関し、検出装置及び細胞含有物体に関する。 The present invention relates to a cell technology, and relates to a detection device and a cell-containing object.
 細胞は、細胞外の物質と反応すると、膜電位が変化したり、細胞内のイオン濃度が変化したり、応答物質を生成したりする。したがって、リガンド等の物質に対する細胞の応答反応が生じるか否かを検出することにより、当該応答反応が生じた際は、リガンド等の物質が存在していると判定することが可能である。そのため、物質を検出するために細胞を用いる試みがなされている。また、薬物等の物質に対する細胞の応答反応を検出することにより、当該応答反応が生じた際は、薬物等の物質が細胞に対して作用すると判定することが可能である。そのため、薬物のスクリーニングのために細胞を用いる試みもなされている(例えば、特許文献1から3参照。)。 When a cell reacts with an extracellular substance, the membrane potential changes, the intracellular ion concentration changes, or a response substance is generated. Therefore, by detecting whether or not a response response of a cell to a substance such as a ligand occurs, it is possible to determine that a substance such as a ligand exists when the response reaction occurs. For this reason, attempts have been made to use cells to detect substances. Further, by detecting a response response of a cell to a substance such as a drug, it is possible to determine that a substance such as a drug acts on the cell when the response reaction occurs. Therefore, attempts have been made to use cells for drug screening (see, for example, Patent Documents 1 to 3).
特許第5127783号公報Japanese Patent No. 5127778 特許第5603850号公報Japanese Patent No. 5603850 特許第5696953号公報Japanese Patent No. 5696953
 細胞外の物質に対する細胞の応答反応は、蛍光試薬等によって可視化される。しかし、細胞内で蛍光試薬が発する蛍光の強度は微弱であり、蛍光の検出には高感度の検出装置が必要である。そこで、本発明は、細胞内の蛍光を容易に検出可能な検出装置、細胞含有物体、細胞含有物体の製造方法、細胞含有物体のアレイ、及び細胞含有物体のアレイの製造方法を提供することを目的の一つとする。 ∙ Cell response to extracellular substances is visualized with fluorescent reagents. However, the intensity of the fluorescence emitted from the fluorescent reagent in the cell is weak, and a highly sensitive detection device is required for fluorescence detection. Therefore, the present invention provides a detection device capable of easily detecting fluorescence in a cell, a cell-containing object, a method for producing a cell-containing object, an array of cell-containing objects, and a method for producing an array of cell-containing objects. One of the purposes.
 本発明の態様によれば、ゲルと、ゲル中に配置された、蛍光試薬で染色された複数の細胞と、複数の細胞が物質に反応したときに蛍光試薬から発せられる蛍光を検出する光検出器と、を備える、検出装置が提供される。 According to an aspect of the present invention, a gel, a plurality of cells arranged in the gel and stained with a fluorescent reagent, and light detection for detecting fluorescence emitted from the fluorescent reagent when the plurality of cells react with a substance And a detector.
 上記の検出装置において、複数の細胞が、ゲル中に分散していてもよい。 In the above detection device, a plurality of cells may be dispersed in the gel.
 上記の検出装置において、複数の細胞が、細胞スフェロイドを形成していてもよい。 In the above detection device, a plurality of cells may form a cell spheroid.
 上記の検出装置において、ゲルが立体形状を有していてもよい。 In the above detection device, the gel may have a three-dimensional shape.
 上記の検出装置において、ゲルが円柱形状を有していてもよい。 In the above detection device, the gel may have a cylindrical shape.
 上記の検出装置において、ゲルがコラーゲンを含んでいてもよい。 In the above detection device, the gel may contain collagen.
 上記の検出装置において、ゲルにおいて物質が透過可能であってもよい。 In the above detection device, the substance may be permeable through the gel.
 上記の検出装置において、ゲルが光検出器上に配置されていてもよい。 In the above detection apparatus, the gel may be disposed on the photodetector.
 上記の検出装置が、培養容器をさらに備え、ゲルが培養容器中に配置されてもよい。 The detection device may further include a culture container, and the gel may be disposed in the culture container.
 上記の検出装置が、ゲルを複数備えていてもよい。 The detection device may include a plurality of gels.
 上記の検出装置において、複数のゲルにおいて、異なる種類の細胞が保持されていてもよい。 In the above detection device, different types of cells may be held in a plurality of gels.
 上記の検出装置において、異なる種類の細胞が、異なる種類の蛍光試薬で染色されていてもよい。 In the above detection apparatus, different types of cells may be stained with different types of fluorescent reagents.
 上記の検出装置において、複数のゲルにおいて、異なる種類の受容体を発現している細胞が保持されていてもよい。 In the above-described detection device, cells expressing different types of receptors may be retained in a plurality of gels.
 上記の検出装置において、異なる種類の受容体を発現している細胞が、異なる種類の蛍光試薬で染色されていてもよい。 In the above detection apparatus, cells expressing different types of receptors may be stained with different types of fluorescent reagents.
 また、本発明の態様によれば、蛍光試薬で染色された複数の細胞からなる細胞スフェロイドと、細胞スフェロイドが物質に反応したときに蛍光試薬から発せられる蛍光を検出する光検出器と、を備える、検出装置が提供される。 In addition, according to an aspect of the present invention, the apparatus includes a cell spheroid composed of a plurality of cells stained with a fluorescent reagent, and a photodetector that detects fluorescence emitted from the fluorescent reagent when the cell spheroid reacts with a substance. A detection device is provided.
 上記の検出装置が、培養容器をさらに備え、細胞スフェロイドが培養容器中に配置されてもよい。 The detection device may further include a culture container, and the cell spheroid may be disposed in the culture container.
 上記の検出装置において、培養容器に溶液が入れられてもよい。溶液が培養液であってもよい。 In the above detection apparatus, the solution may be put in a culture container. The solution may be a culture solution.
 上記の検出装置において、培養容器が光検出器上に配置されてもよい。 In the above detection apparatus, the culture vessel may be disposed on the photodetector.
 上記の検出装置において、光検出器が撮像素子を備えていてもよい。撮像素子が固体撮像素子であってもよい。固体撮像素子がCMOSイメージセンサであってもよい。 In the above detection device, the photodetector may include an image sensor. The image sensor may be a solid-state image sensor. The solid-state imaging device may be a CMOS image sensor.
 上記の検出装置において、物質がにおい物質であり、複数の細胞がにおい物質の受容体を発現していてもよい。 In the above detection apparatus, the substance may be an odor substance, and a plurality of cells may express a receptor for the odor substance.
 上記の検出装置において、物質が薬物又は農薬であってもよい。 In the above detection device, the substance may be a drug or a pesticide.
 上記の検出装置において、蛍光試薬がカルシウム指示薬であってもよい。 In the above detection apparatus, the fluorescent reagent may be a calcium indicator.
 上記の検出装置が、培養容器内の溶液を灌流させる灌流装置をさらに備えていてもよい。 The detection device may further include a perfusion device that perfuses the solution in the culture vessel.
 上記の検出装置が、溶液の温度を制御する温度制御装置をさらに備えていてもよい。 The detection device described above may further include a temperature control device that controls the temperature of the solution.
 また、本発明の態様によれば、ゲルと、ゲル中に配置された、蛍光試薬で染色された複数の細胞と、を備える、細胞含有物体が提供される。 Moreover, according to the aspect of the present invention, there is provided a cell-containing object comprising a gel and a plurality of cells arranged in the gel and stained with a fluorescent reagent.
 上記の細胞含有物体において、複数の細胞が、ゲル中に分散していてもよい。 In the above cell-containing object, a plurality of cells may be dispersed in the gel.
 上記の細胞含有物体において、複数の細胞が、細胞スフェロイドを形成していてもよい。 In the cell-containing object, a plurality of cells may form a cell spheroid.
 上記の細胞含有物体において、ゲルが立体形状を有していてもよい。 In the cell-containing object, the gel may have a three-dimensional shape.
 上記の細胞含有物体において、ゲルが円柱形状を有していてもよい。 In the cell-containing object, the gel may have a cylindrical shape.
 上記の細胞含有物体において、ゲルがコラーゲンを含んでいてもよい。 In the above-mentioned cell-containing object, the gel may contain collagen.
 上記の細胞含有物体において、複数の細胞が受容体を発現していてもよい。 In the cell-containing object, a plurality of cells may express a receptor.
 上記の細胞含有物体において、受容体がにおい物質の受容体であってもよい。 In the above cell-containing object, the receptor may be a receptor for an odor substance.
 上記の細胞含有物体において、蛍光試薬がカルシウム指示薬であってもよい。 In the cell-containing object, the fluorescent reagent may be a calcium indicator.
 また、本発明の態様によれば、蛍光試薬で染色された複数の細胞を含む溶液をモールドに入れることと、溶液をゲルにすることと、ゲルとモールドとを分離し、ゲルと、ゲル中に配置された、蛍光試薬で染色された複数の細胞と、を備える、細胞含有物体を得ることと、を含む、細胞含有物体の製造方法が提供される。 Moreover, according to the aspect of the present invention, a solution containing a plurality of cells stained with a fluorescent reagent is placed in a mold, the solution is made into a gel, the gel and the mold are separated, and the gel and the gel And obtaining a cell-containing object comprising a plurality of cells stained with a fluorescent reagent, and a method for producing a cell-containing object.
 上記の細胞含有物体の製造方法において、複数の細胞が、ゲル中に分散していてもよい。 In the method for producing a cell-containing object, a plurality of cells may be dispersed in the gel.
 上記の細胞含有物体の製造方法において、複数の細胞が、細胞スフェロイドを形成していてもよい。 In the above method for producing a cell-containing object, a plurality of cells may form a cell spheroid.
 上記の細胞含有物体の製造方法において、ゲルが立体形状を有していてもよい。 In the above method for producing a cell-containing object, the gel may have a three-dimensional shape.
 上記の細胞含有物体の製造方法において、ゲルが円柱形状を有していてもよい。 In the above method for producing a cell-containing object, the gel may have a cylindrical shape.
 上記の細胞含有物体の製造方法において、ゲルがコラーゲンを含んでいてもよい。 In the above method for producing a cell-containing object, the gel may contain collagen.
 上記の細胞含有物体の製造方法において、複数の細胞が受容体を発現していてもよい。 In the method for producing a cell-containing object, a plurality of cells may express a receptor.
 上記の細胞含有物体の製造方法において、受容体がにおい物質の受容体であってもよい。 In the above method for producing a cell-containing object, the receptor may be an odor substance receptor.
 上記の細胞含有物体の製造方法において、蛍光試薬がカルシウム指示薬であってもよい。 In the above method for producing a cell-containing object, the fluorescent reagent may be a calcium indicator.
 また、本発明の態様によれば、複数のゲルと、複数のゲルのそれぞれの中に配置された、蛍光試薬で染色された複数の細胞と、を備える、細胞含有物体のアレイが提供される。 According to an aspect of the present invention, there is provided an array of cell-containing objects, comprising a plurality of gels and a plurality of cells stained in a fluorescent reagent arranged in each of the plurality of gels. .
 上記の細胞含有物体のアレイにおいて、複数の細胞が、ゲル中に分散していてもよい。 In the above-described array of cell-containing objects, a plurality of cells may be dispersed in the gel.
 上記の細胞含有物体のアレイにおいて、複数の細胞が、細胞スフェロイドを形成していてもよい。 In the array of cell-containing objects, a plurality of cells may form cell spheroids.
 上記の細胞含有物体のアレイにおいて、複数のゲルのそれぞれが立体形状を有していてもよい。 In the above-described array of cell-containing objects, each of the plurality of gels may have a three-dimensional shape.
 上記の細胞含有物体のアレイにおいて、複数のゲルのそれぞれが円柱形状を有していてもよい。 In the above-described array of cell-containing objects, each of the plurality of gels may have a cylindrical shape.
 上記の細胞含有物体のアレイにおいて、複数のゲルのそれぞれがコラーゲンを含んでいてもよい。 In the above-described array of cell-containing objects, each of the plurality of gels may contain collagen.
 上記の細胞含有物体のアレイにおいて、複数のゲルにおいて、異なる種類の細胞が保持されていいてもよい。 In the cell-containing object array, different types of cells may be held in a plurality of gels.
 上記の細胞含有物体のアレイにおいて、異なる種類の細胞が、異なる種類の蛍光試薬で染色されていてもよい。 In the above-described array of cell-containing objects, different types of cells may be stained with different types of fluorescent reagents.
 上記の細胞含有物体のアレイにおいて、複数のゲルにおいて、異なる種類の受容体を発現している細胞が保持されていてもよい。 In the array of cell-containing objects described above, cells expressing different types of receptors may be retained in a plurality of gels.
 上記の細胞含有物体のアレイにおいて、異なる種類の受容体を発現している細胞が、異なる種類の蛍光試薬で染色されていてもよい。 In the array of cell-containing objects, cells expressing different types of receptors may be stained with different types of fluorescent reagents.
 上記の細胞含有物体のアレイにおいて、異なる種類の受容体のそれぞれが、におい物質の受容体であってもよい。 In the cell-containing object array, each of different types of receptors may be a receptor for an odor substance.
 上記の細胞含有物体のアレイにおいて、異なる種類の蛍光試薬が、異なる波長帯域の蛍光を発してもよい。 In the array of cell-containing objects, different types of fluorescent reagents may emit fluorescence in different wavelength bands.
 上記の細胞含有物体のアレイにおいて、異なる種類の蛍光試薬のそれぞれが、カルシウム指示薬であってもよい。 In the cell-containing object array described above, each of the different types of fluorescent reagents may be a calcium indicator.
 また、本発明の態様によれば、第1の種類の蛍光試薬で染色された第1の種類の細胞を含む第1の溶液をモールドに入れることと、第1のフォトマスクを用いて第1の溶液の一部を第1のゲルにすることと、第2の種類の蛍光試薬で染色された第2の種類の細胞を含む第2の溶液をモールドに入れることと、第2のフォトマスクを用いて第2の溶液の一部を第2のゲルにすることと、を含む、細胞含有物体のアレイの製造方法が提供される。 In addition, according to the aspect of the present invention, the first solution containing the first type of cells stained with the first type of fluorescent reagent is placed in the mold, and the first solution is used using the first photomask. Forming a part of the solution into a first gel, placing a second solution containing cells of the second type stained with the second type of fluorescent reagent into a mold, and a second photomask A method for producing an array of cell-containing objects comprising: forming a second gel from a portion of the second solution.
 上記の細胞含有物体のアレイの製造方法において、第1のゲル中に第1の種類の細胞が分散していてもよい。 In the method for manufacturing an array of cell-containing objects, the first type of cells may be dispersed in the first gel.
 上記の細胞含有物体のアレイの製造方法において、第1のゲル中で第1の種類の細胞が細胞スフェロイドを形成していてもよい。 In the method for producing an array of cell-containing objects, the first type of cells may form a cell spheroid in the first gel.
 上記の細胞含有物体のアレイの製造方法において、第2のゲル中に第2の種類の細胞が分散していてもよい。 In the above method for producing an array of cell-containing objects, the second type of cells may be dispersed in the second gel.
 上記の細胞含有物体のアレイの製造方法において、第2のゲル中で第2の種類の細胞が細胞スフェロイドを形成していてもよい。 In the above method for producing an array of cell-containing objects, the second type of cells may form cell spheroids in the second gel.
 上記の細胞含有物体のアレイの製造方法において、第1及び第2のゲルが立体形状を有していてもよい。 In the method for manufacturing an array of cell-containing objects, the first and second gels may have a three-dimensional shape.
 上記の細胞含有物体のアレイの製造方法において、第1及び第2のゲルが円柱形状を有していてもよい。 In the above method for producing an array of cell-containing objects, the first and second gels may have a cylindrical shape.
 上記の細胞含有物体のアレイの製造方法において、第1及び第2のゲルがコラーゲンを含んでいてもよい。 In the above-described method for manufacturing an array of cell-containing objects, the first and second gels may contain collagen.
 上記の細胞含有物体のアレイの製造方法において、第1及び第2の種類の細胞が異なる種類の受容体を発現していてもよい。 In the above method for producing an array of cell-containing objects, the first and second types of cells may express different types of receptors.
 上記の細胞含有物体のアレイの製造方法において、異なる種類の受容体のそれぞれが、におい物質の受容体であってもよい。 In the above method for producing an array of cell-containing objects, each of the different types of receptors may be a receptor for an odor substance.
 上記の細胞含有物体のアレイの製造方法において、第1及び第2の種類の蛍光試薬が異なる波長帯域の蛍光を発してもよい。 In the above method for producing an array of cell-containing objects, the first and second types of fluorescent reagents may emit fluorescence in different wavelength bands.
 上記の細胞含有物体のアレイの製造方法において、第1及び第2の種類の蛍光試薬が、カルシウム指示薬であってもよい。 In the above method for producing an array of cell-containing objects, the first and second types of fluorescent reagents may be calcium indicators.
 本発明によれば、細胞内の蛍光を容易に検出可能な検出装置、細胞含有物体、細胞含有物体の製造方法、細胞含有物体のアレイ、及び細胞含有物体のアレイの製造方法を提供可能である。 ADVANTAGE OF THE INVENTION According to this invention, the detection apparatus which can detect the fluorescence in a cell easily, a cell containing object, the manufacturing method of a cell containing object, the array of a cell containing object, and the manufacturing method of the array of a cell containing object can be provided. .
第1実施形態に係る検出装置の模式図である。It is a schematic diagram of the detection apparatus which concerns on 1st Embodiment. 第1実施形態に係る細胞含有物体のアレイの模式図である。It is a schematic diagram of the array of the cell containing object which concerns on 1st Embodiment. 第1実施形態に係る検出装置の模式図である。It is a schematic diagram of the detection apparatus which concerns on 1st Embodiment. 第1実施形態に係る細胞の模式図である。It is a schematic diagram of the cell which concerns on 1st Embodiment. 第1実施形態に係る細胞含有物体のアレイの製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the array of the cell containing object which concerns on 1st Embodiment. 第1実施形態に係る細胞含有物体のアレイの製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the array of the cell containing object which concerns on 1st Embodiment. 第1実施形態に係る細胞含有物体のアレイの製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the array of the cell containing object which concerns on 1st Embodiment. 第1実施形態に係る細胞含有物体のアレイの製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the array of the cell containing object which concerns on 1st Embodiment. 第1実施形態に係る細胞含有物体のアレイの製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the array of the cell containing object which concerns on 1st Embodiment. 第1実施形態に係る細胞含有物体のアレイの製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the array of the cell containing object which concerns on 1st Embodiment. 第1実施形態に係る細胞含有物体のアレイの製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the array of the cell containing object which concerns on 1st Embodiment. 第1実施形態に係る細胞含有物体のアレイの製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the array of the cell containing object which concerns on 1st Embodiment. 第1実施形態に係る細胞含有物体のアレイの製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the array of the cell containing object which concerns on 1st Embodiment. 第1実施形態の実施例に係る円柱状のゲルの明視野画像である。It is a bright field image of the column-shaped gel which concerns on the Example of 1st Embodiment. 第1実施形態の実施例に係る円柱状のゲルの直径の分布を示すグラフである。It is a graph which shows distribution of the diameter of the column-shaped gel which concerns on the Example of 1st Embodiment. 第1実施形態の実施例に係る円柱状のゲルの3次元画像である。It is a three-dimensional image of the cylindrical gel which concerns on the Example of 1st Embodiment. 第1実施形態の実施例に係る円柱状のゲルの高さの分布を示すグラフである。It is a graph which shows distribution of the height of the column-shaped gel which concerns on the Example of 1st Embodiment. 第1実施形態の実施例に係る円柱状のゲルの明視野画像及び蛍光画像である。It is the bright-field image and fluorescence image of the column-shaped gel which concern on the Example of 1st Embodiment. 第1実施形態の実施例に係る円柱状のゲルの蛍光画像である。It is a fluorescence image of the column-shaped gel which concerns on the Example of 1st Embodiment. 第1実施形態の実施例に係る円柱状のゲルの高さと蛍光強度の関係を示すグラフである。It is a graph which shows the relationship between the height of the column-shaped gel which concerns on the Example of 1st Embodiment, and fluorescence intensity. 第1実施形態の実施例に係るにおい物質を添加後の時間経過と蛍光強度の関係を示すグラフである。It is a graph which shows the relationship between the time passage after addition of the odorous substance which concerns on the Example of 1st Embodiment, and fluorescence intensity. 第1実施形態の実施例に係るにおい物質の濃度と蛍光強度の関係を示すグラフである。It is a graph which shows the density | concentration of the odor substance which concerns on the Example of 1st Embodiment, and the relationship of fluorescence intensity. 図23(a)は、第1実施形態の実施例に係るUV照射により形成されたゲルの明視野画像である。図23(b)は、第1実施形態の実施例に係るUV照射により形成されたゲルの明視野画像と蛍光画像の合成画像である。細胞は、Calcein-AMとEthidium Homodimerで染色した。Calcein-AMは生細胞の細胞膜を透過し、緑色蛍光を発する。Ethidium Homodimerは、死細胞の膜損傷部分を透過し、赤色蛍光を発する。図23のオリジナルのカラー画像においては、大多数の細胞が緑色蛍光を発しており、細胞が生きていることが確認された。FIG. 23A is a bright-field image of a gel formed by UV irradiation according to an example of the first embodiment. FIG. 23B is a composite image of a bright field image and a fluorescence image of a gel formed by UV irradiation according to the example of the first embodiment. The cells were stained with Calcein-AM and Ethidium Homodimer. Calcein-AM penetrates the cell membrane of living cells and emits green fluorescence. Ethidium Homodimer permeates the membrane damage part of dead cells and emits red fluorescence. In the original color image of FIG. 23, the majority of cells emitted green fluorescence, confirming that the cells were alive. 図24(a)は、第1実施形態の実施例に係るUV照射により形成されたゲルの明視野画像である。図24(b)は、第1実施形態の実施例に係るUV照射により形成されたゲルであって、異なる蛍光試薬で染色された細胞を含むゲルの蛍光画像である。図24(c)は、異なる蛍光試薬で染色された細胞を含むゲルの位置と、蛍光強度と、を示すグラフである。FIG. 24A is a bright-field image of a gel formed by UV irradiation according to an example of the first embodiment. FIG. 24B is a fluorescence image of a gel formed by UV irradiation according to an example of the first embodiment and including cells stained with different fluorescent reagents. FIG. 24C is a graph showing the position of a gel containing cells stained with different fluorescent reagents and the fluorescence intensity. 第2実施形態に係る検出装置の模式図である。It is a schematic diagram of the detection apparatus which concerns on 2nd Embodiment. 第2実施形態に係る検出装置の模式図である。It is a schematic diagram of the detection apparatus which concerns on 2nd Embodiment. 第2実施形態の実施例に係るスフェロイドの画像である。It is an image of the spheroid which concerns on the Example of 2nd Embodiment. 図28(a)は、第2実施形態の実施例に係るスフェロイドの明視野画像である。図28(b)は、第2実施形態の実施例に係るスフェロイドの蛍光画像である。図28(c)は、第2実施形態の実施例に係るスフェロイドの明視野画像と蛍光画像の合成画像である。図28(d)は、図28(b)のA-A'破線における蛍光強度を示すグラフである。FIG. 28A is a bright field image of a spheroid according to an example of the second embodiment. FIG. 28B is a fluorescent image of spheroids according to an example of the second embodiment. FIG. 28C is a composite image of a bright field image of a spheroid and a fluorescence image according to an example of the second embodiment. FIG. 28 (d) is a graph showing the fluorescence intensity along the broken line AA ′ in FIG. 28 (b). 図29(a)は、第2実施形態の実施例に係るシングルセルの蛍光画像である。図29(b)は、第2実施形態の実施例に係るスフェロイドの蛍光画像である。図29(c)は、第2実施形態の実施例に係るシングルセル及びスフェロイドが発した蛍光の強度を示すグラフである。FIG. 29A is a fluorescence image of a single cell according to an example of the second embodiment. FIG. 29B is a fluorescence image of a spheroid according to an example of the second embodiment. FIG. 29C is a graph showing the intensity of fluorescence emitted from the single cell and spheroid according to the example of the second embodiment. 図30(a)は、第2実施形態の実施例に係る共焦点顕微鏡を用いたスフェロイドのオイゲノール添加前の蛍光画像である。図30(b)は、第2実施形態の実施例に係る共焦点顕微鏡を用いたスフェロイドのオイゲノール添加後の蛍光画像である。図30(c)は、第2実施形態の実施例に係るオイゲノール添加前後の蛍光強度を示すグラフである。図30(d)は、CMOSイメージセンサを用いたスフェロイドの明視野画像である。図30(e)は、CMOSイメージセンサを用い、バイナリ化されたスフェロイドの蛍光画像である。FIG. 30A is a fluorescence image of a spheroid before addition of eugenol using a confocal microscope according to an example of the second embodiment. FIG. 30B is a fluorescence image after addition of eugenol to spheroids using a confocal microscope according to an example of the second embodiment. FIG. 30C is a graph showing the fluorescence intensity before and after the addition of eugenol according to an example of the second embodiment. FIG. 30D is a bright field image of a spheroid using a CMOS image sensor. FIG. 30E is a binary spheroid fluorescence image using a CMOS image sensor.
 以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。ただし、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。 Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 (第1実施形態)
 第1実施形態に係る検出装置は、図1に示すように、ゲル11と、ゲル11中に配置された、蛍光試薬で染色された複数の細胞1と、複数の細胞1が物質に反応したときに蛍光試薬から発せられる蛍光を検出する光検出器2と、を備える。
(First embodiment)
As shown in FIG. 1, the detection apparatus according to the first embodiment includes a gel 11, a plurality of cells 1 arranged in the gel 11, and stained with a fluorescent reagent, and the plurality of cells 1 reacted to a substance. And a photodetector 2 that detects fluorescence emitted from the fluorescent reagent.
 複数の細胞1は、ゲル11中に分散していてもよい。あるいは、複数の細胞1は、細胞スフェロイドを形成していてもよい。細胞スフェロイドとは、複数の細胞からなる細胞塊である。細胞スフェロイドにおいては、細胞どうしが接着している。複数の細胞1と反応する物質は、例えばリガンドであり、におい物質である。複数の細胞1のそれぞれの細胞は、特定のにおい物質と結合するにおい物質受容体を発現している。におい物質受容体は、嗅覚受容体ともいい、Gタンパク質共役受容体ファミリーに属する。細胞は、例えばHEK293T細胞等のほ乳類の細胞であるが、特に限定されない。細胞は嗅覚受容細胞であってもよいし、遺伝子工学的に特定の受容体を発現させた細胞であってもよい。 A plurality of cells 1 may be dispersed in the gel 11. Alternatively, the plurality of cells 1 may form a cell spheroid. A cell spheroid is a cell mass composed of a plurality of cells. In the cell spheroid, cells are adhered to each other. The substance that reacts with the plurality of cells 1 is, for example, a ligand and an odor substance. Each cell of the plurality of cells 1 expresses an odor substance receptor that binds to a specific odor substance. The odorant receptor is also called an olfactory receptor and belongs to the G protein coupled receptor family. The cells are mammalian cells such as HEK293T cells, but are not particularly limited. The cell may be an olfactory receptor cell or a cell in which a specific receptor is expressed by genetic engineering.
 細胞は、細胞が物質と反応したときに蛍光を発する蛍光試薬を取り込んでいる。細胞が取り込んでいる蛍光試薬は、例えばカルシウム指示薬である。におい物質と細胞のにおい物質受容体とが結合すると、細胞内でシグナルが伝達され、カルシウムイオン濃度が上昇する。カルシウム指示薬は、カルシウムイオン濃度の上昇に応じて、蛍光を発する。このように、蛍光試薬は、細胞が物質と反応した際に生じる細胞内の化学反応を可視化可能である。カルシウム指示薬の例としては、Fura2-AM、Fluo-3-AM、Fluo-4-AM、及びFluo-8-AMが挙げられる。 The cell incorporates a fluorescent reagent that emits fluorescence when the cell reacts with the substance. The fluorescent reagent taken up by the cells is, for example, a calcium indicator. When an odor substance and a cell odor substance receptor bind to each other, a signal is transmitted within the cell, and the calcium ion concentration increases. Calcium indicators fluoresce as the calcium ion concentration increases. Thus, the fluorescent reagent can visualize a chemical reaction in the cell that occurs when the cell reacts with the substance. Examples of calcium indicators include Fura2-AM, Fluo-3-AM, Fluo-4-AM, and Fluo-8-AM.
 蛍光試薬は、カルシウム指示薬に限定されない。蛍光試薬は、膜電位感受性蛍光試薬や、神経伝達物質感受性蛍光試薬であってもよい。膜電位感受性蛍光試薬は、細胞が物質と反応した際に生じる膜電位の変化に応じて蛍光を発する。膜電位感受性蛍光試薬の例としては、di-4-ANEPPS及びDiBAC4が挙げられる。神経伝達物質感受性蛍光試薬は、細胞が物質と反応した際に細胞内で産生されるグルタミン酸等の神経伝達物質に応じて蛍光を発する。神経伝達物質感受性蛍光試薬の例としては、EOS(glutamate optical sensor)が挙げられる。 Fluorescent reagent is not limited to calcium indicator. The fluorescent reagent may be a membrane potential sensitive fluorescent reagent or a neurotransmitter sensitive fluorescent reagent. The membrane potential sensitive fluorescent reagent emits fluorescence in response to a change in membrane potential that occurs when a cell reacts with a substance. Examples of membrane potential sensitive fluorescent reagents include di-4-ANEPPS and DiBAC4. A neurotransmitter-sensitive fluorescent reagent emits fluorescence in response to a neurotransmitter such as glutamate produced in a cell when the cell reacts with the substance. An example of a neurotransmitter sensitive fluorescent reagent is EOS (glutamate optical sensor).
 複数の細胞1を内包するゲル11は、例えば円柱形状等の任意の立体形状を有する。ゲル11は、例えばハイドロゲルである。ゲル11の材料としては、例えば、コラーゲン、ゼラチン、アガー、アルギン酸、及びポリエチレングリコールジアクリレート(PEGDA)等が使用可能である。ゲル11の材料は、細胞と反応する物質がゲル11内を透過可能であれば、特に限定されない。また、ゲル11は、培養液の栄養成分等の培養成分を透過可能であってもよい。複数の細胞1と、ゲル11と、は、細胞含有物体を構成している。 The gel 11 containing a plurality of cells 1 has an arbitrary three-dimensional shape such as a cylindrical shape. The gel 11 is a hydrogel, for example. As the material of the gel 11, for example, collagen, gelatin, agar, alginic acid, polyethylene glycol diacrylate (PEGDA), or the like can be used. The material of the gel 11 is not particularly limited as long as a substance that reacts with cells can permeate the inside of the gel 11. Moreover, the gel 11 may be permeable to culture components such as nutrient components of the culture solution. The plurality of cells 1 and the gel 11 constitute a cell-containing object.
 図2に示すように、複数の細胞1を含むゲル11は、例えば、複数の細胞1で生じる蛍光が透過可能な透明基板21上に配置されている。透明基板21上には、1個のゲル11が配置されてもよいし、複数個のゲル11が配置されてもよい。複数個のゲル11は、アレイ状に配置されていてもよい。透明基板21の表面は、ゲル11の材料と同じ材料でコーティングされていてもよい。これにより、ゲル11の透明基板21への接着性が向上する。 As shown in FIG. 2, the gel 11 including a plurality of cells 1 is disposed on a transparent substrate 21 that can transmit fluorescence generated in the plurality of cells 1, for example. One gel 11 or a plurality of gels 11 may be arranged on the transparent substrate 21. The plurality of gels 11 may be arranged in an array. The surface of the transparent substrate 21 may be coated with the same material as that of the gel 11. Thereby, the adhesiveness of the gel 11 to the transparent substrate 21 is improved.
 動物は、一つのにおい物質に反応して一つのにおいを認識するのではなく、複数のにおい物質の組み合わせのパターンに応じて一つのにおいを認識すると報告されている。したがって、検出装置が複数のゲル11を備える場合、複数のゲル11において、異なる種類の細胞が保持されていてもよい。異なる種類の細胞においては、例えば、異なる種類の受容体が発現していてもよい。 It is reported that animals do not recognize one odor in response to one odor substance, but recognize one odor according to a combination pattern of a plurality of odor substances. Therefore, when the detection apparatus includes a plurality of gels 11, different types of cells may be held in the plurality of gels 11. In different types of cells, for example, different types of receptors may be expressed.
 検出装置において、例えば、第1のにおい物質と反応する複数の細胞を保持するゲルと、第2のにおい物質と反応する複数の細胞を保持するゲルと、第3のにおい物質と反応する複数の細胞を保持するゲルと、が配置されていてもよい。蛍光が発せられたゲルの位置から、におい物質の種類を特定してもよい。また、蛍光が発せられたゲルの位置の組み合わせから、においの種類を特定してもよい。あるいは、異なる種類の細胞を、異なる種類の蛍光試薬で染色することにより、蛍光の波長帯域や色から、におい物質の種類を特定してもよい。また、蛍光の波長帯域や色の組み合わせから、においの種類を特定してもよい。 In the detection device, for example, a gel that holds a plurality of cells that react with the first odor substance, a gel that holds a plurality of cells that react with the second odor substance, and a plurality of substances that react with the third odor substance. A gel for holding cells may be disposed. You may identify the kind of odorous substance from the position of the gel from which fluorescence was emitted. Moreover, you may identify the kind of odor from the combination of the position of the gel in which fluorescence was emitted. Alternatively, the type of odor substance may be specified from the wavelength band or color of fluorescence by staining different types of cells with different types of fluorescent reagents. Further, the type of odor may be specified from the combination of the fluorescent wavelength band and the color.
 図1に示すように、透明基板21上には、枠22が配置されていてもよい。この場合、透明基板21及び枠22は、培養容器を構成する。枠22は、例えば、ジメチルポリシロキサン(PDMS)からなるが、特に限定されない。複数の細胞1を含むゲル11は、透明基板21及び枠22が形成する培養容器内に配置される。また、透明基板21及び枠22が形成する培養容器内には、培養液や緩衝液等の溶液23が入れられてもよい。枠22内に溶液を入れることにより、ゲル11の水分の蒸発を防いだり、複数の細胞1に栄養分を供給したりすることが可能である。 As shown in FIG. 1, a frame 22 may be disposed on the transparent substrate 21. In this case, the transparent substrate 21 and the frame 22 constitute a culture vessel. The frame 22 is made of, for example, dimethylpolysiloxane (PDMS), but is not particularly limited. The gel 11 including a plurality of cells 1 is placed in a culture container formed by the transparent substrate 21 and the frame 22. Further, a solution 23 such as a culture solution or a buffer solution may be placed in the culture vessel formed by the transparent substrate 21 and the frame 22. By putting the solution in the frame 22, it is possible to prevent the moisture of the gel 11 from evaporating and supply nutrients to the plurality of cells 1.
 透明基板21及び枠22が形成する培養容器は、光検出器2上に配置される。そのため、複数の細胞1を含むゲル11は、光検出器2上に配置される。光検出器2と透明基板21との間には、鏡筒31が配置されていてもよい。鏡筒31内に、複数の細胞1で生じた蛍光を並行光にするレンズ32と、レンズ32を透過した蛍光を光検出器2上に収束させるレンズ33と、が配置されていてもよい。 The culture vessel formed by the transparent substrate 21 and the frame 22 is placed on the photodetector 2. Therefore, the gel 11 including the plurality of cells 1 is arranged on the photodetector 2. A lens barrel 31 may be disposed between the photodetector 2 and the transparent substrate 21. In the lens barrel 31, a lens 32 that converts the fluorescence generated in the plurality of cells 1 into parallel light, and a lens 33 that converges the fluorescence transmitted through the lens 32 on the photodetector 2 may be disposed.
 光検出器2上には、複数の細胞1で生じた蛍光を透過させ、当該蛍光とは波長帯域が異なる光を透過させないバンドパスフィルタ34が配置されていてもよい。 A band-pass filter 34 that transmits fluorescence generated in a plurality of cells 1 and does not transmit light having a wavelength band different from that of the fluorescence may be disposed on the photodetector 2.
 光検出器2は、例えば、回路基板3上に配置されている。光検出器2は、固体撮像素子等の撮像素子を備えていてもよい。固体撮像素子としては、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ及びCCD(Charge-Coupled Device)イメージセンサ等が使用可能である。小型の光検出器2を用いることにより、第1実施形態に係る検出装置を小型にすることが可能である。 The photodetector 2 is disposed on the circuit board 3, for example. The photodetector 2 may include an image sensor such as a solid-state image sensor. As the solid-state imaging device, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, a CCD (Charge-Coupled Device) image sensor, or the like can be used. By using the small photodetector 2, it is possible to reduce the size of the detection device according to the first embodiment.
 光検出器2には、処理装置が接続されていてもよい。処理装置は、例えば、予め取得された蛍光強度と、におい物質の濃度と、の関係を用いて、光検出器2で検出された蛍光の強度に基づき、におい物質の濃度を算出してもよい。 A processing device may be connected to the photodetector 2. For example, the processing apparatus may calculate the concentration of the odor substance based on the fluorescence intensity detected by the photodetector 2 using the relationship between the fluorescence intensity acquired in advance and the concentration of the odor substance. .
 第1実施形態に係る検出装置は、複数の細胞1に向けて励起光を発する励起光光源4と、複数の細胞1に向けて白色光等の励起光以外の波長を含む光を発する光源5と、をさらに備えていてもよい。励起光光源4は、複数の細胞1を構成する細胞に取り込まれた蛍光試薬に対応する励起波長を有する励起光を発する。励起光光源4が励起光を発しているときは、光検出器2で、複数の細胞1が発した蛍光の画像を撮像することが可能である。また、光源5が白色光を発しているときは、光検出器2で、複数の細胞1の形状の明視野画像や暗視野画像等の画像を撮像することが可能である。 The detection apparatus according to the first embodiment includes an excitation light source 4 that emits excitation light toward a plurality of cells 1, and a light source 5 that emits light including wavelengths other than excitation light such as white light toward the plurality of cells 1. And may be further provided. The excitation light source 4 emits excitation light having an excitation wavelength corresponding to the fluorescent reagent taken into the cells constituting the plurality of cells 1. When the excitation light source 4 emits excitation light, it is possible to take an image of fluorescence emitted by the plurality of cells 1 with the photodetector 2. Further, when the light source 5 emits white light, the photodetector 2 can capture images such as bright field images and dark field images of the shape of the plurality of cells 1.
 図3に示すように、複数の細胞1を含むゲル11は、レンズ等を介さずに光検出器2上に配置されてもよい。複数の細胞1を含むゲル11の周囲を満たす溶液23は、モーターポンプ等の灌流装置71で灌流されてもよい。また、溶液23の温度は、ヒーター等の温度制御装置72で制御されてもよい。複数の細胞1を含むゲル11が配置される培養容器は、気体を透過させ、液体を透過させない半透膜73で覆われていてもよい。これにより、二酸化酸素及び酸素等の細胞培養に必要な成分を溶液23に供給しつつ、溶液23の蒸発を防止することが可能である。 As shown in FIG. 3, the gel 11 including a plurality of cells 1 may be arranged on the photodetector 2 without using a lens or the like. The solution 23 filling the periphery of the gel 11 containing a plurality of cells 1 may be perfused with a perfusion device 71 such as a motor pump. Further, the temperature of the solution 23 may be controlled by a temperature control device 72 such as a heater. The culture vessel in which the gel 11 including a plurality of cells 1 is arranged may be covered with a semipermeable membrane 73 that allows gas to permeate and does not allow liquid to permeate. Thereby, it is possible to prevent evaporation of the solution 23 while supplying components necessary for cell culture such as oxygen dioxide and oxygen to the solution 23.
 1個の細胞や単層に培養された細胞内で生じる蛍光の強度は弱いため、従来技術では、光検出器で検出するのが困難である場合があったり、持ち運びが容易ではない大型の光検出器が必要な場合があったりする。これに対し、第1実施形態に係る検出装置においては、ゲル11中で複数の細胞1が三次元に配置されており、複数の細胞1が光検出器2に対して垂直方向に積層している。そのため、ゲル11中の複数の細胞1が発する蛍光が重畳するため、単層に培養されている細胞が発する蛍光と比較して強度の強い蛍光が光検出器2に到達する。よって、物質に対する細胞の応答反応を、CMOSイメージセンサ等の感度の弱い光検出器2でも正確に検出することが可能である。また、高感度の大型の光検出器を用いる必要が必ずしもないため、第1実施形態に係る検出装置は、持ち運びが可能な程度に小型にすることが可能である。 Since the intensity of fluorescence generated in a single cell or in a cell cultured in a single layer is weak, it may be difficult to detect with a conventional detector or large light that is not easy to carry. Sometimes a detector is required. On the other hand, in the detection apparatus according to the first embodiment, a plurality of cells 1 are three-dimensionally arranged in the gel 11, and the plurality of cells 1 are stacked vertically with respect to the photodetector 2. Yes. Therefore, since the fluorescence emitted by the plurality of cells 1 in the gel 11 is superimposed, the fluorescence having a higher intensity than the fluorescence emitted by the cells cultured in the single layer reaches the photodetector 2. Therefore, it is possible to accurately detect the response response of the cell to the substance even with the photodetector 2 with low sensitivity such as a CMOS image sensor. In addition, since it is not always necessary to use a high-sensitivity large photodetector, the detection device according to the first embodiment can be made small enough to be portable.
 また、第1実施形態に係る検出装置においては、複数の細胞1がゲル11内に保持されている。ゲル11は透明基板21に容易に接着可能である。そのため、透明基板21に対してゲル11を固定することができるため、ゲル11周囲の溶液23を交換したり、溶液23に細胞と反応する物質を滴下したりしても、複数の細胞1の位置や向きが光検出器2に対して変化することを抑制可能である。そのため、蛍光測定時に再現性を向上させることが可能である。 In the detection apparatus according to the first embodiment, a plurality of cells 1 are held in the gel 11. The gel 11 can be easily bonded to the transparent substrate 21. Therefore, since the gel 11 can be fixed to the transparent substrate 21, even if the solution 23 around the gel 11 is exchanged or a substance that reacts with cells is dropped into the solution 23, the plurality of cells 1 It is possible to suppress the position and orientation from changing with respect to the photodetector 2. Therefore, it is possible to improve reproducibility at the time of fluorescence measurement.
 次に、複数の細胞1を含むゲル11の製造方法を説明する。細胞に、匂い物質の受容体をコードするDNAを組み込んだプラスミドを導入し、図4に示すように、細胞12に匂い物質の受容体13を発現させる。次に、例えばコラーゲン溶液等のゲル原料溶液に細胞を懸濁し、細胞懸濁液を得る。 Next, a method for producing a gel 11 containing a plurality of cells 1 will be described. A plasmid incorporating a DNA encoding an odorant receptor is introduced into the cell, and the odorant receptor 13 is expressed in the cell 12, as shown in FIG. Next, the cells are suspended in a gel raw material solution such as a collagen solution to obtain a cell suspension.
 図5に示すように、複数のウェル52a、52b、52c・・・が設けられたモールド51を用意する。複数のウェル52a、52b、52c・・・のそれぞれの内径及び深さは、作製しようとするゲルの直径及び高さに基づいて設計される。モールド51は、例えばジメチルポリシロキサン(PDMS)からなるが、特に限定されない。モールド51の表面は、ゲルが抜けやすくなるよう、ウシ血清アルブミン(BSA)等でコーティングされていてもよい。次に、モールド51のウェル52a、52b、52c・・・のそれぞれに、細胞懸濁液14を充填する。 As shown in FIG. 5, a mold 51 provided with a plurality of wells 52a, 52b, 52c. The inner diameter and depth of each of the plurality of wells 52a, 52b, 52c... Are designed based on the diameter and height of the gel to be produced. The mold 51 is made of, for example, dimethylpolysiloxane (PDMS), but is not particularly limited. The surface of the mold 51 may be coated with bovine serum albumin (BSA) or the like so that the gel can be easily removed. Next, the cell suspension 14 is filled in each of the wells 52a, 52b, 52c.
 図6及び図7に示すように、ゲル原料溶液のゲル材料と同じゲル材料がコーティングされた透明基板21を用意し、モールド51のウェル52a、52b、52c・・・が設けられた側の表面を透明基板21の表面に密着させる。その後、モールド51のウェル52a、52b、52c・・・内で、複数の細胞12を培養する。複数の細胞12は、分散した状態で培養してもよい。あるいは、複数の細胞12に細胞スフェロイド1を形成させてもよい。なお、ウェル52a、52b、52c・・・内で、それぞれ異なる種類の細胞を培養してもよい。さらに、ゲル原料溶液をゲル11にゲル化するために、ゲル原料溶液を加熱する。加熱温度は例えば37℃であり、加熱時間は例えば15分である。 As shown in FIGS. 6 and 7, a transparent substrate 21 coated with the same gel material as the gel material of the gel raw material solution is prepared, and the surface of the mold 51 on which the wells 52a, 52b, 52c. Is adhered to the surface of the transparent substrate 21. Thereafter, the plurality of cells 12 are cultured in the wells 52a, 52b, 52c. The plurality of cells 12 may be cultured in a dispersed state. Alternatively, the cell spheroid 1 may be formed in a plurality of cells 12. Different types of cells may be cultured in the wells 52a, 52b, 52c. Furthermore, in order to gel the gel raw material solution into the gel 11, the gel raw material solution is heated. The heating temperature is 37 ° C., for example, and the heating time is 15 minutes, for example.
 図8に示すように、例えば、モールド51の周囲に培養液や緩衝液等の溶液23を入れる。これにより、透明基板21からモールド51を剥がしやすくなる。その後、図9に示すように、特に限定されないが、ピンセット61等でモールド51を引き上げると、図10に示すように、透明基板21上に、複数の細胞1を含むゲル11が残る。 As shown in FIG. 8, for example, a solution 23 such as a culture solution or a buffer solution is placed around the mold 51. Thereby, it becomes easy to peel off the mold 51 from the transparent substrate 21. Thereafter, as shown in FIG. 9, although not particularly limited, when the mold 51 is pulled up with tweezers 61 or the like, the gel 11 containing a plurality of cells 1 remains on the transparent substrate 21 as shown in FIG.
 あるいは、図11に示すように、一つのウェル152が設けられたモールド151を用意し、ウェル152にPEGDAのような光照射によりゲル化するゲル化剤を含む細胞懸濁液14を充填する。細胞懸濁液14は、第1の種類の蛍光試薬で染色された第1の種類の細胞を含んでいる。図12に示すように、透明基板21を用意し、モールド151のウェル152が設けられた側の表面を透明基板21の表面に密着させる。その後、モールド151のウェル152内で、第1の種類の細胞12を培養する。任意で、細胞スフェロイドを形成させてもよい。さらに、第1のフォトマスク81等を介して、UV照射装置等の光源82から光を照射し、細胞懸濁液14の一部をゲル化する。 Alternatively, as shown in FIG. 11, a mold 151 provided with one well 152 is prepared, and the well 152 is filled with a cell suspension 14 containing a gelling agent that gels by light irradiation such as PEGDA. The cell suspension 14 contains the first type of cells stained with the first type of fluorescent reagent. As shown in FIG. 12, the transparent substrate 21 is prepared, and the surface of the mold 151 on the side where the well 152 is provided is brought into close contact with the surface of the transparent substrate 21. Thereafter, the first type of cells 12 are cultured in the well 152 of the mold 151. Optionally, cell spheroids may be formed. Furthermore, light is irradiated from a light source 82 such as a UV irradiation device through the first photomask 81 or the like, and a part of the cell suspension 14 is gelled.
 その後、光を照射されずにゲル化しなかった細胞懸濁液14を除去することにより、透明基板21上に、第1の種類の複数の細胞を含む複数のゲルが配置される。また、モールド151のウェル152に第1の種類の細胞とは異なる第2の種類の細胞を含む細胞懸濁液を充填する。第2の種類の細胞は、第1の種類の蛍光試薬とは異なる第2の種類の蛍光試薬で染色されている。次に、図13に示すように、第1のフォトマスク81とは開口パターンが異なる第2のフォトマスク83を用いて細胞懸濁液の一部をゲル化する。その後、光を照射されずにゲル化しなかった細胞懸濁液を除去することにより、透明基板21上に、第2の種類の複数の細胞を含む複数のゲルが配置される。以後、同様の方法を繰り返して、透明基板21上にそれぞれ異なる種類の細胞を含む複数のゲルを配置してもよい。 Thereafter, a plurality of gels including a plurality of cells of the first type are placed on the transparent substrate 21 by removing the cell suspension 14 that has not been irradiated with light and has not gelled. Further, the well 152 of the mold 151 is filled with a cell suspension containing a second type of cell different from the first type of cell. The second type of cells are stained with a second type of fluorescent reagent different from the first type of fluorescent reagent. Next, as shown in FIG. 13, a part of the cell suspension is gelled using a second photomask 83 having an opening pattern different from that of the first photomask 81. Thereafter, a plurality of gels including a plurality of cells of the second type are arranged on the transparent substrate 21 by removing the cell suspension that has not been irradiated with light and has not gelled. Thereafter, the same method may be repeated to arrange a plurality of gels each containing different types of cells on the transparent substrate 21.
 (第1実施形態の実施例)
 遺伝子工学的に嗅覚受容体であるmOR-EGを発現させたHEK293T細胞を用意した。細胞は、カルシウム指示薬であるFluo-8 AM(AAT Bioquest社)で染色した。また、Cellmatrix TypeI-A(新田ゼラチン社)、10倍Hanks buffer、再構成用緩衝液を8:1:1の割合で混合し、コラーゲンを2.4mg/mLの濃度で含むコラーゲン溶液を用意した。さらに、直径200μm、深さ200μmのウェルのアレイが設けられたPDMSからなるモールドを用意した。モールドの表面を、1%BSAで30分間コーティングした。細胞を10細胞/mLの濃度になるよう、コラーゲン溶液に懸濁し、細胞懸濁液を得た。得られた細胞懸濁液をモールドのウェルに入れ、モールドのウェルが設けられた面をガラスプレートの枠内に貼りつけた。ウェル内で細胞を3時間培養した。その後、コラーゲン溶液をゲル化するために、コラーゲン溶液を37℃で30分間から40分間加熱した。ゲルが形成された後、枠内に培養液を入れ、モールドをガラスプレートの表面から剥がした。
(Example of the first embodiment)
HEK293T cells in which mOR-EG, an olfactory receptor, was genetically engineered were prepared. The cells were stained with Fluo-8 AM (AAT Bioquest), a calcium indicator. In addition, Cellmatrix Type I-A (Nitta Gelatin Co., Ltd.), 10-fold Hanks buffer, and reconstitution buffer were mixed at a ratio of 8: 1: 1 to prepare a collagen solution containing collagen at a concentration of 2.4 mg / mL. did. Furthermore, a mold made of PDMS provided with an array of wells having a diameter of 200 μm and a depth of 200 μm was prepared. The mold surface was coated with 1% BSA for 30 minutes. Cells were suspended in a collagen solution to a concentration of 10 8 cells / mL to obtain a cell suspension. The obtained cell suspension was put into a mold well, and the surface provided with the mold well was attached to the frame of the glass plate. Cells were cultured for 3 hours in the wells. Thereafter, the collagen solution was heated at 37 ° C. for 30 to 40 minutes in order to gel the collagen solution. After the gel was formed, the culture solution was put in a frame and the mold was peeled off from the surface of the glass plate.
 図14に示すように、倒立顕微鏡で、ガラスプレート上に円柱状のゲルがアレイ状に配置されていることを確認した。画像解析により、同じ形状のウェルから形成された複数の円柱状のゲルの直径の分布を調べたところ、図15に示すように、直径はほぼ均一であった。また、図16に示すように、形状解析レーザー顕微鏡(VK-X21、キーエンス社)で円柱状のゲルを観察し、同じ形状のウェルから形成された複数の円柱状のゲルの高さの分布を調べたところ、図17に示すように、高さはほぼ均一であった。 As shown in FIG. 14, it was confirmed with an inverted microscope that columnar gels were arranged in an array on a glass plate. When the distribution of the diameters of a plurality of cylindrical gels formed from wells having the same shape was examined by image analysis, the diameters were almost uniform as shown in FIG. As shown in FIG. 16, the columnar gel is observed with a shape analysis laser microscope (VK-X21, Keyence), and the height distribution of a plurality of columnar gels formed from wells having the same shape is observed. As a result, as shown in FIG. 17, the height was almost uniform.
 次に、におい物質としてオイゲノールを用意した。オイゲノールの化学式を下記に示す。オイゲノールは、一般に、シナモンから抽出され、香辛料や香水に使用されている。オイゲノールを50mmol/Lの濃度でジメチルスルホキシド(DMSO)に溶解して、におい物質溶液を得た。
Figure JPOXMLDOC01-appb-C000001
Next, eugenol was prepared as an odor substance. The chemical formula of eugenol is shown below. Eugenol is generally extracted from cinnamon and used in spices and perfumes. Eugenol was dissolved in dimethyl sulfoxide (DMSO) at a concentration of 50 mmol / L to obtain an odor substance solution.
Figure JPOXMLDOC01-appb-C000001
 CMOSイメージセンサを用いて図1と同様の構造を有する検出装置を作製した。なお、ウェルの深さが異なるモールドを用いて、直径が同じであり、高さが異なる複数の円柱状のゲルを用意した。バックグラウンドノイズの計測のために、におい物質溶液を培養液に滴下する前に、複数の細胞に励起光を照射し、CMOSイメージセンサで蛍光画像を撮像した。次に、におい物質溶液の濃度を適当に希釈し、液面の高さが変わらないように、半量の培養液を吸い取った後に、同量のにおい物質溶液を培養液に滴下した。その後、複数の細胞に励起光を照射し、CMOSイメージセンサで蛍光画像を撮像した。さらに、におい物質溶液を滴下した前後の蛍光画像の差分の画像を、バックグランドノイズがキャンセルされた補正蛍光画像として得た。得られた明視野画像と補正蛍光画像を図18に示す。明視野画像においては、円柱状のゲルの輪郭が観察された。また、補正蛍光画像においては、カルセインが発した蛍光が観察された。 A detection device having a structure similar to that shown in FIG. 1 was prepared using a CMOS image sensor. A plurality of cylindrical gels having the same diameter and different heights were prepared using molds having different well depths. In order to measure background noise, before dropping the odor substance solution into the culture solution, a plurality of cells were irradiated with excitation light, and a fluorescence image was taken with a CMOS image sensor. Next, after the concentration of the odor substance solution was appropriately diluted and half the amount of the culture solution was sucked so that the liquid level did not change, the same amount of the odor substance solution was dropped into the culture solution. Thereafter, a plurality of cells were irradiated with excitation light, and a fluorescence image was taken with a CMOS image sensor. Further, a difference image between the fluorescence images before and after the odor substance solution was dropped was obtained as a corrected fluorescence image in which background noise was canceled. The obtained bright field image and corrected fluorescence image are shown in FIG. In the bright field image, the outline of the cylindrical gel was observed. In the corrected fluorescence image, the fluorescence emitted by calcein was observed.
 また、図19及び図20に示すように、円柱状のゲルの高さが高くなるほど、CMOSイメージセンサで検出される蛍光強度が強くなることが確認された。これは、ゲルの高さが高くなるほど、ゲルに含まれる細胞の数も増えるため、細胞内で生じる蛍光の強度が重畳されたためであると考えられる。また、培養液ににおい物質溶液を滴下してからの蛍光強度の時間変化を観察したところ、図21に示すように、数十秒以内に蛍光強度の上昇が確認された。したがって、実施例に係る検出装置は、応答性が良好であり、におい物質をリアルタイムに検出可能であることが示された。 Further, as shown in FIG. 19 and FIG. 20, it was confirmed that the fluorescence intensity detected by the CMOS image sensor increases as the height of the columnar gel increases. This is probably because the number of cells contained in the gel increases as the height of the gel increases, so that the intensity of fluorescence generated in the cells is superimposed. Moreover, when the temporal change in fluorescence intensity after dropping the odor substance solution into the culture solution was observed, an increase in fluorescence intensity was confirmed within several tens of seconds as shown in FIG. Therefore, it was shown that the detection device according to the example has good response and can detect an odorous substance in real time.
 さらに、におい物質溶液におけるにおい物質の濃度を変化させたところ、図22に示すように、におい物質の濃度が高いほど、蛍光強度が強くなることが観察された。したがって、予めにおい物質の濃度と、蛍光強度と、の関係を取得すれば、検出装置で観察された蛍光の強度から、におい物質の濃度を算出可能であることが示された。 Furthermore, when the concentration of the odor substance in the odor substance solution was changed, as shown in FIG. 22, it was observed that the higher the odor substance concentration, the stronger the fluorescence intensity. Therefore, it was shown that if the relationship between the concentration of the odor substance and the fluorescence intensity is acquired in advance, the concentration of the odor substance can be calculated from the intensity of the fluorescence observed by the detection apparatus.
 また、PDMSを含む細胞懸濁液を用意し、複数の円形の開口が設けられたフォトマスクを用いて細胞懸濁液をゲル化したところ、図23に示すように、円柱状のゲルが得られた。隣あうゲルにおいて、異なる種類の蛍光試薬で染色された細胞を含ませたところ、図24に示すように、それぞれのゲルから異なる波長帯域の蛍光が発せられることが確認された。 In addition, when a cell suspension containing PDMS was prepared and the cell suspension was gelled using a photomask provided with a plurality of circular openings, a cylindrical gel was obtained as shown in FIG. It was. When cells stained with different types of fluorescent reagents were included in adjacent gels, it was confirmed that fluorescence in different wavelength bands was emitted from each gel, as shown in FIG.
 (第2実施形態)
 第1実施形態では複数の細胞がゲル中に保持されている例を示した。これに対し、複数の細胞が細胞スフェロイドを形成している場合、細胞スフェロイドは必ずしもゲル中に保持されていなくともよい。例えば、図25に示す第2実施形態に係る検出装置においては、複数の細胞1からなる細胞スフェロイドは、溶液23中に直接入れられてもよい。図25においても、透明基板21及び枠22が、培養容器を構成しており、複数の細胞1からなる細胞スフェロイドと、培養液や緩衝液等の溶液23と、は、透明基板21及び枠22が形成する培養容器内に入れられている。図26に示すように、第2実施形態に係る検出装置において、におい物質等の物質15が溶液23に入ると、複数の細胞1からなる細胞スフェロイドが物質15に反応して、蛍光を発する。
(Second Embodiment)
In the first embodiment, an example in which a plurality of cells are held in a gel is shown. On the other hand, when a plurality of cells form a cell spheroid, the cell spheroid does not necessarily have to be retained in the gel. For example, in the detection apparatus according to the second embodiment shown in FIG. 25, the cell spheroid composed of a plurality of cells 1 may be directly placed in the solution 23. Also in FIG. 25, the transparent substrate 21 and the frame 22 constitute a culture container, and the cell spheroid composed of a plurality of cells 1 and the solution 23 such as a culture solution or a buffer solution are the transparent substrate 21 and the frame 22. Is placed in a culture vessel formed. As shown in FIG. 26, in the detection apparatus according to the second embodiment, when a substance 15 such as an odor substance enters the solution 23, a cell spheroid composed of a plurality of cells 1 reacts with the substance 15 and emits fluorescence.
 第2実施形態に係る検出装置のその他の構成要素は、第1実施形態と同様である。 Other components of the detection device according to the second embodiment are the same as those in the first embodiment.
 (第2実施形態の実施例)
 ダルベッコ改変イーグル培地(DMEM、シグマ・アルドリッチ)に10体積%のウシ胎児血清(FBS、Biosera)、100U/mLのペニシリン(関東化学又は和光純薬)、及び100μg/mLのストレプトマイシン(関東化学又は和光純薬)を加え、培養液を調整した。また、リン酸緩衝生理食塩水(PBS、シグマ・アルドリッチ)、及びにおい物質であるオイゲノールを用意した。
(Example of the second embodiment)
Dulbecco's modified Eagle's medium (DMEM, Sigma-Aldrich), 10 vol% fetal bovine serum (FBS, Biosera), 100 U / mL penicillin (Kanto Chemical or Wako Pure Chemical), and 100 μg / mL streptomycin (Kanto Chemical or Japanese) Photopure drug) was added and the culture solution was adjusted. In addition, phosphate buffered saline (PBS, Sigma-Aldrich) and eugenol as an odor substance were prepared.
 オイゲノールを検出するために、HEK293T細胞を、リポフェクタミン3000又は2000(登録商標、Invitrogen)を用いて、嗅覚受容体であるmOR-EG、Gタンパク質αサブユニットであるGα15、受容体トランスポータータンパク質であるRTP1、及びシグナル増幅分子であるRic-8を発現するよう、形質転換した。培地1mLあたり添加された遺伝子の量は、pME18S-Rho-mOR-EGが1.5μg(リポフェクタミン3000使用時)又は1.45μg(リポフェクタミン2000使用時)、pME18S-Ga15が1.0μg(リポフェクタミン3000使用時)又は0.87μg(リポフェクタミン2000使用時)、pME18S-RTP1が0.5μg(リポフェクタミン3000使用時)又は0.58μg(リポフェクタミン2000使用時)、pEGFP-N3-Myr-Ric-8Aが0.5μg(リポフェクタミン3000使用時)又は0.29μg(リポフェクタミン2000使用時)であった。 In order to detect eugenol, HEK293T cells were treated with lipofectamine 3000 or 2000 (registered trademark, Invitrogen) with mOR-EG, which is an olfactory receptor, G α15 , which is a G protein α subunit, and a receptor transporter protein. It was transformed to express a certain RTP1 and a signal amplification molecule, Ric-8. The amount of gene added per mL of medium was 1.5 μg for pME18S-Rho-mOR-EG (when using Lipofectamine 3000) or 1.45 μg (when using Lipofectamine 2000), 1.0 μg for pME18S-G a15 (Lipofectamine 3000) Used) or 0.87 μg (when using Lipofectamine 2000), pME18S-RTP1 is 0.5 μg (when using Lipofectamine 3000) or 0.58 μg (when using Lipofectamine 2000), pEGFP-N3-Myr-Ric-8A is 0. It was 5 μg (when using Lipofectamine 3000) or 0.29 μg (when using Lipofectamine 2000).
 接着培養された形質転換された細胞をトリプシン-EDTA溶液で37℃、5分間処理し、細胞を培養器から遊離させた。さらに、培養液を追加して細胞を懸濁し、2Gで5分間遠心した。遠心後、細胞を培養液で再度懸濁し、直径200μm及び深さ200μmのウェルがアレイ状に設けられた、PDMSからなる培養器の各ウェルに懸濁液を滴下した。その後、3時間培養して形質転換された細胞からなる細胞スフェロイドを形成した。細胞スフェロイドの明視野画像を図27に示す。さらに、細胞スフェロイドをカルシウム指示薬であるカルセイン-AM(Thermo Fisher Scientific)又はFluo-8-AM(AAT bioquest)で染色した。 The transformed cells subjected to the adhesion culture were treated with a trypsin-EDTA solution at 37 ° C. for 5 minutes to release the cells from the incubator. Furthermore, the culture solution was added to suspend the cells, followed by centrifugation at 2G for 5 minutes. After centrifugation, the cells were resuspended in the culture solution, and the suspension was dropped into each well of a PDMS incubator in which wells having a diameter of 200 μm and a depth of 200 μm were provided in an array. Thereafter, cell spheroids composed of transformed cells were formed by culturing for 3 hours. A bright field image of the cell spheroid is shown in FIG. Furthermore, cell spheroids were stained with calcium indicator calcein-AM (Thermo Fisher Scientific) or Fluo-8-AM (AAT bioquest).
 3Dプリンター(AGILISTA-3100、キーエンス)を用いて、図25と同様の構造を有する数cm四方の検出装置を作製した。検出装置には、CMOSイメージセンサ(WAT-01U2、Watec)、白色光源(OSW4XME3C1E、OptoSupply)、及び青色励起光原(OEHB220、OptoSupply)を配置した。ピペットで培養器から捕集した細胞スフェロイドを検出装置の培養容器内の培養液内に入れた。スフェロイドの明視野画像を撮像する際には、ピンホールを介して白色光をスフェロイドに照射した。培養液にオイゲノールを入れ、スフェロイドの蛍光画像を撮像する際には、青色励起光を細胞スフェロイドに照射し、緑色波長帯域の色を抽出した。 Using a 3D printer (AGILISTA-3100, Keyence), a detection device of several cm square having the same structure as that shown in FIG. 25 was produced. A CMOS image sensor (WAT-01U2, Watec), a white light source (OSW4XME3C1E, OptoSupply), and a blue excitation light source (OEHB220, OptoSupply) were arranged in the detection device. Cell spheroids collected from the incubator with a pipette were placed in the culture solution in the culture vessel of the detection apparatus. When capturing a bright-field image of spheroid, white light was irradiated to the spheroid through a pinhole. When eugenol was put into the culture solution and a fluorescent image of spheroids was taken, the cell spheroids were irradiated with blue excitation light, and the color in the green wavelength band was extracted.
 図28(a)に細胞スフェロイドの明視野画像を、図28(b)に細胞スフェロイドの蛍光画像を、図28(c)に明視野画像と蛍光画像の合成画像を示す。また、図28(d)に、図28(c)のA-A'破線における蛍光強度の分布グラフを示す。CMOSイメージセンサを用いて、細胞スフェロイド内の蛍光反応を検出可能であることが示された。さらに、図29に示すように、1個の細胞(シングルセル)が発した蛍光の強度と比較して、細胞スフェロイドが発した蛍光の強度は、約4倍強かった。したがって、細胞スフェロイドが、検出装置の感度を向上させることが示された。 Fig. 28 (a) shows a bright field image of a cell spheroid, Fig. 28 (b) shows a fluorescence image of the cell spheroid, and Fig. 28 (c) shows a composite image of the bright field image and the fluorescence image. FIG. 28 (d) shows a distribution graph of fluorescence intensity along the broken line AA ′ in FIG. 28 (c). It has been shown that a fluorescence reaction in a cell spheroid can be detected using a CMOS image sensor. Furthermore, as shown in FIG. 29, the intensity of the fluorescence emitted by the cell spheroids was about 4 times stronger than the intensity of the fluorescence emitted by one cell (single cell). Thus, cell spheroids have been shown to improve the sensitivity of the detection device.
 また、共焦点顕微鏡を用いて計測したところ、図30(a)から(c)に示すように、培養液にオイゲノールを添加する前と比較して、培養液に2mmol/Lのオイゲノールを添加した後、細胞スフェロイドが発する蛍光の強度が2倍以上上昇した。図30(d)は、CMOSイメージセンサで撮像した細胞スフェロイドの明視野画像を示し、図30(e)は、細胞スフェロイドの蛍光画像を画像処理ソフトであるイメージJでバイナリ化した画像を示す。本実施例の結果から、CMOSイメージセンサを用いる検出装置が、細胞スフェロイドの嗅覚受容体と、におい物質であるオイゲノールと、の反応の検出に利用可能であることが示された。 Moreover, when it measured using the confocal microscope, as shown to FIG. 30 (a) to (c), compared with before adding eugenol to a culture solution, 2 mmol / L eugenol was added to the culture solution. Later, the intensity of fluorescence emitted by cell spheroids increased more than twice. FIG. 30D shows a bright field image of a cell spheroid imaged by a CMOS image sensor, and FIG. 30E shows an image obtained by binarizing a fluorescent image of the cell spheroid with an image J that is image processing software. From the results of this example, it was shown that a detection apparatus using a CMOS image sensor can be used to detect a reaction between a cell spheroid olfactory receptor and eugenol, which is an odor substance.
 (その他の実施の形態)
 上記のように本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。例えば、実施形態においては、細胞が反応する物質の例としてにおい物質を挙げたが、物質はこれに限定されない。物質は、様々なリガンド、イオン、あるいは細胞膜透過物質であってもよい。これらの物質による細胞内の応答反応に起因して発せられる蛍光を検出することにより、これららの物質の存在を検出することが可能である。
(Other embodiments)
Although the present invention has been described by the embodiments as described above, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques should be apparent to those skilled in the art. For example, in the embodiment, an odor substance is given as an example of a substance with which cells react, but the substance is not limited to this. The substance may be various ligands, ions, or cell membrane permeable substances. The presence of these substances can be detected by detecting the fluorescence emitted due to the intracellular response reaction of these substances.
 また、細胞が反応する物質は、医薬品等の薬物や農薬であってもよい。薬物や農薬に対する細胞の応答反応に起因して発せられる蛍光を検出することにより、薬物や農薬が細胞に影響を与えるか否かを検証したり、スクリーニングしたりすることが可能である。このように、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。 In addition, the substance with which the cell reacts may be a drug such as a medicine or an agrochemical. It is possible to verify or screen whether or not the drug or pesticide affects the cells by detecting the fluorescence emitted due to the cell response to the drug or pesticide. Thus, it should be understood that the present invention includes various embodiments and the like not described herein.
 実施形態に係る検出装置は、特に限定されないが、食品混入物の検出、医療、及び環境測定等に利用可能である。 The detection device according to the embodiment is not particularly limited, but can be used for detection of food contaminants, medical care, environmental measurement, and the like.
 1・・・細胞、2・・・光検出器、3・・・回路基板、4・・・励起光光源、5・・・光源、11・・・ゲル、12・・・細胞、13・・・受容体、14・・・細胞懸濁液、15・・・物質、21・・・透明基板、22・・・枠、23・・・溶液、31・・・鏡筒、32、33・・・レンズ、34・・・バンドパスフィルタ、51、151・・・モールド、52、152・・・ウェル、61・・・ピンセット、71・・・灌流装置、72・・・温度制御装置、73・・・半透膜、81、83・・・フォトマスク、82・・・光源 DESCRIPTION OF SYMBOLS 1 ... Cell, 2 ... Photodetector, 3 ... Circuit board, 4 ... Excitation light source, 5 ... Light source, 11 ... Gel, 12 ... Cell, 13 ... -Receptor, 14 ... cell suspension, 15 ... substance, 21 ... transparent substrate, 22 ... frame, 23 ... solution, 31 ... lens tube, 32, 33 ... Lens, 34: Band pass filter, 51, 151 ... Mold, 52, 152 ... Well, 61 ... Tweezers, 71 ... Perfusion device, 72 ... Temperature control device, 73 ..Semipermeable membrane, 81, 83 ... Photomask, 82 ... Light source

Claims (15)

  1.  ゲルと、
     前記ゲル中に配置された、蛍光試薬で染色された複数の細胞と、
     前記複数の細胞が物質に反応したときに前記蛍光試薬から発せられる蛍光を検出する光検出器と、
     を備える、検出装置。
    Gel and
    A plurality of cells stained in a fluorescent reagent disposed in the gel;
    A photodetector for detecting fluorescence emitted from the fluorescent reagent when the plurality of cells react with a substance;
    A detection device comprising:
  2.  前記複数の細胞が、ゲル中に分散している、請求項1に記載の検出装置。 The detection device according to claim 1, wherein the plurality of cells are dispersed in a gel.
  3.  前記複数の細胞が、細胞スフェロイドを形成している、請求項1に記載の検出装置。 The detection device according to claim 1, wherein the plurality of cells form a cell spheroid.
  4.  前記ゲルがコラーゲンを含む、請求項1から3のいずれか1項に記載の検出装置。 The detection device according to any one of claims 1 to 3, wherein the gel contains collagen.
  5.  前記ゲルにおいて前記物質が透過可能である、請求項1から4のいずれか1項に記載の検出装置。 The detection device according to any one of claims 1 to 4, wherein the substance can pass through the gel.
  6.  培養容器をさらに備え、
     前記ゲルが前記培養容器中に配置される、
     請求項1から5のいずれか1項に記載の検出装置。
    A culture vessel,
    The gel is disposed in the culture vessel;
    The detection device according to any one of claims 1 to 5.
  7.  前記ゲルを複数備え、前記複数のゲルにおいて、異なる種類の細胞が保持されている、請求項1から6のいずれか1項に記載の検出装置。 The detection device according to any one of claims 1 to 6, comprising a plurality of the gels, wherein different types of cells are held in the plurality of gels.
  8.  蛍光試薬で染色された複数の細胞からなる細胞スフェロイドと、
     前記細胞スフェロイドが物質に反応したときに前記蛍光試薬から発せられる蛍光を検出する光検出器と、
     を備える、検出装置。
    A cell spheroid consisting of a plurality of cells stained with a fluorescent reagent;
    A photodetector for detecting fluorescence emitted from the fluorescent reagent when the cell spheroid reacts with a substance;
    A detection device comprising:
  9.  培養容器をさらに備え、
     前記細胞スフェロイドが前記培養容器中に配置される、
     請求項8に記載の検出装置。
    A culture vessel,
    The cell spheroid is disposed in the culture vessel;
    The detection device according to claim 8.
  10.  前記光検出器が撮像素子を備える、請求項1から9のいずれか1項に記載の検出装置。 The detection device according to any one of claims 1 to 9, wherein the photodetector includes an imaging device.
  11.  前記物質がにおい物質であり、前記複数の細胞が前記におい物質の受容体を発現している、請求項1から10のいずれか1項に記載の検出装置。 The detection device according to any one of claims 1 to 10, wherein the substance is an odor substance, and the plurality of cells express receptors of the odor substance.
  12.  前記物質が薬物又は農薬である、請求項1から10のいずれか1項に記載の検出装置。 The detection device according to any one of claims 1 to 10, wherein the substance is a drug or an agrochemical.
  13.  前記蛍光試薬がカルシウム指示薬である、請求項1から12のいずれか1項に記載の検出装置。 The detection device according to any one of claims 1 to 12, wherein the fluorescent reagent is a calcium indicator.
  14.  前記培養容器内の溶液の温度を制御する温度制御装置をさらに備える、請求項6又は9に記載の検出装置。 The detection device according to claim 6 or 9, further comprising a temperature control device for controlling the temperature of the solution in the culture vessel.
  15.  ゲルと、
     前記ゲル中に配置された、蛍光試薬で染色された複数の細胞と、
     を備える、細胞含有物体。
    Gel and
    A plurality of cells stained in a fluorescent reagent disposed in the gel;
    A cell-containing object comprising:
PCT/JP2017/031079 2016-09-02 2017-08-30 Detection device and cell-containing matter WO2018043533A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018537329A JP6785476B2 (en) 2016-09-02 2017-08-30 Detector and cell-containing object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662382822P 2016-09-02 2016-09-02
US62/382,822 2016-09-02

Publications (1)

Publication Number Publication Date
WO2018043533A1 true WO2018043533A1 (en) 2018-03-08

Family

ID=61300974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031079 WO2018043533A1 (en) 2016-09-02 2017-08-30 Detection device and cell-containing matter

Country Status (2)

Country Link
JP (1) JP6785476B2 (en)
WO (1) WO2018043533A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216271A1 (en) * 2018-05-07 2019-11-14 bitBiome株式会社 Method for performing single-cell analysis and device therefor
WO2021045233A1 (en) * 2019-09-06 2021-03-11 国立大学法人東京大学 Odor detection kit, odor detection kit manufacturing method, and odor detection method
EP3810643A4 (en) * 2018-04-10 2022-04-27 Koniku, Inc. Universal odor code systems and odor encoding devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017704A (en) * 2006-07-10 2008-01-31 Olympus Corp Method for measuring anticancer agent susceptibility and apparatus for measuring anticancer agent susceptibility
JP2013027376A (en) * 2011-07-29 2013-02-07 Ryohei Kanzaki Smell sensor
WO2014050139A1 (en) * 2012-09-27 2014-04-03 株式会社クラレ Method for evaluating influence of cytokine on metabolic capacity of cytochrome p450, and method for screening for medicinal agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017704A (en) * 2006-07-10 2008-01-31 Olympus Corp Method for measuring anticancer agent susceptibility and apparatus for measuring anticancer agent susceptibility
JP2013027376A (en) * 2011-07-29 2013-02-07 Ryohei Kanzaki Smell sensor
WO2014050139A1 (en) * 2012-09-27 2014-04-03 株式会社クラレ Method for evaluating influence of cytokine on metabolic capacity of cytochrome p450, and method for screening for medicinal agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, J. H. ET AL.: "Development of tyrosinase promoter-based fluorescent assay for screening of anti-melanogenic agents", BIOL. PHARM. BULL., vol. 38, no. 10, 2015, pages 1542 - 1547, XP055471473 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3810643A4 (en) * 2018-04-10 2022-04-27 Koniku, Inc. Universal odor code systems and odor encoding devices
WO2019216271A1 (en) * 2018-05-07 2019-11-14 bitBiome株式会社 Method for performing single-cell analysis and device therefor
US11142787B2 (en) 2018-05-07 2021-10-12 Bitbiome, Inc. Method for performing single-cell analysis and device therefor
WO2021045233A1 (en) * 2019-09-06 2021-03-11 国立大学法人東京大学 Odor detection kit, odor detection kit manufacturing method, and odor detection method

Also Published As

Publication number Publication date
JPWO2018043533A1 (en) 2019-07-11
JP6785476B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
Bae et al. Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells
WO2018043533A1 (en) Detection device and cell-containing matter
US7986824B2 (en) Predetermined site luminescence measuring method, predetermined site luminescence measuring apparatus, expression amount measuring method, and measuring apparatus
JP6134422B2 (en) Stem cell observation method and stem cell observation apparatus
Jin et al. Lens-free shadow image based high-throughput continuous cell monitoring technique
US20190212332A1 (en) MlCRO-SCREENING AND SORTING APPARATUS, PROCESS, AND PRODUCTS
CN106290279B (en) A kind of single cell protein detection system and its application
Zhang et al. Single-molecule imaging of NGF axonal transport in microfluidic devices
Hirata et al. Portable biohybrid odorant sensors using cell-laden collagen micropillars
JP2011223924A (en) Method and device for counting plankton
JP2006284604A5 (en)
Fu et al. A novel wick‐like paper‐based microfluidic device for 3D cell culture and anti‐cancer drugs screening
US20210164012A1 (en) Sensor functionalised bioink
Araújo-Gomes et al. Bioluminescence imaging on-chip platforms for non-invasive high-content bioimaging
JP4590902B2 (en) Filamentous fungus measurement method
Okkelman et al. Affordable oxygen microscopy-assisted biofabrication of multicellular spheroids
US20190113510A1 (en) Biological material analysis device, biological material analysis system, biological material selection method, biological material analysis program, and cell culture vessel
US20150125899A1 (en) Fluorescence-assisted counting apparatus for qualitative and/or quantitative measurement of fluorescently tagged particles
JP4118930B2 (en) Microorganism weighing method
Wang et al. SERS-Active Printable Hydrogel for 3D Cell Culture and Imaging
JP6846732B2 (en) Measuring method and measuring device for microbial colonies
JP2010011814A (en) Cultured cell observation chamber and use thereof
JP5212989B2 (en) Cell sorting method and cell sorting apparatus
JP2002034594A (en) Method for living cell detection
JP2008096266A (en) Biosample analysis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537329

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846537

Country of ref document: EP

Kind code of ref document: A1