WO2018043491A1 - 圧延h形鋼及びその製造方法 - Google Patents

圧延h形鋼及びその製造方法 Download PDF

Info

Publication number
WO2018043491A1
WO2018043491A1 PCT/JP2017/030951 JP2017030951W WO2018043491A1 WO 2018043491 A1 WO2018043491 A1 WO 2018043491A1 JP 2017030951 W JP2017030951 W JP 2017030951W WO 2018043491 A1 WO2018043491 A1 WO 2018043491A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
flange
rolled
section steel
rolling
Prior art date
Application number
PCT/JP2017/030951
Other languages
English (en)
French (fr)
Inventor
栄利 伊藤
浩 山下
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020197006349A priority Critical patent/KR101984463B1/ko
Priority to US16/327,280 priority patent/US20190184436A1/en
Priority to JP2018525629A priority patent/JP6421900B2/ja
Priority to CN201780053617.1A priority patent/CN109642296B/zh
Priority to EP17846496.2A priority patent/EP3483294B1/en
Publication of WO2018043491A1 publication Critical patent/WO2018043491A1/ja
Priority to PH12019500064A priority patent/PH12019500064A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Definitions

  • the present invention relates to a rolled H-section steel produced by hot rolling a steel slab and a method for producing the same.
  • H-section steel has been widely used as a material for buildings, civil engineering, marine structures, etc., and various cross-sections are used.
  • H-section steel produced by hot rolling using a rectangular cross-section slab obtained by continuous casting with high productivity is low in production cost and is used in many fields.
  • H-section steel manufactured from a slab has been manufactured by the edging method shown in FIG.
  • the edging method first, a groove for guiding the steel material to the center of the hole mold of the roll is formed at the end of the slab, rolled in the width direction of the slab, and the flange is formed by extending the end of the slab in the thickness direction of the slab. It is a rolling method.
  • Alloy elements such as Mn are concentrated in the central segregation portion formed when the slab is cast.
  • the central segregation portion may further aggregate at a portion where the web and the flange intersect, that is, a so-called “fillet portion”, which may adversely affect toughness.
  • Patent Document 4 discloses a method of applying a reduction before completely solidifying by continuous casting.
  • Patent Document 5 discloses a method of forming an edging hole mold having a slab width of a rough rolling mill into a box hole mold having a flat hole mold bottom, and is referred to as a wedge method.
  • JP 2012-180584 A Japanese Patent Laid-Open No. 6-122921 JP-A-6-122922 JP-A-5-305395 JP-A-7-88502
  • an object of the present invention is to provide a rolled H-section steel in which macrosegregation of the fillet portion is reduced and a method for producing the same without impairing productivity with respect to the conventional edging method.
  • the present invention is characterized in that there is a step of forming an interruption by a shaping hole mold in which a projecting portion for making an interruption vertically is formed with respect to the width direction of the material to be rolled, and sequentially bending it from the starting point.
  • a center segregation part is disperse
  • the gist of the present invention is as follows.
  • a rolled H-section steel having a Mn concentration of 1.1 to 1.6 times the Mn concentration at a 1/4 position in the flange thickness direction from the surface of the flange opposite to the web is a position of 1/6 in the flange width direction from the end face in the flange width direction, and A rolled H-section steel having a Mn concentration of 1.1 to 1.6 times the Mn concentration at a 1/4 position in the flange thickness direction from the surface of the flange opposite to the web.
  • the rolling mill that performs the rough rolling process is provided with a plurality of three or more hole molds for shaping the material to be rolled, and at least one of the plurality of hole molds interrupts perpendicularly to the width direction of the material to be rolled.
  • the interrupt forming hole type provided on the pair of upper and lower rolls formed with the projections for inserting the interrupting part, and the divided portions formed by the interrupt forming hole type are sequentially bent at the subsequent stage of the interrupt forming hole type.
  • a method for producing a rolled H-section steel, wherein a shaping hole mold is provided. [3] The method for producing rolled H-section steel according to [2], wherein a tip angle of the protrusion formed in the interrupt forming hole mold is 40 ° or less.
  • the interruption length H formed by the protrusions, the thickness T of the steel piece having the rectangular cross section, and the width F of the flange of the rolled H-section steel formed by the finish rolling process are as follows: The method for producing a rolled H-section steel according to [2] or [3], wherein the formula (1) is satisfied. H ⁇ 0.5F-0.5T (1)
  • the present invention it is possible to obtain an H-section steel having excellent fillet portion toughness by a simple process without performing special heat treatment such as preheating, reheating after rolling, or temperature maintenance. Therefore, the industrial contribution of the present invention is extremely remarkable, such as the reliability of the steel structure including the rolled H-section steel as a member can be further improved without impairing the economy.
  • the inventors have obtained the knowledge that, when forming the flange portion, interrupting and bending and manufacturing the flange portion, segregation is dispersed throughout the flange and segregation of segregation in the fillet portion is improved. .
  • this knowledge will be briefly described.
  • molding by bending the flange part which concerns on this Embodiment is called a "split method" in this specification.
  • FIG. 1 shows a so-called “edging method” which is one of rough rolling methods in a conventional method for manufacturing H-section steel, and a so-called “split method” which is a rough rolling method in the method for manufacturing H-shaped steel according to the present embodiment. It is a schematic explanatory drawing about a comparison with ".”
  • the edging method provides a groove for guiding the slab to the center of the hole mold at the end of the slab at the time of rough rolling when manufacturing the H-section steel from the slab.
  • hot rolling is performed by a perforated roll attached to a machine.
  • the slab heated in the heating furnace is rolled in the width direction, and the flange portion is formed by extending the end of the slab in the thickness direction of the slab.
  • intermediate rolling by an intermediate rolling mill or finish rolling by a finishing mill is performed, and the final H Shaped steel products are manufactured.
  • a deep groove is formed on the end surface of the slab at the time of rough rolling when manufacturing H-section steel from the slab. It is given by the hole type. Then, rolling modeling is performed on the applied groove so as to split the slab end portion which is a divided portion by using a hole roll of a modeling hole type in which a protrusion for expanding the groove is formed. Is called.
  • the split method is a method of forming the flange portion by performing such split rolling and shaping, for example, by changing the angle a plurality of times. Thus, intermediate rolling, finish rolling, etc. are further performed with respect to the to-be-rolled material in which the flange part was formed, and final H-section steel products are manufactured.
  • the present inventors pay attention to the central segregation part, which is a portion having a high Mn concentration, present in the slab, and the rough rolling by the edging method and the split method.
  • the central segregation part which is a portion having a high Mn concentration, present in the slab
  • the rough rolling it was found that there is a great difference in the state of aggregation or dispersion of the central segregation part of the slab. That is, as shown in FIG. 1 (a), it is known that the center segregation part aggregates into the fillet part when the slab is rolled in the width direction by the perforated roll in the edging method.
  • FIG. 1 (a) it is known that the center segregation part aggregates into the fillet part when the slab is rolled in the width direction by the perforated roll in the edging method.
  • FIG. 1 (a) it is known that the center segregation part aggregates into the fillet part when the slab is rolled in the width direction by the perforated roll
  • the slab in the split method, the slab is hardly rolled in the width direction and the flange portion is split and the center segregation portion is dispersed throughout the flange portion, and the fillet portion is dispersed. Rough rolling is performed without agglomeration.
  • the aggregation of the central segregation portion can be suppressed by setting the tip end angle of the interrupting hole-type protrusion to an acute angle of 40 ° or less.
  • VTrs Charge transition temperature
  • F / 6 F / 6
  • FIG. 10 It has been found that the difference in vTrs with the most brittle part where the toughness is most deteriorated can be suppressed within 40 ° C. This is presumably because embrittlement due to MnS present in the central segregation part having a high Mn concentration, island-like martensite (MA) which is a hard phase, and upper bainite was suppressed.
  • MA island-like martensite
  • C 0.01-0.25%) C promotes the formation of MA at the fillet portion and reduces toughness.
  • the C content is set to 0.01% or more.
  • the amount of C exceeds 0.25%, MA increases at the position where the central segregation portion of the fillet portion is aggregated and the toughness is lowered, so the amount of C is limited to 0.25% or less.
  • the C content is 0.20% or less, more preferably less than 0.17%.
  • Si 0.05 to 0.50% or less
  • Si is a deoxidizing element and contributes to improvement in strength, but like C, it is an element that generates MA.
  • the amount of Si is preferably 0.30% or less, more preferably 0.20% or less, and still more preferably 0.10% or less.
  • Si is not contained, the cost increases in the deoxidation process, so that Si is contained in an amount of 0.05% or more.
  • Mn 0.40 to 2.50%
  • Mn the center segregation part of the slab is aggregated in the fillet part.
  • Mn tends to agglomerate particularly in the central segregation part, and the concentration of Mn locally increases to form MA as an embrittled phase, increase in coarse bainite as a coarse structure, increase in MnS, and increase in hardenability. Increase in hardness is promoted.
  • the toughness is significantly reduced.
  • Mn when Mn exceeding 2.50% is contained, the toughness of the base material and the weld heat affected zone is impaired due to an increase in inclusions in the fillet portion.
  • the amount of Mn is limited to 2.50% or less.
  • the amount of Mn is preferably 2.00% or less, more preferably 1.80% or less.
  • Mn is an element effective for reducing the crystal grain size, 0.40% or more is contained.
  • P 0.050% or less Since P causes weld cracking due to solidification segregation and a decrease in toughness, it should be reduced as much as possible.
  • the amount of P is preferably limited to 0.050% or less, more preferably 0.010% or less. In addition, about a lower limit, since it will raise steel-making cost large if it removes to less than 0.001%, 0.001% or more may be sufficient.
  • S forms MnS in the central segregation part formed by solidification segregation, and causes not only weld cracking and toughness degradation but also hydrogen cracking, so it should be reduced as much as possible.
  • the amount of S is preferably limited to 0.050% or less, and more preferably 0.010% or less. In addition, about a lower limit, since it will raise steel-making cost large if it removes to less than 0.001%, 0.001% or more may be sufficient.
  • one or more of Cu, Ni, Cr, V, Mo, Nb, Ti, Al, and N may be contained as an optional additive element.
  • the lower limit of the content of each optional addition element is 0%.
  • Cu is an element that contributes to improvement in strength. However, if the Cu content exceeds 0.70%, the strength increases excessively and the toughness decreases, so the Cu content is limited to 0.70% or less.
  • the Cu amount is preferably 0.50% or less, more preferably 0.30% or less, and still more preferably 0.10% or less.
  • the lower limit of the amount of Cu is preferably 0.01%.
  • Ni is an extremely effective element for increasing strength and toughness.
  • Ni is an expensive element, and in order to suppress an increase in alloy cost, the amount of Ni is limited to 0.70% or less, preferably 0.50% or less, more preferably 0.30% or less, and still more preferably. Is 0.10% or less.
  • the Ni content is preferably 0.01% or more, more preferably 0.02% or more.
  • Cr 0.50% or less
  • Cr is also an element contributing to the improvement of strength. However, if Cr is added in excess of 0.50%, carbides may be generated and the toughness may be impaired. Therefore, the Cr content is limited to 0.50% or less, preferably 0.30% or less. The lower limit of the Cr amount is preferably 0.01%.
  • V is an element forming nitride (VN), and may be contained in an amount of 0.01% or more in order to increase the strength of the base material.
  • the V amount is 0.02% or more, more preferably 0.03% or more.
  • the upper limit of the amount of V is limited to 0.12%, preferably 0.08%.
  • Mo is an element that enhances hardenability and contributes to improvement in strength. However, if Mo is added exceeding 0.30%, precipitation of Mo carbide (Mo 2 C) and generation of MA in the fillet portion are promoted, and in particular, the toughness of the weld heat affected zone may be deteriorated.
  • the amount is limited to 0.30% or less, preferably 0.15% or less.
  • the lower limit of the Mo amount is preferably 0.01%.
  • Nb 0.08% or less
  • Nb is an element that refines ferrite and improves toughness. However, if added over 0.08%, ferrite transformation is excessively suppressed and the formation of MA is promoted, so the amount of Nb is limited to 0.08% or less, preferably 0.05% or less, more preferably 0.03% or less.
  • Ti is an element that forms TiN.
  • Ti content exceeds 0.05%, TiN becomes coarse and becomes the starting point of brittle fracture, so the Ti content is limited to 0.05% or less.
  • the Ti content is 0.03% or less, more preferably 0.02% or less.
  • the lower limit of the amount of Ti may be 0%, but fine TiN contributes to the refinement of the structure, so 0.005% or more may be contained.
  • Al is a deoxidizing element, but if the Al content exceeds 0.07%, the toughness of the base metal and the weld heat affected zone is lowered by inclusions, so the Al content is limited to 0.07% or less.
  • the Al content is preferably 0.05% or less, more preferably 0.04% or less, and still more preferably 0.03% or less.
  • the lower limit of the amount of Al is not specified and may be 0%, but Al is a useful deoxidizing element and may contain 0.01% or more.
  • N is an element that lowers the toughness of the base material and the weld heat affected zone. If the N content exceeds 0.020%, the low temperature toughness is impaired by the formation of solid solution N or coarse precipitates, so the N content is limited to 0.020% or less.
  • the N amount is preferably 0.010% or less, more preferably 0.007% or less. On the other hand, if it is attempted to reduce the N content to less than 0.002%, the steelmaking cost increases, so the N content may be 0.002% or more. From the viewpoint of cost, the N amount may be 0.003% or more.
  • one or two of REM and Ca may be added as optional additional elements.
  • REM 0.010% or less, Ca: 0.0050% or less
  • REM and Ca are deoxidizing elements and contribute to control of the form of sulfide, they may be added.
  • the amount of REM contained in the steel is limited to 0.010% or less and the amount of Ca is limited to 0.0050% or less.
  • the lower limits of the REM amount and the Ca amount are each 0.0005%.
  • FIG. 3 is a schematic explanatory view showing a position where the mechanical test and the observation of the metal structure are performed. Below, the result of having verified about a metal structure
  • the flange width direction end face of the flange is 1/6 in the flange width direction, and the flange face located on the opposite side of the web (ie, the outer face) is 1/4 in the flange thickness direction.
  • the position of is in the middle between the flange end portion where the temperature tends to decrease during hot rolling and the flange center portion where the temperature does not easily decrease. Further, the central segregation part is not observed at this site. Therefore, this position is considered to show the average chemical composition and mechanical properties of the H-section steel from the temperature distribution. In this specification, the position is expressed as “F / 6-t / 4” using the flange width F and the flange thickness t.
  • the H-section steel according to this embodiment suppresses material variations in the flange. Therefore, the observation of the metal structure of the H-section steel and the measurement of mechanical properties (strength and Charpy absorbed energy) were carried out with the most brittle part in the vicinity of F / 2-3t / 4 of the H-section steel shown in FIG. Sample pieces are collected from each position of / 6-t / 4.
  • the position of the most brittle part is not constant with respect to the horizontal direction of the figure, that is, the flange width direction, depending on the situation during rough flange rolling. Therefore, after the portion where the central segregation portion is agglomerated is revealed by the nital corrosion liquid, the position of 3/4 (3t / 4) is indicated in the flange thickness direction from the surface of the flange opposite to the web. The portion where the straight line and the portion where the central segregation portion agglomerates intersects was determined as the position of the most brittle portion. A sample piece was taken from the most embrittled portion whose position was specified, and the metal structure was observed and the mechanical properties were measured.
  • the metal structure of the rolled H-section steel of the present invention is evaluated by an optical microscope, a scanning electron microscope (SEM), and an electron beam microanalyzer (EPMA).
  • SEM scanning electron microscope
  • EPMA electron beam microanalyzer
  • a 10 mm ⁇ 10 mm visual field centered on the most brittle portion shown in FIG. 3 is identified by an optical microscope.
  • the Mn concentration at the position of the most embrittled portion determined was measured under the conditions of an acceleration voltage of 20 kV after electropolishing, a beam shape of a 20 ⁇ m long strip, and a step of 20 ⁇ m.
  • an average value of 12500 points which is the value of the top 5% or more (referred to as “the top 5% average value”), is obtained, and the Mn concentration at the most brittle part ( CMn-max) It was.
  • a sample was taken from the position of F / 6-t / 4, and according to JIS G0404 (2014 version), the chemical component of the sample was analyzed to obtain the value of Mn concentration at the position of F / 6-t / 4.
  • Mn concentration (CMn) in Further, the value (CMn-max) / (CMn) obtained by dividing (CMn-max) by (CMn) was evaluated as the degree of segregation.
  • the target value of the strength of the rolled H-section steel according to the present invention was set based on the steel standard EN10225 adopted in Europe. Yield point (YP) or 0.2% proof stress measured at room temperature is 325 MPa or more and tensile strength (TS) is 450 MPa or more using a sample piece taken from the position of F / 6-t / 4. Is desirable.
  • the target value of toughness is set to ⁇ vTrs ⁇ 40 ° C.
  • FIG. 2 is a diagram showing a correlation between the segregation degree and the Charpy transition temperature difference ⁇ vTrs in the H-section steel.
  • the segregation degree in FIG. 2 is the concentration ratio of Mn at the most brittle portion and the position of F / 6-t / 4 described above with reference to FIG.
  • the segregation degree exceeds 1.6, the most brittle part, and the position of F / 6-t / 4 And the Charpy transition temperature difference ⁇ vTrs with respect to.
  • the rolled H-section steel manufactured by the split method has a Charpy transition temperature difference ⁇ vTrs of 40 ° C. or less between the most brittle portion and the position of F / 6 ⁇ t / 4. That is, in a state where the segregation degree is 1.6 or less, aggregation of the center segregation portion is suppressed, and a rolled H-section steel having excellent uniformity in the cross section of the flange as compared with the conventional product can be obtained.
  • the segregation degree shown in FIG. 2 is preferably 1.6 or less. Furthermore, the lower the degree of segregation, the more the aggregation of the central segregation part is suppressed and the embrittlement characteristics are improved. Further, the degree of segregation does not fall below 1.0 in terms of numerical characteristics, and is preferably 1.0 or more or 1.1 or more, for example.
  • the chemical composition of the molten steel is adjusted and then cast to obtain a rectangular steel piece (also called “slab”).
  • the casting is preferably continuous casting from the viewpoint of productivity.
  • the thickness of the steel slab is preferably 200 mm or more from the viewpoint of productivity, and is preferably 350 mm or less in consideration of reduction of segregation, uniformity of heating temperature in hot rolling, and the like.
  • the steel slab is heated using a heating furnace and hot rolled.
  • rough rolling is performed by the split method shown in FIG.
  • intermediate rolling is performed using an intermediate universal rolling mill (intermediate rolling mill) and a water cooling device.
  • finish rolling is performed using a finish rolling mill and hot rolling is finished.
  • the H-section steel may be water-cooled at a timing as required.
  • Heating temperature of steel slab 1100 to 1350 ° C
  • the heating temperature of the steel slab is 1100 to 1350 ° C.
  • the heating temperature is set to 1100 ° C. or higher in order to ensure the formability in hot rolling.
  • the heating temperature of the steel slab exceeds 1350 ° C., the oxide on the surface of the steel slab, which is the raw material, may melt and the inside of the heating furnace may be damaged.
  • the lower limit of the heating temperature of the steel slab is preferably set to 1150 ° C. or higher.
  • the heating temperature of the steel slab is 1200 ° C. or higher.
  • the upper limit of the heating temperature of the steel slab is 1300 ° C. or less.
  • the thickness T of the steel piece having a rectangular cross section and the width F of the flange of the rolled H-section steel formed by the finish rolling process are the predetermined hole tip angle (inside the hole mold) in FIG.
  • the interrupt length H may be set so as to satisfy the interrupt length H based on the hole type of the peripheral protrusion tip angle) and the following equation (1). H ⁇ 0.5F-0.5T (1)
  • the lower limit of the interrupt length H is 0.5F-0 with respect to the thickness T of the steel piece having a rectangular cross section and the width F of the flange of the rolled H-section steel formed by the finish rolling process. .5T or more. This is to suppress the amount of reduction in the obtuse hole type in which the central segregation part easily aggregates by performing rolling shaping by the split method until the flange width after rough rolling becomes equal to the flange width of the product. .
  • the upper limit of the interrupt length H is not particularly set, but if it exceeds 0.8F-0.5T, excessive edging rolling is required at the time of intermediate rolling, and productivity is lowered, so 0.8F-0.5T or less is desirable.
  • the hole tip angle shown in FIGS. 1B and 5 may be an angle that is sufficiently acute to form an interrupt.
  • the upper limit is 40 °. It may be set to. This is because when the die tip angle exceeds 40 °, the center segregation portion of the slab is not dispersed by the flange and aggregates in the fillet portion as in the edging rolling shown in FIG. When the hole tip angle is set to 40 ° or less, as shown by the split method of FIG.
  • the center segregation part is dispersed without being aggregated in the flange during rolling with the interrupt forming hole mold, It becomes possible to suppress a decrease in toughness.
  • the hole tip angle There is no particular lower limit for the hole tip angle, but if it is less than 25 °, the roll may be broken during rolling, so 25 ° or more is preferable.
  • the center segregation portion of the slab is not divided into the left and right flanges in the I posture as shown in FIG.
  • the center segregation portion is dispersed in the flange portion, and from the vicinity of the center of the flange width in the flange to the flange width direction. It remains in an area of 15 mm or more toward one end face or both end faces and within 2 mm in the thickness direction in the flange surface layer (from the flange face located on the side opposite to the web in the flange thickness direction).
  • the central segregation portion dispersed in the flange portion remains over a predetermined length in the region.
  • the central segregation portion dispersed in the vicinity of the surface layer can be revealed by identification with the aforementioned nital corrosion solution.
  • the upper 5% average concentration of Mn in the central segregation part dispersed in the vicinity of the surface layer is defined as (CMn-surface), and the segregation degree (CMn-surface) / (CMn) at this position is 1.1 or more and 1.6 or less It is desirable that In the split method, the segregation degree of the flange surface layer tends to be higher than in the edging method.
  • the degree of segregation is 1.1 or more, there is an advantage that surface cracks can be visually confirmed and inspection becomes easy, and it is also possible to trace a plurality of manufactured products as individual bodies based on surface cracks. Is possible.
  • the degree of segregation exceeds 1.6, a large number of cracks are easily formed on the flange surface. Therefore, the degree of segregation is desirably 1.1 or more and 1.6 or less.
  • the method for obtaining the upper 5% average concentration in (CMn-surface) is the same as the method for obtaining the upper 5% average concentration in (CMn-max). That is, the method for obtaining the numerical value is basically the same except that the sampling position of the sample is different.
  • Control rolling is a manufacturing method for controlling the rolling temperature and the rolling reduction.
  • water-cooled rolling process between passes water cooling is performed between rolling passes to give a temperature difference between the surface layer portion and the inside of the flange and roll.
  • the inter-pass water-cooled rolling process is, for example, a manufacturing method in which the flange surface temperature is water-cooled to 700 ° C. or lower by water cooling between rolling passes and then rolled in the reheating process.
  • water cooling between rolling passes it is preferable to perform water cooling between rolling passes using water cooling devices provided before and after the intermediate universal rolling mill, and repeats spray cooling and reverse rolling of the flange outer surface by the water cooling device. Preferably it is done.
  • the inter-pass water-cooled rolling process even when the rolling reduction is small, it is possible to introduce a processing strain to the inside of the plate thickness. Further, productivity is improved by lowering the rolling temperature in a short time by water cooling.
  • the central segregation portion existing in the slab before rolling shaping is dispersed without being aggregated in the fillet portion and rolled. Modeling can be completed. Specifically, a rolled H-section steel having a ⁇ vTrs of 40 ° C. or less is manufactured in the flange after the rolling shaping, and the segregation degree thereof is 1.6 or less (see FIG. 2).
  • the central segregation portion aggregates in the fillet portion of the flange and adversely affects toughness and embrittlement characteristics. That is, the manufacture of H-shaped steel products having excellent toughness and embrittlement characteristics is realized.
  • the center segregation part dispersed in the flange is 15 mm or more from the center of the flange width toward one end surface or both end surfaces in the flange width direction, and from the surface located on the side opposite to the web in the flange thickness direction.
  • various inspections and experiments have been conventionally required to investigate the internal state of the flange, but in the H-section steel product according to the present embodiment, the flange surface located on the opposite side of the web is visually examined. be able to.
  • a sample was collected from a rolled H-section steel manufactured to satisfy the component composition and manufacturing conditions described in the above embodiment, and the sample was subjected to chemical analysis.
  • a sample was taken from a rolled H-section steel that did not satisfy any of the component composition and manufacturing conditions described in the above embodiment, and the same chemical analysis was performed.
  • Example No. Steels having a composition (unit: mass%) shown in Table 1 were melted as 1 to 13 and 28, and steel pieces having a thickness of 250 to 300 mm were produced by continuous casting.
  • the steel was melted in a converter, subjected to primary deoxidation, an alloy was added to adjust the components, and vacuum degassing was performed as necessary.
  • the obtained steel slab was hot-rolled on the manufacturing conditions shown in Table 2.
  • hot rolling following rough rolling, using an intermediate universal rolling mill and a water cooling device provided before and after that, spray cooling of the flange outer surface, reverse rolling, and water cooling after rolling were performed as necessary. .
  • CMn-max was measured and calculated by EPMA and (CMn) by the method described in JIS G0404 (2014 edition). Further, center segregation remains within 2 mm of the surface layer over 15 mm or more from the center of the flange width toward at least one end face in the flange width direction, and the center segregation parallel to the flange thickness direction is performed as the Mn concentration of the surface layer portion.
  • CMn-surface was measured and calculated by EPMA for a region 10 mm below the flange surface layer in the thickness direction (see FIG. 3). The measurement and calculation results are shown in Table 3 below.
  • the target value of each characteristic of the H-section steel to be manufactured has a yield point (YP) at normal temperature or a 0.2% proof stress of 335 MPa or more, a tensile strength (TS) of 450 MPa or more, and ⁇ vTrs of 40 ° C. or less.
  • the intensity at normal temperature is in the target range, and ⁇ vTrs satisfies the target value of 40 ° C. or less.
  • the segregation degree of Mn was 1.6 or less.
  • the segregation degree of Mn is desirably 1.5 or less, and more desirably 1.4 or less.
  • No. 14 16 and 18 are insufficient in strength due to the small amounts of C, Mn and Si.
  • No. 15 has a large amount of C.
  • No. 17 has a large amount of Si, and vTrs at F / 6-t / 4 is 0 ° C. or more due to the increase and coarsening of the hard phase, and the toughness is also lowered in the most brittle part.
  • No. No. 19 has a large amount of Mn, vTrs at F / 6-t / 4 is 0 ° C. or more, the central segregation degree is deteriorated in the most brittle part, and the toughness is deteriorated by MnS and MA.
  • No. No. 20 has a large amount of P. No.
  • No. 21 has a large amount of S and has a low toughness.
  • No. No. 22 has a rough rolling hole tip angle of more than 40 °, and the slab center segregation portion is aggregated without being dispersed, so that the toughness of the most brittle portion is lowered.
  • No. 23 and 24 the length of the interruption is insufficient, and the slab center segregation part is aggregated without being dispersed, so that the toughness of the most brittle part is lowered.
  • No. No. 25 has a large amount of Nb.
  • No. 26 has a large amount of Mo.
  • No. 27 has a large amount of REM, and the toughness of the most brittle part is lowered.
  • the present invention can be applied to a rolled H-section steel manufactured by hot-rolling a steel slab and a manufacturing method thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

フランジにおける最脆化部でのMn濃度の上位5%平均値が、フランジ幅方向の端面からフランジ幅方向に1/6の位置、且つ、ウェブと反対側に位置するフランジの面からフランジ厚方向に1/4の位置におけるMn濃度の1.6倍以下であり、フランジ幅の中心からフランジ幅方向の一方の端面あるいは両端面に向かって15mm以上、且つ、厚み方向でフランジ表層2mm以内の領域に分散される中心偏析部でのMn濃度の上位5%平均値が、フランジ幅方向の端面からフランジ幅方向に1/6の位置、且つ、ウェブと反対側に位置するフランジの面からフランジ厚方向に1/4の位置におけるMn濃度の1.1倍以上1.6倍以下であることを特徴とする、圧延H形鋼。

Description

圧延H形鋼及びその製造方法
(関連出願の相互参照)
 本願は、2016年8月29日に日本国に出願された特願2016-166535号に基づき、優先権を主張し、その内容をここに援用する。
 本発明は、鋼片を熱間圧延して製造される圧延H形鋼及びその製造方法に関する。
 H形鋼は、従来から建築・土木・海洋構造物などの素材として幅広く用いられており、さまざまな断面の物が使用されている。特に生産性の高い連続鋳造によって得られた矩形断面のスラブを鋼素材とし、熱間圧延によって製造されたH形鋼は製造コストが低く、多くの分野で使用されている。従来、スラブから製造されるH形鋼は図1(a)に示すエッジング法により製造されてきた。エッジング法はまずスラブ端部に鋼材をロールの孔型中央に誘導するための溝をつけ、スラブの幅方向に圧延し、スラブ端部をスラブの厚み方向に伸長させることでフランジ部を形成する圧延方法である。スラブを鋳造した際に形成される中心偏析部にはMnを始めとした合金元素が濃化している。エッジング法で圧延することによって中心偏析部が、ウェブとフランジとが交錯する部分、いわゆる「フィレット部」と呼ばれる部分においてさらに凝集し、靭性に悪影響を及ぼす場合がある。
 このような問題点に鑑み、マクロ偏析(中心偏析部の凝集)を解消するには、高温で一定時間加熱することによってMn等を拡散させることが有効であり、熱間圧延前の鋼片に熱処理を施す方法が提案されている(例えば、特許文献1参照)。また、拡散を促進させるためには圧延によって歪を加えた後、高温に保持することが有効であり、鋼片を粗圧延した後、中間圧延の前に再加熱する方法が提案されている(例えば、特許文献2及び3参照)。
 また、熱処理以外にもマクロ偏析を解消する方法が提案されている(例えば、特許文献4及び5、参照)。特許文献4は、連続鋳造で完全に凝固する前に圧下を加える方法を開示している。一方、特許文献5は、粗圧延機のスラブ幅のエッジング孔型を、孔型底がフラットなボックス孔型に形成する方法を開示し、ウェッジ法と称されている。
特開2012-180584号公報 特開平6-122921号公報 特開平6-122922号公報 特開平5-305395号公報 特開平7-88502号公報
 上述のように、従来から、マクロ偏析に起因する圧延H形鋼のフィレット部の靱性低下を抑制するために、様々な対策が提案されている。しかし、いずれの対策も従来技術であるエッジング法に対して生産性を損なう点が問題となる。
 そこで本発明の目的は、このような実情に鑑み、従来技術であるエッジング法に対して生産性を損なうことなく、フィレット部のマクロ偏析が軽減された圧延H形鋼及びその製造方法を提供することにある。
 本発明は、被圧延材の幅方向に対し、鉛直に割り込みを入れる突起部が形成された造形用孔型によって割り込みを形成し、これを起点にして順次折り曲げる工程を有することを特徴とする。このような工程によれば、スラブからフランジを形成する際に中心偏析部がフランジ全体に分散され、生産性を損なうことなく、フィレット部での中心偏析部の凝集を抑制することができる。
 本発明の要旨は以下のとおりである。
[1]質量%で、
C:0.01~0.25%、
Si:0.05%~0.50%、
Mn:0.40~2.50%、
P:0.050%以下、
S:0.050%以下、
N:0.020%以下、
Cu:0.70%以下、
Ni:0.70%以下、
Cr:0.50%以下、
V:0.12%以下、
Mo:0.30%以下、
Nb:0.08%以下、
Ti:0.05%以下、
Al:0.07%以下、
REM:0.010%以下、
Ca:0.0050%以下、
残部:Fe及び不可避不純物、
である化学組成を有する圧延H形鋼であって、フランジにおける最脆化部でのMn濃度の上位5%平均値が、フランジ幅方向の端面からフランジ幅方向に1/6の位置、且つ、ウェブと反対側に位置するフランジの面からフランジ厚方向に1/4の位置におけるMn濃度の1.6倍以下であり、フランジ幅の中心からフランジ幅方向の一方の端面あるいは両端面に向かって15mm以上、且つ、厚み方向でフランジ表層2mm以内の領域に分散される中心偏析部でのMn濃度の上位5%平均値が、フランジ幅方向の端面からフランジ幅方向に1/6の位置、且つ、ウェブと反対側に位置するフランジの面からフランジ厚方向に1/4の位置におけるMn濃度の1.1倍以上1.6倍以下であることを特徴とする、圧延H形鋼。
[2]矩形断面の鋼片を1100~1350℃に加熱し、順に粗圧延工程、中間圧延工程、仕上圧延工程を行い[1]に記載の圧延H形鋼を製造する製造方法であって、前記粗圧延工程を行う圧延機には、被圧延材を造形する3以上の複数の孔型が設けられ、前記複数の孔型の少なくとも一つは、被圧延材の幅方向に対し鉛直に割り込みを入れる突起部が形成された上下一対のロールに設けられている割り込み形成用孔型であり、前記割り込み形成用孔型の後段において、当該割り込み形成用孔型によって形成された分割部位を順次折り曲げる造形用孔型が設けられることを特徴とする、圧延H形鋼の製造方法。
[3]前記割り込み形成用孔型に形成されている突起部の先端角度は40°以下であることを特徴とする、[2]に記載の圧延H形鋼の製造方法。
[4]前記突起部によって形成された割り込みの長さHと、前記矩形断面の鋼片の厚さTと、仕上圧延工程によって形成された圧延H形鋼のフランジの幅Fとが、以下の式(1)を満たすことを特徴とする、[2]又は[3]に記載の圧延H形鋼の製造方法。
H≧0.5F-0.5T ・・・(1)
 本発明によれば、予備加熱や圧延後の再加熱または温度保持等の特別な熱処理を施すことなく、単純な工程でフィレット部の靭性に優れたH形鋼を得ることが可能になる。したがって、経済性を損なうことなく、圧延H形鋼を部材とする鋼構造物の信頼性をさらに向上させる事が可能になる等、本発明は、産業上の貢献が極めて顕著である。
「エッジング法」と、「スプリット法」との比較についての概略説明図である。 偏析度とシャルピー遷移温度差ΔvTrsの相関を示す図である。 機械試験及び金属組織の観察を行った位置を示す概略説明図である。 本発明の実施の形態に係るH形鋼の製造工程を示す概略説明図である。 粗圧延に用いるロールと被圧延材の形状を示す概略説明図である。
 以下、本発明の実施の形態について図面を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 本発明者らは、フランジ部を形成する際に割り込みを入れ、フランジ部を曲げて製造することで、偏析がフランジ全体で分散され、フィレット部における偏析の凝集が改善されるという知見を得た。先ず、本知見について簡単に説明する。
 なお、本実施の形態に係るフランジ部を曲げて圧延造形を行うようなH形鋼の製造方法を本明細書では「スプリット法」と呼称する。
 先ず、上記「スプリット法」の概要について図1を参照して簡単に説明する。図1は、H形鋼の従来の製造方法における粗圧延法の1つであるいわゆる「エッジング法」と、本実施の形態に係るH形鋼の製造方法における粗圧延法であるいわゆる「スプリット法」との比較についての概略説明図である。
 図1(a)に示すように、エッジング法は、スラブからH形鋼を製造する際の粗圧延時に、スラブ端部に当該スラブを孔型中央に誘導するための溝を付与し、粗圧延機に取り付けられた孔型ロールによって熱間圧延を行う方法である。加熱炉で加熱されたスラブを幅方向に圧延し、スラブ端部をスラブの厚み方向に伸長させることでフランジ部が形成される。このようにフランジ部が形成された被圧延材に対し、更に製品の形状や寸法を精密に整えるために、中間圧延機による中間圧延や仕上圧延機による仕上圧延等が行われ、最終的なH形鋼製品が製造される。
 一方、図1(b)に示すように、スプリット法では、スラブからH形鋼を製造する際の粗圧延時に、スラブ端面に上記エッジング法に比べて深さの深い溝(割り込み)を割り込み形成用孔型によって付与する。そして、付与された溝に対して、当該溝を拡げるための突起部が形成された造形用孔型の孔型ロールを用いて分割部位とされたスラブ端部を割り広げるような圧延造形が行われる。このような割り広げ圧延造形を例えば複数回角度を変えて行うことでフランジ部を形成する方法がスプリット法である。このようにフランジ部が形成された被圧延材に対し、更に中間圧延や仕上圧延等が行われ、最終的なH形鋼製品が製造される。
 本発明者らは、図1に示すエッジング法とスプリット法を比較するに際し、スラブに存在する主にMn濃度の高い部位である中心偏析部に着目し、エッジング法による粗圧延と、スプリット法による粗圧延では、スラブの中心偏析部の凝集あるいは分散の状態に大きな差異があることを見出した。
 即ち、図1(a)に示すように、エッジング法では孔型ロールによってスラブを幅方向に圧延する際に、中心偏析部がフィレット部に凝集することが分かっている。一方、図1(b)に示すように、スプリット法ではスラブを幅方向にほとんど圧延せず、フランジ部を割り広げるといった方法を採るため、中心偏析部がフランジ部全体で分散され、フィレット部に凝集することなく粗圧延が行われる。特に、割り込み用の孔型の突起部先端角度を40°以下の鋭角とすることで、中心偏析部の凝集を抑制させることが可能であることが分かってきている。
 そして、本発明者らは、スプリット法により、H形鋼の平均的な機械的性質を示すF/6においてvTrs(シャルピー遷移温度)が0℃以下であり、図2に示す通り中心偏析部により最も靭性が悪化する最脆化部とのvTrsの差を40℃以内に抑制できる事を知見した。これは、主にMn濃度の高い中心偏析部に存在するMnSや硬質相である島状マルテンサイト(MA)、上部ベイナイトによる脆化を抑制したためと推察される。
 以下、上記のような知見に伴う、本実施の形態に係る圧延H形鋼及びその製造方法について詳細に説明する。なお、以下の説明において、成分に関する「%」との記載は、特に断りが無い限り「質量%」を意味する。
 まず、H形鋼の成分組成(化学組成)について説明する。
(C:0.01~0.25%)
 Cは、フィレット部でのMA生成を促進し、靭性を低下させる。しかし、Cは安価に強度を向上させる事が可能であり、製鋼の工程上Cを完全に除去することはコストの増加につながることから、C量を0.01%以上とする。一方、C量が0.25%を超えるとフィレット部の中心偏析部が凝集した位置においてMAが増加し、靱性が低下するため、C量を0.25%以下に制限する。好ましくはC量を0.20%以下、より好ましくは0.17%未満とする。
(Si:0.05~0.50%以下)
 Siは、脱酸元素であり、強度の向上にも寄与するが、Cと同様、MAを生成させる元素である。Si量が0.50%を超えると、硬質相の生成によって母材及び溶接熱影響部の靭性が低下するため、Si量を0.50%以下に制限する。Si量は、0.30%以下が好ましく、より好ましくは0.20%以下、更に好ましくは0.10%以下とする。しかし、Siを含有させないと脱酸の工程上コストが増加することから、Siを0.05%以上含有させる。
(Mn:0.40~2.50%)
 エッジング法により製造されたH形鋼はスラブの中心偏析部がフィレット部に凝集する。Mnは特に中心偏析部に凝集しやすく、局所的にMnの濃度が上昇することで脆化相であるMAの形成、粗大な組織である上部ベイナイトの増加、MnSの増加、焼入れ性の上昇による硬さの増大が促進される。この結果、靭性が著しく低下する。特に、2.50%を超えるMnを含有させると、フィレット部において、介在物の増加等によって母材および溶接熱影響部の靱性を損なう。このため、Mn量を2.50%以下に制限する。Mn量は好ましくは2.00%以下、より好ましくは1.80%以下とする。一方、Mnは結晶粒径の微細化に効果的な元素であるため、0.40%以上を含有させる。
(P:0.050%以下)
 Pは、凝固偏析による溶接割れ、靱性低下の原因となるので、極力低減すべきである。P量は0.050%以下に制限することが好ましく、更に好ましくは0.010%以下である。なお、下限については、0.001%未満まで除去すると製鋼コストが大きく上昇するため、0.001%以上であってもよい。
(S:0.050%以下)
 Sは、凝固偏析により形成された中心偏析部においてMnSを形成し、溶接割れ、靱性低下だけではなく水素割れ等の原因となるので、極力低減すべきである。S量は0.050%以下に制限することが好ましく、更に好ましくは0.010%以下である。なお、下限については、0.001%未満まで除去すると製鋼コストが大きく上昇するため、0.001%以上であってもよい。
 更に、強度及び靱性の向上を目的として、Cu、Ni、Cr、V、Mo、Nb、Ti、Al、Nのうちの1種又は2種以上を任意添加元素として含有させてもよい。なお、任意添加元素は、必ずしも添加する必要はないため、各任意添加元素の含有量の下限値は0%である。
(Cu:0.70%以下)
 Cuは、強度の向上に寄与する元素である。しかし、Cu量が0.70%を超えると強度が過剰に上昇し、靭性が低下するため、Cu量を0.70%以下に制限する。Cu量は好ましくは0.50%以下とし、より好ましくは0.30%以下、更に好ましくは0.10%以下とする。Cu量の下限は0.01%が好ましい。
(Ni:0.70%以下)
 Niは、強度及び靭性を高めるために、極めて有効な元素である。しかし、Niは高価な元素であり、合金コストの上昇を抑制するため、Ni量を0.70%以下に制限し、好ましくは0.50%以下、より好ましくは0.30%以下、更に好ましくは0.10%以下とする。Ni量は0.01%以上が好ましく、より好ましくは0.02%以上とする。
(Cr:0.50%以下)
 Crも強度の向上に寄与する元素である。しかし、0.50%を超えてCrを添加すると炭化物を生成し、靭性を損なうことがあるため、Cr量を0.50%以下に制限し、好ましくは0.30%以下とする。Cr量の下限は好ましくは0.01%とする。
(V:0.12%以下)
 Vは、窒化物(VN)を形成する元素であり、母材の強度を高めるために0.01%以上を含有させてもよい。好ましくはV量を0.02%以上、より好ましくは0.03%以上とする。一方、Vは高価な元素であるため、V量の上限は0.12%に制限し、好ましくは0.08%に制限する。
(Mo:0.30%以下)
 Moは、焼入れ性を高め、強度の向上に寄与する元素である。しかし、0.30%を超えてMoを添加すると、Mo炭化物(MoC)の析出やフィレット部におけるMAの生成を促進し、特に溶接熱影響部の靱性を劣化させることがあるため、Mo量を0.30%以下に制限し、好ましくは0.15%以下とする。Mo量の下限は0.01%が好ましい。
(Nb:0.08%以下)
 Nbはフェライトを微細化させ、靭性を向上させる元素である。しかし、0.08%を超えて添加するとフェライト変態を過剰に抑制し、MAの生成を促進するため、Nb量を0.08%以下に制限し、好ましくは0.05%以下、さらに好ましくは0.03%以下とする。
(Ti:0.05%以下)
 Tiは、TiNを形成する元素であり、Ti量が0.05%を超えるとTiNが粗大化し、脆性破壊の起点となるため、Ti量を0.05%以下に制限する。好ましくはTi量を0.03%以下、より好ましくは0.02%以下とする。Ti量の下限は0%でもよいが、微細なTiNは組織の微細化に寄与するため、0.005%以上を含有させてもよい。
(Al:0.07%以下)
 Alは、脱酸元素であるが、Al量が0.07%を超えると、介在物によって母材及び溶接熱影響部の靭性が低下するため、Al量を0.07%以下に制限する。Al量は、0.05%以下が好ましく、より好ましくは0.04%以下、更に好ましくは0.03%以下とする。Al量の下限は規定せず、0%でもよいが、Alは有用な脱酸元素であり、0.01%以上を含有させても良い。
(N:0.020%以下)
 Nは、母材及び溶接熱影響部の靭性を低下させる元素である。N量が0.020%を超えると、固溶Nや粗大な析出物の形成によって低温靭性を損なうため、N量を0.020%以下に制限する。N量は好ましくは0.010%以下、より好ましくは0.007%以下とする。一方、N量を0.002%未満に低減しようとすると製鋼コストが高くなるため、N量は0.002%以上であってもよい。コストの観点からN量は0.003%以上であってもよい。
 更に、介在物の形態の制御を目的として、REM、Caのうちの1種又は2種を任意添加元素として含有させてもよい。
(REM:0.010%以下、Ca:0.0050%以下)
 REM及びCaは、脱酸元素であり、硫化物の形態の制御にも寄与するため、添加してもよい。しかし、REM、Caの酸化物は溶鋼中で容易に浮上するため、鋼中に含有されるREM量を0.010%以下、Ca量を0.0050%以下に制限する。REM量及びCa量の下限は、好ましくは、それぞれ0.0005%とする。
 次に、本発明に係る圧延H形鋼の金属組織及び特性について説明する。図3は、機械試験及び金属組織の観察を行った位置を示す概略説明図である。以下では、主に図3に示した位置において、金属組織や特性について検証を行った結果について説明する。
 図3に示す通り、フランジにおけるフランジ幅方向の端面からフランジ幅方向に1/6の位置、且つ、ウェブと反対側に位置するフランジの面(即ち、外側面)からフランジ厚方向に1/4の位置は、熱間圧延時に温度が低下し易いフランジ端部と、温度が低下し難いフランジ中央部との中間である。また、中心偏析部がこの部位で観察されることはない。従って、当該位置は、温度分布からH形鋼の平均的な化学成分および機械特性を示すと考えられる。
 なお、本明細書では、当該位置を、フランジ幅Fとフランジ厚tとを用いて「F/6-t/4」と表記する。
 本実施の形態に係るH形鋼は、フランジ内における材質ばらつきを抑制している。このため、H形鋼の金属組織の観察及び機械特性(強度及びシャルピー吸収エネルギー)の測定は、図3に示すH形鋼のF/2-3t/4付近にある最脆化部および、F/6-t/4の各位置からそれぞれ試料片を採取して行う。
 最脆化部の位置は、フランジ粗圧延時の状況により図の左右方向、すなわちフランジ幅方向に対して一定ではない。そこで、中心偏析部が凝集している部分をナイタール腐食液により現出させたうえで、ウェブと反対側に位置するフランジの面からフランジ厚方向に3/4の位置(3t/4)を示す直線と、前記中心偏析部が凝集している部分が交わる部分を最脆化部の位置と定めた。位置が特定された最脆化部から試料片を採取し、金属組織の観察及び機械特性の測定を実施した。
 本発明の圧延H形鋼の金属組織の評価は、光学顕微鏡、走査電子顕微鏡(SEM)および電子線マイクロアナライザ(EPMA)によって行う。光学顕微鏡によって、図3に示した最脆化部が中心となる10mm×10mmの視野を同定する。同定した視野において、電解研磨後に加速電圧20kV、ビーム形状を長さ20μmの帯状、ステップ20μmの条件で、定められた最脆化部の位置におけるMn濃度を測定した。視野内における500点×500点のうち、上位5%以上の値となる12500点の平均値(これを「上位5%平均値」と呼称する)を求め、最脆化部でのMn濃度(CMn-max)
とした。
 一方、F/6-t/4の位置よりサンプルを採取し、JIS G0404(2014年版)に従い、当該サンプルの化学成分を分析して求めたMn濃度の値をF/6-t/4の位置におけるMn濃度(CMn)とした。更に、(CMn-max)を(CMn)で除した値(CMn-max)/(CMn)を偏析度として評価した。
 本発明に係る圧延H形鋼の強度の目標値は、欧州圏で採用されている鋼材規格EN10225に基づいて設定した。F/6-t/4の位置から採取された試料片を用いて、常温で測定された降伏点(YP)又は0.2%耐力が325MPa以上、引張強度(TS)が450MPa以上であることが望ましい。靭性の目標値をΔvTrs≦40℃とする。
 図2は、H形鋼おける偏析度とシャルピー遷移温度差ΔvTrsの相関を示す図である。図2における偏析度とは、図3を参照して上述した最脆化部及びF/6-t/4の位置でのMnの濃度比である。
 図2に示すように、従来のエッジング法で製造された圧延H形鋼の場合は、偏析度が1.6を超えていると共に、最脆化部と、F/6-t/4の位置とのシャルピー遷移温度差ΔvTrsが40℃を超えている。この状態では最脆化部にMnが多く偏析することによってMnS、硬質相である島状マルテンサイト(MA)、上部ベイナイト等が形成され、脆化が抑制できなくなる。
 一方、スプリット法で製造された圧延H形鋼は、最脆化部と、F/6-t/4の位置とのシャルピー遷移温度差ΔvTrsが40℃以下である。即ち、偏析度が1.6以下となった状態では、中心偏析部の凝集が抑制され、従来品よりもフランジにおける断面内の均一性に優れた圧延H形鋼が得られる。
 なお、一般的な温度条件で使用される鋼構造建築物が地震力等を受けるとき、部材のH形鋼が脆性破壊することなく所定の機械的特性を満たすためには、F/6-t/4の位置のvTrsが0℃以下であることが望ましい。
 以上の通り、本発明に係る圧延H形鋼では、図2に示す偏析度が1.6以下であることが好ましい。更には、偏析度が低いほど、中心偏析部の凝集が抑制され、脆化特性が良好となることから、1.5以下であることがより好ましい。また、偏析度は、数値の特性上1.0を下回ることは無く、例えば1.0以上あるいは1.1以上であることが好ましい。
 次に、本実施の形態に係るH形鋼の製造方法について説明する。本実施の形態では、図4に示す工程で、生産性に優れる矩形の鋼片を加熱し、粗圧延工程、中間圧延工程、仕上圧延工程、からなる熱間圧延を行い、水冷装置によって加速冷却を行い、H形鋼を製造する。熱間圧延のうち、粗圧延は、図1(b)に示したスプリット法により行う。
 製鋼工程(図4中の加熱炉の上流側)では、溶鋼の化学成分を調整した後、鋳造し、矩形の鋼片(いわゆる「スラブ」とも呼称される)を得る。鋳造は、生産性の観点から、連続鋳造が好ましい。また、鋼片の厚みは、生産性の観点から、200mm以上とすることが好ましく、偏析の低減や、熱間圧延における加熱温度の均質性などを考慮すると、350mm以下が好ましい。
 次に、加熱炉を用いて鋼片を加熱し、熱間圧延を行う。続いて、粗圧延機を用いて図1(b)に示したスプリット法による粗圧延を行う。その後、中間ユニバーサル圧延機(中間圧延機)と水冷装置とを用いて中間圧延を行う。続いて、仕上圧延機を用いて仕上げ圧延を行って熱間圧延を終了する。このとき、必要に応じたタイミングでH形鋼を水冷してもよい。以下、各工程における条件等について説明する。
(鋼片の加熱温度:1100~1350℃)
 鋼片の加熱温度は、1100~1350℃とする。加熱温度が低いと変形抵抗が高くなるので、熱間圧延における造形性を確保するために1100℃以上とする。一方、鋼片の加熱温度が1350℃を超えると、素材である鋼片の表面の酸化物が溶融して加熱炉内が損傷することがある。Nbなど、析出物を形成する元素を十分に固溶させるためには、鋼片の加熱温度の下限を1150℃以上とすることが好ましい。特に、製品の板厚が薄い場合は、累積圧下率が大きくなるため、鋼片の加熱温度を1200℃以上にすることが好ましい。組織を微細にするためには、鋼片の加熱温度の上限を1300℃以下にすることが好ましい。
(粗圧延工程における割り込み長さHの規定)
 スプリット法による粗圧延では、矩形断面の鋼片の厚さTと、仕上圧延工程によって形成された圧延H形鋼のフランジの幅Fとが、図5における所定の孔型先端角度(孔型内周の突起部先端角度)の孔型による割り込み長さHと下記式(1)を満足するように割り込み長さHを設定しても良い。
 H≧0.5F-0.5T ・・・(1)
 上記式(1)の通り、割り込み長さHの下限は矩形断面の鋼片の厚さTと、仕上圧延工程によって形成された圧延H形鋼のフランジの幅Fに対して0.5F-0.5T以上とする。これは、粗圧延後のフランジ幅が製品のフランジ幅と同等になるまでスプリット法による圧延造形を行うことにより、中心偏析部が凝集しやすい鈍角な孔型での圧下量を抑制するためである。割り込み長さHの上限は特に設けないが、0.8F-0.5Tを超えると中間圧延時に過大なエッジング圧延が必要となり、生産性が落ちるため、0.8F-0.5T以下が望ましい。
(割り込み時の孔型における突起部先端角度)
 図1(b)、図5に示した孔型先端角度(孔型内周の突起部先端角度)については、割り込みを形成させるのに十分鋭角な角度とすれば良く、例えばその上限は40°に設定しても良い。型先端角度が40°を超えるとスラブの中心偏析部がフランジで分散されず、図1(a)に示すエッジング圧延同様にフィレット部に凝集するためである。孔型先端角度を40°以下とすることで図1(b)のスプリット法で示すように割り込み形成用孔型での圧延時に中心偏析部がフランジ内で凝集せずに分散し、フィレット部における靭性の低下を抑制することが可能となる。
 孔型先端角度の下限は特に設けないが、25°を下回ると圧延時にロールが折損する可能性があるため、25°以上が好ましい。
 なお、この際、スラブの中心偏析部は図1(b)に示すようにI姿勢での左右フランジに分かれるのではなく、左右どちらかのフランジに分散されてもよい。
 図1(b)に示すスプリット法により、例えばフランジ幅150mm以上の圧延H形鋼を製造する場合、中心偏析部は、フランジ部において分散され、フランジにおける、フランジ幅の中心付近からフランジ幅方向の一方の端面あるいは両端面に向かって15mm以上、且つ、厚み方向でフランジ表層(ウェブと反対側に位置するフランジ面からフランジ厚方向に)2mm以内の領域に残存している。図1(b)に示すスプリット法によって圧延H形鋼を製造した場合、フランジ部に分散された中心偏析部は、当該領域中において所定の長さに亘って残存することになる。この表層付近に分散される中心偏析部は、前述のナイタール腐食液による同定で現出可能である。
 表層付近に分散される中心偏析部でのMnの上位5%平均濃度を(CMn-surface)とし、この位置における偏析度(CMn-surface)/(CMn)は、1.1以上1.6以下であることが望ましい。スプリット法ではエッジング法に比べて、フランジ表層の偏析度が高くなる傾向にある。偏析度が1.1以上であると、表面のクラックを目視で確認でき検査が容易になるメリットがあり、また、表面のクラックに基づき、複数製造される製品をそれぞれの個体としてトレースすることも可能である。一方で、当該偏析度が1.6を超えると、フランジ表面に多数のクラックが入り易くなるため、偏析度は1.1以上1.6以下であることが望ましい。なお、(CMn-surface)における上位5%平均濃度の求め方は、上記(CMn-max)における上位5%平均濃度の求め方に準ずるものとする。即ち、サンプルの採取位置が異なるだけで、数値の求め方は基本的に同じである。
(中間圧延工程)
 熱間圧延の中間圧延工程では、中間ユニバーサル圧延機による制御圧延を行ってもよい。制御圧延は、圧延温度及び圧下率を制御する製造方法である。熱間圧延の中間圧延では、パス間水冷圧延加工を1パス以上施すことが好ましい。パス間水冷圧延加工では、圧延パス間で水冷を行うことにより、フランジの表層部と内部とに温度差を付与し、圧延する。パス間水冷圧延加工は、例えば、圧延パス間における水冷により、700℃以下にフランジ表面温度を水冷した後、復熱過程で圧延する製造方法である。
 パス間水冷圧延加工を行う場合、中間ユニバーサル圧延機の前後に設けた水冷装置を用いて、圧延パス間の水冷を行うことが好ましく、水冷装置によるフランジ外側面のスプレー冷却とリバース圧延とを繰り返し行うことが好ましい。パス間水冷圧延加工では、圧下率が小さい場合でも、板厚の内部まで加工歪みを導入することができる。また、水冷により圧延温度を短時間で低下させることによって、生産性も向上する。
 なお、中間圧延工程及び仕上圧延工程としての熱間圧延の終了後は、そのまま、仕上圧延機の出側に設けた水冷装置によって、フランジの内面及び外面に加速冷却を施してもよい。フランジの内外面の冷却速度が均一になり、材質及び形状精度を向上させることができる。粗圧延工程後のウェブの上面はフランジの内面に噴射した冷却水によって、上面側が冷却される。ウェブの反りを抑制するため、ウェブの下面から冷却してもよい。
 以上説明した本実施の形態に係るH形鋼の製造方法によって製造される圧延H形鋼においては、圧延造形前のスラブ内に存在する中心偏析部をフィレット部において凝集させることなく分散させて圧延造形を完了させることができる。具体的には、圧延造形後のフランジにおいて、ΔvTrsが40℃以下であるような圧延H形鋼が製造され、その偏析度は1.6以下となる(図2参照)。
 このような圧延H形鋼では、フランジのフィレット部に中心偏析部が凝集して靱性や脆化特性に悪影響が及ぶといった事が回避される。即ち、靱性や脆化特性に優れたH形鋼製品の製造が実現される。また、フランジにおいて分散された中心偏析部は、フランジにおける、フランジ幅の中心からフランジ幅方向の一方の端面又は両端面に向かって15mm以上、且つ、ウェブと反対側に位置する面からフランジ厚方向に2mm以内の領域に残存するが、凝集していないために、靱性や脆化特性への影響はほとんどないものと推定される。更には、従来はフランジの内部状態を調べるために種々の検査・実験等が求められたが、本実施の形態に係るH形鋼製品では、ウェブと反対側に位置するフランジ面を目視により調べることができる。
 以上、本発明の実施の形態の一例を説明したが、本発明は図示の形態に限定されない。特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例を採用することができ、それらについても当然に本発明の技術的範囲に属するものと了解される。
 本発明の実施例としては、上記実施の形態で説明した成分組成及び製造条件を満たして製造された圧延H形鋼から試料を採取し、当該試料の化学分析を行った。一方、比較例として、上記実施の形態で説明した成分組成及び製造条件のいずれかを満たさないような圧延H形鋼から試料を採取し、同様の化学分析を行った。以下、詳細な実施例、比較例の比較について説明する。
 (実施例)
 先ず、実施例のNo.1~13、28として、表1に示す成分組成(単位:質量%)を有する鋼を溶製し、連続鋳造により、厚みが250~300mmの鋼片を製造した。鋼の溶製は転炉で行い、一次脱酸し、合金を添加して成分を調整し、必要に応じて、真空脱ガス処理を行った。そして、得られた鋼片を表2に示す製造条件で熱間圧延を行った。熱間圧延では、粗圧延に続いて、中間ユニバーサル圧延機と、その前後に設けた水冷装置とを用いて、必要に応じてフランジ外側面のスプレー冷却とリバース圧延および圧延後の水冷を行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 そして、最脆化部及びF/6-t/4の各位置(図3参照)から、圧延方向を長さ方向とする試験片を採取し、機械特性を測定した。機械特性として、降伏点(YP)、引張強度(TS)、vTrsを測定した。引張試験は、JIS Z 2241(2011年版)に準拠して行い、シャルピー衝撃試験は、JIS Z 2242(2005年版)に準拠して行った。また、最脆化部とF/6-t/4の各位置から試料を採取し、中心偏析部が凝集している10mm(長手方向)×10mm(フランジ厚方向)の正方形内の領域について、EPMAにより(CMn-max)と、JIS G0404(2014年版)に記載の方法で(CMn)をそれぞれ測定及び算出した。
 また、フランジ幅の中心からフランジ幅方向の少なくとも一方の端面に向かって15mm以上にわたって、表層2mm以内に中心偏析が残存しており、表層部のMn濃度として、フランジ厚方向と平行な中心偏析を含まず、且つ厚み方向でフランジ表層下10mmの領域(図3参照)について、EPMAにより(CMn-surface)を測定及び算出した。
 測定・算出結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 なお、製造すべきH形鋼の各特性の目標値は、常温の降伏点(YP)又は0.2%耐力が335MPa以上、引張強度(TS)が450MPa以上、ΔvTrsが40℃以下である。
 表3に示すように、実施例のNo.1~13、28は、常温の強度が目標範囲であり、かつ、ΔvTrsが目標値の40℃以下を満足している。また、Mnの偏析度はいずれも1.6以下であった。Mnの偏析度は望ましくは1.5以下であり、さらに望ましくは1.4以下である。
 (比較例)
 比較例のNo.14~27として、表4に示す成分組成を有する鋼を溶製し、上記実施例と同様の方法で厚みが250~300mmの鋼片を製造した。そして、得られた鋼片を表5に示す製造条件で熱間圧延を行った。
 なお、以下の表4及び表5において下線を付した箇所は、上記実施の形態で説明した本発明に係る成分組成及び製造条件を満たさない箇所である。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 そして、最脆化部及びF/6-t/4位置(図3参照)から、圧延方向を長さ方向とする試験片を採取し、上記実施例と同様に、機械特性を測定した。機械特性として、降伏点(YP)、引張強度(TS)、vTrsを測定した。また、最脆化部と表層部とF/6-t/4の各位置から試料を採取し、上記実施例と同様に、EPMAにより(CMn-max)と(CMn-surface)、JIS G0404(2014年版)に記載の方法により(CMn)をそれぞれ測定及び算出した。
 測定・算出結果を以下の表6に示す。なお、以下の表6において下線を付した箇所は、製造すべきH形鋼の各特性の目標値から外れた値である。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、No.14、16、18はC、Mn、Si量が少ないため強度が不足している。No.15はC量が多く、No.17はSi量が多く、硬質相の増加及び粗大化によってF/6-t/4でのvTrsが0℃以上であり、最脆化部においても靱性が低下している。No.19はMn量が多く、F/6-t/4でのvTrsが0℃以上であり、最脆化部において中心偏析度が悪化し、MnSやMAによって靭性が悪化している。No.20はP量が多く、No.21はS量が多く、靭性が低下している。No.22は粗圧延の孔型先端角度が40°を超えており、スラブ中心偏析部が分散せずに凝集したため、最脆化部の靭性が低下している。No.23、24は割り込みの長さが不足しており、スラブ中心偏析部が分散せずに凝集したため、最脆化部の靭性が低下している。No.25はNb量が多く、No.26はMo量が多く、No.27はREM量が多く、最脆化部の靱性が低下している。
 本発明は、鋼片を熱間圧延して製造される圧延H形鋼及びその製造方法に適用できる。

Claims (4)

  1. 質量%で、
    C:0.01~0.25%、
    Si:0.05%~0.50%、
    Mn:0.40~2.50%、
    P:0.050%以下、
    S:0.050%以下、
    N:0.020%以下、
    Cu:0.70%以下、
    Ni:0.70%以下、
    Cr:0.50%以下、
    V:0.12%以下、
    Mo:0.30%以下、
    Nb:0.08%以下、
    Ti:0.05%以下、
    Al:0.07%以下、
    REM:0.010%以下、
    Ca:0.0050%以下、
    残部:Fe及び不可避不純物、
    である化学組成を有する圧延H形鋼であって、
    フランジにおける最脆化部でのMn濃度の上位5%平均値が、フランジ幅方向の端面からフランジ幅方向に1/6の位置、且つ、ウェブと反対側に位置するフランジの面からフランジ厚方向に1/4の位置におけるMn濃度の1.6倍以下であり、
    フランジ幅の中心からフランジ幅方向の一方の端面あるいは両端面に向かって15mm以上、且つ、厚み方向でフランジ表層2mm以内の領域に分散される中心偏析部でのMn濃度の上位5%平均値が、フランジ幅方向の端面からフランジ幅方向に1/6の位置、且つ、ウェブと反対側に位置するフランジの面からフランジ厚方向に1/4の位置におけるMn濃度の1.1倍以上1.6倍以下であることを特徴とする、圧延H形鋼。
  2. 矩形断面の鋼片を1100~1350℃に加熱し、順に粗圧延工程、中間圧延工程、仕上圧延工程を行い請求項1に記載の圧延H形鋼を製造する製造方法であって、
    前記粗圧延工程を行う圧延機には、被圧延材を造形する3以上の複数の孔型が設けられ、
    前記複数の孔型の少なくとも一つは、被圧延材の幅方向に対し鉛直に割り込みを入れる突起部が形成された上下一対のロールに設けられている割り込み形成用孔型であり、
    前記割り込み形成用孔型の後段において、当該割り込み形成用孔型によって形成された分割部位を順次折り曲げる造形用孔型が設けられることを特徴とする、圧延H形鋼の製造方法。
  3. 前記割り込み形成用孔型に形成されている突起部の先端角度は40°以下であることを特徴とする、請求項2に記載の圧延H形鋼の製造方法。
  4. 前記突起部によって形成された割り込みの長さHと、前記矩形断面の鋼片の厚さTと、仕上圧延工程によって形成された圧延H形鋼のフランジの幅Fとが、以下の式(1)を満たすことを特徴とする、請求項2又は3に記載の圧延H形鋼の製造方法。
    H≧0.5F-0.5T ・・・(1)
PCT/JP2017/030951 2016-08-29 2017-08-29 圧延h形鋼及びその製造方法 WO2018043491A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197006349A KR101984463B1 (ko) 2016-08-29 2017-08-29 압연 h형강 및 그 제조 방법
US16/327,280 US20190184436A1 (en) 2016-08-29 2017-08-29 Rolled h-shaped steel and manufacturing method thereof
JP2018525629A JP6421900B2 (ja) 2016-08-29 2017-08-29 圧延h形鋼及びその製造方法
CN201780053617.1A CN109642296B (zh) 2016-08-29 2017-08-29 轧制h型钢及其制造方法
EP17846496.2A EP3483294B1 (en) 2016-08-29 2017-08-29 Rolled h-shaped steel and manufacturing method thereof
PH12019500064A PH12019500064A1 (en) 2016-08-29 2019-01-09 Rolled h-shaped steel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016166535 2016-08-29
JP2016-166535 2016-08-29

Publications (1)

Publication Number Publication Date
WO2018043491A1 true WO2018043491A1 (ja) 2018-03-08

Family

ID=61309453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030951 WO2018043491A1 (ja) 2016-08-29 2017-08-29 圧延h形鋼及びその製造方法

Country Status (8)

Country Link
US (1) US20190184436A1 (ja)
EP (1) EP3483294B1 (ja)
JP (1) JP6421900B2 (ja)
KR (1) KR101984463B1 (ja)
CN (1) CN109642296B (ja)
PH (1) PH12019500064A1 (ja)
TW (1) TWI641701B (ja)
WO (1) WO2018043491A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3789508A4 (en) * 2018-05-16 2021-03-10 Shandong Iron and Steel Co., Ltd. HIGH Toughness, HOT-ROLLED, LOW-TEMPERATURE-RESISTANT H-BEAM WITH YIELD STRENGTH 460 IN MPA QUALITY AND PROCESS FOR ITS MANUFACTURING

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110629112A (zh) * 2019-09-25 2019-12-31 马鞍山钢铁股份有限公司 一种屈服强度550MPa级热轧H型钢及生产方法
CN110527915B (zh) * 2019-09-25 2020-12-01 马鞍山钢铁股份有限公司 一种460MPa级热轧H型钢及其生产方法
CN110578090A (zh) * 2019-09-25 2019-12-17 马鞍山钢铁股份有限公司 一种屈服强度500MPa级热轧H型钢及生产方法
CN110592479B (zh) * 2019-09-25 2020-12-01 马鞍山钢铁股份有限公司 一种热轧h型钢及其生产方法
CN112458364B (zh) * 2020-11-04 2021-09-03 马鞍山钢铁股份有限公司 一种超厚规格热轧h型钢及其生产方法
CN112746221B (zh) * 2020-12-25 2021-10-15 钢铁研究总院 一种V-N微合金化550MPa热轧厚壁H型钢及其生产工艺
CN113234995B (zh) * 2021-04-14 2022-04-26 马鞍山钢铁股份有限公司 一种屈服强度600MPa级超厚热轧H型钢及其生产方法
CN113699441B (zh) * 2021-07-29 2022-10-04 马鞍山钢铁股份有限公司 一种低温冲击韧性良好的翼缘超厚热轧h型钢及其生产方法
CN115287555A (zh) * 2022-02-18 2022-11-04 唐山盛航环保机车制造有限公司 一种叉车属具用“s”钢及轧制工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188501A (ja) * 1982-04-30 1983-11-04 Sumitomo Metal Ind Ltd H形鋼用粗形鋼片の製造方法
JPH0788502A (ja) * 1993-09-27 1995-04-04 Nippon Steel Corp H形鋼の圧延方法
JP2012180584A (ja) * 2011-03-03 2012-09-20 Jfe Steel Corp 靭性に優れる圧延h形鋼およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1179171A (en) * 1981-07-10 1984-12-11 Yoshiaki Kusaba Method for producing beam blank for universal beam
JPS6021101A (ja) * 1983-07-14 1985-02-02 Sumitomo Metal Ind Ltd 形鋼の粗形鋼片圧延方法
JPS6182903A (ja) * 1984-09-28 1986-04-26 Sumitomo Metal Ind Ltd フランジ内面に突起を有するh形鋼の圧延法
JPH0199701A (ja) * 1987-10-09 1989-04-18 Sumitomo Metal Ind Ltd H形鋼の粗圧延方法
JPH05305395A (ja) 1992-05-07 1993-11-19 Nippon Steel Corp 連続鋳造方法
JP2672236B2 (ja) 1992-10-12 1997-11-05 新日本製鐵株式会社 靱性の優れたh形鋼の製造方法
JP2698006B2 (ja) 1992-10-12 1998-01-19 新日本製鐵株式会社 靱性の優れたh形鋼の製造方法
JP2837056B2 (ja) * 1993-02-04 1998-12-14 新日本製鐵株式会社 制御圧延による低炭素当量圧延形鋼の製造方法
US5896770A (en) * 1995-12-21 1999-04-27 Nippon Steel Corporation Method and apparatus for rolling shape steel
WO1999054064A1 (fr) * 1998-04-15 1999-10-28 Nippon Steel Corporation Laminoir multifonctions pour laminer des profiles en h, equipement et procede correspondants
CN1504276A (zh) * 2002-12-02 2004-06-16 李宝安 普通三辊轧机轧制h型钢的工艺方法
JP2006063443A (ja) * 2004-07-28 2006-03-09 Nippon Steel Corp 耐火性に優れたh形鋼およびその製造方法
CN103056160A (zh) * 2013-01-24 2013-04-24 中冶赛迪工程技术股份有限公司 H型钢的x-i短流程轧制机组
EP2975149B1 (en) * 2013-03-14 2019-05-01 Nippon Steel & Sumitomo Metal Corporation H-shaped steel and process for manufacturing same
WO2016148031A1 (ja) 2015-03-19 2016-09-22 新日鐵住金株式会社 H形鋼の製造方法
CN105057345B (zh) * 2015-08-21 2017-03-22 天津市中重科技工程有限公司 一种万能轧机劈轧板坯生产h型钢的方法
US20190009315A1 (en) * 2016-01-07 2019-01-10 Nippon Steel & Sumitomo Metal Corporation Method for producing h-shaped steel and rolling apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188501A (ja) * 1982-04-30 1983-11-04 Sumitomo Metal Ind Ltd H形鋼用粗形鋼片の製造方法
JPH0788502A (ja) * 1993-09-27 1995-04-04 Nippon Steel Corp H形鋼の圧延方法
JP2012180584A (ja) * 2011-03-03 2012-09-20 Jfe Steel Corp 靭性に優れる圧延h形鋼およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3483294A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3789508A4 (en) * 2018-05-16 2021-03-10 Shandong Iron and Steel Co., Ltd. HIGH Toughness, HOT-ROLLED, LOW-TEMPERATURE-RESISTANT H-BEAM WITH YIELD STRENGTH 460 IN MPA QUALITY AND PROCESS FOR ITS MANUFACTURING

Also Published As

Publication number Publication date
EP3483294A1 (en) 2019-05-15
EP3483294A4 (en) 2019-11-27
TWI641701B (zh) 2018-11-21
KR101984463B1 (ko) 2019-05-30
PH12019500064A1 (en) 2019-11-04
JP6421900B2 (ja) 2018-11-14
US20190184436A1 (en) 2019-06-20
TW201812047A (zh) 2018-04-01
CN109642296A (zh) 2019-04-16
CN109642296B (zh) 2019-11-05
EP3483294B1 (en) 2022-02-16
KR20190029756A (ko) 2019-03-20
JPWO2018043491A1 (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6421900B2 (ja) 圧延h形鋼及びその製造方法
US9200353B2 (en) Method for manufacturing an ultra-highstrength steel bar
JP5079794B2 (ja) 高温強度、靭性に優れた鋼材並びにその製造方法
JP6645107B2 (ja) H形鋼及びその製造方法
US20140301889A1 (en) High-strength ultra-thick h-beam steel
JP2017115200A (ja) 低温用h形鋼及びその製造方法
CN113677448B (zh) 方形钢管及其制造方法以及建筑构造物
US20190300992A1 (en) Steel for Induction Hardening
US20240110255A1 (en) Extra thick hot rolled h section steel and production method therefor
JP6790641B2 (ja) 圧延h形鋼及びその製造方法
US8097096B2 (en) Fire resistant steel excellent in high temperature strength, toughness, and reheating embrittlement resistance and process for production of the same
TWI724782B (zh) 方形鋼管及其製造方法,以及建築構造物
JP2018090845A (ja) 鋼矢板およびその製造方法
JP6589503B2 (ja) H形鋼及びその製造方法
KR20210114031A (ko) 각형 강관 및 그 제조 방법 그리고 건축 구조물
JP2837056B2 (ja) 制御圧延による低炭素当量圧延形鋼の製造方法
JP6662156B2 (ja) 低温用h形鋼及びその製造方法
WO2020153407A1 (ja) 高マンガン鋼鋳片の製造方法、および、高マンガン鋼鋼片または鋼板の製造方法
JP4319945B2 (ja) 焼き入れ性と加工牲に優れた高炭素鋼板
JP5821792B2 (ja) Bを含有する鋼の連続鋳造鋳片の製造方法及びその連続鋳造方法
JP2006348378A (ja) 耐火性に優れた高強度極厚h形鋼およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018525629

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017846496

Country of ref document: EP

Effective date: 20190211

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197006349

Country of ref document: KR

Kind code of ref document: A