WO2018042822A1 - 誘導加熱装置および誘導加熱装置における負荷検知方法 - Google Patents

誘導加熱装置および誘導加熱装置における負荷検知方法 Download PDF

Info

Publication number
WO2018042822A1
WO2018042822A1 PCT/JP2017/022050 JP2017022050W WO2018042822A1 WO 2018042822 A1 WO2018042822 A1 WO 2018042822A1 JP 2017022050 W JP2017022050 W JP 2017022050W WO 2018042822 A1 WO2018042822 A1 WO 2018042822A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
load
heating
heating coils
unit
Prior art date
Application number
PCT/JP2017/022050
Other languages
English (en)
French (fr)
Inventor
洋一 黒瀬
正也 武部
雅志 木下
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP17845833.7A priority Critical patent/EP3509398B1/en
Priority to JP2018536968A priority patent/JP6887080B2/ja
Publication of WO2018042822A1 publication Critical patent/WO2018042822A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/1209Cooking devices induction cooking plates or the like and devices to be used in combination with them
    • H05B6/1245Cooking devices induction cooking plates or the like and devices to be used in combination with them with special coil arrangements
    • H05B6/1272Cooking devices induction cooking plates or the like and devices to be used in combination with them with special coil arrangements with more than one coil or coil segment per heating zone
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/05Heating plates with pan detection means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present disclosure relates to an induction heating apparatus that induction-heats a load such as a metal cooking pan placed on a top plate, and in particular, a multi-coil type induction heating having a plurality of heating coils provided below the top plate. Relates to the device.
  • the multi-coil induction heating cooker includes a large number of heating coils arranged in a matrix below the top plate, and is configured to be able to change the heating region depending on the situation (see Patent Documents 1 and 2).
  • the multi-coil heating cooker disclosed in Patent Documents 1 and 2 detects the position of the load placed on the top plate and identifies one or more heating coils to be operated. To do.
  • This operation is performed by detecting a change in the electrical signal in the energization path connecting the power source of the cooking device and each of the heating coils when a detection current that is high-frequency power is supplied to the heating coil.
  • this operation is referred to as load detection.
  • One aspect of the present disclosure is included in a top plate on which a load is placed, a plurality of heating coils provided below the top plate, a driving unit that supplies high-frequency power to the plurality of heating coils, and the driving unit.
  • An electric signal detection unit for detecting an electric signal related to the element, a switching unit for connecting or disconnecting each of the plurality of heating coils and the driving unit, and a driving unit and a switching unit for inputting the detected electric signal
  • It is an induction heating apparatus provided with the control part which controls a part.
  • control unit controls the drive unit and the switching unit so as to supply a detection current that is high-frequency power to all of the plurality of heating coils, and based on an electrical signal that responds to the detection current. Then, it is determined whether or not a load is placed above the plurality of heating coils.
  • control unit controls the driving unit and the switching unit so as to sequentially supply the detection current to each of the plurality of heating coils. It is determined whether or not a load is placed above each of the plurality of heating coils.
  • the control unit controls the switching unit so as to connect all of the heating coils to the driving unit after determination for each of the plurality of heating coils.
  • Another aspect of the present disclosure is a load detection method in an induction heating apparatus.
  • a detection current that is high-frequency power is supplied to all of the plurality of heating coils provided below the top plate, and the load is placed above the plurality of heating coils. Determining whether or not.
  • the load detection method of this aspect further supplies a detection current individually to each of the plurality of heating coils when it is determined that the load is placed above the plurality of heating coils. Determining whether a load is placed above each.
  • the load detection method of this aspect further includes a step of connecting all of the heating coils to the drive unit after the determination for each of the plurality of heating coils.
  • FIG. 1 is an exploded perspective view showing an induction heating cooker according to Embodiment 1.
  • FIG. FIG. 2 is a plan view of the induction heating cooker according to Embodiment 1 with the top plate removed.
  • FIG. 3 is a diagram showing sections A and B included in the left heating region Lh, the right heating region Rh, and the central heating region Ch, respectively.
  • FIG. 4 is a functional block diagram relating to a section in which two heating coils 3 are driven by one drive unit 4.
  • FIG. 5 is a circuit block diagram relating to a section in which the two heating coils 3 are driven by one drive unit 4.
  • FIG. 6A is a circuit block diagram which is a first modification of the circuit block diagram shown in FIG. FIG.
  • FIG. 6B is a circuit block diagram which is a second modification of the circuit block diagram shown in FIG.
  • FIG. 7A is a diagram schematically illustrating a temporal change in the peak value of the amplitude of the detection current for mounting detection.
  • FIG. 7B is a diagram schematically illustrating a temporal change in the peak value of the amplitude of the detection current for mounting detection.
  • FIG. 8A is a timing chart showing the operation of the switching elements 19a and 19b in the detection period Dp1.
  • FIG. 8B is a timing chart showing the operation of the switching elements 19a and 19b in the detection period Dp2.
  • FIG. 9A is a flowchart for placement detection according to the first embodiment.
  • FIG. 9B is a flowchart for placement detection according to Embodiment 1.
  • FIG. 9A is a flowchart for placement detection according to the first embodiment.
  • FIG. 9B is a flowchart for placement detection according to Embodiment 1.
  • FIG. 9A is a flowchar
  • FIG. 10A is a timing chart for placement detection and position specification according to Embodiment 1.
  • FIG. 10B is a timing chart of gate signals input to the switching elements 19a and 19b in the detection period Dp1.
  • FIG. 10C is a timing chart of gate signals input to the switching elements 19a and 19b in the detection period Dp2.
  • FIG. 10D is a timing chart of gate signals input to the switching elements 19a and 19b in the detection period Dp3.
  • FIG. 11 is a flowchart for position identification according to the first embodiment.
  • FIG. 12A is a timing chart for placement detection and position specification according to Embodiment 2.
  • FIG. 12B is a flowchart for position specification according to the second embodiment.
  • FIG. 13A is a block diagram of an induction heating cooker for explaining the concept of changing the detection cycle according to Embodiment 3.
  • FIG. 13B is a timing chart for illustrating the concept of changing the detection cycle according to Embodiment 3.
  • FIG. 14A is a flowchart for changing the detection period according to the third embodiment.
  • FIG. 14B is a flowchart for changing the detection cycle according to Embodiment 3.
  • FIG. 15A is a timing chart for explaining the concept of determination of the mounting state according to the fourth embodiment.
  • FIG. 15B is a diagram showing a placement status pattern for explaining the concept of determination of the placement status according to the fourth embodiment.
  • FIG. 16A is a flowchart for determining the placement status in the first detection cycle according to the fourth embodiment.
  • FIG. 16B is a flowchart for determining the placement status in the first detection cycle according to the fourth embodiment.
  • FIG. 17A is a flowchart for determining the placement status in the second and subsequent detection cycles according to the fourth embodiment.
  • FIG. 17B is a flowchart for determining the placement status in the second and subsequent detection cycles according to Embodiment 4.
  • FIG. 17C is a flowchart for determining the placement status in the second and subsequent detection cycles according to the fourth embodiment.
  • FIG. 18A is a flowchart for placement detection according to Embodiment 5.
  • FIG. 18B is a flowchart for placement detection according to Embodiment 5.
  • FIG. 19A is a flowchart for position specification according to the fifth embodiment.
  • FIG. 19B is a flowchart for position specification according to the fifth embodiment.
  • FIG. 20A is a flowchart for determining the mounting status according to the fifth embodiment.
  • FIG. 20B is a flowchart for determining the placement status according to the fifth embodiment.
  • FIG. 21 is a flowchart for determining the mounting status according to the fifth embodiment.
  • FIG. 22A is a flowchart for changing the detection cycle according to Embodiment 5.
  • FIG. 22B is a flowchart for changing the detection cycle according to Embodiment 5.
  • a first aspect of the present disclosure includes a top plate on which a load is placed, a plurality of heating coils provided below the top plate, a driving unit that supplies high-frequency power to the plurality of heating coils, and the driving unit. It is an induction heating apparatus provided with the electrical signal detection part which detects the electrical signal relevant to the detected element, and the control part which inputs the detected electrical signal and controls a drive part.
  • control unit controls the drive unit to supply the first detection current, which is high-frequency power, to the plurality of heating coils, and based on the electrical signal in response to the first detection current. Then, it is determined whether or not a load is placed above the plurality of heating coils.
  • the control unit uses a plurality of second detection currents that are high-frequency power and have a current value larger than the first detection current.
  • the drive unit is controlled so as to be supplied to the heating coil.
  • the control unit determines whether or not a load is placed above the plurality of heating coils based on the electrical signal in response to the second detection current.
  • the induction heating device further includes a switching unit that is controlled by the control unit to connect or disconnect each of the plurality of heating coils and the driving unit. Prepare.
  • the control unit controls the switching unit so as to connect all of the plurality of heating coils to the drive unit.
  • control unit determines that a load is placed above the plurality of heating coils based on the electrical signal in response to the first detection current or the second detection current, the control unit outputs the third detection current that is high-frequency power.
  • the drive unit and the switching unit are controlled so as to be sequentially and individually supplied to each of the plurality of heating coils.
  • the control unit determines whether or not a load is placed above each of the plurality of heating coils based on the electrical signal in response to the third detection current.
  • the top plate has at least one heating region, the at least one heating region has a plurality of sections, and the plurality of heating coils.
  • the drive unit are provided for one of the plurality of partitions.
  • the fourth aspect of the present disclosure is a load detection method in an induction heating device.
  • the load detection method according to this aspect includes a step of supplying a first detection current, which is high-frequency power, to a plurality of heating coils provided below the top plate, and a plurality of electric signals in response to the first detection current. Determining whether a load is placed above the heating coil.
  • the load detection method of this aspect further includes high-frequency power when the first detection current determines that the load is not placed above the plurality of heating coils, and the current value is larger than the first detection current. Supplying two detection currents to the plurality of heating coils, and determining whether a load is placed above the plurality of heating coils based on an electrical signal in response to the second detection current. Including.
  • the load detection method for the induction heating device includes all of the plurality of heating coils in the drive unit when the first detection current or the second detection current is supplied. Including connecting.
  • the load detection method further uses high-frequency power when it is determined that the load is placed above the plurality of heating coils based on the electrical signal in response to the first detection current or the second detection current.
  • a load is placed above each of the plurality of heating coils based on a step of individually supplying a third detection current to each of the plurality of heating coils individually and an electrical signal in response to the third detection current. Determining whether or not.
  • the present disclosure also includes configurations in which configurations according to some embodiments are appropriately combined. Therefore, the combined configuration has all the effects of the related embodiments.
  • induction heating cooker as an example of the induction heating apparatus of the present disclosure will be described.
  • present disclosure is not limited to induction heating cookers.
  • left and right mean left and right when the induction heating cooker is viewed by a user who is operating the induction heating cooker, respectively.
  • the user side of the induction heating cooker is defined as the front side of the induction heating cooker, and the side opposite to the user side of the induction heating cooker is defined as the rear side of the induction heating cooker.
  • FIG. 1 is an exploded perspective view showing an induction heating cooker that is an induction heating apparatus according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a plan view of the induction heating cooker of the present embodiment with the top plate removed.
  • the induction heating cooker includes a housing 1, a top plate 2 that covers the top of the housing 1, and a plurality of heating units provided inside the housing 1.
  • a coil 3 and an operation display unit 5 are provided.
  • the plurality of heating coils 3 are arranged in rows and columns.
  • the heating coil 3 has an elliptical shape in plan view.
  • the top plate 2 has a left heating area Lh on the left side, a right heating area Rh on the right side, and a central heating area Ch between the left heating area Lh and the right heating area Rh.
  • An operation display area P is provided between the left heating area Lh and the right heating area Rh and in front of the central heating area Ch.
  • heating coils 3 are arranged below the left heating region Lh and the right heating region Rh, respectively. These heating coils are arranged in a line in the front-rear direction with the major axis of the elliptical shape in the left-right direction.
  • Three heating coils 3 are arranged below the central heating area Ch. These heating coils are arranged in a line in the left-right direction with the major axis of the ellipse in the front-rear direction.
  • the left heating area Lh, the right heating area Rh, and the central heating area Ch constitute a heating area H.
  • the number of heating coils 3 provided in each of the left heating region Lh, the right heating region Rh, and the central heating region Ch is an example, and is not limited thereto.
  • a plurality of elliptical heating coils 3 are used in a plan view, but a circular heating coil may be used in a plan view.
  • the elliptical shape includes not only an elliptical shape in a strict sense but also a shape having a curved corner portion such as an oval shape or a shape like a track in an athletics.
  • the operation display unit 5 is a touch panel device having a liquid crystal display unit provided below the operation display region P.
  • the operation display unit 5 displays operation buttons, operation menus, operation details, operation states, and the like.
  • a plurality of temperature sensors are provided. Specifically, in the left heating region Lh and the right heating region Rh, an infrared sensor 6 is provided between two adjacent heating coils 3, and a thermistor 7 is provided in the center of each heating coil 3.
  • the thermistor 7 is provided at the center of the heating coil 3 located at the center of the three heating coils 3.
  • the thermistors 7 are respectively provided on the outer peripheries of the two heating coils 3 located at both ends of the three heating coils 3 respectively facing the left heating region Lh and the right heating region Rh.
  • An infrared sensor 6 is provided between two adjacent heating coils 3.
  • the temperature of the load can be detected with high accuracy wherever the load is placed on the heating region H.
  • a drive unit 4 (not shown in FIG. 2) for driving the heating coil 3
  • a drive control unit 11 (not shown in FIG. 2) for controlling the operation display unit 5, the drive unit 4 and the like. ) And are provided.
  • the drive unit 4 and the drive control unit 11 will be described later.
  • FIG. 3 shows two sections (sections A and B) included in the left heating area Lh, the right heating area Rh, and the central heating area Ch, respectively.
  • the section A has two heating coils 3, that is, the heating coil A1 and the heating coil A2 arranged behind the heating coil A1.
  • the section B has two heating coils 3, that is, a heating coil B1 and a heating coil B2 arranged behind the heating coil B1.
  • the section A has the heating coil 3 at the right end of the three heating coils 3, that is, the heating coil A2.
  • the section B has the remaining two heating coils 3, that is, the heating coil B1 and the heating coil B2 disposed on the left side thereof.
  • One drive unit 4 is provided in each section. That is, the induction heating cooker of the present embodiment has a total of six drive units 4. In the section A of the central heating region Ch, one driving unit 4 drives one heating coil 3. In other sections, one drive unit 4 drives the two heating coils 3 via the switching unit 8.
  • 4 and 5 are a functional block diagram and a circuit block diagram, respectively, relating to a section (for example, section A of the left heating region Lh) in which the two heating coils 3 are driven by one drive unit 4.
  • the switching unit 8 is controlled by the drive control unit 11 and includes a relay 8a and a relay 8b that connect or disconnect each of the heating coils A1 and A2 and the drive unit 4, respectively.
  • the relays 8a and 8b are constituted by mechanical relays or semiconductor relays.
  • the drive unit 4 converts the power of the commercial power supply 12 into high frequency power.
  • the drive unit 4 supplies high-frequency power to the heating coils A1 and A2 via the relay 8a and the relay 8b, respectively.
  • the load detection unit 10 determines whether or not a load is placed above the heating coil A1 and the heating coil A2 based on the detected input current and output current.
  • the drive control unit 11 controls the drive unit 4 according to the determination.
  • the load detection unit 10 and the drive control unit 11 constitute the control unit 50.
  • the drive unit 4 includes a diode bridge 15, a filter circuit 18, an inverter 9, a snubber capacitor 20, resonant capacitors 21 a and 21 b, an input current detector 13, and an output current detector 14.
  • the diode bridge 15 rectifies AC power of the commercial power supply 12 and outputs DC power.
  • the filter circuit 18 includes a choke coil 16 and a capacitor 17 and filters rectified DC power.
  • the inverter 9 is configured by connecting a switching element 19a disposed on the high voltage side and a switching element 19b disposed on the low voltage side in series.
  • IGBTs are used for the switching elements 19a and 19b.
  • a reverse conducting diode is connected in parallel to each of the switching elements 19a and 19b.
  • the inverter 9 is connected to both ends of the capacitor 17.
  • the resonance capacitor 21a is connected in series to the heating coil A1, and constitutes a resonance circuit together with the heating coil A1.
  • the resonance capacitor 21b is connected in series to the heating coil A2, and constitutes a resonance circuit together with the heating coil A2.
  • Snubber capacitor 20 reduces switching loss that occurs when switching elements 19a and 19b are turned off.
  • the snubber capacitor 20 is connected in parallel to the switching element 19b.
  • the input current detector 13 is an electric signal detector on the input side of the drive unit 4 that detects the current supplied to the diode bridge 15.
  • the output current detector 14 is an electrical signal detector on the output side of the drive unit 4 that detects the current flowing through the inverter 9. These electric signal detectors detect a voltage value, a current value, and a power value obtained by calculation.
  • FIG. 6A is a circuit block diagram which is a first modification of the circuit block diagram shown in FIG. As shown in FIG. 6A, in this modification, the drive unit 4 includes a resonant capacitor 21c instead of the resonant capacitors 21a and 21b. The drive unit 4 includes an input voltage detector 22 and an output current detector 23 instead of the input current detector 13 and the output current detector 14.
  • the drive unit 4 includes a clamp capacitor 24 that is connected in series with the inverter 9 and suppresses a voltage generated in the resonance capacitor 21c.
  • the input voltage detector 22 is an electric signal detector on the input side of the drive unit 4.
  • the output current detector 23 is an electrical signal detector on the output side of the drive unit 4.
  • the resonant capacitor 21c is connected in parallel with both of the heating coils A1 and A2 connected in parallel.
  • the resonance capacitor 21c constitutes one resonance circuit together with the heating coil A1, and constitutes another resonance circuit together with the heating coil A2.
  • the input voltage detector 22 is an electric signal detector on the input side of the drive unit 4 that detects the output voltage of the filter circuit 18.
  • the output current detector 23 is an electrical signal detector on the output side of the drive unit 4 that detects the current flowing through the inverter 9.
  • the load detector 10 determines whether or not a load is placed on the top 2 based on the detection values of the input voltage detector 22 and the output current detector 23.
  • FIG. 6B is a circuit block diagram which is a second modification of the circuit block diagram shown in FIG. As shown in FIG. 6B, in this modification, in addition to the configuration of the first modification shown in FIG. 6A, the drive unit 4 is a series body of a resonance capacitor 21d and a relay 25 connected in parallel to the resonance capacitor 21c.
  • the drive unit 4 is a series body of a resonance capacitor 21d and a relay 25 connected in parallel to the resonance capacitor 21c.
  • the drive control unit 11 turns on the relay 25.
  • the resonant capacitor 21d is connected in parallel with the resonant capacitor 21c, the combined capacitance of the resonant capacitors 21c and 21d changes to a value suitable for that case.
  • the induction heating cooker of the present embodiment has a wide heating area H formed by arranging a plurality of heating coils 3 below the top plate 2. Therefore, it is necessary to quickly and accurately detect the position of the load placed on the heating region H and specify the heating coil to be operated.
  • Load detection includes placement detection and position specification.
  • the placement detection means determining whether a load is placed somewhere in the heating region H, and the position specification specifies the heating coil 3 on which the load is placed above. Means that.
  • detection current Ds1 and Ds2 correspond to a first detection current and a second detection current, respectively.
  • FIGS. 7A and 7B schematically show temporal changes in the peak value of the amplitude of the detection current supplied to the heating coils 3 arranged in the sections A and B for placement detection.
  • the detection current Ds1 is supplied to the heating coil 3 arranged in the sections A and B in the detection period Dp1. Thereby, a comparatively large load, for example, a pan having a diameter of about 150 mm or more can be detected.
  • the detection current Ds2 is supplied to the heating coil 3 arranged in the sections A and B in the detection period Dp2 following the detection period Dp1.
  • the detection period Dp1 and the detection period Dp2 correspond to a first detection period and a second detection period, respectively.
  • FIG. 8A is a timing chart showing operations of the switching element 19a and the switching element 19b in the detection period Dp1.
  • FIG. 8B is a timing chart showing the operation of the switching elements 19a and 19b in the detection period Dp2.
  • the detection current Ds1 flows through the heating coil 3 when the switching element 19b is turned on during the on-time Ton1.
  • the detection current Ds2 flows through the heating coil 3 when the switching element 19b is turned on during the on time Ton2.
  • the on time Ton2 is longer than the on time Ton1.
  • the detection periods Dp1 and Dp2 are both 10 to 20 ms.
  • the switching period of the switching elements 19a and 19b is 50 ⁇ sec.
  • a cycle for executing load detection (hereinafter referred to as a detection cycle) is, for example, any time between 1.2 and 2.0 seconds.
  • the predetermined detection cycle (detection cycle T0) is set to 1.7 seconds.
  • FIG. 9A and FIG. 9B are flowcharts for placement detection according to the present embodiment.
  • the placement detection must be performed before the user instructs the operation display unit 5 to start heating.
  • the placement detection starts.
  • the induction heating cooker may have a proximity sensor so that placement detection starts.
  • step S9-1 the drive control unit 11 turns on the relay (if any) of the relays 8a and 8b in the section A to turn on the heating coil A1 in the section A. And A2 are connected to the inverter 9.
  • step S9-2 the drive control unit 11 turns on the relay (if any) of the relays 8a and 8b in the section B, and connects the heating coils B1 and B2 in the section B to the inverter 9. To do.
  • step S9-3 the detection current Ds1 is supplied to the heating coils A1 and A2 during the detection period Dp1 (10 to 20 ms) during the on-time Ton1, which is the first predetermined time.
  • step S9-4 the load detection unit 10 makes a predetermined determination on the detection values of the input current detector 13 and the output current detector 14 in the section A.
  • Step S9-4 If the result in Step S9-4 is Yes, the load detection unit 10 determines that a load is placed on the section A in Step S9-7.
  • step S9-5 the detection current Ds2 is applied to the heating coils A1 and A2 during the on-time Ton2, which is the second predetermined time during the detection period Dp2 (10 to 20 ms). Supplied.
  • step S9-6 the load detection unit 10 performs the same determination as in step S9-4 on the detection values of the input current detector 13 and the output current detector 14.
  • Step S9-6 When the result in Step S9-6 is Yes, the load detection unit 10 determines that a load is placed on the section A in Step S9-7. When the result in step S9-6 is No, in step S9-8, the load detection unit 10 determines that no load is placed on the section A.
  • Determination for placement detection in steps S9-4 and S9-6 is performed based on the detection values of the input current detector 13 and the output current detector 14.
  • the load detection unit 10 has a first threshold that is a threshold for the input current detector 13 and a second threshold that is a threshold for the output current detector 14.
  • the load detection unit 10 detects that the detection value of the input current detector 13 is equal to or greater than the first threshold value and that the detection value of the output current detector 14 is equal to or greater than the second threshold value.
  • the load detection unit 10 determines that the mounted load has an area equal to or greater than a predetermined ratio (for example, 40%) of the heating region H facing the heating coils A1 and A2. Is determined to be occupied.
  • a predetermined ratio for example, 40%
  • the determination for mounting detection is performed in addition to or instead of the determination based on the detection value itself as described above, and two consecutive detection values in each of the input current detector 13 and the output current detector 14. May be performed based on the change of
  • the threshold value used in step S9-4 may be the same as or different from the threshold value used in step S9-6.
  • the determination for the placement detection is performed by detecting the detection values of the input voltage detector 22 and the output current detector 23 and / or the input voltage detector 22 and the output current. This is performed based on changes in two consecutive detection values in each of the detectors 23.
  • the current value of the detection current Ds1 is smaller than the current value of the detection current Ds2. Therefore, the load detected during the detection period Dp2 is smaller than the load detected during the detection period Dp1.
  • a small pan having a minimum diameter of 110 mm corresponds to a load detected during the detection period Dp2, but a metal substance (for example, a knife or a fork) smaller than 100 mm ⁇ 20 mm ⁇ 1.0 mm is detected during the detection period Dp2. Not applicable to load.
  • the load detection unit 10 determines whether or not a load is placed in the section B.
  • the placement detection for the section B is substantially the same as the placement detection for the section A.
  • step S9-9 the detection current Ds1 is supplied to the heating coils B1 and B2 connected in parallel during the on-time Ton1, which is a first predetermined time during the detection period Dp1 (10 to 20 ms). Processing proceeds to FIG. 9B.
  • step S9-10 the load detection unit 10 performs the same determination as in step S9-4 of FIG. 9A on the detection values of the input current detector 13 and the output current detector 14.
  • step S9-10 determines in step S9-13 that a load is placed on the section B.
  • step S9-11 the heating coil B1 and B2 connected in parallel are connected to the on-time Ton2 that is the second predetermined time during the detection period Dp2 (10 to 20 ms). Is supplied with the detection current Ds2.
  • step S9-12 the load detection unit 10 performs the same determination as in step S9-4 of FIG. 9A on the detection values of the input current detector 13 and the output current detector 14.
  • step S9-12 determines in step S9-13 that a load is placed on the section B.
  • step S9-14 the load detection unit 10 determines that no load is placed on the section B.
  • steps S9-10 and S9-12 are performed in the same manner as the determinations in steps S9-4 and S9-6, respectively.
  • the placement detection Since the placement detection is periodically executed, if a large high-frequency current is used for the placement detection, a large leakage magnetic field may be generated from the heating coil 3 on which no load is placed. In the heating coil 3 on which the load is placed, the load may be heated unnecessarily.
  • the detection current Ds1 is supplied to the heating coil 3 for a short time (on time Ton1). As a result, if the load is large to some extent, the load can be detected accurately in a short time with energy saving. When the load is not detected by the detection current Ds1, it is possible to detect a load that is small to some extent by performing the placement detection again using the detection current Ds2.
  • the induction heating apparatus of the present embodiment may have a configuration in which one heating coil is driven by one drive unit 4.
  • the induction heating device of the present embodiment may have a configuration in which three or more heating coils 3 are driven by one drive unit 4 via the switching unit 8.
  • FIG. 10A is a timing chart for placement detection and position specification in the sections A and B of the left heating region Lh. As shown in FIG. 10A, in the present embodiment, placement detection and position specification are repeatedly performed at a predetermined detection cycle T0. In the detection cycle T0, the placement detection is first performed individually for the sections A and B.
  • the switching unit 8 in the sections A and B switches the connection so as to turn on the relay corresponding to the heating coil 3 to which the detection current Ds3 is to be supplied during the detection period Dp3.
  • the detection current Ds3 corresponds to a third detection current.
  • the relay 8b in the section A After supplying the detection current Ds3 to the heating coil A2, the relay 8b in the section A is kept on. After the detection current Ds3 is supplied to the heating coil B2, the relay 8b in the section B is kept on.
  • the detection period Dp3 is 200 ms.
  • the switching period of the switching elements 19a and 19b is 50 ⁇ sec.
  • the detection cycle T0 is any time between 1.2 and 2.0 seconds.
  • the detection period T0 is set to 1.7 seconds.
  • the detection period Dp3 corresponds to a third detection period.
  • the signal shown in FIG. 10B is the same as the signal shown in FIG. 8A, and is a gate signal input to the switching elements 19a and 19b in the detection period Dp1 (see FIG. 10A) for performing placement detection.
  • the on time Ton1 is 5 ⁇ sec
  • the switching period of the switching elements 19a and 19b is 50 ⁇ sec.
  • the signal shown in FIG. 10C is the same as the signal shown in FIG. 8B, and is a gate signal input to the switching elements 19a and 19b in the detection period Dp2 (see FIG. 10A) for performing placement detection.
  • the on-time Ton2 is 9 ⁇ sec
  • the switching period of the switching elements 19a and 19b is 50 ⁇ sec.
  • the signal shown in FIG. 10D is a gate signal input to the switching elements 19a and 19b in the detection period Dp3 (see FIG. 10A) for specifying the position.
  • the ON time Ton3 of the switching element 19b is gradually increased to a predetermined maximum value.
  • the maximum value of the on time Ton3 is longer than the on time Ton2.
  • one cycle of the switching operation in the switching elements 19a and 19b is 50 ⁇ sec.
  • the on time Ton3 corresponds to a third predetermined time. As the on time Ton3 increases, the detection current Ds3 also increases.
  • FIG. 11 is a flowchart for specifying the position according to the present embodiment. As a result of the placement detection, when it is determined that a load is placed on any of the sections A and B, the position specification is started.
  • step S11-1 when the result of the placement detection shown in FIG. 9A is “a load is placed on the section A” in step S11-1, the process proceeds to step S11-2. Otherwise, the process proceeds to step S11-3.
  • step S11-2 the detection current Ds3 is sequentially supplied individually to the heating coils A1 and A2.
  • the load detector 10 determines the position in the section A by determining whether or not a load is placed above each of the heating coils A1 and A2.
  • step S11-2 The determination for specifying the position in step S11-2 is the same as the above-described mounting detection, and the detection values of the input current detector 13 and the output current detector 14, and / or the input current detector 13, the output current detection. This is performed on the basis of changes in two consecutive detection values in each of the units 14.
  • the position specifying for the section B is performed in steps S11-3 and S11-4 in the same manner as steps S11-1 and S11-2.
  • the operation display unit 5 causes the operation display area P corresponding to the load placement state in the heating area H to emit light. This is a state where load detection is completed for all of the heating coils 3 before the start of induction heating.
  • the loading status may be simply referred to as a mounting status.
  • the drive control unit 11 turns on the relays 8a and 8b of all the switching units 8.
  • load detection can be performed at the location of the heating region H where the load is not placed, and load detection is also continuously performed at the location of the heating region H where the load is placed.
  • the change in the mounting status means that the load is moved, removed or added.
  • This operation is performed when the same detection result is obtained for a predetermined number of times after it is determined that the above situation has occurred. This is because if this operation is performed immediately after the above situation is detected, the heating coil A2 is disconnected from the inverter 9, for example, when the user lifts the load and immediately replaces it.
  • the switching unit 8 disconnects the heating coil A1 from the inverter 9 and connects the heating coil A2 to the inverter 9, for example, there is a change of a predetermined amount or more in the detection value of the electric signal detection unit. When this occurs, load detection is performed individually for the heating coils A1 and A2.
  • the drive control unit 11 determines that there is no change in the placement status, and the switching unit 8 is before the change in the detected value is detected.
  • the state returns to the same state, that is, the heating coil A1 is disconnected from the inverter 9 and the heating coil A2 is connected to the inverter 9. This is because there is a high possibility that the change in the detected value is due to a slight movement of the load without changing the heating coil 3 to be operated.
  • both the heating coils A1 and A2 are connected to the inverter 9, and load detection is executed.
  • the operations of the relays 8a and 8b can be reduced as much as possible.
  • the relays 8a and 8b are mechanical relays, the generation of switching sound can be suppressed.
  • the drive control unit 11 turns on the relays 8 a and 8 b of all the switching units 8 so as to connect all the heating coils 3 to the inverter 9.
  • the control unit 50 controls the drive unit 4 so as to supply the detection current Ds1 that is high-frequency power to the heating coils A1 and A2.
  • the controller 50 determines whether or not a load is placed above the heating coils A1 and A2 based on the change in the electrical signal.
  • control unit 50 supplies the heating coils A1 and A2 with the detection current Ds2 that is high-frequency power and has a current value larger than the detection current Ds1.
  • the drive unit 4 is controlled to do so.
  • the control unit 50 determines whether or not a load is placed above the heating coils A1 and A2 based on the change in the electrical signal.
  • the control unit 50 controls the switching unit 8 so as to connect all of the heating coils A1 and A2 to the driving unit 4.
  • the controller 50 determines whether or not a load is placed above the heating coils A1 and A2 based on the change in the electrical signal.
  • control unit 50 determines that the load is placed above the heating coils A1 and A2
  • the control unit 50 supplies the detection current Ds3, which is high-frequency power, to each of the heating coils A1 and A2 individually.
  • the drive unit 4 and the switching unit 8 are controlled.
  • Control unit 50 determines whether or not a load is placed above each of heating coils A1 and A2.
  • the top plate 2 has the left heating region Lh, the central heating region Ch, and the right heating region Rh, these heating regions have the sections A and B, and the heating The coils A1 and A2 and the drive unit 4 are provided for the section A of the sections A and B.
  • the position of the load placed on the heating area H can be detected quickly and accurately, and the heating coil to be operated can be specified.
  • control unit 50 controls the drive unit 4 and the switching unit 8 so as to supply the detection currents Ds1 and Ds2 to the heating coils A1 and A2, and the control unit 50 Determines whether a load is placed above the heating coils A1 and A2 based on the change in the electrical signal.
  • control unit 50 switches the driving unit 4 and the switching unit so that the detection current Ds3 is sequentially supplied to each of the heating coils A1 and A2.
  • the unit 8 is controlled to determine whether or not a load is placed above each of the heating coils A1 and A2.
  • control unit 50 controls the switching unit 8 so as to connect the heating coils A1 and A2 to the drive unit.
  • the microcomputer constitutes the load detection unit 10 and the drive control unit 11.
  • the present disclosure is not limited to this, if a programmable microcomputer is used, the processing contents can be easily changed, and the degree of freedom in design can be increased.
  • the load detection unit 10 and the drive control unit 11 can be configured by a logic circuit.
  • the load detection unit 10 and the drive control unit 11 may be physically configured by one or a plurality of elements.
  • each item may correspond to one element.
  • the induction heating cooker according to the present embodiment has the same configuration as that of the first embodiment and performs the same placement detection as that of the first embodiment.
  • This embodiment is different from the first embodiment in that the position specification shown in FIGS. 12A and 12B is performed instead of the position specification shown in FIGS. 10A and 11.
  • the position specification according to the present embodiment is a modification of the position specification according to the first embodiment.
  • FIG. 12A is a timing chart for placement detection and position specification in the sections A and B of the left heating region Lh.
  • FIG. 12A differs from FIG. 10A only in the order of position specification.
  • the position is specified in the order of the heating coil A1, the heating coil A2, the heating coil B1, and the heating coil B2.
  • the position is specified in the order of the heating coil A1, the heating coil B2, the heating coil A2, and the heating coil B1.
  • the switching unit 8 in the sections A and B switches the connection so as to turn on the relay corresponding to the heating coil 3 to which the detection current Ds3 is to be supplied during the detection period Dp3.
  • the relay 8b in the section A After supplying the detection current Ds3 to the heating coil A2, the relay 8b in the section A is kept on. After the detection current Ds3 is supplied to the heating coil B1, the relay 8a in the section B is kept on.
  • the gate signals input to the switching elements 19a and 19b in the detection periods Dp1, Dp2, and Dp3 are the same as those shown in FIGS. 10B, 10C, and 10D, respectively.
  • FIG. 12B is a flowchart for position specification according to the present embodiment. As shown in FIG. 12B, if the result of the placement detection shown in FIG. 9A is “a load is placed on the section A” in step S12-1, the process proceeds to step S12-2. Otherwise, the process proceeds to step S12-3.
  • step S12-2 the detection current Ds3 is supplied to the heating coil A1.
  • the load detection unit 10 determines whether or not a load is placed above the heating coil A1.
  • step S12-3 if the result of the placement detection shown in FIG. 9A is “a load is placed on section B”, the process proceeds to step S12-4. Otherwise, the process proceeds to step S12-5.
  • step S12-4 the detection current Ds3 is supplied to the heating coil B2.
  • the load detection unit 10 determines whether or not a load is placed above the heating coil B1.
  • step S12-5 when the result of the placement detection shown in FIG. 9A is “a load is placed on section A”, the process proceeds to step S12-6. Otherwise, the process proceeds to step S12-7.
  • step S12-6 the detection current Ds3 is supplied to the heating coil A2.
  • the load detection unit 10 determines whether or not a load is placed above the heating coil A2.
  • step S12-7 if the result of the placement detection shown in FIG. 9A is “a load is placed on section B”, the process proceeds to step S12-8. Otherwise, the position specifying process ends.
  • step S12-8 the detection current Ds3 is supplied to the heating coil B1.
  • the load detection unit 10 determines whether or not a load is placed above the heating coil B2. This completes the position specifying process.
  • the determination for specifying the position in steps S12-2, S12-4, S12-6, and S12-8 is performed using the detection values of the input current detector 13 and the output current detector 14, and / or Or it is based on the change of two continuous detection values in each of the input current detector 13 and the output current detector 14.
  • the detection current is supplied to the sections A and B from the corresponding driving units 4 respectively. Therefore, for example, the detection period Dp3 for the heating coil B1 in the section B can be overlapped with the detection period Dp3 for the heating coil A1 in the section A. As a result, the detection cycle can be shortened.
  • the relay 8b in the section A is kept on.
  • the relay 8a in the section B is kept on.
  • FIG. 13A is a block diagram of an induction heating cooker for explaining the concept of changing the detection cycle according to the present embodiment.
  • the induction heating cooker for explaining the concept includes four heating coils (heating coils 31 to 34) arranged in a line below the top plate 2, and four heating coils for driving the heating coils, respectively. It has a multi-coil type equipped with a drive unit 4.
  • FIG. 13B is a timing chart for explaining the concept of changing the detection cycle in the induction heating cooker shown in FIG. 13A.
  • FIG. 13B shows detection periods Dpa1 to Dpk1, Dpa2 to Dpk2, Dpa3 to Dpk3, and detection periods in which the placement detection is performed on the heating coils 31 to 34 in the detection cycles T (a) to T (k), respectively. Periods Dpa4 to Dpk4 are shown. Each length of the detection cycles T (a) to T (k) is equal to the detection cycle T0.
  • the load detection unit 10 detects whether or not a load is placed above the heating coils 31 to 34. .
  • the lower half of FIG. 13B shows whether or not the load is placed above the heating coils 31 to 34. Specifically, the lower half of FIG. 13B shows that the load placed above the heating coils 31 and 32 has moved above the heating coils 32 and 33.
  • the detection cycle is extended to a detection cycle T1 that is three times the detection cycle T0.
  • the load detection unit 10 detects that a load is placed above the heating coil 33.
  • the detection cycle T (g) a detection period is provided for the heating coils 31 to 34 and placement detection is performed. That is, for the heating coils 31 and 32, the detection cycle that was the detection cycle T1 is shortened to the detection cycle T2. As a result, the load detection unit 10 detects that the load placed above the heating coils 31 and 32 has moved above the heating coils 32 and 33.
  • a detection period is provided for the heating coils 31 to 34 and placement detection is performed.
  • no detection period is provided in the detection cycles T (i) and T (j) for the heating coils 32 and 33, and the detection cycle T (k).
  • a detection period is provided. That is, for the heating coils 32 and 33, the detection cycle is extended to a detection cycle T1 that is three times the detection cycle T0.
  • the placement detection is performed at every detection cycle T1 for the heating coil in which the placement of the load is detected above.
  • the load is detected at the detection cycle T0.
  • the detection cycle is shortened. In the heating coil in which the placement of the load is newly detected, if there is no change in the placement situation thereafter, the detection cycle is extended again.
  • the frequency of mounting detection is reduced for a load that has already been recognized. Thereby, heat generation of the load due to the detected current can be suppressed.
  • the switching operation of the switching unit can be reduced.
  • FIG. 14A and FIG. 14B are flowcharts for changing the detection cycle according to the present embodiment.
  • the change of the detection cycle shown in FIGS. 14A and 14B is executed after load detection including the above-described placement detection and, if necessary, the above-described position specification is executed.
  • step S14-1 the drive control unit 11 determines whether or not the placement detection has been performed continuously a predetermined number of times (N times, for example, 5 times). Until the number of placement detections reaches N, placement detection shown in FIGS. 9A and 9B is performed in step S14-2. If the placement detection is performed N times consecutively, the process proceeds to step S14-3.
  • step S14-3 the detection current Ds1 is supplied to the heating coils A1 and A2 during the on-time Ton1 during the detection period Dp1.
  • step S14-4 the load detection unit 10 performs the same determination as in step S9-4 in FIG. 9A on the detection values of the input current detector 13 and the output current detector 14 in the section A.
  • a relatively large load for example, a pan having a diameter of about 150 mm or more is detected.
  • step S14-4 If the result in step S14-4 is No, that is, if the load is not detected by the detection current Ds1, the detection current is detected in the heating coil A1 and A2 in the on-time Ton2 during the detection period Dp2 in step S14-5. Ds2 is supplied.
  • step S14-6 the load detection unit 10 performs the same determination as in step S9-4 in FIG. 9A on the detection values of the input current detector 13 and the output current detector 14 in the section A.
  • step S14-10 the load detection unit 10 determines that no load is placed in the section A. Processing proceeds to FIG. 14B.
  • step S14-4 or S14-6 determines in step S14-7 that a load is placed in the section A.
  • step S14-8 the load detection unit 10 determines whether or not the latest placement detection result is the same as the result in the immediately preceding detection cycle.
  • step S14-9 the detection cycle for the section A is extended from the detection cycle T0 to the detection cycle T1.
  • the detection cycle T1 is 8 seconds. Then, the process proceeds to FIG. 14B. If the result of step S14-8 is No, the process proceeds to FIG. 14B.
  • Steps S14-11 to S14-18 in FIG. 14B the same processing as Steps S14-3 to S14-10 is performed on the section B.
  • step S14-11 the detection current Ds1 is supplied to the heating coils B1 and B2 during the on-time Ton1 during the detection period Dp1.
  • step S14-12 the load detection unit 10 performs the same determination as in step S9-4 in FIG. 9A on the detection values of the input current detector 13 and the output current detector 14 in the section B.
  • step S14-12 If the result in step S14-12 is No, that is, if the load is not detected by the detection current Ds1, the detection current is detected in the heating coil B1 and B2 in the on-time Ton2 between the detection periods Dp2 in step S14-13. Ds2 is supplied.
  • step S14-14 the load detection unit 10 performs the same determination as in step S9-4 in FIG. 9A on the detection values of the input current detector 13 and the output current detector 14 in the section B.
  • step S14-14 determines in step S14-18 that no load is placed in the section B. . Then, the process proceeds to step S14-19.
  • step S14-12 or S14-14 determines that the load is on the section B in step S14-15. It is determined that it is placed.
  • step S14-16 the load detection unit 10 determines whether or not the latest placement detection result is the same as the result in the immediately preceding detection cycle.
  • step S14-17 the detection cycle for the section B is extended from the detection cycle T0 to the detection cycle T1. Then, the process proceeds to step S14-19. If the result of step S14-16 is No, the process proceeds to step S14-19.
  • step S14-19 placement detection is performed.
  • step S14-20 the load detection unit 10 determines whether or not there is a change in the mounting state with respect to another heating region, for example, the central heating region Ch.
  • step S14-20 placement detection is performed at each determined detection cycle. If the result of step S14-20 is Yes, in step S14-21, the drive control unit 11 sets the detection cycle to the detection cycle T0. That is, when the detection cycle is set to the detection cycle T1, the detection cycle is returned to the detection cycle T0.
  • the load detection unit 10 loads the load in the section A or B continuously N times (for example, 5 times). If it determines with having been installed, the drive control part 11 will extend the detection period with respect to the heating coil of the division from detection period T0 to detection period T1.
  • the placement detection is executed for each extended detection cycle T1 for the section where the load is placed. For a section where no load is placed, placement detection is performed for each detection period T0.
  • the drive control unit 11 After the change of the detection cycle, when the load detection unit 10 newly detects the placement of the load in another heating region (for example, the central heating region Ch) where the load is not placed, the drive control unit 11 The detection cycle set in the detection cycle T1 is reset to the detection cycle T0.
  • the frequency of mounting detection is reduced with respect to the load that has already been recognized. Therefore, heat generation of the load due to the detected current can be suppressed.
  • the switching operation of the switching unit can be reduced. Thereby, generation
  • the relay 8b is turned off and the heating coil A2 is turned on. Is disconnected from the inverter 9.
  • the relay 8b may be turned on to connect the heating coil A2 to the inverter 9, and the detection cycle for the heating coil A2 may be extended similarly to the detection cycle for the heating coil A1. Thereby, generation
  • the above is a description of the change of the detection cycle when the load moves in the heating region (here, the left heating region Lh). Even when the load placed in the heating region is removed and when a load is added to the heating region, the detection cycle is similarly changed.
  • FIG. 15A is a timing chart for explaining the concept of determining the mounting situation according to the fourth embodiment.
  • FIG. 15A shows detection periods Dpa1 to Dpd1, Dpa2 to Dpd2, Dpa3 to Dpd3, and detection periods in which the placement detection is performed on the heating coils 31 to 34 in the detection cycles T (a) to T (d), respectively.
  • Periods Dpa4 to Dpd4 are shown.
  • the length of each of the detection cycles T (a) to T (d) is equal to the detection cycle T0.
  • the load detection unit 10 determines whether or not a load is placed above the heating coils 31 to 34.
  • FIG. 15A shows a temporal change in the mounting state above the heating coil 31 to the heating coil 34.
  • FIG. 15B shows a pattern of the loading situation of the loads (pans La, Lb, Lc) above the heating coils 31-34.
  • the pan La is placed above the heating coils 33 and 34.
  • the pan La is placed above the heating coils 32, 33 and 34.
  • the pan Lb is placed above the heating coils 33 and 34.
  • the pan Lb is placed above the heating coils 33 and 34, and the pan Lc is placed above the heating coil 32.
  • State Sa ⁇ State Sb is a case where the placement state changes from the state Sa to the state Sb by slightly shifting the pan La.
  • State Sc ⁇ State Sd is a case where the placement status changes from the state Sc to the state Sd due to the addition of the pan Lc to the situation where the pan Lb is placed.
  • the load detection unit 10 detects that the pan La is placed as in the state Sa in the detection period Dpa3 for the heating coil 33 and the detection period Dpa4 for the heating coil 34. . Based on this result, the load detection unit 10 provisionally determines that the placement state is the state Sa.
  • the load detection unit 10 detects the pan La as in the state Sb in the detection period Dpb2 for the heating coil 32, the detection period Dpb3 for the heating coil 33, and the detection period Dpb4 for the heating coil 34. It detects that it is mounted. Based on this result, the load detection unit 10 temporarily determines again that the placement state is the state Sb.
  • the load detection unit 10 determines that the placement state is the state Sb. Otherwise, the load detection unit 10 makes a temporary determination again with respect to the placement situation.
  • the load detection unit 10 detects that the pan La is placed as in the state Sc. . Based on this result, the load detection unit 10 provisionally determines that the placement state is the state Sc.
  • the load detection unit 10 provisionally determines that a new load has been placed above the heating coil 32 in addition to the determined state Sc.
  • the present invention when a change in the mounting situation is provisionally determined in the first detection cycle, and the same detection result is continuously obtained in the subsequent detection cycle. Change the provisional decision to final.
  • the present invention is not limited to this, and the provisional decision may be changed to fixed when the same detection result is continuously obtained in at least one subsequent detection cycle after the provisional decision.
  • the processing in the section A and the section B of the left heating region Lh will be described as in the first to third embodiments.
  • the same processing is performed in parallel in the right heating region Rh and the central heating region Ch.
  • FIG. 16A and FIG. 16B are flowcharts for determining the mounting status in the first detection cycle after the induction heating device is activated, for example.
  • FIGS. 17A to 17C are flowcharts for determining the mounting status in the second and subsequent detection cycles following the detection cycle in which the processing shown in FIGS. 16A and 16B is performed.
  • Steps S16-1 to S16-14 in FIGS. 16A and 16B are the same as steps S9-1 to S9-14 in FIG. 9A and FIG. 9B in the placement detection according to the first embodiment. Therefore, the description of steps S16-1 to S16-14 is omitted, and steps subsequent to step S16-14 will be described.
  • step S16-15 if the result of the processing in steps S16-1 to S16-14 is “A load is placed on section A”, the processing proceeds to step S16-16. Otherwise, the process proceeds to step S16-18.
  • step S16-16 the detection current Ds3 is sequentially supplied to the heating coils A1 and A2.
  • the load detection unit 10 determines the position in the section A by determining whether or not a load is placed above each of the heating coils A1 and A2 in the section A.
  • step S16-17 the load detection unit 10 provisionally determines a placement situation that is a result of the position specification in the section A.
  • step S16-16 The determination for specifying the position in step S16-16 is the same as in the first embodiment.
  • the detected values of the input current detector 13 and the output current detector 14, and / or the input current detector 13, the output current detector. 14 is performed based on the change of two consecutive detection values in each of 14.
  • steps S16-18 to S16-20 processing similar to that in steps S16-15 to S16-17 for the section A is performed for the section B. In this way, the placement status in the sections A and B is provisionally determined.
  • step S17-1 of FIG. 17A the relay (if any) of the relays 8a and 8b in the section A is turned on, and the heating coils A1 and A2 are connected to the inverter 9 in the section A.
  • step S17-2 the relay (if any) of the relays 8a and 8b in the section B is turned on, and the heating coils B1 and B2 are connected to the inverter 9 in the section B.
  • step S17-3 the detection current Ds1 is supplied to the heating coils A1 and A2 during the on-time Ton1 during the detection period Dp1.
  • step S17-4 the load detection unit 10 performs the same determination as in step S9-4 in FIG. 9A on the detection values of the input current detector 13 and the output current detector 14 in the section A.
  • a relatively large load for example, a pan having a diameter of about 150 mm or more can be detected.
  • step S17-4 If the result in step S17-4 is No, that is, if the load is not detected by the detection current Ds1, the detection current is detected in the on-time Ton2 between the heating coils A1 and A2 in the detection period Dp2 in step S17-5. Ds2 is supplied.
  • step S17-6 the load detection unit 10 performs the same determination as in step S9-4 in FIG. 9A on the detection values of the input current detector 13 and the output current detector 14 in the section A.
  • step S17-10 the load detection unit 10 determines that no load is placed in the section A. Processing proceeds to FIG. 17B.
  • step S17-4 or step S17-6 determines that a load is placed on the section A in step S17-7.
  • step S17-8 the load detection unit 10 determines whether or not the latest placement detection result is the same as the result in the immediately preceding detection cycle.
  • step S17-8 determines the placement status in the section A in step S17-9. Processing proceeds to FIG. 17B. If the result of step S17-8 is No, the process proceeds to FIG. 17B.
  • steps S17-11 to S17-18 in FIG. 17B the same processing as that in steps S17-3 to S17-10 in FIG.
  • step S17-11 the detection current Ds1 is supplied to the heating coils B1 and B2 during the on-time Ton1 during the detection period Dp1.
  • step S17-12 the load detection unit 10 performs the same determination as in step S9-4 of FIG. 9A on the detection values of the input current detector 13 and the output current detector 14 in the section B.
  • step S17-12 If the result in step S17-12 is No, that is, if the load is not detected by the detection current Ds1, the detection current is detected in the heating coil B1 and B2 in the on-time Ton2 during the detection period Dp2 in step S17-13. Ds2 is supplied.
  • step S17-14 the load detection unit 10 performs the same determination as in step S9-4 in FIG. 9A on the detection values of the input current detector 13 and the output current detector 14 in the section B.
  • step S17-14 determines in step S17-18 that no load is placed in the section B. . Processing proceeds to FIG. 17C.
  • step S17-12 or step S17-14 determines whether or not the latest placement detection result is the same as the result in the immediately preceding detection cycle.
  • step S17-16 determines the placement status in the section B. Processing proceeds to FIG. 17C. If the result of step S17-16 is No, the process proceeds to FIG. 17C.
  • step S17-19 when the result of confirmation of the placement status shown in FIG. 17A is “the placement status in section A is confirmed”, the process proceeds to step S17-23. . Otherwise, the process proceeds to step S17-20.
  • step S17-20 if the result of the determination of the placement status shown in FIG. 17A is “a load is placed on section A”, the process proceeds to step S17-21. Otherwise, the process proceeds to step S17-23.
  • step S17-21 the detection current Ds3 is sequentially supplied individually to the heating coils A1 and A2.
  • the load detection unit 10 determines the position in the section A by determining whether or not a load is placed above each of the heating coils A1 and A2 in the section A.
  • step S17-22 the load detection unit 10 provisionally determines a placement situation that is a result of position specification in the section A.
  • steps S17-23 to S17-26 processing similar to that in steps S17-19 to S17-22 for the section A is performed for the section B. In this way, the determination of the placement status in the second and subsequent detection cycles is completed. The processes shown in FIGS. 17A to 17C are repeated after the next detection cycle.
  • the load has been mounted above the heating coil adjacent to the heating coil on which the load is mounted before the predetermined number of detection cycles elapses. Is detected, the load detection unit 10 determines that this is due to the movement of the load. If a similar change is detected after a period longer than the predetermined number of detection cycles has elapsed, the load detection unit 10 determines that this is due to another load being placed.
  • the induction heating cooker of the present embodiment can determine the loading status.
  • the load detection in the section A After the load detection and the provisional determination or confirmation for the placement situation are performed in the section A, the load detection in the section B and the provisional determination for the placement situation or Confirmation is performed.
  • provisional determination or determination may be performed on the mounting state.
  • the load detection unit 10 can detect the placement situation of the load more accurately. .
  • the drive control unit 11 can heat the load by operating an appropriate heating coil corresponding to the placement situation.
  • the induction heating cooker of the present embodiment has the same configuration as that of the first embodiment shown in FIGS.
  • the induction heating cooker according to the present embodiment relates to the placement detection according to the first embodiment, the position specification according to the second embodiment, the change of the detection cycle according to the third embodiment, and the fourth embodiment. The placement status is confirmed in order.
  • FIGS. 18A and 18B are flowcharts for placement detection according to the present embodiment.
  • the placement detection shown in steps S18-1 to S18-14 of FIGS. 18A and 18B is the same as the placement detection of the first embodiment shown in steps S9-1 to S9-14 of FIGS. 9A and 9B. Therefore, the description of FIGS. 18A and 18B is omitted.
  • FIG. 19A and FIG. 19B are flowcharts for position specification according to the present embodiment.
  • the position specification shown in steps S19-1 to S19-8 in FIG. 19A is the same as the position specification according to the second embodiment shown in FIG. 12B. Therefore, the description of FIG. 19A is omitted.
  • step S19-9 of FIG. 19B when the position specifying result shown in FIG. 19B is “a load is placed above at least one of the heating coils A1 and A2,” the process proceeds to step S19-10. . Otherwise, the process proceeds to step S19-11.
  • step S19-10 the load detection unit 10 provisionally determines the placement status in the section A.
  • step S19-11 if the position specifying result shown in FIG. 19B is “a load is placed above at least one of the heating coils B1 and B2,” the process proceeds to step S19-12. Otherwise, the process proceeds to FIG. 20A.
  • step S19-12 the load detection unit 10 provisionally determines the placement status in the section B. Processing proceeds to FIG. 20A.
  • FIG. 20A, FIG. 20B, and FIG. 21 are flowcharts for determining the placement status according to the present embodiment.
  • the placement status is determined in steps S20-1 to S20-18.
  • the placement status is determined according to the fourth embodiment shown in steps S17-1 to S17-18 in FIGS. 17A and 17B. Is the same. Therefore, the description of FIGS. 20A and 20B is omitted.
  • step S21-1 when the result of the placement status confirmation shown in FIG. 20A is “the placement status in section A is confirmed”, the process proceeds to step S21-6. . Otherwise, the process proceeds to step S21-2.
  • step S21-2 if the result of the determination of the placement status shown in FIG. 20B is “the placement status in section B has been confirmed”, the process proceeds to step S21-3. Otherwise, the load detection unit 10 concludes that “the placement situation is not confirmed in the sections A and B” and ends the placement situation confirmation. In order to specify the position again, the process returns to step S19-1 in FIG. 19A.
  • step S21-3 if the result of the process shown in FIG. 20A is “A load is placed on section A”, the process proceeds to step S21-4. Otherwise, the load detection unit 10 concludes that “the placement situation is confirmed in the section B and no load is placed on the section A”, and the confirmation of the placement situation is terminated. Processing proceeds to FIG. 22A.
  • step S21-4 the detection current Ds3 is sequentially supplied individually to the heating coils A1 and A2.
  • the load detection unit 10 determines whether or not a load is placed above each of the heating coils A1 and A2.
  • step S21-5 the load detection unit 10 concludes that “the placement status is determined in the section B and the placement status is provisionally determined in the section A”, and the determination of the placement status is ended. Processing proceeds to FIG. 22A.
  • step S21-6 when the result of the process shown in FIG. 20B is “the placement situation in the section B is confirmed”, the load detection unit 10 determines that “the placement situation in the sections A and B is confirmed. ”And conclude the placement status. Processing proceeds to FIG. 22A. Otherwise, the process proceeds to step S21-7.
  • step S21-7 if the result of the determination of the placement status shown in FIG. 20B is “a load is placed on section B”, the process proceeds to step S21-8. Otherwise, the load detection unit 10 concludes that “the placement situation is confirmed in the section A and no load is placed on the section B”, and the confirmation of the placement situation is terminated. Processing proceeds to FIG. 22A.
  • step S21-8 the detection current Ds3 is sequentially supplied individually to the heating coils B1 and B2.
  • the load detection unit 10 determines whether or not a load is placed above each of the heating coils B1 and B2.
  • step S21-9 the load detection unit 10 concludes that “the placement status is determined in the section A and the placement status is provisionally determined in the section B”, and the determination of the placement status is ended. Processing proceeds to FIG. 22A.
  • the detection cycles shown in FIGS. 22A and 22B are detected in the third and subsequent detection cycles. Changes are performed.
  • 22A and 22B are flowcharts for changing the detection cycle according to the present embodiment.
  • step S22-1 the drive control unit 11 determines whether or not the placement detection has been performed continuously a predetermined number of times (N times, for example, 5 times). The processing returns to step S20-1 in FIG. 20A until the number of placement detections reaches N times. If the placement detection is performed N times consecutively, the process proceeds to step S22-2.
  • step S22-2 the relay (if any) of the relays 8a and 8b in the section A is turned on, and the heating coils A1 and A2 are connected to the inverter 9 in the section A.
  • Step S22-3 the relay (if any) of the relays 8a and 8b in the section B is turned on, and the heating coils B1 and B2 are connected to the inverter 9 in the section B.
  • step S22-4 the detection current Ds1 is supplied to the heating coils A1 and A2 during the on-time Ton1 during the detection period Dp1.
  • step S22-5 the load detection unit 10 performs the same determination as in step S9-4 in FIG. 9A on the detection values of the input current detector 13 and the output current detector 14 in the section A.
  • a relatively large load for example, a pan having a diameter of about 150 mm or more is detected.
  • step S22-5 If the result in step S22-5 is No, that is, if the load is not detected by the detection current Ds1, the detection current is supplied to the heating coils A1 and A2 in the on-time Ton2 during the detection period Dp2 in step S22-6. Ds2 is supplied.
  • step S22-7 the load detection unit 10 performs the same determination as in step S9-4 in FIG. 9A on the detection values of the input current detector 13 and the output current detector 14 in the section A.
  • step S22-11 the load detection unit 10 determines that no load is placed in the section A. Processing proceeds to FIG. 22B.
  • step S22-5 or S22-7 determines that a load is placed on the section A in step S22-8.
  • step S22-9 the load detection unit 10 determines whether or not the latest placement detection result is the same as the result in the immediately preceding detection cycle.
  • step S22-10 the detection cycle for the section A is extended from the detection cycle T0 to the detection cycle T1. In the present embodiment, the detection cycle T1 is 8 seconds. Then, the process proceeds to FIG. 22B. If the result of step S22-9 is No, the process proceeds to FIG. 22B.
  • steps S22-12 to S22-19 in FIG. 22B the same processing as that in steps S22-4 to S22-11 is performed on the section B.
  • step S22-12 the detection current Ds1 is supplied to the heating coils B1 and B2 during the on-time Ton1 during the detection period Dp1.
  • step S22-13 the load detection unit 10 performs the same determination as in step S9-4 in FIG. 9A on the detection values of the input current detector 13 and the output current detector 14 in the section B.
  • step S22-13 If the result in step S22-13 is No, that is, if no load is detected by the detection current Ds1, the detection current is detected in the heating coil B1 and B2 in the on-time Ton2 between the detection periods Dp2 in step S22-14. Ds2 is supplied.
  • step S22-15 the load detection unit 10 performs the same determination as in step S9-4 in FIG. 9A on the detection values of the input current detector 13 and the output current detector 14 in the section B.
  • step S22-15 If the result in step S22-15 is No, that is, if no load is detected even with the detection current Ds2, the load detection unit 10 determines in step S22-19 that no load is placed in the section B. . Then, the process proceeds to step S22-20.
  • step S22-13 or S22-15 determines that the load is on the section B in step S22-16. It is determined that it is placed.
  • step S22-17 the load detection unit 10 determines whether or not the latest placement detection result is the same as the result in the immediately preceding detection cycle.
  • step S22-18 the detection cycle for section B is extended from the detection cycle T0 to the detection cycle T1. Then, the process proceeds to step S22-20. If the result of step S22-17 is No, the process proceeds to step S22-20.
  • step S22-20 placement detection is performed.
  • step S22-21 the load detection unit 10 determines whether or not there is a change in the mounting state with respect to another heating region, for example, the central heating region Ch.
  • step S22-21 placement detection is performed for each determined detection cycle. If the result of step S22-21 is Yes, in step S22-22, the drive control unit 11 sets the detection cycle to the detection cycle T0. That is, when the detection cycle is set to the detection cycle T1, the detection cycle is returned to the detection cycle T0.
  • provisional determination or determination is performed on the placement status in the section A. Subsequently, when it is detected that a load is placed in the section B, provisional determination or determination is performed on the placement status in the section B.
  • provisional determination or determination may be performed on the placement status in the sections A and B.
  • the placement status in all the heating areas H may be temporarily determined or confirmed.
  • the present disclosure can be applied to a multi-coil induction heating apparatus having a large number of heating coils provided below the top plate.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

マルチコイル型の誘導加熱装置において、駆動部(4)と切替部(8)とにより、複数の加熱コイル(3)のすべてに検知電流が供給される。制御部(50)は、検知電流に応答した電気信号に基づいて、複数の加熱コイル(3)の上方に負荷が載置されているか否かを判定する。制御部(50)は、複数の加熱コイル(3)の上方に負荷が載置されていると判定した場合、複数の加熱コイル(3)の各々に順次個別に検知電流を供給し、複数の加熱コイル(3)の各々の上方に負荷が載置されているか否かを判定する。複数の加熱コイル(3)の各々に対する判定の後、切替部(8)は、加熱コイル(3)のすべてを駆動部(4)に接続する。本態様によれば、マルチコイル型の誘導加熱装置において、省エネルギで短時間に精度よく負荷を検知できる。

Description

誘導加熱装置および誘導加熱装置における負荷検知方法
 本開示は、天板に載置された金属製の調理用鍋などの負荷を誘導加熱する誘導加熱装置に関し、特に天板の下方に設けられた多数の加熱コイルを有するマルチコイル型の誘導加熱装置に関する。
 近年、マルチコイル型の誘導加熱調理器の開発が進んでいる。マルチコイル型の誘導加熱調理器は、天板の下方にマトリクス状に配置された多数の加熱コイルを備え、状況に応じて加熱領域を変更可能に構成される(特許文献1、2参照)。
特開2008-293871号公報 国際公開第2014/064931号
 上記のように、特許文献1および2に開示されたマルチコイル型の加熱調理器は、天板上に載置された負荷の位置を検知し、作動させるべき一つまたは複数の加熱コイルを特定する。
 この作業は、高周波電力である検知電流を加熱コイルに供給したときに、加熱調理器の電源と加熱コイルの各々とをそれぞれ接続する通電経路における電気信号の変化を検知することにより行われる。以下、この作業を負荷検知という。
 いかにして、省エネルギで短時間に精度よく負荷検知を行うかが、マルチコイル型の誘導加熱装置の開発における解決すべき課題である。
 本開示の一態様は、負荷を載置する天板と、天板の下方に設けられた複数の加熱コイルと、複数の加熱コイルに高周波電力を供給する駆動部と、駆動部に含まれた素子に関連する電気信号を検知する電気信号検知部と、複数の加熱コイルの各々と駆動部との間をそれぞれ接続または切断する切替部と、検知された電気信号を入力し、駆動部および切替部を制御する制御部とを備えた誘導加熱装置である。
 本態様の誘導加熱装置において、制御部は、高周波電力である検知電流を複数の加熱コイルのすべてに供給するように、駆動部および切替部を制御し、検知電流に応答した電気信号に基づいて、複数の加熱コイルの上方に負荷が載置されているか否かを判定する。
 制御部は、複数の加熱コイルの上方に負荷が載置されていると判定した場合、複数の加熱コイルの各々に順次個別に検知電流を供給するように、駆動部および切替部を制御し、複数の加熱コイルの各々の上方に負荷が載置されているか否かを判定する。
 制御部は、複数の加熱コイルの各々に対する判定の後、加熱コイルのすべてを駆動部に接続するように、切替部を制御する。
 本開示の他の態様は、誘導加熱装置における負荷検知方法である。本態様の負荷検知方法は、高周波電力である検知電流を、天板の下方に設けられた複数の加熱コイルのすべてに検知電流を供給し、複数の加熱コイルの上方に前記負荷が載置されているか否かを判定するステップを含む。
 本態様の負荷検知方法はさらに、複数の加熱コイルの上方に負荷が載置されていると判定された場合、複数の加熱コイルの各々に順次個別に検知電流を供給し、複数の加熱コイルの各々の上方に負荷が載置されているか否かを判定するステップを含む。
 本態様の負荷検知方法はさらに、複数の加熱コイルの各々に対する判定の後、加熱コイルのすべてを駆動部に接続するステップを含む。
図1は、実施の形態1に係る誘導加熱調理器を示す分解斜視図である。 図2は、実施の形態1の誘導加熱調理器の、天板を取り除いた状態における平面図である。 図3は、左加熱領域Lhと右加熱領域Rhと中央加熱領域Chとにそれぞれ含まれた区画AおよびBを示す図である。 図4は、二つの加熱コイル3が一つの駆動部4により駆動される区画に関する機能ブロック図である。 図5は、二つの加熱コイル3が一つの駆動部4により駆動される区画に関する回路ブロック図である。 図6Aは、図5に示す回路ブロック図の第1の変形例である回路ブロック図である。 図6Bは、図5に示す回路ブロック図の第2の変形例である回路ブロック図である。 図7Aは、載置検知のための検知電流の振幅のピーク値の時間的変化を模式的に示す図である。 図7Bは、載置検知のための検知電流の振幅のピーク値の時間的変化を模式的に示す図である。 図8Aは、検知期間Dp1におけるスイッチング素子19aおよび19bの動作を示すタイミングチャートである。 図8Bは、検知期間Dp2におけるスイッチング素子19aおよび19bの動作を示すタイミングチャートである。 図9Aは、実施の形態1に係る載置検知のためのフローチャートである。 図9Bは、実施の形態1に係る載置検知のためのフローチャートである。 図10Aは、実施の形態1に係る載置検知および位置特定のためのタイミングチャートである。 図10Bは、検知期間Dp1において、スイッチング素子19aおよび19bに入力されるゲート信号のタイミングチャートである。 図10Cは、検知期間Dp2において、スイッチング素子19aおよび19bに入力されるゲート信号のタイミングチャートである。 図10Dは、検知期間Dp3において、スイッチング素子19aおよび19bに入力されるゲート信号のタイミングチャートである。 図11は、実施の形態1に係る位置特定のためのフローチャートである。 図12Aは、実施の形態2に係る載置検知および位置特定のためのタイミングチャートである。 図12Bは、実施の形態2に係る位置特定のためのフローチャートである。 図13Aは、実施の形態3に係る検知周期の変更の概念を説明するための誘導加熱調理器のブロック図である。 図13Bは、実施の形態3に係る検知周期の変更の概念を説明するためのタイミングチャートである。 図14Aは、実施の形態3に係る検知周期の変更のためのフローチャートである。 図14Bは、実施の形態3に係る検知周期の変更のためのフローチャートである。 図15Aは、実施の形態4に係る載置状況の確定の概念を説明するためのタイミングチャートである。 図15Bは、実施の形態4に係る載置状況の確定の概念を説明するための載置状況のパターンを示す図である。 図16Aは、実施の形態4に係る最初の検知周期における載置状況の確定のためのフローチャートである。 図16Bは、実施の形態4に係る最初の検知周期における載置状況の確定のためのフローチャートである。 図17Aは、実施の形態4に係る2番目以降の検知周期における載置状況の確定のためのフローチャートである。 図17Bは、実施の形態4に係る2番目以降の検知周期における載置状況の確定のためのフローチャートである。 図17Cは、実施の形態4に係る2番目以降の検知周期における載置状況の確定のためのフローチャートである。 図18Aは、実施の形態5に係る載置検知のためのフローチャートである。 図18Bは、実施の形態5に係る載置検知のためのフローチャートである。 図19Aは、実施の形態5に係る位置特定のためのフローチャートである。 図19Bは、実施の形態5に係る位置特定のためのフローチャートである。 図20Aは、実施の形態5に係る載置状況の確定のためのフローチャートである。 図20Bは、実施の形態5に係る載置状況の確定のためのフローチャートである。 図21は、実施の形態5に係る載置状況の確定のためのフローチャートである。 図22Aは、実施の形態5に係る検知周期の変更のためのフローチャートである。 図22Bは、実施の形態5に係る検知周期の変更のためのフローチャートである。
 本開示の第1の態様は、負荷を載置する天板と、天板の下方に設けられた複数の加熱コイルと、複数の加熱コイルに高周波電力を供給する駆動部と、駆動部に含まれた素子に関連した電気信号を検知する電気信号検知部と、検知された電気信号を入力し、駆動部を制御する制御部とを備えた誘導加熱装置である。
 本態様の誘導加熱装置において、制御部は、高周波電力である第1検知電流を、複数の加熱コイルに供給するように、駆動部を制御し、第1検知電流に応答した電気信号に基づいて、複数の加熱コイルの上方に負荷が載置されているか否かを判定する。
 制御部は、第1検知電流により、複数の加熱コイルの上方に負荷が載置されていないと判定した場合、高周波電力であり、第1検知電流より電流値の大きい第2検知電流を、複数の加熱コイルに供給するように駆動部を制御する。制御部は、第2検知電流に応答した電気信号に基づいて、複数の加熱コイルの上方に負荷が載置されているか否かを判定する。
 本開示の第2の態様の誘導加熱装置は、第1の態様に加えて、制御部に制御されて、複数の加熱コイルの各々と駆動部との間をそれぞれ接続または切断する切替部をさらに備える。
 第1検知電流または第2検知電流が供給される場合、制御部は、複数の加熱コイルのすべてを駆動部に接続するように、切替部を制御する。
 制御部は、第1検知電流または第2検知電流に応答した電気信号に基づいて、複数の加熱コイルの上方に負荷が載置されていると判定した場合、高周波電力である第3検知電流を、複数の加熱コイルの各々に順次個別に供給するように、駆動部および切替部を制御する。
 制御部は、第3検知電流に応答した電気信号に基づいて、複数の加熱コイルの各々の上方に負荷が載置されているか否かを判定する。
 本開示の第3の態様の誘導加熱装置によれば、第1の態様において、天板が少なくとも一つの加熱領域を有し、少なくとも一つの加熱領域が複数の区画を有し、複数の加熱コイルと駆動部とが、複数の区画のうちの一つの区画に対して設けられる。
 本開示の第4の態様は、誘導加熱装置における負荷検知方法である。本態様の負荷検知方法は、高周波電力である第1検知電流を、天板の下方に設けられた複数の加熱コイルに供給するステップと、第1検知電流に応答した電気信号に基づいて、複数の加熱コイルの上方に負荷が載置されているか否かを判定するステップとを含む。
 本態様の負荷検知方法はさらに、第1検知電流により、複数の加熱コイルの上方に負荷が載置されていないと判定された場合、高周波電力であり、第1検知電流より電流値の大きい第2検知電流を、複数の加熱コイルに供給するステップと、第2検知電流に応答した電気信号に基づいて、複数の加熱コイルの上方に負荷が載置されているか否かを判定するステップとを含む。
 本開示の第5の態様の誘導加熱装置の負荷検知方法は、第4の態様に加えて、第1検知電流または第2検知電流が供給される場合、複数の加熱コイルのすべてを駆動部に接続するステップを含む。
 本態様の負荷検知方法はさらに、第1検知電流または第2検知電流に応答した電気信号に基づいて、複数の加熱コイルの上方に負荷が載置されていると判定された場合、高周波電力である第3検知電流を、複数の加熱コイルの各々に順次個別に供給するステップと、第3検知電流に応答した電気信号に基づいて、複数の加熱コイルの各々の上方に負荷が載置されているか否かを判定するステップとを含む。
 以下、本開示の実施の形態について、図面を参照しながら説明する。以下のすべての図において、同一または相当部分には、同一の参照符号を付し、重複する説明は省略する。
 実施の形態はいずれも本開示の一具体例である。実施の形態において示される数値、形状、構成、ステップ、および、ステップの順序などは一例であり、本開示を限定するものではない。
 本開示は、いくつかの実施の形態に係る構成が適宜組み合わされた構成をも含む。そのため、組み合わされた構成は、関連する実施の形態のすべての効果を奏する。
 ここでは、本開示の誘導加熱装置の一例としての誘導加熱調理器を説明する。しかし、本開示は誘導加熱調理器に限定されるものではない。
 実施の形態において、左および右とは、誘導加熱調理器を操作中の使用者から誘導加熱調理器を見た場合における左および右をそれぞれ意味する。誘導加熱調理器の使用者側を誘導加熱調理器の前方、誘導加熱調理器の使用者側とは反対側を誘導加熱調理器の後方と定義する。
 (実施の形態1)
 図1は、本開示の実施の形態1に係る誘導加熱装置である誘導加熱調理器を示す分解斜視図である。図2は、本実施の形態の誘導加熱調理器の、天板を取り除いた状態における平面図である。
 図1および図2に示すように、本実施の形態の誘導加熱調理器は、筐体1と、筐体1の上部を覆う天板2と、筐体1の内部に設けられた複数の加熱コイル3および操作表示部5とを有する。
 複数の加熱コイル3は、縦横の列に配置される。加熱コイル3は平面視で楕円形状を有する。
 図2に示す加熱コイル3の配置により、天板2は、その左側に左加熱領域Lh、その右側に右加熱領域Rh、左加熱領域Lhと右加熱領域Rhとの間に中央加熱領域Chを有する。左加熱領域Lhと右加熱領域Rhとの間、かつ、中央加熱領域Chの前方には、操作表示領域Pが設けられる。
 左加熱領域Lhおよび右加熱領域Rhの下方には、それぞれ四つの加熱コイル3が配置される。これらの加熱コイルは、楕円形状の長軸を左右方向に向けて前後方向に一列に並べられる。
 中央加熱領域Chの下方には、三つの加熱コイル3が配置される。これらの加熱コイルは、楕円形の長軸を前後方向に向けて左右方向に一列に並べられる。左加熱領域Lhと右加熱領域Rhと中央加熱領域Chとにより、加熱領域Hが構成される。
 本実施の形態において、左加熱領域Lh、右加熱領域Rh、中央加熱領域Chにそれぞれ設けられた加熱コイル3の数は一例であり、これらに限定されない。平面視で楕円形状の複数の加熱コイル3が用いられるが、平面視で円形の加熱コイルが用いられてもよい。楕円形状とは、厳密な意味での楕円形状だけでなく、卵形や、陸上競技のトラックのような形状など、曲線のコーナ部分を有する形状を含む。
 操作表示部5は、操作表示領域Pの下方に設けられた液晶表示部を有するタッチパネル装置である。誘導加熱調理器が作動すると、操作表示部5は、操作ボタン、動作メニュー、操作内容、動作状態などを表示する。
 図2に示すように、加熱領域Hに載置された負荷の温度を検知するために、複数の温度センサが設けられる。具体的には、左加熱領域Lhおよび右加熱領域Rhにおいて、隣接する二つの加熱コイル3の間に赤外線センサ6が設けられ、加熱コイル3の各々の中心にサーミスタ7が設けられる。
 中央加熱領域Chにおいては、三つの加熱コイル3の中央に位置する加熱コイル3の中心に、サーミスタ7が設けられる。三つの加熱コイル3の両端に位置する二つの加熱コイル3の、左加熱領域Lhおよび右加熱領域Rhにそれぞれ面する外周に、それぞれサーミスタ7が設けられる。隣接する二つの加熱コイル3の間には、赤外線センサ6が設けられる。
 本構成によれば、加熱領域H上のどこに負荷が載置されても、負荷の温度を精度高く検知できる。
 筐体1の内部には、加熱コイル3を駆動する駆動部4(図2には不図示)と、操作表示部5や駆動部4などを制御する駆動制御部11(図2には不図示)とが設けられる。駆動部4、駆動制御部11については後述する。
 図3は、左加熱領域Lh、右加熱領域Rh、中央加熱領域Chにそれぞれ含まれた二つの区画(区画AおよびB)を示す。
 図3に示すように、左加熱領域Lhおよび右加熱領域Rhにおいて、区画Aは、二つの加熱コイル3、すなわち、加熱コイルA1とその後方に配置された加熱コイルA2とを有する。区画Bは、二つの加熱コイル3、すなわち、加熱コイルB1とその後方に配置された加熱コイルB2とを有する。
 中央加熱領域Chにおいて、区画Aは、三つの加熱コイル3の右端の加熱コイル3、すなわち、加熱コイルA2を有する。区画Bは、残りの二つの加熱コイル3、すなわち、加熱コイルB1とその左側に配置された加熱コイルB2とを有する。
 各区画に一つの駆動部4が設けられる。すなわち、本実施の形態の誘導加熱調理器は、合計六つの駆動部4を有する。中央加熱領域Chの区画Aでは、一つの駆動部4が一つの加熱コイル3を駆動する。それ以外の区画では、一つの駆動部4が、切替部8を介して二つの加熱コイル3を駆動する。
 図4、図5はそれぞれ、二つの加熱コイル3が一つの駆動部4により駆動される区画(例えば、左加熱領域Lhの区画A)に関する機能ブロック図、回路ブロック図である。
 図4、図5に示すように、二つの加熱コイル3(加熱コイルA1およびA2)は並列に接続される。切替部8は、駆動制御部11に制御され、加熱コイルA1、A2の各々と駆動部4との間をそれぞれ接続または切断するリレー8a、リレー8bを含む。リレー8a、8bは、機械式のリレーまたは半導体式のリレーで構成される。
 駆動部4は商用電源12の電力を高周波電力に変換する。駆動部4は、リレー8a、リレー8bをそれぞれ経由して、加熱コイルA1およびA2に高周波電力を供給する。
 負荷検知部10は、検知された入力電流、出力電流に基づいて、加熱コイルA1、加熱コイルA2の上方に負荷が載置されているか否かを判定する。駆動制御部11は、その判定に応じて駆動部4を制御する。本実施の形態では、負荷検知部10と駆動制御部11とが制御部50を構成する。
 駆動部4は、ダイオードブリッジ15と、フィルタ回路18と、インバータ9と、スナバコンデンサ20と、共振コンデンサ21aおよび21bと、入力電流検知器13と、出力電流検知器14とを備える。
 ダイオードブリッジ15は、商用電源12の交流電力を整流し、直流電力を出力する。フィルタ回路18は、チョークコイル16とコンデンサ17とを有し、整流された直流電力をフィルタリングする。
 インバータ9は、高圧側に配置されたスイッチング素子19aと、低圧側に配置されたスイッチング素子19bとが直列に接続されて構成される。スイッチング素子19aおよび19bには、例えばIGBTが用いられる。スイッチング素子19aおよび19bには、逆導通ダイオードがそれぞれ並列に接続される。インバータ9は、コンデンサ17の両端に接続される。
 共振コンデンサ21aは、加熱コイルA1に直列接続され、加熱コイルA1とともに共振回路を構成する。共振コンデンサ21bは、加熱コイルA2に直列に接続され、加熱コイルA2とともに共振回路を構成する。
 スナバコンデンサ20は、スイッチング素子19aおよび19bがオフするときに発生するスイッチング損失を低減する。スナバコンデンサ20は、スイッチング素子19bに並列に接続される。
 入力電流検知器13は、ダイオードブリッジ15に供給される電流を検知する、駆動部4の入力側の電気信号検知部である。出力電流検知器14は、インバータ9に流れる電流を検知する、駆動部4の出力側の電気信号検知部である。これらの電気信号検知部により、電圧値、電流値、および、演算により得られる電力値が検出される。
 図6Aは、図5に示す回路ブロック図の第1の変形例である回路ブロック図である。図6Aに示すように、本変形例では、駆動部4は、共振コンデンサ21aおよび21bの代わりに共振コンデンサ21cを含む。駆動部4は、入力電流検知器13および出力電流検知器14の代わりに、入力電圧検知器22および出力電流検知器23を含む。
 さらに、駆動部4は、インバータ9と直列接続され、共振コンデンサ21cに発生する電圧を抑制するためのクランプコンデンサ24を含む。
 入力電圧検知器22は、駆動部4の入力側の電気信号検知部である。出力電流検知器23は、駆動部4の出力側の電気信号検知部である。
 共振コンデンサ21cは、並列に接続された加熱コイルA1およびA2のいずれとも並列に接続される。共振コンデンサ21cは、加熱コイルA1とともに一つの共振回路を構成し、加熱コイルA2とともに別の共振回路を構成する。
 入力電圧検知器22は、フィルタ回路18の出力電圧を検知する、駆動部4の入力側の電気信号検知部である。出力電流検知器23は、インバータ9に流れる電流を検知する、駆動部4の出力側の電気信号検知部である。負荷検知部10は、入力電圧検知器22および出力電流検知器23の検出値に基づいて、天板2に負荷が載置されているか否かを判定する。
 図6Bは、図5に示す回路ブロック図の第2の変形例である回路ブロック図である。図6Bに示すように、本変形例では、図6Aに示す第1の変形例の構成に加えて、駆動部4が、共振コンデンサ21cに並列接続された、共振コンデンサ21dおよびリレー25の直列体を有する。
 本変形例では、リレー8a、リレー8bがともにオンされた場合、駆動制御部11はリレー25をオンする。共振コンデンサ21dが共振コンデンサ21cと並列接続されることで、共振コンデンサ21c、21dの合成静電容量がその場合に適した値に変化する。
 [負荷検知]
 本実施の形態の誘導加熱調理器は、複数の加熱コイル3を天板2の下方に並べることにより形成された広い加熱領域Hを有する。従って、加熱領域H上に載置された負荷の位置を素早く正確に検知し、作動させるべき加熱コイルを特定する必要がある。
 そのために、本実施の形態の誘導加熱調理器は、起動後、負荷検知を周期的に実行する。負荷検知には、載置検知と位置特定とが含まれる。載置検知とは、加熱領域Hのどこかに負荷が載置されているか否かを判定することを意味し、位置特定とは、上方に負荷が載置されている加熱コイル3を特定することを意味する。
 以下、左加熱領域Lhの区画Aおよび区画Bにおける処理について説明する。右加熱領域Rh、中央加熱領域Chにおいても同様の処理が並行して行われる。
 [載置検知]
 載置検知のために、負荷検知用の二種類の検知電流(検知電流Ds1、第2検知電流Ds2)が、区画AおよびBに配置された加熱コイル3に供給される。検知電流Ds2の電流値は、検知電流Ds1の電流値より大きい。これらの検知電流の電流値は、調理時に負荷を誘導加熱するための高周波電力の電流値より小さい。検知電流Ds1、検知電流Ds2は、第1検知電流、第2検知電流にそれぞれ相当する。
 図7A、図7Bは、載置検知のために、区画AおよびBに配置された加熱コイル3に供給される検知電流の振幅のピーク値の時間的変化を模式的に示す。
 図7Aに示すように、検知期間Dp1に、検知電流Ds1が区画A、Bに配置された加熱コイル3に供給される。これにより、比較的大きな負荷、例えば直径が約150mm以上の鍋を検知することができる。
 検知電流Ds1により負荷が検知されなかった場合、図7Bに示すように、検知期間Dp1に続く検知期間Dp2に、検知電流Ds2が区画AおよびBに配置された加熱コイル3に供給される。検知期間Dp1、検知期間Dp2は、第1検知期間、第2検知期間にそれぞれ相当する。
 図8Aは、検知期間Dp1における、スイッチング素子19aおよびスイッチング素子19bの動作を示すタイミングチャートである。図8Bは、検知期間Dp2における、スイッチング素子19aおよび19bの動作を示すタイミングチャートである。
 図8Aに示すように、検知期間Dp1の間において、スイッチング素子19bがオン時間Ton1でオンされたとき、加熱コイル3に検知電流Ds1が流れる。
 図8Bに示すように、検知期間Dp2の間において、スイッチング素子19bがオン時間Ton2でオンされたとき、加熱コイル3に検知電流Ds2が流れる。
 オン時間Ton2は、オン時間Ton1より長い。検知期間Dp1、Dp2はいずれも10~20msである。スイッチング素子19aおよび19bのスイッチング周期は50μ秒である。負荷検知を実行する周期(以下、検知周期という)は、例えば、1.2~2.0秒の間のいずれかの時間である。本実施の形態において、所定の検知周期(検知周期T0)は1.7秒に設定される。
 図9A、図9Bは、本実施の形態に係る載置検知のためのフローチャートである。載置検知は、使用者が操作表示部5に対して加熱開始を指示する前に行われなければならない。本実施の形態では、誘導加熱調理器が起動すると、載置検知が始まる。誘導加熱調理器の近傍に人が近づいたことを検知すると、載置検知が始まるように、誘導加熱調理器が近接センサを有してもよい。
 図9Aに示すように、ステップS9-1において、駆動制御部11は、区画Aのリレー8a、8bのうちのオフされているリレー(もしあれば)をオンして、区画Aの加熱コイルA1およびA2をインバータ9に接続する。ステップS9-2において、駆動制御部11は、区画Bのリレー8a、8bのうちのオフされているリレー(もしあれば)をオンして、区画Bの加熱コイルB1およびB2をインバータ9に接続する。
 載置検知が行われる前に、左加熱領域Lhのすべてのリレーがオンされ、すべての加熱コイル3がインバータ9に接続される。
 ステップS9-3において、加熱コイルA1およびA2に、検知期間Dp1(10~20ms)の間、第1所定時間であるオン時間Ton1に検知電流Ds1が供給される。
 ステップS9-4において、区画Aの入力電流検知器13および出力電流検知器14の検出値に対して、負荷検知部10は所定の判定を行う。
 ステップS9-4における結果がYesである場合、ステップS9-7において、負荷検知部10は、区画A上に負荷が載置されていると判定する。
 ステップS9-4における結果がNoである場合、ステップS9-5において、加熱コイルA1およびA2に、検知期間Dp2(10~20ms)の間の第2所定時間であるオン時間Ton2に検知電流Ds2が供給される。
 ステップS9-6において、入力電流検知器13および出力電流検知器14の検出値に対して、負荷検知部10は、ステップS9-4と同様の判定を行う。
 ステップS9-6における結果がYesである場合、ステップS9-7において、負荷検知部10は、区画A上に負荷が載置されていると判定する。ステップS9-6における結果がNoである場合、ステップS9-8において、負荷検知部10は、区画A上に負荷が載置されていないと判定する。
 ステップS9-4およびS9-6における載置検知のための判定は、入力電流検知器13および出力電流検知器14の検出値に基づいて行われる。
 具体的には、負荷検知部10が、入力電流検知器13のための閾値である第1の閾値と、出力電流検知器14のための閾値である第2の閾値とを有する。負荷検知部10は、入力電流検知器13の検出値が第1の閾値以上となること、および、出力電流検知器14の検出値が第2の閾値以上となることを検知する。
 どちらかの検出値が閾値以上となった場合に、負荷検知部10は、載置された負荷が、加熱コイルA1およびA2に対向する加熱領域Hの所定の割合(例えば40%)以上の面積を占有していると判定する。
 載置検知のための判定は、上記のような検出値そのものに基づいた判定に加えて、または、その代わりに、入力電流検知器13、出力電流検知器14の各々における連続する二つの検出値の変化に基づいて行われてもよい。
 ステップS9-4で使用される閾値は、ステップS9-6で使用される閾値と同じでも、異なってもよい。
 同様に、図6Aおよび図6Bに示す変形例において、載置検知のための判定は、入力電圧検知器22および出力電流検知器23の検出値、および/または、入力電圧検知器22、出力電流検知器23の各々における連続する二つの検出値の変化に基づいて行われる。
 上記のように、検知電流Ds1の電流値は検知電流Ds2の電流値より小さい。従って、検知期間Dp2に検知される負荷は、検知期間Dp1に検知される負荷より小さいものである。最小径110mmの小さな鍋は、検知期間Dp2に検知される負荷に該当するが、100mm×20mm×1.0mmより小さい金属製の物質(例えば、ナイフ、フォーク)は、検知期間Dp2に検知される負荷に該当しない。
 次に、負荷検知部10は、区画Bに負荷が載置されているか否かを判定する。区画Bに対する載置検知は、区画Aに対する載置検知と実質的に同一である。
 ステップS9-9において、並列に接続された加熱コイルB1およびB2に、検知期間Dp1(10~20ms)の間の第1所定時間であるオン時間Ton1に検知電流Ds1が供給される。処理は図9Bに進む。
 ステップS9-10において、入力電流検知器13および出力電流検知器14の検出値に対して、負荷検知部10が、図9AのステップS9-4と同様の判定を行う。
 ステップS9-10における結果がYesである場合、ステップS9-13において、負荷検知部10は、区画B上に負荷が載置されていると判定する。
 ステップS9-10における結果がNoである場合、ステップS9-11において、並列に接続された加熱コイルB1およびB2に、検知期間Dp2(10~20ms)の間の第2所定時間であるオン時間Ton2に検知電流Ds2が供給される。
 ステップS9-12において、入力電流検知器13および出力電流検知器14の検出値に対して、負荷検知部10が、図9AのステップS9-4と同様の判定を行う。
 ステップS9-12における結果がYesである場合、ステップS9-13において、負荷検知部10は、区画B上に負荷が載置されていると判定する。ステップS9-12における結果がNoである場合、ステップS9-14において、負荷検知部10は、区画B上に負荷が載置されていないと判定する。
 ステップS9-10およびS9-12における判定は、ステップS9-4およびS9-6における判定とそれぞれ同様の方法で行われる。
 載置検知は周期的に実行されるため、載置検知のために大きな高周波電流が用いられると、負荷が載置されていない加熱コイル3から、大きな漏洩磁界が発生する可能性がある。負荷が載置される加熱コイル3においては、負荷が不必要に加熱される可能性がある。
 本実施の形態によれば、短い時間(オン時間Ton1)の間、検知電流Ds1を加熱コイル3に供給する。これにより、ある程度大きな負荷であれば、省エネルギで短時間に精度よく負荷を検知することができる。検知電流Ds1により負荷が検知されない場合、検知電流Ds2を用いて載置検知を再度行うことで、ある程度小さな負荷を検知することができる。
 図5、図6A、図6Bに示す回路構成以外にも、本実施の形態の誘導加熱装置は、一つの駆動部4で一つの加熱コイルを駆動する構成を有してもよい。本実施の形態の誘導加熱装置は、切替部8を介して、一つの駆動部4で三つ以上の加熱コイル3を駆動する構成を有してもよい。
 [位置特定]
 図10Aは、左加熱領域Lhの区画AおよびBにおける載置検知および位置特定のためのタイミングチャートである。図10Aに示すように、本実施の形態では、所定の検知周期T0で、載置検知および位置特定が繰り返し行われる。検知周期T0において、まず上記の載置検知が、区画AおよびBに対して順次個別に行われる。
 その後、区画Aの加熱コイルA1、区画Aの加熱コイルA2、区画Bの加熱コイルA1、区画Bの加熱コイルA2の順に、位置特定が行われる。区画AおよびBの切替部8は、検知期間Dp3の間、検知電流Ds3を供給するべき加熱コイル3に対応するリレーをオンするように、接続を切り替える。検知電流Ds3は第3検知電流に相当する。
 加熱コイルA2への検知電流Ds3の供給後、区画Aのリレー8bはオンのまま保持される。加熱コイルB2への検知電流Ds3の供給後、区画Bのリレー8bはオンのまま保持される。
 本実施の形態において、検知期間Dp3は200msである。スイッチング素子19aおよび19bのスイッチング周期は50μ秒である。検知周期T0は、1.2~2.0秒の間のいずれかの時間である。検知周期T0は1.7秒に設定される。検知期間Dp3は第3検知期間に相当する。
 図10Bに示す信号は、図8Aに示す信号と同じであり、載置検知を行うための検知期間Dp1(図10A参照)において、スイッチング素子19aおよび19bに入力されるゲート信号である。図10Bにおいて、オン時間Ton1は5μ秒であり、スイッチング素子19aおよび19bのスイッチング周期は50μ秒である。
 図10Cに示す信号は、図8Bに示す信号と同じであり、載置検知を行うための検知期間Dp2(図10A参照)において、スイッチング素子19aおよび19bに入力されるゲート信号である。図10Cにおいて、オン時間Ton2は9μ秒であり、スイッチング素子19aおよび19bのスイッチング周期は50μ秒である。
 図10Dに示す信号は、位置特定を行うための検知期間Dp3(図10A参照)において、スイッチング素子19aおよび19bに入力されるゲート信号である。
 図10Dにおいて、スイッチング素子19bのオン時間Ton3は、所定の最大値まで徐々に長くなる。オン時間Ton3の最大値はオン時間Ton2より長い。オン時間Ton3が最大値になるまでに領域の特定が終了すると、オン時間Ton3の増加は終了する。
 本実施の形態では、スイッチング素子19aおよび19bにおけるスイッチング動作の1周期は50μ秒である。オン時間Ton3は第3所定時間に相当する。なお、オン時間Ton3の増加に応じて、検知電流Ds3も増加する。
 図11は、本実施の形態に係る位置特定のためのフローチャートである。載置検知の結果、区画A、Bのいずれかに負荷が載置されていると判定された場合に、位置特定が開始される。
 図11に示すように、ステップS11-1において、図9Aに示す載置検知の結果が「区画A上に負荷が載置されている」である場合、処理はステップS11-2に進む。そうでない場合、処理はステップS11-3に進む。
 ステップS11-2において、加熱コイルA1およびA2に順次個別に検知電流Ds3が供給される。負荷検知部10は、加熱コイルA1およびA2の各々の上方に負荷が載置されているか否かを判定することにより、区画Aにおける位置特定を行う。
 ステップS11-2における位置特定のための判定は、上記した載置検知と同様に、入力電流検知器13および出力電流検知器14の検出値、および/または、入力電流検知器13、出力電流検知器14の各々における連続する二つの検出値の変化に基づいて行われる。
 区画Aに対する位置特定の後、ステップS11-3およびS11-4において、区画Bに対する位置特定が、ステップS11-1およびS11-2と同様に行われる。
 操作表示部5は、加熱領域Hにおける負荷の載置状況に対応する操作表示領域Pの箇所を発光させる。これが、誘導加熱の開始前の、加熱コイル3のすべてに関して負荷検知が完了した状態である。以下、負荷の載置状況を単に載置状況という場合がある。
 この状態において、駆動制御部11は、すべての切替部8のリレー8a、8bをオンする。これにより、負荷が載置されていない加熱領域Hの箇所において、負荷検知の実施が可能となるとともに、負荷が載置された加熱領域Hの箇所においても、引き続き負荷検知が行われる。
 その結果、負荷が載置された加熱領域Hの箇所において載置状況が変化した場合に、その変化を検知することができる。載置状況の変化とは、負荷が移動、除去または追加されたことを意味する。
 加熱コイルA1、A2がともにインバータ9に接続される状況において、例えば、加熱コイルA1の上方には負荷が載置され、加熱コイルA2の上方には負荷が載置されていない場合、リレー8bがオフされ、加熱コイルA2がインバータ9から切り離される。
 この動作は、上記状況であると判定されてから所定回数連続して同じ検知結果が得られた場合に行われる。なぜならば、上記状況が検知された直後にこの動作が行われると、例えば使用者が負荷を持ち上げ、すぐに置き直しただけで、加熱コイルA2がインバータ9から切り離されるからである。
 例えば、区画Aにおいて、切替部8が、例えば加熱コイルA1をインバータ9から切り離し、加熱コイルA2をインバータ9に接続している場合に、電気信号検知部の検出値に所定量以上の変化があったとき、加熱コイルA1、A2に対して順次個別に負荷検知が行われる。
 その結果が、その検出値の変化を検知する前と同じであれば、駆動制御部11は、載置状況に変化なしと判定し、切替部8は、その検出値の変化を検知する前と同じ状態、すなわち、加熱コイルA1をインバータ9から切り離し、加熱コイルA2をインバータ9に接続する状態に戻る。なぜならば、その検出値の変化が、作動させるべき加熱コイル3を変更する必要のない、負荷の微少な移動によるものである可能性が高いからである。
 その結果が、その検出値の変化を検知する前と異なる場合、加熱コイルA1およびA2の両方がインバータ9に接続され、負荷検知が実行される。
 本実施の形態によれば、リレー8a、8bの動作を極力少なくすることができる。リレー8a、8bが機械式のリレーである場合には、切替音の発生を抑制することができる。
 すべての加熱コイル3に対する負荷検知が完了すると、駆動制御部11は、すべての加熱コイル3をインバータ9に接続するよう、すべての切替部8のリレー8a、8bをオンする。
 以上のように、本実施の形態の誘導加熱装置によれば、制御部50は、高周波電力である検知電流Ds1を、加熱コイルA1およびA2に供給するように、駆動部4を制御する。制御部50は、電気信号の変化に基づいて、加熱コイルA1およびA2の上方に負荷が載置されているか否かを判定する。
 制御部50は、加熱コイルA1およびA2の上方に負荷が載置されていないと判定した場合、高周波電力であり、検知電流Ds1より電流値の大きい検知電流Ds2を、加熱コイルA1およびA2に供給するように駆動部4を制御する。
 制御部50は、電気信号の変化に基づいて、加熱コイルA1およびA2の上方に負荷が載置されているか否かを判定する。
 検知電流Ds1またはDs2が供給される場合、制御部50は、加熱コイルA1およびA2のすべてを駆動部4に接続するように、切替部8を制御する。制御部50は、電気信号の変化に基づいて、加熱コイルA1およびA2の上方に負荷が載置されているか否かを判定する。
 制御部50は、加熱コイルA1およびA2の上方に負荷が載置されていると判定した場合、高周波電力である検知電流Ds3を、加熱コイルA1およびA2の各々に順次個別に供給するように、駆動部4および切替部8を制御する。制御部50は、加熱コイルA1およびA2の各々の上方に負荷が載置されているか否かを判定する。
 また、本実施の形態の誘導加熱装置によれば、天板2が左加熱領域Lh、中央加熱領域Ch、右加熱領域Rhを有し、これらの加熱領域が区画AおよびBを有し、加熱コイルA1およびA2と駆動部4とが、区画AおよびBのうちの区画Aに対して設けられる。
 これにより、加熱領域H上に載置された負荷の位置を素早く正確に検知し、作動させるべき加熱コイルを特定することができる。
 さらに、本実施の形態の誘導加熱装置によれば、制御部50は、加熱コイルA1およびA2に検知電流Ds1およびDs2を供給するように、駆動部4および切替部8を制御し、制御部50は、電気信号の変化に基づいて、加熱コイルA1およびA2の上方に負荷が載置されているか否かを判定する。
 制御部50は、加熱コイルA1およびA2の上方に負荷が載置されていると判定した場合、加熱コイルA1およびA2の各々に順次個別に検知電流Ds3を供給するように、駆動部4および切替部8を制御し、加熱コイルA1およびA2の各々の上方に負荷が載置されているか否かを判定する。
 制御部50は、加熱コイルA1およびA2の各々に対する判定の後、加熱コイルA1およびA2を駆動部に接続するように、切替部8を制御する。
 本実施の形態では、マイクロコンピュータが、負荷検知部10と駆動制御部11とを構成する。本開示はこれに限定されるものではないが、プログラム可能なマイクロコンピュータを用いれば、処理内容を容易に変更可能であり、設計の自由度を高めることができる。
 処理速度の向上のため、負荷検知部10と駆動制御部11とを論理回路で構成することも可能である。負荷検知部10と駆動制御部11とを物理的に一つまたは複数の素子で構成してもよい。負荷検知部10と駆動制御部11とをそれぞれ複数の素子で構成する場合、各項目をそれぞれ一つの素子に対応させてもよい。この場合、これら複数の素子が、負荷検知部10、駆動制御部11にそれぞれ対応すると考えることができる。
 (実施の形態2)
 以下、本開示の実施の形態2の誘導加熱調理器における位置特定について説明する。
 本実施の形態の誘導加熱調理器は、実施の形態1と同じ構成を有し、実施の形態1と同じ載置検知を行う。本実施の形態は、図10A、図11に示す位置特定の代わりに、図12A、図12Bに示す位置特定が行われる点で、実施の形態1と異なる。本実施の形態に係る位置特定は、実施の形態1に係る位置特定の変形例である。
 本実施の形態では、実施の形態1の場合と同様に、左加熱領域Lhの区画Aおよび区画Bにおける処理について説明する。右加熱領域Rh、中央加熱領域Chにおいても同様の処理が並行して行われる。
 [位置特定の変形例]
 図12Aは、左加熱領域Lhの区画AおよびBにおける載置検知および位置特定のためのタイミングチャートである。図12Aは、位置特定の順序のみ図10Aと異なる。
 すなわち、図10Aでは、加熱コイルA1、加熱コイルA2、加熱コイルB1、加熱コイルB2の順に位置特定が行われる。しかし、本実施の形態では、図12Aに示すように、加熱コイルA1、加熱コイルB2、加熱コイルA2、加熱コイルB1の順に位置特定が行われる。区画AおよびBの切替部8は、検知期間Dp3の間、検知電流Ds3を供給するべき加熱コイル3に対応するリレーをオンするように、接続を切り替える。
 加熱コイルA2への検知電流Ds3の供給後、区画Aのリレー8bはオンのまま保持される。加熱コイルB1への検知電流Ds3の供給後、区画Bのリレー8aはオンのまま保持される。
 検知期間Dp1、Dp2、Dp3におけるスイッチング素子19aおよび19bに入力されるゲート信号は、それぞれ図10B、図10C、図10Dに示すものと同じである。
 図12Bは、本実施の形態に係る位置特定のためのフローチャートである。図12Bに示すように、ステップS12-1において、図9Aに示す載置検知の結果が「区画A上に負荷が載置されている」である場合、処理はステップS12-2に進む。そうでない場合、処理はステップS12-3に進む。
 ステップS12-2において、加熱コイルA1に検知電流Ds3が供給される。負荷検知部10は、加熱コイルA1の上方に負荷が載置されているか否かを判定する。
 ステップS12-3において、図9Aに示す載置検知の結果が「区画B上に負荷が載置されている」である場合、処理はステップS12-4に進む。そうでない場合、処理はステップS12-5に進む。
 ステップS12-4において、加熱コイルB2に検知電流Ds3が供給される。負荷検知部10は、加熱コイルB1の上方に負荷が載置されているか否かを判定する。
 ステップS12-5において、図9Aに示す載置検知の結果が「区画A上に負荷が載置されている」である場合、処理はステップS12-6に進む。そうでない場合、処理はステップS12-7に進む。
 ステップS12-6において、加熱コイルA2に検知電流Ds3が供給される。負荷検知部10は、加熱コイルA2の上方に負荷が載置されているか否かを判定する。
 ステップS12-7において、図9Aに示す載置検知の結果が「区画B上に負荷が載置されている」である場合、処理はステップS12-8に進む。そうでない場合、位置特定の処理は終了する。
 ステップS12-8において、加熱コイルB1に検知電流Ds3が供給される。負荷検知部10は、加熱コイルB2の上方に負荷が載置されているか否かを判定する。これで、位置特定の処理は終了する。
 ステップS12-2、S12-4、S12-6、S12-8における位置特定のための判定は、実施の形態1と同様に、入力電流検知器13および出力電流検知器14の検出値、および/または、入力電流検知器13、出力電流検知器14の各々における連続する二つの検出値の変化に基づいて行われる。
 これらの判定により、区画AおよびBにおける位置特定が行われる。
 本実施の形態によれば、区画Aと区画Bとには、それぞれ対応する駆動部4から検知電流が供給される。そのため、例えば区画Bの加熱コイルB1のための検知期間Dp3を、区画Aの加熱コイルA1のための検知期間Dp3と重ねることができる。その結果、検知周期の短縮が可能となる。
 上述の通り、加熱コイルA2への検知電流Ds3の供給後、区画Aのリレー8bはオンのまま保持される。加熱コイルB1への検知電流Ds3の供給後、区画Bのリレー8aはオンのまま保持される。このため、例えば、加熱コイルA2、B1にまたがって負荷が載置された場合、位置特定の終了後に切替部8の接続を切り替えることなく、直ちに加熱コイルA2、B1を作動させることができる。
 (実施の形態3)
 以下、本開示の実施の形態3の誘導加熱調理器における検知周期の変更について説明する。本実施の形態によれば、図1~図5に示す実施の形態1と同じ構成において、図7A~図11に示す負荷検知に加えて、検知周期の変更が行われる。
 [検知周期の変更]
 図13Aは、本実施の形態に係る検知周期の変更の概念を説明するための誘導加熱調理器のブロック図である。図13Aに示すように、概念説明用の誘導加熱調理器は、天板2の下方に一列に配置された四つの加熱コイル(加熱コイル31~34)と、各加熱コイルをそれぞれ駆動する四つの駆動部4とを備えたマルチコイル型を有する。
 図13Bは、図13Aに示す誘導加熱調理器における検知周期の変更の概念を説明するためのタイミングチャートである。
 図13Bの上半分は、検知周期T(a)~T(k)において、加熱コイル31~34に対してそれぞれ載置検知が行われる検知期間Dpa1~Dpk1、Dpa2~Dpk2、Dpa3~Dpk3、検知期間Dpa4~Dpk4を示す。検知周期T(a)~T(k)の各々の長さは、上記の検知周期T0と等しい。
 これらの検知期間において、図12Aに示す検知期間Dp1に行われる載置検知と同様に、負荷検知部10は、加熱コイル31~34の上方に負荷が載置されているか否かの検知を行う。
 図13Bの下半分は、負荷が、加熱コイル31~34の上方に載置されているか否かを示す。具体的には、図13Bの下半分は、加熱コイル31および32の上方に載置されていた負荷が、加熱コイル32および33の上方に移動したことを示す。
 従って、図13Bの上半分に示すように、検知周期T(a)、T(b)において、負荷が加熱コイル31および32の上方に載置されていることが検知される。この結果に応答して、加熱コイル31および32に対しては、検知周期T(c)、T(d)において検知期間は設けられず、検知周期T(e)で検知期間が設けられる。
 すなわち、負荷の載置が連続で2回検知されると、検知周期が増大する。図13Bでは、検知周期が、検知周期T0の3倍の検知周期T1に延長される。
 次に、負荷が移動した場合の検知周期の変更について説明する。
 図13Bの下半分に示すように、検知周期T(f)において、加熱コイル31および32の上方に載置されていた負荷が、加熱コイル32および33の上方に移動すると、加熱コイル33に対する検知期間Dpf3(図13Bの上半分参照)で、負荷検知部10は、加熱コイル33の上方に負荷が載置されていることを検知する。
 この結果に応答して、検知周期T(g)において、加熱コイル31~34に対して検知期間が設けられて載置検知が行われる。すなわち、加熱コイル31および32に対して、検知周期T1であった検知周期が検知周期T2に短縮される。その結果、負荷検知部10は、加熱コイル31および32の上方に載置されていた負荷が、加熱コイル32および33の上方に移動したことを検知する。
 検知周期T(g)、T(h)において、加熱コイル31~34に対して検知期間が設けられて載置検知が行われる。負荷の載置が連続で2回検知されると、加熱コイル32および33に対しては、検知周期T(i)、T(j)において検知期間は設けられず、検知周期T(k)で検知期間が設けられる。すなわち、加熱コイル32および33に対しては、検知周期が、検知周期T0の3倍の検知周期T1に延長される。
 この検知周期の変更の概念によれば、マルチコイル型の誘導加熱調理器において、その上方に負荷の載置が検知された加熱コイルに対しては、検知周期T1毎に載置検知を行う。その上方に負荷の載置が検知されなかった加熱コイルに対しては、検知周期T0で負荷検知を行う。
 負荷が載置されていなかった加熱コイルの上方に負荷が載置されていることが検知されると、続く検知周期において、すべての加熱コイルに対して検知期間が設けられる。すなわち、検知周期が短縮される。負荷の載置が新たに検知された加熱コイルにおいて、その後、載置状況に変化が無ければ、検知周期が再度延長される。
 この検知周期の変更の概念によれば、既に認識されている負荷に対して、載置検知の頻度を低下させる。これにより、検知電流による負荷の発熱を抑制することができる。複数の加熱コイルが、切替部を介して一つの駆動部で駆動される場合、切替部のスイッチング動作を減少させることができる。
 以下、上記概念を、図5に示す回路構成の誘導加熱調理器に適用した場合における、検知周期の変更について説明する。
 本実施の形態では、実施の形態1、2の場合と同様に、左加熱領域Lhの区画Aおよび区画Bにおける処理について説明する。右加熱領域Rh、中央加熱領域Chにおいても同様の処理が並行して行われる。
 図14A、図14Bは、本実施の形態に係る検知周期の変更のためのフローチャートである。図14A、図14Bに示す検知周期の変更は、上記の載置検知と、必要な場合には上記の位置特定とを含む負荷検知が実行された後に実行される。
 図14A、図14Bに示すように、ステップS14-1において、駆動制御部11が、所定回数(N回、例えば5回)連続して、載置検知が行なわれたか否かを判定する。載置検知の回数がN回になるまで、ステップS14-2において図9A、図9Bに示す載置検知が行われる。載置検知がN回連続して行われると、処理はステップS14-3に進む。
 ステップS14-3において、加熱コイルA1およびA2に、検知期間Dp1の間のオン時間Ton1に検知電流Ds1が供給される。
 ステップS14-4において、区画Aの入力電流検知器13および出力電流検知器14の検出値に対して、負荷検知部10が、図9AのステップS9-4と同様の判定を行う。この処理で、比較的大きな負荷、例えば直径が約150mm以上の鍋が検知される。
 ステップS14-4における結果がNoである、すなわち、検知電流Ds1により負荷が検知されなかった場合、ステップS14-5において、加熱コイルA1およびA2に、検知期間Dp2の間のオン時間Ton2に検知電流Ds2が供給される。
 ステップS14-6において、区画Aの入力電流検知器13および出力電流検知器14の検出値に対して、負荷検知部10が、図9AのステップS9-4と同様の判定を行う。ステップS14-6における結果がNoの場合、ステップS14-10において、負荷検知部10は、区画Aに負荷は載置されていないと判定する。処理は図14Bに進む。
 一方、ステップS14-4またはS14-6の結果がYesの場合、ステップS14-7において、負荷検知部10は、区画Aに負荷が載置されていると判定する。ステップS14-8において、負荷検知部10は、最新の載置検知の結果が、直前の検知周期における結果と同じか否かを判定する。
 ステップS14-8の結果がYesの場合、ステップS14-9において、区画Aに対する検知周期が、検知周期T0から検知周期T1に延長される。本実施の形態では、検知周期T1は8秒である。そして、処理は図14Bに進む。ステップS14-8の結果がNoの場合、処理は図14Bに進む。
 図14BのステップS14-11~S14-18において、ステップS14-3~S14-10と同様の処理が、区画Bに対して行われる。
 ステップS14-11において、加熱コイルB1およびB2に、検知期間Dp1の間のオン時間Ton1に検知電流Ds1が供給される。
 ステップS14-12において、区画Bの入力電流検知器13および出力電流検知器14の検出値に対して、負荷検知部10が、図9AのステップS9-4と同様の判定を行う。
 ステップS14-12における結果がNoである、すなわち、検知電流Ds1により負荷が検知されなかった場合、ステップS14-13において、加熱コイルB1およびB2に、検知期間Dp2の間のオン時間Ton2に検知電流Ds2が供給される。
 ステップS14-14において、区画Bの入力電流検知器13および出力電流検知器14の検出値に対して、負荷検知部10が、図9AのステップS9-4と同様の判定を行う。
 ステップS14-14における結果がNoの場合、すなわち、検知電流Ds2でも負荷が検知されなかった場合、ステップS14-18において、負荷検知部10は、区画Bに負荷は載置されていないと判定する。そして、処理はステップS14-19に進む。
 一方、ステップS14-12またはS14-14の結果がYesの場合、すなわち、検知電流Ds1またはDs2により負荷が検知された場合、ステップS14-15において、負荷検知部10は、区画B上に負荷が載置されていると判定する。ステップS14-16において、負荷検知部10は、最新の載置検知の結果が、直前の検知周期における結果と同じか否かを判定する。
 ステップS14-16の結果がYesの場合、ステップS14-17において、区画Bに対する検知周期が、検知周期T0から検知周期T1に延長される。そして、処理はステップS14-19に進む。ステップS14-16の結果がNoの場合、処理はステップS14-19に進む。
 ステップS14-19において、載置検知が行われる。ステップS14-20において、負荷検知部10が、他の加熱領域、例えば、中央加熱領域Chに関して、載置状況に変化があるか否かを判定する。
 ステップS14-20の結果がNoの場合、決定された検知周期毎に載置検知が行われる。ステップS14-20の結果がYesの場合、ステップS14-21において、駆動制御部11は、検知周期を検知周期T0に設定する。すなわち、検知周期が検知周期T1に設定されている場合、検知周期が検知周期T0に戻される。
 本実施の形態の検知周期の変更によれば、検知周期T0毎に行われる載置検知の結果、負荷検知部10は、N回(例えば5回)連続して区画AまたはBにおいて負荷が載置されていると判定すると、駆動制御部11は、その区画の加熱コイルに対する検知周期を検知周期T0から検知周期T1に延長する。
 本実施の形態の検知周期の変更において、負荷が載置されている区画に対しては、延長された検知周期T1毎に載置検知が実行される。負荷が載置されていない区画に対しては、検知周期T0毎の載置検知が実行される。
 検知周期の変更の後に、負荷検知部10が、負荷が載置されていなかった他の加熱領域(例えば中央加熱領域Ch)において、新たに負荷の載置を検知すると、駆動制御部11は、検知周期T1に設定されていた検知周期を検知周期T0に設定し直す。
 本実施の形態の検知周期の変更によれば、既に認識されている負荷に対して、載置検知の頻度を低下させる。これにより、検知電流による負荷の発熱を抑制することができる。
 複数の加熱コイルが、切替部を介して一つの駆動部で駆動される場合、切替部のスイッチング動作を減少させることができる。これにより、リレーの切り替え時の音の発生を抑制することができる。
 実施の形態1に記載したように、例えば、加熱コイルA1の上方には負荷が載置され、加熱コイルA2の上方には負荷が載置されていない場合、リレー8bがオフされ、加熱コイルA2がインバータ9から切り離される。
 しかし、この場合にも、リレー8bをオンして加熱コイルA2をインバータ9に接続するとともに、加熱コイルA2に対する検知周期を加熱コイルA1に対する検知周期と同様に延長させてもよい。これにより、リレーの切り替え時の音の発生を抑制することができる。
 本実施の形態によれば、負荷が移動した場合に、作動させるべき加熱コイルを素早く特定することができる。
 上記は、加熱領域(ここでは左加熱領域Lh)において、負荷が移動した場合における検知周期の変更の説明である。加熱領域に載置された負荷を除去する場合、および、加熱領域に負荷が追加された場合でも、検知周期の変更が同様に行われる。
 (実施の形態4)
 以下、本開示の実施の形態4の誘導加熱調理器における載置状況の確定について説明する。本実施の形態によれば、図1~図5に示す実施の形態1と同じ構成において、図7A~図11、図14A、図14Bに示す負荷検知に加えて、載置状況の確定が行われる。
 [載置状況の確定]
 本実施の形態における載置状況の確定の概念について、検知周期の変更と同様に、図13Aに示す誘導加熱調理器を用いて説明する。
 図15Aは、実施の形態4に係る載置状況の確定の概念を説明するためのタイミングチャートである。
 図15Aの上半分は、検知周期T(a)~T(d)において、加熱コイル31~34に対してそれぞれ載置検知が行われる検知期間Dpa1~Dpd1、Dpa2~Dpd2、Dpa3~Dpd3、検知期間Dpa4~Dpd4を示す。検知周期T(a)~T(d)の各々の長さは、上記の検知周期T0と等しい。
 これらの検知期間において、図12Aに示す検知期間Dp1に行われる載置検知と同様に、負荷検知部10は、加熱コイル31~34の上方に負荷が載置されているか否かを判定する。
 図15Aの下半分は、加熱コイル31~加熱コイル34の上方における、載置状況の時間的変化を示す。図15Bは、加熱コイル31~34の上方における負荷(鍋La、Lb、Lc)の載置状況のパターンを示す。
 図15Bに示すように、状態Saでは、鍋Laが加熱コイル33および34の上方に載置されている。状態Sbでは、鍋Laが加熱コイル32、33および34の上方に載置されている。状態Scでは、鍋Lbが加熱コイル33および34の上方に載置されている。状態Sdでは、鍋Lbが加熱コイル33および34の上方に載置され、鍋Lcが加熱コイル32の上方に載置されている。
 図15Aの下半分に示すように、「状態Sa→状態Sb」の場合と、「状態Sc→状態Sd」の場合とにおける、載置状況の確定について説明する。
 「状態Sa→状態Sb」は、鍋Laを少しずらすことで、載置状況が状態Saから状態Sbに変化した場合である。「状態Sc→状態Sd」は、鍋Lbが載置されている状況に、鍋Lcが追加されたことで、載置状況が状態Scから状態Sdに変化した場合である。
 まず、「状態Sa→状態Sb」の場合における載置状況の確定について説明する。
 検知周期T(a)における、加熱コイル33に対する検知期間Dpa3と、加熱コイル34に対する検知期間Dpa4とで、負荷検知部10は、状態Saのように鍋Laが載置されていることを検知する。この結果に基づいて、負荷検知部10は、載置状況が状態Saであることを仮決定する。
 検知周期T(b)における、加熱コイル32に対する検知期間Dpb2と、加熱コイル33に対する検知期間Dpb3と、加熱コイル34に対する検知期間Dpb4とで、負荷検知部10は、状態Sbのように鍋Laが載置されていることを検知する。この結果に基づいて、負荷検知部10は、載置状況が状態Sbであることに対して再び仮決定する。
 検知周期T(c)における載置検知の結果が、検知周期T(b)と同じ場合、負荷検知部10は、載置状況が状態Sbであることを確定させる。そうでない場合、負荷検知部10は、載置状況に対して再び仮決定する。
 次に、「状態Sc→状態Sd」の場合における載置状況の確定について説明する。
 検知周期T(a)における、加熱コイル33に対する検知期間Dpa3と、加熱コイル34に対する検知期間Dpa4とで、負荷検知部10は、状態Scのように鍋Laが載置されていることを検知する。この結果に基づいて、負荷検知部10は、載置状況が状態Scであることを仮決定する。
 検知周期T(b)において、負荷検知部10は、載置状況に変化がなく、状態Scが継続することを確認すると、載置状況が状態Scであることを確定させる。
 検知周期T(c)において、加熱コイル32に対する検知期間Dpc2での検知結果に変化が生じる。この結果に基づいて、負荷検知部10は、確定された状態Scに加えて、加熱コイル32の上方に新たな負荷が載置されたことを仮決定する。
 検知周期T(d)において、負荷検知部10は、加熱コイル32に対する検知期間での検知結果に変化がなく、同じ状態が継続することを確認すると、加熱コイル32の上方に新たな負荷が載置されたことを確定させる。これにより、載置状況が状態Sdであることが確定する。
 本実施の形態に係る載置状況の確定によれば、載置状況の変化が最初に検知された検知周期において仮決定し、続く検知周期において、連続して同じ検知結果が得られた場合に、仮決定を確定に変更する。これに限らず、仮決定後、続く少なくとも一つの検知周期で、連続して同じ検知結果が得られた場合に、仮決定を確定に変更してもよい。
 以下、上記概念を、図5に示す回路構成の誘導加熱調理器に適用した場合における、載置状況の確定について説明する。
 本実施の形態では、実施の形態1~3の場合と同様に、左加熱領域Lhの区画Aおよび区画Bにおける処理について説明する。右加熱領域Rh、中央加熱領域Chにおいても同様の処理が並行して行われる。
 図16A、図16Bは、例えば、誘導加熱装置が起動した後の、最初の検知周期における載置状況の確定のためのフローチャートである。
 図17A~図17Cは、図16A、図16Bに示す処理が行われる検知周期に続く2番目以降の検知周期における載置状況の確定のためのフローチャートである。
 図16A、図16BのステップS16-1~S16-14は、実施の形態1に係る載置検知における図9A、図9BのステップS9-1~S9-14と同じである。従って、ステップS16-1~S16-14の説明は省略し、ステップS16-14より後のステップについて説明する。
 ステップS16-15において、ステップS16-1~S16-14における処理の結果が「区画A上に負荷が載置されている」である場合、処理はステップS16-16に進む。そうでない場合、処理はステップS16-18に進む。
 ステップS16-16において、加熱コイルA1およびA2に順次個別に検知電流Ds3が供給される。負荷検知部10は、区画Aの加熱コイルA1およびA2の各々の上方に負荷が載置されているか否かを判定することにより、区画Aにおける位置特定を行う。
 ステップS16-17において、負荷検知部10は、区画Aにおける位置特定の結果である載置状況を仮決定する。
 ステップS16-16における位置特定のための判定は、実施の形態1と同様に、入力電流検知器13および出力電流検知器14の検出値、および/または、入力電流検知器13、出力電流検知器14の各々における連続する二つの検出値の変化に基づいて行われる。
 ステップS16-18~S16-20において、区画Aに対するステップS16-15~S16-17と同様の処理が、区画Bに対して行われる。このようにして、区画AおよびBにおける載置状況が仮決定される。
 図16A、図16Bに示す処理が行われる最初の検知周期に続く2番目以降の検知周期において、図17A~図17Cに示す処理が繰り返し行われる。
 図17AのステップS17-1において、区画Aのリレー8a、8bのうちのオフされているリレー(もしあれば)がオンされ、加熱コイルA1およびA2が、区画Aのインバータ9に接続される。ステップS17-2において、区画Bのリレー8a、8bのうちのオフされているリレー(もしあれば)がオンされ、加熱コイルB1およびB2が、区画Bのインバータ9に接続される。
 ステップS17-3において、加熱コイルA1およびA2に、検知期間Dp1の間のオン時間Ton1に検知電流Ds1が供給される。
 ステップS17-4において、区画Aの入力電流検知器13および出力電流検知器14の検出値に対して、負荷検知部10が、図9AのステップS9-4と同様の判定を行う。この処理で、比較的大きな負荷、例えば直径が約150mm以上の鍋を検知することができる。
 ステップS17-4における結果がNoである、すなわち、検知電流Ds1により負荷が検知されなかった場合、ステップS17-5において、加熱コイルA1およびA2に、検知期間Dp2の間のオン時間Ton2に検知電流Ds2が供給される。
 ステップS17-6において、区画Aの入力電流検知器13および出力電流検知器14の検出値に対して、負荷検知部10が、図9AのステップS9-4と同様の判定を行う。ステップS17-6における結果がNoの場合、ステップS17-10において、負荷検知部10は、区画Aに負荷は載置されていないと判定する。処理は図17Bに進む。
 一方、ステップS17-4またはステップS17-6の結果がYesの場合、ステップS17-7において、負荷検知部10は、区画A上に負荷が載置されていると判定する。ステップS17-8において、負荷検知部10は、最新の載置検知の結果が、直前の検知周期における結果と同じか否かを判定する。
 ステップS17-8の結果がYesの場合、ステップS17-9において、負荷検知部10は、区画Aにおける載置状況を確定する。処理は図17Bに進む。ステップS17-8の結果がNoの場合、処理は図17Bに進む。
 図17BのステップS17-11~S17-18において、区画Aに対する図17AのステップS17-3~S17-10と同様の処理が、区画Bに対して行われる。
 ステップS17-11において、加熱コイルB1およびB2に、検知期間Dp1の間のオン時間Ton1に検知電流Ds1が供給される。
 ステップS17-12において、区画Bの入力電流検知器13および出力電流検知器14の検出値に対して、負荷検知部10が、図9AのステップS9-4と同様の判定を行う。
 ステップS17-12における結果がNoである、すなわち、検知電流Ds1により負荷が検知されなかった場合、ステップS17-13において、加熱コイルB1およびB2に、検知期間Dp2の間のオン時間Ton2に検知電流Ds2が供給される。
 ステップS17-14において、区画Bの入力電流検知器13および出力電流検知器14の検出値に対して、負荷検知部10が、図9AのステップS9-4と同様の判定を行う。
 ステップS17-14における結果がNoの場合、すなわち、検知電流Ds2でも負荷が検知されなかった場合、ステップS17-18において、負荷検知部10は、区画Bに負荷は載置されていないと判定する。処理は図17Cに進む。
 一方、ステップS17-12またはステップS17-14の結果がYesの場合、すなわち、検知電流Ds1またはDs2により負荷が検知された場合、ステップS17-15において、負荷検知部10は、区画B上に負荷が載置されていると判定する。ステップS17-16において、負荷検知部10は、最新の載置検知の結果が、直前の検知周期における結果と同じか否かを判定する。
 ステップS17-16の結果がYesの場合、ステップS17-17において、負荷検知部10は、区画Bにおける載置状況を確定する。処理は図17Cに進む。ステップS17-16の結果がNoの場合、処理は図17Cに進む。
 図17Cに示すように、ステップS17-19において、図17Aに示す載置状況の確定の結果が「区画Aにおける載置状況は確定されている」である場合、処理はステップS17-23に進む。そうでない場合、処理はステップS17-20に進む。
 ステップS17-20において、図17Aに示す載置状況の確定の結果が「区画A上に負荷が載置されている」である場合、処理はステップS17-21に進む。そうでない場合、処理はステップS17-23に進む。
 ステップS17-21において、加熱コイルA1およびA2に順次個別に検知電流Ds3が供給される。負荷検知部10は、区画Aの加熱コイルA1およびA2の各々の上方に負荷が載置されているか否かを判定することにより、区画Aにおける位置特定を行う。
 ステップS17-22において、負荷検知部10は、区画Aにおける位置特定の結果である載置状況を仮決定する。
 ステップS17-23~S17-26において、区画Aに対するステップS17-19~S17-22と同様の処理が、区画Bに対して行われる。このようにして、2番目以降の検知周期における載置状況の確定が終了する。次の検知周期以降も、図17A~図17Cに示す処理が繰り返し行われる。
 本実施の形態の載置状況の確定によれば、所定数の検知周期が経過するまでに、上方に負荷が載置された加熱コイルに隣接する加熱コイルの上方に負荷が載置されたことが検知された場合、負荷検知部10は、それは負荷の移動によるものであると判定する。所定数の検知周期より長い期間が経過した後に同様の変化が検知された場合、負荷検知部10は、それは別の負荷が載置されたことに起因するものであると判定する。
 このようにして、本実施の形態の誘導加熱調理器は、負荷の載置状況を判定することができる。
 本実施の形態の載置状況の確定によれば、区画Aにおいて負荷検知と、載置状況に対する仮決定または確定とが行われた後に、区画Bにおける負荷検知と、載置状況に対する仮決定または確定とが行われる。
 しかし、これに限るものではない。例えば、区画A、Bの両方における負荷検知が行われた後に、区画A、Bにおける載置状況に対する仮決定または確定が行われてもよい。
 左加熱領域Lhだけでなく、すべての加熱領域Hにおける負荷検知が行われた後に、載置状況に対する仮決定または確定が行われてもよい。
 本実施の形態の載置状況の確定によれば、複数の加熱領域にまたがって負荷が載置された場合に、負荷検知部10は、負荷の載置状況をより精度よく検知することができる。その結果、駆動制御部11は、載置状況に対応する適切な加熱コイルを作動させて、負荷を誘導加熱することができる。
 (実施の形態5)
 以下、本開示の実施の形態5の誘導加熱調理器について、図18A~図22Bを用いて説明する。
 本実施の形態の誘導加熱調理器は、図1~図5に示す実施の形態1と同じ構成を有する。本実施の形態の誘導加熱調理器は、実施の形態1に係る載置検知と、実施の形態2に係る位置特定と、実施の形態3に係る検知周期の変更と、実施の形態4に係る載置状況の確定とを順に実行する。
 本実施の形態では、実施の形態1~4の場合と同様に、左加熱領域Lhの区画Aおよび区画Bにおける処理について説明する。右加熱領域Rh、中央加熱領域Chにおいても同様の処理が並行して行われる。
 図18A、図18Bは、本実施の形態に係る載置検知のためのフローチャートである。図18A、図18BのステップS18-1~S18-14に示す載置検知は、図9A、図9BのステップS9-1~S9-14に示す実施の形態1の載置検知と同じである。従って、図18A、図18Bの説明は省略する。
 図19A、図19Bは、本実施の形態に係る位置特定のためのフローチャートである。図19AのステップS19-1~S19-8に示す位置特定は、図12Bに示す実施の形態2に係る位置特定と同じである。従って、図19Aの説明は省略する。
 図19BのステップS19-9において、図19Bに示す位置特定の結果が「加熱コイルA1およびA2の少なくとも一方の上方に負荷が載置されている」である場合、処理はステップS19-10に進む。そうでない場合、処理はステップS19-11に進む。
 ステップS19-10において、負荷検知部10は、区画Aにおける載置状況を仮決定する。
 ステップS19-11において、図19Bに示す位置特定の結果が「加熱コイルB1およびB2の少なくとも一方の上方に負荷が載置されている」である場合、処理はステップS19-12に進む。そうでない場合、処理は図20Aに進む。
 ステップS19-12において、負荷検知部10は、区画Bにおける載置状況を仮決定する。処理は図20Aに進む。
 図20A、図20B、図21は、本実施の形態に係る載置状況の確定のためのフローチャートである。
 図20A、図20BのステップS20-1~S20-18に示す載置状況の確定は、図17A、図17BのステップS17-1~S17-18に示す実施の形態4に係る載置状況の確定と同じである。従って、図20A、図20Bの説明は省略する。
 図21に示すように、ステップS21-1において、図20Aに示す載置状況の確定の結果が「区画Aにおける載置状況は確定されている」である場合、処理はステップS21-6に進む。そうでない場合、処理はステップS21-2に進む。
 ステップS21-2において、図20Bに示す載置状況の確定の結果が「区画Bにおける載置状況は確定されている」である場合、処理はステップS21-3に進む。そうでない場合、負荷検知部10は、「区画AおよびBにおいて載置状況が確定されていない」と結論づけて、載置状況の確定を終了させる。再び位置特定を行うために、処理は図19AのステップS19-1に戻る。
 ステップS21-3において、図20Aに示す処理の結果が「区画A上に負荷が載置されている」である場合、処理はステップS21-4に進む。そうでない場合、負荷検知部10は、「区画Bでは載置状況が確定され、区画A上には負荷が載置されていない」と結論づけて、載置状況の確定を終了させる。処理は図22Aに進む。
 ステップS21-4において、加熱コイルA1およびA2に順次個別に検知電流Ds3が供給される。負荷検知部10は、加熱コイルA1およびA2の各々の上方に負荷が載置されているか否かを判定する。
 ステップS21-5において、負荷検知部10は、「区画Bでは載置状況が確定され、区画Aでは載置状況が仮決定されている」と結論づけて、載置状況の確定を終了させる。処理は図22Aに進む。
 ステップS21-6において、図20Bに示す処理の結果が「区画Bにおける載置状況は確定されている」である場合、負荷検知部10は、「区画AおよびBにおける載置状況は確定されている」と結論づけて、載置状況の確定を終了させる。処理は図22Aに進む。そうでない場合、処理はステップS21-7に進む。
 ステップS21-7において、図20Bに示す載置状況の確定の結果が「区画B上に負荷が載置されている」である場合、処理はステップS21-8に進む。そうでない場合、負荷検知部10は、「区画Aでは載置状況が確定され、区画B上には負荷が載置されていない」と結論づけて、載置状況の確定を終了させる。処理は図22Aに進む。
 ステップS21-8において、加熱コイルB1およびB2に順次個別に検知電流Ds3が供給される。負荷検知部10は、加熱コイルB1およびB2の各々の上方に負荷が載置されているか否かを判定する。
 ステップS21-9において、負荷検知部10は、「区画Aでは載置状況が確定され、区画Bでは載置状況が仮決定されている」と結論づけて、載置状況の確定を終了させる。処理は図22Aに進む。
 上記のように、2番目の検知周期において、図20A、図20B、図21に示す載置状況の確定を実行した後、3回目以降の検知周期において、図22A、図22Bに示す検知周期の変更が実行される。
 図22A、図22Bは、本実施の形態に係る検知周期の変更のためのフローチャートである。
 図22A、図22Bに示すように、ステップS22-1において、駆動制御部11が、所定回数(N回、例えば5回)連続して、載置検知が行なわれたか否かを判定する。載置検知の回数がN回になるまで、処理は図20AのステップS20-1に戻る。載置検知がN回連続して行われると、処理はステップS22-2に進む。
 ステップS22-2において、区画Aのリレー8a、8bのうちのオフされているリレー(もしあれば)がオンされ、加熱コイルA1およびA2が、区画Aのインバータ9に接続される。ステップS22-3において、区画Bのリレー8a、8bのうちのオフされているリレー(もしあれば)がオンされ、加熱コイルB1およびB2が、区画Bのインバータ9に接続される。
 ステップS22-4において、加熱コイルA1およびA2に、検知期間Dp1の間のオン時間Ton1に検知電流Ds1が供給される。
 ステップS22-5において、区画Aの入力電流検知器13および出力電流検知器14の検出値に対して、負荷検知部10が、図9AのステップS9-4と同様の判定を行う。この処理で、比較的大きな負荷、例えば直径が約150mm以上の鍋が検知される。
 ステップS22-5における結果がNoである、すなわち、検知電流Ds1により負荷が検知されなかった場合、ステップS22-6において、加熱コイルA1およびA2に、検知期間Dp2の間のオン時間Ton2に検知電流Ds2が供給される。
 ステップS22-7において、区画Aの入力電流検知器13および出力電流検知器14の検出値に対して、負荷検知部10が、図9AのステップS9-4と同様の判定を行う。ステップS22-7における結果がNoの場合、ステップS22-11において、負荷検知部10は、区画Aに負荷は載置されていないと判定する。処理は図22Bに進む。
 一方、ステップS22-5またはS22-7の結果がYesの場合、ステップS22-8において、負荷検知部10は、区画A上に負荷が載置されていると判定する。ステップS22-9において、負荷検知部10は、最新の載置検知の結果が、直前の検知周期における結果と同じか否かを判定する。
 ステップS22-9の結果がYesの場合、ステップS22-10において、区画Aに対する検知周期が、検知周期T0から検知周期T1に延長される。本実施の形態では、検知周期T1は8秒である。そして、処理は図22Bに進む。ステップS22-9の結果がNoの場合、処理は図22Bに進む。
 図22BのステップS22-12~S22-19において、ステップS22-4~S22-11と同様の処理が、区画Bに対して行われる。
 ステップS22-12において、加熱コイルB1およびB2に、検知期間Dp1の間のオン時間Ton1に検知電流Ds1が供給される。
 ステップS22-13において、区画Bの入力電流検知器13および出力電流検知器14の検出値に対して、負荷検知部10が、図9AのステップS9-4と同様の判定を行う。
 ステップS22-13における結果がNoである、すなわち、検知電流Ds1により負荷が検知されなかった場合、ステップS22-14において、加熱コイルB1およびB2に、検知期間Dp2の間のオン時間Ton2に検知電流Ds2が供給される。
 ステップS22-15において、区画Bの入力電流検知器13および出力電流検知器14の検出値に対して、負荷検知部10が、図9AのステップS9-4と同様の判定を行う。
 ステップS22-15における結果がNoの場合、すなわち、検知電流Ds2でも負荷が検知されなかった場合、ステップS22-19において、負荷検知部10は、区画Bに負荷は載置されていないと判定する。そして、処理はステップS22-20に進む。
 一方、ステップS22-13またはS22-15の結果がYesの場合、すなわち、検知電流Ds1またはDs2により負荷が検知された場合、ステップS22-16において、負荷検知部10は、区画B上に負荷が載置されていると判定する。ステップS22-17において、負荷検知部10は、最新の載置検知の結果が、直前の検知周期における結果と同じか否かを判定する。
 ステップS22-17の結果がYesの場合、ステップS22-18において、区画Bに対する検知周期が、検知周期T0から検知周期T1に延長される。そして、処理はステップS22-20に進む。ステップS22-17の結果がNoの場合、処理はステップS22-20に進む。
 ステップS22-20において、載置検知が行われる。ステップS22-21において、負荷検知部10が、他の加熱領域、例えば、中央加熱領域Chに関して、載置状況に変化があるか否かを判定する。
 ステップS22-21の結果がNoの場合、決定された検知周期毎に載置検知が行われる。ステップS22-21の結果がYesの場合、ステップS22-22において、駆動制御部11は、検知周期を検知周期T0に設定する。すなわち、検知周期が検知周期T1に設定されている場合、検知周期が検知周期T0に戻される。
 なお、本実施の形態では、区画Aにおいて負荷が載置されていることが検知されると、区画Aにおける載置状況に対して仮決定または確定を行う。それに続けて、区画Bにおいて負荷が載置されていることが検知されると、区画Bにおける載置状況に対して仮決定または確定を行う。
 しかしながら、区画AおよびBにおける負荷検知が終了した場合に、区画AおよびBにおける載置状況に対して仮決定または確定を行ってもよい。
 左加熱領域Lhだけでなく、すべての加熱領域Hにおける負荷検知が終了した場合に、すべての加熱領域Hにおける載置状況に対して仮決定または確定を行ってもよい。
 これにより、複数の区画にまたがって負荷が載置された場合において、負荷の載置状況を精度よく検知することができる。
 本開示は、天板の下方に設けられた多数の加熱コイルを有するマルチコイル型の誘導加熱装置に適応可能である。
 1 筐体
 2 天板
 3,31,32,33,34,A1,A2,B1,B2 加熱コイル
 4 駆動部
 5 操作表示部
 6 赤外線センサ
 7 サーミスタ
 8 切替部
 8a,8b,25 リレー
 9 インバータ
 10 負荷検知部
 11 駆動制御部
 12 商用電源
 13 入力電流検知器
 14,23 出力電流検知器
 15 ダイオードブリッジ
 16 チョークコイル
 17 コンデンサ
 18 フィルタ回路
 19a,19b スイッチング素子
 20 スナバコンデンサ
 21a,21b,21c,21d 共振コンデンサ
 22 入力電圧検知器
 24 クランプコンデンサ
 50 制御部

Claims (9)

  1.  負荷を載置するように構成された天板と、
     前記天板の下方に設けられた複数の加熱コイルと、
     前記複数の加熱コイルに高周波電力を供給するように構成された駆動部と、
     前記駆動部に含まれた素子に関連する電気信号を検知するように構成された電気信号検知部と、
     前記複数の加熱コイルの各々と前記駆動部との間をそれぞれ接続または切断する切替部と、
     前記電気信号を入力し、前記駆動部および前記切替部を制御するように構成された制御部と、
    を備え、
     前記制御部が、前記高周波電力である検知電流を前記複数の加熱コイルのすべてに供給するように、前記駆動部および前記切替部を制御し、前記検知電流に応答した前記電気信号に基づいて、前記複数の加熱コイルの上方に前記負荷が載置されているか否かを判定するように構成され、
     前記制御部が、前記複数の加熱コイルの上方に前記負荷が載置されていると判定した場合、前記複数の加熱コイルの各々に順次個別に前記検知電流を供給するように、前記駆動部および前記切替部を制御し、前記複数の加熱コイルの各々の上方に前記負荷が載置されているか否かを判定するように構成され、
     前記制御部が、前記複数の加熱コイルの各々に対する判定の後、前記加熱コイルのすべてを前記駆動部に接続するように、前記切替部を制御するように、構成された誘導加熱装置。
  2.  前記制御部が、前記複数の加熱コイルのうち、上方に前記負荷が載置されていないと判定した加熱コイルを前記駆動部から切り離すように、前記切替部を制御するように構成された、請求項1に記載の誘導加熱装置。
  3.  前記制御部が、前記複数の加熱コイルのうち、上方に前記負荷が載置されていないと所定回数連続して判定した加熱コイルを前記駆動部から切り離すように、前記切替部を制御するように構成された、請求項1に記載の誘導加熱装置。
  4.  前記制御部は、前記複数の加熱コイルのうち、前記駆動部に接続された加熱コイルの上方に負荷が載置されていると判定すると、前記駆動部に接続されていない加熱コイルを前記駆動部に接続するように、前記切替部を制御するように構成された、請求項1に記載の誘導加熱装置。
  5.  前記天板が少なくとも一つの加熱領域を有し、
     前記少なくとも一つの加熱領域が複数の区画を有し、
     前記複数の加熱コイルと前記駆動部とが、前記複数の区画のうちの一つの区画に対して設けられた請求項1に記載の誘導加熱装置。
  6.  高周波電力である検知電流を、天板の下方に設けられた複数の加熱コイルのすべてに供給し、前記複数の加熱コイルの上方に負荷が載置されているか否かを判定するステップと、
     前記複数の加熱コイルの上方に前記負荷が載置されていると判定された場合、前記複数の加熱コイルの各々に順次個別に前記検知電流を供給し、前記複数の加熱コイルの各々の上方に前記負荷が載置されているか否かを判定するステップと、
     前記複数の加熱コイルの各々に対する判定の後、前記加熱コイルのすべてを前記駆動部に接続するステップと、を含む、誘導加熱装置における負荷検知方法。
  7.  前記複数の加熱コイルのうち、上方に前記負荷が載置されていないと判定した加熱コイルを前記駆動部から切り離すステップをさらに含む、請求項6に記載の誘導加熱装置における負荷検知方法。
  8.  前記複数の加熱コイルのうち、上方に前記負荷が載置されていないと所定回数連続して判定された加熱コイルを前記駆動部から切り離すステップをさらに含む、請求項6に記載の誘導加熱装置における負荷検知方法。
  9.  前記複数の加熱コイルのうち、前記駆動部に接続された加熱コイルの上方に負荷が載置されている場合、前記駆動部に接続されていない加熱コイルを前記駆動部に接続するステップをさらに含む、請求項6に記載の誘導加熱装置における負荷検知方法。
PCT/JP2017/022050 2016-08-30 2017-06-15 誘導加熱装置および誘導加熱装置における負荷検知方法 WO2018042822A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17845833.7A EP3509398B1 (en) 2016-08-30 2017-06-15 Induction heating device and load detection method in induction heating device
JP2018536968A JP6887080B2 (ja) 2016-08-30 2017-06-15 誘導加熱装置および誘導加熱装置における負荷検知方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016168388 2016-08-30
JP2016-168388 2016-08-30

Publications (1)

Publication Number Publication Date
WO2018042822A1 true WO2018042822A1 (ja) 2018-03-08

Family

ID=61300413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022050 WO2018042822A1 (ja) 2016-08-30 2017-06-15 誘導加熱装置および誘導加熱装置における負荷検知方法

Country Status (3)

Country Link
EP (1) EP3509398B1 (ja)
JP (1) JP6887080B2 (ja)
WO (1) WO2018042822A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064933A1 (ja) * 2012-10-24 2014-05-01 パナソニック株式会社 誘導加熱装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2863039B1 (fr) * 2003-11-27 2006-02-17 Brandt Ind Procede de chauffage d'un recipient pose sur une table de cuisson a moyens de chauffage associe a des inducteurs
CN104604330A (zh) * 2012-10-25 2015-05-06 松下知识产权经营株式会社 感应加热装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064933A1 (ja) * 2012-10-24 2014-05-01 パナソニック株式会社 誘導加熱装置

Also Published As

Publication number Publication date
JPWO2018042822A1 (ja) 2019-06-24
EP3509398A1 (en) 2019-07-10
JP6887080B2 (ja) 2021-06-16
EP3509398B1 (en) 2020-01-22
EP3509398A4 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
JP6341397B2 (ja) 誘導加熱装置
JP6413094B2 (ja) 誘導加熱装置
CN102144885B (zh) 感应加热炊具
JP5844017B1 (ja) 誘導加熱調理器およびその制御方法
JP2011044422A (ja) 誘導加熱調理器
CN109945247A (zh) 电磁烹饪器具及其功率控制方法
WO2018042822A1 (ja) 誘導加熱装置および誘導加熱装置における負荷検知方法
WO2018042819A1 (ja) 誘導加熱装置および誘導加熱装置における負荷検知方法
WO2018042821A1 (ja) 誘導加熱装置および誘導加熱装置における負荷検知方法
WO2018042820A1 (ja) 誘導加熱装置および誘導加熱装置における負荷検知方法
KR101515026B1 (ko) 복수의 워킹코일을 구비한 유도가열 장치
JP5073019B2 (ja) 誘導加熱調理器
JP4450813B2 (ja) 誘導加熱調理器
JP5807161B2 (ja) 誘導加熱装置およびそれを用いた炊飯器
KR20190080826A (ko) 전자기 조리 기구 및 그의 전력 제어 방법
JP4799523B2 (ja) 誘導加熱調理器
KR101488731B1 (ko) 복수의 워킹코일을 구비한 유도가열 장치
JP2016058176A (ja) 誘導加熱装置
JP7012225B2 (ja) 加熱装置およびリレー切替制御方法
JP5169488B2 (ja) 誘導加熱装置
CN116889098A (zh) 用于电磁炉的电路布置、电磁炉和操作电磁炉的方法
KR20070114488A (ko) 조리기의 가열원 구동장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018536968

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE