WO2018042750A1 - Semiactive damper - Google Patents

Semiactive damper Download PDF

Info

Publication number
WO2018042750A1
WO2018042750A1 PCT/JP2017/015735 JP2017015735W WO2018042750A1 WO 2018042750 A1 WO2018042750 A1 WO 2018042750A1 JP 2017015735 W JP2017015735 W JP 2017015735W WO 2018042750 A1 WO2018042750 A1 WO 2018042750A1
Authority
WO
WIPO (PCT)
Prior art keywords
side chamber
semi
active damper
cylinder
valve
Prior art date
Application number
PCT/JP2017/015735
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 小川
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to CN201780051218.1A priority Critical patent/CN109642632A/en
Priority to US16/094,015 priority patent/US20190126950A1/en
Publication of WO2018042750A1 publication Critical patent/WO2018042750A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • B61F5/245Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes by active damping, i.e. with means to vary the damping characteristics in accordance with track or vehicle induced reactions, especially in high speed mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/80Interactive suspensions; arrangement affecting more than one suspension unit
    • B60G2204/82Interactive suspensions; arrangement affecting more than one suspension unit left and right unit on same axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/518Pressure in suspension unit in damper
    • B60G2400/5182Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/184Semi-Active control means

Definitions

  • the present invention relates to an improvement of a semi-active damper.
  • a railway vehicle is used by being interposed between a vehicle body and a carriage so as to suppress left-right vibration with respect to the traveling direction of the vehicle body.
  • a railway vehicle is used by being interposed between a vehicle body and a carriage so as to suppress left-right vibration with respect to the traveling direction of the vehicle body.
  • the semi-active damper includes a cylinder, a piston that is slidably inserted into the cylinder, and divides the cylinder into a rod side chamber and a piston side chamber, A rod inserted into the cylinder and connected to the piston and provided in the middle of the first passage communicating the actuator, the tank, the rod side chamber, and the piston side chamber, which are interposed between the vehicle body and the carriage.
  • a first on-off valve, a second on-off valve provided in the middle of the second passage communicating the piston side chamber and the tank, a discharge passage connecting the rod side chamber to the tank, and a valve provided in the middle of the discharge passage
  • a variable relief valve capable of changing the pressure.
  • the semi-active damper when the first on-off valve is opened and the second on-off valve is closed, the damping force is exerted only on the contraction side, and conversely, the first on-off valve is closed and the second on-off valve is opened. It exhibits damping force only on the extension side. Therefore, the semi-active damper can function as a skyhook damper based on the carnop control.
  • An object of the present invention is to provide a semi-active damper capable of reducing the size and cost and improving the riding comfort in a vehicle.
  • the semi-active damper of the present invention includes a cylinder, a rod that is slidably inserted into the cylinder, and a piston that is slidably inserted into the cylinder and divides the cylinder into a rod side chamber and a piston side chamber.
  • a tank a suction passage that allows only a flow of working fluid from the tank to the piston side chamber, a damping passage that communicates the rod side chamber and the tank, or communicates the rod side chamber and the piston side chamber.
  • a variable damping valve provided in the damping passage, and a detector for detecting the expansion and contraction direction by the pressure in the piston side chamber.
  • FIG. 1 is a circuit diagram of a semi-active damper according to an embodiment.
  • FIG. 2 is a schematic plan view of a railway vehicle equipped with a semi-active damper according to an embodiment.
  • FIG. 3 is a control block diagram of a control unit in the semi-active damper according to the embodiment.
  • FIG. 4 is a circuit diagram of a semi-active damper according to a modification of the embodiment.
  • FIG. 5 is a circuit diagram of a semi-active damper according to another modification of the embodiment. It is the circuit diagram which showed the modification of the variable damping valve.
  • the semi-active damper D in one embodiment includes a cylinder 1, a rod 2 that is movably inserted into the cylinder 1, and a slidably inserted into the cylinder 1.
  • the piston 3 is divided into a rod side chamber 4 and a piston side chamber 5, a tank 6, a suction passage 7, a damping passage 8, a variable damping valve 9, and a detection unit 10 that detects the expansion / contraction direction. ing.
  • the semi-active damper D is used as a vibration damping device for the vehicle body B of the railway vehicle, and is installed between the vehicle body B and the carriage T as shown in FIG.
  • the horizontal and horizontal vibrations are suppressed with respect to the vehicle traveling direction B.
  • the cylinder 1 has a cylindrical shape, and the right end in FIG. 1 is closed by a lid 11, and an annular rod guide 12 is attached to the left end in FIG.
  • a rod 2 that is movably inserted into the cylinder 1 is slidably inserted into the rod guide 12.
  • the rod 2 has one end protruding outside the cylinder 1, and the other end in the cylinder 1 is connected to a piston 3 that is slidably inserted into the cylinder 1.
  • the inside of the cylinder 1 is divided into a rod side chamber 4 and a piston side chamber 5.
  • the rod side chamber 4 and the piston side chamber 5 defined by the piston 3 in the cylinder 1 are filled with working oil as a working fluid.
  • the tank 6 is filled with gas in addition to hydraulic oil. In addition, it is not necessary to compress and fill the inside of the tank 6 with a gas in particular.
  • the working fluid may use other liquids besides the working oil.
  • a lid 11 that closes the left end of the rod 2 in FIG. 1 and the right end of the cylinder 1 is provided with a mounting portion (not shown), and a semi-active damper D is interposed between the vehicle body B and the carriage T in the railway vehicle. Can be disguised.
  • the damping passage 8 connects the rod side chamber 4 and the tank 6, and the damping passage 8 is provided with a variable damping valve 9.
  • the variable damping valve 9 is a variable relief valve that can change the valve opening pressure, and can adjust the valve opening pressure in accordance with the amount of current supplied.
  • the variable damping valve 9 opens when the pressure in the rod side chamber 4 reaches the valve opening pressure, and connects the rod side chamber 4 to the tank 6 to adjust the pressure in the rod side chamber 4 to the valve opening pressure.
  • the flow of hydraulic oil toward the rod side chamber 4 is blocked. Therefore, in this example, the damping passage 8 is set as a one-way passage that allows only the flow of hydraulic oil from the rod side chamber 4 toward the tank 6 by the variable damping valve 9.
  • variable damping valve 9 is an electromagnetic relief valve equipped with a solenoid. When the current amount is maximized, the valve opening pressure is minimized, and when no current is supplied, the valve opening pressure is maximized. The valve opening pressure is changed according to the amount of current to be applied.
  • the variable damping valve 9 has other structures such as a variable throttle valve that can adjust the opening area according to the amount of current supplied, a spool valve, a rotary valve, and the like. Valves can also be used.
  • the semi-active damper D of the present example has a rectifying passage 13 that allows only the flow of hydraulic oil from the piston side chamber 5 to the rod side chamber 4, and a suction that allows only the flow of hydraulic oil from the tank 6 to the piston side chamber 5.
  • a passage 7 is provided. Therefore, when the semi-active damper D of this example expands and contracts, the hydraulic oil is always pushed out from the cylinder 1 to the damping passage 8. Since the variable damping valve 9 provides resistance to the flow of hydraulic oil discharged from the cylinder 1, the semi-active damper D of this example is configured as a uniflow type damper.
  • the rectifying passage 13 communicates the piston side chamber 5 and the rod side chamber 4, and a check valve 13 a is provided in the middle, allowing only the flow of hydraulic oil from the piston side chamber 5 toward the rod side chamber 4. It is set as a one-way passage. Further, the suction passage 7 communicates between the tank 6 and the piston side chamber 5, and a check valve 7 a is provided in the middle of the suction passage 7 to allow only the flow of hydraulic oil from the tank 6 toward the piston side chamber 5. Is set to In this example, the rectifying passage 13 is provided in the piston 3 and the suction passage 7 is provided in the lid 11, but may be provided elsewhere.
  • the rod side chamber 4, the piston side chamber 5, and the tank 6 are connected in a daisy chain by the rectifying passage 13, the suction passage 7, and the damping passage 8.
  • the rectifying passage 13, the suction passage 7, and the attenuation passage 8 are set as one-way passages.
  • the semi-active damper D when the semi-active damper D is extended, the working oil is discharged from the rod side chamber 4 to be compressed to the damping passage 8, and the expanding piston side chamber 5 is replenished with the working oil from the tank 6 through the suction passage 7. Since the hydraulic oil discharged from the rod side chamber 4 moves to the tank 6 via the variable damping valve 9, the semi-active damper D sets the pressure receiving area on the rod side chamber 4 side in the piston 3 to the pressure in the rod side chamber 4. Generates a damping force of the multiplied value. On the contrary, when the semi-active damper D is contracted, the working oil moves from the compressed piston side chamber 5 to the rod side chamber 4 through the rectifying passage 13.
  • the hydraulic oil corresponding to the volume into which the rod 2 has entered becomes excessive in the cylinder 1 and is discharged from the rod side chamber 4 to the attenuation passage 8. Since the hydraulic oil discharged from the rod side chamber 4 moves to the tank 6 via the variable damping valve 9, the pressure in the rod side chamber 4 and the piston side chamber 5 is adjusted to the valve opening pressure of the variable damping valve 9. . Since the difference between the pressure receiving area of the piston 3 that receives the pressure in the piston side chamber 5 and the pressure receiving area of the piston 3 that receives the pressure in the rod side chamber 4 is the cross-sectional area of the rod 2, the semi-active damper D has a pressure in the rod side chamber 4. A damping force having a value obtained by multiplying the cross-sectional area of the rod 2 by 1 is generated.
  • the semi-active damper D When the semi-active damper D expands and contracts due to an external force in this manner, the hydraulic oil is always discharged from the cylinder 1 and returned to the tank 6 through the damping passage 8, and the hydraulic oil that is not sufficient in the cylinder 1 passes through the suction passage 7. 6 is supplied into the cylinder 1. Since the variable damping valve 9 acts as a resistance against the flow of hydraulic oil and adjusts the pressure in the cylinder 1 to the valve opening pressure, the semi-active damper D functions as a passive uniflow type damper.
  • the detection unit 10 includes a pressure sensor 10a that detects the pressure in the piston-side chamber 5, and a determination unit 10b that determines the expansion / contraction direction of the semi-active damper D based on the pressure detected by the pressure sensor 10a.
  • the semi-active damper D of this example when the expansion operation is performed, the hydraulic oil is supplied from the tank 6 through the suction passage 7 to the piston side chamber 5 to be expanded, so that the pressure in the piston side chamber 5 becomes substantially equal to the tank pressure.
  • the hydraulic oil in the piston side chamber 5 to be compressed is supplied to the rod side chamber 4 through the rectifying passage 13, so that the pressure in the piston side chamber 5 becomes substantially equal to the rod side chamber 4. .
  • the pressure in the rod side chamber 4 is adjusted to the valve opening pressure of the variable damping valve 9, so that the pressure in the piston side chamber 5 also becomes higher than the tank pressure.
  • the pressure sensor 10a since the pressure state in the piston side chamber 5 is different between the expansion operation and the contraction operation of the semi-active damper D, if the pressure in the piston side chamber 5 is detected by the pressure sensor 10a, the expansion / contraction direction is detected. it can.
  • the tank pressure or a pressure value slightly higher than the tank pressure is preset as the threshold value, and the determination unit 10b detects the expansion / contraction direction by comparing the pressure detected by the pressure sensor 10a with the threshold value.
  • the determination unit 10b determines that the semi-active damper D is in the extension operation, and outputs a signal indicating the extension operation to the control unit C. To do.
  • the determination unit 10b determines that the semi-active damper D is in a contracting operation and outputs a signal indicating that the contracting operation is being performed to the control unit C.
  • the detection part 10 may be comprised with a pressure switch instead of the structure of the pressure sensor 10a and the judgment part 10b.
  • the pressure switch Since the pressure switch outputs an ON signal when the pressure in the piston side chamber 5 exceeds a predetermined pressure, the ON signal indicates that the semi-active damper D is being contracted when the predetermined pressure is set to the above-described threshold value. It becomes. On the other hand, when the pressure switch does not emit an ON signal, it can be seen that the semi-active damper D is in the extension operation.
  • an acceleration sensor 20 is attached to the cylinder 1, and the acceleration sensor 20 detects an axial acceleration a acting on the cylinder 1 and inputs it to the control unit C. Therefore, as shown in FIG. 2, when the cylinder 1 is connected to the vehicle body B to be controlled, the rod 2 is connected to the carriage T, and the semi-active damper D is attached to the railway vehicle, the acceleration sensor 20 An acceleration substantially equal to the horizontal and horizontal acceleration of B can be detected.
  • the control unit C includes a bandpass filter 41 that removes steady acceleration, drift components, and noise during curve running included in the acceleration a detected by the acceleration sensor 20, and a band And a control processing unit 42 that outputs a control command to the variable damping valve 9 based on the acceleration a filtered by the pass filter 41 and the expansion / contraction direction of the semi-active damper D detected by the detection unit 10. Controls the damping force output by D.
  • working included in the acceleration a by the band pass filter 41 is removed, only the vibration which deteriorates riding comfort can be suppressed.
  • the control processing unit 42 calculates a damping force to obtain a damping force F that the semi-active damper D should generate based on the acceleration a detected by the acceleration sensor 20 and the expansion / contraction direction detected by the detecting unit 10.
  • a valve driving unit 423 is provided.
  • the damping force calculation unit 421 causes the semi-active damper D to function as a skyhook damper based on the Karnop control law, and attenuates based on the acceleration a and the expansion / contraction direction detected by the detection unit 10. Find the force F.
  • the semi-active damper D exerts a damping force to suppress the vibration of the vibration suppression target, suppresses the vibration by suppressing the vibration and the vibration of the vibration suppression target cannot be suppressed.
  • the speed V of the vehicle body B can be obtained by differentiating the acceleration a detected by the acceleration sensor 20, and the extension / contraction direction of the semi-active damper D is detected by the detection unit 10, so that the damping force calculation unit 421 can grasp both.
  • the damping force calculation unit 421 calculates the damping force F as follows.
  • the damping force calculation unit 421 The damping force F is set to zero.
  • the semi-active damper D since the semi-active damper D includes the detection unit 10, it can detect the expansion / contraction direction and can function as a skyhook damper based on the Karnop control law.
  • the acceleration sensor 20 may be directly attached to the vehicle body B. However, if the acceleration sensor 20 is attached to the semi-active damper D, wiring work is not required when the semi-active damper D is installed on the railway vehicle. Further, the semi-active damper D does not include the acceleration sensor 20 and may receive an input of the acceleration to be controlled from the outside, or may receive an input of a target damping force to be output instead of the acceleration. .
  • the semi-active damper D When receiving the input of the target damping force, if the direction in which the target damping force is generated is different from the expansion / contraction direction detected by the detection unit 10, the semi-active damper D is in the same direction as the direction in which the target damping force is generated. A damping force can be generated. Therefore, even when the input of the target damping force is received, it may be determined whether the damping force F is set to the target damping force or 0 according to the expansion / contraction direction detected by the detection unit 10.
  • the current value calculation unit 422 obtains the current value I to be supplied to the variable damping valve 9 based on the damping force F obtained as described above.
  • the variable damping valve 9 has a characteristic of having a pressure override in which the valve opening pressure changes in proportion to the amount of current supplied, but the pressure loss increases in accordance with the passing flow rate.
  • the current value calculation unit 422 obtains the current value I in consideration of pressure override. Since the valve opening pressure of the variable damping valve 9 is minimized when the amount of supplied current is maximized, the current value calculation unit 422 determines that the damping force of the semi-active damper D is minimized when the damping force F is 0. Thus, the current value I is set to the maximum value.
  • valve drive unit 423 is a driver that drives a solenoid (not shown) of the variable damping valve 9, and receives a current value I and supplies the variable damping valve 9 with a current amount equal to the current value I. Supply.
  • control unit C specifically includes, for example, an acceleration sensor 20, an A / D converter for capturing a signal output from the detection unit 10, and a bandpass filter 41.
  • a storage device such as a ROM (Read Only Memory) that stores a program used for processing necessary to control the damping force of the semi-active damper D based on the filtered acceleration a and the signal output from the detection unit 10;
  • An arithmetic device such as a CPU (Central Processing Unit) that executes processing based on the program, and a storage device such as a RAM (Random Access Memory) that provides a storage area for the CPU may be included.
  • Each part in the control processing part 42 of the control part C is realizable by execution of the said program of CPU.
  • the bandpass filter 41 may be realized by executing a program of the CPU.
  • the semi-active damper D includes the cylinder 1, the rod 2 that is slidably inserted into the cylinder 1, and the rod-side chamber 4 and the piston-side chamber 5 that are slidably inserted into the cylinder 1 and inside the cylinder 1. And a piston 6, a tank 6, a suction passage 7, a damping passage 8, a variable damping valve 9, and a detection unit 10.
  • the semi-active damper D configured as described above can determine whether the semi-active damper D is currently operating for expansion or contraction, and can adjust the damping force.
  • the semi-active damper D exhibits a damping force in a situation where the damping force in a direction capable of suppressing the vibration of the vehicle body B that is a vibration suppression target is exhibited, and in a situation where the vehicle body B is vibrated when the damping force is exhibited.
  • the damping force can be reduced. Therefore, the semi-active damper D of the present invention can function as a skyhook damper without requiring the first on-off valve and the second on-off valve provided in the conventional semi-active damper.
  • the entire apparatus can be downsized and the manufacturing cost can be reduced.
  • the semi-active damper D of the present invention since it is not necessary to provide the first on-off valve and the second on-off valve that cause a response delay in opening and closing, the vehicle body B and the carriage under a situation where a large damping force is exhibited. Even if T vibrates at a high frequency, the vehicle body B and the carriage T are not vibrated and the chatter vibration is not excited. Therefore, according to the semi-active damper D of the present invention, not only can the size and cost be reduced, but also the riding comfort in the vehicle can be improved.
  • the semi-active damper D of the present example includes a rectifying passage 13 that allows only the flow of hydraulic oil from the piston side chamber 5 toward the rod side chamber 4 so that the damping passage 8 communicates the rod side chamber 4 with the tank 6. It has become.
  • the semi-active damper D configured in this way is set to a uniflow type in which hydraulic oil recirculates through the piston side chamber 5, the rod side chamber 4, and the tank 6 in order in one-way direction. It passes through the valve 9 and is discharged to the tank 6. Therefore, the semi-active damper D configured in this way can change the damping force with only one variable damping valve 9, and can more effectively reduce the size and cost of the apparatus.
  • the semi-active damper D is set to the biflow type, as shown in FIG.
  • variable damping valve 31 that is provided in the damping passage 30 to allow bidirectional flow and a base valve 32 that provides resistance to the flow of hydraulic oil from the piston side chamber 5 toward the tank 6 may be provided.
  • a variable damping valve 33 is provided instead of the base valve 32 from the structure of FIG. 4, and hydraulic oil from the piston side chamber 5 to the rod side chamber 4 is provided.
  • check valve 34 that allows only this flow.
  • the variable damping valves 31 and 33 are preferably one-way damping valves.
  • the semi-active damper D of the present example includes an acceleration sensor 20 attached to the cylinder 1, and the cylinder 1 is connected to a vehicle body B as a vibration suppression target. If the semi-active damper D is configured in this way, an acceleration substantially equal to the acceleration of the vehicle body B can be detected, and wiring work with an external acceleration sensor, a control device, or the like becomes unnecessary, and the semi-active damper D is installed in the railway vehicle.
  • the vibration control based on the Karnop control law can be realized with just this. If not only the acceleration sensor 20 but also the control unit C is integrated into the cylinder 1, the wiring work is completed only by connecting the power source and the control unit C, so that the mounting work on the railway vehicle is further simplified. .
  • the damping force when the damping force cannot be exerted in the direction in which the vibration of the vehicle body B as the vibration suppression target is suppressed from the expansion / contraction direction detected by the detection unit 10, the damping force is minimized. It can function as a skyhook damper based on the control law, and a high damping effect can be obtained.
  • the damping force calculation unit 421 indicates that the sign of the velocity V is positive and the signal from the detection unit 10 indicates expansion, or the sign of the velocity V is negative and the signal from the detection unit 10 indicates contraction. If so, the damping force F may be a soft or medium damping force. What value should be set for the soft and medium damping force may be determined according to the railway vehicle.
  • variable damping valve 9 is configured as shown in FIG. 6, for example, as shown in FIG. 6, a damping force adjusting passage TP, a fail passage FP, a relief valve portion RV, and an opening / closing valve provided in parallel in the middle of the damping passage 8. It may be composed of a part OV and a solenoid Sol.
  • the relief valve portion RV is provided in the damping force adjustment passage TP, and the on-off valve portion OV is provided in the fail passage FP.
  • the on-off valve portion OV is energized so as to be opened by a spring, and is an electromagnetic on-off valve that closes when thrust is received from the solenoid Sol. Further, the on-off valve portion OV is normally energized by a spring when the solenoid Sol is not energized, communicates with the fail passage FP, and shuts off the fail passage FP when a predetermined amount of current is supplied to the solenoid Sol. It is said that.
  • the relief valve portion RV is driven by a thrust from the solenoid Sol via the on-off valve portion OV, and is energized by a spring when the solenoid Sol is not energized to maximize the valve opening pressure. ing. Further, when the solenoid Sol is energized and the on-off valve portion OV is set to the shut-off position, the thrust of the solenoid Sol acts on the relief valve portion RV as a force against the spring via the on-off valve portion OV. It has become. Therefore, when the solenoid Sol is energized, it is possible to adjust the valve opening pressure of the relief valve portion RV according to the energization amount.
  • valve opening pressure of the relief valve portion RV When the energization amount is increased, the valve opening pressure of the relief valve portion RV is decreased, and conversely, the solenoid Sol is not energized. In the state, the valve opening pressure of the relief valve portion RV becomes maximum. As described above, in the variable damping valve 9 of this example, the valve opening pressure of the relief valve portion RV can be adjusted and the opening / closing valve portion OV can be opened and closed with a single solenoid Sol.
  • a fail valve portion FV is provided in the fail passage FP.
  • the fail valve portion FV is opened when the pressure on the upstream side becomes a predetermined pressure in a state where the fail passage FP is communicated by the on-off valve portion OV, and the valve opening pressure is reduced by the relief valve portion RV. A value smaller than the maximum valve opening pressure is set.
  • this variable damping valve 9 can adjust the valve opening pressure of the relief valve portion RV by shutting off the on-off valve portion OV when the solenoid Sol is energized in a normal state where it can function normally. Damping force can be controlled.
  • the on-off valve portion OV is opened, the fail passage FP is communicated, the fail valve portion FV is made effective, and the fail valve portion FV Demonstrates the damping force when the semi-active damper D expands and contracts. Therefore, the semi-active damper D functions as a passive damper during a failure.

Abstract

The semiactive damper (D) according to the present invention is provided with: a cylinder (1); a rod (2) inserted movably within the cylinder (1); a piston (3) which is slidably inserted in the cylinder (1) and divides the interior of the cylinder (1) into a rod side chamber (4) and a piston side chamber (5); a tank (6); an inlet passage (7) permitting only a flow of a working fluid from the tank (6) toward the piston side chamber (5); a damping passage (8) putting the rod side chamber (4) and the tank (6) in communication or putting the rod side chamber (4) and the piston side chamber (5) in communication; a variable damping valve (9) provided to the damping passage (8); and a detection unit (10) for detecting the expansion and contraction direction due to pressure in the piston side chamber (5).

Description

セミアクティブダンパSemi-active damper
 本発明は、セミアクティブダンパの改良に関する。 The present invention relates to an improvement of a semi-active damper.
 従来、この種のセミアクティブダンパにあっては、たとえば、鉄道車両に車体の進行方向に対して左右方向の振動を抑制すべく、車体と台車との間に介装されて使用されるものが知られている。 Conventionally, in this type of semi-active damper, for example, a railway vehicle is used by being interposed between a vehicle body and a carriage so as to suppress left-right vibration with respect to the traveling direction of the vehicle body. Are known.
 より詳しくは、セミアクティブダンパは、たとえば、JP11-44288Aに開示されているように、シリンダと、シリンダ内に摺動自在に挿入されてシリンダ内をロッド側室とピストン側室とに区画するピストンと、シリンダ内に挿入されてピストンに連結されるロッドとを備えて車体と台車との間に介装されるアクチュエータと、タンクと、ロッド側室とピストン側室とを連通する第一通路の途中に設けた第一開閉弁と、ピストン側室とタンクとを連通する第二通路の途中に設けた第二開閉弁と、ロッド側室を前記タンクへ接続する排出通路と、当該排出通路の途中に設けられ開弁圧を変更可能な可変リリーフ弁とを備えている。 More specifically, for example, as disclosed in JP11-44288A, the semi-active damper includes a cylinder, a piston that is slidably inserted into the cylinder, and divides the cylinder into a rod side chamber and a piston side chamber, A rod inserted into the cylinder and connected to the piston and provided in the middle of the first passage communicating the actuator, the tank, the rod side chamber, and the piston side chamber, which are interposed between the vehicle body and the carriage. A first on-off valve, a second on-off valve provided in the middle of the second passage communicating the piston side chamber and the tank, a discharge passage connecting the rod side chamber to the tank, and a valve provided in the middle of the discharge passage And a variable relief valve capable of changing the pressure.
 このように構成されたセミアクティブダンパでは、第一開閉弁を開いて第二開閉弁を閉じると収縮側でのみ減衰力を発揮し、反対に第一開閉弁を閉じて第二開閉弁を開くと伸長側でのみ減衰力を発揮する。よって、セミアクティブダンパは、カルノップ制御に基づくスカイフックダンパとして機能できる。 In the semi-active damper configured as above, when the first on-off valve is opened and the second on-off valve is closed, the damping force is exerted only on the contraction side, and conversely, the first on-off valve is closed and the second on-off valve is opened. It exhibits damping force only on the extension side. Therefore, the semi-active damper can function as a skyhook damper based on the carnop control.
 従来のセミアクティブダンパは、第一開閉弁、第二開閉弁および可変リリーフ弁にソレノイドを用いた電磁弁を採用していて各弁が大型かつ高価であるので、装置全体が大きくなるとともに、製造コストが嵩んでしまう。 Conventional semi-active dampers employ solenoid valves that use solenoids for the first on-off valve, the second on-off valve, and the variable relief valve, and each valve is large and expensive. Cost increases.
 また、第一開閉弁、第二開閉弁の開閉には応答遅れがあって、セミアクティブダンパが大きな減衰力を発揮する状況下で車体や台車が高周波で振動すると、却って車体や台車を加振して車体にビビり振動を励起し、車両における乗心地を悪化する問題がある。 In addition, there is a response delay in the opening and closing of the first on-off valve and the second on-off valve. Thus, there is a problem that vibrations are excited in the vehicle body and the riding comfort in the vehicle is deteriorated.
 本発明の目的は、小型化およびコスト低減を可能とするとともに車両における乗心地を向上できるセミアクティブダンパの提供である。 An object of the present invention is to provide a semi-active damper capable of reducing the size and cost and improving the riding comfort in a vehicle.
 本発明のセミアクティブダンパは、シリンダと、前記シリンダ内に移動自在に挿入されるロッドと、前記シリンダ内に摺動自在に挿入されて前記シリンダ内をロッド側室とピストン側室とに区画するピストンと、タンクと、前記タンクから前記ピストン側室へ向かう作動流体の流れのみを許容する吸込通路と、前記ロッド側室と前記タンクとを連通するか或いは前記ロッド側室と前記ピストン側室とを連通する減衰通路と、前記減衰通路に設けられた可変減衰弁と、前記ピストン側室内の圧力により伸縮方向を検知する検知部とを備える。 The semi-active damper of the present invention includes a cylinder, a rod that is slidably inserted into the cylinder, and a piston that is slidably inserted into the cylinder and divides the cylinder into a rod side chamber and a piston side chamber. A tank, a suction passage that allows only a flow of working fluid from the tank to the piston side chamber, a damping passage that communicates the rod side chamber and the tank, or communicates the rod side chamber and the piston side chamber. And a variable damping valve provided in the damping passage, and a detector for detecting the expansion and contraction direction by the pressure in the piston side chamber.
図1は、一実施の形態のセミアクティブダンパの回路図である。FIG. 1 is a circuit diagram of a semi-active damper according to an embodiment. 図2は、一実施の形態におけるセミアクティブダンパを搭載した鉄道車両の概略平面図である。FIG. 2 is a schematic plan view of a railway vehicle equipped with a semi-active damper according to an embodiment. 図3は、一実施の形態のセミアクティブダンパにおける制御部の制御ブロック図である。FIG. 3 is a control block diagram of a control unit in the semi-active damper according to the embodiment. 図4は、一実施の形態の一変形例におけるセミアクティブダンパの回路図である。FIG. 4 is a circuit diagram of a semi-active damper according to a modification of the embodiment. 図5は、一実施の形態の他の変形例におけるセミアクティブダンパの回路図である。FIG. 5 is a circuit diagram of a semi-active damper according to another modification of the embodiment. 可変減衰弁の一変形例を示した回路図である。It is the circuit diagram which showed the modification of the variable damping valve.
 以下、図に示した実施の形態に基づき、本発明を説明する。一実施の形態におけるセミアクティブダンパDは、図1に示すように、シリンダ1と、シリンダ1内に移動自在に挿入されるロッド2と、シリンダ1内に摺動自在に挿入されてシリンダ1内をロッド側室4とピストン側室5とに区画するピストン3と、タンク6と、吸込通路7と、減衰通路8と、可変減衰弁9と、伸縮方向を検知する検知部10とを備えて構成されている。 Hereinafter, the present invention will be described based on the embodiments shown in the drawings. As shown in FIG. 1, the semi-active damper D in one embodiment includes a cylinder 1, a rod 2 that is movably inserted into the cylinder 1, and a slidably inserted into the cylinder 1. The piston 3 is divided into a rod side chamber 4 and a piston side chamber 5, a tank 6, a suction passage 7, a damping passage 8, a variable damping valve 9, and a detection unit 10 that detects the expansion / contraction direction. ing.
 セミアクティブダンパDは、本例では、鉄道車両の車体Bの制振装置として使用され、図2に示すように、車体Bと台車Tとの間に設置されており、発揮する減衰力で車体Bの車両進行方向に対して水平横方向の振動を抑制するようになっている。 In this example, the semi-active damper D is used as a vibration damping device for the vehicle body B of the railway vehicle, and is installed between the vehicle body B and the carriage T as shown in FIG. The horizontal and horizontal vibrations are suppressed with respect to the vehicle traveling direction B.
 以下、セミアクティブダンパDの各部について詳細に説明する。シリンダ1は筒状であって、その図1中右端は蓋11によって閉塞され、図1中左端には環状のロッドガイド12が取り付けられている。また、前記ロッドガイド12内には、シリンダ1内に移動自在に挿入されるロッド2が摺動自在に挿入されている。このロッド2は、一端をシリンダ1外へ突出させており、シリンダ1内の他端をシリンダ1内に摺動自在に挿入されるピストン3に連結している。 Hereinafter, each part of the semi-active damper D will be described in detail. The cylinder 1 has a cylindrical shape, and the right end in FIG. 1 is closed by a lid 11, and an annular rod guide 12 is attached to the left end in FIG. A rod 2 that is movably inserted into the cylinder 1 is slidably inserted into the rod guide 12. The rod 2 has one end protruding outside the cylinder 1, and the other end in the cylinder 1 is connected to a piston 3 that is slidably inserted into the cylinder 1.
 ピストン3は、シリンダ1内に摺動自在に挿入されるとシリンダ1内をロッド側室4とピストン側室5とに区画する。なお、ロッドガイド12の外周とシリンダ1との間は図示を省略したシール部材によってシールされており、これによりシリンダ1内は密閉状態に維持されている。そして、シリンダ1内にピストン3によって区画されるロッド側室4とピストン側室5には、作動流体として作動油が充填されている。また、タンク6には、作動油のほかに気体が充填されている。なお、タンク6内は、特に、気体を圧縮して充填して加圧状態とする必要は無い。また、作動流体は、作動油以外にも他の液体を利用してもよい。 When the piston 3 is slidably inserted into the cylinder 1, the inside of the cylinder 1 is divided into a rod side chamber 4 and a piston side chamber 5. Note that the outer periphery of the rod guide 12 and the cylinder 1 are sealed by a seal member (not shown), whereby the inside of the cylinder 1 is maintained in a sealed state. The rod side chamber 4 and the piston side chamber 5 defined by the piston 3 in the cylinder 1 are filled with working oil as a working fluid. The tank 6 is filled with gas in addition to hydraulic oil. In addition, it is not necessary to compress and fill the inside of the tank 6 with a gas in particular. The working fluid may use other liquids besides the working oil.
 また、ロッド2の図1中左端とシリンダ1の右端を閉塞する蓋11とには、図示しない取付部を備えており、セミアクティブダンパDを鉄道車両における車体Bと台車Tとの間に介装できるようになっている。 Further, a lid 11 that closes the left end of the rod 2 in FIG. 1 and the right end of the cylinder 1 is provided with a mounting portion (not shown), and a semi-active damper D is interposed between the vehicle body B and the carriage T in the railway vehicle. Can be disguised.
 そして、減衰通路8は、ロッド側室4とタンク6とを接続しており、この減衰通路8には、可変減衰弁9が設けられている。可変減衰弁9は、本例では、開弁圧を変更可能な可変リリーフ弁とされており、供給される電流量に応じて開弁圧を調節できる。可変減衰弁9は、ロッド側室4の圧力が開弁圧に達すると開弁してロッド側室4をタンク6へ連通させて、ロッド側室4の圧力を開弁圧に調節するが、タンク6からロッド側室4へ向かう作動油の流れについては阻止する。よって、本例では、減衰通路8は、可変減衰弁9によってロッド側室4からタンク6へ向かう作動油の流れのみを許容する一方通行の通路に設定されている。 The damping passage 8 connects the rod side chamber 4 and the tank 6, and the damping passage 8 is provided with a variable damping valve 9. In this example, the variable damping valve 9 is a variable relief valve that can change the valve opening pressure, and can adjust the valve opening pressure in accordance with the amount of current supplied. The variable damping valve 9 opens when the pressure in the rod side chamber 4 reaches the valve opening pressure, and connects the rod side chamber 4 to the tank 6 to adjust the pressure in the rod side chamber 4 to the valve opening pressure. The flow of hydraulic oil toward the rod side chamber 4 is blocked. Therefore, in this example, the damping passage 8 is set as a one-way passage that allows only the flow of hydraulic oil from the rod side chamber 4 toward the tank 6 by the variable damping valve 9.
 なお、本例では、可変減衰弁9は、ソレノイドを備えた電磁リリーフ弁とされており、電流量を最大とすると開弁圧を最小とし、電流を供給しないと開弁圧を最大とし、供給される電流量に応じて開弁圧を変化させる。また、可変減衰弁9には、開弁圧を調節できるリリーフ弁の他、供給される電流量に応じて開口面積の調整が可能な可変絞り弁、スプール弁やロータリ弁等といった他の構造の弁も使用できる。 In this example, the variable damping valve 9 is an electromagnetic relief valve equipped with a solenoid. When the current amount is maximized, the valve opening pressure is minimized, and when no current is supplied, the valve opening pressure is maximized. The valve opening pressure is changed according to the amount of current to be applied. In addition to the relief valve that can adjust the valve opening pressure, the variable damping valve 9 has other structures such as a variable throttle valve that can adjust the opening area according to the amount of current supplied, a spool valve, a rotary valve, and the like. Valves can also be used.
 さらに、本例のセミアクティブダンパDは、ピストン側室5からロッド側室4へ向かう作動油の流れのみを許容する整流通路13と、タンク6からピストン側室5へ向かう作動油の流れのみを許容する吸込通路7を備えている。よって、本例のセミアクティブダンパDは、伸縮すると必ずシリンダ1内から減衰通路8へ作動油が押し出される。そして、シリンダ1内から排出された作動油の流れに対して可変減衰弁9が抵抗を与えるので、本例のセミアクティブダンパDはユニフロー型のダンパとして構成されている。 Further, the semi-active damper D of the present example has a rectifying passage 13 that allows only the flow of hydraulic oil from the piston side chamber 5 to the rod side chamber 4, and a suction that allows only the flow of hydraulic oil from the tank 6 to the piston side chamber 5. A passage 7 is provided. Therefore, when the semi-active damper D of this example expands and contracts, the hydraulic oil is always pushed out from the cylinder 1 to the damping passage 8. Since the variable damping valve 9 provides resistance to the flow of hydraulic oil discharged from the cylinder 1, the semi-active damper D of this example is configured as a uniflow type damper.
 より詳細には、整流通路13は、ピストン側室5とロッド側室4とを連通しており、途中に逆止弁13aが設けられ、ピストン側室5からロッド側室4へ向かう作動油の流れのみを許容する一方通行の通路に設定されている。さらに、吸込通路7は、タンク6とピストン側室5とを連通しており、途中に逆止弁7aが設けられ、タンク6からピストン側室5へ向かう作動油の流れのみを許容する一方通行の通路に設定されている。なお、本例では、整流通路13は、ピストン3に設けられており、吸込通路7は、蓋11に設けられているが、他所に設けてもよい。 More specifically, the rectifying passage 13 communicates the piston side chamber 5 and the rod side chamber 4, and a check valve 13 a is provided in the middle, allowing only the flow of hydraulic oil from the piston side chamber 5 toward the rod side chamber 4. It is set as a one-way passage. Further, the suction passage 7 communicates between the tank 6 and the piston side chamber 5, and a check valve 7 a is provided in the middle of the suction passage 7 to allow only the flow of hydraulic oil from the tank 6 toward the piston side chamber 5. Is set to In this example, the rectifying passage 13 is provided in the piston 3 and the suction passage 7 is provided in the lid 11, but may be provided elsewhere.
 このように構成されたセミアクティブダンパDでは、整流通路13、吸込通路7および減衰通路8で、ロッド側室4、ピストン側室5およびタンク6を数珠繋ぎに連通させる。また、整流通路13、吸込通路7および減衰通路8は、一方通行の通路に設定されている。 In the semi-active damper D configured as described above, the rod side chamber 4, the piston side chamber 5, and the tank 6 are connected in a daisy chain by the rectifying passage 13, the suction passage 7, and the damping passage 8. The rectifying passage 13, the suction passage 7, and the attenuation passage 8 are set as one-way passages.
 よって、セミアクティブダンパDが伸長作動する場合、圧縮されるロッド側室4から減衰通路8へ作動油が排出され、拡大するピストン側室5には吸込通路7を通じてタンク6から作動油が補充される。そして、ロッド側室4から排出された作動油は可変減衰弁9を介してタンク6へ移動するので、セミアクティブダンパDは、ロッド側室4内の圧力にピストン3におけるロッド側室4側の受圧面積を乗じた値の減衰力を発生する。反対に、セミアクティブダンパDが収縮作動する場合、圧縮されるピストン側室5からロッド側室4へ整流通路13を通じて作動油が移動する。また、この場合、シリンダ1内にロッド2が侵入するので、ロッド2が侵入した体積分の作動油がシリンダ1内で過剰となってロッド側室4から減衰通路8へ排出される。そして、ロッド側室4から排出された作動油は可変減衰弁9を介してタンク6へ移動するので、ロッド側室4内およびピストン側室5内の圧力が可変減衰弁9の開弁圧に調節される。ピストン側室5の圧力を受けるピストン3の受圧面積とロッド側室4の圧力を受けるピストン3の受圧面積との差はロッド2の断面積であるので、セミアクティブダンパDは、ロッド側室4内の圧力にロッド2の断面積を乗じた値の減衰力を発生する。 Therefore, when the semi-active damper D is extended, the working oil is discharged from the rod side chamber 4 to be compressed to the damping passage 8, and the expanding piston side chamber 5 is replenished with the working oil from the tank 6 through the suction passage 7. Since the hydraulic oil discharged from the rod side chamber 4 moves to the tank 6 via the variable damping valve 9, the semi-active damper D sets the pressure receiving area on the rod side chamber 4 side in the piston 3 to the pressure in the rod side chamber 4. Generates a damping force of the multiplied value. On the contrary, when the semi-active damper D is contracted, the working oil moves from the compressed piston side chamber 5 to the rod side chamber 4 through the rectifying passage 13. Further, in this case, since the rod 2 enters the cylinder 1, the hydraulic oil corresponding to the volume into which the rod 2 has entered becomes excessive in the cylinder 1 and is discharged from the rod side chamber 4 to the attenuation passage 8. Since the hydraulic oil discharged from the rod side chamber 4 moves to the tank 6 via the variable damping valve 9, the pressure in the rod side chamber 4 and the piston side chamber 5 is adjusted to the valve opening pressure of the variable damping valve 9. . Since the difference between the pressure receiving area of the piston 3 that receives the pressure in the piston side chamber 5 and the pressure receiving area of the piston 3 that receives the pressure in the rod side chamber 4 is the cross-sectional area of the rod 2, the semi-active damper D has a pressure in the rod side chamber 4. A damping force having a value obtained by multiplying the cross-sectional area of the rod 2 by 1 is generated.
 このようにセミアクティブダンパDが外力によって伸縮すると、シリンダ1から必ず作動油が排出されて減衰通路8を介してタンク6へ戻され、シリンダ1で足りなくなる作動油が吸込通路7を介してタンク6からシリンダ1内へ供給される。この作動油の流れに対して可変減衰弁9が抵抗となってシリンダ1内の圧力を開弁圧に調節するので、セミアクティブダンパDは、パッシブなユニフロー型のダンパとして機能する。 When the semi-active damper D expands and contracts due to an external force in this manner, the hydraulic oil is always discharged from the cylinder 1 and returned to the tank 6 through the damping passage 8, and the hydraulic oil that is not sufficient in the cylinder 1 passes through the suction passage 7. 6 is supplied into the cylinder 1. Since the variable damping valve 9 acts as a resistance against the flow of hydraulic oil and adjusts the pressure in the cylinder 1 to the valve opening pressure, the semi-active damper D functions as a passive uniflow type damper.
 また、このセミアクティブダンパDの場合、ロッド2の断面積をピストン3の断面積の二分の一にして、ピストン3のロッド側室4側の受圧面積がピストン側室5側の受圧面積の二分の一となるようにしている。よって、伸長作動時と収縮作動時とで可変減衰弁9の開弁圧を同じにすると、伸縮の双方で発生される減衰力が等しくなり、セミアクティブダンパDの変位量に対する作動油量も伸縮両側で同じとなる。 In the case of this semi-active damper D, the cross-sectional area of the rod 2 is halved of the cross-sectional area of the piston 3 so that the pressure receiving area on the rod side chamber 4 side of the piston 3 is half of the pressure receiving area on the piston side chamber 5 side. It is trying to become. Therefore, if the valve opening pressure of the variable damping valve 9 is the same during the extension operation and the contraction operation, the damping force generated by both expansion and contraction becomes equal, and the amount of hydraulic oil corresponding to the displacement amount of the semi-active damper D also expands and contracts. Same on both sides.
 検知部10は、ピストン側室5内の圧力を検知する圧力センサ10aと、圧力センサ10aで検知した圧力に基づいてセミアクティブダンパDの伸縮方向を判断する判断部10bとを備えている。本例のセミアクティブダンパDでは、伸長作動時には、拡大されるピストン側室5には作動油がタンク6から吸込通路7を通じて供給されるため、ピストン側室5内の圧力はタンク圧とほぼ等しくなる。本例のセミアクティブダンパDでは、収縮作動時には、圧縮されるピストン側室5の作動油がロッド側室4に整流通路13を通じて供給されるため、ピストン側室5内の圧力はロッド側室4とほぼ等しくなる。セミアクティブダンパDの収縮作動時には、ロッド側室4の圧力は可変減衰弁9の開弁圧に調節されるので、ピストン側室5の圧力もタンク圧と比較すると高くなる。以上のように、セミアクティブダンパDの伸長作動時と収縮作動時とでは、ピストン側室5内の圧力状況が異なるので、圧力センサ10aでピストン側室5内の圧力を検知すれば、伸縮方向を検知できる。具体的には、タンク圧或いはタンク圧よりも若干高い圧力値が閾値として予め設定してあり、判断部10bは、圧力センサ10aで検知した圧力と閾値とを比較して伸縮方向を検知する。より詳細には、判断部10bは、圧力センサ10aで検知した圧力が閾値未満であると、セミアクティブダンパDが伸長作動中であると判断し、制御部Cへ伸長作動中を示す信号を出力する。判断部10bは、圧力センサ10aで検知した圧力が閾値以上であると、セミアクティブダンパDが収縮作動中であると判断し、制御部Cへ収縮作動中を示す信号を出力する。なお、検知部10は、圧力センサ10aと判断部10bとの構成に代えて、圧力スイッチで構成されてもよい。圧力スイッチは、ピストン側室5内の圧力が所定圧以上となるとON信号を出力するので、所定圧を前述の閾値に設定しておけば、ON信号がセミアクティブダンパDの収縮作動中を示す信号となる。これに対して、圧力スイッチがON信号を発しない場合には、セミアクティブダンパDが伸長作動中であることが分かる。 The detection unit 10 includes a pressure sensor 10a that detects the pressure in the piston-side chamber 5, and a determination unit 10b that determines the expansion / contraction direction of the semi-active damper D based on the pressure detected by the pressure sensor 10a. In the semi-active damper D of this example, when the expansion operation is performed, the hydraulic oil is supplied from the tank 6 through the suction passage 7 to the piston side chamber 5 to be expanded, so that the pressure in the piston side chamber 5 becomes substantially equal to the tank pressure. In the semi-active damper D of the present example, during the contraction operation, the hydraulic oil in the piston side chamber 5 to be compressed is supplied to the rod side chamber 4 through the rectifying passage 13, so that the pressure in the piston side chamber 5 becomes substantially equal to the rod side chamber 4. . When the semi-active damper D is contracted, the pressure in the rod side chamber 4 is adjusted to the valve opening pressure of the variable damping valve 9, so that the pressure in the piston side chamber 5 also becomes higher than the tank pressure. As described above, since the pressure state in the piston side chamber 5 is different between the expansion operation and the contraction operation of the semi-active damper D, if the pressure in the piston side chamber 5 is detected by the pressure sensor 10a, the expansion / contraction direction is detected. it can. Specifically, the tank pressure or a pressure value slightly higher than the tank pressure is preset as the threshold value, and the determination unit 10b detects the expansion / contraction direction by comparing the pressure detected by the pressure sensor 10a with the threshold value. More specifically, when the pressure detected by the pressure sensor 10a is less than the threshold value, the determination unit 10b determines that the semi-active damper D is in the extension operation, and outputs a signal indicating the extension operation to the control unit C. To do. When the pressure detected by the pressure sensor 10a is equal to or greater than the threshold value, the determination unit 10b determines that the semi-active damper D is in a contracting operation and outputs a signal indicating that the contracting operation is being performed to the control unit C. In addition, the detection part 10 may be comprised with a pressure switch instead of the structure of the pressure sensor 10a and the judgment part 10b. Since the pressure switch outputs an ON signal when the pressure in the piston side chamber 5 exceeds a predetermined pressure, the ON signal indicates that the semi-active damper D is being contracted when the predetermined pressure is set to the above-described threshold value. It becomes. On the other hand, when the pressure switch does not emit an ON signal, it can be seen that the semi-active damper D is in the extension operation.
 また、シリンダ1には、加速度センサ20が取り付けられており、加速度センサ20は、シリンダ1に作用する軸方向の加速度aを検知して、制御部Cへ入力する。よって、図2に示すように、シリンダ1を制振対象である車体Bへ連結し、ロッド2を台車Tへ連結して、セミアクティブダンパDを鉄道車両に取り付けると、加速度センサ20は、車体Bの水平横方向の加速度とほぼ等しい加速度を検知できる。 Further, an acceleration sensor 20 is attached to the cylinder 1, and the acceleration sensor 20 detects an axial acceleration a acting on the cylinder 1 and inputs it to the control unit C. Therefore, as shown in FIG. 2, when the cylinder 1 is connected to the vehicle body B to be controlled, the rod 2 is connected to the carriage T, and the semi-active damper D is attached to the railway vehicle, the acceleration sensor 20 An acceleration substantially equal to the horizontal and horizontal acceleration of B can be detected.
 つづいて、制御部Cは、図1と図3に示すように、加速度センサ20が検知する加速度aに含まれる曲線走行時の定常加速度、ドリフト成分やノイズを除去するバンドパスフィルタ41と、バンドパスフィルタ41で濾波した加速度aと検知部10が検知したセミアクティブダンパDの伸縮方向とに基づいて可変減衰弁9へ制御指令を出力する制御処理部42とを備えて構成され、セミアクティブダンパDが出力する減衰力を制御する。なお、バンドパスフィルタ41で加速度aに含まれる曲線走行時の定常加速度が除去されるので、乗心地を悪化させる振動のみを抑制できる。 Subsequently, as shown in FIGS. 1 and 3, the control unit C includes a bandpass filter 41 that removes steady acceleration, drift components, and noise during curve running included in the acceleration a detected by the acceleration sensor 20, and a band And a control processing unit 42 that outputs a control command to the variable damping valve 9 based on the acceleration a filtered by the pass filter 41 and the expansion / contraction direction of the semi-active damper D detected by the detection unit 10. Controls the damping force output by D. In addition, since the steady-state acceleration at the time of the curve driving | running | working included in the acceleration a by the band pass filter 41 is removed, only the vibration which deteriorates riding comfort can be suppressed.
 制御処理部42は、図3に示すように、加速度センサ20で検知した加速度aと検知部10で検知した伸縮方向とに基づいてセミアクティブダンパDが発生すべき減衰力Fを求める減衰力演算部421と、減衰力Fに基づいて可変減衰弁9へ与える電流値Iを求める電流値演算部422と、電流値Iの入力を受けて可変減衰弁9へ電流値I通りに電流を供給する弁駆動部423を備えて構成されている。 As shown in FIG. 3, the control processing unit 42 calculates a damping force to obtain a damping force F that the semi-active damper D should generate based on the acceleration a detected by the acceleration sensor 20 and the expansion / contraction direction detected by the detecting unit 10. A unit 421, a current value calculation unit 422 for obtaining a current value I to be applied to the variable damping valve 9 based on the damping force F, and an input of the current value I to supply current to the variable damping valve 9 according to the current value I. A valve driving unit 423 is provided.
 減衰力演算部421は、本例では、カルノップ制御則に基づいてセミアクティブダンパDをスカイフックダンパとして機能させるようになっており、加速度aと検知部10で検知した伸縮方向とに基づいて減衰力Fを求める。カルノップ制御則では、スカイフック減衰係数をCsとし、制振対象である車体Bの速度をVとすると、速度Vの方向とセミアクティブダンパDの伸縮方向とが一致する場合、減衰力FをF=Cs×Vで求め、双方が一致しない場合、減衰力Fを0とする。つまり、カルノップ制御則では、セミアクティブダンパDが減衰力を発揮して制振対象の振動を抑制できる状況では減衰力を発揮させて振動を抑制し、制振対象の振動を抑制できない状況では減衰力を限りなく小さくして制振対象を加振しないようにする。車体Bの速度Vは、加速度センサ20が検知する加速度aを微分すれば得られ、セミアクティブダンパDの伸縮方向は検知部10が検知するので、減衰力演算部421は両者を把握できる。 In this example, the damping force calculation unit 421 causes the semi-active damper D to function as a skyhook damper based on the Karnop control law, and attenuates based on the acceleration a and the expansion / contraction direction detected by the detection unit 10. Find the force F. In the Karnopp control law, if the skyhook damping coefficient is Cs and the speed of the vehicle body B to be controlled is V, the damping force F is F if the direction of the speed V and the expansion / contraction direction of the semi-active damper D match. = Cs × V, and if both do not match, the damping force F is set to 0. In other words, in the Karnop control law, the semi-active damper D exerts a damping force to suppress the vibration of the vibration suppression target, suppresses the vibration by suppressing the vibration and the vibration of the vibration suppression target cannot be suppressed. Make the force as small as possible so that the object to be controlled is not vibrated. The speed V of the vehicle body B can be obtained by differentiating the acceleration a detected by the acceleration sensor 20, and the extension / contraction direction of the semi-active damper D is detected by the detection unit 10, so that the damping force calculation unit 421 can grasp both.
 車体Bの速度Vは、図2中左方向を正とし、セミアクティブダンパDの伸縮方向については収縮側を正とすると、減衰力演算部421は、以下のように、減衰力Fを求める。速度Vの符号が正で検知部10からの信号が収縮を示しているか、或いは、速度Vの符号が負で検知部10からの信号が伸長を示していると、減衰力演算部421は、減衰力FをF=Cs×Vを演算して求める。速度Vの符号が正で検知部10からの信号が伸長を示しているか、或いは、速度Vの符号が負で検知部10からの信号が収縮を示していると、減衰力演算部421は、減衰力Fを0とする。 When the speed V of the vehicle body B is positive in the left direction in FIG. 2 and the contraction side is positive in the expansion / contraction direction of the semi-active damper D, the damping force calculation unit 421 calculates the damping force F as follows. When the sign of the velocity V is positive and the signal from the detection unit 10 indicates contraction, or when the sign of the velocity V is negative and the signal from the detection unit 10 indicates expansion, the damping force calculation unit 421 The damping force F is obtained by calculating F = Cs × V. When the sign of the velocity V is positive and the signal from the detection unit 10 indicates expansion, or when the sign of the velocity V is negative and the signal from the detection unit 10 indicates contraction, the damping force calculation unit 421 The damping force F is set to zero.
 このようにセミアクティブダンパDでは、検知部10を備えているので、伸縮方向を検知でき、カルノップ制御則に基づいてスカイフックダンパとして機能できる。なお、加速度センサ20は、車体Bに直接取り付けてもよいが、セミアクティブダンパDに取り付けておけば、セミアクティブダンパDの鉄道車両への設置時に配線作業が不要となる。また、セミアクティブダンパDは、加速度センサ20を備えず、外部から制振対象の加速度の入力を受けてもよいし、また、加速度の代わりに出力すべき目標減衰力の入力を受けてもよい。目標減衰力の入力を受ける場合、目標減衰力の発生方向と検知部10が検知する伸縮方向とが異なっている状況であれば、セミアクティブダンパDは、目標減衰力の発生方向と同方向の減衰力を発生できる。よって、目標減衰力の入力を受ける場合も検知部10が検知する伸縮方向に応じて減衰力Fを目標減衰力とするか0とするかを判断すればよい。 Thus, since the semi-active damper D includes the detection unit 10, it can detect the expansion / contraction direction and can function as a skyhook damper based on the Karnop control law. The acceleration sensor 20 may be directly attached to the vehicle body B. However, if the acceleration sensor 20 is attached to the semi-active damper D, wiring work is not required when the semi-active damper D is installed on the railway vehicle. Further, the semi-active damper D does not include the acceleration sensor 20 and may receive an input of the acceleration to be controlled from the outside, or may receive an input of a target damping force to be output instead of the acceleration. . When receiving the input of the target damping force, if the direction in which the target damping force is generated is different from the expansion / contraction direction detected by the detection unit 10, the semi-active damper D is in the same direction as the direction in which the target damping force is generated. A damping force can be generated. Therefore, even when the input of the target damping force is received, it may be determined whether the damping force F is set to the target damping force or 0 according to the expansion / contraction direction detected by the detection unit 10.
 つづいて、電流値演算部422は、前述のように求められた減衰力Fに基づいて可変減衰弁9へ供給する電流値Iを求める。ここで、可変減衰弁9は、供給される電流量に比例して開弁圧が変化するが、通過流量に応じて圧力損失が増加する圧力オーバーライドを有する特性を備えている。電流値演算部422は、圧力オーバーライドを加味して前記電流値Iを求める。なお、供給される電流量が最大となると可変減衰弁9の開弁圧が最小となるので、電流値演算部422は、減衰力Fが0の場合、セミアクティブダンパDの減衰力が最小となるように電流値Iを最大値とする。 Subsequently, the current value calculation unit 422 obtains the current value I to be supplied to the variable damping valve 9 based on the damping force F obtained as described above. Here, the variable damping valve 9 has a characteristic of having a pressure override in which the valve opening pressure changes in proportion to the amount of current supplied, but the pressure loss increases in accordance with the passing flow rate. The current value calculation unit 422 obtains the current value I in consideration of pressure override. Since the valve opening pressure of the variable damping valve 9 is minimized when the amount of supplied current is maximized, the current value calculation unit 422 determines that the damping force of the semi-active damper D is minimized when the damping force F is 0. Thus, the current value I is set to the maximum value.
 弁駆動部423は、本例では、可変減衰弁9の図示しないソレノイドを駆動するドライバとされていて、電流値Iの入力を受けて可変減衰弁9へ電流値I通りの電流量の電流を供給する。 In this example, the valve drive unit 423 is a driver that drives a solenoid (not shown) of the variable damping valve 9, and receives a current value I and supplies the variable damping valve 9 with a current amount equal to the current value I. Supply.
 なお、制御部Cは、ハードウェア資源としては、図示はしないが具体的にはたとえば、加速度センサ20、検知部10が出力する信号を取り込むためのA/D変換器と、バンドパスフィルタ41で濾波した加速度aと検知部10が出力する信号に基づいてセミアクティブダンパDの減衰力を制御するのに必要な処理に使用されるプログラムが格納されるROM(Read Only Memory)等の記憶装置と、前記プログラムに基づいた処理を実行するCPU(Central Processing Unit)等の演算装置と、前記CPUに記憶領域を提供するRAM(Random Access Memory)等の記憶装置とを備えて構成されればよい。制御部Cの制御処理部42における各部は、CPUの前記プログラムの実行により実現できる。また、バンドパスフィルタ41は、前記CPUのプログラムの実行により実現されてもよい。 Although not shown, the control unit C specifically includes, for example, an acceleration sensor 20, an A / D converter for capturing a signal output from the detection unit 10, and a bandpass filter 41. A storage device such as a ROM (Read Only Memory) that stores a program used for processing necessary to control the damping force of the semi-active damper D based on the filtered acceleration a and the signal output from the detection unit 10; An arithmetic device such as a CPU (Central Processing Unit) that executes processing based on the program, and a storage device such as a RAM (Random Access Memory) that provides a storage area for the CPU may be included. Each part in the control processing part 42 of the control part C is realizable by execution of the said program of CPU. The bandpass filter 41 may be realized by executing a program of the CPU.
 このようにセミアクティブダンパDは、シリンダ1と、シリンダ1内に移動自在に挿入されるロッド2と、シリンダ1内に摺動自在に挿入されてシリンダ1内をロッド側室4とピストン側室5とに区画するピストン3と、タンク6と、吸込通路7と、減衰通路8と、可変減衰弁9と、検知部10を備えている。このように構成されたセミアクティブダンパDは、自身が現在伸長作動中であるのか収縮作動中であるのかを判断でき、減衰力を調節できる。よって、セミアクティブダンパDは、制振対象である車体Bの振動を抑制できる方向の減衰力を発揮できる状況では減衰力を発揮し、減衰力を発揮すると車体Bを加振してしまう状況では減衰力を小さくできる。したがって、本発明のセミアクティブダンパDでは、従来のセミアクティブダンパが備えていた第一開閉弁と第二開閉弁を要せずに、スカイフックダンパとして機能できる。以上より、本発明のセミアクティブダンパDによれば、前記第一開閉弁と前記第二開閉弁を備えずに済むので、装置全体を小型化できるとともに、製造コストも安価にできる。また、本発明のセミアクティブダンパDによれば、開閉に応答遅れが生じる前記第一開閉弁と前記第二開閉弁を備えずに済むため、大きな減衰力を発揮する状況下で車体Bや台車Tが高周波で振動しても、車体Bと台車Tを加振せずビビり振動を励起しない。よって、本発明のセミアクティブダンパDによれば、小型化およびコスト低減が可能となるだけでなく、車両における乗心地を向上できる。 As described above, the semi-active damper D includes the cylinder 1, the rod 2 that is slidably inserted into the cylinder 1, and the rod-side chamber 4 and the piston-side chamber 5 that are slidably inserted into the cylinder 1 and inside the cylinder 1. And a piston 6, a tank 6, a suction passage 7, a damping passage 8, a variable damping valve 9, and a detection unit 10. The semi-active damper D configured as described above can determine whether the semi-active damper D is currently operating for expansion or contraction, and can adjust the damping force. Therefore, the semi-active damper D exhibits a damping force in a situation where the damping force in a direction capable of suppressing the vibration of the vehicle body B that is a vibration suppression target is exhibited, and in a situation where the vehicle body B is vibrated when the damping force is exhibited. The damping force can be reduced. Therefore, the semi-active damper D of the present invention can function as a skyhook damper without requiring the first on-off valve and the second on-off valve provided in the conventional semi-active damper. As described above, according to the semi-active damper D of the present invention, since the first on-off valve and the second on-off valve need not be provided, the entire apparatus can be downsized and the manufacturing cost can be reduced. In addition, according to the semi-active damper D of the present invention, since it is not necessary to provide the first on-off valve and the second on-off valve that cause a response delay in opening and closing, the vehicle body B and the carriage under a situation where a large damping force is exhibited. Even if T vibrates at a high frequency, the vehicle body B and the carriage T are not vibrated and the chatter vibration is not excited. Therefore, according to the semi-active damper D of the present invention, not only can the size and cost be reduced, but also the riding comfort in the vehicle can be improved.
 また、本例のセミアクティブダンパDでは、ピストン側室5からロッド側室4へ向かう作動油の流れのみを許容する整流通路13を備え、減衰通路8がロッド側室4とタンク6とを連通するようになっている。このように構成されたセミアクティブダンパDは、作動油がピストン側室5、ロッド側室4、タンク6を順に一方通行で還流するユニフロー型に設定され、伸縮作動すると作動油が必ずシリンダ1から可変減衰弁9を通過してタンク6へ排出される。よって、このように構成されたセミアクティブダンパDは、一つの可変減衰弁9のみで減衰力を可変でき、より効果的に装置の小型化とコスト低減を図れる。なお、セミアクティブダンパDをバイフロー型に設定する場合、図4に示すように、図1の構造から整流通路13を廃止して、ピストン側室5とロッド側室4とを連通する減衰通路30と、減衰通路30に設けられて双方向流れを許容する可変減衰弁31と、ピストン側室5からタンク6へ向かう作動油の流れに抵抗を与えるベースバルブ32を設けてもよい。また、セミアクティブダンパDをバイフロー型に設定する場合、図5に示すように、図4の構造からベースバルブ32の代わりに可変減衰弁33を設け、ピストン側室5からロッド側室4への作動油の流れのみを許容する逆止弁34を設けてもよい。この場合、可変減衰弁31,33は、一方通行の減衰弁の採用が好ましい。 In addition, the semi-active damper D of the present example includes a rectifying passage 13 that allows only the flow of hydraulic oil from the piston side chamber 5 toward the rod side chamber 4 so that the damping passage 8 communicates the rod side chamber 4 with the tank 6. It has become. The semi-active damper D configured in this way is set to a uniflow type in which hydraulic oil recirculates through the piston side chamber 5, the rod side chamber 4, and the tank 6 in order in one-way direction. It passes through the valve 9 and is discharged to the tank 6. Therefore, the semi-active damper D configured in this way can change the damping force with only one variable damping valve 9, and can more effectively reduce the size and cost of the apparatus. When the semi-active damper D is set to the biflow type, as shown in FIG. 4, the rectifying passage 13 is abolished from the structure of FIG. 1, and the damping passage 30 communicating the piston side chamber 5 and the rod side chamber 4, A variable damping valve 31 that is provided in the damping passage 30 to allow bidirectional flow and a base valve 32 that provides resistance to the flow of hydraulic oil from the piston side chamber 5 toward the tank 6 may be provided. Further, when the semi-active damper D is set to the biflow type, as shown in FIG. 5, a variable damping valve 33 is provided instead of the base valve 32 from the structure of FIG. 4, and hydraulic oil from the piston side chamber 5 to the rod side chamber 4 is provided. There may be provided a check valve 34 that allows only this flow. In this case, the variable damping valves 31 and 33 are preferably one-way damping valves.
 また、本例のセミアクティブダンパDでは、シリンダ1に取り付けられる加速度センサ20を備えており、シリンダ1が制振対象としての車体Bに連結されている。このようにセミアクティブダンパDを構成すれば、車体Bの加速度とほぼ等しい加速度を検知でき、外部の加速度センサや制御装置等との配線作業が不要となり、セミアクティブダンパDを鉄道車両へ設置するだけでカルノップ制御則に基づく制振を実現できる。なお、加速度センサ20のみならず制御部Cもシリンダ1に一体化しておけば、電源と制御部Cとの接続のみで配線作業が完結するので、より一層鉄道車両への搭載作業が簡単となる。 Further, the semi-active damper D of the present example includes an acceleration sensor 20 attached to the cylinder 1, and the cylinder 1 is connected to a vehicle body B as a vibration suppression target. If the semi-active damper D is configured in this way, an acceleration substantially equal to the acceleration of the vehicle body B can be detected, and wiring work with an external acceleration sensor, a control device, or the like becomes unnecessary, and the semi-active damper D is installed in the railway vehicle. The vibration control based on the Karnop control law can be realized with just this. If not only the acceleration sensor 20 but also the control unit C is integrated into the cylinder 1, the wiring work is completed only by connecting the power source and the control unit C, so that the mounting work on the railway vehicle is further simplified. .
 さらに、本例のセミアクティブダンパDでは、検知部10で検知した伸縮方向から制振対象としての車体Bの振動を抑制する方向へ減衰力を発揮できない場合、減衰力を最小とするので、カルノップ制御則に基づくスカイフックダンパとして機能でき、高い制振効果が得られる。 Furthermore, in the semi-active damper D of this example, when the damping force cannot be exerted in the direction in which the vibration of the vehicle body B as the vibration suppression target is suppressed from the expansion / contraction direction detected by the detection unit 10, the damping force is minimized. It can function as a skyhook damper based on the control law, and a high damping effect can be obtained.
 なお、検知部10で検知した伸縮方向から制振対象としての車体Bの振動を抑制する方向へ減衰力を発揮できない場合、減衰力を最小とせず、最小よりも大きなソフトの減衰力或いは最小と最大の中間程度の大きさのミディアムの減衰力を発揮させるようにしてもよい。この場合、減衰力演算部421は、速度Vの符号が正で検知部10からの信号が伸長を示しているか、或いは、速度Vの符号が負で検知部10からの信号が収縮を示していると、減衰力Fをソフト或いはミディアムの減衰力とすればよい。ソフトおよびミディアムの減衰力をどの程度の値に設定するかは鉄道車両に応じて決定すればよい。このように、減衰力をソフト或いはミディアムとする場合、車体Bの振動が若干大きくなるものの台車Tの振動の抑制が可能となり、鉄道車両の振動状況は安定に向かうので、乗心地を損なわずに台車Tの制振も可能となる。 If the damping force cannot be exerted in the direction of suppressing the vibration of the vehicle body B as the vibration suppression target from the expansion / contraction direction detected by the detection unit 10, the damping force is not minimized, and a soft damping force greater than the minimum or minimum You may make it exhibit the medium damping | damping force of the magnitude | size about the largest middle. In this case, the damping force calculation unit 421 indicates that the sign of the velocity V is positive and the signal from the detection unit 10 indicates expansion, or the sign of the velocity V is negative and the signal from the detection unit 10 indicates contraction. If so, the damping force F may be a soft or medium damping force. What value should be set for the soft and medium damping force may be determined according to the railway vehicle. In this way, when the damping force is soft or medium, the vibration of the vehicle body B is slightly increased, but the vibration of the carriage T can be suppressed, and the vibration state of the railway vehicle is stable, so that the riding comfort is not impaired. Vibration control of the cart T is also possible.
 また、可変減衰弁9の構成であるが、たとえば、図6に示すように、減衰通路8の途中に並列に設けた減衰力調整通路TPとフェール通路FPと、リリーフ弁部RVと、開閉弁部OVと、ソレノイドSolとで構成されてもよい。 The variable damping valve 9 is configured as shown in FIG. 6, for example, as shown in FIG. 6, a damping force adjusting passage TP, a fail passage FP, a relief valve portion RV, and an opening / closing valve provided in parallel in the middle of the damping passage 8. It may be composed of a part OV and a solenoid Sol.
 リリーフ弁部RVは、減衰力調整通路TPに設けられており、開閉弁部OVは、フェール通路FPに設けられている。開閉弁部OVは、ばねによって開弁するように附勢されるとともに、ソレノイドSolから推力を受けると閉弁する電磁開閉弁とされている。また、開閉弁部OVは、ソレノイドSolの非通電時にはばねによって附勢されてフェール通路FPを連通し、ソレノイドSolへ所定量の電流が供給されるとフェール通路FPを遮断するノーマルオープンの開閉弁とされている。 The relief valve portion RV is provided in the damping force adjustment passage TP, and the on-off valve portion OV is provided in the fail passage FP. The on-off valve portion OV is energized so as to be opened by a spring, and is an electromagnetic on-off valve that closes when thrust is received from the solenoid Sol. Further, the on-off valve portion OV is normally energized by a spring when the solenoid Sol is not energized, communicates with the fail passage FP, and shuts off the fail passage FP when a predetermined amount of current is supplied to the solenoid Sol. It is said that.
 リリーフ弁部RVは、開閉弁部OVを介してソレノイドSolからの推力で駆動されるようになっており、ソレノイドSolの非通電時にはばねによって附勢されて開弁圧を最大とするようになっている。また、ソレノイドSolに通電して開閉弁部OVを遮断ポジションとする際に、リリーフ弁部RVには開閉弁部OVを介してソレノイドSolの推力が前記のばねに対抗する力として作用するようになっている。よって、ソレノイドSolに通電すると通電量に応じてリリーフ弁部RVの開弁圧の調整が可能で、通電量が大きくなるとリリーフ弁部RVの開弁圧が小さくなり、反対にソレノイドSolへ通電しない状態では、リリーフ弁部RVの開弁圧が最大となる。このように本例の可変減衰弁9では、リリーフ弁部RVの開弁圧の調整と開閉弁部OVの開閉を一つのソレノイドSolで行える。 The relief valve portion RV is driven by a thrust from the solenoid Sol via the on-off valve portion OV, and is energized by a spring when the solenoid Sol is not energized to maximize the valve opening pressure. ing. Further, when the solenoid Sol is energized and the on-off valve portion OV is set to the shut-off position, the thrust of the solenoid Sol acts on the relief valve portion RV as a force against the spring via the on-off valve portion OV. It has become. Therefore, when the solenoid Sol is energized, it is possible to adjust the valve opening pressure of the relief valve portion RV according to the energization amount. When the energization amount is increased, the valve opening pressure of the relief valve portion RV is decreased, and conversely, the solenoid Sol is not energized. In the state, the valve opening pressure of the relief valve portion RV becomes maximum. As described above, in the variable damping valve 9 of this example, the valve opening pressure of the relief valve portion RV can be adjusted and the opening / closing valve portion OV can be opened and closed with a single solenoid Sol.
 また、本例では、フェール通路FPには、フェール弁部FVが設けられている。このフェール弁部FVは、フェール通路FPが開閉弁部OVによって連通された状態では、上流側の圧力が所定圧となると開弁するようになっており、その開弁圧はリリーフ弁部RVの最大開弁圧より小さい値に設定されている。 In this example, a fail valve portion FV is provided in the fail passage FP. The fail valve portion FV is opened when the pressure on the upstream side becomes a predetermined pressure in a state where the fail passage FP is communicated by the on-off valve portion OV, and the valve opening pressure is reduced by the relief valve portion RV. A value smaller than the maximum valve opening pressure is set.
 よって、この可変減衰弁9は、正常に機能できる正常時においてソレノイドSolに通電する際には、開閉弁部OVを遮断してリリーフ弁部RVの開弁圧を調節でき、セミアクティブダンパDの減衰力を制御できる。 Therefore, this variable damping valve 9 can adjust the valve opening pressure of the relief valve portion RV by shutting off the on-off valve portion OV when the solenoid Sol is energized in a normal state where it can function normally. Damping force can be controlled.
 また、ソレノイドSolへ通電できなくなるフェール時(非正常時)には、開閉弁部OVが開弁してフェール通路FPを連通し、フェール弁部FVが有効とされて、フェール弁部FVによって、セミアクティブダンパDの伸縮時における減衰力を発揮する。よって、フェール時には、セミアクティブダンパDは、パッシブダンパとして機能する。 Further, at the time of failure when the solenoid Sol cannot be energized (non-normal time), the on-off valve portion OV is opened, the fail passage FP is communicated, the fail valve portion FV is made effective, and the fail valve portion FV Demonstrates the damping force when the semi-active damper D expands and contracts. Therefore, the semi-active damper D functions as a passive damper during a failure.
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。 The preferred embodiments of the present invention have been described in detail above, but modifications, changes, and changes can be made without departing from the scope of the claims.
 本願は、2016年8月30日に日本国特許庁に出願された特願2016-167521に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2016-167521 filed with the Japan Patent Office on August 30, 2016, the entire contents of which are incorporated herein by reference.

Claims (5)

  1.  セミアクティブダンパであって、
     シリンダと、
     前記シリンダ内に移動自在に挿入されるロッドと、
     前記シリンダ内に摺動自在に挿入されて前記シリンダ内をロッド側室とピストン側室とに区画するピストンと、
     タンクと、
     前記タンクから前記ピストン側室へ向かう作動流体の流れのみを許容する吸込通路と、
     前記ロッド側室と前記タンクとを連通するか或いは前記ロッド側室と前記ピストン側室とを連通する減衰通路と、
     前記減衰通路に設けられた可変減衰弁と、
     前記ピストン側室内の圧力により伸縮方向を検知する検知部とを備え、
     制振対象の振動を抑制する
     セミアクティブダンパ。
    A semi-active damper,
    A cylinder,
    A rod movably inserted into the cylinder;
    A piston that is slidably inserted into the cylinder and divides the cylinder into a rod side chamber and a piston side chamber;
    A tank,
    A suction passage that allows only the flow of the working fluid from the tank toward the piston-side chamber;
    A damping passage communicating the rod side chamber and the tank or communicating the rod side chamber and the piston side chamber;
    A variable damping valve provided in the damping passage;
    A detection unit that detects the expansion and contraction direction by the pressure in the piston side chamber,
    Semi-active damper that suppresses the vibration of the vibration control target.
  2.  請求項1に記載のセミアクティブダンパであって、
     前記ピストン側室から前記ロッド側室へ向かう作動流体の流れのみを許容する整流通路を備え、
     前記減衰通路は、前記ロッド側室と前記タンクとを連通する
     セミアクティブダンパ。
    The semi-active damper according to claim 1,
    A rectifying passage allowing only the flow of working fluid from the piston side chamber toward the rod side chamber;
    The damping passage is a semi-active damper that communicates the rod side chamber and the tank.
  3.  請求項1に記載のセミアクティブダンパであって、
     前記シリンダに取り付けられる加速度センサを備え、
     前記シリンダが前記制振対象に連結される
     セミアクティブダンパ。
    The semi-active damper according to claim 1,
    An acceleration sensor attached to the cylinder;
    A semi-active damper in which the cylinder is coupled to the vibration suppression target.
  4.  請求項1に記載のセミアクティブダンパであって、
     前記検知部で検知した伸縮方向から前記制振対象の振動を抑制する方向へ減衰力を発揮できない場合、減衰力を最小とする
     セミアクティブダンパ。
    The semi-active damper according to claim 1,
    A semi-active damper that minimizes the damping force when the damping force cannot be exerted in the direction of suppressing the vibration of the vibration suppression target from the expansion / contraction direction detected by the detection unit.
  5.  請求項1に記載のセミアクティブダンパであって、
     前記検知部で検知した伸縮方向から前記制振対象の振動を抑制する方向へ減衰力を発揮できない場合、減衰力を最小よりも大きなソフトとするか或いは最小と最大の中間程度の大きさのミディアムとする
     セミアクティブダンパ。
    The semi-active damper according to claim 1,
    If the damping force cannot be exerted in the direction to suppress the vibration of the vibration suppression target from the expansion / contraction direction detected by the detection unit, the damping force is softer than the minimum, or the medium between the minimum and maximum And Semi-active damper.
PCT/JP2017/015735 2016-08-30 2017-04-19 Semiactive damper WO2018042750A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780051218.1A CN109642632A (en) 2016-08-30 2017-04-19 Half active shock
US16/094,015 US20190126950A1 (en) 2016-08-30 2017-04-19 Semiactive damper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-167521 2016-08-30
JP2016167521A JP6879695B2 (en) 2016-08-30 2016-08-30 Semi-active damper

Publications (1)

Publication Number Publication Date
WO2018042750A1 true WO2018042750A1 (en) 2018-03-08

Family

ID=61300430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015735 WO2018042750A1 (en) 2016-08-30 2017-04-19 Semiactive damper

Country Status (4)

Country Link
US (1) US20190126950A1 (en)
JP (1) JP6879695B2 (en)
CN (1) CN109642632A (en)
WO (1) WO2018042750A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6975093B2 (en) * 2018-04-11 2021-12-01 Kyb株式会社 Damper for railroad vehicles
CN108386050A (en) * 2018-04-27 2018-08-10 南京林业大学 A kind of pressure controllable type fluid linking damper
CN108397029A (en) * 2018-05-02 2018-08-14 南京林业大学 A kind of safe fluid linking damper
CN108385854A (en) * 2018-05-02 2018-08-10 南京林业大学 A kind of intelligence pressure adjustable type fluid linking damper
DE102019108070A1 (en) * 2019-03-28 2020-10-01 Thyssenkrupp Ag Vibration damper and vehicle
CN110091888B (en) * 2019-04-19 2020-04-28 中车青岛四方机车车辆股份有限公司 Control method and device of anti-snaking shock absorber
CN110360263B (en) * 2019-06-20 2021-08-27 中车青岛四方机车车辆股份有限公司 Semi-active anti-snaking shock absorber, shock absorption system and vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10315965A (en) * 1997-05-16 1998-12-02 Tokico Ltd Vibration controller for railroad rolling stock
JP2008075667A (en) * 2006-09-19 2008-04-03 Honda Motor Co Ltd Damper device
JP2010264919A (en) * 2009-05-15 2010-11-25 Nippon Sharyo Seizo Kaisha Ltd Damping device of railway vehicle
JP5503680B2 (en) * 2012-03-14 2014-05-28 カヤバ工業株式会社 Vibration control device for railway vehicles
JP2015155223A (en) * 2014-02-20 2015-08-27 日本車輌製造株式会社 railway vehicle

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2918795A (en) * 1955-09-06 1959-12-29 Ramsey Corp Electro-hydraulic actuating cylinder
US5682980A (en) * 1996-02-06 1997-11-04 Monroe Auto Equipment Company Active suspension system
US20040016361A1 (en) * 2002-04-26 2004-01-29 Martin Teichmann Level control for a rail-mounted vehicle
CN2934745Y (en) * 2006-03-21 2007-08-15 四川川南减震器集团有限公司 Hydraulic spring shock-absorber for motorcycle
US10047817B2 (en) * 2009-01-07 2018-08-14 Fox Factory, Inc. Method and apparatus for an adjustable damper
EP2156970A1 (en) * 2008-08-12 2010-02-24 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Multi-point hydraulic suspension system for a land vehicle
JP5364323B2 (en) * 2008-09-12 2013-12-11 カヤバ工業株式会社 Cylinder device
CN103702888A (en) * 2011-07-28 2014-04-02 日立汽车系统株式会社 Damper for railway vehicles
US8966889B2 (en) * 2011-11-01 2015-03-03 Tenneco Automotive Operating Company Inc. Energy harvesting passive and active suspension
EP2813822A4 (en) * 2012-02-07 2015-08-12 Nippon Sharyo Ltd Sensor state determination system
US9452653B2 (en) * 2012-03-15 2016-09-27 Nissan Motor Co., Ltd. Vehicle controlling apparatus and method
JP5310924B1 (en) * 2012-03-23 2013-10-09 日産自動車株式会社 Vehicle control apparatus and vehicle control method
ITMI20120476A1 (en) * 2012-03-26 2013-09-27 Danieli Off Mecc VIBRATION DAMPING SYSTEM BY MEANS OF A HYDRAULIC IMPLEMENTATION SYSTEM
CN102748422B (en) * 2012-07-04 2013-11-20 吉林大学 Stroke sensitive damping adjustable shock absorber
US9205717B2 (en) * 2012-11-07 2015-12-08 Polaris Industries Inc. Vehicle having suspension with continuous damping control
JP5572236B1 (en) * 2013-02-18 2014-08-13 カヤバ工業株式会社 Actuator
JP5608252B2 (en) * 2013-02-26 2014-10-15 カヤバ工業株式会社 Actuator
US9657749B2 (en) * 2013-03-11 2017-05-23 Hydraforce, Inc. Hydraulic suspension for vehicle and multi-functional proportional control valve for the same
US9809078B2 (en) * 2013-03-15 2017-11-07 ClearMotion, Inc. Multi-path fluid diverter valve
JP6397220B2 (en) * 2014-05-12 2018-09-26 Kyb株式会社 Cylinder device
JP6368204B2 (en) * 2014-09-19 2018-08-01 Kyb株式会社 Railway vibration control device
JP6363934B2 (en) * 2014-10-17 2018-07-25 Kyb株式会社 Cylinder device
JP6588756B2 (en) * 2015-07-15 2019-10-09 Kyb株式会社 Actuator control device and actuator unit
DE102015113176B4 (en) * 2015-08-10 2021-12-30 Grammer Aktiengesellschaft Horizontal vibration device for a vehicle seat
US10569813B2 (en) * 2016-12-23 2020-02-25 Link Mfg., Ltd. Cab suspension systems and associated methods of manufacture and use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10315965A (en) * 1997-05-16 1998-12-02 Tokico Ltd Vibration controller for railroad rolling stock
JP2008075667A (en) * 2006-09-19 2008-04-03 Honda Motor Co Ltd Damper device
JP2010264919A (en) * 2009-05-15 2010-11-25 Nippon Sharyo Seizo Kaisha Ltd Damping device of railway vehicle
JP5503680B2 (en) * 2012-03-14 2014-05-28 カヤバ工業株式会社 Vibration control device for railway vehicles
JP2015155223A (en) * 2014-02-20 2015-08-27 日本車輌製造株式会社 railway vehicle

Also Published As

Publication number Publication date
JP2018035829A (en) 2018-03-08
US20190126950A1 (en) 2019-05-02
CN109642632A (en) 2019-04-16
JP6879695B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
WO2018042750A1 (en) Semiactive damper
JP6510796B2 (en) Suspension device and suspension control device
JP5503680B2 (en) Vibration control device for railway vehicles
KR101916612B1 (en) Railroad vibration control device
WO2012165471A1 (en) Railway car vibration control device
JP6450278B2 (en) Vibration control device for railway vehicles
WO2016072511A1 (en) Suspension device and suspension control device
JP6956663B2 (en) Vibration damping device for railway vehicles
KR101718268B1 (en) Actuator unit
JP5486367B2 (en) Actuator unit
JP5662880B2 (en) Vibration control device for railway vehicles
JP5427071B2 (en) Vibration control device for railway vehicles
JP5427072B2 (en) Vibration control device for railway vehicles
JP5427073B2 (en) Vibration control device for railway vehicles
WO2016056518A1 (en) Buffer
JP6924043B2 (en) Vibration damping device for railway vehicles
JP6725356B2 (en) Damping device for railway vehicles
JP2021099123A (en) Buffer
JP6975093B2 (en) Damper for railroad vehicles
JP5391119B2 (en) Actuator unit
WO2019102941A1 (en) Suspension device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845761

Country of ref document: EP

Kind code of ref document: A1