WO2018042689A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2018042689A1
WO2018042689A1 PCT/JP2016/088971 JP2016088971W WO2018042689A1 WO 2018042689 A1 WO2018042689 A1 WO 2018042689A1 JP 2016088971 W JP2016088971 W JP 2016088971W WO 2018042689 A1 WO2018042689 A1 WO 2018042689A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
cross
flow fan
stabilizer
distance
Prior art date
Application number
PCT/JP2016/088971
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 雅也
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201680082529.XA priority Critical patent/CN109642582A/en
Priority to JP2018536684A priority patent/JP6982573B2/en
Publication of WO2018042689A1 publication Critical patent/WO2018042689A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station

Definitions

  • the present invention relates to an air conditioner equipped with a once-through fan.
  • Some air conditioners eg, air conditioners having wall-mounted indoor units
  • use cross-flow fans also referred to as cross-flow fans
  • a stabilizer also referred to as a tongue
  • the stabilizer is a member that stabilizes the forced vortex of air generated by the rotation of the cross-flow fan.
  • Patent Document 1 discloses a technique for reducing power consumption and noise of an air conditioner.
  • a collision wall having a facing surface facing the cross-flow fan, and (ii) an inclined surface of the fan inner edge that intersects the facing surface at an obtuse angle And are provided.
  • the provision of the inclined surface suppresses the generation of vortex of the airflow at the position of the inclined surface.
  • Patent Document 2 discloses a technique aimed at preventing surging (generation of abnormal noise during blowing) at the axial end of the once-through fan.
  • the stabilizer includes (i) a main portion having a first facing surface (facing surface located between both ends of the stabilizer) facing the cross-flow fan; ii) A second facing surface (facing surfaces located at both ends of the stabilizer) facing each end in the axial direction of the cross-flow fan is provided.
  • the second facing surface is positioned closer to the cross-flow fan than the first facing surface.
  • the positional relationship is intended to stabilize the circulating vortex at the axial end of the cross-flow fan (the position where the circulating vortex tends to become unstable).
  • the once-through fan is a blower having a relatively low static pressure.
  • the cross-flow fan rotates without contacting the wall surface forming the air passage, a space in which the cross-flow fan blades (blades) do not exist is inevitably formed outside the axial end of the cross-flow fan. Formed.
  • the static pressure distribution of the cross-flow fan (the spatial distribution of the static pressure of the air sent from the cross-flow fan) tends to be uneven.
  • the enclosure is provided at the axial end of the cross-flow fan.
  • the flow rate of the air sent from the cross-flow fan decreases when the cross-flow fan rotates at a predetermined rotational speed.
  • An aspect of the present invention has been made in view of the above-described problems, and an object thereof is to suppress performance degradation caused by a cross-flow fan of an air conditioner with a configuration different from the conventional one.
  • an air conditioner is an air conditioner including a cross-flow fan, and an enclosure that surrounds a side surface of an end portion in the axial direction of the cross-flow fan; A stabilizer disposed along the axial direction, and the air conditioner is cut by a plane perpendicular to the depth direction of the air conditioner and intersecting the stabilizer along the axial direction.
  • the first surface and the first surface A boundary is formed between the two surfaces, and the second distance, which is the distance between the second surface and the cross-flow fan, is the distance between the first surface and the cross-flow fan.
  • the air conditioner which concerns on 1 aspect of this invention is an air conditioner provided with the cross-flow fan, Comprising: The enclosure part which encloses the side surface of the edge part of the axial direction of the said cross-flow fan And a stabilizer disposed along the axial direction, and the air conditioner is configured by a plane perpendicular to the depth direction of the air conditioner and intersecting the stabilizer along the axial direction.
  • the first surface and A boundary portion is formed between the second surface and the second distance, which is a distance between the second surface and the cross-flow fan, is between the first surface and the cross-flow fan. Smaller than the first distance, which is the distance,
  • the third surface representing the boundary surface facing the fan the tangential plane of the third surface at the first intersection of the third surface or the first surface and the third surface is:
  • the first surface has an obtuse angle, and the relationship includes at least part of a range of the boundary portion along the circumferential direction of the cross-flow fan, and the first surface and the second surface. It is established at least in part of the range of the step with the surface, and the boundary part constitutes a part of the enclosure part.
  • the air conditioner according to one aspect of the present invention has an effect that it is possible to suppress performance degradation due to the cross-flow fan of the air conditioner by using a configuration different from the conventional one.
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG.
  • (A) is an enlarged view of area
  • (b) is an enlarged view of area
  • (A) is an enlarged view of area
  • (b) is an enlarged view of area
  • (A) is an enlarged view of area
  • (b) is an enlarged view of area
  • (A) is an enlarged view of area
  • (b) is an enlarged view of area
  • the air conditioner 1 that is an indoor unit of a separate type wall-mounted air conditioner composed of an indoor unit and an outdoor unit will be described as an example.
  • the air conditioner according to one embodiment of the present invention may be a ceiling-mounted type, a floor-standing type, or an indoor dedicated type (such as a window-mounted air conditioner) that does not have an outdoor unit.
  • each member (especially FIG. 5 etc.) described below shows various members of the air conditioner 1, description of members that are not related to the present embodiment is omitted. Members that omit these descriptions may be understood to be the same as known members. Also, it should be noted that each drawing is intended to schematically explain the shape, structure, and positional relationship of each member, and is not necessarily drawn to scale.
  • FIG. 1 is a perspective view showing an external appearance of the air conditioner 1 in the front direction.
  • the air conditioner 1 includes an air flow panel 11 and a cabinet 12 (housing) as outer components.
  • the airflow panel 11 is supported by the cabinet 12 so that it can be opened and closed.
  • the air conditioner 1 installed on the wall surface is viewed from the front (front), the ceiling side is up, the floor side is down, and the longitudinal direction of the air conditioner 1 is the left-right direction.
  • a direction from the back surface (back surface) to the front surface of the air conditioner 1 is referred to as a depth direction.
  • the horizontal direction is also referred to as the X direction
  • the depth direction is also referred to as the Y direction
  • the vertical direction is also referred to as the Z direction.
  • the positive direction in the X direction is the right direction.
  • the positive direction in the Y direction is the forward direction.
  • the positive direction in the Z direction is the upward direction.
  • description will be made assuming that the X direction, the Y direction, and the Z direction are directions orthogonal to each other.
  • the airflow panel 11 defines the flow path of the airflow that blows out into the room. Opening and closing of the airflow panel 11 is controlled by a control device (not shown) in the air conditioner 1 according to the operating state of the air conditioner 1. When the airflow panel 11 is opened, the outlet as the flow path is exposed.
  • the cabinet 12 may be provided with a light receiving unit (input unit) that receives a light beam such as an infrared ray emitted from a remote controller that receives an operation instruction from a user.
  • the cabinet 12 may further include a notification unit (for example, a display unit, a lamp, and a speaker) for notifying the user of various types of information.
  • FIG. 2 (a) and 2 (b) are a top view and a front view of the air conditioner 1, respectively.
  • a sectional view taken along the line AA in FIG. 2A is shown in FIG. 5 described later.
  • a cross-sectional view taken along the line BB in FIG. 2B is shown in FIG. 6 to be described later.
  • a lattice-shaped air inlet is provided on the upper surface of the air conditioner 1 (more specifically, the upper surface of the open panel of the air conditioner 1).
  • the schematic opening shape of the entire air inlet is an elongated rectangular shape along the X direction.
  • the heat exchanger 13 is provided above the inner side of the air conditioner 1 (see also FIG. 6 described later).
  • the heat exchanger 13 functions as an evaporator that vaporizes the refrigerant during the cooling operation, and takes heat from the indoor air.
  • the heat exchanger 13 functions as a condenser that liquefies the refrigerant during heating operation, and releases heat into the room.
  • FIG. 3 (a) is a perspective view showing an appearance of the air conditioner 1 in FIG. 1 in the back direction.
  • a back cabinet 121 (a part of the cabinet 12) is provided on the back surface of the air conditioner 1 as a member for protecting each member inside the air conditioner 1. ing.
  • FIG. 3B is a perspective view in which the rear cabinet 121 and the heat exchanger 13 are not shown in FIG. As shown in FIG. 3B, a cross-flow fan 14 and a motor 141 are provided inside the air conditioner 1.
  • the cross-flow fan 14 has a central axis parallel to the X direction and can rotate around the central axis.
  • the cross-flow fan 14 includes a plurality of blades (not shown) for sucking and sending air in the circumferential direction.
  • By rotating the cross-flow fan 14 around the central axis air in the room is sucked from the air suction port, and an airflow blown out from the airflow panel 11 to the room is created.
  • an airflow W is illustrated as an example of the airflow. As shown in FIG. 6, the airflow W passes through a path that sequentially follows the air inlet, the heat exchanger 13, the cross-flow fan 14, and the airflow panel 11.
  • the motor 141 is a drive device that rotates the cross-flow fan 14 at a predetermined rotational speed.
  • the motor 141 is connected to the cross-flow fan 14 by a motor shaft 142 (see FIG. 6 and the like).
  • the number of rotations of the motor 141 (in other words, the number of rotations of the cross-flow fan 14) is controlled by a control device in the air conditioner 1.
  • the amount of air sucked into the cross-flow fan through the heat exchanger 13 depends on the rotational speed of the cross-flow fan 14. Therefore, the amount of air blown into the room can be adjusted by controlling the rotation speed of the motor 141.
  • FIG. 4 is a perspective view in which the cross-flow fan 14 is not shown in FIG. As shown in FIG. 4, an enclosure 15 and a stabilizer 16 are provided inside the air conditioner 1. Note that an enlarged view of the region D1 in FIG. 4 will be described in detail in FIG.
  • the enclosure part 15 and the stabilizer 16 may be comprised by the integral member.
  • the hatched portion in FIG. 4 shows an integral member that constitutes a part of the enclosure 15 and the stabilizer 16.
  • the enclosure portion 15 and the stabilizer 16 are constituted by an integral member will be described as an example (see: FIG. 8B described later).
  • the enclosure 15 and the stabilizer 16 may be configured by separate members (see: FIG. 8C described later).
  • the enclosure 15 is a member that encloses the side surface of the end of the cross-flow fan 14 in the axial direction (X direction). As described above, the enclosure 15 is provided to prevent surging that occurs at the axial end of the cross-flow fan 14.
  • the stabilizer 16 extends in the X direction, has a width substantially equal to the width in the axial direction of the cross-flow fan 14, and has a length along a part of the circumferential direction of the cross-flow fan 14. It faces the fan 14 with a slight distance.
  • the stabilizer 16 is also called a tongue.
  • the stabilizer 16 is a member that defines a ventilation path from the cross-flow fan 14 toward the airflow panel 11. That is, the stabilizer 16 serves to stabilize the air vortex resulting from the rotation of the cross-flow fan 14 at a position suitable for the intended wind flow.
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG. That is, FIG. 5 shows the air conditioner 1 cut by a plane perpendicular to the depth direction (Y direction) of the air conditioner 1 (more specifically, an XZ plane that intersects the stabilizer 16 along the X direction).
  • a cross section is shown. Hereinafter, this cross section is also referred to as a first cross section.
  • An enlarged view of the region D2 in FIG. 5 is shown in FIG. The structure of the boundary between the enclosure 15 and the stabilizer 16 in the present embodiment will be described in detail later with reference to FIG.
  • FIG. 6 is a cross-sectional view taken along the line BB in FIG. 2 (b). That is, FIG. 6 illustrates the air conditioner 1 by a plane perpendicular to the longitudinal direction (X direction) of the air conditioner 1 (more specifically, a YZ plane that intersects the enclosure 15 along the Y direction). A cut section is shown.
  • the cross section may be referred to as a second cross section for distinction from the first cross section described above.
  • a gap exists between the outer surface of the cross-flow fan 14 and the inner surface of the enclosure 15.
  • the second gap is located in a region where the ventilation path is not defined by the stabilizer 16. For this reason, in the said 2nd space
  • the inner surface of the enclosure part 15 is a surface facing the cross-flow fan 14, it may be referred to as an opposed surface of the enclosure part 15.
  • the distance between the enclosure 15 and the cross-flow fan 14 (the length of the second gap). ) Is shorter than the distance between the stabilizer 16 and the cross-flow fan 14 (the length of the first gap). As described below, in this case, turbulence of airflow is likely to occur, and the performance degradation of the air conditioner becomes significant.
  • the air conditioner 1 is configured for the purpose of suppressing the above-described turbulence of the air flow by appropriately setting the angle.
  • the air conditioner as the comparative example is referred to as an air conditioner 1x.
  • the basic structure of the air conditioner 1x is the same as that of the air conditioner 1, but the structure of the boundary portion between the enclosure and the stabilizer is different from that of the air conditioner 1. This is the same in the air conditioners according to the embodiments and modifications described below.
  • FIG. 9A is an enlarged view of a region D1 of FIG. 4 in the air conditioner 1x.
  • FIG. 9B is an enlarged view of a region D2 of FIG. 5 in the air conditioner 1x.
  • the air conditioner 1x is different from the air conditioner 1 in that an inclined surface 161 (see FIG. 8) described later is not provided in the stabilizer.
  • the stabilizer of the air conditioner 1x is referred to as a stabilizer 16x.
  • the surface representing the opposing surface of the stabilizer 16x in the first cross section is referred to as a first surface 16xf.
  • the opposing surface of the enclosure part 15 is called the 2nd surface 15f.
  • the distance between the first surface 16xf and the cross-flow fan 14 is referred to as a distance G1 (first distance).
  • the distance between the second surface 15f and the cross-flow fan 14 is referred to as a distance G2 (second distance).
  • the distances G1 and G2 are distances in the Z direction (height direction), respectively.
  • the distances G1 and G2 are constant values in the X direction.
  • the distance G2 is smaller than the distance G1.
  • a boundary portion that is a region where a step in the Z direction is formed is formed between the stabilizer 16x and the surrounding portion 15.
  • the step in the air conditioner 1x is constituted by the inner wall of the cabinet 12 extending in the Z direction.
  • a surface showing the inner wall is referred to as an orthogonal surface 191x.
  • first intersection P1 the intersection of the first surface 16xf and the orthogonal surface 191x
  • second intersection P2 An intersection between the second surface 15f and the orthogonal surface 191x
  • The angle formed by the orthogonal surface 191x and the first surface 16xf.
  • the angle ⁇ is an angle formed by the tangent plane of the orthogonal surface 191x at the first intersection P1 and the first surface 16xf. Even when the orthogonal surface 191x is a curved surface (for example, a convex surface swollen in the negative direction of the X direction), the above-described problem occurs when the angle ⁇ is not an obtuse angle.
  • the boundary portion eliminates or alleviates the step in the Z direction that exists between the stabilizer 16x and the surrounding portion 15 of the comparative example, and the first surface 16f (described later) of the stabilizer 16
  • the purpose is to give smooth continuity to the second surface 15f of the enclosure 15.
  • the boundary portion is realized by a shape change of the stabilizer 16, a shape change of the surrounding portion 15, or another member added between the stabilizer 16 and the surrounding portion 15.
  • a specific example of the boundary portion will be described.
  • FIG. 8A is an enlarged view of a region D1 in FIG. 4 in the air conditioner 1.
  • FIG. 8B is an enlarged view of a region D2 in FIG. 5 in the air conditioner 1.
  • FIG. 8C is another example of an enlarged view of the region D2.
  • FIG. 8B illustrates a case in which a part of the enclosure 15 and the stabilizer 16 are formed of an integral member.
  • FIG. 8C illustrates a case where the enclosure 15 and the stabilizer 16 are formed of separate members.
  • the whole enclosure part 15 and the stabilizer 16 may be comprised by the integral member.
  • an inclined surface 161 (third surface) is provided on a part of the opposing surface of the stabilizer 16.
  • the surface showing the opposing surface of the stabilizer 16 is called the 1st surface 16f.
  • the inclined surface 161 constitutes a part of the stabilizer 16, and may be formed by changing the shape of the stabilizer 16, or may be formed by another member bonded to the end of the stabilizer 16.
  • the inclined surface 161 is formed as a surface whose height increases from the stabilizer 16 toward the enclosure 15, in other words, as a surface that approaches the cross-flow fan 14.
  • the case where the inclined surface 161 is a flat surface will be described as an example.
  • the inclined surface 161 may be a curved surface.
  • the inclined surface 161 should just be provided so that the obtuse angle condition mentioned later may be satisfy
  • surface A and surface B face each other means that surface A and surface B are parallel to each other (that is, normal vector nA of surface A and normal vector of surface B). Note that this does not mean only a positional relationship (where nB is parallel to each other).
  • the surface A and the surface B face each other means that the normal vector nA and the normal vector nB form an angle other than 90 ° (that is, the modulus).
  • the inner product of the line vector nA and the normal vector nB is non-zero).
  • the angle formed by the inclined surface 161 and the first surface 16f is represented as ⁇ .
  • the inclined surface 161 is provided so as to satisfy ⁇ > 90 °.
  • a part of the boundary portion 191 is configured to form an obtuse angle with the first surface 16f.
  • the boundary portion 191 of the air conditioner 1 is different from the step portion (orthogonal plane 191x) of the air conditioner 1x described above.
  • the shape of the stabilizer 16 is designed in advance so as to include the inclined surface 161 that forms the angle ⁇ described above.
  • the stabilizer 16 including the inclined surface 161 can be efficiently manufactured by manufacturing the stabilizer 16 by integral molding.
  • the stabilizer 16 containing the inclined surface 161 can also be manufactured by performing the process which attaches the inclined surface 161 to a part of above-mentioned stabilizer 16x. This also applies to an inclined surface 161a of a modified example described later.
  • an intersection between the first surface 16f and the boundary portion 191 (more specifically, the inclined surface 161) is referred to as a first intersection P1.
  • an intersection between the second surface 15f and the boundary portion 191 (more specifically, the orthogonal surface 171) is referred to as a second intersection P2.
  • An intersection between the inclined surface 161 and the orthogonal surface 171 is represented as a third intersection P3.
  • the distance between the first surface 16x and the cross-flow fan 14 is the distance G1. This is referred to as (first distance).
  • the distance between the second surface 15f and the cross-flow fan 14 is referred to as a distance G2 (second distance).
  • the height of the inclined surface 161 (that is, the maximum height of the inclined surface 161) at the third intersection P3 is represented as h.
  • the height h of the inclined surface 161 is smaller than the difference between the distance G1 (first distance) and the distance G2 (second distance).
  • the enclosure 15 and the stabilizer 16 may be configured by separate members. In this case, the enclosure 15 and the stabilizer 16 can be separated or connected to each other. In FIG. 8C, for the sake of explanation, the fact that the enclosure 15 and the stabilizer 16 are separated members is emphasized by illustrating a gap between them.
  • the inclined surface 161 is not limited to the form starting from the first surface 16f. That is, as shown in FIG. 8C, the inclined surface 161 may start from a portion rising from the first surface 16f in the Z direction and reach the start end portion of the second surface 15f in the X direction. . Also in this embodiment, the step in the Z direction existing between the stabilizer 16x and the surrounding portion 15 can be reduced.
  • the inclined surface 161 is provided in the first cross section so that the angle ⁇ formed by the inclined surface 161 (third surface) of the boundary portion 191 and the first surface 16f is an obtuse angle. It has been.
  • the air conditioner 1 is configured such that the height H of the orthogonal plane 171 is lower than the height Hx of the orthogonal plane 191x of the air conditioner 1x in the first cross section. That is, in the air conditioner 1, the height of the step in the Z direction at the boundary portion is smaller than that of the air conditioner 1x in the first cross section. As a result, in the first cross section, the first surface 16f and the second surface 15f have smoother continuity than the above-described air conditioner 1x by the boundary portion 191. In other words, the discontinuity is reduced. Is done.
  • the boundary portion 191 the change in the flow of the air flow that is likely to occur near the boundary between the enclosure 15 and the stabilizer 16 becomes gradual, and the turbulence of the air flow can be reduced. As a result, the performance degradation of the air conditioner 1 resulting from the turbulence of the airflow can be suppressed.
  • the air conditioner 1 it is possible to suppress the performance degradation of the air conditioner 1 due to the cross-flow fan 14 with a configuration different from the conventional one. Moreover, the reliability of the air conditioner 1 can also be improved by suppressing the performance degradation of the air conditioner 1.
  • the angle ⁇ is defined as the angle formed between the tangential plane of the inclined surface 161 at the first intersection P1 and the first surface 16f. Is done. Even when the inclined surface 161 is a curved surface, the same effect as described above can be obtained if the angle ⁇ is an obtuse angle.
  • the tangent plane of the inclined surface 161 at the first intersection P1 between the (i) inclined surface 161 or (ii) the first surface 16f and the inclined surface 161 has an obtuse angle with the first surface 16. What is necessary is just to be comprised so that it may be comprised. Hereinafter, this angle relationship is referred to as an obtuse angle condition.
  • the obtuse angle condition described above is exemplified in a part of the boundary portion 191, in other words, in a part of a step range between the first surface 16 f and the second surface 15 f.
  • the obtuse angle condition may be satisfied in the entire range of the step. That is, the obtuse angle condition only needs to be satisfied in at least a part of the range of the step.
  • the obtuse angle condition described above may be satisfied in at least a part of the range of the length along the circumferential direction of the cross-flow fan 14 at the boundary portion 191.
  • the air conditioner 1 is configured to reduce the above-described airflow turbulence with the minimum necessary size of the inclined surface 161. Therefore, in order to keep the design change from the conventional air conditioner to the minimum necessary, it is one idea to adopt the configuration of the air conditioner 1.
  • the flow of the airflow is different between a portion where the inclined surface 161 exists and a portion where the inclined surface 161 does not exist. For this reason, compared with the case where the inclined surface 161 is not provided (that is, the above-described configuration of the air conditioner 1x), the frequency band of noise caused by the flow of the airflow can be widely distributed.
  • FIG. 10A is an enlarged view of a region D1 of FIG. 4 in the air conditioner 1a.
  • FIG. 10B is an enlarged view of a region D2 in FIG. 5 in the air conditioner 1a.
  • the air conditioner 1a is obtained by replacing the inclined surface 161 in the air conditioner 1 with an inclined surface 161a (boundary portion, third surface).
  • the inclined surface 161a is a part constituting the boundary between the first surface 16f and the second surface 15f.
  • the boundary between the first surface 16f and the second surface 15f is formed by only the inclined surface 161a in the first cross section. That is, the inclined surface 161a constitutes the entire boundary portion. Further, the angle ⁇ formed by the inclined surface 161a and the first surface 16f is an obtuse angle. Thus, in the air conditioner 1a, the above obtuse angle condition is satisfied in the entire boundary portion.
  • the intersection of the second surface 15f and the inclined surface 161a is defined as a second intersection P2.
  • the height of the inclined surface 161a reaching the first intersection P1 and the second intersection P2 (that is, the maximum height of the inclined surface 161a) is represented as h.
  • h G1-G2. That is, in the air conditioner 1a, the height h is equal to the difference between the distance G1 (first distance) and the distance G2 (second distance).
  • the step in the Z direction between the first surface 16f and the inclined surface 161a and the second surface 15f are inclined in the first cross section.
  • the step in the Z direction with respect to the surface 161a can be eliminated.
  • the first surface 16f and the second surface 15f can be provided with smoother continuity than the inclined surface 161 described above. For this reason, according to the air conditioner 1a, it is possible to more effectively reduce the turbulence of the airflow generated between the enclosure 15 and the stabilizer 16 at the boundary.
  • Embodiment 2 The following describes Embodiment 2 of the present invention with reference to FIG.
  • members having the same functions as those described in the above embodiment are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 11 is an enlarged view of a region D1 of FIG. 4 in the air conditioner 2 of the present embodiment.
  • FIG. 11B is an enlarged view of a region D2 in FIG.
  • the air conditioner 2 is obtained by replacing (i) the stabilizer 16 with the stabilizer 26 and (ii) adding a boundary portion 271 in the air conditioner 1 described above.
  • the stabilizer 26 of the present embodiment is different from the stabilizer 16 of the first embodiment described above in that it does not have an inclined surface as a part of the stabilizer 26. Note that, as shown in the first cross section of FIG. 11B, the first surface of the stabilizer 26 is referred to as a first surface 26f.
  • the boundary portion 271 is constituted by a member separate from the stabilizer 26 and the enclosure portion 15.
  • the boundary portion 271 may be a plate-like member made of a known plastic material.
  • the surface of the boundary portion 271 that faces the cross-flow fan 14 is referred to as an inclined surface 271f (third surface).
  • the first surface 26f and the second surface 15f are separated only by the inclined surface 271f, similarly to the air conditioner 1a described above.
  • the boundary is configured.
  • the shape of the boundary portion 271 is designed in advance so that the angle ⁇ formed by the inclined surface 271f and the first surface 26f becomes an obtuse angle.
  • the obtuse angle condition described above is satisfied by the inclined surface 271f by providing the boundary portion 271 as a separate member from the stabilizer 26 without changing the design or processing of the stabilizer 26. Can do. For this reason, the design and manufacture of the stabilizer 26 can be particularly facilitated.
  • the obtuse angle condition described above can be satisfied without changing the design or processing of the enclosure 15 (see Embodiment 3 described later). For this reason, design and manufacture of the enclosure 15 can be facilitated.
  • the air conditioner 2 the advantage that the design and manufacture of the stabilizer 26 and the enclosure 15 can be particularly facilitated is obtained.
  • FIG. 12 is the enlarged view of the area
  • FIG. 12B is an enlarged view of a region D2 in FIG. 5 in the air conditioner 2a.
  • the air conditioner 2a is obtained by replacing the boundary portion 271 in the air conditioner 2 with a sub boundary portion 271a.
  • the sub-boundary portion 271a is different from the above-described boundary portion 271 in that it is a member that forms a part of the boundary portion.
  • the boundary portion 291 that forms the boundary between the first surface 26f and the second surface 15f is composed of the sub boundary portion 271a and the orthogonal surface 171 described above. That is, as in the first embodiment, a part of the boundary portion 291 may be configured to form an obtuse angle with the first surface 26f.
  • the surface of the sub boundary portion 271a facing the cross-flow fan 14 is referred to as an inclined surface 271af (third surface).
  • the inclined surface 271 af is a surface of the boundary portion 291 that faces the cross-flow fan 14.
  • FIG. 13A is an enlarged view of a region D ⁇ b> 1 of FIG. 4 in the air conditioner 3.
  • FIG. 13B is an enlarged view of a region D2 in FIG.
  • the air conditioner 3 is obtained by replacing the enclosure 15 with an enclosure 35 in the air conditioner 1 described above.
  • the second surface of the enclosure 35 is referred to as a second surface 35f.
  • an inclined surface 351 (boundary portion, third surface) is provided on a part of the facing surface of the enclosure portion 35.
  • the inclined surface 351 in the present embodiment constitutes a part of the enclosure portion 35.
  • the angle ⁇ formed by the inclined surface 351 and the first surface 16f is an obtuse angle.
  • the shape of the enclosure 35 is designed in advance so that the inclined surface 351 that satisfies the obtuse angle condition is provided.
  • the enclosure portion 35 including the inclined surface 351 may be manufactured by performing processing (for example, cutting) for providing the inclined surface 351 on a part of the above-described enclosure portion 15. Or you may manufacture the enclosure part 35 containing the inclined surface 351 by integral molding. The same applies to the inclined surface 351a of a modified example described later.
  • the enclosure portion 35 including the inclined surface 351 is manufactured by performing a process of cutting a part of the second surface 15f described above will be described as an example.
  • the inclined surface 351 of the present embodiment constitutes the entire boundary portion constituting the boundary between the first surface 16f and the second surface 35f.
  • the outer surface of the cross-flow fan 14 draws an arc centered on the motor shaft 142 (more specifically, the center point of the motor shaft 142).
  • the portion other than the inclined surface 351 of the enclosure portion 35 also draws a part of an arc centered on the motor shaft 142. That is, the arc drawn by the second surface 35f is concentric with the arc drawn by the outer surface of the cross-flow fan 14.
  • the inclined surface 351 draws an arc concentric with the portion other than the inclined surface 351 of the enclosure 35 in the second cross section (in other words, in a three-dimensional space (XYZ orthogonal coordinate space)). It is formed so as to form a concentric curved surface (side surface of a cylinder).
  • the inclined surface 351 in the second cross section, can have a shape similar to a portion other than the inclined surface 351 of the enclosure 35. For this reason, it is possible to more effectively reduce the turbulence of the airflow in the vicinity of the enclosure portion 35.
  • the boundary portion constitutes a part of the stabilizer. Further, in the above-described second embodiment, the boundary portion is configured by a member separate from the stabilizer and the enclosure portion. Also in the air conditioner of Embodiments 1 and 2, the boundary portion may be configured to form a concentric curved surface with a portion other than the boundary portion of the enclosure, similarly to the air conditioner 3 of the present embodiment. Good. In this case, the same effect as the air conditioner 3 can be obtained.
  • FIG. 14A is an enlarged view of a region D1 of FIG. 4 in the air conditioner 3a.
  • FIG.14 (b) is an enlarged view of the area
  • the air conditioner 3a is obtained by replacing the inclined surface 351 in the air conditioner 3 with an inclined surface 351a (boundary portion, third surface).
  • the inclined surface 351 a constitutes a part of the enclosure 35, similarly to the inclined surface 351.
  • the inclined surface 351a is the same as the above-described inclined surface 351 in that it constitutes the entire boundary portion. However, the inclined surface 351a is different from the inclined surface 351 in that the inclined surface 351a is configured as a flat surface instead of a curved surface, like the inclined surfaces of the first and second embodiments. Thus, even if the inclined surface constitutes a part of the enclosure 35, the inclined surface may be a flat surface. As shown in FIG. 14B, the inclined surface 351a only needs to be provided so as to satisfy the obtuse angle condition described above.
  • An air conditioner (1) according to an aspect 1 of the present invention is an air conditioner including a cross-flow fan (14), and surrounds a side surface of an end portion in the axial direction (X direction) of the cross-flow fan ( 15) and a stabilizer arranged along the axial direction, and is perpendicular to the depth direction (Y direction) of the air conditioner, and intersects with the stabilizer along the axial direction.
  • the first surface (16f) representing the surface of the stabilizer facing the cross flow fan and the enclosure portion facing the cross flow fan.
  • a boundary portion (inclined surface 161) is formed between the first surface and the second surface, and the second surface and the second surface.
  • the second distance (distance) which is the distance to the once-through fan 2) is smaller than a first distance (distance G1) that is a distance between the first surface and the cross-flow fan, and is a third surface (inclined surface 161) that represents the boundary surface facing the cross-flow fan.
  • the tangential plane of the third surface at the first intersection (P1) between the third surface or the first surface and the third surface forms an obtuse angle with the first surface (
  • the above obtuse angle condition) is satisfied, and the above relationship includes at least a part of a range of a length along the circumferential direction of the cross-flow fan at the boundary, and the first surface and the second surface. It is established in at least a part of the range of the step.
  • the air conditioner according to one aspect of the present invention it is possible to suppress the performance degradation caused by the cross-flow fan of the air conditioner with a configuration different from the conventional one.
  • a direction orthogonal to the axial direction and the depth direction is a height direction (Z direction). It may be an inclined surface whose height increases from one surface toward the second surface.
  • the obtuse angle condition can be satisfied by forming the inclined surface by the boundary portion in the first cross section.
  • the maximum value (h) of the height of the inclined surface in the cross section is (i) a difference between the first distance and the second distance. Or (ii) equal to the difference between the first distance and the second distance.
  • the maximum value of the height of the inclined surface is made smaller than the difference between the first distance and the second distance, the maximum value is equal to the difference between the first distance and the second distance.
  • the size of the inclined surface is small. For this reason, it becomes possible to reduce the above-mentioned turbulence of the airflow with the minimum necessary size of the inclined surface.
  • the maximum value of the height of the inclined surface is made equal to the difference between the first distance and the second distance, it differs from the case where the maximum value is made smaller than the difference between the first distance and the second distance.
  • the step in the height direction can be eliminated between the first surface and the inclined surface and between the second surface and the inclined surface. That is, in the first cross section, the first surface and the second surface can have smoother continuity. For this reason, it becomes possible to reduce the above-mentioned disturbance of the airflow more effectively.
  • the boundary portion may constitute a part of the stabilizer.
  • the inclined surface in the first cross section can be formed by providing a part of the boundary portion in the stabilizer. Therefore, for example, the obtuse angle condition described above can be satisfied by appropriately designing the shape of the stabilizer (or performing a process of providing an inclined surface on a part of the stabilizer).
  • An air conditioner according to an aspect 5 of the present invention is the air conditioner according to any one of the aspects 1 to 3, wherein the boundary portion is configured by a member (boundary portion 271) separate from the stabilizer and the enclosure portion. May be.
  • the inclined surface in the first cross section is formed by providing the boundary as a separate member without changing the design of the stabilizer and the enclosure (or processing the stabilizer and the enclosure).
  • the obtuse angle condition described above can be satisfied. Therefore, the design and manufacture of the stabilizer and the enclosure can be facilitated.
  • An air conditioner according to an aspect 6 of the present invention is an air conditioner including a cross-flow fan, and is disposed along an axial direction that surrounds a side surface of an axial end portion of the cross-flow fan. And a cross section that is perpendicular to the depth direction of the air conditioner and that intersects the stabilizer along the axial direction and faces the cross-flow fan in a cross section of the air conditioner.
  • a second distance that is a distance between the second surface and the cross-flow fan is smaller than a first distance that is a distance between the first surface and the cross-flow fan,
  • the boundary surface facing the cross-flow fan When the third surface is further considered, the tangential plane of the third surface at the first intersection of the third surface or the first surface and the third surface has an obtuse angle with the first surface. And the relationship is at least part of a range of the boundary portion along the circumferential direction of the cross-flow fan, and at least part of a step difference between the first surface and the second surface.
  • the boundary portion constitutes a part of the enclosure portion.
  • the inclined surface in the first cross section can be formed by providing a part of the boundary portion in the enclosure portion. Therefore, for example, the obtuse angle condition described above can be satisfied by appropriately designing the shape of the surrounding portion (or performing a process of providing an inclined surface in a part of the surrounding portion).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The objective of the present invention is to suppress a reduction in performance caused by a cross-flow fan in an air conditioner, by means of a configuration unlike that of the prior art. A distance (G2) between a cross-flow fan (14) and a second surface (15f) of a surrounding portion (15) in a cross section of an air conditioner (1) cut along the YZ plane is less than a distance (G1) between the cross-flow fan (14) and a first surface (16f) of a stabilizer (16). In the aforementioned cross section a slanted surface (161) representing the surface of a boundary portion, or a tangential plane of the slanted surface (161) at an intersection point (P1) between the first surface (16f) and the slanted surface (161), has a relationship such that an acute angle is formed with the first surface (16f). This relationship is established at at least a portion of the range of the length along the circumferential direction of the cross-flow fan (14) in the boundary portion and at least a portion of the range of the difference in height between the first surface (16f) and the second surface (15f).

Description

空気調和機Air conditioner
 本発明は、貫流ファンを備えた空気調和機に関する。 The present invention relates to an air conditioner equipped with a once-through fan.
 一部の空気調和機(例:壁掛け型の室内機を有する空気調和機)では、送風機として、貫流ファン(クロスフローファンとも称される)が用いられる。そして、このような種類の空気調和機では、貫流ファンの軸方向に沿って、スタビライザ(舌部とも称される)が設けられている。スタビライザは、貫流ファンの回転により生ずる空気の強制渦の安定化を果たす部材である。 Some air conditioners (eg, air conditioners having wall-mounted indoor units) use cross-flow fans (also referred to as cross-flow fans) as blowers. In such an air conditioner, a stabilizer (also referred to as a tongue) is provided along the axial direction of the cross-flow fan. The stabilizer is a member that stabilizes the forced vortex of air generated by the rotation of the cross-flow fan.
 近年では、空気調和機の性能向上を目的として、貫流ファンの周辺の通風構造を改良した様々な技術が提案されている。例えば、特許文献1には、空気調和機の低電力化および低騒音化を目的とした技術が開示されている。 In recent years, various technologies have been proposed to improve the ventilation structure around the once-through fan for the purpose of improving the performance of the air conditioner. For example, Patent Document 1 discloses a technique for reducing power consumption and noise of an air conditioner.
 より具体的には、特許文献1の空気調和機では、(i)貫流ファンと対向する対向面を有する衝突壁と、(ii)当該対向面に対して鈍角で交わるファン内側縁部の傾斜面と、が設けられている。特許文献1の空気調和機では、上記傾斜面を設けることにより、当該傾斜面の位置での気流の渦の発生が抑制される。 More specifically, in the air conditioner of Patent Document 1, (i) a collision wall having a facing surface facing the cross-flow fan, and (ii) an inclined surface of the fan inner edge that intersects the facing surface at an obtuse angle And are provided. In the air conditioner of Patent Document 1, the provision of the inclined surface suppresses the generation of vortex of the airflow at the position of the inclined surface.
 また、特許文献2には、貫流ファンの軸方向の端部におけるサージング(送風時の異音の発生)を防止することを目的とした技術が開示されている。より具体的には、特許文献2の空気調和機では、スタビライザに、(i)貫流ファンに対向する第1対向面(スタビライザの両端部の間に位置する対向面)を有する主要部と、(ii)当該貫流ファンの軸方向における各端部に対向する第2対向面(スタビライザの両端部に位置する対向面)と、が設けられている。そして、第2対向面を、第1対向面よりも貫流ファン側に位置させている。当該位置関係は、貫流ファンの軸方向の端部(循環渦が不安定となりやすい位置)において、循環渦を安定させることを目的としたものである。 Also, Patent Document 2 discloses a technique aimed at preventing surging (generation of abnormal noise during blowing) at the axial end of the once-through fan. More specifically, in the air conditioner of Patent Document 2, the stabilizer includes (i) a main portion having a first facing surface (facing surface located between both ends of the stabilizer) facing the cross-flow fan; ii) A second facing surface (facing surfaces located at both ends of the stabilizer) facing each end in the axial direction of the cross-flow fan is provided. The second facing surface is positioned closer to the cross-flow fan than the first facing surface. The positional relationship is intended to stabilize the circulating vortex at the axial end of the cross-flow fan (the position where the circulating vortex tends to become unstable).
国際公開第2013/031046号公報(2013年3月7日公開)International Publication No. 2013/031046 (published March 7, 2013) 日本国公開特許公報「特開2016-50720号公報(2016年4月11日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2016-50720 (published on April 11, 2016)”
 ところで、貫流ファンは、静圧が比較的低い送風機であることが知られている。また、貫流ファンが送風路を形成する壁面と接触せずに回転するために、貫流ファンの軸方向の端部から外側には、貫流ファンの羽根(ブレード)が存在していない空間が必然的に形成される。このため、貫流ファンの静圧分布(貫流ファンから送出される空気の静圧の空間的な分布)は、不均一となりやすい。 By the way, it is known that the once-through fan is a blower having a relatively low static pressure. In addition, since the cross-flow fan rotates without contacting the wall surface forming the air passage, a space in which the cross-flow fan blades (blades) do not exist is inevitably formed outside the axial end of the cross-flow fan. Formed. For this reason, the static pressure distribution of the cross-flow fan (the spatial distribution of the static pressure of the air sent from the cross-flow fan) tends to be uneven.
 そして、貫流ファンの静圧分布が不均一である場合には、静圧が小さい位置において圧力損失が生じた場合に、サージングに起因する異音が生じる可能性がある。このように、貫流ファンの静圧分布が不均一である場合には、空気調和機の性能に悪影響が生じる可能性がある。 And, when the static pressure distribution of the cross-flow fan is non-uniform, there is a possibility that an abnormal noise due to surging occurs when a pressure loss occurs at a position where the static pressure is low. As described above, when the static pressure distribution of the cross-flow fan is non-uniform, the performance of the air conditioner may be adversely affected.
 そこで、貫流ファンの静圧分布の均一化を図るための対策として、貫流ファンの側面を囲う構造物(囲い部)を設ける構成が採用されてきた。例えば、サージングを効果的に防止するために、囲い部は貫流ファンの軸方向の端部に設けられる。しかしながら、当該囲い部を設けた場合には、貫流ファンが所定の回転数によって回転する場合に、当該貫流ファンから送出される空気の流量が低下する。 Therefore, as a measure for making the static pressure distribution of the cross-flow fan uniform, a configuration in which a structure (enclosure) surrounding the side surface of the cross-flow fan has been adopted. For example, to effectively prevent surging, the enclosure is provided at the axial end of the cross-flow fan. However, when the enclosure is provided, the flow rate of the air sent from the cross-flow fan decreases when the cross-flow fan rotates at a predetermined rotational speed.
 このため、所定の流量を得るためには、貫流ファンの回転数を増加させる必要が生じ、当該貫流ファンの消費電力が増加してしまう。また、貫流ファンの回転数を増加させることにより、空気調和機における騒音の増加または通風の整流性等が低下する可能性も懸念される。 For this reason, in order to obtain a predetermined flow rate, it is necessary to increase the rotational speed of the cross-flow fan, and the power consumption of the cross-flow fan increases. Further, there is a concern that increasing the number of rotations of the once-through fan may increase noise in the air conditioner or reduce ventilation rectification.
 さらに、後述するように、囲い部と貫流ファンとの間の距離が、スタビライザと貫流ファンとの間の距離よりも短い場合には、気流の乱れが発生しやすくなり、空気調和機の性能低下(特に消費電力の増加および異音の発生)が顕著となる。 Furthermore, as will be described later, when the distance between the enclosure and the cross-flow fan is shorter than the distance between the stabilizer and the cross-flow fan, air currents are likely to be disturbed, and the performance of the air conditioner decreases. (In particular, the increase in power consumption and the occurrence of abnormal noise) become prominent.
 本発明の一態様は、上記の問題点に鑑みてなされたものであり、その目的は、従来とは異なる構成により、空気調和機の貫流ファンに起因した性能低下を抑制することにある。 An aspect of the present invention has been made in view of the above-described problems, and an object thereof is to suppress performance degradation caused by a cross-flow fan of an air conditioner with a configuration different from the conventional one.
 上記の課題を解決するために、本発明の一態様に係る空気調和機は、貫流ファンを備えた空気調和機であって、上記貫流ファンの軸方向の端部の側面を囲う囲い部と、上記軸方向に沿って配置されたスタビライザと、を備えており、上記空気調和機の奥行き方向に垂直であり、上記スタビライザと上記軸方向に沿って交叉する平面によって、当該空気調和機を切断した断面において、上記貫流ファンと対向する上記スタビライザの面を表す第1面と、上記貫流ファンと対向する上記囲い部の面を表す第2面と、を考えた場合、上記第1面と上記第2面との間には、境界部が形成されており、上記第2面と上記貫流ファンとの間の距離である第2距離は、上記第1面と上記貫流ファンとの間の距離である第1距離よりも小さく、上記貫流ファンと対向する上記境界部の面を表す第3面をさらに考えた場合、上記第3面、または上記第1面と上記第3面との第1交差点における上記第3面の接平面は、上記第1面と鈍角を成す関係を有しており、上記関係は、上記境界部における上記貫流ファンの周方向に沿った長さの範囲の少なくとも一部、および上記第1面と上記第2面との段差の範囲の少なくとも一部で成立している。 In order to solve the above-described problem, an air conditioner according to an aspect of the present invention is an air conditioner including a cross-flow fan, and an enclosure that surrounds a side surface of an end portion in the axial direction of the cross-flow fan; A stabilizer disposed along the axial direction, and the air conditioner is cut by a plane perpendicular to the depth direction of the air conditioner and intersecting the stabilizer along the axial direction. In a cross section, when considering a first surface representing the surface of the stabilizer facing the cross-flow fan and a second surface representing the surface of the enclosure facing the cross-flow fan, the first surface and the first surface A boundary is formed between the two surfaces, and the second distance, which is the distance between the second surface and the cross-flow fan, is the distance between the first surface and the cross-flow fan. Smaller than a certain first distance, When the third surface representing the surface of the boundary portion facing the surface is further considered, the tangential plane of the third surface at the first intersection of the third surface or the first surface and the third surface is The first surface has an obtuse angle, and the relationship is at least part of a range of the boundary portion along the circumferential direction of the cross-flow fan, and the first surface and the second surface. And at least part of the range of the step.
 また、上記の課題を解決するために、本発明の一態様に係る空気調和機は、貫流ファンを備えた空気調和機であって、上記貫流ファンの軸方向の端部の側面を囲う囲い部と、上記軸方向に沿って配置されたスタビライザと、を備えており、上記空気調和機の奥行き方向に垂直であり、上記スタビライザと上記軸方向に沿って交叉する平面によって、当該空気調和機を切断した断面において、上記貫流ファンと対向する上記スタビライザの面を表す第1面と、上記貫流ファンと対向する上記囲い部の面を表す第2面と、を考えた場合、上記第1面と上記第2面との間には、境界部が形成されており、上記第2面と上記貫流ファンとの間の距離である第2距離は、上記第1面と上記貫流ファンとの間の距離である第1距離よりも小さく、上記貫流ファンと対向する上記境界部の面を表す第3面をさらに考えた場合、上記第3面、または上記第1面と上記第3面との第1交差点における上記第3面の接平面は、上記第1面と鈍角を成す関係を有しており、上記関係は、上記境界部における上記貫流ファンの周方向に沿った長さの範囲の少なくとも一部、および上記第1面と上記第2面との段差の範囲の少なくとも一部で成立しており、上記境界部は、上記囲い部の一部分を構成している。 Moreover, in order to solve said subject, the air conditioner which concerns on 1 aspect of this invention is an air conditioner provided with the cross-flow fan, Comprising: The enclosure part which encloses the side surface of the edge part of the axial direction of the said cross-flow fan And a stabilizer disposed along the axial direction, and the air conditioner is configured by a plane perpendicular to the depth direction of the air conditioner and intersecting the stabilizer along the axial direction. In the cut section, when considering a first surface representing the surface of the stabilizer facing the cross-flow fan and a second surface representing the surface of the enclosure facing the cross-flow fan, the first surface and A boundary portion is formed between the second surface and the second distance, which is a distance between the second surface and the cross-flow fan, is between the first surface and the cross-flow fan. Smaller than the first distance, which is the distance, When further considering the third surface representing the boundary surface facing the fan, the tangential plane of the third surface at the first intersection of the third surface or the first surface and the third surface is: The first surface has an obtuse angle, and the relationship includes at least part of a range of the boundary portion along the circumferential direction of the cross-flow fan, and the first surface and the second surface. It is established at least in part of the range of the step with the surface, and the boundary part constitutes a part of the enclosure part.
 本発明の一態様に係る空気調和機によれば、従来とは異なる構成により、空気調和機の貫流ファンに起因した性能低下を抑制することが可能となるという効果を奏する。 The air conditioner according to one aspect of the present invention has an effect that it is possible to suppress performance degradation due to the cross-flow fan of the air conditioner by using a configuration different from the conventional one.
本発明の実施形態1に係る空気調和機の正面方向の外観を示す斜視図である。It is a perspective view which shows the external appearance of the front direction of the air conditioner which concerns on Embodiment 1 of this invention. (a)は図1の空気調和機の上面図であり、(b)は当該空気調和機の正面図である。(A) is a top view of the air conditioner of FIG. 1, (b) is a front view of the air conditioner. (a)は図1の空気調和機の背面方向の外観を示す斜視図であり、(b)は(a)において、背面キャビネットおよび熱交換器の図示を省略した斜視図である。(A) is a perspective view which shows the external appearance of the back direction of the air conditioner of FIG. 1, (b) is the perspective view which abbreviate | omitted illustration of the back cabinet and the heat exchanger in (a). 図3の(b)において、貫流ファンの図示をさらに省略した斜視図である。It is the perspective view which further abbreviate | omitted illustration of the cross-flow fan in (b) of FIG. 図2の(a)のA-A矢視断面図である。FIG. 3 is a cross-sectional view taken along the line AA in FIG. 図2の(b)のB-B矢視断面図である。FIG. 3 is a cross-sectional view taken along line BB in FIG. 図6における領域D3の拡大図である。It is an enlarged view of the area | region D3 in FIG. (a)は図4における領域D1の拡大図であり、(b)は図5における領域D2の拡大図であり、(c)は図5における領域D2の拡大図の別の例である。(A) is an enlarged view of the region D1 in FIG. 4, (b) is an enlarged view of the region D2 in FIG. 5, and (c) is another example of the enlarged view of the region D2 in FIG. (a)は、本発明の実施形態1に係る空気調和機の比較例としての空気調和機における領域D1の拡大図であり、(b)は当該空気調和機における領域D2の拡大図である。(A) is an enlarged view of area | region D1 in the air conditioner as a comparative example of the air conditioner which concerns on Embodiment 1 of this invention, (b) is an enlarged view of area | region D2 in the said air conditioner. (a)は、本発明の実施形態1に係る空気調和機の変形例としての空気調和機における領域D1の拡大図であり、(b)は当該空気調和機における領域D2の拡大図である。(A) is an enlarged view of area | region D1 in the air conditioner as a modification of the air conditioner concerning Embodiment 1 of this invention, (b) is an enlarged view of area | region D2 in the said air conditioner. (a)は、本発明の実施形態2に係る空気調和機における領域D1の拡大図であり、(b)は当該空気調和機における領域D2の拡大図である。(A) is an enlarged view of area | region D1 in the air conditioner which concerns on Embodiment 2 of this invention, (b) is an enlarged view of area | region D2 in the said air conditioner. (a)は、本発明の実施形態2に係る空気調和機の変形例としての空気調和機における領域D1の拡大図であり、(b)は当該空気調和機における領域D2の拡大図である。(A) is an enlarged view of area | region D1 in the air conditioner as a modification of the air conditioner concerning Embodiment 2 of this invention, (b) is an enlarged view of area | region D2 in the said air conditioner. (a)は、本発明の実施形態3に係る空気調和機における領域D1の拡大図であり、(b)は当該空気調和機における領域D2の拡大図である。(A) is an enlarged view of area | region D1 in the air conditioner which concerns on Embodiment 3 of this invention, (b) is an enlarged view of area | region D2 in the said air conditioner. (a)は、本発明の実施形態3に係る空気調和機の変形例としての空気調和機における領域D1の拡大図であり、(b)は当該空気調和機における領域D2の拡大図である。(A) is an enlarged view of area | region D1 in the air conditioner as a modification of the air conditioner concerning Embodiment 3 of this invention, (b) is an enlarged view of area | region D2 in the said air conditioner.
 〔実施形態1〕
 以下、本発明の実施形態1について、図1~図9に基づいて詳細に説明する。はじめに、図1~図7を参照して、本実施形態の空気調和機1の概略的な構成について述べる。
Embodiment 1
Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to FIGS. First, a schematic configuration of the air conditioner 1 of the present embodiment will be described with reference to FIGS. 1 to 7.
 なお、本実施形態では、室内機と室外機とからなるセパレートタイプの壁掛け型空気調和機の室内機である空気調和機1を例示して説明を行う。但し、本発明の一態様に係る空気調和機は、天井内据え付け型でもよいし、床置き型でもよいし、室外機を有しない室内専用機型(窓取付型エアコン等)でもよい。 In the present embodiment, the air conditioner 1 that is an indoor unit of a separate type wall-mounted air conditioner composed of an indoor unit and an outdoor unit will be described as an example. However, the air conditioner according to one embodiment of the present invention may be a ceiling-mounted type, a floor-standing type, or an indoor dedicated type (such as a window-mounted air conditioner) that does not have an outdoor unit.
 なお、以下に述べる各図面(特に図5等)には、空気調和機1の様々な部材が示されているが、本実施形態とは関係しない部材については説明を省略する。これらの説明を省略する部材は、公知のものと同様であると理解されてよい。また、各図面は、各部材の形状、構造、および位置関係を概略的に説明することを目的としたものであり、必ずしもスケール通りに描かれていないことに留意されたい。 In addition, although each member (especially FIG. 5 etc.) described below shows various members of the air conditioner 1, description of members that are not related to the present embodiment is omitted. Members that omit these descriptions may be understood to be the same as known members. Also, it should be noted that each drawing is intended to schematically explain the shape, structure, and positional relationship of each member, and is not necessarily drawn to scale.
 (空気調和機1の概要)
 図1は、空気調和機1の正面方向の外観を示す斜視図である。図1に示されるように、空気調和機1は、外側の構成部材として、気流パネル11およびキャビネット12(筐体)を備えている。気流パネル11は、キャビネット12に開閉可能に支持されている。
(Outline of air conditioner 1)
FIG. 1 is a perspective view showing an external appearance of the air conditioner 1 in the front direction. As shown in FIG. 1, the air conditioner 1 includes an air flow panel 11 and a cabinet 12 (housing) as outer components. The airflow panel 11 is supported by the cabinet 12 so that it can be opened and closed.
 なお、図1において、壁面に据え付けた空気調和機1を前面(正面)から見て、天井側を上、床側を下とし、さらに空気調和機1の長手方向を左右方向とする。また、空気調和機1の背面(裏面)から前面に向かう方向を、奥行き方向と称する。 In FIG. 1, the air conditioner 1 installed on the wall surface is viewed from the front (front), the ceiling side is up, the floor side is down, and the longitudinal direction of the air conditioner 1 is the left-right direction. A direction from the back surface (back surface) to the front surface of the air conditioner 1 is referred to as a depth direction.
 以降、左右方向をX方向、奥行き方向をY方向、上下方向をZ方向とも称する。ここで、X方向の正の向きは右方向とする。また、Y方向の正の向きは前方向とする。また、Z方向の正の向きは上方向とする。本実施形態では、X方向、Y方向、およびZ方向が、互いに直交する方向であるとして説明を行う。 Hereinafter, the horizontal direction is also referred to as the X direction, the depth direction is also referred to as the Y direction, and the vertical direction is also referred to as the Z direction. Here, the positive direction in the X direction is the right direction. The positive direction in the Y direction is the forward direction. The positive direction in the Z direction is the upward direction. In the present embodiment, description will be made assuming that the X direction, the Y direction, and the Z direction are directions orthogonal to each other.
 気流パネル11は、室内へ吹き出す気流の流路を規定する。気流パネル11は、空気調和機1の運転状態に応じて、空気調和機1内の制御装置(不図示)によって開閉が制御される。気流パネル11が開かれた場合には、上記流路としての吹出口が露出する。 The airflow panel 11 defines the flow path of the airflow that blows out into the room. Opening and closing of the airflow panel 11 is controlled by a control device (not shown) in the air conditioner 1 according to the operating state of the air conditioner 1. When the airflow panel 11 is opened, the outlet as the flow path is exposed.
 また、キャビネット12には、ユーザからの操作指示を受け付けるリモートコントローラから射出される赤外線等の光線を受光する受光部(入力部)が設けられていてよい。また、キャビネット12には、ユーザに対して各種の情報を通知するための通知部(例:表示部、ランプ、スピーカ)が、さらに設けられていてもよい。 Further, the cabinet 12 may be provided with a light receiving unit (input unit) that receives a light beam such as an infrared ray emitted from a remote controller that receives an operation instruction from a user. The cabinet 12 may further include a notification unit (for example, a display unit, a lamp, and a speaker) for notifying the user of various types of information.
 図2の(a)および(b)はそれぞれ、空気調和機1の上面図および正面図である。なお、図2の(a)のA-A矢視断面図は、後述の図5に示されている。また、図2の(b)のB-B矢視断面図は、後述の図6に示されている。 2 (a) and 2 (b) are a top view and a front view of the air conditioner 1, respectively. A sectional view taken along the line AA in FIG. 2A is shown in FIG. 5 described later. A cross-sectional view taken along the line BB in FIG. 2B is shown in FIG. 6 to be described later.
 図2の(a)に示されるように、空気調和機1の上面(より具体的には、空気調和機1のオープンパネルの上面)には、格子状の空気吸入口が設けられている。空気吸入口全体の概略的な開口形状は、X方向に沿った細長い長方形状である。 2 (a), a lattice-shaped air inlet is provided on the upper surface of the air conditioner 1 (more specifically, the upper surface of the open panel of the air conditioner 1). The schematic opening shape of the entire air inlet is an elongated rectangular shape along the X direction.
 そして、空気調和機1の内側の上方には、熱交換器13が設けられている(後述の図6も参照)。熱交換器13は、冷房運転時には冷媒を気化させる蒸発器として働き、室内の空気から熱を奪う。一方、熱交換器13は、暖房運転時には冷媒を液化させる凝縮器として働き、室内に熱を放出する。 And the heat exchanger 13 is provided above the inner side of the air conditioner 1 (see also FIG. 6 described later). The heat exchanger 13 functions as an evaporator that vaporizes the refrigerant during the cooling operation, and takes heat from the indoor air. On the other hand, the heat exchanger 13 functions as a condenser that liquefies the refrigerant during heating operation, and releases heat into the room.
 図3の(a)は、図1の空気調和機1の背面方向の外観を示す斜視図である。図3の(a)に示されるように、空気調和機1の背面には、空気調和機1の内部の各部材を保護するための部材として、背面キャビネット121(キャビネット12の一部分)が設けられている。 3 (a) is a perspective view showing an appearance of the air conditioner 1 in FIG. 1 in the back direction. As shown in FIG. 3A, a back cabinet 121 (a part of the cabinet 12) is provided on the back surface of the air conditioner 1 as a member for protecting each member inside the air conditioner 1. ing.
 図3の(b)は、図3の(a)において、背面キャビネット121および熱交換器13の図示を省略した斜視図である。図3の(b)に示されるように、空気調和機1の内部には、貫流ファン14およびモータ141が設けられている。 FIG. 3B is a perspective view in which the rear cabinet 121 and the heat exchanger 13 are not shown in FIG. As shown in FIG. 3B, a cross-flow fan 14 and a motor 141 are provided inside the air conditioner 1.
 貫流ファン14は、X方向に平行な中心軸を有しており、当該中心軸の周りに回転可能である。また、貫流ファン14は、空気を吸入および送出するための複数のブレード(不図示)を、周方向に備えている。貫流ファン14が中心軸の周りに回転することで、空気吸入口から室内の空気が吸入されるとともに、気流パネル11から室内へ吹き出す気流が作り出される。なお、後述の図6には、当該気流の一例として、気流Wが図示されている。図6に示されるように、気流Wは、空気吸入口、熱交換器13、貫流ファン14、および気流パネル11を順に辿る経路を通る。 The cross-flow fan 14 has a central axis parallel to the X direction and can rotate around the central axis. The cross-flow fan 14 includes a plurality of blades (not shown) for sucking and sending air in the circumferential direction. By rotating the cross-flow fan 14 around the central axis, air in the room is sucked from the air suction port, and an airflow blown out from the airflow panel 11 to the room is created. In FIG. 6 described later, an airflow W is illustrated as an example of the airflow. As shown in FIG. 6, the airflow W passes through a path that sequentially follows the air inlet, the heat exchanger 13, the cross-flow fan 14, and the airflow panel 11.
 モータ141は、貫流ファン14を所定の回転数によって回転させる駆動装置である。モータ141は、モータ軸142(図6等を参照)によって、貫流ファン14と接続されている。モータ141の回転数(換言すれば、貫流ファン14の回転数)は、空気調和機1内の制御装置によって制御される。また、熱交換器13を通って貫流ファンの内部へと吸入される空気の量は、貫流ファン14の回転数に依存する。従って、モータ141の回転数を制御することにより、室内に送風される風量を調節できる。 The motor 141 is a drive device that rotates the cross-flow fan 14 at a predetermined rotational speed. The motor 141 is connected to the cross-flow fan 14 by a motor shaft 142 (see FIG. 6 and the like). The number of rotations of the motor 141 (in other words, the number of rotations of the cross-flow fan 14) is controlled by a control device in the air conditioner 1. The amount of air sucked into the cross-flow fan through the heat exchanger 13 depends on the rotational speed of the cross-flow fan 14. Therefore, the amount of air blown into the room can be adjusted by controlling the rotation speed of the motor 141.
 図4は、図3の(b)において、貫流ファン14の図示を省略した斜視図である。図4に示されるように、空気調和機1の内部には、囲い部15と、スタビライザ16とが設けられている。なお、図4における領域D1の拡大図については、後述の図8の(a)において詳細に説明する。 FIG. 4 is a perspective view in which the cross-flow fan 14 is not shown in FIG. As shown in FIG. 4, an enclosure 15 and a stabilizer 16 are provided inside the air conditioner 1. Note that an enlarged view of the region D1 in FIG. 4 will be described in detail in FIG.
 なお、囲い部15とスタビライザ16とは、一体の部材によって構成されてよい。図4のハッチング部は、囲い部15の一部とスタビライザ16とを構成する一体の部材を示す。本実施形態では、囲い部15とスタビライザ16とが一体の部材によって構成されている場合を例示して説明を行う(参照:後述の図8の(b))。但し、囲い部15とスタビライザ16とは、別体の部材によって構成されてもよい(参照:後述の図8の(c))。 In addition, the enclosure part 15 and the stabilizer 16 may be comprised by the integral member. The hatched portion in FIG. 4 shows an integral member that constitutes a part of the enclosure 15 and the stabilizer 16. In the present embodiment, the case where the enclosure portion 15 and the stabilizer 16 are constituted by an integral member will be described as an example (see: FIG. 8B described later). However, the enclosure 15 and the stabilizer 16 may be configured by separate members (see: FIG. 8C described later).
 囲い部15は、貫流ファン14の軸方向(X方向)の端部の側面を囲う部材である。上述のように、囲い部15は、貫流ファン14の軸方向の端部で発生するサージングを防止するために設けられている。 The enclosure 15 is a member that encloses the side surface of the end of the cross-flow fan 14 in the axial direction (X direction). As described above, the enclosure 15 is provided to prevent surging that occurs at the axial end of the cross-flow fan 14.
 スタビライザ16は、X方向に延伸し、貫流ファン14の軸方向の幅とほぼ等しい幅を有しているとともに、貫流ファン14の周方向の一部に沿った長さを有しており、貫流ファン14との間にわずかな距離を置いて対面している。スタビライザ16は、舌部とも呼ばれている。スタビライザ16は、貫流ファン14から気流パネル11に向かう通風経路を規定する部材である。すなわち、スタビライザ16は、貫流ファン14の回転から生じる空気渦を、意図する風の流れに適した位置において安定化させる役割を果たす。 The stabilizer 16 extends in the X direction, has a width substantially equal to the width in the axial direction of the cross-flow fan 14, and has a length along a part of the circumferential direction of the cross-flow fan 14. It faces the fan 14 with a slight distance. The stabilizer 16 is also called a tongue. The stabilizer 16 is a member that defines a ventilation path from the cross-flow fan 14 toward the airflow panel 11. That is, the stabilizer 16 serves to stabilize the air vortex resulting from the rotation of the cross-flow fan 14 at a position suitable for the intended wind flow.
 図5は、上述の図2の(a)のA-A矢視断面図である。すなわち、図5は、空気調和機1の奥行き方向(Y方向)に垂直な平面(より具体的には、X方向に沿ってスタビライザ16と交差するXZ平面)によって、当該空気調和機1を切断した断面を示している。以下、当該断面を第1断面とも称する。なお、図5における領域D2の拡大図は、後述の図8の(b)に示されている。本実施形態における囲い部15とスタビライザ16との間の境界部の構造については、図8を参照し、後により詳細に述べる。 FIG. 5 is a cross-sectional view taken along the line AA in FIG. That is, FIG. 5 shows the air conditioner 1 cut by a plane perpendicular to the depth direction (Y direction) of the air conditioner 1 (more specifically, an XZ plane that intersects the stabilizer 16 along the X direction). A cross section is shown. Hereinafter, this cross section is also referred to as a first cross section. An enlarged view of the region D2 in FIG. 5 is shown in FIG. The structure of the boundary between the enclosure 15 and the stabilizer 16 in the present embodiment will be described in detail later with reference to FIG.
 図6は、上述の図2の(b)のB-B矢視断面図である。すなわち、図6は、空気調和機1の長手方向(X方向)に垂直な平面(より具体的には、Y方向に沿って囲い部15と交差するYZ平面)によって、当該空気調和機1を切断した断面を示している。当該断面は、上述の第1断面との区別のため、第2断面と称されてもよい。 FIG. 6 is a cross-sectional view taken along the line BB in FIG. 2 (b). That is, FIG. 6 illustrates the air conditioner 1 by a plane perpendicular to the longitudinal direction (X direction) of the air conditioner 1 (more specifically, a YZ plane that intersects the enclosure 15 along the Y direction). A cut section is shown. The cross section may be referred to as a second cross section for distinction from the first cross section described above.
 また、図7は、図6における領域D3の拡大図である。なお、図7における線L1は、囲い部15の外壁の稜線を示す。図7に示されるように、貫流ファン14の外面とスタビライザ16の内面との間には、空隙(第1の空隙)が存在している。当該第1の空隙は、スタビライザ16によって通風経路が規定される領域内に位置している。このため、当該第1の空隙では、貫流ファン14から送出される空気の流量が、下記の第2の空隙と比べて多い。なお、スタビライザ16の内面は、貫流ファン14と対向する面であるため、スタビライザ16の対向面と称されてもよい。 FIG. 7 is an enlarged view of a region D3 in FIG. A line L1 in FIG. 7 indicates a ridgeline of the outer wall of the enclosure 15. As shown in FIG. 7, an air gap (first air gap) exists between the outer surface of the cross-flow fan 14 and the inner surface of the stabilizer 16. The first gap is located in a region where a ventilation path is defined by the stabilizer 16. For this reason, in the said 1st space | gap, the flow volume of the air sent out from the once-through fan 14 is large compared with the following 2nd space | gap. In addition, since the inner surface of the stabilizer 16 is a surface facing the cross-flow fan 14, it may be referred to as a facing surface of the stabilizer 16.
 同様に、貫流ファン14の外面と囲い部15の内面との間にも、空隙(第2の空隙)が存在している。当該第2の空隙は、スタビライザ16によって通風経路が規定されない領域内に位置している。このため、当該第2の空隙では、貫流ファン14から送出される空気の流量が、上記の第1の空隙と比べて少ない。なお、囲い部15の内面は、貫流ファン14と対向する面であるため、囲い部15の対向面と称されてもよい。 Similarly, a gap (second gap) exists between the outer surface of the cross-flow fan 14 and the inner surface of the enclosure 15. The second gap is located in a region where the ventilation path is not defined by the stabilizer 16. For this reason, in the said 2nd space | gap, the flow volume of the air sent out from the once-through fan 14 is few compared with said 1st space | gap. In addition, since the inner surface of the enclosure part 15 is a surface facing the cross-flow fan 14, it may be referred to as an opposed surface of the enclosure part 15.
 また、図7に示され、かつ、図8の(b)を参照して後述するように、空気調和機1では、囲い部15と貫流ファン14との間の距離(第2の空隙の長さ)は、スタビライザ16と貫流ファン14との間の距離(第1の空隙の長さ)よりも短い。以下に述べるように、この場合には、気流の乱れが発生しやすくなり、空気調和機の性能低下が顕著となる。 Further, as shown in FIG. 7 and described later with reference to FIG. 8B, in the air conditioner 1, the distance between the enclosure 15 and the cross-flow fan 14 (the length of the second gap). ) Is shorter than the distance between the stabilizer 16 and the cross-flow fan 14 (the length of the first gap). As described below, in this case, turbulence of airflow is likely to occur, and the performance degradation of the air conditioner becomes significant.
 しかしながら、上述の特許文献1および2のいずれも、この場合に、スタビライザと囲い部との境界付近の領域の角度を適切に設定することにより、空気調和機の性能低下を抑制するという技術的思想については、何ら開示も示唆もされていない。 However, in both of the above-mentioned Patent Documents 1 and 2, in this case, the technical idea of suppressing the performance degradation of the air conditioner by appropriately setting the angle of the region near the boundary between the stabilizer and the enclosure. Is not disclosed or suggested.
 他方、以下に述べるように、空気調和機1は、上記角度を適切に設定することにより、上述の気流の乱れを抑制することを目的として構成されたものである。 On the other hand, as will be described below, the air conditioner 1 is configured for the purpose of suppressing the above-described turbulence of the air flow by appropriately setting the angle.
 (比較例)
 続いて、本実施形態の空気調和機1の効果をより明確に説明するために、当該空気調和機1の比較例について述べる。以下、当該比較例としての空気調和機を、空気調和機1xと称する。空気調和機1xは、基本的な構成は空気調和機1と同様であるが、囲い部とスタビライザとの境界部分の構造が、空気調和機1とは異なる。なお、この点については、以下に述べる各実施形態および各変形例に係る空気調和機においても同様である。
(Comparative example)
Then, in order to demonstrate the effect of the air conditioner 1 of this embodiment more clearly, the comparative example of the said air conditioner 1 is described. Hereinafter, the air conditioner as the comparative example is referred to as an air conditioner 1x. The basic structure of the air conditioner 1x is the same as that of the air conditioner 1, but the structure of the boundary portion between the enclosure and the stabilizer is different from that of the air conditioner 1. This is the same in the air conditioners according to the embodiments and modifications described below.
 以下、図9を参照して、空気調和機1xにおける上述の境界部分の構造について述べる。図9の(a)は、空気調和機1xにおける、図4の領域D1の拡大図である。また、図9の(b)は、空気調和機1xにおける、図5の領域D2の拡大図である。 Hereinafter, the structure of the above-described boundary portion in the air conditioner 1x will be described with reference to FIG. FIG. 9A is an enlarged view of a region D1 of FIG. 4 in the air conditioner 1x. FIG. 9B is an enlarged view of a region D2 of FIG. 5 in the air conditioner 1x.
 図9に示されるように、空気調和機1xは、後述する傾斜面161(図8を参照)がスタビライザに設けられていないという点において、空気調和機1とは異なる。ここで、空気調和機1のスタビライザ16との区別のため、空気調和機1xのスタビライザを、スタビライザ16xと称する。 As shown in FIG. 9, the air conditioner 1x is different from the air conditioner 1 in that an inclined surface 161 (see FIG. 8) described later is not provided in the stabilizer. Here, in order to distinguish from the stabilizer 16 of the air conditioner 1, the stabilizer of the air conditioner 1x is referred to as a stabilizer 16x.
 また、図9の(b)に示されるように、第1断面において、スタビライザ16xの対向面を表す面を第1面16xfと称する。また、囲い部15の対向面を第2面15fと称する。そして、第1断面において、第1面16xfと貫流ファン14との間の距離(上述の第1の空隙の長さ)を、距離G1(第1距離)と称する。また、第2面15fと貫流ファン14との間の距離(上述の第2の空隙の長さ)を、距離G2(第2距離)と称する。 Further, as shown in FIG. 9B, the surface representing the opposing surface of the stabilizer 16x in the first cross section is referred to as a first surface 16xf. Moreover, the opposing surface of the enclosure part 15 is called the 2nd surface 15f. In the first cross section, the distance between the first surface 16xf and the cross-flow fan 14 (the length of the first gap described above) is referred to as a distance G1 (first distance). The distance between the second surface 15f and the cross-flow fan 14 (the length of the second gap described above) is referred to as a distance G2 (second distance).
 第1断面において、距離G1およびG2はそれぞれ、Z方向(高さ方向)の距離である。また、距離G1およびG2はそれぞれ、X方向において一定の値である。そして、距離G2は、距離G1よりも小さい。 In the first cross section, the distances G1 and G2 are distances in the Z direction (height direction), respectively. The distances G1 and G2 are constant values in the X direction. The distance G2 is smaller than the distance G1.
 それゆえ、スタビライザ16xと囲い部15との間には、Z方向の段差が存在することとなる。つまり、スタビライザ16xと囲い部15との間には、Z方向の段差が形成された領域である境界部が形成されることとなる。空気調和機1xにおける上記段差は、Z方向に伸びるキャビネット12の内壁によって構成される。以下、図9の(b)の第1断面において、当該内壁を示す面を直交面191xと称する。 Therefore, there is a step in the Z direction between the stabilizer 16x and the enclosure 15. That is, a boundary portion that is a region where a step in the Z direction is formed is formed between the stabilizer 16x and the surrounding portion 15. The step in the air conditioner 1x is constituted by the inner wall of the cabinet 12 extending in the Z direction. Hereinafter, in the first cross section of FIG. 9B, a surface showing the inner wall is referred to as an orthogonal surface 191x.
 ここで、第1断面において、第1面16xfと直交面191xとの交差点を、第1交差点P1と称する。また、第2面15fと直交面191xとの交差点を、第2交差点P2と称する。そして、直交面191xと第1面16xfとが成す角度を、θとして表す。図9の(b)に示されるように、空気調和機1xでは、第1断面において、直交面191xと第1面16xfとは直交しているため、θ=90°となる。 Here, in the first cross section, the intersection of the first surface 16xf and the orthogonal surface 191x is referred to as a first intersection P1. An intersection between the second surface 15f and the orthogonal surface 191x is referred to as a second intersection P2. The angle formed by the orthogonal surface 191x and the first surface 16xf is represented as θ. As shown in FIG. 9B, in the air conditioner 1x, the orthogonal plane 191x and the first plane 16xf are orthogonal to each other in the first cross section, and θ = 90 °.
 また、空気調和機1xでは、θ=90°であるため、第1断面における直交面191xの高さHxは、Hx=G1-G2として表される。すなわち、空気調和機1xでは、θ=90°であるため、第1面16xfと第2面15fとの間には、Z方向に大きい段差(高さHxの段差である直交面191x)が存在することとなる。それゆえ、第1断面において、第1面16xfと第2面15fとは、直交面191xが存在することによって、Z方向において滑らかな連続性を有しない。また、角度θが鋭角である場合(θ<90°である場合)にも、第1面16xfと第2面15fとは、Z方向において滑らかな連続性を有しない。 In the air conditioner 1x, since θ = 90 °, the height Hx of the orthogonal plane 191x in the first cross section is expressed as Hx = G1-G2. That is, in the air conditioner 1x, since θ = 90 °, there is a large step in the Z direction (orthogonal surface 191x that is a step of height Hx) between the first surface 16xf and the second surface 15f. Will be. Therefore, in the first cross section, the first surface 16xf and the second surface 15f do not have smooth continuity in the Z direction due to the presence of the orthogonal surface 191x. Even when the angle θ is an acute angle (when θ <90 °), the first surface 16xf and the second surface 15f do not have smooth continuity in the Z direction.
 それゆえ、角度θが鈍角でない場合(θ≦90°である場合)には、直交面191xに起因して、囲い部15とスタビライザ16xとの間で、急激な気流の乱れが発生する。その結果、当該気流の乱れに起因して、空気調和機1xの性能低下(特に消費電力の増加および異音の発生)が顕著となるという問題が生じる。 Therefore, when the angle θ is not an obtuse angle (when θ ≦ 90 °), an abrupt turbulence of the airflow occurs between the enclosure 15 and the stabilizer 16x due to the orthogonal plane 191x. As a result, there arises a problem that the performance degradation of the air conditioner 1x (especially increase in power consumption and generation of abnormal noise) becomes remarkable due to the disturbance of the airflow.
 なお、直交面191xが曲面である場合には、角度θは、第1交差点P1における直交面191xの接平面と、第1面16xfとが成す角度である。直交面191xが曲面(例えば、X方向の負の向きに膨らんだ凸面)である場合にも、角度θが鈍角でない場合には、上述の問題が生じる。 When the orthogonal surface 191x is a curved surface, the angle θ is an angle formed by the tangent plane of the orthogonal surface 191x at the first intersection P1 and the first surface 16xf. Even when the orthogonal surface 191x is a curved surface (for example, a convex surface swollen in the negative direction of the X direction), the above-described problem occurs when the angle θ is not an obtuse angle.
 (空気調和機1における囲い部15とスタビライザ16との間の境界部)
 以上の問題点を踏まえ、本願の発明者は、貫流ファン14と囲い部15およびスタビライザ16との各距離の違いに起因して発生する気流の乱れを低減するための空気調和機1の構成(囲い部15とスタビライザ16との境界付近の領域である境界部の構造)を新たに想到した。以下、図8を参照し、空気調和機1における境界部の構造について述べる。
(Boundary portion between the enclosure 15 and the stabilizer 16 in the air conditioner 1)
Based on the above problems, the inventor of the present application has the configuration of the air conditioner 1 for reducing the turbulence of the airflow generated due to the difference in distance between the cross-flow fan 14 and the enclosure 15 and the stabilizer 16 ( The structure of the boundary portion, which is a region near the boundary between the enclosure 15 and the stabilizer 16) was newly conceived. Hereinafter, the structure of the boundary portion in the air conditioner 1 will be described with reference to FIG.
 本発明の一態様に係る境界部は、比較例のスタビライザ16xと囲い部15との間に存在していたZ方向の段差を解消、または緩和し、スタビライザ16の第1面16f(後述)と、囲い部15の第2面15fとに滑らかな連続性を持たせようとする目的を有している。当該境界部は、スタビライザ16の形状変更、囲い部15の形状変更、またはスタビライザ16と囲い部15との間に付加される別部材によって実現される。以下、境界部の一具体例を説明する。 The boundary portion according to one aspect of the present invention eliminates or alleviates the step in the Z direction that exists between the stabilizer 16x and the surrounding portion 15 of the comparative example, and the first surface 16f (described later) of the stabilizer 16 The purpose is to give smooth continuity to the second surface 15f of the enclosure 15. The boundary portion is realized by a shape change of the stabilizer 16, a shape change of the surrounding portion 15, or another member added between the stabilizer 16 and the surrounding portion 15. Hereinafter, a specific example of the boundary portion will be described.
 図8の(a)は、空気調和機1における、図4の領域D1の拡大図である。また、図8の(b)は、空気調和機1における、図5の領域D2の拡大図である。また、図8の(c)は、当該領域D2の拡大図の別の例である。具体的には、図8の(b)では、囲い部15の一部とスタビライザ16とが一体の部材によって構成されている場合が例示されている。他方、図8の(c)では、囲い部15とスタビライザ16とが別体の部材によって構成されている場合が例示されている。なお、囲い部15の全体とスタビライザ16とが一体の部材によって構成されてもよい。 8A is an enlarged view of a region D1 in FIG. 4 in the air conditioner 1. FIG. 8B is an enlarged view of a region D2 in FIG. 5 in the air conditioner 1. FIG. 8C is another example of an enlarged view of the region D2. Specifically, FIG. 8B illustrates a case in which a part of the enclosure 15 and the stabilizer 16 are formed of an integral member. On the other hand, FIG. 8C illustrates a case where the enclosure 15 and the stabilizer 16 are formed of separate members. In addition, the whole enclosure part 15 and the stabilizer 16 may be comprised by the integral member.
 図8に示されるように、空気調和機1では、スタビライザ16の対向面の一部分に、傾斜面161(第3面)が設けられている。なお、図8の(b)に示される第1断面において、スタビライザ16の対向面を表す面を、第1面16fと称する。 As shown in FIG. 8, in the air conditioner 1, an inclined surface 161 (third surface) is provided on a part of the opposing surface of the stabilizer 16. In addition, in the 1st cross section shown by FIG.8 (b), the surface showing the opposing surface of the stabilizer 16 is called the 1st surface 16f.
 傾斜面161は、スタビライザ16の一部分を構成しており、スタビライザ16の形状変更によって形成されてもよいし、スタビライザ16の端部に接着される別部材で形成されてもよい。具体的には、傾斜面161は、スタビライザ16から囲い部15に向かうにつれて高さが高くなる面、言い換えると、貫流ファン14に近寄る面として形成されている。なお、本実施形態では、傾斜面161が平面である場合を例示して説明を行うが、当該傾斜面161は曲面であってもよい。傾斜面161は、後述する鈍角条件を満たすように設けられているものであればよい。この点については、以下に述べる各実施形態および各変形例に係る空気調和機の傾斜面においても同様である。 The inclined surface 161 constitutes a part of the stabilizer 16, and may be formed by changing the shape of the stabilizer 16, or may be formed by another member bonded to the end of the stabilizer 16. Specifically, the inclined surface 161 is formed as a surface whose height increases from the stabilizer 16 toward the enclosure 15, in other words, as a surface that approaches the cross-flow fan 14. In the present embodiment, the case where the inclined surface 161 is a flat surface will be described as an example. However, the inclined surface 161 may be a curved surface. The inclined surface 161 should just be provided so that the obtuse angle condition mentioned later may be satisfy | filled. The same applies to the inclined surfaces of the air conditioners according to the embodiments and modifications described below.
 図8の(b)に示されるように、空気調和機1において、スタビライザ16の第1面16fと囲い部15の第2面15fとの境界を構成する部分を、境界部191と称する。第1断面において、境界部191は、直交面171と傾斜面161とから構成される。すなわち、傾斜面161は、境界部191の一部分を構成している。なお、直交面171は、Z方向に伸びるキャビネット12の内壁である。また、貫流ファン14と対向する境界部191の面を、第3面とも称する。本実施形態では、傾斜面161が第3面となる。 8 (b), in the air conditioner 1, the portion constituting the boundary between the first surface 16f of the stabilizer 16 and the second surface 15f of the enclosure 15 is referred to as a boundary portion 191. In the first cross section, the boundary portion 191 includes an orthogonal surface 171 and an inclined surface 161. That is, the inclined surface 161 constitutes a part of the boundary portion 191. The orthogonal surface 171 is an inner wall of the cabinet 12 extending in the Z direction. The surface of the boundary portion 191 that faces the cross-flow fan 14 is also referred to as a third surface. In the present embodiment, the inclined surface 161 is the third surface.
 なお、本願明細書において、「面Aと面Bとが対向する」という文言は、面Aと面Bとが互いに平行である(つまり、面Aの法線ベクトルnAと面Bの法線ベクトルnBとが互いに平行である)位置関係のみを意味しているのではないことに留意されたい。 In the present specification, the phrase “surface A and surface B face each other” means that surface A and surface B are parallel to each other (that is, normal vector nA of surface A and normal vector of surface B). Note that this does not mean only a positional relationship (where nB is parallel to each other).
 具体的には、本願明細書において、「面Aと面Bとが対向する」とは、法線ベクトルnAと法線ベクトルnBとが、90°以外の角度を成している(すなわち、法線ベクトルnAと法線ベクトルnBとの内積が非零である)ことを意味する。 Specifically, in the present specification, “the surface A and the surface B face each other” means that the normal vector nA and the normal vector nB form an angle other than 90 ° (that is, the modulus). The inner product of the line vector nA and the normal vector nB is non-zero).
 ここで、第1断面において、傾斜面161と第1面16fとが成す角度を、θとして表す。空気調和機1において、傾斜面161は、θ>90°を満たすように設けられている。このように、空気調和機1では、境界部191の一部分が、第1面16fと鈍角を成すように構成されている。この点において、空気調和機1の境界部191は、上述の空気調和機1xの段差部(直交面191x)とは異なる。 Here, in the first cross section, the angle formed by the inclined surface 161 and the first surface 16f is represented as θ. In the air conditioner 1, the inclined surface 161 is provided so as to satisfy θ> 90 °. Thus, in the air conditioner 1, a part of the boundary portion 191 is configured to form an obtuse angle with the first surface 16f. In this respect, the boundary portion 191 of the air conditioner 1 is different from the step portion (orthogonal plane 191x) of the air conditioner 1x described above.
 なお、本発明の一態様に係る空気調和機において、スタビライザ16の形状は、上述の角度θを成す傾斜面161を含むようにあらかじめ設計されている。この場合、スタビライザ16を一体成形によって製造することにより、当該傾斜面161を含むスタビライザ16を効率的に製造できる。あるいは、上述のスタビライザ16xの一部分に傾斜面161を後付けする加工を行うことによって、傾斜面161を含むスタビライザ16を製造することもできる。この点については、後述する変形例の傾斜面161aにおいても同様である。 In the air conditioner according to one aspect of the present invention, the shape of the stabilizer 16 is designed in advance so as to include the inclined surface 161 that forms the angle θ described above. In this case, the stabilizer 16 including the inclined surface 161 can be efficiently manufactured by manufacturing the stabilizer 16 by integral molding. Or the stabilizer 16 containing the inclined surface 161 can also be manufactured by performing the process which attaches the inclined surface 161 to a part of above-mentioned stabilizer 16x. This also applies to an inclined surface 161a of a modified example described later.
 また、第1断面において、第1面16fと境界部191(より具体的には、傾斜面161)との交差点を、第1交差点P1と称する。また、第2面15fと境界部191(より具体的には、直交面171)との交差点を、第2交差点P2と称する。また、傾斜面161と直交面171との交差点を、第3交差点P3と表す。 In the first cross section, an intersection between the first surface 16f and the boundary portion 191 (more specifically, the inclined surface 161) is referred to as a first intersection P1. In addition, an intersection between the second surface 15f and the boundary portion 191 (more specifically, the orthogonal surface 171) is referred to as a second intersection P2. An intersection between the inclined surface 161 and the orthogonal surface 171 is represented as a third intersection P3.
 さらに、図9に基づいてスタビライザ16xについて説明したのと同様に、第1断面において、第1面16xと貫流ファン14との間の距離(上述の第1の空隙の長さ)を、距離G1(第1距離)と称する。また、第2面15fと貫流ファン14との間の距離(上述の第2の空隙の長さ)を、距離G2(第2距離)と称する。 Further, similarly to the description of the stabilizer 16x based on FIG. 9, in the first cross section, the distance between the first surface 16x and the cross-flow fan 14 (the length of the first gap described above) is the distance G1. This is referred to as (first distance). The distance between the second surface 15f and the cross-flow fan 14 (the length of the second gap described above) is referred to as a distance G2 (second distance).
 ここで、第3交差点P3における、傾斜面161の高さ(つまり、傾斜面161の高さの最大値)をhとして表す。この場合、第3交差点P3から第2交差点P2に至る直交面171の高さHは、H=G1-G2-hとして表される。すなわち、空気調和機1では、直交面171の高さHが、空気調和機1xの直交面191xの高さHxに比べて低くなっている。また、H>0であるため、h<G1-G2となる。このように、傾斜面161の高さhは、距離G1(第1距離)と距離G2(第2距離)との差よりも小さい。 Here, the height of the inclined surface 161 (that is, the maximum height of the inclined surface 161) at the third intersection P3 is represented as h. In this case, the height H of the orthogonal plane 171 from the third intersection P3 to the second intersection P2 is expressed as H = G1-G2-h. That is, in the air conditioner 1, the height H of the orthogonal surface 171 is lower than the height Hx of the orthogonal surface 191x of the air conditioner 1x. Since H> 0, h <G1-G2. Thus, the height h of the inclined surface 161 is smaller than the difference between the distance G1 (first distance) and the distance G2 (second distance).
 なお、図8の(c)に示されるように、囲い部15とスタビライザ16とは、別体の部材によって構成されてもよい。この場合、囲い部15とスタビライザ16とを、互いに分離または接続することができる。図8の(c)では、説明のために、囲い部15とスタビライザ16とが分離した部材同士であることを、両者の間に隙間を図示することによって強調している。 In addition, as shown in FIG. 8C, the enclosure 15 and the stabilizer 16 may be configured by separate members. In this case, the enclosure 15 and the stabilizer 16 can be separated or connected to each other. In FIG. 8C, for the sake of explanation, the fact that the enclosure 15 and the stabilizer 16 are separated members is emphasized by illustrating a gap between them.
 また、傾斜面161は、第1面16fから始まる形態に限定されない。すなわち、図8の(c)に示されるように、第1面16fからZ方向に立ち上がった部分から傾斜面161が始まり、第2面15fのX方向の始端部に至る形態であってもよい。この形態においても、スタビライザ16xと囲い部15との間に存在していたZ方向の段差を緩和することができる。 Further, the inclined surface 161 is not limited to the form starting from the first surface 16f. That is, as shown in FIG. 8C, the inclined surface 161 may start from a portion rising from the first surface 16f in the Z direction and reach the start end portion of the second surface 15f in the X direction. . Also in this embodiment, the step in the Z direction existing between the stabilizer 16x and the surrounding portion 15 can be reduced.
 (空気調和機1の効果)
 以上のように、空気調和機1では、第1断面において、境界部191の傾斜面161(第3面)と第1面16fとが成す角度θが鈍角であるように、傾斜面161が設けられている。
(Effect of air conditioner 1)
As described above, in the air conditioner 1, the inclined surface 161 is provided in the first cross section so that the angle θ formed by the inclined surface 161 (third surface) of the boundary portion 191 and the first surface 16f is an obtuse angle. It has been.
 換言すれば、空気調和機1では、第1断面において、直交面171の高さHが、空気調和機1xの直交面191xの高さHxに比べて低くなるように構成されている。すなわち、空気調和機1では、第1断面において、境界部のZ方向の段差の高さが、空気調和機1xに比べて小さくなる。その結果、第1断面において、第1面16fと第2面15fとは、境界部191によって、上述の空気調和機1xに比べてより滑らかな連続性を持つ、言い換えると、不連続性が緩和される。 In other words, the air conditioner 1 is configured such that the height H of the orthogonal plane 171 is lower than the height Hx of the orthogonal plane 191x of the air conditioner 1x in the first cross section. That is, in the air conditioner 1, the height of the step in the Z direction at the boundary portion is smaller than that of the air conditioner 1x in the first cross section. As a result, in the first cross section, the first surface 16f and the second surface 15f have smoother continuity than the above-described air conditioner 1x by the boundary portion 191. In other words, the discontinuity is reduced. Is done.
 それゆえ、境界部191において、囲い部15とスタビライザ16との境界付近で発生し易い気流の流れの変化が緩やかになり、気流の乱れを低減できる。その結果、当該気流の乱れに起因する、空気調和機1の性能低下を抑制できる。 Therefore, in the boundary portion 191, the change in the flow of the air flow that is likely to occur near the boundary between the enclosure 15 and the stabilizer 16 becomes gradual, and the turbulence of the air flow can be reduced. As a result, the performance degradation of the air conditioner 1 resulting from the turbulence of the airflow can be suppressed.
 以上のように、空気調和機1によれば、従来とは異なる構成により、貫流ファン14に起因した空気調和機1の性能低下を抑制することが可能となる。また、空気調和機1の性能低下を抑制することにより、空気調和機1の信頼性を向上することもできる。 As described above, according to the air conditioner 1, it is possible to suppress the performance degradation of the air conditioner 1 due to the cross-flow fan 14 with a configuration different from the conventional one. Moreover, the reliability of the air conditioner 1 can also be improved by suppressing the performance degradation of the air conditioner 1.
 なお、上述のように、傾斜面161(第3面)が曲面である場合には、角度θは、第1交差点P1における傾斜面161の接平面と、第1面16fとが成す角度として規定される。傾斜面161が曲面である場合にも、角度θが鈍角であれば、上述と同様の効果が得られる。 As described above, when the inclined surface 161 (third surface) is a curved surface, the angle θ is defined as the angle formed between the tangential plane of the inclined surface 161 at the first intersection P1 and the first surface 16f. Is done. Even when the inclined surface 161 is a curved surface, the same effect as described above can be obtained if the angle θ is an obtuse angle.
 すなわち、空気調和機1では、(i)傾斜面161、または、(ii)第1面16fと傾斜面161との第1交差点P1における傾斜面161の接平面が、第1面16と鈍角を成すように構成されていればよい。以下、当該角度の関係を、鈍角条件と称する。 That is, in the air conditioner 1, the tangent plane of the inclined surface 161 at the first intersection P1 between the (i) inclined surface 161 or (ii) the first surface 16f and the inclined surface 161 has an obtuse angle with the first surface 16. What is necessary is just to be comprised so that it may be comprised. Hereinafter, this angle relationship is referred to as an obtuse angle condition.
 なお、本実施形態では、上述の鈍角条件は、境界部191の一部分、言い換えると第1面16fと第2面15fとの段差の範囲の一部分において成立している場合を例示した。但し、以下に述べるように、当該鈍角条件は、上記段差の範囲の全体において成立していてもよい。すなわち、当該鈍角条件は、上記段差の範囲の少なくとも一部分において成立していればよい。 In the present embodiment, the obtuse angle condition described above is exemplified in a part of the boundary portion 191, in other words, in a part of a step range between the first surface 16 f and the second surface 15 f. However, as described below, the obtuse angle condition may be satisfied in the entire range of the step. That is, the obtuse angle condition only needs to be satisfied in at least a part of the range of the step.
 また、上述の鈍角条件は、境界部191における、貫流ファン14の周方向に沿った長さの範囲の少なくとも一部分において成立していればよい。 Further, the obtuse angle condition described above may be satisfied in at least a part of the range of the length along the circumferential direction of the cross-flow fan 14 at the boundary portion 191.
 また、空気調和機1では、第1断面において、第1面16fと第2面15fとの段差の一部分に傾斜面161を設けているため、傾斜面161のサイズが、後述する空気調和機1aの傾斜面161aよりも小さい。 Moreover, in the air conditioner 1, since the inclined surface 161 is provided in a part of level | step difference of the 1st surface 16f and the 2nd surface 15f in the 1st cross section, the size of the inclined surface 161 is the air conditioner 1a mentioned later. Smaller than the inclined surface 161a.
 つまり、空気調和機1は、必要最小限の傾斜面161のサイズで、上述の気流の乱れを低減することを目的として構成されている。従って、従来の空気調和機からの設計変更を必要最小限に留めたい場合には、空気調和機1の構成を採用することが一案である。 That is, the air conditioner 1 is configured to reduce the above-described airflow turbulence with the minimum necessary size of the inclined surface 161. Therefore, in order to keep the design change from the conventional air conditioner to the minimum necessary, it is one idea to adopt the configuration of the air conditioner 1.
 また、スタビライザ15を設けることによって意図した空気渦の位置および通風特性を、大幅に変更しないことが望まれる場合には、空気調和機1の構成を採用することが好ましい。なお、空気調和機1の構成では、傾斜面161のサイズが比較的小さいので、貫流ファン14から送出される空気が通る風路を過度に狭めることを避けることもできる。このため、上記空気の流量の低減を防ぐこともできる。 In addition, when it is desired that the intended air vortex position and ventilation characteristics are not significantly changed by providing the stabilizer 15, it is preferable to adopt the configuration of the air conditioner 1. In the configuration of the air conditioner 1, since the size of the inclined surface 161 is relatively small, it is possible to avoid excessively narrowing the air path through which the air sent from the cross-flow fan 14 passes. For this reason, reduction of the flow rate of the air can also be prevented.
 また、第1断面において、傾斜面161が存在する箇所と、当該傾斜面161が存在していない箇所とでは、気流の流れが異なる。このため、傾斜面161が設けられていない場合(つまり、上述の空気調和機1xの構成)に比べて、気流の流れに起因する騒音の周波数帯を広範に分布させることができる。 Further, in the first cross section, the flow of the airflow is different between a portion where the inclined surface 161 exists and a portion where the inclined surface 161 does not exist. For this reason, compared with the case where the inclined surface 161 is not provided (that is, the above-described configuration of the air conditioner 1x), the frequency band of noise caused by the flow of the airflow can be widely distributed.
 つまり、空気調和機1によれば、比較的ブロードな騒音スペクトルを得ることができる。それゆえ、耳障りなピーク音(特定の周波数帯における強い騒音)が発生しにくくなる。また、上記段差が存在している場合には、騒音の周波数帯がより広範に分布するため、ピーク音の発生をより効果的に防止できる。 That is, according to the air conditioner 1, a relatively broad noise spectrum can be obtained. Therefore, it becomes difficult to generate a harsh peak sound (strong noise in a specific frequency band). Further, when the step is present, the frequency band of noise is more widely distributed, so that the generation of peak sound can be prevented more effectively.
 〔変形例〕
 続いて、図10を参照し、上述の空気調和機1の変形例としての空気調和機1aについて説明する。図10の(a)は、空気調和機1aにおける、図4の領域D1の拡大図である。また、図10の(b)は、空気調和機1aにおける、図5の領域D2の拡大図である。
[Modification]
Then, with reference to FIG. 10, the air conditioner 1a as a modification of the above-mentioned air conditioner 1 is demonstrated. FIG. 10A is an enlarged view of a region D1 of FIG. 4 in the air conditioner 1a. FIG. 10B is an enlarged view of a region D2 in FIG. 5 in the air conditioner 1a.
 図10に示されるように、空気調和機1aは、空気調和機1における傾斜面161を、傾斜面161a(境界部,第3面)に置き換えたものである。傾斜面161aは、傾斜面161と同様に、第1面16fと第2面15fとの境界を構成する部分である。 As shown in FIG. 10, the air conditioner 1a is obtained by replacing the inclined surface 161 in the air conditioner 1 with an inclined surface 161a (boundary portion, third surface). Like the inclined surface 161, the inclined surface 161a is a part constituting the boundary between the first surface 16f and the second surface 15f.
 図10の(b)に示されるように、空気調和機1aでは、第1断面において、傾斜面161aのみによって、1面16fと第2面15fとの境界が構成されている。すなわち、傾斜面161aが、境界部の全体を構成している。また、傾斜面161aと第1面16fとが成す角度θは、鈍角である。このように、空気調和機1aでは、境界部の全体において、上述の鈍角条件が満たされている。 As shown in FIG. 10 (b), in the air conditioner 1a, the boundary between the first surface 16f and the second surface 15f is formed by only the inclined surface 161a in the first cross section. That is, the inclined surface 161a constitutes the entire boundary portion. Further, the angle θ formed by the inclined surface 161a and the first surface 16f is an obtuse angle. Thus, in the air conditioner 1a, the above obtuse angle condition is satisfied in the entire boundary portion.
 ここで、図10の(b)の第1断面において、第2面15fと傾斜面161aとの交差点を、第2交差点P2とする。そして、第1交差点P1第2交差点P2に至る当該傾斜面161aの高さ(すなわち、傾斜面161aの高さの最大値)をhとして表す。空気調和機1aでは、境界部に直交面が含まれていないため、直交面の高さHは0である。従って、h=G1-G2である。すなわち、空気調和機1aでは、高さhが、距離G1(第1距離)と距離G2(第2距離)との差に等しい。 Here, in the first cross section of FIG. 10B, the intersection of the second surface 15f and the inclined surface 161a is defined as a second intersection P2. The height of the inclined surface 161a reaching the first intersection P1 and the second intersection P2 (that is, the maximum height of the inclined surface 161a) is represented as h. In the air conditioner 1a, since the orthogonal surface is not included in the boundary portion, the height H of the orthogonal surface is zero. Therefore, h = G1-G2. That is, in the air conditioner 1a, the height h is equal to the difference between the distance G1 (first distance) and the distance G2 (second distance).
 空気調和機1aによれば、直交面の高さHが0であるので、第1断面において、第1面16fと傾斜面161aとの間のZ方向の段差、および、第2面15fと傾斜面161aとの間のZ方向の段差を無くすことができる。 According to the air conditioner 1a, since the height H of the orthogonal surface is 0, the step in the Z direction between the first surface 16f and the inclined surface 161a and the second surface 15f are inclined in the first cross section. The step in the Z direction with respect to the surface 161a can be eliminated.
 つまり、傾斜面161aによれば、上述の傾斜面161に比べて、第1面16fと第2面15fとにさらに滑らかな連続性を持たせることができる。このため、空気調和機1aによれば、境界部において、囲い部15とスタビライザ16との間に発生する気流の乱れをより効果的に低減することが可能となる。 That is, according to the inclined surface 161a, the first surface 16f and the second surface 15f can be provided with smoother continuity than the inclined surface 161 described above. For this reason, according to the air conditioner 1a, it is possible to more effectively reduce the turbulence of the airflow generated between the enclosure 15 and the stabilizer 16 at the boundary.
 〔実施形態2〕
 本発明の実施形態2について、図11に基づいて説明すれば、以下の通りである。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
The following describes Embodiment 2 of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the above embodiment are denoted by the same reference numerals and description thereof is omitted.
 図11の(a)は、本実施形態の空気調和機2における、図4の領域D1の拡大図である。また、図11の(b)は、空気調和機2における、図5の領域D2の拡大図である。図11に示されるように、空気調和機2は、上述の空気調和機1において、(i)スタビライザ16をスタビライザ26に置き換えるとともに、(ii)境界部271を付加したものである。 (A) of FIG. 11 is an enlarged view of a region D1 of FIG. 4 in the air conditioner 2 of the present embodiment. FIG. 11B is an enlarged view of a region D2 in FIG. As shown in FIG. 11, the air conditioner 2 is obtained by replacing (i) the stabilizer 16 with the stabilizer 26 and (ii) adding a boundary portion 271 in the air conditioner 1 described above.
 本実施形態のスタビライザ26は、当該スタビライザ26の一部分として傾斜面を有していない点において、上述の実施形態1のスタビライザ16と異なる。なお、図11の(b)の第1断面に示されるように、スタビライザ26の第1面を、第1面26fと称する。 The stabilizer 26 of the present embodiment is different from the stabilizer 16 of the first embodiment described above in that it does not have an inclined surface as a part of the stabilizer 26. Note that, as shown in the first cross section of FIG. 11B, the first surface of the stabilizer 26 is referred to as a first surface 26f.
 本実施形態において、境界部271は、スタビライザ26および囲い部15とは別体の部材によって構成されている。例えば、境界部271は、公知のプラスチック材料によって形成された板状の部材であってよい。また、貫流ファン14と対向する境界部271の面を、傾斜面271f(第3面)と称する。 In the present embodiment, the boundary portion 271 is constituted by a member separate from the stabilizer 26 and the enclosure portion 15. For example, the boundary portion 271 may be a plate-like member made of a known plastic material. The surface of the boundary portion 271 that faces the cross-flow fan 14 is referred to as an inclined surface 271f (third surface).
 図11の(b)に示されるように、空気調和機2では、第1断面において、上述の空気調和機1aと同様に、傾斜面271fのみによって、第1面26fと第2面15fとの境界が構成されている。また、境界部271の形状は、傾斜面271fと第1面26fとが成す角度θが鈍角となるようにあらかじめ設計されている。 As shown in FIG. 11 (b), in the air conditioner 2, in the first cross section, the first surface 26f and the second surface 15f are separated only by the inclined surface 271f, similarly to the air conditioner 1a described above. The boundary is configured. The shape of the boundary portion 271 is designed in advance so that the angle θ formed by the inclined surface 271f and the first surface 26f becomes an obtuse angle.
 空気調和機2によれば、スタビライザ26の設計変更または加工を行わなくとも、当該スタビライザ26とは別体の部材としての境界部271を設けることで、傾斜面271fによって上述の鈍角条件を満たすことができる。このため、スタビライザ26の設計および製造を特に容易化できる。 According to the air conditioner 2, the obtuse angle condition described above is satisfied by the inclined surface 271f by providing the boundary portion 271 as a separate member from the stabilizer 26 without changing the design or processing of the stabilizer 26. Can do. For this reason, the design and manufacture of the stabilizer 26 can be particularly facilitated.
 また、囲い部15の設計変更または加工(後述の実施形態3を参照)を行わなくとも、上述の鈍角条件を満たすことができる。このため、囲い部15の設計および製造についても容易化できる。以上のように、空気調和機2によれば、スタビライザ26および囲い部15の設計および製造を特に容易化できるという利点が得られる。 Further, the obtuse angle condition described above can be satisfied without changing the design or processing of the enclosure 15 (see Embodiment 3 described later). For this reason, design and manufacture of the enclosure 15 can be facilitated. As described above, according to the air conditioner 2, the advantage that the design and manufacture of the stabilizer 26 and the enclosure 15 can be particularly facilitated is obtained.
 〔変形例〕
 続いて、図12を参照し、上述の空気調和機2の変形例としての空気調和機2aについて述べる。図12の(a)は、空気調和機2aにおける、図4の領域D1の拡大図である。また、図12の(b)は、空気調和機2aにおける、図5の領域D2の拡大図である。
[Modification]
Then, with reference to FIG. 12, the air conditioner 2a as a modification of the above-mentioned air conditioner 2 is described. (A) of FIG. 12 is the enlarged view of the area | region D1 of FIG. 4 in the air conditioner 2a. FIG. 12B is an enlarged view of a region D2 in FIG. 5 in the air conditioner 2a.
 図12の(b)に示されるように、空気調和機2aは、空気調和機2における境界部271を、サブ境界部271aに置き換えたものである。サブ境界部271aは、境界部の一部分を形成する部材であるという点において、上述の境界部271とは異なる。 12B, the air conditioner 2a is obtained by replacing the boundary portion 271 in the air conditioner 2 with a sub boundary portion 271a. The sub-boundary portion 271a is different from the above-described boundary portion 271 in that it is a member that forms a part of the boundary portion.
 すなわち、空気調和機2aでは、第1断面において、第1面26fと第2面15fとの境界を構成する境界部291は、サブ境界部271aと上述の直交面171とから構成されている。つまり、上述の実施形態1と同様に、境界部291の一部分が、第1面26fと鈍角を成すように構成されていてもよい。 That is, in the air conditioner 2a, in the first cross section, the boundary portion 291 that forms the boundary between the first surface 26f and the second surface 15f is composed of the sub boundary portion 271a and the orthogonal surface 171 described above. That is, as in the first embodiment, a part of the boundary portion 291 may be configured to form an obtuse angle with the first surface 26f.
 なお、空気調和機2aでは、貫流ファン14と対向するサブ境界部271aの面を、傾斜面271af(第3面)と称する。空気調和機2aでは、傾斜面271afが、貫流ファン14と対向する境界部291の面となる。 In the air conditioner 2a, the surface of the sub boundary portion 271a facing the cross-flow fan 14 is referred to as an inclined surface 271af (third surface). In the air conditioner 2 a, the inclined surface 271 af is a surface of the boundary portion 291 that faces the cross-flow fan 14.
 〔実施形態3〕
 続いて、図13を参照し、本実施形態の空気調和機3について述べる。図13の(a)は、空気調和機3における、図4の領域D1の拡大図である。また、図13の(b)は、空気調和機3における、図5の領域D2の拡大図である。
[Embodiment 3]
Next, the air conditioner 3 of the present embodiment will be described with reference to FIG. FIG. 13A is an enlarged view of a region D <b> 1 of FIG. 4 in the air conditioner 3. FIG. 13B is an enlarged view of a region D2 in FIG.
 図13に示されるように、空気調和機3は、上述の空気調和機1において、囲い部15を囲い部35に置き換えたものである。なお、図11の(b)に示されるように、囲い部35の第2面を、第2面35fと称する。 As shown in FIG. 13, the air conditioner 3 is obtained by replacing the enclosure 15 with an enclosure 35 in the air conditioner 1 described above. Note that, as shown in FIG. 11B, the second surface of the enclosure 35 is referred to as a second surface 35f.
 そして、図13の(b)に示されるように、空気調和機3では、囲い部35の対向面の一部分に、傾斜面351(境界部,第3面)が設けられている。本実施形態における傾斜面351は、囲い部35の一部分を構成している。また、第1断面において、傾斜面351と第1面16fとが成す角度θは、鈍角である。 Then, as shown in FIG. 13B, in the air conditioner 3, an inclined surface 351 (boundary portion, third surface) is provided on a part of the facing surface of the enclosure portion 35. The inclined surface 351 in the present embodiment constitutes a part of the enclosure portion 35. In the first cross section, the angle θ formed by the inclined surface 351 and the first surface 16f is an obtuse angle.
 空気調和機3では、囲い部35の形状は、上述の鈍角条件を満たす傾斜面351が設けられるように、あらかじめ設計されている。例えば、上述の囲い部15の一部分に傾斜面351を設ける加工(例えば切削加工)を行うことによって、傾斜面351を含む囲い部35を製造してもよい。あるいは、一体成形によって、傾斜面351を含む囲い部35を製造してもよい。この点については、後述する変形例の傾斜面351aにおいても同様である。 In the air conditioner 3, the shape of the enclosure 35 is designed in advance so that the inclined surface 351 that satisfies the obtuse angle condition is provided. For example, the enclosure portion 35 including the inclined surface 351 may be manufactured by performing processing (for example, cutting) for providing the inclined surface 351 on a part of the above-described enclosure portion 15. Or you may manufacture the enclosure part 35 containing the inclined surface 351 by integral molding. The same applies to the inclined surface 351a of a modified example described later.
 本実施形態では、上述の第2面15fの一部分を削る加工を行うことによって、傾斜面351を含む囲い部35が製造された場合を例示して説明を行う。本実施形態の傾斜面351は、第1断面において、第1面16fと第2面35fとの境界を構成する境界部の全体を構成している。 In the present embodiment, the case where the enclosure portion 35 including the inclined surface 351 is manufactured by performing a process of cutting a part of the second surface 15f described above will be described as an example. In the first cross section, the inclined surface 351 of the present embodiment constitutes the entire boundary portion constituting the boundary between the first surface 16f and the second surface 35f.
 ところで、上述の図6の第2断面において、貫流ファン14の外面は、モータ軸142(より具体的には、モータ軸142の中心点)を中心とする円弧を描く。また、第2断面において、囲い部35の傾斜面351以外の部分も、モータ軸142を中心とする円弧の一部分を描く。つまり、第2面35fが描く円弧は、貫流ファン14の外面が描く円弧と同心円状となる。 By the way, in the second cross section of FIG. 6 described above, the outer surface of the cross-flow fan 14 draws an arc centered on the motor shaft 142 (more specifically, the center point of the motor shaft 142). In the second cross section, the portion other than the inclined surface 351 of the enclosure portion 35 also draws a part of an arc centered on the motor shaft 142. That is, the arc drawn by the second surface 35f is concentric with the arc drawn by the outer surface of the cross-flow fan 14.
 加えて、本実施形態では、傾斜面351は、第2断面において、囲い部35の傾斜面351以外の部分と同心円状の円弧を描く(換言すれば、3次元空間(XYZ直交座標空間)において同心円状の曲面(円柱の側面)を成す)ように形成されている。 In addition, in the present embodiment, the inclined surface 351 draws an arc concentric with the portion other than the inclined surface 351 of the enclosure 35 in the second cross section (in other words, in a three-dimensional space (XYZ orthogonal coordinate space)). It is formed so as to form a concentric curved surface (side surface of a cylinder).
 空気調和機3によれば、第2断面において、傾斜面351を、囲い部35の傾斜面351以外の箇所と相似の形状とすることができる。このため、囲い部35の近傍における気流の乱れをより効果的に低減することが可能となる。 According to the air conditioner 3, in the second cross section, the inclined surface 351 can have a shape similar to a portion other than the inclined surface 351 of the enclosure 35. For this reason, it is possible to more effectively reduce the turbulence of the airflow in the vicinity of the enclosure portion 35.
 なお、上述の実施形態1では、境界部は、スタビライザの一部分を構成していた。また、上述の実施形態2では、境界部は、スタビライザおよび囲い部とは別体の部材によって構成されていた。実施形態1および2の空調調和機においても、本実施形態の空気調和機3と同様に、境界部は、囲い部の当該境界部以外の部分と同心円状の曲面を成すように構成されてもよい。この場合にも、空気調和機3と同様の効果が得られる。 In the above-described first embodiment, the boundary portion constitutes a part of the stabilizer. Further, in the above-described second embodiment, the boundary portion is configured by a member separate from the stabilizer and the enclosure portion. Also in the air conditioner of Embodiments 1 and 2, the boundary portion may be configured to form a concentric curved surface with a portion other than the boundary portion of the enclosure, similarly to the air conditioner 3 of the present embodiment. Good. In this case, the same effect as the air conditioner 3 can be obtained.
 〔変形例〕
 続いて、図14を参照し、上述の空気調和機3の変形例としての空気調和機3aについて述べる。図14の(a)は、空気調和機3aにおける、図4の領域D1の拡大図である。また、図14の(b)は、空気調和機3aにおける、図5の領域D2の拡大図である。
[Modification]
Then, with reference to FIG. 14, the air conditioner 3a as a modification of the above-mentioned air conditioner 3 is described. FIG. 14A is an enlarged view of a region D1 of FIG. 4 in the air conditioner 3a. Moreover, FIG.14 (b) is an enlarged view of the area | region D2 of FIG. 5 in the air conditioner 3a.
 図14の(b)に示されるように、空気調和機3aは、空気調和機3における傾斜面351を、傾斜面351a(境界部,第3面)に置き換えたものである。傾斜面351aは、傾斜面351と同様に、囲い部35の一部分を構成している。 14B, the air conditioner 3a is obtained by replacing the inclined surface 351 in the air conditioner 3 with an inclined surface 351a (boundary portion, third surface). The inclined surface 351 a constitutes a part of the enclosure 35, similarly to the inclined surface 351.
 傾斜面351aは、境界部の全体を構成しているという点においては、上述の傾斜面351と同様である。但し、傾斜面351aは、上述の実施形態1・2の各傾斜面と同様に、曲面ではなく平面として構成されているという点において、傾斜面351とは異なる。このように、傾斜面が囲い部35の一部分を構成している場合であっても、当該傾斜面は平面であってよい。図14の(b)に示されるように、傾斜面351aは、上述の鈍角条件を満たすように設けられていればよい。 The inclined surface 351a is the same as the above-described inclined surface 351 in that it constitutes the entire boundary portion. However, the inclined surface 351a is different from the inclined surface 351 in that the inclined surface 351a is configured as a flat surface instead of a curved surface, like the inclined surfaces of the first and second embodiments. Thus, even if the inclined surface constitutes a part of the enclosure 35, the inclined surface may be a flat surface. As shown in FIG. 14B, the inclined surface 351a only needs to be provided so as to satisfy the obtuse angle condition described above.
 〔まとめ〕
 本発明の態様1に係る空気調和機(1)は、貫流ファン(14)を備えた空気調和機であって、上記貫流ファンの軸方向(X方向)の端部の側面を囲う囲い部(15)と、上記軸方向に沿って配置されたスタビライザと、を備えており、上記空気調和機の奥行き方向(Y方向)に垂直であり、上記スタビライザと上記軸方向に沿って交叉する平面によって、当該空気調和機を切断した断面(すなわち、上述の第1断面)において、上記貫流ファンと対向する上記スタビライザの面を表す第1面(16f)と、上記貫流ファンと対向する上記囲い部の面を表す第2面(15f)と、を考えた場合、上記第1面と上記第2面との間には、境界部(傾斜面161)が形成されており、上記第2面と上記貫流ファンとの間の距離である第2距離(距離G2)は、上記第1面と上記貫流ファンとの間の距離である第1距離(距離G1)よりも小さく、上記貫流ファンと対向する上記境界部の面を表す第3面(傾斜面161)をさらに考えた場合、上記第3面、または上記第1面と上記第3面との第1交差点(P1)における上記第3面の接平面は、上記第1面と鈍角を成す関係(すなわち、上述の鈍角条件)を有しており、上記関係は、上記境界部における上記貫流ファンの周方向に沿った長さの範囲の少なくとも一部、および上記第1面と上記第2面との段差の範囲の少なくとも一部で成立している。
[Summary]
An air conditioner (1) according to an aspect 1 of the present invention is an air conditioner including a cross-flow fan (14), and surrounds a side surface of an end portion in the axial direction (X direction) of the cross-flow fan ( 15) and a stabilizer arranged along the axial direction, and is perpendicular to the depth direction (Y direction) of the air conditioner, and intersects with the stabilizer along the axial direction. In the cross section (that is, the first cross section described above) of the air conditioner, the first surface (16f) representing the surface of the stabilizer facing the cross flow fan and the enclosure portion facing the cross flow fan. When considering the second surface (15f) representing a surface, a boundary portion (inclined surface 161) is formed between the first surface and the second surface, and the second surface and the second surface The second distance (distance) which is the distance to the once-through fan 2) is smaller than a first distance (distance G1) that is a distance between the first surface and the cross-flow fan, and is a third surface (inclined surface 161) that represents the boundary surface facing the cross-flow fan. ) Is further considered, the tangential plane of the third surface at the first intersection (P1) between the third surface or the first surface and the third surface forms an obtuse angle with the first surface ( In other words, the above obtuse angle condition) is satisfied, and the above relationship includes at least a part of a range of a length along the circumferential direction of the cross-flow fan at the boundary, and the first surface and the second surface. It is established in at least a part of the range of the step.
 上述の図9(特に、図9の(b)に示す第1断面)を参照して述べたように、境界部において、上述の鈍角条件が満たされていない場合には、当該境界部の存在に起因して、囲い部とスタビライザとの間で、気流の乱れが発生し易くなる。その結果、当該気流の乱れに起因して、空気調和機の性能低下が顕著となる。 As described with reference to FIG. 9 described above (particularly, the first cross section shown in FIG. 9B), if the obtuse angle condition is not satisfied at the boundary, the boundary exists. As a result, air current disturbance is likely to occur between the enclosure and the stabilizer. As a result, the performance degradation of the air conditioner becomes significant due to the turbulence of the airflow.
 他方、上記の構成によれば、上述の図8(特に、図8の(b)に示す第1断面)を参照して述べたように、境界部の一部において上述の鈍角条件が満たされているので、囲い部とスタビライザとの間における気流の乱れを低減できる。それゆえ、当該気流の乱れに起因する、空気調和機の性能低下を抑制できる。以上のように、本発明の一態様に係る空気調和機によれば、従来とは異なる構成により、空気調和機の貫流ファンに起因した性能低下を抑制することが可能となる。 On the other hand, according to the above configuration, as described with reference to FIG. 8 described above (particularly, the first cross section shown in FIG. 8B), the obtuse angle condition is satisfied in a part of the boundary portion. Therefore, the turbulence of the airflow between the enclosure and the stabilizer can be reduced. Therefore, the performance degradation of the air conditioner due to the turbulence of the airflow can be suppressed. As described above, according to the air conditioner according to one aspect of the present invention, it is possible to suppress the performance degradation caused by the cross-flow fan of the air conditioner with a configuration different from the conventional one.
 本発明の態様2に係る空気調和機は、上記態様1において、上記断面において、上記軸方向および上記奥行き方向に直交する方向を高さ方向(Z方向)として、上記第3面は、上記第1面から上記第2面に向かうにつれて高さが高くなる傾斜面であってよい。 In the air conditioner according to aspect 2 of the present invention, in the aspect 1, in the cross section, a direction orthogonal to the axial direction and the depth direction is a height direction (Z direction). It may be an inclined surface whose height increases from one surface toward the second surface.
 上記の構成によれば、上述の第1断面において、境界部によって傾斜面を形成することよって、上述の鈍角条件を満たすことが可能となる。 According to the above configuration, the obtuse angle condition can be satisfied by forming the inclined surface by the boundary portion in the first cross section.
 本発明の態様3に係る空気調和機は、上記態様2において、上記断面において、上記傾斜面の高さの最大値(h)は、(i)上記第1距離と上記第2距離との差よりも小さくてもよいし、または、(ii)上記第1距離と上記第2距離との差に等しくてもよい。 In the air conditioner according to aspect 3 of the present invention, in the aspect 2, the maximum value (h) of the height of the inclined surface in the cross section is (i) a difference between the first distance and the second distance. Or (ii) equal to the difference between the first distance and the second distance.
 上記の構成によれば、傾斜面の高さの最大値を第1距離と第2距離との差よりも小さくした場合には、当該最大値を第1距離と第2距離との差と等しくした場合に比べて、当該傾斜面のサイズが小型となる。このため、必要最小限の傾斜面のサイズで、上述の気流の乱れを低減することが可能となる。 According to the above configuration, when the maximum value of the height of the inclined surface is made smaller than the difference between the first distance and the second distance, the maximum value is equal to the difference between the first distance and the second distance. Compared to the case, the size of the inclined surface is small. For this reason, it becomes possible to reduce the above-mentioned turbulence of the airflow with the minimum necessary size of the inclined surface.
 他方、傾斜面の高さの最大値を第1距離と第2距離との差と等しくした場合には、当該最大値を第1距離と第2距離との差よりも小さくした場合とは異なり、第1断面において、第1面と傾斜面との間、および、第2面と傾斜面との間のそれぞれにおける、高さ方向の段差を無くすことができる。つまり、第1断面において、第1面と第2面とにさらに滑らかな連続性を持たせることができる。このため、上述の気流の乱れをより効果的に低減することが可能となる。 On the other hand, when the maximum value of the height of the inclined surface is made equal to the difference between the first distance and the second distance, it differs from the case where the maximum value is made smaller than the difference between the first distance and the second distance. In the first cross section, the step in the height direction can be eliminated between the first surface and the inclined surface and between the second surface and the inclined surface. That is, in the first cross section, the first surface and the second surface can have smoother continuity. For this reason, it becomes possible to reduce the above-mentioned disturbance of the airflow more effectively.
 本発明の態様4に係る空気調和機は、上記態様1から3のいずれか1つにおいて、上記境界部は、上記スタビライザの一部分を構成していてもよい。 In the air conditioner according to aspect 4 of the present invention, in any one of the aspects 1 to 3, the boundary portion may constitute a part of the stabilizer.
 上記の構成によれば、スタビライザに境界部の一部分を設けることにより、第1断面における傾斜面を形成できる。従って、例えば、スタビライザの形状を適宜設計する(または、スタビライザの一部分に傾斜面を設ける加工を行う)ことにより、上述の鈍角条件を満たすことが可能となる。 According to the above configuration, the inclined surface in the first cross section can be formed by providing a part of the boundary portion in the stabilizer. Therefore, for example, the obtuse angle condition described above can be satisfied by appropriately designing the shape of the stabilizer (or performing a process of providing an inclined surface on a part of the stabilizer).
 本発明の態様5に係る空気調和機は、上記態様1から3のいずれか1つにおいて、上記境界部は、上記スタビライザおよび上記囲い部とは別体の部材(境界部271)によって構成されていてもよい。 An air conditioner according to an aspect 5 of the present invention is the air conditioner according to any one of the aspects 1 to 3, wherein the boundary portion is configured by a member (boundary portion 271) separate from the stabilizer and the enclosure portion. May be.
 上記の構成によれば、スタビライザおよび囲い部の設計変更(または、スタビライザおよび囲い部の加工)を行わなくとも、別体の部材としての境界部を設けることで、第1断面における傾斜面を形成して上述の鈍角条件を満たすことができる。それゆえ、スタビライザおよび囲い部の設計および製造を容易化することが可能となる。 According to the above configuration, the inclined surface in the first cross section is formed by providing the boundary as a separate member without changing the design of the stabilizer and the enclosure (or processing the stabilizer and the enclosure). Thus, the obtuse angle condition described above can be satisfied. Therefore, the design and manufacture of the stabilizer and the enclosure can be facilitated.
 本発明の態様6に係る空気調和機は、貫流ファンを備えた空気調和機であって、上記貫流ファンの軸方向の端部の側面を囲う囲い部と、上記軸方向に沿って配置されたスタビライザと、を備えており、上記空気調和機の奥行き方向に垂直であり、上記スタビライザと上記軸方向に沿って交叉する平面によって、当該空気調和機を切断した断面において、上記貫流ファンと対向する上記スタビライザの面を表す第1面と、上記貫流ファンと対向する上記囲い部の面を表す第2面と、を考えた場合、上記第1面と上記第2面との間には、境界部が形成されており、上記第2面と上記貫流ファンとの間の距離である第2距離は、上記第1面と上記貫流ファンとの間の距離である第1距離よりも小さく、上記貫流ファンと対向する上記境界部の面を表す第3面をさらに考えた場合、上記第3面、または上記第1面と上記第3面との第1交差点における上記第3面の接平面は、上記第1面と鈍角を成す関係を有しており、上記関係は、上記境界部における上記貫流ファンの周方向に沿った長さの範囲の少なくとも一部、および上記第1面と上記第2面との段差の範囲の少なくとも一部で成立しており、上記境界部は、上記囲い部の一部分を構成している。 An air conditioner according to an aspect 6 of the present invention is an air conditioner including a cross-flow fan, and is disposed along an axial direction that surrounds a side surface of an axial end portion of the cross-flow fan. And a cross section that is perpendicular to the depth direction of the air conditioner and that intersects the stabilizer along the axial direction and faces the cross-flow fan in a cross section of the air conditioner. When considering the first surface representing the surface of the stabilizer and the second surface representing the surface of the enclosure facing the cross-flow fan, there is a boundary between the first surface and the second surface. A second distance that is a distance between the second surface and the cross-flow fan is smaller than a first distance that is a distance between the first surface and the cross-flow fan, The boundary surface facing the cross-flow fan When the third surface is further considered, the tangential plane of the third surface at the first intersection of the third surface or the first surface and the third surface has an obtuse angle with the first surface. And the relationship is at least part of a range of the boundary portion along the circumferential direction of the cross-flow fan, and at least part of a step difference between the first surface and the second surface. The boundary portion constitutes a part of the enclosure portion.
 上記の構成によれば、囲い部に境界部の一部分を設けることにより、第1断面における傾斜面を形成できる。従って、例えば、囲い部の形状を適宜設計する(または、囲い部の一部分に傾斜面を設ける加工を行う)ことにより、上述の鈍角条件を満たすことが可能となる。 According to the above configuration, the inclined surface in the first cross section can be formed by providing a part of the boundary portion in the enclosure portion. Therefore, for example, the obtuse angle condition described above can be satisfied by appropriately designing the shape of the surrounding portion (or performing a process of providing an inclined surface in a part of the surrounding portion).
 本発明の態様7に係る空気調和機は、上記態様1から6のいずれか1つにおいて、上記境界部は、上記囲い部の当該境界部以外の部分と同心円状の曲面を成していてもよい。 The air conditioner according to aspect 7 of the present invention is the air conditioner according to any one of the aspects 1 to 6, wherein the boundary portion forms a concentric curved surface with a portion other than the boundary portion of the enclosure portion. Good.
 上記の構成によれば、囲い部の近傍における気流の乱れをより効果的に低減することが可能となる。 According to the above configuration, it is possible to more effectively reduce the turbulence of the airflow in the vicinity of the enclosure.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
[Additional Notes]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 1,1a,2,2a,3,3a 空気調和機
 14 貫流ファン
 15,35 囲い部
 15f,35f 第2面
 16,26 スタビライザ
 16f,26f 第1面
 161,271f,271af 傾斜面
 161a,351,351a 傾斜面(境界部,第3面)
 191,271,291 境界部
 271a サブ境界部
 G1 距離(第1距離)
 G2 距離(第2距離)
 P1 第1交差点
 h 高さ(傾斜面の高さの最大値)
 θ 角度
1, 1a, 2, 2a, 3, 3a Air conditioner 14 Cross-flow fan 15, 35 Enclosure 15f, 35f Second surface 16, 26 Stabilizer 16f, 26f First surface 161, 271f, 271af Inclined surface 161a, 351, 351a Inclined surface (boundary, third surface)
191, 271, 291 Boundary portion 271a Sub-boundary portion G1 distance (first distance)
G2 distance (second distance)
P1 1st intersection h Height (maximum value of the height of the inclined surface)
θ angle

Claims (7)

  1.  貫流ファンを備えた空気調和機であって、
     上記貫流ファンの軸方向の端部の側面を囲う囲い部と、
     上記軸方向に沿って配置されたスタビライザと、を備えており、
     上記空気調和機の奥行き方向に垂直であり、上記スタビライザと上記軸方向に沿って交叉する平面によって、当該空気調和機を切断した断面において、
      上記貫流ファンと対向する上記スタビライザの面を表す第1面と、
      上記貫流ファンと対向する上記囲い部の面を表す第2面と、を考えた場合、
      上記第1面と上記第2面との間には、境界部が形成されており、
      上記第2面と上記貫流ファンとの間の距離である第2距離は、上記第1面と上記貫流ファンとの間の距離である第1距離よりも小さく、
      上記貫流ファンと対向する上記境界部の面を表す第3面をさらに考えた場合、
      上記第3面、または上記第1面と上記第3面との第1交差点における上記第3面の接平面は、上記第1面と鈍角を成す関係を有しており、
     上記関係は、上記境界部における上記貫流ファンの周方向に沿った長さの範囲の少なくとも一部、および上記第1面と上記第2面との段差の範囲の少なくとも一部で成立していることを特徴とする空気調和機。
    An air conditioner equipped with a once-through fan,
    An enclosure that surrounds the side surface of the axial end of the cross-flow fan;
    A stabilizer disposed along the axial direction,
    In a cross-section obtained by cutting the air conditioner by a plane perpendicular to the depth direction of the air conditioner and intersecting the stabilizer and the axial direction,
    A first surface representing the surface of the stabilizer facing the cross-flow fan;
    When considering the second surface representing the surface of the enclosure facing the cross-flow fan,
    A boundary portion is formed between the first surface and the second surface,
    The second distance, which is the distance between the second surface and the cross-flow fan, is smaller than the first distance, which is the distance between the first surface and the cross-flow fan,
    When further considering a third surface representing the surface of the boundary portion facing the cross-flow fan,
    The tangential plane of the third surface at the first intersection of the third surface or the first surface and the third surface has an obtuse angle with the first surface,
    The above relationship is established in at least a part of a range of a length along the circumferential direction of the cross-flow fan in the boundary part and at least a part of a range of a step between the first surface and the second surface. An air conditioner characterized by that.
  2.  上記断面において、上記軸方向および上記奥行き方向に直交する方向を高さ方向として、
     上記第3面は、上記第1面から上記第2面に向かうにつれて高さが高くなる傾斜面であることを特徴とする請求項1に記載の空気調和機。
    In the cross section, a direction perpendicular to the axial direction and the depth direction is a height direction,
    2. The air conditioner according to claim 1, wherein the third surface is an inclined surface having a height that increases from the first surface toward the second surface.
  3.  上記断面において、
      上記傾斜面の高さの最大値は、
      (i)上記第1距離と上記第2距離との差よりも小さい、または、
      (ii)上記第1距離と上記第2距離との差に等しいことを特徴とする請求項2に記載の空気調和機。
    In the above cross section,
    The maximum height of the inclined surface is
    (I) smaller than the difference between the first distance and the second distance, or
    (Ii) The air conditioner according to claim 2, wherein the air conditioner is equal to a difference between the first distance and the second distance.
  4.  上記境界部は、上記スタビライザの一部分を構成していることを特徴とする請求項1から3のいずれか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 3, wherein the boundary portion constitutes a part of the stabilizer.
  5.  上記境界部は、上記スタビライザおよび上記囲い部とは別体の部材によって構成されていることを特徴とする請求項1から3のいずれか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 3, wherein the boundary portion is configured by a member separate from the stabilizer and the enclosure portion.
  6.  貫流ファンを備えた空気調和機であって、
     上記貫流ファンの軸方向の端部の側面を囲う囲い部と、
     上記軸方向に沿って配置されたスタビライザと、を備えており、
     上記空気調和機の奥行き方向に垂直であり、上記スタビライザと上記軸方向に沿って交叉する平面によって、当該空気調和機を切断した断面において、
      上記貫流ファンと対向する上記スタビライザの面を表す第1面と、
      上記貫流ファンと対向する上記囲い部の面を表す第2面と、を考えた場合、
      上記第1面と上記第2面との間には、境界部が形成されており、
      上記第2面と上記貫流ファンとの間の距離である第2距離は、上記第1面と上記貫流ファンとの間の距離である第1距離よりも小さく、
      上記貫流ファンと対向する上記境界部の面を表す第3面をさらに考えた場合、
      上記第3面、または上記第1面と上記第3面との第1交差点における上記第3面の接平面は、上記第1面と鈍角を成す関係を有しており、
     上記関係は、上記境界部における上記貫流ファンの周方向に沿った長さの範囲の少なくとも一部、および上記第1面と上記第2面との段差の範囲の少なくとも一部で成立しており、
     上記境界部は、上記囲い部の一部分を構成していることを特徴とする空気調和機。
    An air conditioner equipped with a once-through fan,
    An enclosure that surrounds the side surface of the axial end of the cross-flow fan;
    A stabilizer disposed along the axial direction,
    In a cross-section obtained by cutting the air conditioner by a plane perpendicular to the depth direction of the air conditioner and intersecting the stabilizer and the axial direction,
    A first surface representing the surface of the stabilizer facing the cross-flow fan;
    When considering the second surface representing the surface of the enclosure facing the cross-flow fan,
    A boundary portion is formed between the first surface and the second surface,
    The second distance, which is the distance between the second surface and the cross-flow fan, is smaller than the first distance, which is the distance between the first surface and the cross-flow fan,
    When further considering a third surface representing the surface of the boundary portion facing the cross-flow fan,
    The tangential plane of the third surface at the first intersection of the third surface or the first surface and the third surface has an obtuse angle with the first surface,
    The above relationship is established in at least a part of the range of the length along the circumferential direction of the cross-flow fan in the boundary part and at least a part of the range of the step between the first surface and the second surface. ,
    The air conditioner characterized in that the boundary portion constitutes a part of the enclosure.
  7.  上記境界部は、上記囲い部の当該境界部以外の部分と同心円状の曲面を成すことを特徴とする請求項1から6のいずれか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 6, wherein the boundary portion forms a concentric curved surface with a portion other than the boundary portion of the enclosure.
PCT/JP2016/088971 2016-08-29 2016-12-27 Air conditioner WO2018042689A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680082529.XA CN109642582A (en) 2016-08-29 2016-12-27 Air conditioner
JP2018536684A JP6982573B2 (en) 2016-08-29 2016-12-27 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016167319 2016-08-29
JP2016-167319 2016-08-29

Publications (1)

Publication Number Publication Date
WO2018042689A1 true WO2018042689A1 (en) 2018-03-08

Family

ID=61305248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088971 WO2018042689A1 (en) 2016-08-29 2016-12-27 Air conditioner

Country Status (3)

Country Link
JP (1) JP6982573B2 (en)
CN (1) CN109642582A (en)
WO (1) WO2018042689A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003103A (en) * 2018-06-26 2020-01-09 三菱重工サーマルシステムズ株式会社 Air-conditioning indoor unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139890U (en) * 1980-03-24 1981-10-22
JPS5839413U (en) * 1981-09-09 1983-03-15 株式会社東芝 Air conditioner fan casing
JP2016145692A (en) * 2015-02-09 2016-08-12 シャープ株式会社 Air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5369141B2 (en) * 2011-06-10 2013-12-18 三菱電機株式会社 Air conditioner
JP5744209B2 (en) * 2011-08-31 2015-07-08 三菱電機株式会社 Air conditioner
JP6472625B2 (en) * 2014-09-01 2019-02-20 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139890U (en) * 1980-03-24 1981-10-22
JPS5839413U (en) * 1981-09-09 1983-03-15 株式会社東芝 Air conditioner fan casing
JP2016145692A (en) * 2015-02-09 2016-08-12 シャープ株式会社 Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003103A (en) * 2018-06-26 2020-01-09 三菱重工サーマルシステムズ株式会社 Air-conditioning indoor unit
JP7191554B2 (en) 2018-06-26 2022-12-19 三菱重工サーマルシステムズ株式会社 Air conditioning indoor unit

Also Published As

Publication number Publication date
CN109642582A (en) 2019-04-16
JPWO2018042689A1 (en) 2019-06-24
JP6982573B2 (en) 2021-12-17

Similar Documents

Publication Publication Date Title
JP6434152B2 (en) Centrifugal blower, air conditioner and refrigeration cycle apparatus
US9513021B2 (en) Blower and heat pump apparatus using the same
WO2009139422A1 (en) Centrifugal fan
JP5744209B2 (en) Air conditioner
JP2005248950A (en) Structure of blowing fan
JP2008240612A (en) Sirocco fan and air conditioner
JP2013011413A (en) Air conditioner
US11085654B2 (en) Outdoor unit for air conditioner
JP2007205268A (en) Centrifugal fan
JP2022130587A (en) air conditioner
JP6139669B2 (en) Air conditioner
CN110506164B (en) Propeller fan and outdoor unit for air conditioner
JP6709899B2 (en) Blower fan and blower unit using the same
WO2018042689A1 (en) Air conditioner
WO2011024215A1 (en) Fan unit and air conditioner equipped with fan unit
TWI623715B (en) Air conditioner
JPWO2014199589A1 (en) Blower and air conditioner using the same
JP6363033B2 (en) Air conditioner indoor unit and air conditioner equipped with the same
JP6695403B2 (en) Centrifugal blower and air conditioner
JP2010236426A (en) Sirocco fan
JP6710337B2 (en) Air conditioner
KR101996052B1 (en) Air conditioner
WO2022209551A1 (en) Blower and indoor unit
JP2004211971A (en) Outdoor unit of air conditioner
JP6692456B2 (en) Outdoor unit of propeller fan and air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018536684

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915244

Country of ref document: EP

Kind code of ref document: A1