WO2018042505A1 - Electromagnetic deflector, and charged particle ray device - Google Patents

Electromagnetic deflector, and charged particle ray device Download PDF

Info

Publication number
WO2018042505A1
WO2018042505A1 PCT/JP2016/075256 JP2016075256W WO2018042505A1 WO 2018042505 A1 WO2018042505 A1 WO 2018042505A1 JP 2016075256 W JP2016075256 W JP 2016075256W WO 2018042505 A1 WO2018042505 A1 WO 2018042505A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
deflector
angle
charged particle
particle beam
Prior art date
Application number
PCT/JP2016/075256
Other languages
French (fr)
Japanese (ja)
Inventor
克典 梅原
卓治 宮本
恵介 山中
モンロー エリック
明 池上
孝雄 林田
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to PCT/JP2016/075256 priority Critical patent/WO2018042505A1/en
Publication of WO2018042505A1 publication Critical patent/WO2018042505A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Definitions

  • the present disclosure relates to an electromagnetic deflector and a charged particle beam apparatus including the electromagnetic deflector, and more particularly to an electromagnetic deflector in which a coil is wound under a condition that reduces deflection aberration, and the charged particle beam apparatus.
  • An electromagnetic deflector is an element for changing the direction of movement of electrons by Lorentz force by generating a magnetic field with an electromagnet or the like.
  • the electromagnetic deflector is applied to various apparatuses such as an electron microscope, an electron beam drawing apparatus, and a focused ion beam apparatus.
  • an electron beam is scanned two-dimensionally on a sample for image formation.
  • An electromagnetic deflector is used for this electron beam scanning.
  • the deflection of the electron beam is accompanied by aberrations.
  • the aberration is large, the electron beam deviates from the ideal trajectory and the shape thereof is distorted.
  • various adverse effects such as a decrease in resolution, a deterioration in signal-to-noise ratio, and image distortion are caused. Therefore, the electromagnetic deflector is required to reduce deflection aberration.
  • Non-Patent Document 1 describes that in an electromagnetic deflector, when the coil winding distribution is proportional to cos ⁇ , the deflection magnetic field becomes uniform in the cross section, and third-order and fifth-order aberrations can be reduced.
  • Non-Patent Document 1 when the winding angle distribution is a cosine distribution, the third-order aberration and the fifth-order aberration can be reduced. It has been clarified that aberrations remain if only cosine distribution is used.
  • an electromagnetic deflector and a charged particle beam apparatus aiming at reducing third-order and fifth-order aberrations at a higher level are proposed.
  • an electromagnetic deflector for deflecting a charged particle beam has 4n coils for generating a magnetic field for deflecting the charged particle beam, and the 4n coils include: In a plane perpendicular to the ideal optical axis of the charged particle beam, a first virtual line that contacts one end of the coil and a second virtual line that contacts the other end of the coil are the ideal optical axis of the charged particle beam.
  • the present invention proposes an electromagnetic deflector and a charged particle beam device formed so as to satisfy the above requirements.
  • a, b are real numbers, n is a natural number, ⁇ A is the opening angle of the first coil, ⁇ B is the opening angle of the second coil, ⁇ C is the opening angle of the third coil, and ⁇ D is the fourth coil. Is the opening angle.
  • third-order and fifth-order aberrations can be reduced at a high level.
  • Sectional drawing of a saddle-shaped electromagnetic deflector (the 1).
  • Sectional drawing of a saddle-shaped electromagnetic deflector (the 2).
  • the external view of a saddle type electromagnetic deflector The block diagram of a scanning electron microscope.
  • the following embodiments are an electromagnetic deflector and a charged particle beam apparatus, which are mainly used for the electromagnetic deflector, and the opening angle of a coil (in a plane perpendicular to the ideal optical axis of the beam).
  • 4n (n is 1) where the angle defined by two virtual straight lines crossing the ideal optical axis and passing through two winding positions in a direction parallel to the ideal optical axis of the coil satisfies the predetermined condition.
  • the present invention relates to an electromagnetic deflector having a natural number of coils and a charged particle beam apparatus. According to such a configuration, it is possible to reduce third-order and fifth-order deflection aberrations.
  • FIG. 1 is a schematic diagram of an electromagnetic deflector according to the present embodiment.
  • This electromagnetic deflector allows the bobbin 1 to pass current through the X conductor 2 wound around the bobbin 1 and a Y conductor (not shown) (equivalent to rotating the X conductor 90 ° and wound around the outside of the X conductor).
  • a deflection magnetic field is generated in the central portion of the light beam in a direction orthogonal to the beam optical axis.
  • the X conductor 2 is provided to deflect the electron beam to the X axis.
  • the Y conducting wire is provided to deflect the electron beam to the Y axis.
  • the X conductor 2 will be described, but the same applies to the Y conductor.
  • guide grooves 3 are provided in the axial direction of the bobbin 1 (direction parallel to the ideal optical axis of the beam to be deflected).
  • a coil made of the X conductive wire 2 is formed on the bobbin 1 by winding the X conductive wire 2 around the protrusion that forms the guide groove 3.
  • the pitch of the guide grooves 3 is described as 6 degrees. Not only the degree but also any angle may be used.
  • the X conductor 2 is wound from the coil start point 4 in the axial direction of the bobbin 1 (that is, along the longitudinal direction of the guide groove 3).
  • the X conducting wire 2 that has reached the lower end of the bobbin 1 (projection forming the guide groove 3) is once removed from the guide groove 3, and the lower end of the bobbin 1 is wired along the circumference of the bobbin.
  • the X conductor 2 is wound around a predetermined guide groove and wired to the upper end of the bobbin 1.
  • the X conducting wire 2 reaching the upper end of the bobbin 1 is wired so that the upper end of the bobbin 1 is along the circumference of the bobbin until the coil starting point 4 is reached.
  • the X conductor 2 is coiled by winding the X conductor 2 around the bobbin 1.
  • the X conductive wire 2 that has reached the coil start point 4 is further routed to another coil start point 5 along the upper end of the bobbin 1 as it is. Then, another coil is formed again along the guide groove 3.
  • the deflection magnetic field can be controlled by forming a plurality of coils by the X conductor 2 and passing a current through the X conductor 2.
  • Equation 2 [Equation 2]
  • Equation 3 Equation 3
  • the third-order and fifth-order aberrations remain, but in this embodiment, the four coils are considered as one set and the total of the four coils is considered. By wiring so that the aberration is zero, the third-order and fifth-order aberrations are reduced to the limit.
  • FIG. 2 is a cross-sectional view of the electromagnetic deflector as viewed from above (in the case of an electron microscope, the electron source side).
  • the X conducting wire 2 is wound so as to be point-symmetric with respect to the central axis of the bobbin 1. Therefore, FIG. 3 shows the upper right portion (0 ° ⁇ ⁇ ⁇ 90 °) of FIG.
  • a first coil 6, a second coil 7, a third coil 8, and a fourth coil 9 are formed in the bobbin 1 in FIG. 2, a first coil 6, a second coil 7, a third coil 8, and a fourth coil 9 are formed.
  • half angle half of the center angle of the arc of the first coil (hereinafter referred to as half angle) is ⁇ A
  • half angle 11 of the second coil arc is ⁇ B
  • half angle 12 of the arc of the third coil Is ⁇ C
  • the half angle 13 of the arc of the fourth coil is ⁇ D.
  • Equation 4 Assuming that the number of turns N i of these coils is constant, in order to reduce the third-order and fifth-order aberrations, the conditions of Equations 4 and 5 (provided that (0 ° ⁇ i ⁇ 90 °)) are satisfied. good. [Equation 4]
  • the opening angles (half angles) of the above 33 °, 87 °, 69 °, 51 ° and 39 °, 81 °, 75 °, 45 ° are here.
  • Aberration can be reduced to the limit by winding the coils so as to form eight coils.
  • FIG. 6 shows bobbin 1 and eight coils (the deflector is configured as a pair with another coil having the same number of turns arranged in axisymmetric position with one coil, so in the example of FIG. 6 there are 16 coils.
  • the deflector is configured as a pair with another coil having the same number of turns arranged in axisymmetric position with one coil, so in the example of FIG. 6 there are 16 coils.
  • the distance between the coils is exaggerated.
  • FIG. ) Is visible.
  • the coils 601 to 608 are wound under the opening angle condition of at least one of the above conditions (I) and (II). More specifically, it has 4n coils (n is 2 in the case of FIG.
  • a first virtual straight line for example, a virtual straight line 610 in contact with a second virtual straight line (for example, a virtual straight line 611) in contact with the other end of the coil has an ideal optical axis 609 of the charged particle beam as an intersection.
  • the opening angle indicating the half angle of the relative angle on the coil side of the two virtual lines when intersecting is configured to satisfy at least one of the above conditions (I) and (II). With such a configuration, it is possible to suppress both third-order aberrations and fifth-order aberrations to a high degree.
  • the deflector is formed by including one or more pairs of coils, the above parameters are selected so that ⁇ A to ⁇ D are less than 90 ° (that is, the opening angle of the entire coil is less than 180 °). Is done.
  • FIG. 6 an example in which eight coils are provided on one side has been described. However, if there are 4n coils (n is a natural number of 1 or more) on one side, the above-described aberration correction effect can be obtained. Therefore, an appropriate number of coils may be selected according to conditions such as deflection intensity.
  • FIG. 5 is a diagram showing an outline of a scanning electron microscope.
  • the electron beam 104 generated by the voltage of the extraction electrode 102 from the chip 101 of the electron gun 100 is set to a predetermined acceleration voltage by the acceleration electrode 103.
  • the extraction voltage and the acceleration voltage are controlled by the electron gun control device 120.
  • the electron beam 104 is converged by a converging lens 105, shaped by a diaphragm 106, and focused on a sample 114 by an objective lens 113.
  • the convergent lens 105 is controlled by the convergent lens controller 121, and the objective lens 113 is controlled by the objective lens controller 132.
  • the electron beam 104 scans the sample 114 two-dimensionally by the upper scanning deflector 110 and the lower scanning deflector 112.
  • the upper scanning deflector 110 and the lower scanning deflector 112 are composed of coils having a central angle distribution such that the third-order fifth-order deflection aberration becomes zero as described above.
  • the beam deflected by the upper scanning deflector 110 is swung back by the lower scanning deflector 112 and scanned so as to have a deflection fulcrum on the lens main surface of the objective lens 113.
  • the magnitude of the deflection depends on the magnetic field intensity generated by the coil.
  • the magnetic field strength can be expressed by the product of the number of turns of the coil and the current.
  • the magnetic field strength ratio between the upper scanning deflector 110 and the lower scanning deflector 112 depends on the position of the upper scanning deflector 110 and the lower scanning deflector 112, the distance between the upper scanning deflector 110 and the lower scanning deflector 112, the lower scanning deflector 112, and the objective.
  • the magnetic field strength ratio between the upper scanning deflector 110 and the lower scanning deflector 112 is 1: 2.
  • the number of turns of the lower scanning deflector 112 with respect to the upper scanning deflector 110 needs to be doubled. Accurate adjustment of the magnetic field strength ratio is performed by a current flowing through the upper scanning deflector 110 and the lower scanning deflector 112. Current control of the upper scanning deflector 110 is performed by the upper scanning deflector controller 126, and current control of the lower scanning deflector lower 112 is performed by the lower scanning deflector controller 127.
  • the scanning deflector controller 130 controls the upper scanning deflector controller 126 and the lower scanning deflector controller 127.
  • Image observation conditions such as magnification
  • the input device 135 calculated by the control arithmetic device 133
  • the deflection amount is calculated, and the scanning deflector controller 130 is controlled.
  • the electron beam 104 is scanned on the sample 114 by the upper scanning deflector 110 and the lower scanning deflector 112 using the main surface of the objective lens 113 as a deflection fulcrum.
  • the scanning electron microscope illustrated in FIG. 5 includes an upper image shift deflector 109 and a lower image shift deflector 111 that electrically move the observation field of view.
  • the image shift deflector has a function of electrically moving the electron beam scanning center on the sample.
  • the electron beam 104 deflected by the upper image shift deflector 109 is turned back by the lower image shift deflector 111 and controlled so as to have a fulcrum on the main surface of the objective lens 113.
  • the upper image shift deflector 109 and the lower image shift deflector 111 are constituted by a deflector having zero third-order fifth-order deflection aberration as described above.
  • the deflection intensity is 1: 2.
  • the magnetic field strength ratio between the upper image shift deflector 109 and the lower image shift deflector 111 is 1: 2.
  • the number of turns of the lower image shift deflector 111 is twice that of the upper image shift deflector 109. Accurate control is performed by a current flowing through the upper image shift deflector 109 and the lower image shift deflector 111.
  • the image shift deflector controller 129 controls the upper image shift deflector controller 125 and the lower image shift deflector controller 128.
  • the movement amount is input from the input device 135 in order to execute the electric visual field movement.
  • the control arithmetic unit 133 controls the image shift deflector controller 129, and the current required for the deflection is shifted to the upper image shift via the upper image shift deflector controller 125 and the lower image shift deflector controller 128.
  • the field of view moves by being supplied to the deflector 109 and the lower image shift deflector 111. Since the image shift deflector is also a deflector having zero third-order fifth-order deflection aberration, distortion of the electron beam 104 due to image shift does not occur.
  • the scanning electron microscope illustrated in FIG. 5 includes an alignment deflector for aligning the electron beam with the ideal optical axis of the beam.
  • an upper alignment deflector 107 and a lower alignment deflector 108 are provided.
  • the electron beam 104 that has passed through the electron gun 100 and the converging lens 105 is deflected by the deflection action of the upper alignment deflector 107, further enters the lower alignment deflector 108, and the objective lens 113 is incident on the lower alignment deflector 108.
  • the upper alignment deflector 107 and the lower alignment deflector 108 are composed of deflectors having zero third-order fifth-order deflection aberration.
  • the magnetic field intensity required for the deflection is controlled by the upper alignment deflector 107 using the upper alignment deflector controller 122 and the lower alignment deflector 108 using the lower alignment deflector controller 123.
  • the control calculation device 133 determines the incident angle and center position of the electron beam, and the alignment deflector controller 124 determines the magnetic field strength required for the upper alignment deflector 107 and the lower alignment deflector 108.
  • the required current is supplied to the upper alignment deflector 107 and the lower alignment deflector 108 via the upper alignment deflector controller 122 and the lower alignment deflector controller 123 to perform the optical axis adjustment. . Since the upper alignment deflector 107 and the lower alignment deflector 108 are composed of deflectors having zero third-order fifth-order deflection aberration, no deflection aberration is caused by this adjustment.
  • All the built-in deflectors are deflectors that reduce and eliminate third-order and fifth-order aberrations, so that it is possible to provide a scanning electron microscope that suppresses deflection aberrations to zero.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Abstract

The purpose of the present invention is to provide an electromagnetic deflector that reduces third order and fifth order aberration at a high level, and a charged particle ray device. In order to achieve the aforesaid purpose, there are proposed an electromagnetic deflector and a charged particle ray device, said electromagnetic deflector being an electromagnetic deflector that deflects charged particle beams, and has 4n coils for generating a magnetic field that deflects beams of charged particles. The 4n coils are formed so that, within a plane that is perpendicular to the ideal optical axis of the charged particle beam, when a first virtual straight line contacting one end of the coil and a second virtual straight line contacting the other end of the coil intersect so as to have the ideal optical axis of the charged particle beam as the intersection point, an opening angle representing the half angle of the relative angle of the coil side of the two virtual straight lines satisfies at least one of the conditions among θA = 36° + a, θB = 84° – a, θC = a, θD = 120° – a (angle condition 1), and θA = 72° – b, θB = 12° – b, θC = b, θD = 60° + b (angle condition 2).

Description

電磁偏向器、及び荷電粒子線装置Electromagnetic deflector and charged particle beam device
 本開示は、電磁偏向器、及び電磁偏向器を備えた荷電粒子線装置に係り、特に偏向収差を低減するような条件でコイルが巻かれた電磁偏向器、及び荷電粒子線装置に関する。 The present disclosure relates to an electromagnetic deflector and a charged particle beam apparatus including the electromagnetic deflector, and more particularly to an electromagnetic deflector in which a coil is wound under a condition that reduces deflection aberration, and the charged particle beam apparatus.
 電磁偏向器は、電磁石などにより磁界を発生させることで、ローレンツ力により電子の運動方向を変化させるための素子である。電磁偏向器は、電子顕微鏡や電子ビーム描画装置、収束イオンビーム装置などの様々な装置に適用されている。 An electromagnetic deflector is an element for changing the direction of movement of electrons by Lorentz force by generating a magnetic field with an electromagnet or the like. The electromagnetic deflector is applied to various apparatuses such as an electron microscope, an electron beam drawing apparatus, and a focused ion beam apparatus.
 例として、走査電子顕微鏡では、画像形成のために、電子ビームを試料上で二次元的に走査する。この電子ビーム走査のために、電磁偏向器を使用する。 As an example, in a scanning electron microscope, an electron beam is scanned two-dimensionally on a sample for image formation. An electromagnetic deflector is used for this electron beam scanning.
 しかし、電子ビームの偏向には収差が伴う。収差が大きい場合、電子ビームは、理想の軌道から外れてしまい、またその形状が歪んでしまう。その結果、電子顕微鏡であれば分解能の低下や、シグナル・ノイズ比の悪化、画像の歪みなどの様々な悪影響を引き起こしてしまう。そのため、電磁偏向器には、偏向収差の低減が求められている。 However, the deflection of the electron beam is accompanied by aberrations. When the aberration is large, the electron beam deviates from the ideal trajectory and the shape thereof is distorted. As a result, in the case of an electron microscope, various adverse effects such as a decrease in resolution, a deterioration in signal-to-noise ratio, and image distortion are caused. Therefore, the electromagnetic deflector is required to reduce deflection aberration.
 非特許文献1には、電磁偏向器において、コイルの巻き線分布をcosφに比例させたとき、偏向磁界が断面内で均一となり、三次および五次の収差を低減できることが記載されている。 Non-Patent Document 1 describes that in an electromagnetic deflector, when the coil winding distribution is proportional to cosφ, the deflection magnetic field becomes uniform in the cross section, and third-order and fifth-order aberrations can be reduced.
 非特許文献1に開示されているように、巻き線の角度分布をコサイン分布とすると、三次収差と五次収差を低減することができるが、発明者らの検討によって、単に巻き線の角度分布をコサイン分布とするだけでは、収差が残ってしまうことが明らかになった。以下に、三次および五次の収差を、より高いレベルで低減することを目的とする電磁偏向器、及び荷電粒子線装置を提案する。 As disclosed in Non-Patent Document 1, when the winding angle distribution is a cosine distribution, the third-order aberration and the fifth-order aberration can be reduced. It has been clarified that aberrations remain if only cosine distribution is used. In the following, an electromagnetic deflector and a charged particle beam apparatus aiming at reducing third-order and fifth-order aberrations at a higher level are proposed.
 上記目的を達成するための一態様として、荷電粒子ビームを偏向する電磁偏向器であって、荷電粒子のビームを偏向する磁場を発生する4n個のコイルを有し、当該4n個のコイルは、前記荷電粒子ビームの理想光軸に垂直な平面内で、コイルの一端に接する第1の仮想直線と、前記コイルの他端に接する第2の仮想直線とが、前記荷電粒子ビームの理想光軸を交点とするように交差するときの2つの仮想直線の前記コイル側の相対角の半角を示す開き角が、θ=36°+a、θ=84°-a、θ=a、θ=120°-a(角度条件1)、及びθ=72°-b、θ=12°-b、θ=b、θ=60°+b(角度条件2)の少なくとも1つの条件を満たすように形成される電磁偏向器、及び荷電粒子線装置を提案する。a、bは実数、nは自然数、θは第1のコイルの開き角、θは第2のコイルの開き角、θは第3のコイルの開き角、θは第4のコイルの開き角である。 As an aspect for achieving the above object, an electromagnetic deflector for deflecting a charged particle beam has 4n coils for generating a magnetic field for deflecting the charged particle beam, and the 4n coils include: In a plane perpendicular to the ideal optical axis of the charged particle beam, a first virtual line that contacts one end of the coil and a second virtual line that contacts the other end of the coil are the ideal optical axis of the charged particle beam. The opening angles indicating the half angle of the relative angle on the coil side of the two imaginary straight lines when intersecting so as to be the intersection are θ A = 36 ° + a, θ B = 84 ° −a, θ C = a, θ D = 120 ° -a (angle condition 1) and at least one condition of θ A = 72 ° -b, θ B = 12 ° -b, θ C = b, θ D = 60 ° + b (angle condition 2) The present invention proposes an electromagnetic deflector and a charged particle beam device formed so as to satisfy the above requirements. a, b are real numbers, n is a natural number, θ A is the opening angle of the first coil, θ B is the opening angle of the second coil, θ C is the opening angle of the third coil, and θ D is the fourth coil. Is the opening angle.
 上記構成によれば、三次と五次の収差を高いレベルで低減することが可能となる。 According to the above configuration, third-order and fifth-order aberrations can be reduced at a high level.
鞍形電磁偏向器を構成するボビンと、ボビンに巻かれた導線の一例を示す図。The figure which shows an example of the bobbin which comprises a saddle-shaped electromagnetic deflector, and the conducting wire wound around the bobbin. 鞍形電磁偏向器の断面図(その1)。Sectional drawing of a saddle-shaped electromagnetic deflector (the 1). 鞍形電磁偏向器の断面図(その2)。Sectional drawing of a saddle-shaped electromagnetic deflector (the 2). 鞍形電磁偏向器の外観図。The external view of a saddle type electromagnetic deflector. 走査形電子顕微鏡の構成図。The block diagram of a scanning electron microscope. 電磁偏向器に巻かれた複数のコイルの配置を説明する図。The figure explaining arrangement | positioning of the some coil wound by the electromagnetic deflector.
 以下に、電磁偏向器のボビンにコイルを巻き付けるときの角度を2θとしたコイルを偶数個備えることによって、3次偏向収差と5次偏向収差を同時に、且つ極限まで打ち消すことのできる鞍形電磁偏向器について説明する。より具体的には、以下の実施例は、電磁偏向器、及び荷電粒子線装置であって、主に電磁偏向器に用いられるコイルの開き角の角度(ビームの理想光軸に垂直な平面内で、理想光軸に交差すると共に、コイルの理想光軸に平行な方向の2つの巻き線位置を通過する2本の仮想直線によって定義される角度)が所定の条件を満たす4n(nは1以上の自然数)個のコイルを備えた電磁偏向器、及び荷電粒子線装置に関するものである。このような構成によれば、三次および五次の偏向収差を低減することが可能となる。 Below, saddle-shaped electromagnetic deflection that can cancel out third-order deflection aberration and fifth-order deflection aberration simultaneously and to the limit by providing an even number of coils with an angle of 2θ when the coil is wound around the bobbin of the electromagnetic deflector The vessel will be described. More specifically, the following embodiments are an electromagnetic deflector and a charged particle beam apparatus, which are mainly used for the electromagnetic deflector, and the opening angle of a coil (in a plane perpendicular to the ideal optical axis of the beam). Thus, 4n (n is 1) where the angle defined by two virtual straight lines crossing the ideal optical axis and passing through two winding positions in a direction parallel to the ideal optical axis of the coil satisfies the predetermined condition. The present invention relates to an electromagnetic deflector having a natural number of coils and a charged particle beam apparatus. According to such a configuration, it is possible to reduce third-order and fifth-order deflection aberrations.
 以下、図面を用いて3次偏向収差と5次偏向収差を併せて打ち消すことのできる電磁偏向器について説明する。図1は、本実施例にかかる電磁偏向器の概略図である。この電磁偏向器は、ボビン1に巻きつけたX導線2、及び図示しないY導線(X導線を90°回転させ、X導線の外側に巻き付けたものに等しい)に電流を流すことで、ボビン1の中央部分に、ビーム光軸に直交する方向に偏向磁界を発生させるものとなっている。 Hereinafter, an electromagnetic deflector capable of canceling the third-order deflection aberration and the fifth-order deflection aberration together will be described with reference to the drawings. FIG. 1 is a schematic diagram of an electromagnetic deflector according to the present embodiment. This electromagnetic deflector allows the bobbin 1 to pass current through the X conductor 2 wound around the bobbin 1 and a Y conductor (not shown) (equivalent to rotating the X conductor 90 ° and wound around the outside of the X conductor). A deflection magnetic field is generated in the central portion of the light beam in a direction orthogonal to the beam optical axis.
 X導線2は、電子線をX軸に偏向させるために設けられている。一方、Y導線は、電子線をY軸に偏向させるために設けられている。 以下、本実施例では、X導線2について説明するが、Y導線についても同様である。 The X conductor 2 is provided to deflect the electron beam to the X axis. On the other hand, the Y conducting wire is provided to deflect the electron beam to the Y axis. Hereinafter, in this embodiment, the X conductor 2 will be described, but the same applies to the Y conductor.
 ボビン1の外周には、ボビン1の軸方向(偏向対象であるビームの理想光軸と平行な方向)に、ガイド溝3が設けられている。このガイド溝3を形成する突起部に、X導線2を巻きつけることで、ボビン1上にX導線2からなるコイルが形成される。本実施例では、ガイド溝3のピッチ(ビームの理想光軸を頂点とするビームの理想光軸に垂直な平面内の2つの仮想直線の内角)を6度として説明するが、この間隔は6度に限らず、任意の角度としてもよい。 On the outer periphery of the bobbin 1, guide grooves 3 are provided in the axial direction of the bobbin 1 (direction parallel to the ideal optical axis of the beam to be deflected). A coil made of the X conductive wire 2 is formed on the bobbin 1 by winding the X conductive wire 2 around the protrusion that forms the guide groove 3. In this embodiment, the pitch of the guide grooves 3 (inner angles of two imaginary straight lines in a plane perpendicular to the ideal optical axis of the beam with the ideal optical axis of the beam as an apex) is described as 6 degrees. Not only the degree but also any angle may be used.
 X導線2は、コイル始点4より、ボビン1の軸方向に(すなわち、ガイド溝3の長手方向に沿って)巻きつけられる。ボビン1(ガイド溝3を形成する突起物)の下端に達したX導線2は、一旦ガイド溝3から外れ、ボビン1の下端を、ボビンの円周に沿うように配線される。 The X conductor 2 is wound from the coil start point 4 in the axial direction of the bobbin 1 (that is, along the longitudinal direction of the guide groove 3). The X conducting wire 2 that has reached the lower end of the bobbin 1 (projection forming the guide groove 3) is once removed from the guide groove 3, and the lower end of the bobbin 1 is wired along the circumference of the bobbin.
 その後、X導線2は、所定のガイド溝に巻きつけられ、ボビン1の上端まで配線される。ボビン1の上端に達したX導線2は、コイル始点4に達するまで、ボビン1の上端を、ボビンの円周に沿うように配線される。 Thereafter, the X conductor 2 is wound around a predetermined guide groove and wired to the upper end of the bobbin 1. The X conducting wire 2 reaching the upper end of the bobbin 1 is wired so that the upper end of the bobbin 1 is along the circumference of the bobbin until the coil starting point 4 is reached.
 上記のようにX導線2をボビン1に巻きつけることで、X導線2はコイル形状となる。  As described above, the X conductor 2 is coiled by winding the X conductor 2 around the bobbin 1. *
コイル始点4に達したX導線2は、さらにそのままボビン1の上端に沿って、別のコイル始点5まで配線される。そして、再びガイド溝3に沿って、別のコイルを形成する。 The X conductive wire 2 that has reached the coil start point 4 is further routed to another coil start point 5 along the upper end of the bobbin 1 as it is. Then, another coil is formed again along the guide groove 3.
 このように、X導線2によって複数のコイルを形成し、X導線2に電流を流すことで、偏向磁界を制御することができる。 As described above, the deflection magnetic field can be controlled by forming a plurality of coils by the X conductor 2 and passing a current through the X conductor 2.
 ここで、電磁偏向器を構成する個々のコイルの円弧の中心角を2θ(0°<θ<90°)、個々のコイルの巻き数をNとすると、三次収差は、数1で表すことができる。
[数1]
Figure JPOXMLDOC01-appb-I000001
Here, the central angle of the arc of each coil constituting the electromagnetic deflector 2θ i (0 ° <θ i <90 °), when the number of turns of the individual coils and N i, tertiary aberration, the number 1 Can be represented.
[Equation 1]
Figure JPOXMLDOC01-appb-I000001
 一方、五次収差は、数2で表すことができる。
[数2]
Figure JPOXMLDOC01-appb-I000002
On the other hand, the fifth-order aberration can be expressed by Equation 2.
[Equation 2]
Figure JPOXMLDOC01-appb-I000002
 ここで、mは中心角の異なるコイルの個数であり、全巻き数は数3のようになる。
[数3]
Figure JPOXMLDOC01-appb-I000003
Here, m is the number of coils with different central angles, and the total number of turns is as shown in Equation 3.
[Equation 3]
Figure JPOXMLDOC01-appb-I000003
 電磁偏向器では、巻き線の角度分布をコサイン分布とした場合、三次および五次の収差が残留してしまうが、本実施例では、4つのコイルを一組として考え、4つのコイルの合計の収差を0とするように配線することで、三次および五次の収差を極限まで低減する。 In the electromagnetic deflector, when the angle distribution of the winding is a cosine distribution, the third-order and fifth-order aberrations remain, but in this embodiment, the four coils are considered as one set and the total of the four coils is considered. By wiring so that the aberration is zero, the third-order and fifth-order aberrations are reduced to the limit.
 図2は、電磁偏向器を上部(電子顕微鏡の場合、電子源側)から見た断面図である。なお、本実施例の電磁偏向器は、X導線2を、ボビン1の中心軸に対して点対称になるように巻きつけている。そのため、図3には図2のうち右上(0°≦θ≦90°)の部分について示す。 FIG. 2 is a cross-sectional view of the electromagnetic deflector as viewed from above (in the case of an electron microscope, the electron source side). In the electromagnetic deflector of the present embodiment, the X conducting wire 2 is wound so as to be point-symmetric with respect to the central axis of the bobbin 1. Therefore, FIG. 3 shows the upper right portion (0 ° ≦ θ ≦ 90 °) of FIG.
 図2中のボビン1には、第一のコイル6、第二のコイル7、第三のコイル8、第四のコイル9が形成されている。また図3において、第一のコイルの円弧の中心角の半分10(以降は半角と呼ぶ)をθ、第二のコイルの円弧の半角11をθ、第三のコイルの円弧の半角12をθ、第四のコイルの円弧の半角13をθとする。 In the bobbin 1 in FIG. 2, a first coil 6, a second coil 7, a third coil 8, and a fourth coil 9 are formed. In FIG. 3, half of the center angle of the arc of the first coil (hereinafter referred to as half angle) is θ A , half angle 11 of the second coil arc is θ B , and half angle 12 of the arc of the third coil. Is θ C , and the half angle 13 of the arc of the fourth coil is θ D.
 これらのコイルの巻き数Nは一定とすると、三次および五次の収差を低減するためには、数4、数5の条件(但し、(0°<θ<90°))を満たせば良い。
[数4]
Figure JPOXMLDOC01-appb-I000004
Assuming that the number of turns N i of these coils is constant, in order to reduce the third-order and fifth-order aberrations, the conditions of Equations 4 and 5 (provided that (0 ° <θ i <90 °)) are satisfied. good.
[Equation 4]
Figure JPOXMLDOC01-appb-I000004
[数5]
Figure JPOXMLDOC01-appb-I000005
[Equation 5]
Figure JPOXMLDOC01-appb-I000005
 まずは、三次の収差について検討する。上記の式を、第一から第四のコイルについて展開すると、sin3θ+sin3θ+sin3θ+sin3θ=0となる。 First, the third-order aberration will be examined. When the above expression is developed for the first to fourth coils, sin 3θ A + sin 3θ B + sin 3θ C + sin 3θ D = 0.
 ここで、第一のコイルと第二のコイル、第三のコイルと第四のコイルで収差がゼロになるようにするためには、sin3θ+sin3θ=0を変形して、sin3θ+sin3θ=2sin3/2(θ+θ)・cos3/2(θ-θ)=0という条件を満たすようにすれば良い。つまりθ+θ=120°、またはθ-θ=60°を満たすθ、θの組み合わせを選べばよい。また、sin3θ+sin3θ=0も上記と同様に展開し、θ+θ=120°、またはθ-θ=60°を満たすθ、θの組み合わせを選ぶことで、四つのコイル全てで三次の収差をゼロにすることが可能である。 Here, in order to make the aberration zero in the first coil and the second coil, and in the third coil and the fourth coil, sin 3θ A + sin 3θ B = 0 is modified and sin 3θ A + sin 3θ B is changed. = 2sin3 / 2 (θ A + θ B ) · cos 3/2 (θ A −θ B ) = 0 may be satisfied. That is, a combination of θ A and θ B satisfying θ A + θ B = 120 ° or θ A −θ B = 60 ° may be selected. Further, sin3θ C + sin3θ D = 0 also expand in the same manner as described above, θ C + θ D = 120 °, or θ CD = 60 ° satisfies the theta C, by selecting the combination of theta D, four coil In all, it is possible to make third-order aberrations zero.
 五次も同様に考える。まず、上記の式を、第一から第四のコイルについて展開すると、sin5θ+sin5θ+sin5θ+sin5θ=0となる。 The same applies to the fifth. First, the above equation, when the first deploying the fourth coil, the sin5θ A + sin5θ B + sin5θ C + sin5θ D = 0.
 ここで、第一のコイルと第二のコイル、第三のコイルと第四のコイルで収差がゼロになるようにするためには、sin5θ+sin5θ=0を変形して、sin5θ+sin5θ=2sin5/2(θ+θ)・cos5/2(θ-θ)=0という条件を満たすようにすれば良い。つまりθ+θ=72°、またはθ-θ=36°を満たすθ、θの組み合わせを選べばよい。また、sin5θ+sin5θ=0も上記と同様に展開し、θ+θ=72°、またはθ-θ=36°を満たすθ、θの組み合わせを選ぶことで、四つのコイル全てで五次の収差をゼロにすることが可能である。 Here, in order to make the aberration zero in the first coil and the second coil, and in the third coil and the fourth coil, sin 5θ A + sin 5θ B = 0 is modified and sin 5θ A + sin 5θ B is changed. = 2sin5 / 2 (θ A + θ B ) · cos 5/2 (θ A −θ B ) = 0 may be satisfied. That is, a combination of θ A and θ B satisfying θ A + θ B = 72 ° or θ A −θ B = 36 ° may be selected. Further, sin5θ C + sin5θ D = 0 also expand in the same manner as described above, θ C + θ D = 72 °, or θ CD = 36 meet ° theta C, by selecting the combination of theta D, four coil In all, the fifth-order aberration can be made zero.
 ここで、三次と五次の収差を同時にゼロにするために、三次と五次の条件を両方満たすことが出来る組み合わせを見つければよい。この組み合わせを見つけるために、θ、θ、θ、およびθについて連立方程式を立てる。これは、条件の組み合わせから、二組の連立方程式となる。 Here, in order to make the third-order and fifth-order aberrations zero simultaneously, it is only necessary to find a combination that can satisfy both the third-order and fifth-order conditions. To find this combination, set up simultaneous equations for θ A , θ B , θ C , and θ D. This becomes two sets of simultaneous equations from a combination of conditions.
 すなわち、
 θ+θ=120°
 θ+θ=120°
 θ-θ=36°
 θ+θ=36°     (i)
 または、
 θ-θ=60°
 θ-θ=60°
 θ+θ=72°
 θ+θ=72°     (ii)
となり、この連立方程式は不定方程式である。
That is,
θ A + θ B = 120 °
θ C + θ D = 120 °
θ A −θ C = 36 °
θ D + θ B = 36 ° (i)
Or
θ A −θ B = 60 °
θ D −θ C = 60 °
θ A + θ C = 72 °
θ D + θ B = 72 ° (ii)
This simultaneous equation is an indefinite equation.
 したがって、パラメータa、b(実数)を取り、それぞれ、
 θ=36°+a
 θ=84°-a
 θ=a
 θ=120°-a     (I)
 または、
 θ=72°-b
 θ=12°-b
 θ=b
 θ=60°+b     (II)
と、表わすことができる。
Therefore, taking parameters a and b (real numbers),
θ A = 36 ° + a
θ B = 84 ° -a
θ C = a
θ D = 120 ° -a (I)
Or
θ A = 72 ° -b
θ B = 12 ° −b
θ C = b
θ D = 60 ° + b (II)
And can be expressed as
 6°ピッチの溝を持ち、オフセットを3°に取ると、コイルを配置可能な角度は、3°、9°・・3+6n(n=0,14)である。この角度のなかで、(I)を満たす組み合わせは、33°、87°、69°、51°(a=33の場合)、および、39°、81°、75°、45°(a=39の場合)である。また、(II)を満たす組み合わせは、3°、9°、63°、69°(b=3の場合)となる。各組み合わせは、三次と五次の収差をゼロにする条件を満たしている。 If the groove has a pitch of 6 ° and the offset is 3 °, the angle at which the coil can be arranged is 3 °, 9 ° ·· 3 + 6n (n = 0, 14). Among these angles, combinations satisfying (I) are 33 °, 87 °, 69 °, 51 ° (when a = 33), and 39 °, 81 °, 75 °, 45 ° (a = 39). In the case of Further, combinations satisfying (II) are 3 °, 9 °, 63 °, and 69 ° (when b = 3). Each combination satisfies the condition for zeroing the third-order and fifth-order aberrations.
 よって例えば図4のコイル外観図に示すように、ここでは、上記の33°、87°、69°、51°および、39°、81°、75°、45°、の開き角(半角)を持つ8つのコイルを形成するようにコイルを巻くことで収差を極限まで低減可能である。 Therefore, for example, as shown in the coil external view of FIG. 4, the opening angles (half angles) of the above 33 °, 87 °, 69 °, 51 ° and 39 °, 81 °, 75 °, 45 ° are here. Aberration can be reduced to the limit by winding the coils so as to form eight coils.
 図6は、ボビン1と8つのコイル(偏向器は、1のコイルと軸対称位置に配置された同じ巻き数の他のコイルと一対で構成されるため、図6の例では16個のコイルが配置されている)を含む偏向器の上視図である。図6ではボビンと各コイルとの位置関係を視覚的に判り易く説明するために、コイル間の間隔を誇張して記載しており、図6ではコイルの巻き線の内、上側(電子源側)が見えている。図6に例示するように、コイル601~608は上述の条件(I)、(II)の少なくとも一方の開き角条件で巻かれている。より具体的には、4n個(図6の場合、nは2)のコイルを有し、当該4n個のコイルは、前記荷電粒子ビームの理想光軸に垂直な平面内で、コイルの一端に接する第1の仮想直線(例えば仮想直線610)と、前記コイルの他端に接する第2の仮想直線(例えば仮想直線611)とが、前記荷電粒子ビームの理想光軸609を交点とするように交差するときの2つの仮想直線の前記コイル側の相対角の半角を示す開き角が、上述の条件(I)、(II)の少なくとも一方を満たすように構成する。このような構成によって、高度に三次収差と五次収差を併せて抑制することが可能となる。 FIG. 6 shows bobbin 1 and eight coils (the deflector is configured as a pair with another coil having the same number of turns arranged in axisymmetric position with one coil, so in the example of FIG. 6 there are 16 coils. Is a top view of the deflector including In FIG. 6, in order to explain the positional relationship between the bobbin and each coil in an easy-to-understand manner, the distance between the coils is exaggerated. In FIG. ) Is visible. As illustrated in FIG. 6, the coils 601 to 608 are wound under the opening angle condition of at least one of the above conditions (I) and (II). More specifically, it has 4n coils (n is 2 in the case of FIG. 6), and the 4n coils are arranged at one end of the coil in a plane perpendicular to the ideal optical axis of the charged particle beam. A first virtual straight line (for example, a virtual straight line 610) in contact with a second virtual straight line (for example, a virtual straight line 611) in contact with the other end of the coil has an ideal optical axis 609 of the charged particle beam as an intersection. The opening angle indicating the half angle of the relative angle on the coil side of the two virtual lines when intersecting is configured to satisfy at least one of the above conditions (I) and (II). With such a configuration, it is possible to suppress both third-order aberrations and fifth-order aberrations to a high degree.
 なお、偏向器は1対のコイルを1以上備えることによって形成されるため、θ~θは90°未満(即ち、コイル全体の開き角は180°未満)となるように上記パラメータが選択される。なお、図6の例では、片側8個のコイルを備えた例を説明しているが、片側4n個(nは1以上の自然数)のコイルがあれば、上記収差補正の効果を得ることができるため、偏向強度等の条件に応じて、適正なコイルの数を選択するようにすると良い。 Since the deflector is formed by including one or more pairs of coils, the above parameters are selected so that θ A to θ D are less than 90 ° (that is, the opening angle of the entire coil is less than 180 °). Is done. In the example of FIG. 6, an example in which eight coils are provided on one side has been described. However, if there are 4n coils (n is a natural number of 1 or more) on one side, the above-described aberration correction effect can be obtained. Therefore, an appropriate number of coils may be selected according to conditions such as deflection intensity.
 図5は、走査形電子顕微鏡の概要を示す図である。電子銃100のチップ101から引き出し電極102の電圧で発生させた電子ビーム104は、加速電極103で所定の加速電圧に設定される。引き出し電圧と加速電圧は、電子銃制御装置120で制御する。電子ビーム104は収束レンズ105で収束され、絞り106で整形され、対物レンズ113によって、試料114上に集束される。収束レンズ105は収束レンズ制御器121で、対物レンズ113は対物レンズ制御器132で制御する。電子ビーム104の照射によって、試料114から二次電子や後方散乱電子が放出され、これを検出器115で検出する。検出器115によって検出された信号は、A/D変換器131によってデジタル信号に変換され、放出された電子量に応じた輝度信号となる。 FIG. 5 is a diagram showing an outline of a scanning electron microscope. The electron beam 104 generated by the voltage of the extraction electrode 102 from the chip 101 of the electron gun 100 is set to a predetermined acceleration voltage by the acceleration electrode 103. The extraction voltage and the acceleration voltage are controlled by the electron gun control device 120. The electron beam 104 is converged by a converging lens 105, shaped by a diaphragm 106, and focused on a sample 114 by an objective lens 113. The convergent lens 105 is controlled by the convergent lens controller 121, and the objective lens 113 is controlled by the objective lens controller 132. By irradiation with the electron beam 104, secondary electrons and backscattered electrons are emitted from the sample 114 and detected by the detector 115. The signal detected by the detector 115 is converted into a digital signal by the A / D converter 131 and becomes a luminance signal corresponding to the amount of emitted electrons.
 電子ビーム104は、上側走査偏向器110と下側走査偏向器112で試料114上を二次元的に走査する。上側走査偏向器110と下側走査偏向器112は、上述のような、三次五次偏向収差がゼロとなる中心角分布を持つコイルで構成されている。上側走査偏向器上110で偏向されたビームは、下側走査偏向器112で振り戻され、対物レンズ113のレンズ主面に偏向支点を持つように走査される。偏向の大きさは、コイルが発生する磁場強度による。磁場強度は、コイルの巻数と、電流の積で表わせるが三次五次偏向収差ゼロの偏向器においては、電流値で主に制御する。上側走査偏向器110と下側走査偏向器112の磁場強度比は配置する位置にもよるが、上側走査偏向器110と下側走査偏向器112との距離と、下側走査偏向器112と対物レンズ113との距離が同じにした場合、上側走査偏向器110と下側走査偏向器112の磁場強度比は、1対2となる。 The electron beam 104 scans the sample 114 two-dimensionally by the upper scanning deflector 110 and the lower scanning deflector 112. The upper scanning deflector 110 and the lower scanning deflector 112 are composed of coils having a central angle distribution such that the third-order fifth-order deflection aberration becomes zero as described above. The beam deflected by the upper scanning deflector 110 is swung back by the lower scanning deflector 112 and scanned so as to have a deflection fulcrum on the lens main surface of the objective lens 113. The magnitude of the deflection depends on the magnetic field intensity generated by the coil. The magnetic field strength can be expressed by the product of the number of turns of the coil and the current. However, in a deflector having zero third-order fifth-order deflection aberration, it is mainly controlled by the current value. Although the magnetic field strength ratio between the upper scanning deflector 110 and the lower scanning deflector 112 depends on the position of the upper scanning deflector 110 and the lower scanning deflector 112, the distance between the upper scanning deflector 110 and the lower scanning deflector 112, the lower scanning deflector 112, and the objective. When the distance to the lens 113 is the same, the magnetic field strength ratio between the upper scanning deflector 110 and the lower scanning deflector 112 is 1: 2.
 上側走査偏向器110に対し下側走査偏向器112の巻数は2倍とる必要がある。磁場強度比の正確な調整は、上側走査偏向器110と下側走査偏向器112に流す電流で行う。上側走査偏向器110の電流制御は、上側走査偏向器制御器126で、下側走査偏向器下112の電流制御は、下側走査偏向器制御器127で行う。上側走査偏向器制御器126と下側走査偏向器制御器127の制御を、走査偏向器制御器130で行う。 The number of turns of the lower scanning deflector 112 with respect to the upper scanning deflector 110 needs to be doubled. Accurate adjustment of the magnetic field strength ratio is performed by a current flowing through the upper scanning deflector 110 and the lower scanning deflector 112. Current control of the upper scanning deflector 110 is performed by the upper scanning deflector controller 126, and current control of the lower scanning deflector lower 112 is performed by the lower scanning deflector controller 127. The scanning deflector controller 130 controls the upper scanning deflector controller 126 and the lower scanning deflector controller 127.
 像観察の条件、たとえば倍率は、入力装置135で入力し、制御演算装置133で演算し、偏向量を計算し走査偏向器制御器130を制御する。電子ビーム104は、上側走査偏向器110と下側走査偏向器112によって、対物レンズ113のレンズ主面を偏向支点として、試料114上に走査される。 Image observation conditions, such as magnification, are input by the input device 135, calculated by the control arithmetic device 133, the deflection amount is calculated, and the scanning deflector controller 130 is controlled. The electron beam 104 is scanned on the sample 114 by the upper scanning deflector 110 and the lower scanning deflector 112 using the main surface of the objective lens 113 as a deflection fulcrum.
 電子ビーム104の走査に基づいて得られる二次電子や後方散乱電子を、検出器131によって検出し、制御演算装置133は、走査位置に対応した位置の輝度信号として、画像表示器134に拡大像を表示する。 Secondary electrons and backscattered electrons obtained based on the scanning of the electron beam 104 are detected by the detector 131, and the control arithmetic device 133 displays an enlarged image on the image display 134 as a luminance signal at a position corresponding to the scanning position. Is displayed.
 また、図5に例示する走査電子顕微鏡は、観察視野を電気的に移動させる上側イメージシフト偏向器109と下側イメージシフト偏向器111を備えている。イメージシフト偏向器は、試料上の電子ビーム走査中心を電気的に移動させる機能を持つ。上側イメージシフト偏向器109で偏向させた電子ビーム104を下側イメージシフト偏向器111で振り戻して、対物レンズ113の主面に支点を持つように制御するが、走査偏向とは異なり、静的に作用させる。上側イメージシフト偏向器109と下側イメージシフト偏向器111は、上述のような三次五次偏向収差ゼロの偏向器で構成される。上側イメージシフト偏向器109と下側イメージシフト偏向器111の距離と、下側イメージシフト偏向器111と対物レンズ113との距離を1対1にとると、偏向強度は1対2となるので、上側イメージシフト偏向器109と下側イメージシフト偏向器111の磁場強度比は1対2となる。上側イメージシフト偏向器109の巻数に対し下側イメージシフト偏向器111の巻数は2倍とする。正確な制御は上側イメージシフト偏向器109と下側イメージシフト偏向器111に流す電流で行う。上側イメージシフト偏向器109の電流制御は、上側イメージシフト偏向器制御器125で、下側イメージシフト偏向器111の電流制御は、下側イメージシフト偏向器制御器128で行う。上側イメージシフト偏向器制御器125と下側イメージシフト偏向器制御器128の制御をイメージシフト偏向器制御器129で行う。 Further, the scanning electron microscope illustrated in FIG. 5 includes an upper image shift deflector 109 and a lower image shift deflector 111 that electrically move the observation field of view. The image shift deflector has a function of electrically moving the electron beam scanning center on the sample. The electron beam 104 deflected by the upper image shift deflector 109 is turned back by the lower image shift deflector 111 and controlled so as to have a fulcrum on the main surface of the objective lens 113. To act on. The upper image shift deflector 109 and the lower image shift deflector 111 are constituted by a deflector having zero third-order fifth-order deflection aberration as described above. If the distance between the upper image shift deflector 109 and the lower image shift deflector 111 and the distance between the lower image shift deflector 111 and the objective lens 113 are 1: 1, the deflection intensity is 1: 2. The magnetic field strength ratio between the upper image shift deflector 109 and the lower image shift deflector 111 is 1: 2. The number of turns of the lower image shift deflector 111 is twice that of the upper image shift deflector 109. Accurate control is performed by a current flowing through the upper image shift deflector 109 and the lower image shift deflector 111. Current control of the upper image shift deflector 109 is performed by the upper image shift deflector controller 125, and current control of the lower image shift deflector 111 is performed by the lower image shift deflector controller 128. The image shift deflector controller 129 controls the upper image shift deflector controller 125 and the lower image shift deflector controller 128.
 像観察時、電気的視野移動を実行するために、入力装置135から移動量を入力する。制御演算装置133は、イメージシフト偏向器制御器129を制御し、偏向に必要な電流が、上側イメージシフト偏向器制御器125と、下側イメージシフト偏向器制御器128を介して、上側イメージシフト偏向器109と下側イメージシフト偏向器111に供給され、視野が移動する。イメージシフト偏向器も三次五次偏向収差ゼロの偏向器であるから、イメージシフトに伴う電子ビーム104の歪は、発生しない。 In the image observation, the movement amount is input from the input device 135 in order to execute the electric visual field movement. The control arithmetic unit 133 controls the image shift deflector controller 129, and the current required for the deflection is shifted to the upper image shift via the upper image shift deflector controller 125 and the lower image shift deflector controller 128. The field of view moves by being supplied to the deflector 109 and the lower image shift deflector 111. Since the image shift deflector is also a deflector having zero third-order fifth-order deflection aberration, distortion of the electron beam 104 due to image shift does not occur.
 電子銃100のチップ先端、収束レンズ105のレンズ光軸、及び対物レンズ113のレンズ光軸が、同一直線上に位置するように、これらの光学素子が配置される。また、図5に例示する走査電子顕微鏡には、ビームの理想光軸に電子ビームを一致させるためのアライメント偏向器が備えられている。図5の例では、上側アライメント偏向器107と下側アライメント偏向器108が備えられている。電子銃100、収束レンズ105を通った電子ビーム104は、上側アライメント偏向器107の偏向作用によって偏向され、更に、下側アライメント偏向器108へ入射し、下側アライメント偏向器108によって、対物レンズ113に垂直入射するように偏向される。上述のように、上側アライメント偏向器107と下側アライメント偏向器108は三次五次偏向収差ゼロの偏向器で構成されている。偏向に必要な磁場強度は、上側アライメント偏向器107は、上側アライメント偏向器制御器122で、下側アライメント偏向器下108は下側アライメント偏向器制御器123で電流制御を行う。 These optical elements are arranged so that the tip of the tip of the electron gun 100, the lens optical axis of the converging lens 105, and the lens optical axis of the objective lens 113 are located on the same straight line. In addition, the scanning electron microscope illustrated in FIG. 5 includes an alignment deflector for aligning the electron beam with the ideal optical axis of the beam. In the example of FIG. 5, an upper alignment deflector 107 and a lower alignment deflector 108 are provided. The electron beam 104 that has passed through the electron gun 100 and the converging lens 105 is deflected by the deflection action of the upper alignment deflector 107, further enters the lower alignment deflector 108, and the objective lens 113 is incident on the lower alignment deflector 108. It is deflected so as to be perpendicularly incident on. As described above, the upper alignment deflector 107 and the lower alignment deflector 108 are composed of deflectors having zero third-order fifth-order deflection aberration. The magnetic field intensity required for the deflection is controlled by the upper alignment deflector 107 using the upper alignment deflector controller 122 and the lower alignment deflector 108 using the lower alignment deflector controller 123.
 ワブリングによる視差演算に基づいて、電子ビームの入射角度、中心位置を制御演算装置133が判定し、アライメント偏向器制御器124で上側アライメント偏向器107と下側アライメント偏向器108に必要な磁場強度を求め、上側アライメント偏向器制御器122と下側アライメント偏向器制御器123を介して、必要な電流が上側アライメント偏向器107と下側アライメント偏向器108に供給することによって、光軸調整を実行する。上側アライメント偏向器107と下側アライメント偏向器108は、三次五次偏向収差ゼロの偏向器で構成されているので、この調整にともなう偏向収差は発生しない。 Based on the parallax calculation by wobbling, the control calculation device 133 determines the incident angle and center position of the electron beam, and the alignment deflector controller 124 determines the magnetic field strength required for the upper alignment deflector 107 and the lower alignment deflector 108. The required current is supplied to the upper alignment deflector 107 and the lower alignment deflector 108 via the upper alignment deflector controller 122 and the lower alignment deflector controller 123 to perform the optical axis adjustment. . Since the upper alignment deflector 107 and the lower alignment deflector 108 are composed of deflectors having zero third-order fifth-order deflection aberration, no deflection aberration is caused by this adjustment.
 組み込んだ偏向器はすべて、三次五次収差を低減・ゼロにする偏向器であるので、偏向収差をゼロに抑えた走査形電子顕微鏡を提供できる。 All the built-in deflectors are deflectors that reduce and eliminate third-order and fifth-order aberrations, so that it is possible to provide a scanning electron microscope that suppresses deflection aberrations to zero.
1 ボビン
2 一対のコイル
3 導線のガイド溝
4 コイル巻きの始点
5 次コイル巻きの始点
6 1組目のコイル(の中心角)
7 2組目のコイル(の中心角)
8 3組目のコイル(の中心角)
9 4組目のコイル(の中心角)
10 1組目のコイルの中心角の半角
11 2組目のコイルの中心角の半角
12 3組目のコイルの中心角の半角
13 4組目のコイルの中心角の半角
100 電子銃
101 電子銃チップ
102 引き出し電極
103 加速電極
104 電子ビーム
105 収束レンズ
106 絞り
107 上側アライメント偏向器
108 下側アライメント偏向器
109 上側イメージシフト偏向器
110 上側走査偏向器
111 下側イメージシフト偏向器
112 下側走査偏向器
113 対物レンズ
114 試料
115 検出器
120 電子銃制御器
121 収束レンズ制御器
122 上側アライメント偏向器制御器
123 下側アライメント偏向器制御器
124 アライメント偏向器制御器
125 上側イメージシフト偏向器制御器
126 上側走査偏向器制御器
127 下側走査偏向器制御器
128 下側イメージシフト偏向器制御器
129 イメージシフト偏向器制御器
130 走査偏向器制御器
131 A/D変換器
132 対物レンズ制御器
133 制御演算装置
134 表示装置
135 入力装置
DESCRIPTION OF SYMBOLS 1 Bobbin 2 A pair of coil 3 Guide groove 4 of a conducting wire Coil winding start point 5 Coil winding start point 6 First set coil (center angle)
7 Second set of coils (center angle)
8 Third set of coils (center angle)
9 4th coil (center angle)
10 Half angle of center angle of first set coil 11 Half angle of center angle of second set coil 12 Half angle of center angle of third set coil 13 Half angle of center angle of fourth set coil 100 Electron gun 101 Electron gun Chip 102 Extraction electrode 103 Acceleration electrode 104 Electron beam 105 Converging lens 106 Aperture 107 Upper alignment deflector 108 Lower alignment deflector 109 Upper image shift deflector 110 Upper scan deflector 111 Lower image shift deflector 112 Lower scan deflector 113 Objective lens 114 Sample 115 Detector 120 Electron gun controller 121 Converging lens controller 122 Upper alignment deflector controller 123 Lower alignment deflector controller 124 Alignment deflector controller 125 Upper image shift deflector controller 126 Upper scan Deflector controller 127 Lower scanning deflector system Control unit 128 Lower image shift deflector controller 129 Image shift deflector controller 130 Scanning deflector controller 131 A / D converter 132 Objective lens controller 133 Control arithmetic unit 134 Display unit 135 Input unit

Claims (6)

  1.  荷電粒子ビームを偏向する電磁偏向器において、
     前記荷電粒子のビーム光軸に直交する方向に磁場を発生するように導線が巻かれた4n個のコイルを有し、当該4n個のコイルは、前記荷電粒子ビームの理想光軸に垂直な平面内で、コイルの一端に接する第1の仮想直線と、前記コイルの他端に接する第2の仮想直線とが、前記荷電粒子ビームの理想光軸を交点とするように交差するときの2つの仮想直線の前記コイル側の相対角の半角を示す開き角が、下記の2つの角度条件の少なくとも1つを満たすように形成されていることを特徴とする電磁偏向器。
    角度条件1
     θ=36°+a、θ=84°-a、θ=a、θ=120°-a
    角度条件2
     θ=72°-b、θ=12°-b、θ=b、θ=60°+b
     a、b…実数
     n…自然数
     θ…第1のコイルの開き角
     θ…第2のコイルの開き角
     θ…第3のコイルの開き角
     θ…第4のコイルの開き角
    In an electromagnetic deflector that deflects a charged particle beam,
    4n coils each having a conductive wire wound so as to generate a magnetic field in a direction perpendicular to the beam optical axis of the charged particles, and the 4n coils are planes perpendicular to the ideal optical axis of the charged particle beam. Of the first virtual straight line that is in contact with one end of the coil and the second virtual straight line that is in contact with the other end of the coil intersect with each other with the ideal optical axis of the charged particle beam as an intersection. An electromagnetic deflector characterized in that an opening angle indicating a half angle of a relative angle of the virtual side of the coil side satisfies at least one of the following two angle conditions.
    Angle condition 1
    θ A = 36 ° + a, θ B = 84 ° -a, θ C = a, θ D = 120 ° -a
    Angle condition 2
    θ A = 72 ° −b, θ B = 12 ° −b, θ C = b, θ D = 60 ° + b
    a, b ... real number n ... natural number θ A ... opening angle of first coil θ B ... opening angle of second coil θ C ... opening angle of third coil θ D ... opening angle of fourth coil
  2.  請求項1において、
     前記θ、θ、θ、θは、それぞれ(33°、51°、69°、87°)及び(39°、45°、75°、81°)の少なくとも一方であることを特徴とする電磁偏向器。
    In claim 1,
    The θ A , θ B , θ C , and θ D are at least one of (33 °, 51 °, 69 °, 87 °) and (39 °, 45 °, 75 °, 81 °), respectively. Electromagnetic deflector.
  3.  請求項1において、
     前記θ、θ、θ、θは、それぞれ(3°、9°、63°、87°)であることを特徴とする電磁偏向器。
    In claim 1,
    Θ A , θ B , θ C , and θ D are (3 °, 9 °, 63 °, and 87 °), respectively.
  4.  請求項1において、
     前記θ、θ、θ、θが、それぞれ(33°、51°、69°、87°)及び(39°、45°、75°、81°)の少なくとも一方である4n個のコイルと、前記θ、θ、θ、θが、それぞれ(3°、9°、63°、87°)である4n個のコイルを備えたことを特徴とする電磁偏向器。
    In claim 1,
    Wherein θ A, θ B, θ C , θ D , respectively (33 °, 51 °, 69 °, 87 °) and (39 °, 45 °, 75 °, 81 °) 4n pieces of at least one of An electromagnetic deflector comprising: a coil; and 4n coils each having the above-mentioned θ A , θ B , θ C , and θ D (3 °, 9 °, 63 °, and 87 °).
  5.  荷電粒子源から放出される荷電粒子ビームを偏向する電磁偏向器を備えた荷電粒子線装置において、
     前記電磁偏向器は前記荷電粒子ビームを偏向する磁場を発生する4n個のコイルを有し、当該4n個のコイルは、前記荷電粒子ビーム光軸側から見たコイルの開き角の半角が、下記の2つの角度条件の少なくとも1つを満たすように形成されていることを特徴とする電磁偏向器。
    角度条件1
     θ=36°+a、θ=84°-a、θ=a、θ=120°-a
    角度条件2
     θ=72°-b、θ=12°-b、θ=b、θ=60°+b
     a、b…実数
     n…自然数
     θ…第1のコイルの開き角の半角
     θ…第2のコイルの開き角の半角
     θ…第3のコイルの開き角の半角
     θ…第4のコイルの開き角の半角
    In a charged particle beam apparatus comprising an electromagnetic deflector for deflecting a charged particle beam emitted from a charged particle source,
    The electromagnetic deflector has 4n coils for generating a magnetic field for deflecting the charged particle beam, and the 4n coils have a half angle of a coil opening angle as viewed from the charged particle beam optical axis side as follows. An electromagnetic deflector formed so as to satisfy at least one of the two angle conditions.
    Angle condition 1
    θ A = 36 ° + a, θ B = 84 ° -a, θ C = a, θ D = 120 ° -a
    Angle condition 2
    θ A = 72 ° −b, θ B = 12 ° −b, θ C = b, θ D = 60 ° + b
    a, b ... real number n ... natural number θ A ... half angle of opening angle of first coil θ B ... half angle of opening angle of second coil θ C ... half angle of opening angle of third coil θ D ... fourth Half angle of coil opening angle
  6.  請求項5において、
     前記電磁偏向器は、前記荷電粒子ビームを試料上で走査する走査偏向器、当該走査偏向器の走査領域を移動させる視野移動用偏向器、前記荷電粒子線装置の光学素子の光軸に前記荷電粒子ビームを一致させるアライメント偏向器の少なくとも1つであることを特徴とする荷電粒子線装置。
    In claim 5,
    The electromagnetic deflector includes a scanning deflector that scans the charged particle beam on a sample, a field-of-view deflector that moves a scanning region of the scanning deflector, and an optical axis of the optical element of the charged particle beam device that charges the optical axis. A charged particle beam apparatus comprising at least one alignment deflector for matching particle beams.
PCT/JP2016/075256 2016-08-30 2016-08-30 Electromagnetic deflector, and charged particle ray device WO2018042505A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/075256 WO2018042505A1 (en) 2016-08-30 2016-08-30 Electromagnetic deflector, and charged particle ray device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/075256 WO2018042505A1 (en) 2016-08-30 2016-08-30 Electromagnetic deflector, and charged particle ray device

Publications (1)

Publication Number Publication Date
WO2018042505A1 true WO2018042505A1 (en) 2018-03-08

Family

ID=61300373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075256 WO2018042505A1 (en) 2016-08-30 2016-08-30 Electromagnetic deflector, and charged particle ray device

Country Status (1)

Country Link
WO (1) WO2018042505A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922351B1 (en) * 1969-12-25 1974-06-07
JPS59154732A (en) * 1983-02-21 1984-09-03 Nippon Telegr & Teleph Corp <Ntt> Magnetic field type deflector
JPH05129192A (en) * 1991-11-06 1993-05-25 Fujitsu Ltd Electron beam exposure device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922351B1 (en) * 1969-12-25 1974-06-07
JPS59154732A (en) * 1983-02-21 1984-09-03 Nippon Telegr & Teleph Corp <Ntt> Magnetic field type deflector
JPH05129192A (en) * 1991-11-06 1993-05-25 Fujitsu Ltd Electron beam exposure device

Similar Documents

Publication Publication Date Title
JP6490772B2 (en) Charged particle beam equipment
TWI459429B (en) Focused electron beam imaging apparatus, multiple pole electrostatic deflector and method of scanning an electron beam
JP5097512B2 (en) Orbit corrector for charged particle beam and charged particle beam apparatus
WO2014188882A1 (en) Charged particle beam application device
EP1381073A1 (en) Aberration-corrected charged-particle optical apparatus
KR20070118964A (en) An electron beam apparatus and an aberration correction optical apparatus
US9543053B2 (en) Electron beam equipment
JP5492306B2 (en) Electron beam equipment
JP6037693B2 (en) Charged particle beam equipment
US20180005797A1 (en) Scanning electron microscope
US11961709B2 (en) Charged particle beam device for inspection of a specimen with a plurality of charged particle beamlets
US6627890B2 (en) Particle beam apparatus for tilted observation of a specimen
JP4781211B2 (en) Electron beam apparatus and pattern evaluation method using the same
US10546714B2 (en) Energy filter and charged particle beam system
US11239042B2 (en) Beam irradiation device
JP2007141488A (en) Electron beam device and pattern evaluation method
WO2018042505A1 (en) Electromagnetic deflector, and charged particle ray device
US10446360B2 (en) Particle source for producing a particle beam and particle-optical apparatus
JP2004235062A (en) Electrostatic lens unit and charged particle beam device using it
JP4135221B2 (en) Mapping electron microscope
US11043353B2 (en) Energy filter and charged particle beam apparatus
JP7095180B2 (en) Beam deflection device, aberration corrector, monochromator, and charged particle beam device
JP2023116936A (en) Aberration correction device and electron microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP