WO2018042495A1 - Refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus Download PDF

Info

Publication number
WO2018042495A1
WO2018042495A1 PCT/JP2016/075219 JP2016075219W WO2018042495A1 WO 2018042495 A1 WO2018042495 A1 WO 2018042495A1 JP 2016075219 W JP2016075219 W JP 2016075219W WO 2018042495 A1 WO2018042495 A1 WO 2018042495A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
light
oil
refrigeration cycle
cycle apparatus
Prior art date
Application number
PCT/JP2016/075219
Other languages
French (fr)
Japanese (ja)
Inventor
貴玄 中村
中川 博之
辰也 佐々木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018536537A priority Critical patent/JP6641490B2/en
Priority to PCT/JP2016/075219 priority patent/WO2018042495A1/en
Publication of WO2018042495A1 publication Critical patent/WO2018042495A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus in which refrigeration oil that suppresses wear of sliding parts such as a compressor is enclosed.
  • the refrigeration cycle apparatus includes a refrigerant circuit including, for example, a compressor, a condenser, a throttling device, and an evaporator.
  • a compressor since the compressor includes a compression mechanism that compresses the refrigerant, the refrigeration cycle apparatus is filled with refrigerating machine oil that suppresses wear of the sliding portion of the compression mechanism.
  • a technique has been proposed in which a sight glass is provided in the piping of the refrigeration cycle apparatus so that the deterioration state of the refrigeration oil can be determined visually (for example, see Patent Document 1).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration cycle apparatus that can automatically and accurately detect the state of refrigeration oil in the refrigeration cycle apparatus. .
  • a refrigeration cycle apparatus is provided in a refrigerant circuit including a compressor, a condenser, a throttling device, and an evaporator, and a flow path from the refrigerant circuit to the evaporator, the compressor, and the condenser, and transmits light.
  • the light detection unit that is provided in the light emitting unit and detects the light of the light emitting unit, and whether or not the refrigerating machine oil in the refrigerant circuit is deteriorated or compressed And a control unit that determines whether or not the machine is damaged, and a notification unit that notifies whether or not the refrigerating machine oil in the refrigerant circuit is deteriorated or whether the compressor is damaged.
  • the light-emitting unit and the light detection sensor are provided, and the control device determines whether or not the refrigerating machine oil in the refrigerant circuit is deteriorated based on the detection result of the light detection sensor, or the compressor is damaged. Whether or not the state of the refrigerating machine oil can be automatically and accurately detected.
  • FIG. 1 is an explanatory diagram of the refrigerant circuit C of the refrigeration cycle apparatus 100 according to the present embodiment.
  • FIG. 2 is an explanatory diagram of the oil separator 2 of the refrigeration cycle apparatus 100 according to the present embodiment.
  • the refrigeration cycle apparatus 100 of the present embodiment can be applied to, for example, an air conditioner, a refrigeration apparatus, a heat pump water heater, and the like.
  • the refrigeration cycle apparatus 100 may be provided with a four-way valve so that a cooling operation and a heating operation can be performed.
  • the refrigeration cycle apparatus 100 includes a refrigerant circuit C that circulates refrigerant.
  • the refrigerant circuit C includes a compressor 1, an oil separator 2, a condenser 3, a throttling device 4, an evaporator 5, an accumulator 6, and refrigerant pipes P1 to P8.
  • the refrigerant circuit C included in the refrigeration cycle apparatus 100 includes an oil return circuit C1 that returns the refrigeration oil separated from the refrigerant by the oil separator 2 to the compressor 1.
  • the refrigeration cycle apparatus 100 includes a condenser fan 3 ⁇ / b> A attached to the condenser 3 and an evaporator fan 5 ⁇ / b> A attached to the evaporator 5.
  • the refrigeration cycle apparatus 100 includes a light emitting unit 21 provided in the oil separator 2, a light detection sensor 22 provided in the oil separator 2, and a control device 50 that outputs a detection result of the light detection sensor 22. And a notification unit 51 controlled by the control device 50.
  • Compressor 1 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant.
  • the compressor 1 of the present embodiment is configured such that the rotational speed is controlled by an inverter.
  • the compressor 1 includes a refrigerant discharge portion that discharges high-pressure refrigerant and a refrigerant suction portion that sucks low-pressure refrigerant that circulates and returns through the refrigerant circuit C.
  • the oil separator 2 is provided on the discharge side of the compressor 1 and has a function of storing refrigeration oil separated from the refrigerant.
  • the oil separator 2 is connected to the container 2A in which a space for storing refrigerating machine oil is formed, the refrigerant inflow part 2B1 connected to the container 2A, the refrigerant outflow part 2B2 connected to the container 2A, and the container 2A. And an oil outflow portion 2B3.
  • the oil separator 2 includes a light transmissive member 2C provided in the container 2A, and a light transmissive member 2D provided in the container 2A and disposed at a position facing the light transmissive member 2C.
  • Container 2A includes a cylindrical side surface portion, a bottom portion connected to the lower end of the side surface portion, and a top surface portion (upper surface portion) connected to the upper end of the side surface portion.
  • a refrigerant inflow portion 2B1 is connected to the side surface portion of the container 2A.
  • the gas refrigerant discharged from the compressor 1 flows into the container 2A from the refrigerant inflow portion 2B1.
  • coolant outflow part 2B2 is connected to the top
  • An oil outflow portion 2B3 is connected to the bottom of the container 2A.
  • the end of the oil outflow part 2B3 into which the refrigerating machine oil in the container 2A flows is disposed above the bottom of the container 2A.
  • the refrigerating machine oil Oi flows out after a certain amount of refrigerating machine oil Oi has accumulated in the container 2A, and the light detection sensor 22 can easily detect the state of the refrigerating machine oil.
  • Refrigerant inflow part 2B1, refrigerant outflow part 2B2, and oil outflow part 2B3 can be constituted by piping.
  • the refrigerant inflow part 2B1 is connected to the refrigerant pipe P1
  • the refrigerant outflow part 2B2 is connected to the refrigerant pipe P3
  • the oil outflow part 2B3 is connected to the refrigerant pipe P7.
  • the light transmissive member 2C and the light transmissive member 2D are disposed below the container 2A in the vertical direction of the container 2A.
  • the light transmissive member 2C is disposed at a position opposite to the light emitting unit 21, and is configured such that light emitted from the light emitting unit 21 enters the container 2A.
  • the light transmissive member 2D is disposed at a position opposite to the light detection sensor 22, and is configured such that the light detection sensor 22 can receive light that has exited the light emitting portion 21 and entered the container 2A.
  • a light emitting unit 21, a light transmitting member 2C, a light transmitting member 2D, and a light detection sensor 22 are linearly arranged in this order.
  • the oil outflow portion 2B3 is not positioned on a straight line connecting the light emitting portion 21, the light transmitting member 2C, the light transmitting member 2D, and the light detection sensor 22. This is to prevent the light from the light emitting unit 21 from being blocked by the oil spill unit 2B3 and the light detection sensor 22 from receiving the light.
  • the oil outflow portion 2B3 is arranged at a position shifted in a horizontal direction from a straight line connecting the light emitting portion 21, the light transmitting member 2C, the light transmitting member 2D, and the light detection sensor 22, Good.
  • the light transmissive member 2C and the light transmissive member 2D can be made of, for example, transparent glass, or can be made of a transparent resin.
  • the oil return circuit C1 is a circuit in which one end is connected to the oil separator 2 and the other end is connected to the suction side of the compressor 1.
  • the oil return circuit C1 includes a refrigerant pipe P7, a throttle device 7, and a refrigerant pipe P8.
  • the expansion device 7 can be composed of, for example, a capillary tube.
  • the condenser 3 can be configured, for example, as an air-cooled heat exchanger that performs heat exchange between the refrigerant circulating inside and the air blown by the condenser fan 3A.
  • the air-cooling heat source side heat exchanger can be configured as, for example, a cross-fin type fin-and-tube heat exchanger including a heat transfer tube and a plurality of fins.
  • the condenser is also referred to as a radiator.
  • the condenser fan 3 ⁇ / b> A can variably adjust the flow rate of air supplied to the condenser 3.
  • the condenser fan 3A is, for example, a propeller fan driven by a DC fan motor.
  • the throttle device 4 is, for example, an electronic expansion valve whose opening degree can be adjusted.
  • a linear electronic expansion valve is used as the electronic expansion valve.
  • the expansion device 4 can also use other decompression means such as a capillary tube.
  • the evaporator 5 can be configured, for example, as an air-cooled heat exchanger that performs heat exchange between the refrigerant circulating inside and the air blown by the evaporator fan 5A.
  • the evaporator 5 can be configured as a fin-and-tube heat exchanger.
  • the evaporator fan 5A can variably adjust the flow rate of air supplied to the evaporator 5.
  • the evaporator fan 5A is, for example, a propeller fan driven by a DC fan motor.
  • the accumulator 6 is configured to prevent a large amount of liquid refrigerant from flowing into the compressor 1 by retaining a refrigerant storage function for storing excess refrigerant and liquid refrigerant that is temporarily generated when the operating state changes. And a liquid separation function.
  • the accumulator 6 includes a refrigerant inflow portion and a refrigerant outflow portion.
  • the accumulator 6 has a refrigerant inflow portion connected to the evaporator 5.
  • the accumulator 6 has a refrigerant inflow portion connected to the oil return circuit C1.
  • the accumulator 6 has a refrigerant outflow portion connected to the compressor 1 on the refrigerant suction side.
  • the refrigerant pipe P ⁇ b> 1 has one end connected to the suction side of the compressor 1 and the other end connected to the oil separator 2.
  • the refrigerant pipe P2 has one end connected to the oil separator 2 and the other end connected to the condenser 3.
  • the refrigerant pipe P3 has one end connected to the condenser 3 and the other end connected to the expansion device 4.
  • the refrigerant pipe P4 has one end connected to the expansion device 4 and the other end connected to the evaporator 5.
  • the refrigerant pipe P5 has one end connected to the evaporator 5 and the other end connected to the accumulator 6.
  • the refrigerant pipe P6 has one end connected to the accumulator 6 and the other end connected to the suction side of the compressor 1.
  • the refrigerant pipe P7 has one end connected to the oil separator 2 and the other end connected to the expansion device 7.
  • One end of the refrigerant pipe P8 is connected to the expansion device 7, and the other end is connected to an intermediate part of the refrigerant pipe P5.
  • coolant piping P5 is a part between one end of the refrigerant
  • the light emitting unit 21 is configured to emit white light.
  • the light emission part 21 can be comprised by white LED which irradiates white light, for example.
  • the light emitting unit 21 is disposed outside the container 2A and faces the space inside the container 2A via the light transmitting member 2C.
  • the light detection sensor 22 is composed of an RGB sensor that detects the red wavelength, the green wavelength, and the blue wavelength of the received light.
  • the light detection sensor 22 is provided in the light emitting unit 21. Specifically, the light detection sensor 22 is disposed in the light irradiation direction of the light emitting unit 21 and is provided at a position facing the light emitting unit 21.
  • the light detection sensor 22 is disposed outside the container 2A and faces the space in the container 2A via the light transmission member 2D.
  • the light detection sensor 22 can be configured by a spectroscope and a plurality of CCD elements.
  • the spectroscope can be composed of, for example, a prism that can be decomposed into red light, green light, and blue light.
  • the control device 50 includes, for example, a microcomputer including a CPU and a storage unit.
  • the control device 50 controls the rotation number of the compressor 1, the opening degree of the expansion device 4, the rotation number of the condenser fan 3A, the rotation number of the evaporator fan 5A, the notification unit 51, and the light emitting unit 21.
  • the original function of suppressing wear of the sliding portion of the compressor 1 may be impaired.
  • the refrigerating machine oil deteriorates, it turns brown (first state). Further, if the sliding portion of the compressor 1 cannot be properly lubricated by the refrigerating machine oil, the sliding portion is shaved and the refrigerating machine oil changes to black (second state).
  • the control device 50 makes a determination regarding the color of the refrigerating machine oil based on the detection result of the light detection sensor 22. By this determination, the control device 50 determines whether or not the refrigerating machine oil in the refrigerant circuit C is deteriorated or whether or not the compressor 1 is damaged.
  • the notification unit 51 performs notification regarding deterioration of refrigeration oil or notification regarding damage to the compressor 1.
  • the notification unit 51 may be configured to notify by displaying on a display such as a remote controller, may be configured to notify by displaying with a lighting device such as an LED, or may be configured to notify by voice. There may be a combination thereof.
  • reporting part 51 can be comprised with a display display part, a lighting device, a speaker, etc., for example.
  • FIG. 3 is an explanatory diagram of the control device of the refrigeration cycle apparatus 100 according to the present embodiment.
  • FIG. 4A is an explanatory diagram of a histogram when the refrigerating machine oil is deteriorated.
  • FIG. 4B is an explanatory diagram of a histogram when the compressor 1 is damaged.
  • the control device 50 includes a histogram creation unit 50A, a determination unit 50B, a notification control unit 50C, an actuator control unit 50D, a gradation range setting unit 50E, and a brightness setting unit 50F.
  • the histogram creation unit 50A creates a histogram for each of red light, green light, and blue light detected by the light detection sensor 22 (see FIGS. 4A and 4B).
  • the horizontal axis represents luminance gradation
  • the vertical axis represents pixel frequency. Note that in this embodiment, the gradation of luminance is 256 gradations.
  • the determination unit 50B has a function of determining whether or not the refrigerating machine oil in the refrigerant circuit C has deteriorated based on the detection result of the light detection sensor 22. This determination of deterioration of the refrigeration oil is also referred to as a third determination. When all the following conditions (1) to (3) are satisfied, the determination unit 50B determines that the color of the refrigerating machine oil has changed to brown and has deteriorated. (1) Regarding the first histogram of red light created by the histogram creation unit 50A, the determination unit 50B has a peak pixel frequency in the first gradation range.
  • the determination unit 50B With respect to the second histogram of green light created by the histogram creation unit 50A, the determination unit 50B has a peak pixel frequency in the second gradation range. (3) Regarding the third histogram of blue light created by the histogram creation unit 50A, the determination unit 50B has the peak pixel frequency in the third gradation range.
  • the control device 50 is set with a first gradation range, a second gradation range, and a third gradation range in order to spread the deterioration determination.
  • the first gradation range can be set to a range of about plus or minus 10 with the gradation value 128 as the center, for example. That is, the first gradation range can be set to a range from 108 to 138.
  • the second gradation range can be set to a range from 0 to 10, for example.
  • the third gradation range can be set to a range of 0 to 10, for example. The extent to which the first gradation range, the second gradation range, and the third gradation range are expanded can be set as appropriate.
  • the first gradation range, the second gradation range, and the third gradation range may be determined in advance, for example, or may be set by a service person or the like. In this embodiment, the first gradation range, the second gradation range, and the third gradation range can be set.
  • the determination unit 50 ⁇ / b> B has a function of determining whether or not the compressor 1 is damaged based on the detection result of the light detection sensor 22. Note that this damage determination of the compressor 1 is also referred to as a second determination.
  • the determination means has the same procedure as described above. As shown in FIG. 4A, typically, the gradation value of the first histogram when the color of the refrigerating machine oil is black is 0, the gradation value of the second histogram is 0, The gradation value of the histogram of 3 is 0. Note that the first gradation range can be set to a range of 0 to 10, for example. The second gradation range can be set to a range from 0 to 10, for example.
  • the third gradation range can be set to a range of 0 to 10, for example. Even in the case of black color determination, it is possible to appropriately set how much the first gradation range, the second gradation range, and the third gradation range are expanded.
  • the determination unit 50 ⁇ / b> B also has a function of determining whether at least one of the light emitting unit 21 side and the light detection sensor 22 side is dirty based on the detection result of the light detection sensor 22. This stain determination is also referred to as a first determination.
  • dirt may adhere to the light emitting part of the light emitting unit 21, the light receiving part of the light detection sensor 22, the light transmitting member 2C, and the light transmitting member 2D due to deterioration over time. If the dirt adheres to these, the accuracy of the above-described determination of deterioration of the refrigerating machine oil and the like is lowered, so that the control device 50 performs the dirt judgment in order to avoid the accuracy reduction.
  • the actuator control unit 50D increases the brightness of the light emitting unit 21 compared to when determining whether or not the refrigerating machine oil in the refrigerant circuit C is deteriorated or whether or not the compressor 1 is damaged. .
  • the actuator control unit 50D may set the light emitting unit 21 to the maximum brightness.
  • the gradation values of the first histogram, the second histogram, and the third histogram in white light are all 255.
  • the gradation of the histogram created by the histogram creation unit 50A is 255 for all of red, green, and blue.
  • the determination unit 50B determines that the peak of the red histogram enters the first gradation range based on the detection result of the light detection sensor 22, and the green color It is determined whether or not the histogram peak falls within the second gradation range and the blue histogram peak falls within the third gradation range.
  • the first gradation range can be set to a range of 0 to 245, for example.
  • the second gradation range can be set to a range from 0 to 245, for example.
  • the third gradation range can be set to a range from 0 to 245, for example.
  • the notification control unit 50C 51 has a function of notifying that effect. That is, when it determines with the refrigerating machine oil in the refrigerant circuit C having deteriorated, the alerting
  • the notification control unit 50C causes the notification unit 51 to perform notification to that effect (first notification).
  • the second notification is a notification indicating that the refrigeration oil has deteriorated
  • the first notification is a notification indicating that the compressor 1 is damaged.
  • the actuator controller 50D determines the rotation speed of the compressor 1, the opening degree of the expansion device 4, the rotation speed of the condenser fan 3A, the rotation speed of the evaporator fan 5A, and the brightness of the light emitting section 21 based on various data. Control.
  • the actuator control unit 50D has a function of stopping the operation of the compressor 1 when the determination unit 50B determines that the compressor 1 is damaged.
  • the gradation range setting unit 50E has a function of setting the first gradation range, the second gradation range, and the third gradation range that are used for determining the deterioration of the refrigerating machine oil. Further, the gradation range setting unit 50E has a function of setting the first gradation range, the second gradation range, and the third gradation range that are used for determining damage to the compressor 1.
  • the gradation range setting unit 50E includes, for example, an input unit such as a button or a touch panel provided on a remote controller or the like.
  • the brightness setting unit 50F sets the brightness of the light emitting unit 21 in each of the first determination, the second determination, and the third determination described above.
  • the brightness setting unit 50F sets the brightness of the light emitting unit 21 at the time of the first determination as the first brightness, and sets the brightness of the light emitting unit 21 at the time of the second determination and the third determination as the second brightness.
  • the first brightness is set to be larger than the second brightness.
  • FIG. 5 is an example of a flowchart of the refrigeration cycle apparatus 100 according to the present embodiment.
  • the control device 50 sets the brightness of the light emitting unit 21 to the first brightness (step S1).
  • the determination unit 50B of the control device 50 performs the first determination (step S2). If it is determined that the light transmitting member 2C or the like is not dirty, the brightness of the light emitting unit 21 is set to the second brightness (step S3). If the control device 50 determines that the light transmitting member 2C and the like are dirty, it notifies that fact (step S2-1). Thereafter, since the accuracy of the second determination and the third determination is lowered, the control device 50 ends the flow without performing the second determination and the third determination (step S6). Moreover, the determination part 50B of the control apparatus 50 performs 2nd determination after step S3 (step S4).
  • step S4 the first notification is made to notify the damage of the compressor 1 (step S4-1). Note that when the compressor 1 is informed of damage, it is difficult to determine deterioration of the refrigerating machine oil because the color of the refrigerating machine oil is black. For this reason, after notifying the damage of the compressor 1, the flow is finished without determining the deterioration of the refrigerating machine oil in step S5 (step S6). If it is determined that the compressor 1 is not damaged, the third determination is continued (step S5). If it is determined that the refrigerating machine oil has deteriorated, a second notification is made to notify the deterioration of the refrigerating machine oil (step S5-1). If it is determined that the refrigerating machine oil has not deteriorated, the flow is terminated (step S6).
  • the black color used for the damage determination by the compressor 1 is darker than the brown color used for the deterioration determination of the refrigerating machine oil, so it is difficult to determine the deterioration of the refrigerating machine oil when the compressor 1 is damaged. Therefore, if the order of determination in steps S4 and S5 is reversed, the compressor 1 is damaged and becomes black, but the refrigeration oil that cannot be determined is deteriorated. In order to avoid this, it is preferable to first determine whether the compressor 1 is damaged (second determination) and then perform a deterioration determination (third determination) of the refrigerating machine oil.
  • step S4 and step S5 may be interchanged.
  • the first gradation range when black is not overlapped with the first gradation range when brown. Therefore, it can be avoided that the deterioration of the refrigerating machine oil is determined in the second determination or the damage of the compressor 1 is determined in the third determination.
  • the control apparatus 50 may memorize
  • the initial value is an initial value of each peak of each histogram. For example, assume that the initial value of the gradation value of the first histogram is 250, the initial value of the gradation value of the second histogram is 240, and the initial value of the gradation value of the third histogram is 230.
  • the storage unit of the control device 50 stores these initial values. Then, the determination unit 50B may determine that the refrigerating machine oil in the refrigerant circuit C is deteriorated or the compressor 1 is damaged based on the deviation amount from the initial value. Note that the amount of red peak shift may be set larger when the compressor 1 is damaged than when the refrigeration oil in the refrigerant circuit C is deteriorated. Note that the green peak shift amount and the blue peak shift amount may be set the same when the refrigerating machine oil in the refrigerant circuit C is deteriorated and when the compressor 1 is damaged.
  • control device 50 determines whether or not the refrigerating machine oil in the refrigerant circuit C has deteriorated due to a decrease in the amount of light detected by the light detection sensor 22, and whether or not the compressor 1 is damaged. Such a determination may be made.
  • the light emitting unit 21 is not limited to the configuration that emits white light
  • the light detection sensor 22 is not limited to the RGB sensor. This is because the determination is based on the amount of decrease in the amount of light.
  • FIG. 6 is an explanatory diagram of the accumulator of Modification 1 of the refrigeration cycle apparatus according to the present embodiment.
  • the accumulator 6 is provided with the light emitting unit 21 and the light detection sensor 22, and the light transmitting member 6 ⁇ / b> C and the light transmitting member 6 ⁇ / b> D.
  • the accumulator 6 includes a container 6A in which a space for storing the gas refrigerant G, the liquid refrigerant L, and the refrigerating machine oil Oi is formed, a refrigerant inflow portion 6B1 connected to the container 6A, and a refrigerant outflow portion 6B2 connected to the container 6A. , A light transmitting member 6C, and a light transmitting member 6D disposed at a position opposite to the light transmitting member 6C.
  • Container 6A includes a cylindrical side surface portion, a bottom portion connected to the lower end of the side surface portion, and a top surface portion (upper surface portion) connected to the upper end of the side surface portion.
  • the refrigerant inflow portion 6B1 and the refrigerant outflow portion 6B2 are connected to the top surface portion of the container 6A.
  • the light transmissive member 6C and the light transmissive member 6D are disposed below the container 6A in the vertical direction of the container 6A. This is because in this embodiment, the refrigeration oil is heavier than the liquid refrigerant, so that the refrigeration oil is stored under the liquid refrigerant. If the refrigeration oil is lighter than the liquid refrigerant, the positions of the light transmitting member 6C and the light transmitting member 6D may be changed upward.
  • the configurations of the light transmitting member 6C and the light transmitting member 6D are the same as those of the light transmitting member 2C and the light transmitting member 2D.
  • the light emitting unit 21, the light transmitting member 6C, the light transmitting member 6D, and the light detection sensor 22 are arranged linearly in this order.
  • FIG. 7A is an explanatory diagram of a refrigerant circuit of Modification 2 of the refrigeration cycle apparatus 102 according to the present embodiment.
  • FIG. 7B is an explanatory diagram of an oil storage unit of Modification 2 of the refrigeration cycle apparatus 102 according to the present embodiment.
  • the oil storage unit 8 is provided with the light emitting unit 21 and the light detection sensor 22, and the light transmitting member 8C and the light transmitting member 8D.
  • the refrigeration cycle apparatus 102 according to Modification 2 includes a branch circuit C2 connected to the oil return circuit C1.
  • Branch circuit C ⁇ b> 2 includes a first pipe P ⁇ b> 9, a second pipe P ⁇ b> 10, and an oil storage unit 8.
  • One end of the first pipe P9 is connected to the first portion Po1 on the downstream side of the expansion device 7 (capillary tube) in the oil return circuit C1.
  • One end of the second pipe P10 is connected to the second part Po2 on the downstream side of the first part Po1 in the oil return circuit C1.
  • the other end of the first pipe P9 is disposed in the container 8A, and an opening for supplying refrigerating machine oil into the container 8A is formed.
  • the other end of the second pipe P10 is disposed in the container 8A, and an opening for discharging the refrigerating machine oil out of the container 8A is formed.
  • the oil reservoir 8 includes a container 8A in which a space for storing the refrigerating machine oil Oi is formed, an oil inlet 8B1 connected to the container 8A, an oil outlet 8B2 connected to the container 8A, and a light transmitting member 8C.
  • a light transmissive member 8E disposed at a position opposite to the light transmissive member 8C.
  • the container 8A includes a cylindrical side surface portion, a bottom portion connected to the lower end of the side surface portion, and a top surface portion (upper surface portion) connected to the upper end of the side surface portion.
  • the oil inflow portion 8B1 is connected to the top surface portion of the container 8A, and the oil outflow portion 8B2 is connected to the bottom portion of the container 8A.
  • an opening serving as an outlet for the refrigerating machine oil is formed at the upper end (other end) of the oil outflow portion 8B2.
  • the oil reservoir 8 is arranged such that the upper end of the oil outlet 8B2 is spaced a predetermined distance L1 from the bottom of the container 6A so that the refrigerating machine oil Oi can easily accumulate in the container 8A.
  • the light transmissive member 8C and the light transmissive member 8D are disposed below the upper end of the oil outflow portion 8B2 in the vertical direction of the container 8A. As a result, light passes through the portion where the refrigerating machine oil Oi is stored, and the determination accuracy such as deterioration of the refrigerating machine oil Oi can be improved.
  • the configurations of the light transmitting member 8C and the light transmitting member 8D are the same as those of the light transmitting member 2C and the light transmitting member 2D.
  • the light emitting unit 21, the light transmissive member 8C, the light transmissive member 8D, and the light detection sensor 22 are linearly arranged in this order.
  • FIG. 8 is an explanatory diagram of Modification 3 of the refrigeration cycle apparatus according to the present embodiment.
  • the light emitting unit 21 and the light detection sensor 22 are provided in the refrigerant pipe P5, and the light transmitting member PC and the light transmitting member PD are provided.
  • the refrigerant pipe P5 is a pipe that connects the evaporator 5 and the compressor 1 via the accumulator 6 and the refrigerant pipe P6.
  • refrigeration oil is heavier than a refrigerant
  • the light emitting unit 21 is disposed in one of the upper part and the lower part of a part of the refrigerant pipe P5, and the light detection sensor 22 is a part of the refrigerant pipe P5 so as to face the light emitting part 21. It is arrange
  • a part of the refrigerant pipe P5 indicates a part between one end and the other end of the refrigerant pipe P5.
  • the light emission part 21 is arrange
  • the configurations of the light transmitting member PC and the light transmitting member PD are the same as those of the light transmitting member 2C and the light transmitting member 2D.
  • the light emitting unit 21, the light transmissive member PC, the light transmissive member PD, and the light detection sensor 22 are arranged linearly in this order.
  • the determination unit 50B of the control device 50 determines whether or not the refrigerating machine oil in the refrigerant pipe P5 (refrigerant circuit C) has deteriorated based on the detection result of the light detection sensor 22 when the compressor 1 is stopped. Alternatively, it may be determined whether or not the compressor 1 is damaged. This is because when the compressor 1 is operating, it is assumed that the refrigeration oil flows into the refrigerant and does not stay in the lower part of the refrigerant pipe P5. That is, by adopting this configuration, the compressor 1 is stopped, and the refrigerating machine oil that has flowed down to the lower portion of the refrigerant pipe P5 due to the action of gravity can be detected by the light detection sensor 22, and stays in the refrigerant pipe P5. The determination regarding the color of refrigerating machine oil can be performed accurately.
  • this modification 3 while providing the light emission part 21 and the light detection sensor 22 in the refrigerant
  • the light emitting unit 21, the light detection sensor 22, the light transmission member PC, and the light transmission member PD may be provided in the refrigerant pipe P6.
  • the light emitting unit 21 and the light detection sensor 22 may be provided in a portion on the downstream side of the expansion device 7 (capillary tube) in the oil return circuit C1. That is, the light emitting unit 21, the light detection sensor 22, the light transmission member PC, and the light transmission member PD may be provided in the refrigerant pipe P8.
  • FIG. 9 is an explanatory diagram of Modification 4 of the refrigeration cycle apparatus according to the present embodiment.
  • the compressor 1 is provided with the light emitting unit 21 and the light detection sensor 22, and the light transmitting member 1 ⁇ / b> C and the light transmitting member 1 ⁇ / b> D are provided.
  • the compressor 1 is a scroll compressor will be described as an example.
  • the compressor 1 includes a sealed container 1A constituting an outer shell, a suction pipe 1B1 that guides the refrigerant to the sealed container 1A, a discharge pipe 1B2 that discharges the compressed refrigerant, and a subframe 1F that partitions a space in the sealed container 1A.
  • the compressor 1 includes an orbiting scroll 1H formed with a spiral body used for compressing the refrigerant, a frame 1J that accommodates the orbiting scroll 1H, an axis SF that rotates the orbiting scroll 1H, An electric motor 1E that rotates the shaft SF and an Oldham ring 1I that swings the swing scroll 1H are included.
  • a fixed scroll 1G, an orbiting scroll 1H, a frame 1J, a shaft SF, an electric motor 1E, an Oldham ring 1I, and the like are provided in the sealed container 1A.
  • a suction pipe 1B1 communicating with the inside of the sealed container 1A is connected to the side surface of the sealed container 1A.
  • a discharge pipe 1B2 through which refrigerant compressed by the fixed scroll 1G and the swing scroll 1H is discharged is connected to the upper part of the sealed container 1A.
  • the suction pipe 1B1 is a pipe for guiding the refrigerant flowing into the compressor 1 into the sealed container 1A, and is connected to the refrigerant pipe P6.
  • the suction pipe 1B1 is provided on the side surface of the sealed container 1A.
  • the discharge pipe 1B2 is a pipe for discharging the refrigerant compressed by the compressor 1, and is connected to the refrigerant pipe P1.
  • the sub-frame 1F is provided so as to partition the space in the sealed container 1A, and a sub-bearing 1F1 that rotatably supports the lower end side of the shaft SF is provided.
  • a bottom oil reservoir 1L is provided below the subframe 1F, and an electric motor 1E is provided above the subframe 1F.
  • the bottom oil reservoir 1L stores the refrigeration oil Oi.
  • the bottom oil reservoir 1L is provided on the lower side of the subframe 1F.
  • the refrigerating machine oil Oi stored in the bottom oil reservoir 1L is pulled up to the swing scroll 1H side by an oil pump provided at the lower end of the shaft SF.
  • the fixed scroll 1G compresses the refrigerant together with the swing scroll 1H.
  • the fixed scroll 1G is disposed to face the orbiting scroll 1H.
  • the discharge valve 1K that releases the pressure of the compression chamber formed by the fixed scroll 1G and the swing scroll 1H. Is provided.
  • the frame 1J accommodates the orbiting scroll 1H so that the orbiting scroll 1H can slide freely.
  • the axis SF transmits driving force to the orbiting scroll 1H.
  • the electric motor 1E rotates the shaft SF.
  • the electric motor 1E includes a stator 1E1 fixedly supported by the hermetic container 1A and a rotor 1E2 that generates torque by being combined with the stator 1E1.
  • the electric motor 1E is provided so as to partition an upper space in which the swing scroll 1H, the fixed scroll 1G, and the like are provided, and a lower space in which the bottom oil reservoir 1L is provided.
  • the stator 1E1 is configured, for example, by mounting a multi-phase winding on a laminated iron core.
  • the rotor 1E2 has, for example, a permanent magnet (not shown) inside, and is supported by the shaft SF so that a preset air gap is formed between the rotor 1E2 and the inner peripheral surface of the stator 1E1.
  • the rotor 1E2 is rotationally driven when the stator 1E1 is energized to rotate the shaft SF.
  • the Oldham ring 1I is used to prevent the rotation motion during the swing motion of the swing scroll 1H.
  • the light transmitting member 1C and the light transmitting member 1D are provided at the formation position of the bottom oil reservoir 1L in the sealed container 1A.
  • the configurations of the light transmitting member 1C and the light transmitting member 1D are the same as those of the light transmitting member 2C and the light transmitting member 2D.
  • the axis SF oil pump
  • the axis SF is not positioned on a straight line connecting the light emitting unit 21, the light transmitting member 1C, the light transmitting member 1D, and the light detection sensor 22. This is to avoid that the light from the light emitting unit 21 is blocked by the axis SF and the light detection sensor 22 cannot receive the light.
  • the axis SF may be arranged at a position where a predetermined distance in the horizontal direction is shifted from a straight line connecting the light emitting unit 21, the light transmitting member 1 ⁇ / b> C, the light transmitting member 1 ⁇ / b> D, and the light detection sensor 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

This refrigeration cycle apparatus is provided with: a refrigerant circuit that is provided with a compressor, a condenser, a diaphragm device, and an evaporator; a light-emitting unit that emits light and that is provided to a flow passage leading to the evaporator, the compressor, and the condenser in the refrigerant circuit; a photodetection sensor that detects the light from the light-emitting unit and that is provided together with the light-emitting unit; a control device that determines whether freezer oil in the refrigerant circuit has degraded or whether the compressor has been damaged, on the basis of the detection result of the photodetection sensor; and a notification unit that notifies whether the freezer oil in the refrigerant circuit has degraded or whether the compressor has been damaged.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷凍サイクル装置に関し、特に、圧縮機等の摺動部の摩耗を抑制する冷凍機油が封入される冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus in which refrigeration oil that suppresses wear of sliding parts such as a compressor is enclosed.
 冷凍サイクル装置は、例えば、圧縮機、凝縮器、絞り装置及び蒸発器を備えた冷媒回路を備えている。ここで、圧縮機は冷媒を圧縮する圧縮機構を備えているため、冷凍サイクル装置には、この圧縮機構の摺動部の摩耗を抑制する冷凍機油が封入されている。従来、冷凍サイクル装置の配管中にサイトグラスを設け、目視で冷凍機油の劣化状態等を判断できるようにした技術が提案されている(例えば、特許文献1参照)。 The refrigeration cycle apparatus includes a refrigerant circuit including, for example, a compressor, a condenser, a throttling device, and an evaporator. Here, since the compressor includes a compression mechanism that compresses the refrigerant, the refrigeration cycle apparatus is filled with refrigerating machine oil that suppresses wear of the sliding portion of the compression mechanism. Conventionally, a technique has been proposed in which a sight glass is provided in the piping of the refrigeration cycle apparatus so that the deterioration state of the refrigeration oil can be determined visually (for example, see Patent Document 1).
特開2001-227846号公報JP 2001-227846 A
 目視で冷凍機油の劣化状態等を判断する場合には、サービスマン等が定期的に冷凍機油を目視で監視する必要があり、サービスマンが冷凍サイクル装置を管理する負担が増大する。また、目視で冷凍機油の劣化状態等を判断する場合には、冷凍機油の状態を把握する精度が低下する可能性がある。 When visually judging the deterioration state of the refrigerating machine oil or the like, it is necessary for a service person to regularly monitor the refrigerating machine oil visually, which increases the burden of the service person managing the refrigeration cycle apparatus. Moreover, when judging the deterioration state etc. of refrigerating machine oil visually, the precision which grasps | ascertains the state of refrigerating machine oil may fall.
 本発明は、上述のような課題を解決するためになされたものであり、冷凍サイクル装置内の冷凍機油の状態を自動で精度よく検出することができる冷凍サイクル装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration cycle apparatus that can automatically and accurately detect the state of refrigeration oil in the refrigeration cycle apparatus. .
 本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、絞り装置及び蒸発器を備えた冷媒回路と、冷媒回路のうちの蒸発器、圧縮機及び凝縮器までの流路に設けられ、光を照射する発光部と、発光部に併設され、発光部の光を検出する光検出センサーと、光検出センサーの検出結果に基づいて、冷媒回路中の冷凍機油が劣化しているか否か、又は圧縮機が損傷しているか否かを判定する制御装置と、冷媒回路中の冷凍機油が劣化しているか否か、又は圧縮機が損傷しているか否かを報知する報知部と、を備えた。 A refrigeration cycle apparatus according to the present invention is provided in a refrigerant circuit including a compressor, a condenser, a throttling device, and an evaporator, and a flow path from the refrigerant circuit to the evaporator, the compressor, and the condenser, and transmits light. Based on the detection result of the light emitting unit to irradiate, the light detection unit that is provided in the light emitting unit and detects the light of the light emitting unit, and whether or not the refrigerating machine oil in the refrigerant circuit is deteriorated or compressed And a control unit that determines whether or not the machine is damaged, and a notification unit that notifies whether or not the refrigerating machine oil in the refrigerant circuit is deteriorated or whether the compressor is damaged.
 本発明によれば、発光部及び光検出センサーを備え、制御装置が、光検出センサーの検出結果に基づいて、冷媒回路中の冷凍機油が劣化しているか否か、又は圧縮機が損傷しているか否かを判定することができ、冷凍機油の状態を自動で精度よく検出することができる。 According to the present invention, the light-emitting unit and the light detection sensor are provided, and the control device determines whether or not the refrigerating machine oil in the refrigerant circuit is deteriorated based on the detection result of the light detection sensor, or the compressor is damaged. Whether or not the state of the refrigerating machine oil can be automatically and accurately detected.
本実施の形態に係る冷凍サイクル装置の冷媒回路の説明図である。It is explanatory drawing of the refrigerant circuit of the refrigerating-cycle apparatus which concerns on this Embodiment. 本実施の形態に係る冷凍サイクル装置の油分離器の説明図である。It is explanatory drawing of the oil separator of the refrigeration cycle apparatus which concerns on this Embodiment. 本実施の形態に係る冷凍サイクル装置の制御装置の説明図である。It is explanatory drawing of the control apparatus of the refrigeration cycle apparatus which concerns on this Embodiment. 冷凍機油が劣化しているときのヒストグラムの説明図である。It is explanatory drawing of a histogram when refrigerating machine oil has deteriorated. 圧縮機が損傷しているときのヒストグラムの説明図である。It is explanatory drawing of a histogram when a compressor is damaged. 本実施の形態に係る冷凍サイクル装置のフローチャートの一例である。It is an example of the flowchart of the refrigeration cycle apparatus which concerns on this Embodiment. 本実施の形態に係る冷凍サイクル装置の変形例1のアキュムレータの説明図である。It is explanatory drawing of the accumulator of the modification 1 of the refrigerating-cycle apparatus which concerns on this Embodiment. 本実施の形態に係る冷凍サイクル装置の変形例2の冷媒回路の説明図である。It is explanatory drawing of the refrigerant circuit of the modification 2 of the refrigeration cycle apparatus which concerns on this Embodiment. 本実施の形態に係る冷凍サイクル装置の変形例2の油貯留部の説明図である。It is explanatory drawing of the oil storage part of the modification 2 of the refrigerating-cycle apparatus which concerns on this Embodiment. 本実施の形態に係る冷凍サイクル装置の変形例3の説明図である。It is explanatory drawing of the modification 3 of the refrigerating-cycle apparatus which concerns on this Embodiment. 本実施の形態に係る冷凍サイクル装置の変形例4の説明図である。It is explanatory drawing of the modification 4 of the refrigeration cycle apparatus which concerns on this Embodiment.
実施の形態.
 本発明の実施の形態に係る冷凍サイクル装置100について説明する。
 図1は、本実施の形態に係る冷凍サイクル装置100の冷媒回路Cの説明図である。
 図2は、本実施の形態に係る冷凍サイクル装置100の油分離器2の説明図である。
Embodiment.
A refrigeration cycle apparatus 100 according to an embodiment of the present invention will be described.
FIG. 1 is an explanatory diagram of the refrigerant circuit C of the refrigeration cycle apparatus 100 according to the present embodiment.
FIG. 2 is an explanatory diagram of the oil separator 2 of the refrigeration cycle apparatus 100 according to the present embodiment.
[構成説明]
 本実施の形態の冷凍サイクル装置100は、例えば、空気調和装置、冷凍装置及びヒートポンプ給湯機等に適用することができる。なお、図1では図示を省略しているが、冷凍サイクル装置100は、四方弁を設け、冷房運転及び暖房運転を実行できるようにしてもよい。
[Description of configuration]
The refrigeration cycle apparatus 100 of the present embodiment can be applied to, for example, an air conditioner, a refrigeration apparatus, a heat pump water heater, and the like. In addition, although illustration is abbreviate | omitted in FIG. 1, the refrigeration cycle apparatus 100 may be provided with a four-way valve so that a cooling operation and a heating operation can be performed.
 図1に示すように、冷凍サイクル装置100は、冷媒を循環させる冷媒回路Cを含む。冷媒回路Cは、圧縮機1、油分離器2、凝縮器3、絞り装置4、蒸発器5、アキュムレータ6及び冷媒配管P1~P8を含む。冷凍サイクル装置100が含む冷媒回路Cは、油分離器2で冷媒から分離した冷凍機油を圧縮機1へ戻す油戻し回路C1を含む。
 また、冷凍サイクル装置100は、凝縮器3に付設される凝縮器ファン3Aと、蒸発器5に付設される蒸発器ファン5Aとを含む。
 更に、冷凍サイクル装置100は、油分離器2に備えられた発光部21と、油分離器2に備えられた光検出センサー22と、光検出センサー22の検出結果が出力される制御装置50と、制御装置50によって制御される報知部51とを含む。
As shown in FIG. 1, the refrigeration cycle apparatus 100 includes a refrigerant circuit C that circulates refrigerant. The refrigerant circuit C includes a compressor 1, an oil separator 2, a condenser 3, a throttling device 4, an evaporator 5, an accumulator 6, and refrigerant pipes P1 to P8. The refrigerant circuit C included in the refrigeration cycle apparatus 100 includes an oil return circuit C1 that returns the refrigeration oil separated from the refrigerant by the oil separator 2 to the compressor 1.
The refrigeration cycle apparatus 100 includes a condenser fan 3 </ b> A attached to the condenser 3 and an evaporator fan 5 </ b> A attached to the evaporator 5.
Furthermore, the refrigeration cycle apparatus 100 includes a light emitting unit 21 provided in the oil separator 2, a light detection sensor 22 provided in the oil separator 2, and a control device 50 that outputs a detection result of the light detection sensor 22. And a notification unit 51 controlled by the control device 50.
 圧縮機1は、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出する流体機械である。本実施の形態の圧縮機1は、インバータにより回転数が制御されるようになっている。圧縮機1は高圧冷媒を吐出する冷媒吐出部と冷媒回路Cを循環して戻ってきた低圧冷媒を吸入する冷媒吸入部とを備えている。 Compressor 1 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant. The compressor 1 of the present embodiment is configured such that the rotational speed is controlled by an inverter. The compressor 1 includes a refrigerant discharge portion that discharges high-pressure refrigerant and a refrigerant suction portion that sucks low-pressure refrigerant that circulates and returns through the refrigerant circuit C.
 油分離器2は、圧縮機1の吐出側に設けられ、冷媒から分離した冷凍機油を貯留する機能を備えている。油分離器2は、冷凍機油を貯留する空間が形成された容器2Aと、容器2Aに接続された冷媒流入部2B1と、容器2Aに接続された冷媒流出部2B2と、容器2Aに接続された油流出部2B3とを備えている。油分離器2は、容器2Aに設けられた光透過部材2Cと、容器2Aに設けられ、光透過部材2Cの対向位置に配置された光透過部材2Dとを備えている。
 容器2Aは、筒状の側面部と、この側面部の下端に接続された底部と、この側面部の上端に接続された天面部(上面部)とを含む。容器2Aの側面部には、冷媒流入部2B1が接続されている。圧縮機1から吐出されたガス冷媒が冷媒流入部2B1から容器2A内に流入する。容器2Aの天面部は、冷媒流出部2B2が接続されている。冷媒流出部2B2の端部から、容器2A内のガス冷媒が流入することで、容器2Aからガス冷媒が流出する。容器2Aの底部には、油流出部2B3が接続されている。容器2A内の冷凍機油が流入する、油流出部2B3の端部の方が、容器2Aの底部よりも上側に配置されている。これにより、図2に示すように、容器2Aに冷凍機油Оiが一定量溜まってから冷凍機油Оiが流出することになり、光検出センサー22で冷凍機油の状態を検出しやすい。冷媒流入部2B1、冷媒流出部2B2及び油流出部2B3は配管で構成することができる。冷媒流入部2B1は冷媒配管P1に接続され、冷媒流出部2B2は冷媒配管P3に接続され、油流出部2B3は冷媒配管P7に接続される。
 光透過部材2C及び光透過部材2Dは、容器2Aの上下方向において、容器2Aの下側に配置されている。光透過部材2Cは、発光部21の対向位置に配置されており、発光部21を出た光が容器2A内に入るように構成されている。光透過部材2Dは、光検出センサー22の対向位置に配置されており、発光部21を出て容器2A内に入った光が光検出センサー22で受光できるように構成されている。油分離器2には、発光部21、光透過部材2C、光透過部材2D及び光検出センサー22が、この順番で直線状に配置されている。なお、発光部21、光透過部材2C、光透過部材2D及び光検出センサー22を結ぶ直線上には、油流出部2B3が位置しないようにする。油流出部2B3によって発光部21の光が遮られてしまい、光検出センサー22で光を受光できなくなることを回避するためである。例えば、発光部21、光透過部材2C、光透過部材2D及び光検出センサー22を結ぶ直線上から、水平方向に予め定められた距離をずらした位置に、油流出部2B3が配置されていればよい。光透過部材2C及び光透過部材2Dは、例えば、透明のガラスで構成することもできるし、透明の樹脂で構成することもできる。
The oil separator 2 is provided on the discharge side of the compressor 1 and has a function of storing refrigeration oil separated from the refrigerant. The oil separator 2 is connected to the container 2A in which a space for storing refrigerating machine oil is formed, the refrigerant inflow part 2B1 connected to the container 2A, the refrigerant outflow part 2B2 connected to the container 2A, and the container 2A. And an oil outflow portion 2B3. The oil separator 2 includes a light transmissive member 2C provided in the container 2A, and a light transmissive member 2D provided in the container 2A and disposed at a position facing the light transmissive member 2C.
Container 2A includes a cylindrical side surface portion, a bottom portion connected to the lower end of the side surface portion, and a top surface portion (upper surface portion) connected to the upper end of the side surface portion. A refrigerant inflow portion 2B1 is connected to the side surface portion of the container 2A. The gas refrigerant discharged from the compressor 1 flows into the container 2A from the refrigerant inflow portion 2B1. The refrigerant | coolant outflow part 2B2 is connected to the top | upper surface part of the container 2A. When the gas refrigerant in the container 2A flows in from the end of the refrigerant outflow part 2B2, the gas refrigerant flows out of the container 2A. An oil outflow portion 2B3 is connected to the bottom of the container 2A. The end of the oil outflow part 2B3 into which the refrigerating machine oil in the container 2A flows is disposed above the bottom of the container 2A. As a result, as shown in FIG. 2, the refrigerating machine oil Oi flows out after a certain amount of refrigerating machine oil Oi has accumulated in the container 2A, and the light detection sensor 22 can easily detect the state of the refrigerating machine oil. Refrigerant inflow part 2B1, refrigerant outflow part 2B2, and oil outflow part 2B3 can be constituted by piping. The refrigerant inflow part 2B1 is connected to the refrigerant pipe P1, the refrigerant outflow part 2B2 is connected to the refrigerant pipe P3, and the oil outflow part 2B3 is connected to the refrigerant pipe P7.
The light transmissive member 2C and the light transmissive member 2D are disposed below the container 2A in the vertical direction of the container 2A. The light transmissive member 2C is disposed at a position opposite to the light emitting unit 21, and is configured such that light emitted from the light emitting unit 21 enters the container 2A. The light transmissive member 2D is disposed at a position opposite to the light detection sensor 22, and is configured such that the light detection sensor 22 can receive light that has exited the light emitting portion 21 and entered the container 2A. In the oil separator 2, a light emitting unit 21, a light transmitting member 2C, a light transmitting member 2D, and a light detection sensor 22 are linearly arranged in this order. Note that the oil outflow portion 2B3 is not positioned on a straight line connecting the light emitting portion 21, the light transmitting member 2C, the light transmitting member 2D, and the light detection sensor 22. This is to prevent the light from the light emitting unit 21 from being blocked by the oil spill unit 2B3 and the light detection sensor 22 from receiving the light. For example, if the oil outflow portion 2B3 is arranged at a position shifted in a horizontal direction from a straight line connecting the light emitting portion 21, the light transmitting member 2C, the light transmitting member 2D, and the light detection sensor 22, Good. The light transmissive member 2C and the light transmissive member 2D can be made of, for example, transparent glass, or can be made of a transparent resin.
 油戻し回路C1は、一端部が油分離器2に接続され、他端部が圧縮機1の吸入側に接続された回路である。油戻し回路C1は、冷媒配管P7と、絞り装置7と、冷媒配管P8とを含む。なお、絞り装置7は、例えば、キャピラリーチューブで構成することができる。 The oil return circuit C1 is a circuit in which one end is connected to the oil separator 2 and the other end is connected to the suction side of the compressor 1. The oil return circuit C1 includes a refrigerant pipe P7, a throttle device 7, and a refrigerant pipe P8. In addition, the expansion device 7 can be composed of, for example, a capillary tube.
 凝縮器3は、例えば、内部を流通する冷媒と、凝縮器ファン3Aにより送風される空気との熱交換を行う空冷式熱交換器として構成することができる。空冷式熱源側熱交換器は、例えば、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィンアンドチューブ型熱交換器として構成できる。なお、凝縮器は放熱器とも称される。凝縮器ファン3Aは、凝縮器3に供給する空気の流量を可変に調整できるようになっている。凝縮器ファン3Aは、例えば、DCファンモータによって駆動されるプロペラファンである。 The condenser 3 can be configured, for example, as an air-cooled heat exchanger that performs heat exchange between the refrigerant circulating inside and the air blown by the condenser fan 3A. The air-cooling heat source side heat exchanger can be configured as, for example, a cross-fin type fin-and-tube heat exchanger including a heat transfer tube and a plurality of fins. The condenser is also referred to as a radiator. The condenser fan 3 </ b> A can variably adjust the flow rate of air supplied to the condenser 3. The condenser fan 3A is, for example, a propeller fan driven by a DC fan motor.
 絞り装置4は、例えば、開度を調節可能な電子膨張弁である。電子膨張弁としては、例えばリニア電子膨張弁が用いられる。なお、絞り装置4はキャピラリーチューブ等の他の減圧手段を用いることもできる。 The throttle device 4 is, for example, an electronic expansion valve whose opening degree can be adjusted. For example, a linear electronic expansion valve is used as the electronic expansion valve. The expansion device 4 can also use other decompression means such as a capillary tube.
 蒸発器5は、例えば、内部を流通する冷媒と、蒸発器ファン5Aにより送風される空気との熱交換を行う空冷式熱交換器として構成することができる。蒸発器5は、フィンアンドチューブ型熱交換器として構成できる。蒸発器ファン5Aは、蒸発器5に供給する空気の流量を可変に調整できるようになっている。蒸発器ファン5Aは、例えば、DCファンモータによって駆動されるプロペラファンである。 The evaporator 5 can be configured, for example, as an air-cooled heat exchanger that performs heat exchange between the refrigerant circulating inside and the air blown by the evaporator fan 5A. The evaporator 5 can be configured as a fin-and-tube heat exchanger. The evaporator fan 5A can variably adjust the flow rate of air supplied to the evaporator 5. The evaporator fan 5A is, for example, a propeller fan driven by a DC fan motor.
 アキュムレータ6は、余剰の冷媒を貯留する冷媒貯留機能と、運転状態が変化する際に一時的に発生する液冷媒を滞留させることにより、圧縮機1に大量の液冷媒が流入するのを防ぐ気液分離機能と、を有している。アキュムレータ6は、冷媒流入部及び冷媒流出部を備えている。アキュムレータ6は、冷媒流入部が蒸発器5に接続されている。また、アキュムレータ6は冷媒流入部が油戻し回路C1に接続されている。アキュムレータ6は、冷媒流出部が圧縮機1に冷媒吸入側に接続されている。 The accumulator 6 is configured to prevent a large amount of liquid refrigerant from flowing into the compressor 1 by retaining a refrigerant storage function for storing excess refrigerant and liquid refrigerant that is temporarily generated when the operating state changes. And a liquid separation function. The accumulator 6 includes a refrigerant inflow portion and a refrigerant outflow portion. The accumulator 6 has a refrigerant inflow portion connected to the evaporator 5. The accumulator 6 has a refrigerant inflow portion connected to the oil return circuit C1. The accumulator 6 has a refrigerant outflow portion connected to the compressor 1 on the refrigerant suction side.
 冷媒配管P1は、一端が圧縮機1の吸入側に接続され、他端が油分離器2に接続されている。
 冷媒配管P2は、一端が油分離器2に接続され、他端が凝縮器3に接続されている。
 冷媒配管P3は、一端が凝縮器3に接続され、他端が絞り装置4に接続されている。
 冷媒配管P4は、一端が絞り装置4に接続され、他端が蒸発器5に接続されている。
 冷媒配管P5は、一端が蒸発器5に接続され、他端がアキュムレータ6に接続されている。
 冷媒配管P6は、一端がアキュムレータ6に接続され、他端が圧縮機1の吸入側に接続されている。
 冷媒配管P7は、一端が油分離器2に接続され、他端が絞り装置7に接続されている。
 冷媒配管P8は、一端が絞り装置7に接続され、他端が冷媒配管P5の中間部に接続されている。なお、冷媒配管P5の中間部は、冷媒配管P5の一端から他端までの間の部分である。
The refrigerant pipe P <b> 1 has one end connected to the suction side of the compressor 1 and the other end connected to the oil separator 2.
The refrigerant pipe P2 has one end connected to the oil separator 2 and the other end connected to the condenser 3.
The refrigerant pipe P3 has one end connected to the condenser 3 and the other end connected to the expansion device 4.
The refrigerant pipe P4 has one end connected to the expansion device 4 and the other end connected to the evaporator 5.
The refrigerant pipe P5 has one end connected to the evaporator 5 and the other end connected to the accumulator 6.
The refrigerant pipe P6 has one end connected to the accumulator 6 and the other end connected to the suction side of the compressor 1.
The refrigerant pipe P7 has one end connected to the oil separator 2 and the other end connected to the expansion device 7.
One end of the refrigerant pipe P8 is connected to the expansion device 7, and the other end is connected to an intermediate part of the refrigerant pipe P5. In addition, the intermediate part of the refrigerant | coolant piping P5 is a part between one end of the refrigerant | coolant piping P5 and an other end.
 発光部21は、白色光を照射することができるように構成されている。発光部21は、例えば、白色光を照射する白色LEDで構成することができる。発光部21は、容器2Aの外側に配置され、光透過部材2Cを介して容器2A内の空間に臨んでいる。
 光検出センサー22は、受光した光の赤色波長、緑色波長及び青色波長をそれぞれ検出するRGBセンサーで構成されている。光検出センサー22は、発光部21に併設されている。具体的には、光検出センサー22は、発光部21の光照射方向に配置されており、発光部21の対向位置に設けられている。光検出センサー22は、容器2Aの外側に配置され、光透過部材2Dを介して容器2A内の空間に臨んでいる。光検出センサー22は、例えば、分光器と複数のCCD素子を備えたもので構成することができる。分光器は、例えば赤色の光、緑色の光及び青色の光に分解可能なプリズム等で構成することができる。
The light emitting unit 21 is configured to emit white light. The light emission part 21 can be comprised by white LED which irradiates white light, for example. The light emitting unit 21 is disposed outside the container 2A and faces the space inside the container 2A via the light transmitting member 2C.
The light detection sensor 22 is composed of an RGB sensor that detects the red wavelength, the green wavelength, and the blue wavelength of the received light. The light detection sensor 22 is provided in the light emitting unit 21. Specifically, the light detection sensor 22 is disposed in the light irradiation direction of the light emitting unit 21 and is provided at a position facing the light emitting unit 21. The light detection sensor 22 is disposed outside the container 2A and faces the space in the container 2A via the light transmission member 2D. For example, the light detection sensor 22 can be configured by a spectroscope and a plurality of CCD elements. The spectroscope can be composed of, for example, a prism that can be decomposed into red light, green light, and blue light.
 制御装置50は、例えば、CPU及び記憶部等を含むマイコンを備えている。制御装置50は、圧縮機1の回転数、絞り装置4の開度、凝縮器ファン3Aの回転数、蒸発器ファン5Aの回転数、報知部51及び発光部21を統括制御する。
 冷凍機油は酸化等して劣化すると圧縮機1の摺動部の摩耗を抑制する本来的な機能が損なわれる場合がある。ここで、冷凍機油は劣化すると茶色に変色する(第1の状態)。また、冷凍機油によって圧縮機1の摺動部が適切に潤滑できないと、摺動部が削れて冷凍機油が黒色に変色する(第2の状態)。そこで、制御装置50は、光検出センサー22の検出結果に基づいて、冷凍機油の色に関する判定を行う。この判定により、制御装置50は、冷媒回路C中の冷凍機油が劣化しているか否か、又は圧縮機1が損傷しているか否かを判定する。
The control device 50 includes, for example, a microcomputer including a CPU and a storage unit. The control device 50 controls the rotation number of the compressor 1, the opening degree of the expansion device 4, the rotation number of the condenser fan 3A, the rotation number of the evaporator fan 5A, the notification unit 51, and the light emitting unit 21.
When the refrigeration oil deteriorates due to oxidation or the like, the original function of suppressing wear of the sliding portion of the compressor 1 may be impaired. Here, when the refrigerating machine oil deteriorates, it turns brown (first state). Further, if the sliding portion of the compressor 1 cannot be properly lubricated by the refrigerating machine oil, the sliding portion is shaved and the refrigerating machine oil changes to black (second state). Therefore, the control device 50 makes a determination regarding the color of the refrigerating machine oil based on the detection result of the light detection sensor 22. By this determination, the control device 50 determines whether or not the refrigerating machine oil in the refrigerant circuit C is deteriorated or whether or not the compressor 1 is damaged.
 報知部51は、冷凍機油の劣化に関する報知、又は圧縮機1の損傷に関する報知を行う。報知部51は、リモコン等のディスプレイで表示することで報知する構成であってもよいし、LED等の点灯装置で表示することで報知する構成であってもよいし、音声で報知する構成であってもよいし、これらを組み合わせてもよい。このように、報知部51は、例えば、ディスプレイ表示部、点灯装置及びスピーカー等で構成することができる。 The notification unit 51 performs notification regarding deterioration of refrigeration oil or notification regarding damage to the compressor 1. The notification unit 51 may be configured to notify by displaying on a display such as a remote controller, may be configured to notify by displaying with a lighting device such as an LED, or may be configured to notify by voice. There may be a combination thereof. Thus, the alerting | reporting part 51 can be comprised with a display display part, a lighting device, a speaker, etc., for example.
[制御装置50について]
 図3は、本実施の形態に係る冷凍サイクル装置100の制御装置の説明図である。
 図4Aは、冷凍機油が劣化しているときのヒストグラムの説明図である。
 図4Bは、圧縮機1が損傷しているときのヒストグラムの説明図である。
 制御装置50は、ヒストグラム作成部50Aと、判定部50Bと、報知制御部50Cと、アクチュエータ制御部50Dと、階調範囲設定部50Eと、明るさ設定部50Fとを備えている。
[About the control device 50]
FIG. 3 is an explanatory diagram of the control device of the refrigeration cycle apparatus 100 according to the present embodiment.
FIG. 4A is an explanatory diagram of a histogram when the refrigerating machine oil is deteriorated.
FIG. 4B is an explanatory diagram of a histogram when the compressor 1 is damaged.
The control device 50 includes a histogram creation unit 50A, a determination unit 50B, a notification control unit 50C, an actuator control unit 50D, a gradation range setting unit 50E, and a brightness setting unit 50F.
 ヒストグラム作成部50Aは、光検出センサー22が検出した赤色の光、緑色の光及び青色の光のそれぞれに関するヒストグラムを作成する(図4A及び図4B参照)。ここで、これらのヒストグラムは、例えば、横軸が輝度の階調を表し、縦軸が画素頻度を表す。なお、本実施の形態では、輝度の階調は、256階調である。 The histogram creation unit 50A creates a histogram for each of red light, green light, and blue light detected by the light detection sensor 22 (see FIGS. 4A and 4B). Here, in these histograms, for example, the horizontal axis represents luminance gradation, and the vertical axis represents pixel frequency. Note that in this embodiment, the gradation of luminance is 256 gradations.
 判定部50Bは、光検出センサー22の検出結果に基づいて、冷媒回路C中の冷凍機油が劣化しているか否かを判定する機能を備えている。なお、この冷凍機油の劣化判定を第3の判定とも称する。次の(1)から(3)の条件を全て満たすときに、判定部50Bは、冷凍機油の色が茶色に変色し、劣化したものと判定する。
(1)ヒストグラム作成部50Aが作成した赤色の光の第1のヒストグラムに関し、判定部50Bは、画素頻度のピークが第1の階調範囲に入っている。
(2)ヒストグラム作成部50Aが作成した緑色の光の第2のヒストグラムに関し、判定部50Bは、画素頻度のピークが第2の階調範囲に入っている。
(3)ヒストグラム作成部50Aが作成した青色の光の第3のヒストグラムに関し、判定部50Bは、画素頻度のピークが第3の階調範囲に入っている。
The determination unit 50B has a function of determining whether or not the refrigerating machine oil in the refrigerant circuit C has deteriorated based on the detection result of the light detection sensor 22. This determination of deterioration of the refrigeration oil is also referred to as a third determination. When all the following conditions (1) to (3) are satisfied, the determination unit 50B determines that the color of the refrigerating machine oil has changed to brown and has deteriorated.
(1) Regarding the first histogram of red light created by the histogram creation unit 50A, the determination unit 50B has a peak pixel frequency in the first gradation range.
(2) With respect to the second histogram of green light created by the histogram creation unit 50A, the determination unit 50B has a peak pixel frequency in the second gradation range.
(3) Regarding the third histogram of blue light created by the histogram creation unit 50A, the determination unit 50B has the peak pixel frequency in the third gradation range.
 図4Aに示すように、典型的には、冷凍機油の色が茶色のときにおける第1のヒストグラムの階調値は、128であり、第2のヒストグラムの階調値は、0であり、第3のヒストグラムの階調値は、0である。しかし、これらの階調値を満たすときだけに冷凍機油が劣化したと判定すると、実際には冷凍機油が劣化していると判定するべきなのに、判定しないということも想定される。そこで、制御装置50には、劣化の判定に広がりをもたせるため、第1の階調範囲、第2の階調範囲、及び第3の階調範囲が設定されている。 As shown in FIG. 4A, typically, the gradation value of the first histogram when the color of the refrigerating machine oil is brown is 128, the gradation value of the second histogram is 0, The gradation value of the histogram of 3 is 0. However, if it is determined that the refrigerating machine oil has deteriorated only when these gradation values are satisfied, it may be assumed that the refrigerating machine oil should actually be determined to have deteriorated but not be determined. Therefore, the control device 50 is set with a first gradation range, a second gradation range, and a third gradation range in order to spread the deterioration determination.
 なお、第1の階調範囲は、例えば、階調値128を中心として、プラスマイナス10程度の範囲に設定することができる。つまり、第1の階調範囲は、108から138の範囲に設定することができる。
 また、第2の階調範囲は、例えば、0から10の範囲に設定することができる。
 更に、第3の階調範囲は、例えば、0から10の範囲に設定することができる。
 第1の階調範囲、第2の階調範囲及び第3の階調範囲にどの程度広がりを持たせるかについては、適宜、設定することができる。
The first gradation range can be set to a range of about plus or minus 10 with the gradation value 128 as the center, for example. That is, the first gradation range can be set to a range from 108 to 138.
The second gradation range can be set to a range from 0 to 10, for example.
Furthermore, the third gradation range can be set to a range of 0 to 10, for example.
The extent to which the first gradation range, the second gradation range, and the third gradation range are expanded can be set as appropriate.
 第1の階調範囲、第2の階調範囲及び第3の階調範囲は、例えば、予め定められていてもよいし、サービスマン等が設の開度設定できるようにしてもよい。本実施の形態では、第1の階調範囲、第2の階調範囲及び第3の階調範囲を設定することができる構成となっている。 The first gradation range, the second gradation range, and the third gradation range may be determined in advance, for example, or may be set by a service person or the like. In this embodiment, the first gradation range, the second gradation range, and the third gradation range can be set.
 判定部50Bは、光検出センサー22の検出結果に基づいて、圧縮機1が損傷しているか否かを判定する機能を備えている。なお、この圧縮機1の損傷判定を第2の判定とも称する。判定手段は、上述と同様の要領である。図4Aに示すように、典型的には、冷凍機油の色が黒色のときにおける第1のヒストグラムの階調値は、0であり、第2のヒストグラムの階調値は、0であり、第3のヒストグラムの階調値は、0である。
 なお、第1の階調範囲は、例えば、0から10の範囲に設定することができる。
 また、第2の階調範囲は、例えば、0から10の範囲に設定することができる。
 更に、第3の階調範囲は、例えば、0から10の範囲に設定することができる。
 黒色の色判定の場合においても、どの程度、第1の階調範囲、第2の階調範囲及び第3の階調範囲に広がりを持たせるかは、適宜、設定することができる。
The determination unit 50 </ b> B has a function of determining whether or not the compressor 1 is damaged based on the detection result of the light detection sensor 22. Note that this damage determination of the compressor 1 is also referred to as a second determination. The determination means has the same procedure as described above. As shown in FIG. 4A, typically, the gradation value of the first histogram when the color of the refrigerating machine oil is black is 0, the gradation value of the second histogram is 0, The gradation value of the histogram of 3 is 0.
Note that the first gradation range can be set to a range of 0 to 10, for example.
The second gradation range can be set to a range from 0 to 10, for example.
Furthermore, the third gradation range can be set to a range of 0 to 10, for example.
Even in the case of black color determination, it is possible to appropriately set how much the first gradation range, the second gradation range, and the third gradation range are expanded.
 判定部50Bは、光検出センサー22の検出結果に基づいて、発光部21側及び光検出センサー22側のうちの少なくとも一方が汚れているか否かを判定する機能も備えている。なお、この汚れ判定を、第1の判定とも称する。冷凍サイクル装置100を使用していると、経年劣化等によって、発光部21の発光部分、光検出センサー22の受光部分、光透過部材2C及び光透過部材2Dに汚れが付着すること場合がある。汚れがこれらに付着すると、上述の冷凍機油の劣化判定等の精度が低下してしまうので、精度低下を回避するために、制御装置50は、汚れ判定を行う。
 まず、アクチュエータ制御部50Dは、冷媒回路C中の冷凍機油が劣化しているか否か、又は圧縮機1が損傷しているか否かを判定するときよりも、発光部21の明るさを大きくする。例えば、アクチュエータ制御部50Dは、発光部21を最大の明るさとしてもよい。ここで、典型的には、白色光における第1のヒストグラム、第2のヒストグラム及び第3のヒストグラムの階調値は、全て255である。汚れがない場合には、発光部21から出た白色光が、光検出センサー22に届く。したがって、ヒストグラム作成部50Aで作成されるヒストグラムの階調は、赤色、緑色、青色、ともに255である。一方、汚れがある場合には、発光部21から出た白色光が、光検出センサー22に届きにくくなる。したがって、ヒストグラム作成部50Aで作成されるヒストグラムの階調は、赤色、緑色、青色、ともに255よりもかなり小さくなることが想定される。
 そこで、アクチュエータ制御部50Dが発光部21の明るさを大きくした後に、判定部50Bは、光検出センサー22の検出結果に基づいて、赤色のヒストグラムのピークが第1の階調範囲に入り、緑色のヒストグラムのピークが第2の階調範囲に入り、青色のヒストグラムのピークが第3の階調範囲に入るか否かを判定する。
 なお、第1の階調範囲は、例えば、0から245の範囲に設定することができる。
 また、第2の階調範囲は、例えば、0から245の範囲に設定することができる。
 更に、第3の階調範囲は、例えば、0から245の範囲に設定することができる。
The determination unit 50 </ b> B also has a function of determining whether at least one of the light emitting unit 21 side and the light detection sensor 22 side is dirty based on the detection result of the light detection sensor 22. This stain determination is also referred to as a first determination. When the refrigeration cycle apparatus 100 is used, dirt may adhere to the light emitting part of the light emitting unit 21, the light receiving part of the light detection sensor 22, the light transmitting member 2C, and the light transmitting member 2D due to deterioration over time. If the dirt adheres to these, the accuracy of the above-described determination of deterioration of the refrigerating machine oil and the like is lowered, so that the control device 50 performs the dirt judgment in order to avoid the accuracy reduction.
First, the actuator control unit 50D increases the brightness of the light emitting unit 21 compared to when determining whether or not the refrigerating machine oil in the refrigerant circuit C is deteriorated or whether or not the compressor 1 is damaged. . For example, the actuator control unit 50D may set the light emitting unit 21 to the maximum brightness. Here, typically, the gradation values of the first histogram, the second histogram, and the third histogram in white light are all 255. When there is no dirt, the white light emitted from the light emitting unit 21 reaches the light detection sensor 22. Therefore, the gradation of the histogram created by the histogram creation unit 50A is 255 for all of red, green, and blue. On the other hand, when there is dirt, the white light emitted from the light emitting unit 21 does not easily reach the light detection sensor 22. Therefore, it is assumed that the gradation of the histogram created by the histogram creation unit 50A is considerably smaller than 255 for all of red, green, and blue.
Therefore, after the actuator control unit 50D increases the brightness of the light emitting unit 21, the determination unit 50B determines that the peak of the red histogram enters the first gradation range based on the detection result of the light detection sensor 22, and the green color It is determined whether or not the histogram peak falls within the second gradation range and the blue histogram peak falls within the third gradation range.
Note that the first gradation range can be set to a range of 0 to 245, for example.
Further, the second gradation range can be set to a range from 0 to 245, for example.
Furthermore, the third gradation range can be set to a range from 0 to 245, for example.
 報知制御部50Cは、判定部50Bが、冷媒回路C中の冷凍機油が劣化していると判定した場合、及び、判定部50Bが、圧縮機1が損傷していると判定した場合、報知部51にその旨を報知させる機能を有する。すなわち、冷媒回路C中の冷凍機油が劣化していると判定した場合には、報知制御部50Cは、報知部51にその旨の報知を行わせる(第2の報知)。圧縮機1が損傷していると判定した場合には、報知制御部50Cは、報知部51にその旨の報知を行わせる(第1の報知)。第2の報知は、冷凍機油が劣化したことを示す報知であり、第1の報知は、圧縮機1が損傷していることを示す報知である。 When the determination unit 50B determines that the refrigerating machine oil in the refrigerant circuit C is deteriorated, and when the determination unit 50B determines that the compressor 1 is damaged, the notification control unit 50C 51 has a function of notifying that effect. That is, when it determines with the refrigerating machine oil in the refrigerant circuit C having deteriorated, the alerting | reporting control part 50C makes the alerting | reporting part 51 alert | report that (2nd alerting | reporting). When it is determined that the compressor 1 is damaged, the notification control unit 50C causes the notification unit 51 to perform notification to that effect (first notification). The second notification is a notification indicating that the refrigeration oil has deteriorated, and the first notification is a notification indicating that the compressor 1 is damaged.
 アクチュエータ制御部50Dは、各種のデータに基づいて、圧縮機1の回転数、絞り装置4の開度、凝縮器ファン3Aの回転数、蒸発器ファン5Aの回転数、発光部21の明るさを制御する。アクチュエータ制御部50Dは、判定部50Bが、圧縮機1が損傷していると判定したときには、圧縮機1の運転を停止する機能を備えている。 The actuator controller 50D determines the rotation speed of the compressor 1, the opening degree of the expansion device 4, the rotation speed of the condenser fan 3A, the rotation speed of the evaporator fan 5A, and the brightness of the light emitting section 21 based on various data. Control. The actuator control unit 50D has a function of stopping the operation of the compressor 1 when the determination unit 50B determines that the compressor 1 is damaged.
 階調範囲設定部50Eは、冷凍機油の劣化の判定に用いる、第1の階調範囲、第2の階調範囲及び第3の階調範囲の設定を行う機能を備えている。また、階調範囲設定部50Eは、圧縮機1の損傷の判定に用いる、第1の階調範囲、第2の階調範囲及び第3の階調範囲の設定を行う機能を備えている。階調範囲設定部50Eは、例えば、リモコン等に設けられたボタン又はタッチパネル等の入力手段を含む。 The gradation range setting unit 50E has a function of setting the first gradation range, the second gradation range, and the third gradation range that are used for determining the deterioration of the refrigerating machine oil. Further, the gradation range setting unit 50E has a function of setting the first gradation range, the second gradation range, and the third gradation range that are used for determining damage to the compressor 1. The gradation range setting unit 50E includes, for example, an input unit such as a button or a touch panel provided on a remote controller or the like.
 明るさ設定部50Fは、上述した、第1の判定、第2の判定、及び第3の判定のそれぞれにおける、発光部21の明るさを設定する。明るさ設定部50Fは、第1の判定のときの発光部21の明るさを第1の明るさとし、第2の判定及び第3の判定のときの発光部21の明るさを第2の明るさとしたとき、第1の明るさの方が、第2の明るさよりも大きくなるように設定する。 The brightness setting unit 50F sets the brightness of the light emitting unit 21 in each of the first determination, the second determination, and the third determination described above. The brightness setting unit 50F sets the brightness of the light emitting unit 21 at the time of the first determination as the first brightness, and sets the brightness of the light emitting unit 21 at the time of the second determination and the third determination as the second brightness. In this case, the first brightness is set to be larger than the second brightness.
 図5は、本実施の形態に係る冷凍サイクル装置100のフローチャートの一例である。 FIG. 5 is an example of a flowchart of the refrigeration cycle apparatus 100 according to the present embodiment.
 制御装置50は、発光部21の明るさを第1の明るさに設定する(ステップS1)。
 次に、制御装置50の判定部50Bは、第1の判定を行う(ステップS2)。光透過部材2C等が汚れていないと判定した場合には、発光部21の明るさを第2の明るさに設定する(ステップS3)。なお、制御装置50は、光透過部材2C等が汚れていると判定した場合には、その旨を報知する(ステップS2-1)。その後、制御装置50は、第2の判定及び第3の判定の精度が低下するので、第2の判定及び第3の判定をせずに、フローを終了する(ステップS6)。
 また、制御装置50の判定部50Bは、ステップS3の次に、第2の判定を行う(ステップS4)。圧縮機1が損傷していると判定した場合には、第1の報知を行い、圧縮機1の損傷を報知する(ステップS4-1)。なお、圧縮機1の損傷を報知した場合には、冷凍機油の色が黒色であるため、冷凍機油の劣化判定が難しい。このため、圧縮機1の損傷を報知した後には、ステップS5の冷凍機油の劣化判定をせずに、フローを終了する(ステップS6)。
 また、圧縮機1が損傷していないと判定した場合には、引き続き、第3の判定を行う(ステップS5)。冷凍機油が劣化していると判定した場合には、第2の報知を行い、冷凍機油の劣化を報知する(ステップS5-1)。冷凍機油が劣化していないと判定した場合には、フローを終了する(ステップS6)。
The control device 50 sets the brightness of the light emitting unit 21 to the first brightness (step S1).
Next, the determination unit 50B of the control device 50 performs the first determination (step S2). If it is determined that the light transmitting member 2C or the like is not dirty, the brightness of the light emitting unit 21 is set to the second brightness (step S3). If the control device 50 determines that the light transmitting member 2C and the like are dirty, it notifies that fact (step S2-1). Thereafter, since the accuracy of the second determination and the third determination is lowered, the control device 50 ends the flow without performing the second determination and the third determination (step S6).
Moreover, the determination part 50B of the control apparatus 50 performs 2nd determination after step S3 (step S4). If it is determined that the compressor 1 is damaged, the first notification is made to notify the damage of the compressor 1 (step S4-1). Note that when the compressor 1 is informed of damage, it is difficult to determine deterioration of the refrigerating machine oil because the color of the refrigerating machine oil is black. For this reason, after notifying the damage of the compressor 1, the flow is finished without determining the deterioration of the refrigerating machine oil in step S5 (step S6).
If it is determined that the compressor 1 is not damaged, the third determination is continued (step S5). If it is determined that the refrigerating machine oil has deteriorated, a second notification is made to notify the deterioration of the refrigerating machine oil (step S5-1). If it is determined that the refrigerating machine oil has not deteriorated, the flow is terminated (step S6).
 圧縮機1が損傷判定に用いる黒色は、冷凍機油の劣化判定に用いる茶色よりも濃いため、圧縮機1が損傷しているときに、冷凍機油の劣化を判定することは難しい。したがって、ステップS4とステップS5の判定の順番が逆になっていると、圧縮機1が損傷して黒色となっているのに、判定できない冷凍機油の劣化をも行ってしまう。こういったことを回避するため、先に、圧縮機1の損傷判定を行い(第2の判定)、次に、冷凍機油の劣化判定(第3の判定)を行うようにするとよい。 The black color used for the damage determination by the compressor 1 is darker than the brown color used for the deterioration determination of the refrigerating machine oil, so it is difficult to determine the deterioration of the refrigerating machine oil when the compressor 1 is damaged. Therefore, if the order of determination in steps S4 and S5 is reversed, the compressor 1 is damaged and becomes black, but the refrigeration oil that cannot be determined is deteriorated. In order to avoid this, it is preferable to first determine whether the compressor 1 is damaged (second determination) and then perform a deterioration determination (third determination) of the refrigerating machine oil.
 また、圧縮機1の損傷の頻度よりも、冷凍機油の劣化の頻度が高ければ、ステップS4とステップS5の順番を入れ替えてもよい。 If the frequency of refrigeration oil deterioration is higher than the frequency of damage to the compressor 1, the order of step S4 and step S5 may be interchanged.
 また、黒色のときにおける第1の階調範囲と、茶色のときにおける第1の階調範囲とは、重複しないようにするとよい。これにより、第2の判定で冷凍機油の劣化を判定してしまったり、第3の判定で圧縮機1の損傷を判定してしまったりすることを回避することができる。 Further, it is preferable that the first gradation range when black is not overlapped with the first gradation range when brown. Thereby, it can be avoided that the deterioration of the refrigerating machine oil is determined in the second determination or the damage of the compressor 1 is determined in the third determination.
 本実施の形態に係る冷凍サイクル装置100では、冷媒回路C中の冷凍機油が劣化しているか否かの判定、及び、圧縮機1が損傷しているか否かの判定を、各ヒストグラムの各ピークが、各階調範囲に収まるか否かに基づいて行っていた。しかし、この手段に限定されるものではない。
 例えば、制御装置50は、冷凍機油に関する色の初期値を記憶しておいてもよい。ここで、初期値とは、各ヒストグラムの各ピークの初期値である。例えば、第1のヒストグラムの階調値の初期値が250、第2のヒストグラムの階調値の初期値が240、第3のヒストグラムの階調値の初期値が230であったとする。制御装置50の記憶部は、これらの初期値を記憶しておく。そして、判定部50Bは、この初期値からのずれ量に基づいて、冷媒回路C中の冷凍機油が劣化している、又は、圧縮機1が損傷していると判定してもよい。なお、赤色のピークのずれ量は、冷媒回路C中の冷凍機油が劣化している場合よりも、圧縮機1が損傷している場合の方が大きく設定するとよい。なお、緑色のピークのずれ量及び青色のピークのずれ量は、冷媒回路C中の冷凍機油が劣化している場合と圧縮機1が損傷している場合とは同じ設定でよい。
In the refrigeration cycle apparatus 100 according to the present embodiment, it is determined whether or not the refrigerating machine oil in the refrigerant circuit C is deteriorated and whether or not the compressor 1 is damaged in each peak of each histogram. However, it was performed based on whether or not it falls within each gradation range. However, it is not limited to this means.
For example, the control apparatus 50 may memorize | store the initial value of the color regarding refrigeration oil. Here, the initial value is an initial value of each peak of each histogram. For example, assume that the initial value of the gradation value of the first histogram is 250, the initial value of the gradation value of the second histogram is 240, and the initial value of the gradation value of the third histogram is 230. The storage unit of the control device 50 stores these initial values. Then, the determination unit 50B may determine that the refrigerating machine oil in the refrigerant circuit C is deteriorated or the compressor 1 is damaged based on the deviation amount from the initial value. Note that the amount of red peak shift may be set larger when the compressor 1 is damaged than when the refrigeration oil in the refrigerant circuit C is deteriorated. Note that the green peak shift amount and the blue peak shift amount may be set the same when the refrigerating machine oil in the refrigerant circuit C is deteriorated and when the compressor 1 is damaged.
 また、その他に、制御装置50は、光検出センサー22で検出する光量の減少により、冷媒回路C中の冷凍機油が劣化しているか否かの判定、及び、圧縮機1が損傷しているか否かの判定を行ってもよい。この場合には、発光部21は、白色光を照射する構成に限られず、また、光検出センサー22もRGBセンサーに限られない。光量の減少量に基づいて判定をするためである。 In addition, the control device 50 determines whether or not the refrigerating machine oil in the refrigerant circuit C has deteriorated due to a decrease in the amount of light detected by the light detection sensor 22, and whether or not the compressor 1 is damaged. Such a determination may be made. In this case, the light emitting unit 21 is not limited to the configuration that emits white light, and the light detection sensor 22 is not limited to the RGB sensor. This is because the determination is based on the amount of decrease in the amount of light.
[変形例1]
 図6は、本実施の形態に係る冷凍サイクル装置の変形例1のアキュムレータの説明図である。
[Modification 1]
FIG. 6 is an explanatory diagram of the accumulator of Modification 1 of the refrigeration cycle apparatus according to the present embodiment.
 図6に示すように、変形例1では、アキュムレータ6に、発光部21及び光検出センサー22を設けるとともに、光透過部材6C及び光透過部材6Dを設けている。アキュムレータ6は、ガス冷媒G、液冷媒L及び冷凍機油Oiを貯留する空間が形成された容器6Aと、容器6Aに接続された冷媒流入部6B1と、容器6Aに接続された冷媒流出部6B2と、光透過部材6Cと、光透過部材6Cの対向位置に配置された光透過部材6Dと、を備えている。
 容器6Aは、筒状の側面部と、この側面部の下端に接続された底部と、この側面部の上端に接続された天面部(上面部)とを含む。冷媒流入部6B1及び冷媒流出部6B2は、容器6Aの天面部に接続されている。
 光透過部材6C及び光透過部材6Dは、容器6Aの上下方向において、容器6Aの下側に配置されている。本実施の形態では、液冷媒よりも冷凍機油が重いため、液冷媒の下に冷凍機油が貯留されるためである。なお、冷凍機油が液冷媒よりも軽ければ、光透過部材6C及び光透過部材6Dの位置を上側に変更すればよい。光透過部材6C及び光透過部材6Dの構成は、光透過部材2C及び光透過部材2Dと同様である。発光部21、光透過部材6C、光透過部材6D及び光検出センサー22は、この順番で直線状に配置されている。
As shown in FIG. 6, in the first modification, the accumulator 6 is provided with the light emitting unit 21 and the light detection sensor 22, and the light transmitting member 6 </ b> C and the light transmitting member 6 </ b> D. The accumulator 6 includes a container 6A in which a space for storing the gas refrigerant G, the liquid refrigerant L, and the refrigerating machine oil Oi is formed, a refrigerant inflow portion 6B1 connected to the container 6A, and a refrigerant outflow portion 6B2 connected to the container 6A. , A light transmitting member 6C, and a light transmitting member 6D disposed at a position opposite to the light transmitting member 6C.
Container 6A includes a cylindrical side surface portion, a bottom portion connected to the lower end of the side surface portion, and a top surface portion (upper surface portion) connected to the upper end of the side surface portion. The refrigerant inflow portion 6B1 and the refrigerant outflow portion 6B2 are connected to the top surface portion of the container 6A.
The light transmissive member 6C and the light transmissive member 6D are disposed below the container 6A in the vertical direction of the container 6A. This is because in this embodiment, the refrigeration oil is heavier than the liquid refrigerant, so that the refrigeration oil is stored under the liquid refrigerant. If the refrigeration oil is lighter than the liquid refrigerant, the positions of the light transmitting member 6C and the light transmitting member 6D may be changed upward. The configurations of the light transmitting member 6C and the light transmitting member 6D are the same as those of the light transmitting member 2C and the light transmitting member 2D. The light emitting unit 21, the light transmitting member 6C, the light transmitting member 6D, and the light detection sensor 22 are arranged linearly in this order.
[変形例2]
 図7Aは、本実施の形態に係る冷凍サイクル装置102の変形例2の冷媒回路の説明図である。
 図7Bは、本実施の形態に係る冷凍サイクル装置102の変形例2の油貯留部の説明図である。
[Modification 2]
FIG. 7A is an explanatory diagram of a refrigerant circuit of Modification 2 of the refrigeration cycle apparatus 102 according to the present embodiment.
FIG. 7B is an explanatory diagram of an oil storage unit of Modification 2 of the refrigeration cycle apparatus 102 according to the present embodiment.
 図7Bに示すように、変形例2では、油貯留部8に、発光部21及び光検出センサー22を設けるとともに、光透過部材8C及び光透過部材8Dを設けている。変形例2に係る冷凍サイクル装置102は、油戻し回路C1に接続された分岐回路C2を備えている。分岐回路C2は、第1の配管P9と、第2の配管P10と、油貯留部8とを含む。
 第1の配管P9は、一端が油戻し回路C1のうち絞り装置7(キャピラリーチューブ)よりも下流側の第1の部分Po1に接続されている。第2の配管P10は、一端が油戻し回路C1のうち第1の部分Po1よりも下流側の第2の部分Po2に接続されている。第1の配管P9の他端は、容器8A内に配置され、冷凍機油を容器8A内へ供給する開口部が形成されている。第2の配管P10の他端は、容器8A内に配置され、冷凍機油を容器8A外へ排出する開口部が形成されている。
As shown in FIG. 7B, in the second modification, the oil storage unit 8 is provided with the light emitting unit 21 and the light detection sensor 22, and the light transmitting member 8C and the light transmitting member 8D. The refrigeration cycle apparatus 102 according to Modification 2 includes a branch circuit C2 connected to the oil return circuit C1. Branch circuit C <b> 2 includes a first pipe P <b> 9, a second pipe P <b> 10, and an oil storage unit 8.
One end of the first pipe P9 is connected to the first portion Po1 on the downstream side of the expansion device 7 (capillary tube) in the oil return circuit C1. One end of the second pipe P10 is connected to the second part Po2 on the downstream side of the first part Po1 in the oil return circuit C1. The other end of the first pipe P9 is disposed in the container 8A, and an opening for supplying refrigerating machine oil into the container 8A is formed. The other end of the second pipe P10 is disposed in the container 8A, and an opening for discharging the refrigerating machine oil out of the container 8A is formed.
 油貯留部8は、冷凍機油Oiを貯留する空間が形成された容器8Aと、容器8Aに接続された油流入部8B1と、容器8Aに接続された油流出部8B2と、光透過部材8Cと、光透過部材8Cの対向位置に配置された光透過部材8Eと、を備えている。
 容器8Aは、筒状の側面部と、この側面部の下端に接続された底部と、この側面部の上端に接続された天面部(上面部)とを含む。油流入部8B1は、容器8Aの天面部に接続され、油流出部8B2は、容器8Aの底部に接続されている。
 油流出部8B2の上端(他端)には、冷凍機油を流出口となる開口部が形成されている。冷凍機油Oiが容器8Aに溜まりやすいように、油貯留部8は、油流出部8B2の上端が、容器6Aの底部から予め定められた距離L1をあけて配置されている。光透過部材8C及び光透過部材8Dは、容器8Aの上下方向において油流出部8B2の上端よりも下側に配置されている。これにより、冷凍機油Oiが貯留されている部分に光が通すことになり、冷凍機油Oiの劣化等の判定精度を向上させることができる。
The oil reservoir 8 includes a container 8A in which a space for storing the refrigerating machine oil Oi is formed, an oil inlet 8B1 connected to the container 8A, an oil outlet 8B2 connected to the container 8A, and a light transmitting member 8C. A light transmissive member 8E disposed at a position opposite to the light transmissive member 8C.
The container 8A includes a cylindrical side surface portion, a bottom portion connected to the lower end of the side surface portion, and a top surface portion (upper surface portion) connected to the upper end of the side surface portion. The oil inflow portion 8B1 is connected to the top surface portion of the container 8A, and the oil outflow portion 8B2 is connected to the bottom portion of the container 8A.
At the upper end (other end) of the oil outflow portion 8B2, an opening serving as an outlet for the refrigerating machine oil is formed. The oil reservoir 8 is arranged such that the upper end of the oil outlet 8B2 is spaced a predetermined distance L1 from the bottom of the container 6A so that the refrigerating machine oil Oi can easily accumulate in the container 8A. The light transmissive member 8C and the light transmissive member 8D are disposed below the upper end of the oil outflow portion 8B2 in the vertical direction of the container 8A. As a result, light passes through the portion where the refrigerating machine oil Oi is stored, and the determination accuracy such as deterioration of the refrigerating machine oil Oi can be improved.
 光透過部材8C及び光透過部材8Dの構成は、光透過部材2C及び光透過部材2Dと同様である。発光部21、光透過部材8C、光透過部材8D及び光検出センサー22は、この順番で直線状に配置されている。 The configurations of the light transmitting member 8C and the light transmitting member 8D are the same as those of the light transmitting member 2C and the light transmitting member 2D. The light emitting unit 21, the light transmissive member 8C, the light transmissive member 8D, and the light detection sensor 22 are linearly arranged in this order.
[変形例3]
 図8は、本実施の形態に係る冷凍サイクル装置の変形例3の説明図である。
[Modification 3]
FIG. 8 is an explanatory diagram of Modification 3 of the refrigeration cycle apparatus according to the present embodiment.
 図7Bに示すように、変形例3では、冷媒配管P5に、発光部21及び光検出センサー22を設けるとともに、光透過部材PC及び光透過部材PDを設けている。
 冷媒配管P5は、蒸発器5と圧縮機1とをアキュムレータ6及び冷媒配管P6を介して接続する配管である。
 本実施の形態において、冷凍機油は冷媒より重いため、冷媒配管P5の下部に滞留しやすい。そこで、発光部21は、冷媒配管P5のうちの一部の上部及び下部のうちの一方に配置され、光検出センサー22は、発光部21に対向するように、冷媒配管P5のうちの一部の上部及び下部のうちの他方に配置されている。ここで、冷媒配管P5の一部とは、冷媒配管P5の一端と他端との間の部分を指す。変形例3では、発光部21が冷媒配管P5のうちの一部の上部に配置され、光検出センサー22が冷媒配管P5のうちの一部の下部に配置された態様を一例として示している。変形例3の構成により、冷媒配管P5に滞留する冷凍機油の色に関する判定を精度よく行うことができる。
As shown in FIG. 7B, in Modification 3, the light emitting unit 21 and the light detection sensor 22 are provided in the refrigerant pipe P5, and the light transmitting member PC and the light transmitting member PD are provided.
The refrigerant pipe P5 is a pipe that connects the evaporator 5 and the compressor 1 via the accumulator 6 and the refrigerant pipe P6.
In this Embodiment, since refrigeration oil is heavier than a refrigerant | coolant, it tends to stay in the lower part of refrigerant | coolant piping P5. Therefore, the light emitting unit 21 is disposed in one of the upper part and the lower part of a part of the refrigerant pipe P5, and the light detection sensor 22 is a part of the refrigerant pipe P5 so as to face the light emitting part 21. It is arrange | positioned at the other of the upper part and lower part of. Here, a part of the refrigerant pipe P5 indicates a part between one end and the other end of the refrigerant pipe P5. In the modification 3, the light emission part 21 is arrange | positioned at a part upper part of the refrigerant | coolant piping P5, and the aspect by which the optical detection sensor 22 is arrange | positioned at a part lower part of the refrigerant | coolant piping P5 is shown as an example. With the configuration of the modification 3, it is possible to accurately determine the color of the refrigeration oil staying in the refrigerant pipe P5.
 光透過部材PC及び光透過部材PDの構成は、光透過部材2C及び光透過部材2Dと同様である。発光部21、光透過部材PC、光透過部材PD及び光検出センサー22は、この順番で直線状に配置されている。 The configurations of the light transmitting member PC and the light transmitting member PD are the same as those of the light transmitting member 2C and the light transmitting member 2D. The light emitting unit 21, the light transmissive member PC, the light transmissive member PD, and the light detection sensor 22 are arranged linearly in this order.
 なお、制御装置50の判定部50Bは、圧縮機1が停止しているときの光検出センサー22の検出結果に基づいて、冷媒配管P5(冷媒回路C)の冷凍機油が劣化しているか否か、又は圧縮機1が損傷しているか否かを判定してもよい。圧縮機1が運転しているときは、冷凍機油が冷媒に流され、冷媒配管P5の下部に滞留しない場合も想定されるためである。つまり、この構成を採用することで、圧縮機1が停止し、重力の作用によって冷媒配管P5の下部に流れ落ちてきた冷凍機油を光検出センサー22で検出することができ、冷媒配管P5に滞留する冷凍機油の色に関する判定を精度よく行うことができる。 Note that the determination unit 50B of the control device 50 determines whether or not the refrigerating machine oil in the refrigerant pipe P5 (refrigerant circuit C) has deteriorated based on the detection result of the light detection sensor 22 when the compressor 1 is stopped. Alternatively, it may be determined whether or not the compressor 1 is damaged. This is because when the compressor 1 is operating, it is assumed that the refrigeration oil flows into the refrigerant and does not stay in the lower part of the refrigerant pipe P5. That is, by adopting this configuration, the compressor 1 is stopped, and the refrigerating machine oil that has flowed down to the lower portion of the refrigerant pipe P5 due to the action of gravity can be detected by the light detection sensor 22, and stays in the refrigerant pipe P5. The determination regarding the color of refrigerating machine oil can be performed accurately.
 なお、本変形例3では、冷媒配管P5に発光部21及び光検出センサー22を設けるとともに、光透過部材PC及び光透過部材PDを設けたが、それに限定されるものではない。発光部21、光検出センサー22、光透過部材PC及び光透過部材PDは、冷媒配管P6に設けられていてもよい。 In addition, in this modification 3, while providing the light emission part 21 and the light detection sensor 22 in the refrigerant | coolant piping P5, and provided the light transmissive member PC and the light transmissive member PD, it is not limited to it. The light emitting unit 21, the light detection sensor 22, the light transmission member PC, and the light transmission member PD may be provided in the refrigerant pipe P6.
 また、発光部21及び光検出センサー22は、油戻し回路C1のうち絞り装置7(キャピラリーチューブ)よりも下流側の部分に設けられていてもよい。つまり、発光部21、光検出センサー22、光透過部材PC及び光透過部材PDは、冷媒配管P8に設けられていてもよい。 Further, the light emitting unit 21 and the light detection sensor 22 may be provided in a portion on the downstream side of the expansion device 7 (capillary tube) in the oil return circuit C1. That is, the light emitting unit 21, the light detection sensor 22, the light transmission member PC, and the light transmission member PD may be provided in the refrigerant pipe P8.
[変形例4]
 図9は、本実施の形態に係る冷凍サイクル装置の変形例4の説明図である。
 図9に示すように、変形例4では、圧縮機1に、発光部21及び光検出センサー22を設けるとともに、光透過部材1C及び光透過部材1Dを設けている。ここで、圧縮機1がスクロール圧縮機である場合を例に説明する。
[Modification 4]
FIG. 9 is an explanatory diagram of Modification 4 of the refrigeration cycle apparatus according to the present embodiment.
As shown in FIG. 9, in the fourth modification, the compressor 1 is provided with the light emitting unit 21 and the light detection sensor 22, and the light transmitting member 1 </ b> C and the light transmitting member 1 </ b> D are provided. Here, a case where the compressor 1 is a scroll compressor will be described as an example.
 圧縮機1は、外郭を構成する密閉容器1Aと、密閉容器1Aに冷媒を導く吸入管1B1及び圧縮された冷媒を吐出する吐出管1B2と、密閉容器1A内の空間を区画するサブフレーム1Fと、冷凍機油Oiが貯留される底部油溜1Lと、冷媒を圧縮するための渦巻体が形成された固定スクロール1Gとを有している。
 また、圧縮機1は、冷媒を圧縮するのに利用される渦巻体が形成された揺動スクロール1Hと、揺動スクロール1Hを収容するフレーム1Jと、揺動スクロール1Hを回転させる軸SFと、軸SFを回転させる電動機1Eと、揺動スクロール1Hを揺動運動させるオルダムリング1Iとを含む。
The compressor 1 includes a sealed container 1A constituting an outer shell, a suction pipe 1B1 that guides the refrigerant to the sealed container 1A, a discharge pipe 1B2 that discharges the compressed refrigerant, and a subframe 1F that partitions a space in the sealed container 1A. The bottom oil reservoir 1L in which the refrigerating machine oil Oi is stored, and the fixed scroll 1G in which a spiral body for compressing the refrigerant is formed.
The compressor 1 includes an orbiting scroll 1H formed with a spiral body used for compressing the refrigerant, a frame 1J that accommodates the orbiting scroll 1H, an axis SF that rotates the orbiting scroll 1H, An electric motor 1E that rotates the shaft SF and an Oldham ring 1I that swings the swing scroll 1H are included.
 密閉容器1A内には、固定スクロール1G、揺動スクロール1H、フレーム1J、軸SF、電動機1E、及びオルダムリング1I等が設けられている。また、密閉容器1Aの側面には密閉容器1A内と連通する吸入管1B1が接続されている。更に、密閉容器1Aの上部には、固定スクロール1Gと揺動スクロール1Hとによって圧縮された冷媒が吐出される吐出管1B2が接続されている。吸入管1B1は、圧縮機1に流入する冷媒を、密閉容器1A内に導くための配管であり、冷媒配管P6に接続されている。吸入管1B1は、密閉容器1Aの側面に設けられている。吐出管1B2は、圧縮機1で圧縮された冷媒を吐出させるための配管であり、冷媒配管P1に接続されている。 In the sealed container 1A, a fixed scroll 1G, an orbiting scroll 1H, a frame 1J, a shaft SF, an electric motor 1E, an Oldham ring 1I, and the like are provided. A suction pipe 1B1 communicating with the inside of the sealed container 1A is connected to the side surface of the sealed container 1A. Furthermore, a discharge pipe 1B2 through which refrigerant compressed by the fixed scroll 1G and the swing scroll 1H is discharged is connected to the upper part of the sealed container 1A. The suction pipe 1B1 is a pipe for guiding the refrigerant flowing into the compressor 1 into the sealed container 1A, and is connected to the refrigerant pipe P6. The suction pipe 1B1 is provided on the side surface of the sealed container 1A. The discharge pipe 1B2 is a pipe for discharging the refrigerant compressed by the compressor 1, and is connected to the refrigerant pipe P1.
 サブフレーム1Fは、密閉容器1A内の空間を区画するように設けられ、軸SFの下端側を回転自在に支持する副軸受1F1が設けられている。サブフレーム1Fの下側には、底部油溜1Lが設けられており、サブフレーム1Fの上側には、電動機1Eが設けられている。底部油溜1Lは、冷凍機油Oiを貯留するものである。この底部油溜1Lは、サブフレーム1Fの下側に設けられているものである。なお、底部油溜1Lに貯留されている冷凍機油Oiは、軸SFの下側端部に設けられたオイルポンプによって、揺動スクロール1H側に引き上げられる。 The sub-frame 1F is provided so as to partition the space in the sealed container 1A, and a sub-bearing 1F1 that rotatably supports the lower end side of the shaft SF is provided. A bottom oil reservoir 1L is provided below the subframe 1F, and an electric motor 1E is provided above the subframe 1F. The bottom oil reservoir 1L stores the refrigeration oil Oi. The bottom oil reservoir 1L is provided on the lower side of the subframe 1F. The refrigerating machine oil Oi stored in the bottom oil reservoir 1L is pulled up to the swing scroll 1H side by an oil pump provided at the lower end of the shaft SF.
 固定スクロール1Gは、揺動スクロール1Hとともに冷媒を圧縮する。固定スクロール1Gは、揺動スクロール1Hに対して対向配置されている。固定スクロール1Gの上端面には、固定スクロール1G及び揺動スクロール1Hによって圧縮された冷媒の圧力が高まると、固定スクロール1G及び揺動スクロール1Hによって形成される圧縮室の圧力を開放する吐出弁1Kが設けられている。フレーム1Jは、揺動スクロール1Hが摺動自在に、揺動スクロール1Hを収容する。軸SFは、揺動スクロール1Hに駆動力を伝える。 The fixed scroll 1G compresses the refrigerant together with the swing scroll 1H. The fixed scroll 1G is disposed to face the orbiting scroll 1H. On the upper end surface of the fixed scroll 1G, when the pressure of the refrigerant compressed by the fixed scroll 1G and the swing scroll 1H increases, the discharge valve 1K that releases the pressure of the compression chamber formed by the fixed scroll 1G and the swing scroll 1H. Is provided. The frame 1J accommodates the orbiting scroll 1H so that the orbiting scroll 1H can slide freely. The axis SF transmits driving force to the orbiting scroll 1H.
 電動機1Eは、軸SFを回転させるものである。この電動機1Eは、密閉容器1Aに固着支持されたステータ1E1と、ステータ1E1と組み合わされることでトルクを発生するロータ1E2とから構成されている。電動機1Eは、揺動スクロール1H、及び固定スクロール1Gなどが設けられる上部空間と、底部油溜1Lが設けられる下部空間とを区画するように設けられている。 The electric motor 1E rotates the shaft SF. The electric motor 1E includes a stator 1E1 fixedly supported by the hermetic container 1A and a rotor 1E2 that generates torque by being combined with the stator 1E1. The electric motor 1E is provided so as to partition an upper space in which the swing scroll 1H, the fixed scroll 1G, and the like are provided, and a lower space in which the bottom oil reservoir 1L is provided.
 ステータ1E1は、たとえば、積層鉄心に複数相の巻線を装着して構成されている。
 ロータ1E2は、たとえば、内部に図示省略の永久磁石を有し、ステータ1E1の内周面との間に、予め設定された空隙が形成されるように軸SFに支持されている。そして、ロータ1E2は、ステータ1E1への通電がなされると回転駆動し、軸SFを回転させる。オルダムリング1Iは、揺動スクロール1Hの揺動運動中における自転運動を阻止するのに利用されるものである。
The stator 1E1 is configured, for example, by mounting a multi-phase winding on a laminated iron core.
The rotor 1E2 has, for example, a permanent magnet (not shown) inside, and is supported by the shaft SF so that a preset air gap is formed between the rotor 1E2 and the inner peripheral surface of the stator 1E1. The rotor 1E2 is rotationally driven when the stator 1E1 is energized to rotate the shaft SF. The Oldham ring 1I is used to prevent the rotation motion during the swing motion of the swing scroll 1H.
 密閉容器1Aのうちの底部油溜1Lの形成位置には、光透過部材1C及び光透過部材1Dが設けられている。光透過部材1C及び光透過部材1Dの構成は、光透過部材2C及び光透過部材2Dと同様である。なお、発光部21、光透過部材1C、光透過部材1D及び光検出センサー22を結ぶ直線上には、軸SF(オイルポンプ)が位置しないようにする。軸SFによって発光部21の光が遮られてしまい、光検出センサー22で光を受光できなくなることを回避するためである。例えば、発光部21、光透過部材1C、光透過部材1D及び光検出センサー22を結ぶ直線上から、水平方向に予め定められた距離をずらした位置に、軸SFが配置されていればよい。 The light transmitting member 1C and the light transmitting member 1D are provided at the formation position of the bottom oil reservoir 1L in the sealed container 1A. The configurations of the light transmitting member 1C and the light transmitting member 1D are the same as those of the light transmitting member 2C and the light transmitting member 2D. It should be noted that the axis SF (oil pump) is not positioned on a straight line connecting the light emitting unit 21, the light transmitting member 1C, the light transmitting member 1D, and the light detection sensor 22. This is to avoid that the light from the light emitting unit 21 is blocked by the axis SF and the light detection sensor 22 cannot receive the light. For example, the axis SF may be arranged at a position where a predetermined distance in the horizontal direction is shifted from a straight line connecting the light emitting unit 21, the light transmitting member 1 </ b> C, the light transmitting member 1 </ b> D, and the light detection sensor 22.
 1 圧縮機、1A 密閉容器、1B1 吸入管、1B2 吐出管、1C 光透過部材、1D 光透過部材、1E 電動機、1E1 ステータ、1E2 ロータ、1F サブフレーム、1F1 副軸受、1G 固定スクロール、1H 揺動スクロール、1I オルダムリング、1J フレーム、1K 吐出弁、1L 底部油溜、2 油分離器、2A 容器、2B1 冷媒流入部、2B2 冷媒流出部、2B3 油流出部、2C 光透過部材、2D 光透過部材、3 凝縮器、3A 凝縮器ファン、4 絞り装置、5 蒸発器、5A 蒸発器ファン、6 アキュムレータ、6A 容器、6B1 冷媒流入部、6B2 冷媒流出部、6C 光透過部材、6D 光透過部材、7 絞り装置、8 油貯留部、8A 容器、8B1 油流入部、8B2 油流出部、8C 光透過部材、8D 光透過部材、8E 光透過部材、21 発光部、22 光検出センサー、50 制御装置、50A ヒストグラム作成部、50B 判定部、50C 報知制御部、50D アクチュエータ制御部、50E 階調範囲設定部、50F 明るさ設定部、51 報知部、100 冷凍サイクル装置、102 冷凍サイクル装置、C 冷媒回路、C1 油戻し回路、C2 分岐回路、P1 冷媒配管、P10 第2の配管、P2 冷媒配管、P3 冷媒配管、P4 冷媒配管、P5 冷媒配管、P6 冷媒配管、P7 冷媒配管、P8 冷媒配管、P9 第1の配管、PC 光透過部材、PD 光透過部材、Po1 第1の部分、Po2 第2の部分、SF 軸。 1 compressor, 1A sealed container, 1B1 suction pipe, 1B2 discharge pipe, 1C light transmission member, 1D light transmission member, 1E motor, 1E1 stator, 1E2 rotor, 1F subframe, 1F1 sub-bearing, 1G fixed scroll, 1H swing Scroll, 1I Oldham ring, 1J frame, 1K discharge valve, 1L bottom oil reservoir, 2 oil separator, 2A container, 2B1 refrigerant inflow section, 2B2 refrigerant outflow section, 2B3 oil outflow section, 2C light transmission member, 2D light transmission member 3, condenser, 3A condenser fan, 4 throttle device, 5 evaporator, 5A evaporator fan, 6 accumulator, 6A container, 6B1 refrigerant inflow part, 6B2 refrigerant outflow part, 6C light transmission member, 6D light transmission member, 7 Throttle device, 8 oil storage part, 8A container, 8B1 oil inflow part, 8B2 Outflow part, 8C light transmission member, 8D light transmission member, 8E light transmission member, 21 light emission part, 22 light detection sensor, 50 control device, 50A histogram creation part, 50B determination part, 50C notification control part, 50D actuator control part, 50E gradation range setting section, 50F brightness setting section, 51 notification section, 100 refrigeration cycle apparatus, 102 refrigeration cycle apparatus, C refrigerant circuit, C1 oil return circuit, C2 branch circuit, P1 refrigerant pipe, P10 second pipe, P2 refrigerant pipe, P3 refrigerant pipe, P4 refrigerant pipe, P5 refrigerant pipe, P6 refrigerant pipe, P7 refrigerant pipe, P8 refrigerant pipe, P9 first pipe, PC light transmitting member, PD light transmitting member, Po1 first part, Po2 second part, SF axis.

Claims (13)

  1.  圧縮機、凝縮器、絞り装置及び蒸発器を備えた冷媒回路と、
     前記冷媒回路のうちの前記蒸発器、前記圧縮機及び前記凝縮器までの流路に設けられ、光を照射する発光部と、
     前記発光部に併設され、前記発光部の光を検出する光検出センサーと、
     前記光検出センサーの検出結果に基づいて、前記冷媒回路中の冷凍機油が劣化しているか否か、又は前記圧縮機が損傷しているか否かを判定する制御装置と、
     前記冷媒回路中の冷凍機油が劣化しているか否か、又は前記圧縮機が損傷しているか否かを報知する報知部と、
     を備えた
     冷凍サイクル装置。
    A refrigerant circuit comprising a compressor, a condenser, a throttling device and an evaporator;
    A light emitting unit that is provided in a flow path to the evaporator, the compressor, and the condenser in the refrigerant circuit, and irradiates light;
    A light detection sensor that is provided in the light emitting unit and detects light of the light emitting unit;
    A control device for determining whether or not the refrigeration oil in the refrigerant circuit is deteriorated based on the detection result of the light detection sensor, or whether or not the compressor is damaged;
    An informing unit for informing whether or not the refrigerating machine oil in the refrigerant circuit is deteriorated, or whether or not the compressor is damaged;
    A refrigeration cycle apparatus comprising:
  2.  前記圧縮機の吐出側に設けられ、冷媒から分離した前記冷凍機油を貯留する油分離器と、
     一端部が前記油分離器に接続され、他端部が前記圧縮機の吸入側に接続された油戻し回路とをさらに備え、
     前記発光部及び前記光検出センサーは、
     前記油分離器に設けられている
     請求項1に記載の冷凍サイクル装置。
    An oil separator that is provided on the discharge side of the compressor and stores the refrigerating machine oil separated from the refrigerant;
    An oil return circuit having one end connected to the oil separator and the other end connected to the suction side of the compressor;
    The light emitting unit and the light detection sensor are:
    The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is provided in the oil separator.
  3.  前記圧縮機の吐出側に設けられ、冷媒から分離した前記冷凍機油を貯留する油分離器と、
     一端部が前記油分離器に接続され、他端部が前記圧縮機の吸入側に接続された油戻し回路と、
     前記油戻し回路に設けられたキャピラリーチューブと、
     前記油戻し回路に接続された分岐回路とをさらに備え、
     前記分岐回路は、
     一端が前記油戻し回路のうち前記キャピラリーチューブよりも下流側の第1の部分に接続された第1の配管と、
     一端が前記油戻し回路のうち前記第1の部分よりも下流側の第2の部分に接続された第2の配管と、
     前記第1の配管及び前記第2の配管の他端側が接続され、油を貯留する容器とを含み、
     前記第2の配管の他端は、
     前記容器内に配置され、前記冷凍機油が流れる開口部が形成され、
     前記発光部及び前記光検出センサーは、
     前記容器に設けられ、前記第2の配管の他端よりも下側に配置されている
     請求項1に記載の冷凍サイクル装置。
    An oil separator that is provided on the discharge side of the compressor and stores the refrigerating machine oil separated from the refrigerant;
    An oil return circuit having one end connected to the oil separator and the other end connected to the suction side of the compressor;
    A capillary tube provided in the oil return circuit;
    A branch circuit connected to the oil return circuit,
    The branch circuit is:
    A first pipe having one end connected to a first portion downstream of the capillary tube in the oil return circuit;
    A second pipe having one end connected to a second part of the oil return circuit downstream of the first part;
    The other end side of the first pipe and the second pipe is connected, and includes a container for storing oil,
    The other end of the second pipe is
    An opening that is disposed in the container and through which the refrigerating machine oil flows is formed,
    The light emitting unit and the light detection sensor are:
    The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is provided in the container and disposed below the other end of the second pipe.
  4.  前記圧縮機の吐出側に設けられ、冷媒から分離した前記冷凍機油を貯留する油分離器と、
     一端部が前記油分離器に接続され、他端部が前記圧縮機の吸入側に接続された油戻し回路と、
     前記油戻し回路に設けられたキャピラリーチューブとをさらに備え、
     前記発光部及び前記光検出センサーは、
     前記油戻し回路のうち前記キャピラリーチューブよりも下流側の部分に設けられている
     請求項1に記載の冷凍サイクル装置。
    An oil separator that is provided on the discharge side of the compressor and stores the refrigerating machine oil separated from the refrigerant;
    An oil return circuit having one end connected to the oil separator and the other end connected to the suction side of the compressor;
    Further comprising a capillary tube provided in the oil return circuit,
    The light emitting unit and the light detection sensor are:
    The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is provided in a portion of the oil return circuit downstream of the capillary tube.
  5.  前記圧縮機の吸入側に設けられたアキュムレータをさらに備え、
     前記発光部及び前記光検出センサーは、
     前記アキュムレータに配置されている
     請求項1に記載の冷凍サイクル装置。
    An accumulator provided on the suction side of the compressor;
    The light emitting unit and the light detection sensor are:
    The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is disposed in the accumulator.
  6.  前記発光部及び前記光検出センサーは、
     前記圧縮機に配置されている
     請求項1に記載の冷凍サイクル装置。
    The light emitting unit and the light detection sensor are:
    The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is disposed in the compressor.
  7.  前記冷媒回路は、
     前記蒸発器と前記圧縮機とを接続する冷媒配管を含み、
     前記発光部は、
     前記冷媒配管のうちの一部の上部及び下部のうちの一方に配置され、
     前記光検出センサーは、
     前記発光部に対向するように、前記冷媒配管のうちの前記一部の上部及び下部のうちの他方に配置されている
     請求項1に記載の冷凍サイクル装置。
    The refrigerant circuit is
    A refrigerant pipe connecting the evaporator and the compressor;
    The light emitting unit
    Arranged in one of the upper part and the lower part of a part of the refrigerant pipe,
    The light detection sensor is
    The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is disposed on the other of the upper part and the lower part of the refrigerant pipe so as to face the light emitting unit.
  8.  前記制御装置は、
     前記圧縮機が停止しているときの前記光検出センサーの検出結果に基づいて、前記冷媒回路中の冷凍機油が劣化しているか否か、又は前記圧縮機が損傷しているか否かを判定する
     請求項7に記載の冷凍サイクル装置。
    The control device includes:
    Based on the detection result of the light detection sensor when the compressor is stopped, it is determined whether the refrigeration oil in the refrigerant circuit is deteriorated or whether the compressor is damaged. The refrigeration cycle apparatus according to claim 7.
  9.  前記報知部は、
     前記冷凍機油の色が茶色である第1の状態となっている場合には、前記冷媒回路中の前記冷凍機油が劣化していることを報知し、
     前記報知部は、
     前記冷凍機油の色が黒色である第2の状態となっている場合には、前記圧縮機が損傷していることを報知する
     請求項1~8のいずれか一項に記載の冷凍サイクル装置。
    The notification unit
    When the color of the refrigerating machine oil is in the first state that is brown, it is informed that the refrigerating machine oil in the refrigerant circuit has deteriorated,
    The notification unit
    The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein when the refrigerant oil is in a second state where the color of the oil is black, the compressor is informed that the compressor is damaged.
  10.  前記発光部は、
     白色光を照射するように構成され、
     前記光検出センサーは、
     赤色、緑色及び青色の波長をそれぞれ検出するRGBセンサーで構成されている
     請求項1~9のいずれか一項に記載の冷凍サイクル装置。
    The light emitting unit
    Configured to emit white light,
    The light detection sensor is
    The refrigeration cycle apparatus according to any one of claims 1 to 9, wherein the refrigeration cycle apparatus includes RGB sensors that respectively detect red, green, and blue wavelengths.
  11.  前記制御装置は、
     前記冷媒回路中の冷凍機油が劣化しているか否か、又は前記圧縮機が損傷しているか否かを判定するときよりも、前記発光部の明るさを大きくし、前記発光部側及び前記光検出センサー側のうちの少なくとも一方が汚れているか否かを判定する
     請求項1~10のいずれか一項に記載の冷凍サイクル装置。
    The control device includes:
    The brightness of the light emitting unit is increased to determine whether the refrigerating machine oil in the refrigerant circuit is deteriorated or whether the compressor is damaged, and the light emitting unit side and the light are increased. The refrigeration cycle apparatus according to any one of claims 1 to 10, wherein it is determined whether or not at least one of the detection sensor sides is dirty.
  12.  前記発光部と前記光検出センサーとは、
     対向位置に配置され、
     前記発光部及び前記光検出センサーは、
     光を透過する光透過部材を介して前記冷媒回路に臨んでいる
     請求項1~11のいずれか一項に記載の冷凍サイクル装置。
    The light emitting unit and the light detection sensor are:
    Placed in the opposite position,
    The light emitting unit and the light detection sensor are:
    The refrigeration cycle apparatus according to any one of claims 1 to 11, which faces the refrigerant circuit through a light transmitting member that transmits light.
  13.  前記制御装置は、
     前記冷媒回路中の冷凍機油が劣化しているか否かの判定及び前記圧縮機が損傷しているか否かを判定の両方を行うものにおいて、
     前記圧縮機が損傷しているか否かを判定してから、前記冷媒回路中の冷凍機油が劣化しているか否かを判定する
     請求項1~12のいずれか一項に記載の冷凍サイクル装置。
    The control device includes:
    In both of the determination of whether or not the refrigerating machine oil in the refrigerant circuit has deteriorated and the determination of whether or not the compressor is damaged,
    The refrigeration cycle apparatus according to any one of claims 1 to 12, wherein it is determined whether or not the compressor oil in the refrigerant circuit has deteriorated after determining whether or not the compressor is damaged.
PCT/JP2016/075219 2016-08-29 2016-08-29 Refrigeration cycle apparatus WO2018042495A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018536537A JP6641490B2 (en) 2016-08-29 2016-08-29 Refrigeration cycle device
PCT/JP2016/075219 WO2018042495A1 (en) 2016-08-29 2016-08-29 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/075219 WO2018042495A1 (en) 2016-08-29 2016-08-29 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2018042495A1 true WO2018042495A1 (en) 2018-03-08

Family

ID=61300278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075219 WO2018042495A1 (en) 2016-08-29 2016-08-29 Refrigeration cycle apparatus

Country Status (2)

Country Link
JP (1) JP6641490B2 (en)
WO (1) WO2018042495A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019214957A (en) * 2018-06-12 2019-12-19 大阪瓦斯株式会社 Failure prediction device of compressor
CN110657609A (en) * 2018-06-29 2020-01-07 日立江森自控空调有限公司 Refrigerator oil degradation determination system, water contamination determination system, refrigeration cycle device, and water remaining inspection method
WO2024084586A1 (en) * 2022-10-18 2024-04-25 三菱電機株式会社 Air-conditioning device and air-conditioning system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279177A (en) * 1987-05-11 1988-11-16 Minolta Camera Co Ltd Checking device for photosensor
JPH09152202A (en) * 1995-12-01 1997-06-10 Matsushita Refrig Co Ltd Air-conditioner
JP2001227846A (en) * 2000-02-14 2001-08-24 Daikin Ind Ltd Refrigeration device, worn-particle discriminating device and refrigerant oxidization judging device
JP2001305128A (en) * 2000-04-21 2001-10-31 Matsushita Refrig Co Ltd Method and means for detecting deterioration of lubricating oil and refrigerating system
WO2013191273A1 (en) * 2012-06-22 2013-12-27 ナブテスコ株式会社 State determination method, state notification system and state determination program
JP2015049166A (en) * 2013-09-03 2015-03-16 株式会社Ihi Lubricant deterioration determination apparatus, lubricant deterioration determination method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279177A (en) * 1987-05-11 1988-11-16 Minolta Camera Co Ltd Checking device for photosensor
JPH09152202A (en) * 1995-12-01 1997-06-10 Matsushita Refrig Co Ltd Air-conditioner
JP2001227846A (en) * 2000-02-14 2001-08-24 Daikin Ind Ltd Refrigeration device, worn-particle discriminating device and refrigerant oxidization judging device
JP2001305128A (en) * 2000-04-21 2001-10-31 Matsushita Refrig Co Ltd Method and means for detecting deterioration of lubricating oil and refrigerating system
WO2013191273A1 (en) * 2012-06-22 2013-12-27 ナブテスコ株式会社 State determination method, state notification system and state determination program
JP2015049166A (en) * 2013-09-03 2015-03-16 株式会社Ihi Lubricant deterioration determination apparatus, lubricant deterioration determination method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019214957A (en) * 2018-06-12 2019-12-19 大阪瓦斯株式会社 Failure prediction device of compressor
JP7030623B2 (en) 2018-06-12 2022-03-07 大阪瓦斯株式会社 Compressor failure predictor
CN110657609A (en) * 2018-06-29 2020-01-07 日立江森自控空调有限公司 Refrigerator oil degradation determination system, water contamination determination system, refrigeration cycle device, and water remaining inspection method
JP2020003166A (en) * 2018-06-29 2020-01-09 日立ジョンソンコントロールズ空調株式会社 Refrigerator oil deterioration determination system, water component contamination determination system, refrigeration cycle device and water component residual inspection method
CN110657609B (en) * 2018-06-29 2021-07-27 日立江森自控空调有限公司 Refrigerator oil degradation determination system, water contamination determination system, refrigeration cycle device, and water remaining inspection method
WO2024084586A1 (en) * 2022-10-18 2024-04-25 三菱電機株式会社 Air-conditioning device and air-conditioning system

Also Published As

Publication number Publication date
JPWO2018042495A1 (en) 2019-04-04
JP6641490B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
WO2018042495A1 (en) Refrigeration cycle apparatus
CN107429949B (en) Refrigeration cycle device
JP6083173B2 (en) AIR CONDITIONER AND COMPRESSOR USED FOR THE SAME
JP2017053285A (en) Compressor
WO2015025514A1 (en) Refrigeration device
WO2019244659A1 (en) Refrigeration device
JP2011038699A (en) Air conditioner
EP1826512A2 (en) System and method for recycling oil in air conditioner
JP2015114067A (en) Air conditioner
JP2017210898A (en) Scroll compressor
US10851787B2 (en) Compressor bearing housing drain
JP4203292B2 (en) air compressor
JP6255832B2 (en) Air conditioner
CN114585868B (en) Refrigerating device
JP2008133968A (en) Refrigerating cycle device
JP4929253B2 (en) air compressor
JP4276528B2 (en) Compressor
JP4166022B2 (en) air compressor
JP2013238191A (en) Compressor
JP2009097460A (en) Rotary motor-driven compressor
JP5452580B2 (en) air compressor
JP2004205175A (en) Refrigerator
JP6751597B2 (en) Positive displacement compressors, water heaters, and air conditioners
JP2020172897A (en) Compressor and refrigeration cycle device employing the same
JP2018146159A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018536537

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915056

Country of ref document: EP

Kind code of ref document: A1