WO2018042407A1 - System for assisting with risk assessment relating to the development of wrist injuries sustained at work as a result of repetitive strain - Google Patents

System for assisting with risk assessment relating to the development of wrist injuries sustained at work as a result of repetitive strain Download PDF

Info

Publication number
WO2018042407A1
WO2018042407A1 PCT/IB2017/055348 IB2017055348W WO2018042407A1 WO 2018042407 A1 WO2018042407 A1 WO 2018042407A1 IB 2017055348 W IB2017055348 W IB 2017055348W WO 2018042407 A1 WO2018042407 A1 WO 2018042407A1
Authority
WO
WIPO (PCT)
Prior art keywords
effort
risk
estimating
support system
repetitive
Prior art date
Application number
PCT/IB2017/055348
Other languages
Spanish (es)
French (fr)
Inventor
Diego MARTINEZ CASTRO
Cristian Alberto SALAZAR DURAN
Original Assignee
Universidad Autonoma De Occidente
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Autonoma De Occidente filed Critical Universidad Autonoma De Occidente
Publication of WO2018042407A1 publication Critical patent/WO2018042407A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons

Definitions

  • the present invention is part of the developments aimed at preventing occupational injuries due to repetitive effort. Based on medical studies and methods that support occupational health professionals to perform their analyzes, such as the OCRA Check List, the system developed integrates monitoring and processing subsystems of the most representative variables in the development of wrist injuries.
  • the invention is directed to a support system for estimating the risk of developing labor wrist injuries due to repetitive effort, comprising a monitoring subsystem, a processing subsystem and a recording and visualization subsystem; wherein the monitoring subsystem comprises transducers and stages of electronic signal conditioning and capture, and the processing subsystem is a system embedded and synthesized in hardware or software.
  • US6334852 uses Hall effect sensors adapted to a clothing that is fitted in the hand and forearm, and is capable of monitoring and detecting articular movements of the wrist without inhibiting movement natural hand; However, it only detects the movement factor and not the other factors of interest related to this type of injury.
  • Devices capable of wirelessly monitoring muscle activity by means of EMG processing have also been developed without affecting the natural mobility of the arm in work settings, among them is the device presented in US4807642, which compares the EMG signal obtained from the user with a reference signal, so that if the signal resembles the reference the device generates an acoustic signal in order to indicate to the user that he is performing a dangerous muscular action.
  • Another device that uses EMG signal is the one described in WO2004 / 098406A1 which measures the inferred force of a subject in an object, and has storage in a database and allows to analyze the results through a user interface on a screen, by means of which it shows the user the EMG signal in real time.
  • the present invention is conditioned on a subject of possible occupational risk and during a real work session provides information related to the risk to which he is exposed in relation to the development of a wrist injury, which is of great interest for decision-making. that contribute to mitigate this type of injury.
  • the system developed in the present invention relies on real measurements of said variables during a work session, providing objective and more precise analyzes of the risk of developing an injury, where the selection of the measured variables and the processing of them, allows to merge basic information to generate new results according to medical studies and evaluation methods to know the risk of developing wrist injuries. Additionally, the system allows to visualize and record the session measurements and the results obtained from the processing.
  • FIG. 1 illustrates the monitoring subsystem developed and its conditioned distribution to a subject
  • FIG. 2 teaches the electromyography capture module according to the present invention
  • FIG 3 shows the motion detector module of the monitoring subsystem according to the present invention
  • FIG. 4 teaches the mechanomyography capture module
  • FIG. 5 schematically shows the transmission of information from the processing subsystem to the recording and display subsystem
  • FIG. 6 shows the interface for displaying captured data and processing results.
  • the present invention reports a system capable of monitoring the variables associated with factors determined as influential in the development of work injuries due to repetitive strain on the wrist while the worker performs his work activity, and generate factors and indices related to the risk of developing injuries.
  • the factors considered as influential are repetitiveness, vibration and effort; These factors were chosen as the most influential based on the prevention method most used for this type of analysis, Check List OCRA, and a document made by Bruce Bernard for the NIOSH, in which a review of the different official investigations is presented which involved tests to show if the variables force, repetitiveness, vibration and position generated or not the carpal tunnel syndrome.
  • the system according to the present invention is composed of 3 subsystems:
  • the monitoring subsystem (10) is constituted by transducers and electronic signal conditioning and capture stages, which allow to record the muscular activity, the acceleration and angular velocity of the hand and the muscle vibration.
  • the subsystem is installed in a clothing on the upper limb of the person to be analyzed as shown in Figure 1. In this way it is achieved that the upper member of the user moves freely, facilitating the analysis during a work session.
  • the monitoring activity can be carried out for as long as the user wishes, for example, in a range between 1 minute to 8 hours, consecutively or interleaved.
  • the subsystem (10) comprises an apparel (1 1) which has a rear face that matches the back of the hand and an anterior part that matches the palm of the user's hand.
  • On the back of the clothing (1 1) there is a module that allows to detect muscle vibration (12) by mechanomyography (MMG), a module for measuring muscle activity (13) by electromyography (EMG), a module Power supply (14) responsible for supplying all circuits, an embedded device (15) in which the functions that process the captured data are implemented, which can be implemented in technologies such as microcontrollers or FPGA, and an arrangement of two Acceleration and angular velocity measurement modules located (16) (Accel and gyro forearm) and (17) (Accel and gyro hand), on the clothing (1 1) where the module (17) is located at the top of the hand and the module (16) is located in the lower part of the forearm.
  • MMG mechanomyography
  • EMG electromyography
  • Power supply (14) responsible for supplying all circuits
  • the subsystem (10) is based on electromyography, which is a process to detect the bio-potentiality of muscles when contracted.
  • the sensors used to measure EMG are surface electrodes, which are located in the lower part of the forearm (18).
  • the architectural diagram of the circuit for obtaining EMG (20) is shown in Figure 2.
  • the electrical signals that are acquired are acquired. amplified through an instrumentation amplifier (21), the signal is then filtered by an analog band-pass filter (22) with a cut-off frequency of 20 Hz and 8 kHz.
  • a rectification process (24) is carried out using a diode which decreases the level of the signal by the threshold voltage of this element, therefore, prior to this stage a process is performed of amplification by means of a non-inverting amplifier (23).
  • a process is performed of amplification by means of a non-inverting amplifier (23).
  • this muscle activation is captured by the electrodes increasing or decreasing the amplitude of the EMG signal proportionally depending on the force exerted, therefore for this measurement only the amplitude of the signal but not its frequency, for which a configuration is implemented that allows obtaining the envelope of the signal (25).
  • An analog low-pass filter with a cut-off frequency of 7 Hz is used to limit the bandwidth of the signal to that of the envelope.
  • the conditioned signal is connected by cable to the embedded system for further processing.
  • FIG. 3 represents the functional diagram of the motion detector module, which is composed of accelerometers and gyroscopes (31). 4 devices are used; 2 on the back of the clothing (1 1), figure 1, at the location (16) and 2 devices in the upper hand area at the location (17). The information provided by these transducers is sent to the embedded system.
  • the detection of muscle vibration is performed by means of the module (12) that makes a process of mechanomyography (MMG), figure 1;
  • MMG mechanomyography
  • a microphone is used in contact with the skin on the forearm muscle that you want to monitor.
  • the architectural diagram of the mechanomyography capture module is shown in Figure 4 where the mechanomyography allows to detect the muscular activity by means of the mechanical vibrations that occur when the muscle is contracted.
  • an electret microphone is used in contact with the area to be sensed (41).
  • the microphone needs an adaptation circuit, in addition to the electronics necessary for coupling with the embedded system where the information supplied by this transducer is processed.
  • the MMG signal has relevant information from 5 Hz, so a high pass analog filter (42) is used with that cutoff frequency.
  • an amplification process is carried out by means of a non-inverting amplifier (43). Since the signal is still bipolar up to that stage, a process of adding a DC signal (44) is then carried out since the negative component also provides relevant information.
  • the MMG signal does not contain information after 20 Hz, therefore a low-pass filter (45) is performed with that cutoff frequency.
  • the conditioned signal is connected to the embedded system for further processing.
  • the embedded module (15) is responsible for digitizing the signals, storing data in a microSD, and wireless transmission.
  • This subsystem is implemented in an embedded system, which can be synthesized in hardware or software using technologies such as microcontrollers or FPGA.
  • the processing subsystem captures the values of the variables and processes the information through modules that generate as a result the factors quantitative, muscular effort and vibration already quantified, which are calculated as follows: ⁇
  • For the calculation of vibration at the one that is subject to the hand uses a motion detector module on the hand (30), figure 3, which gives the acceleration information in 2 axes.
  • the Fast Fourier Transform FFT
  • the frequencies in which the highest intensity was reported between the two axes are detected.
  • the vibration module (17), figure 1 are related to the data acquired by the EMG module (20), figure 2; With this information the level of muscular effort at which the induced vibration occurred was detected.
  • the data of the vectors that represent the frequency spectrum, the frequencies with greater intensity, and the levels of muscular effort of said frequencies, are stored to be later shown through the Subsystem of recording and visualization.
  • the calculation of muscular effort is important to identify the effort required by the person to perform in a particular work activity, so this factor reports the total time in which the different levels of effort were exercised, low, medium and high.
  • the calculation is performed using the EMG signal (20), figure 2; each time the signal is held at an effort level, the respective counter that accumulates the time for that level is activated, if the effort level is changed, the counter related to the new level is activated, and if the previous level is returned, the Counter continues counting from the last number stored, so in the end you get the result of the three counters that represent the total effort time in each level.
  • the three data are transformed to the unit of time measurement and stored for later viewing.
  • the calculation of the angle of the hand is important to know the different angles reached by the hand while performing an activity, which is related to the posture that the person's hand takes while developing a specific task.
  • the calculation is performed using the motion detector signal which gives the acceleration and angular velocity information in 2 axes.
  • Two sensors are used on the hand (17) and two sensors on the forearm (16) to serve as a reference, figure 1.
  • the relation of these 16 signals allows the calculation of the angle of the hand in 2 axes, figure 3.
  • the EMG signals (20), figure 2, and the motion detector (30), figure 3 are also used.
  • EMG the data obtained in EMG (20) is used, figure 2;
  • the EMG signal has a level proportional to the effort exerted by the muscle and when holding an object the signal is maintained at a value, this property allows not only to identify when a static action occurs but also at what level of effort was made and the amount of This time lasted.
  • a counter increases every time a static action is detected.
  • This signal is also related to the signal of the motion detector to know how to differentiate whether the action was static or dynamic actions with sustained high effort.
  • the captured and processed data are transmitted (50) to the recording and display subsystem which is implemented in a PC (51), figure 5.
  • the transmission is carried out by radio where the protocol depends on the wireless transmission technology from which available, currently the system developed includes Bluethoot and Zigbee transmitter components that support transmissions.
  • Another option to transfer the data is to manually remove the microSD from the device and enter it directly into a port on the PC.
  • the risk factors together with the recording of the values of the variables are stored in a database to have a record of the activity and subsequently displayed through a graphical interface, figure 6.

Abstract

The invention relates to a system for assisting with risk assessment relating to the development of wrist injuries sustained at work as a result of repetitive strain, comprising a monitoring sub-system, a processing sub-system and a recording and viewing sub-system, where the monitoring subsystem comprises transducers and electronic signal conditioning and capture steps and the processing subsystem is a system embedded and synthesised in hardware or in software, which merges the monitored information so as to obtain combined factors considered to have a large impact on the development of this type of injury.

Description

SISTEMA DE APOYO A LA ESTIMACIÓN DEL RIESGO DE DESARROLLAR LESIONES LABORALES DE MUÑECA POR ESFUERZO REPETITIVO  SUPPORT SYSTEM FOR THE ESTIMATION OF THE RISK OF DEVELOPING LABOR INJURIES OF DOLLS BY REPETITIVE EFFORT
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención se enmarca dentro de los desarrollos orientados a la prevención de lesiones laborales por esfuerzo repetitivo. Con base en estudios médicos y métodos en los que se apoyan los profesionales en salud ocupacional para realizar sus análisis, como el Check List OCRA, el sistema desarrollado integra subsistemas de monitorización y procesamiento de las variables más representativas en el desarrollo de lesiones de muñeca. The present invention is part of the developments aimed at preventing occupational injuries due to repetitive effort. Based on medical studies and methods that support occupational health professionals to perform their analyzes, such as the OCRA Check List, the system developed integrates monitoring and processing subsystems of the most representative variables in the development of wrist injuries.
RESUMEN DE LA INVENCIÓN SUMMARY OF THE INVENTION
La invención está dirigida a un sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo, que comprende un subsistema de monitorización, un subsistema de procesamiento y un subsistema de registro y visualización; en donde el subsistema de monitorización comprende transductores y etapas de acondicionamiento electrónico de señales y captura, y el subsistema de procesamiento es un sistema embebido y sintetizado en un hardware o en un software. The invention is directed to a support system for estimating the risk of developing labor wrist injuries due to repetitive effort, comprising a monitoring subsystem, a processing subsystem and a recording and visualization subsystem; wherein the monitoring subsystem comprises transducers and stages of electronic signal conditioning and capture, and the processing subsystem is a system embedded and synthesized in hardware or software.
ESTADO DE LA TÉCNICA A nivel industrial se realizan estudios de puestos de trabajo con el propósito de evaluar el riesgo de un trabajador en desarrollar algún tipo de lesión laboral que afecte su condición física. Estos estudios se soportan en la observación del desarrollo de la actividad y la aplicación de encuestas, obteniendo resultados subjetivos con un alto porcentaje de error. STATE OF THE TECHNIQUE At the industrial level, studies of jobs are carried out with the purpose of assessing the risk of a worker in developing some type of work injury that affects his physical condition. These studies are supported in the observation of the development of the activity and the application of surveys, obtaining subjective results with a high percentage of error.
El menor impacto en el tratamiento de problemas de lesiones por esfuerzo repetitivo se logra por medio de métodos de prevención y no de detección temprana de las patologías. Los métodos utilizados actualmente se soportan principalmente en factores ponderados a percepción y no por medición precisa cuantitativa de variables relacionadas con el desarrollo de lesiones. Entre los factores de mayor influencia en el caso de lesiones por esfuerzo repetitivo se encuentran movimientos articulares, movimientos articulares con esfuerzo, la aplicación excesiva de fuerza, y el uso de herramientas vibrantes. Paralelamente se han desarrollado dispositivos electrónicos capaces de detectar y monitorear diferentes factores de interés relacionados con este tipo de lesiones. The least impact on the treatment of repetitive strain injury problems is achieved through prevention and non-detection methods. Early pathologies. The methods currently used are mainly based on factors weighted to perception and not by precise quantitative measurement of variables related to the development of lesions. Among the most influential factors in the case of repetitive stress injuries are joint movements, joint movements with effort, excessive application of force, and the use of vibrating tools. In parallel, electronic devices capable of detecting and monitoring different factors of interest related to this type of injury have been developed.
Uno de los dispositivos encontrados es el presentado en la patente US6334852, el cual usa sensores de efecto Hall adaptados a una indumentaria que se acondiciona en la mano y el antebrazo, y es capaz de monitorear y detectar movimientos articulares de la muñeca sin inhibir el movimiento natural de la mano; sin embargo solo detecta el factor movimiento y no los demás factores de interés relacionados con este tipo de lesiones. One of the devices found is that presented in US6334852, which uses Hall effect sensors adapted to a clothing that is fitted in the hand and forearm, and is capable of monitoring and detecting articular movements of the wrist without inhibiting movement natural hand; However, it only detects the movement factor and not the other factors of interest related to this type of injury.
Se han desarrollado también dispositivos capaces de monitorear de manera inalámbrica la actividad muscular por medio de procesamiento de EMG sin afectar la movilidad natural del brazo en ámbitos laborales, entre ellos está el dispositivo presentado en la patente US4807642, el cual compara la señal EMG obtenida del usuario con una señal de referencia, de modo que si la señal se asemeja a la referencia el dispositivo genera una señal acústica con el fin de indicarle al usuario que está realizando una acción muscular peligrosa. Otro de los dispositivos que usa señal EMG es el descrito en el documento WO2004/098406A1 el cual mide la fuerza inferida de un sujeto en un objeto, y posee almacenamiento en una base de datos y permite analizar los resultados a través de una interface de usuario en una pantalla, por medio de la cual muestra al usuario la señal EMG en tiempo real. Estos dispositivos solo monitorean un factor influyente, los otros factores no son monitoreados. Debido a lo anterior es claro que persiste en la técnica la necesidad de un sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo, el cual sea capaz de monitorear simultáneamente todos los factores de riesgo en la muñeca, para luego ser presentados a la persona encargada de la toma de decisiones respecto del riesgo al que puede estar expuesto un trabajador. Devices capable of wirelessly monitoring muscle activity by means of EMG processing have also been developed without affecting the natural mobility of the arm in work settings, among them is the device presented in US4807642, which compares the EMG signal obtained from the user with a reference signal, so that if the signal resembles the reference the device generates an acoustic signal in order to indicate to the user that he is performing a dangerous muscular action. Another device that uses EMG signal is the one described in WO2004 / 098406A1 which measures the inferred force of a subject in an object, and has storage in a database and allows to analyze the results through a user interface on a screen, by means of which it shows the user the EMG signal in real time. These devices only monitor one influencing factor, the other factors are not monitored. Due to the above, it is clear that there is still a need in the art for a support system to estimate the risk of developing wrist injuries due to repetitive effort, which is capable of simultaneously monitoring all risk factors in the wrist, in order to then be presented to the person in charge of making decisions regarding the risk to which a worker may be exposed.
La presente invención se acondiciona en un sujeto de posible riesgo laboral y durante una sesión real de trabajo aporta información relacionada con el riesgo al que está expuesto en relación al desarrollo de una lesión de muñeca, lo cual es de gran interés para la toma de decisiones que contribuyan a mitigar este tipo de lesiones. A diferencia de los métodos tradicionales, el sistema desarrollado en la presente invención se apoya en mediciones reales de dichas variables durante una sesión de trabajo, aportando análisis objetivos y más precisos sobre el riesgo de desarrollar una lesión, en donde la selección de las variables medidas y el procesamiento realizado de las mismas, permite fusionar información básica para generar nuevos resultados acordes a los estudios médicos y métodos de evaluación para conocer el riesgo de desarrollar lesiones en la muñeca. Adicionalmente, el sistema permite visualizar y registrar las mediciones de la sesión y los resultados obtenidos del procesamiento. The present invention is conditioned on a subject of possible occupational risk and during a real work session provides information related to the risk to which he is exposed in relation to the development of a wrist injury, which is of great interest for decision-making. that contribute to mitigate this type of injury. Unlike traditional methods, the system developed in the present invention relies on real measurements of said variables during a work session, providing objective and more precise analyzes of the risk of developing an injury, where the selection of the measured variables and the processing of them, allows to merge basic information to generate new results according to medical studies and evaluation methods to know the risk of developing wrist injuries. Additionally, the system allows to visualize and record the session measurements and the results obtained from the processing.
DESCRIPCIÓN DETALLADA DE LOS DIBUJOS La FIG. 1 ilustra el subsistema de monitorización desarrollado y su distribución acondicionada a un sujeto; DETAILED DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates the monitoring subsystem developed and its conditioned distribution to a subject;
La FIG. 2 enseña el módulo de captura de electromiografía de acuerdo con la presente invención;  FIG. 2 teaches the electromyography capture module according to the present invention;
La FIG 3 muestra el módulo detector de movimiento del subsistema de monitorización de acuerdo con la presente invención;  FIG 3 shows the motion detector module of the monitoring subsystem according to the present invention;
La FIG. 4 enseña el módulo de captura de mecanomiografía; La FIG. 5 muestra de manera esquemática la transmisión de información desde el subsistema de procesamiento hasta el subsistema de registro y visualización, FIG. 4 teaches the mechanomyography capture module; FIG. 5 schematically shows the transmission of information from the processing subsystem to the recording and display subsystem,
La FIG. 6 muestra la interface de visualización de datos capturados y resultados del procesamiento.  FIG. 6 shows the interface for displaying captured data and processing results.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La presente invención reporta un sistema capaz de monitorear las variables asociadas a factores determinados como influyentes en el desarrollo de lesiones laborales por esfuerzo repetitivo en la muñeca mientras el trabajador realiza su actividad laboral, y generar factores e índices relacionados con el riesgo de desarrollar lesiones. Los factores considerados como influyentes son repetitividad, vibración y esfuerzo; dichos factores fueron escogidos como los más influyentes tomando como base el método de prevención más usado para este tipo de análisis, Check List OCRA, y un documento realizado por Bruce Bernard para la NIOSH, en el cual se presenta una reseña de las diferentes investigaciones oficiales que involucraron pruebas para evidenciar si las variables fuerza, repetitividad, vibración y posición generaban o no el síndrome de túnel carpiano. The present invention reports a system capable of monitoring the variables associated with factors determined as influential in the development of work injuries due to repetitive strain on the wrist while the worker performs his work activity, and generate factors and indices related to the risk of developing injuries. The factors considered as influential are repetitiveness, vibration and effort; These factors were chosen as the most influential based on the prevention method most used for this type of analysis, Check List OCRA, and a document made by Bruce Bernard for the NIOSH, in which a review of the different official investigations is presented which involved tests to show if the variables force, repetitiveness, vibration and position generated or not the carpal tunnel syndrome.
El sistema de acuerdo con la presente invención está compuesto de 3 subsistemas: The system according to the present invention is composed of 3 subsystems:
• Subsistema de monitorización; • Monitoring subsystem;
• Subsistema de procesamiento; y  • Processing subsystem; Y
• Subsistema de registro y visualización. Subsistema de monitorización De acuerdo con la presente invención el subsistema de monitorización (10) se encuentra constituido por transductores y etapas de acondicionamiento electrónico de señales y captura, que permiten registrar la actividad muscular, la aceleración y velocidad angular de la mano y la vibración muscular. El subsistema se instala en una indumentaria sobre la extremidad superior de la persona a analizar como se muestra en la figura 1 . De esta manera se logra que el miembro superior del usuario se mueva con libertad, facilitando el análisis durante una sesión de trabajo. La actividad de monitoreo puede realizarse durante el tiempo en que el usuario lo desee, por ejemplo, en un rango entre 1 minuto hasta 8 horas, de manera consecutiva o intercalada. • Registration and display subsystem. Monitoring subsystem In accordance with the present invention, the monitoring subsystem (10) is constituted by transducers and electronic signal conditioning and capture stages, which allow to record the muscular activity, the acceleration and angular velocity of the hand and the muscle vibration. The subsystem is installed in a clothing on the upper limb of the person to be analyzed as shown in Figure 1. In this way it is achieved that the upper member of the user moves freely, facilitating the analysis during a work session. The monitoring activity can be carried out for as long as the user wishes, for example, in a range between 1 minute to 8 hours, consecutively or interleaved.
Como se ilustra en la figura 1 , el subsistema (10) comprende una indumentaria (1 1) la cual tiene una cara posterior que concuerda con el dorso de la mano y una parte anterior que concuerda con la palma de la mano del usuario. En la cara posterior de la indumentaria (1 1), se ubica un módulo que permite detectar la vibración muscular (12) por mecanomiografía (MMG), un módulo de medición de la actividad muscular (13) por electromiografía (EMG), un módulo de fuente de poder (14) encargado de abastecer todos los circuitos, un dispositivo embebido (15) en el que se implementan las funciones que procesan los datos capturados, el cual se puede implementar en tecnologías como microcontroladores o FPGA, y un arreglo de dos módulos de medición de aceleración y velocidad angular ubicados (16) (Acel y gyro antebrazo) y (17) (Acel y gyro mano), sobre la indumentaria (1 1) en donde el módulo (17) se encuentra ubicado en la parte superior de la mano y el módulo (16) se encuentra ubicado en la parte inferior del antebrazo. As illustrated in Figure 1, the subsystem (10) comprises an apparel (1 1) which has a rear face that matches the back of the hand and an anterior part that matches the palm of the user's hand. On the back of the clothing (1 1), there is a module that allows to detect muscle vibration (12) by mechanomyography (MMG), a module for measuring muscle activity (13) by electromyography (EMG), a module Power supply (14) responsible for supplying all circuits, an embedded device (15) in which the functions that process the captured data are implemented, which can be implemented in technologies such as microcontrollers or FPGA, and an arrangement of two Acceleration and angular velocity measurement modules located (16) (Accel and gyro forearm) and (17) (Accel and gyro hand), on the clothing (1 1) where the module (17) is located at the top of the hand and the module (16) is located in the lower part of the forearm.
El subsistema (10) se encuentra basado en electromiografía, la cual es un proceso para detectar la bio-potencialidad de los músculos al contraerse. Los sensores usados para medir la EMG son electrodos superficiales, los cuales van ubicados en la parte inferior del antebrazo (18). El diagrama arquitectural del circuito para la obtención de EMG (20) se muestra en la Figura 2. Por medio de electrodos superficiales se adquieren las señales eléctricas que son amplificadas a través de un amplificador de instrumentación (21), posteriormente la señal es filtrada por un filtro analógico pasa-banda (22) con frecuencia de corte de 20 Hz y 8 kHz. Los dispositivos de procesamiento manejan tensiones unipolares, por tal razón se realiza un proceso de rectificación (24) usando un diodo el cual disminuye el nivel de la señal por la tensión umbral de este elemento, por eso, previo a esta etapa se realiza un proceso de amplificación por medio de un amplificador no inversor (23). Dependiendo de la fuerza que se ejerza se activan una cierta cantidad de fibras musculares, esta activación muscular es capturada por los electrodos aumentando o disminuyendo la amplitud de la señal EMG proporcionalmente en función de la fuerza ejercida, por consiguiente para esta medición solo se necesita la amplitud de la señal mas no su frecuencia, por lo cual se implementa una configuración que permita obtener la envolvente de la señal (25). Se usa un filtro analógico pasa-bajo con frecuencia de corte de 7 Hz para acotar el ancho de banda de la señal al de la envolvente. Finalmente la señal acondicionada se conecta por cable al sistema embebido para su posterior procesamiento. The subsystem (10) is based on electromyography, which is a process to detect the bio-potentiality of muscles when contracted. The sensors used to measure EMG are surface electrodes, which are located in the lower part of the forearm (18). The architectural diagram of the circuit for obtaining EMG (20) is shown in Figure 2. By means of surface electrodes the electrical signals that are acquired are acquired. amplified through an instrumentation amplifier (21), the signal is then filtered by an analog band-pass filter (22) with a cut-off frequency of 20 Hz and 8 kHz. The processing devices handle unipolar tensions, for this reason a rectification process (24) is carried out using a diode which decreases the level of the signal by the threshold voltage of this element, therefore, prior to this stage a process is performed of amplification by means of a non-inverting amplifier (23). Depending on the force exerted a certain amount of muscle fibers are activated, this muscle activation is captured by the electrodes increasing or decreasing the amplitude of the EMG signal proportionally depending on the force exerted, therefore for this measurement only the amplitude of the signal but not its frequency, for which a configuration is implemented that allows obtaining the envelope of the signal (25). An analog low-pass filter with a cut-off frequency of 7 Hz is used to limit the bandwidth of the signal to that of the envelope. Finally, the conditioned signal is connected by cable to the embedded system for further processing.
Otro componente del subsistema de monitorización (10) es el mostrado en la figura 3 que representa el diagrama funcional del módulo detector de movimiento, el cual está compuesto por acelerómetros y giroscopios (31 ). Se utilizan 4 dispositivos; 2 en la parte posterior de la indumentaria (1 1), figura 1 , en la ubicación (16) y 2 dispositivos en la zona superior de la mano en la ubicación (17). La información proporcionada por estos transductores se envía al sistema embebido. Another component of the monitoring subsystem (10) is that shown in Figure 3 which represents the functional diagram of the motion detector module, which is composed of accelerometers and gyroscopes (31). 4 devices are used; 2 on the back of the clothing (1 1), figure 1, at the location (16) and 2 devices in the upper hand area at the location (17). The information provided by these transducers is sent to the embedded system.
La detección de la vibración muscular se realiza por medio del módulo (12) que hace un proceso de mecanomiografía (MMG), figura 1 ; para ello se usa un micrófono en contacto con la piel sobre el músculo del antebrazo que se desea monitorear. El diagrama arquitectural del módulo de captura de mecanomiografía se muestra en la Figura 4 en donde la mecanomiografía permite detectar la actividad muscular por medio de las vibraciones mecánicas que se presentan al contraerse el músculo. Para ello se usa un micrófono electret en contacto con la zona a sensar (41). El micrófono necesita un circuito de adecuación, además de la electrónica necesaria para el acoplamiento con el sistema embebido donde se procesa la información suministrada por este transductor. La señal MMG tiene información relevante a partir de los 5 Hz, por ello se usa un filtro analógico pasa-alto (42) con esa frecuencia de corte. Posteriormente se realiza un proceso de amplificación por medio de un amplificador no inversor (43). Como hasta esa etapa la señal aún es bipolar se realiza entonces un proceso de sumarle una señal DC (44) ya que la componente negativa también aporta información relevante. La señal MMG no contiene información después de los 20 Hz por ello se realiza un filtro pasa-bajo (45) con esa frecuencia de corte. La señal acondicionada se conecta al sistema embebido para su posterior procesamiento. The detection of muscle vibration is performed by means of the module (12) that makes a process of mechanomyography (MMG), figure 1; For this, a microphone is used in contact with the skin on the forearm muscle that you want to monitor. The architectural diagram of the mechanomyography capture module is shown in Figure 4 where the mechanomyography allows to detect the muscular activity by means of the mechanical vibrations that occur when the muscle is contracted. For this, an electret microphone is used in contact with the area to be sensed (41). The microphone needs an adaptation circuit, in addition to the electronics necessary for coupling with the embedded system where the information supplied by this transducer is processed. The MMG signal has relevant information from 5 Hz, so a high pass analog filter (42) is used with that cutoff frequency. Subsequently, an amplification process is carried out by means of a non-inverting amplifier (43). Since the signal is still bipolar up to that stage, a process of adding a DC signal (44) is then carried out since the negative component also provides relevant information. The MMG signal does not contain information after 20 Hz, therefore a low-pass filter (45) is performed with that cutoff frequency. The conditioned signal is connected to the embedded system for further processing.
El módulo embebido (15) se encarga de la digitalización de las señales, almacenamiento de datos en una microSD, y de la transmisión inalámbrica. The embedded module (15) is responsible for digitizing the signals, storing data in a microSD, and wireless transmission.
Subsistema de procesamiento. Processing Subsystem
Este subsistema se implementa en un sistema embebido, el cual puede ser sintetizado en hardware o en software utilizando tecnologías como microcontroladores o FPGA. El subsistema de procesamiento captura los valores de las variables y procesa la información a través de módulos que generan como resultado los factores repetitividad, esfuerzo muscular y vibración ya cuantificados, los cuales se calculan de la siguiente manera: · Para el cálculo de la vibración a la que está sometida la mano se utiliza un módulo detector de movimiento sobre la mano (30), figura 3, el cual otorga la información de aceleración en 2 ejes. Para conocer las variables intensidad y frecuencia de una vibración externa sobre la mano se utiliza la Transformada Rápida de Fourier (FFT) para obtener el espectro de frecuencia en cada eje de aceleración. Una vez obtenido ese espectro se detectan cuáles fueron las frecuencias en las que se reportó mayor intensidad entre los dos ejes. This subsystem is implemented in an embedded system, which can be synthesized in hardware or software using technologies such as microcontrollers or FPGA. The processing subsystem captures the values of the variables and processes the information through modules that generate as a result the factors quantitative, muscular effort and vibration already quantified, which are calculated as follows: · For the calculation of vibration at the one that is subject to the hand uses a motion detector module on the hand (30), figure 3, which gives the acceleration information in 2 axes. To know the variables intensity and frequency of an external vibration on the hand the Fast Fourier Transform (FFT) is used to obtain the frequency spectrum on each acceleration axis. Once this spectrum is obtained, the frequencies in which the highest intensity was reported between the two axes are detected.
Es importante también conocer si en el momento en que se indujo la vibración también se realizaron grandes niveles de fuerza, tal como ocurre, por ejemplo, como en el caso de un taladro perforando madera en comparación con perforar concreto. Para esto se relacionan los datos obtenidos por el módulo vibración (17), figura 1 , con los datos adquiridos por el módulo EMG (20), figura 2; con esta información se detecta cuál fue el nivel de esfuerzo muscular al cual ocurrió la vibración inducida. It is also important to know if at the time the vibration was induced large levels of force were also performed, such as, for example, as in the case of a drill drilling wood compared to drilling concrete. For this, the data obtained by the vibration module (17), figure 1, are related to the data acquired by the EMG module (20), figure 2; With this information the level of muscular effort at which the induced vibration occurred was detected.
Los datos de los vectores que representan el espectro de frecuencia, las frecuencias con mayor intensidad, y los niveles de esfuerzo muscular de dichas frecuencias, se almacenan para posteriormente ser mostrados a través del Subsistema de registro y visualización. The data of the vectors that represent the frequency spectrum, the frequencies with greater intensity, and the levels of muscular effort of said frequencies, are stored to be later shown through the Subsystem of recording and visualization.
• El cálculo del esfuerzo muscular es importante para identificar el esfuerzo requerido por la persona al realizar en una determinada actividad laboral, por eso este factor reporta el total de tiempo en que se ejercieron los diferentes niveles de esfuerzo, bajo, medio y alto. El cálculo se realiza utilizando la señal EMG (20), figura 2; cada vez que se sostiene la señal en un nivel de esfuerzo se activa el contador respectivo que acumula el tiempo para ese nivel, si se cambia de nivel de esfuerzo se activa el contador relacionado con el nuevo nivel, y si se regresa al nivel anterior el contador sigue contando a partir del último número almacenado, de este modo al final se obtiene el resultado de los tres contadores que representan el tiempo total de esfuerzo en cada nivel. Los tres datos son transformados a la unidad de medida de tiempo y se almacenan para que sean visualizados posteriormente. • El cálculo del ángulo de la mano es importante para conocer los diferentes ángulos que alcanza la mano mientras se realiza una actividad, lo cual se relaciona con la postura que toma la mano de la persona mientras se desarrolla una labor específica. El cálculo se realiza utilizando la señal del detector de movimiento el cual otorga la información de la aceleración y velocidad angular en 2 ejes. Se utilizan dos sensores sobre la mano (17) y dos sensores en el antebrazo (16) para servir de referencia, figura 1. La relación de estas 16 señales permite el cálculo del ángulo de la mano en 2 ejes, figura 3. • The calculation of muscular effort is important to identify the effort required by the person to perform in a particular work activity, so this factor reports the total time in which the different levels of effort were exercised, low, medium and high. The calculation is performed using the EMG signal (20), figure 2; each time the signal is held at an effort level, the respective counter that accumulates the time for that level is activated, if the effort level is changed, the counter related to the new level is activated, and if the previous level is returned, the Counter continues counting from the last number stored, so in the end you get the result of the three counters that represent the total effort time in each level. The three data are transformed to the unit of time measurement and stored for later viewing. • The calculation of the angle of the hand is important to know the different angles reached by the hand while performing an activity, which is related to the posture that the person's hand takes while developing a specific task. The calculation is performed using the motion detector signal which gives the acceleration and angular velocity information in 2 axes. Two sensors are used on the hand (17) and two sensors on the forearm (16) to serve as a reference, figure 1. The relation of these 16 signals allows the calculation of the angle of the hand in 2 axes, figure 3.
• El cálculo de la repetitividad se realiza por cuanto en la literatura este factor se reporta como el más influyente en el desarrollo de patologías en la muñeca, el factor es separado en dos acciones; acciones dinámicas (sucesión periódica de tensiones y relajamientos de los músculos activos de corta duración) y acciones estáticas (contracción de los músculos continua y mantenida durante un cierto periodo de tiempo). Para el cálculo de acciones dinámicas se utilizan los datos adquiridos por el módulo MMG (40), figura 4; la señal MMG varía cuando ocurre una contracción muscular, el cálculo de la repetitividad se realiza aumentando un contador cada vez que ocurre una variación en la señal, obteniendo de esta forma la cantidad de acciones dinámicas ejercidas durante un periodo de tiempo. • The calculation of repeatability is performed because in the literature this factor is reported as the most influential in the development of pathologies in the wrist, the factor is separated into two actions; dynamic actions (periodic succession of tensions and relaxation of active muscles of short duration) and static actions (contraction of the muscles continued and maintained for a certain period of time). For the calculation of dynamic actions, the data acquired by the MMG module (40) are used, figure 4; The MMG signal varies when a muscular contraction occurs, the repetitive calculation is made by increasing a counter every time a variation in the signal occurs, thus obtaining the amount of dynamic actions exercised over a period of time.
Además de utilizar la señal MMG también se utiliza las señales de EMG (20), figura 2, y del detector de movimiento (30), figura 3. Por medio de la relación con EMG se evitan los falsos conteos y se reporta el nivel de esfuerzo ejercido en cada acción dinámica y se obtienen por separado la cantidad de acciones ejercidas, acciones con esfuerzo bajo, esfuerzo medio y esfuerzo alto. Cabe recordar que las acciones dinámicas con esfuerzo alto son consideradas el factor más influyente en el desarrollo de lesiones laborales en muñeca. Para el cálculo de acciones estáticas se utilizan los datos obtenidos en EMG (20), figura 2; La señal EMG tiene un nivel proporcional al esfuerzo ejercido por el músculo y al sostener un objeto la señal se mantiene en un valor, está propiedad permite no solo identificar cuando ocurre una acción estática sino también a que nivel de esfuerzo se realizó y la cantidad de tiempo que este duró. Un contador va aumentando cada vez que se detecta una acción estática. Esta señal también se relaciona con la señal del detector de movimiento para saber diferenciar si la acción fue estática o fueron acciones dinámicas con esfuerzo alto sostenido. In addition to using the MMG signal, the EMG signals (20), figure 2, and the motion detector (30), figure 3 are also used. By means of the relationship with EMG, false counts are avoided and the level of effort exerted in each dynamic action and the amount of actions exercised, actions with low effort, medium effort and high effort are obtained separately. It should be remembered that dynamic actions with high effort are considered the most influential factor in the development of labor injuries in the wrist. For the calculation of static actions, the data obtained in EMG (20) is used, figure 2; The EMG signal has a level proportional to the effort exerted by the muscle and when holding an object the signal is maintained at a value, this property allows not only to identify when a static action occurs but also at what level of effort was made and the amount of This time lasted. A counter increases every time a static action is detected. This signal is also related to the signal of the motion detector to know how to differentiate whether the action was static or dynamic actions with sustained high effort.
Por medio de algoritmos de procesamiento de señales se fusiona la información monitoreada para obtener factores combinados considerados como muy influyentes en el desarrollo de lesiones. Los datos que se calculan son: By means of signal processing algorithms the monitored information is merged to obtain combined factors considered as very influential in the development of injuries. The data that are calculated are:
• Acciones dinámicas: • Dynamic actions:
Acciones dinámicas con poco esfuerzo. Dynamic actions with little effort.
Acciones dinámicas con esfuerzo. Dynamic actions with effort.
• Acciones estáticas: • Static actions:
Acciones estáticas con poco esfuerzo. Static actions with little effort.
Acciones estáticas con esfuerzo. Static actions with effort.
• Vibración: • Vibration:
Vibración con poco esfuerzo. Vibration with little effort.
Vibración con esfuerzo. Vibration with effort.
• Esfuerzo: • Effort:
Tiempo total para 3 niveles de fuerza (bajo, medio, alto). Total time for 3 strength levels (low, medium, high).
• Ángulo mano: Angulo mano en 2 ejes. • Hand angle: Hand angle on 2 axes.
Subsistema de registro y visualización. Registration and display subsystem.
Finalmente los datos capturados y procesados son transmitidos (50) al subsistema de registro y visualización el cual se implementa en una PC (51), figura 5. La transmisión se realiza por radio donde el protocolo depende de la tecnología de transmisión inalámbrica de la que se disponga, actualmente el sistema desarrollado comprende componentes trasmisores Bluethoot y Zigbee que soportan transmisiones. Otra opción de transferir los datos es retirar manualmente la microSD del dispositivo e ingresarla directamente a un puerto de la PC. Finally, the captured and processed data are transmitted (50) to the recording and display subsystem which is implemented in a PC (51), figure 5. The transmission is carried out by radio where the protocol depends on the wireless transmission technology from which available, currently the system developed includes Bluethoot and Zigbee transmitter components that support transmissions. Another option to transfer the data is to manually remove the microSD from the device and enter it directly into a port on the PC.
Los factores de riesgo junto con el registro de los valores de las variables se almacenan en una base de datos para tener un registro de la actividad y posteriormente se visualizan a través de una interface gráfica, figura 6. The risk factors together with the recording of the values of the variables are stored in a database to have a record of the activity and subsequently displayed through a graphical interface, figure 6.

Claims

REIVINDICACIONES
1. Un sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo caracterizado porque comprende un subsistema de monitorización; un subsistema de procesamiento y un subsistema de registro y visualización. 1. A support system for estimating the risk of developing labor wrist injuries due to repetitive stress characterized in that it comprises a monitoring subsystem; a processing subsystem and a registration and display subsystem.
2. El sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo de acuerdo con la reivindicación 1 , caracterizado porque el subsistema de monitorización comprende transductores y etapas de acondicionamiento electrónico de señales y captura. 2. The support system for estimating the risk of developing labor wrist injuries by repetitive effort according to claim 1, characterized in that the monitoring subsystem comprises transducers and stages of electronic signal conditioning and capture.
3. El sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo de acuerdo con la reivindicación 1 , caracterizado porque el subsistema de procesamiento es un sistema embebido y sintetizado en un hardware o en un software. 3. The support system for estimating the risk of developing labor wrist injuries by repetitive effort according to claim 1, characterized in that the processing subsystem is a system embedded and synthesized in a hardware or software.
4. El sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo de acuerdo con la reivindicación 1 , caracterizado porque el subsistema de registro y visualización comprende componentes trasmisores Bluethoot y Zigbee o una memoria microSD. 4. The support system for estimating the risk of developing labor wrist injuries due to repetitive strain according to claim 1, characterized in that the registration and display subsystem comprises Bluethoot and Zigbee transmitter components or a microSD memory.
5. El sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo de acuerdo con la reivindicación 1 ó 2 caracterizado porque el subsistema de monitorización comprende una indumentaria (1 1) en donde la misma tiene una cara posterior que concuerda con el dorso de la mano y una parte anterior que concuerda con la palma de la mano del usuario y en donde en la cara posterior de la indumentaria (11) se ubica un módulo que permite detectar la vibración muscular (12) por mecanomiografía (MMG), un módulo de medición de la actividad muscular (13) por electromiografía (EMG), un módulo de fuente de poder (14) encargado de abastecer todos los circuitos, un dispositivo embebido (15) en el que se implementan las funciones que procesan los datos capturados, y un arreglo de dos módulos de medición de aceleración y velocidad angular (16) y (17) ubicados sobre la indumentaria (11). 5. The support system for estimating the risk of developing labor wrist injuries due to repetitive strain according to claim 1 or 2, characterized in that the monitoring subsystem comprises an apparel (1 1) wherein it has a rear face that agrees with the back of the hand and an anterior part that matches the palm of the user's hand and where a module is located on the back of the clothing (11) to detect muscle vibration (12) by mechanomyography ( MMG), a module of measurement of muscle activity (13) by electromyography (EMG), a power source module (14) responsible for supplying all circuits, an embedded device (15) in which the functions that process the captured data are implemented, and an arrangement of two angular velocity and acceleration measurement modules (16) and (17) located on the clothing (11).
6. El sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo de acuerdo con la reivindicación 5, caracterizado porque los sensores para medir la EMG son electrodos superficiales ubicados en la parte inferior del antebrazo (18) para la obtención de EMG (20) en donde las señales eléctricas son amplificadas a través de un amplificador de instrumentación (21) y posteriormente filtrada por un filtro analógico pasa-banda (22) con frecuencia de corte de 20 Hz y 8 kHz y en donde los dispositivos de procesamiento manejan tensiones unipolares. 6. The support system for estimating the risk of developing labor injuries from repetitive strain according to claim 5, characterized in that the sensors for measuring EMG are surface electrodes located in the lower part of the forearm (18) for obtaining EMG (20) where the electrical signals are amplified through an instrumentation amplifier (21) and subsequently filtered by an analog band-pass filter (22) with a 20 Hz and 8 kHz cutoff frequency and where the Processing devices handle unipolar tensions.
7. El sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo de acuerdo con la reivindicación 1 a 6, caracterizado porque el subsistema de monitorización comprende además un módulo detector de movimiento que está compuesto por acelerómetros y giroscopios (31). 7. The support system for estimating the risk of developing labor wrist injuries due to repetitive stress according to claim 1 to 6, characterized in that the monitoring subsystem further comprises a motion detector module which is composed of accelerometers and gyroscopes ( 31).
8. El sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo de acuerdo con la reivindicación 1 a 7 caracterizado porque el subsistema de procesamiento captura los valores de las variables y procesa la información a través de módulos que generan como resultado los factores repetitividad, esfuerzo muscular y vibración, en donde la vibración a la que está sometida la mano se mide con un módulo detector de movimiento sobre la mano (30) el cual otorga la información de aceleración en 2 ejes y en donde las variables intensidad y frecuencia de la vibración externa sobre la mano se hace mediante la Transformada Rápida de Fourier FFT para obtener el espectro de frecuencia en cada eje de aceleración. 8. The support system for estimating the risk of developing labor wrist injuries due to repetitive effort according to claim 1 to 7, characterized in that the processing subsystem captures the values of the variables and processes the information through modules that generate as a result the factors repetitiveness, muscular effort and vibration, where the vibration to which the hand is subjected is measured with a motion detector module on the hand (30) which gives the acceleration information in 2 axes and where the variables intensity and frequency of external vibration on the hand are It is done using the Fast Fourier FFT Transform to obtain the frequency spectrum on each acceleration axis.
9. El sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo de acuerdo con la reivindicación 8, caracterizado porque los datos de los vectores que representan el espectro de frecuencia, las frecuencias con mayor intensidad, y los niveles de esfuerzo muscular de dichas frecuencias, se almacenan y se muestran a través del Subsistema de registro y visualización.  9. The support system for estimating the risk of developing labor wrist injuries by repetitive effort according to claim 8, characterized in that the data of the vectors representing the frequency spectrum, the frequencies with greater intensity, and the levels of muscular effort of these frequencies, are stored and displayed through the Subsystem of registration and visualization.
10. El sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo de acuerdo con la reivindicación 1 a 9 caracterizado porque el esfuerzo muscular se calcula utilizando la señal por EMG (20) cada vez que se sostiene la señal en un nivel de esfuerzo bajo, medio y alto activándose el contador respectivo que acumula el tiempo para ese nivel en donde, si se cambia de nivel de esfuerzo se activa el contador relacionado con el nuevo nivel, y si se regresa al nivel anterior el contador sigue contando a partir del último número almacenado y se obtiene el resultado de los tres contadores que representan el tiempo total de esfuerzo en cada nivel de esfuerzo. 10. The support system for estimating the risk of developing labor wrist injuries by repetitive effort according to claim 1 to 9 characterized in that the muscular effort is calculated using the EMG signal (20) each time the signal is sustained at a low, medium and high effort level activating the respective counter that accumulates the time for that level where, if the effort level is changed, the counter related to the new level is activated, and if the counter is returned to the previous level It continues counting from the last number stored and the result is obtained from the three counters that represent the total effort time at each effort level.
11. El sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo de acuerdo con la reivindicación 10, caracterizado porque los tres datos son transformados a la unidad de medida de tiempo y se almacenan para ser visualizados posteriormente. 11. The support system for estimating the risk of developing labor wrist injuries by repetitive effort according to claim 10, characterized in that the three data are transformed to the unit of time measurement and stored for later visualization.
12. El sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo de acuerdo con la reivindicación 1 a 11 , caracterizado porque el ángulo de la mano se determina mediante la señal del detector de movimiento el cual otorga la información de la aceleración y velocidad angular en 2 ejes, utilizándose dos sensores sobre la mano (17) y dos sensores en el antebrazo (16) como referencia. 12. The support system for estimating the risk of developing labor injuries from repetitive strain according to claim 1 to 11, characterized in that the angle of the hand is determined by the signal of the motion detector which gives the information of acceleration and angular velocity in 2 axes, using two sensors on the hand (17) and two sensors on the forearm (16) as a reference.
13. El sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo de acuerdo con la reivindicación 1 a 12, caracterizado porque el factor de repetitividad se determina en dos acciones: acciones dinámicas (sucesión periódica de tensiones y relajamientos de los músculos activos de corta duración) y acciones estáticas (contracción de los músculos continua y mantenida durante un cierto periodo de tiempo), mediante el módulo MMG (40). 13. The support system for estimating the risk of developing labor wrist injuries due to repetitive effort according to claim 1 to 12, characterized in that the repetitiveness factor is determined in two actions: dynamic actions (periodic succession of tensions and relaxations of the active muscles of short duration) and static actions (continuous and sustained muscle contraction for a certain period of time), using the MMG module (40).
14. El sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo de acuerdo con la reivindicación 13, caracterizado porque además de utilizar la señal MMG también se utilizan las señales de EMG (20) y del detector de movimiento (30), en donde por medio de la relación con EMG se evitan los falsos conteos y se reporta el nivel de esfuerzo ejercido en cada acción dinámica y se obtienen por separado la cantidad de acciones ejercidas, acciones con esfuerzo bajo, esfuerzo medio y esfuerzo alto. 14. The support system for estimating the risk of developing labor injuries from repetitive strain according to claim 13, characterized in that in addition to using the MMG signal, the EMG (20) and motion detector signals are also used (30), where false relationships are avoided through the relationship with EMG and the level of effort exerted in each dynamic action is reported and the amount of actions taken, actions with low effort, medium effort and effort are obtained separately tall.
15. El sistema de apoyo a la estimación del riesgo de desarrollar lesiones laborales de muñeca por esfuerzo repetitivo de acuerdo con la reivindicación 13, caracterizado porque las acciones estáticas se determinan mediante la utilización de los datos obtenidos en EMG (20). 15. The support system for estimating the risk of developing labor wrist injuries by repetitive effort according to claim 13, characterized in that the static actions are determined by using the data obtained in EMG (20).
PCT/IB2017/055348 2016-09-05 2017-09-05 System for assisting with risk assessment relating to the development of wrist injuries sustained at work as a result of repetitive strain WO2018042407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2016/0001605 2016-09-05
CO2016001605 2016-09-05

Publications (1)

Publication Number Publication Date
WO2018042407A1 true WO2018042407A1 (en) 2018-03-08

Family

ID=62597060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/055348 WO2018042407A1 (en) 2016-09-05 2017-09-05 System for assisting with risk assessment relating to the development of wrist injuries sustained at work as a result of repetitive strain

Country Status (1)

Country Link
WO (1) WO2018042407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021191784A1 (en) * 2020-03-24 2021-09-30 Lwt3 S.R.L. Start-Up Costituita A Norma Dell'art. 4 Comma 10 Bis Del Decreto Legge 24 Gennaio 2015, N. 3 System and method for controlling an interaction between an operator and a machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150124566A1 (en) * 2013-10-04 2015-05-07 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices employing contact sensors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150124566A1 (en) * 2013-10-04 2015-05-07 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices employing contact sensors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PEPPOLONI LORENZO ET AL.: "Assessment of task ergonomics with an upper limb wearable device. 22nd Mediterranean Conference on Control and Automation", IEEE., 16 June 2014 (2014-06-16), pages 340 - 345, XP032687283, ISBN: 978-1-4799-5900-6 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021191784A1 (en) * 2020-03-24 2021-09-30 Lwt3 S.R.L. Start-Up Costituita A Norma Dell'art. 4 Comma 10 Bis Del Decreto Legge 24 Gennaio 2015, N. 3 System and method for controlling an interaction between an operator and a machine

Similar Documents

Publication Publication Date Title
DK2296545T3 (en) Systems to perform overfladeelektromyografi
GB2519987A (en) Biomechanical activity monitoring
JP4292247B2 (en) Motion analysis device and use thereof
US20120245482A1 (en) Anesthesia Monitoring Device and Method
WO2004103176A1 (en) Balance function diagnostic system and method balance function diagnostic system and method
JP2012105762A (en) Vital sign measurement apparatus and body motion detection apparatus
JP6916858B2 (en) Muscle stiffness measurement systems, devices, and methods
US20180049653A1 (en) Monitoring vital signs
DK178081B1 (en) Method of detecting psychogenic non-epileptic seizures
KR101670134B1 (en) Diagnosis Apparatus For Dizziness
JP2011512208A5 (en)
WO2018042407A1 (en) System for assisting with risk assessment relating to the development of wrist injuries sustained at work as a result of repetitive strain
JP2019517371A (en) Device for detection and reliable capture of pulse characteristics
Allen et al. Evaluation of fall risk for post-stroke patients using bluetooth low-energy wireless sensor
Bhavana et al. Techniques of measurement for Parkinson's tremor highlighting advantages of embedded IMU over EMG
Chan et al. An in–laboratory validity and reliability tested system for quantifying hand–arm tremor in motions
Seçkin Multi-sensor glove design and bio-signal data collection
Sümbül et al. Estimating the value of the volume from acceleration on the diaphragm movements during breathing
Allen et al. Telemedicine assessment of fall risk using wireless sensors
JP2011250945A (en) Gait analysis method, system, and apparatus
Miletić et al. Validation of the new wearable instrument for the pendulum test based on inertial sensors
Solihin et al. Design of an electromyograph equipped with digital neck angle elevation gauge
RU79239U1 (en) FINGER TREMOR REGISTRATION SYSTEM
Lin et al. Assessment of range of joint motion using Kinect
TWI581757B (en) System and method for evaluating the quality of joint mobility

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845653

Country of ref document: EP

Kind code of ref document: A1