WO2018040818A1 - 一种调度请求传输方法、用户设备以及基站 - Google Patents

一种调度请求传输方法、用户设备以及基站 Download PDF

Info

Publication number
WO2018040818A1
WO2018040818A1 PCT/CN2017/095082 CN2017095082W WO2018040818A1 WO 2018040818 A1 WO2018040818 A1 WO 2018040818A1 CN 2017095082 W CN2017095082 W CN 2017095082W WO 2018040818 A1 WO2018040818 A1 WO 2018040818A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
lbt
indication
dci
send
Prior art date
Application number
PCT/CN2017/095082
Other languages
English (en)
French (fr)
Inventor
向铮铮
庞继勇
朱俊
林英沛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018040818A1 publication Critical patent/WO2018040818A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a scheduling request transmission method, a user equipment, and a base station.
  • Mass Machine Type Communications (English: Mass Machine Type Communications, referred to as mMTC) is one of the typical scenarios supported by the fifth generation mobile communication technology (English: 5th-Generation, 5G for short).
  • mMTC is mainly for IoT-type applications. Can support a large number of machine type communication, including communication between people and machines, machines and machines.
  • the UE when the user equipment (English: User Equipment, UE for short) needs to send uplink data, the UE first periodically goes to the evolved base station on the physical uplink control channel (English: Physical Uplink Control Channel, PUCCH). (English: evolved Node B, referred to as eNB) sends a scheduling request (Scheduling Request, SR for short). After receiving the SR, the eNB allocates uplink resources (that is, SR resources) to the UE for uplink data transmission. When a cell supports a large number of UEs reporting the SR, the SR transmission period configured by the eNB may be long or the eNB needs to configure many PUCCH resources for the UE to send the SR.
  • PUCCH Physical Uplink Control Channel
  • the LBT mechanism needs to be implemented. Whether the UE can access the channel is uncertain. It can be seen that when a large number of UEs exist in an unlicensed frequency band, the existing SR transmission mode is inefficient, and it is difficult to adapt to the mMTC scenario in the unlicensed frequency band.
  • the embodiment of the invention discloses a scheduling request transmission method, a user equipment and a base station, which can improve the efficiency of the UE transmitting the SR.
  • a first aspect of the embodiments of the present invention discloses a scheduling request transmission method, including:
  • the base station generates a downlink control information DCI, where the DCI carries a first field indicated by the scheduling request SR, where the SR indication is used to schedule at least one user equipment UE to send an SR to the base station;
  • the base station sends the DCI to the at least one UE to schedule the at least one UE to send the SR to the base station.
  • a base station is used to schedule a UE to send an SR.
  • the base station may send a DCI to at least one UE, and one or more UEs may be scheduled to send an SR at a time.
  • the base station may simultaneously schedule multiple UEs to send an SR, which is actively initiated by the UE in the prior art.
  • the SR transmission period in the mMTC scenario is shortened, so that the efficiency of transmitting the SR by the UE can be improved.
  • the method further includes: before the base station sends the DCI to the at least one UE, in order to adapt to the application in the unlicensed frequency band scenario, the method further includes:
  • the base station accesses the channel by listening to the LBT after listening first;
  • the sending, by the base station, the DCI to the at least one UE includes:
  • the base station transmits the DCI to the at least one UE through the channel.
  • the UE when the UE actively sends an SR to the base station, each UE needs to periodically traverse the LBT contending channel, and the contending channel can be sent after the contending channel is successfully sent.
  • the SR method can directly schedule multiple UEs to send an SR after the base station successfully contends for the channel through the LBT, thereby improving the efficiency of the UE transmitting the SR.
  • the DCI further carries a resource block allocation indication, where the resource block allocation indication is used to indicate that the at least one UE is allowed to send the multiple resource blocks of the SR, where the number of the multiple resource blocks is less than or equal to The number of resource blocks required by the at least one UE to send the SR.
  • the resource block allocation indication is used to indicate that the number of resource blocks that are allowed to transmit the SR by the at least one UE is smaller than the number of resource blocks required by the at least one UE to send the SR, since the UE does not need frequent communication in the mMTC scenario,
  • the RB resource for transmitting the SR may be saved while satisfying the RB required by the at least one UE to send the SR; when the resource block allocation indication is used to indicate that the number of the multiple resource blocks that the at least one UE is allowed to send the SR is equal to the at least one UE
  • the base station can ensure that the at least one UE can be allocated to the resource block for transmitting the SR, so that the success rate of the UE sending the SR can be improved.
  • the DCI further carries an LBT type indication, where the LBT type indication is used to indicate whether the at least one UE needs to perform an LBT before sending the SR and an LBT type when an LBT needs to be performed.
  • the LBT type indication can meet the data transmission of the UE in multiple scenarios. For example, if the current network load rate is low, the LBT type indication in the DCI delivered by the base station is used to indicate that at least one UE does not need to perform LBT. To improve data transmission efficiency; if the current network load rate is high, the LBT type indication in the DCI delivered by the base station is used to indicate that at least one UE performs LBT to ensure data transmission quality.
  • the DCI further carries a sending time interval TTI type indication, where the TTI type indication is used to indicate that the at least one UE sends the type of one or more TTIs included in the subframe in which the SR is located.
  • the TTI type indication provided by the embodiment of the present invention when there are multiple TTIs in a subframe, when the UE sends the SR, the UE can perform LBT in each TTI, and increase the number of times the UE performs LBT, thereby improving the success of the LBT. probability.
  • the DCI further includes a second field, where the second field is used to indicate a UE identity of the at least one UE.
  • the UE identity of each UE is different, and for each UE identity, it refers to a unique UE.
  • the DCI further includes a second field, where the second field is used to indicate a group identity of the at least one UE group, and the UE group includes the at least one UE.
  • the base station groups all the UEs in the cell covered by the base station, for example, is divided into M (M is a positive integer) UE groups, and allocates one group identifier to each UE group in the M UE groups, and groups of different UE groups.
  • the identifiers are different.
  • the base station configures the group information for all the UEs.
  • the group information includes the correspondence between the UE and the group identifier.
  • the correspondence between the UE and the group identifier includes the correspondence between the group identifiers of all the UEs and the M UE groups.
  • the base station After the base station is configured with the group information, the base station can send the group information to all the UEs through the high layer signaling, so that all the UEs determine the group identifiers of all the UEs according to the correspondence between the UE and the group identifier in the group information.
  • the base station In the unlicensed frequency band, before the base station accesses the channel through the LBT, in order to facilitate the base station to schedule the UEs in the UE group to transmit the SR, the base station first groups all the UEs, assigns each UE a group identifier of the UE group, and passes High-level signaling informs all UEs.
  • the idea of dividing a UE group in the embodiment of the present invention can facilitate the base station to schedule one or more times at a time.
  • the UEs in the UE group send the SR, and the base station can simultaneously schedule multiple UEs to send the scheduling request SR, so that the efficiency of the UE sending the SR can be greatly improved.
  • a second aspect of the embodiments of the present invention discloses a scheduling request transmission method, including:
  • the UE receives the DCI sent by the base station, where the DCI carries a first field indicated by the SR, and the SR indication is used to schedule the UE to send an SR to the base station;
  • the UE When the UE has an uplink resource that needs to be sent, the UE sends the SR to the base station according to the SR indication.
  • the multiple UEs may send the SRs on different time-frequency resources, and may simultaneously schedule one. Or multiple UEs send the scheduling request SR, so that the efficiency of the UE sending the SR can be improved.
  • the DCI further carries a resource block allocation indication, where the resource block allocation indication is used to indicate that the UE is allowed to send multiple resource blocks of the SR, and the UE sends the foregoing to the base station according to the SR indication.
  • SR includes:
  • the UE randomly selects an available resource block from the plurality of resource blocks according to the resource block allocation indication
  • the RB required for the UE that needs to send the SR in at least one UE to transmit the SR may be satisfied, and the UE that needs to send the SR in at least one UE needs to send the SR.
  • the RB resources for transmitting the SR are saved.
  • the DCI further carries a resource block allocation indication, where the resource block allocation indication is used to indicate that the UE is allowed to send multiple resource blocks of the SR, and the UE sends the foregoing to the base station according to the SR indication.
  • SR includes:
  • the UE selects a resource block corresponding to the UE from the multiple resource blocks according to the resource block allocation indication and a preset correspondence between the UE and the resource block;
  • the base station allocates resource blocks for transmitting the SR for all the UEs in the at least one UE, and the base station can ensure that all UEs in the at least one UE can The resource block for transmitting the SR is allocated to improve the success rate of the UE sending the SR.
  • the DCI further carries an LBT type indication, where the LBT type indication is used to indicate whether the UE needs to perform an LBT before performing the SR, and an LBT type when an LBT needs to be performed, where the UE is according to the SR Before the sending the SR to the base station, the method further includes:
  • the UE performs the step of sending the SR to the base station according to the SR indication;
  • the UE performs LBT according to the LBT type to access the channel;
  • the UE accesses the channel, and the sending, by the UE, the SR to the base station according to the SR indication includes:
  • the UE sends the SR to the base station through the channel according to the SR indication.
  • the UE may determine, according to the LBT type indication in the DCI, whether it needs to perform the type of LBT that the LBT has performed.
  • the base station can be based on the load status of the current network of the UE, and the number of transmissions required.
  • the urgency or other factors determine whether the scheduled at least one UE performs the LBT and performs the LBT type, and can satisfy the data transmission of the UE in multiple scenarios.
  • the method further includes:
  • the UE abandons sending the SR; or,
  • the UE continues to access the channel according to the LBT type, and when the LBT is successful, the UE accesses the channel, and the UE sends a message to the base station according to the SR indication.
  • the SR includes:
  • the UE sends the SR to the base station through the channel according to the SR indication.
  • the LBT indication in the embodiment of the present invention can be applied to different application scenarios.
  • the UE may abandon sending the SR and wait for the next scheduling of the base station;
  • the data to be transmitted by the UE is urgent, if the LBT fails, the UE continues to execute the LBT until the LBT succeeds. Access channel.
  • the DCI further carries a sending time interval TTI type indication, where the TTI type indicates a type of one or more TTIs that are used to indicate that the UE sends a subframe in which the SR is located, and the UE is according to the LBT.
  • Types for LBT to access channels include:
  • the UE accesses a channel by performing an LBT in at least one TTI included in the subframe according to the LBT type; wherein each TTI includes a channel idle assessment CCA slot and an SR transmission slot, and the CCA slot And performing, by the UE, the LBT to access the channel, where the SR transmission time slot is used by the UE to perform SR transmission after the LBT succeeds in the CCA time slot.
  • the clear channel assessment (English: Clear Channel Assessment, referred to as: CCA).
  • the embodiment of the present invention may provide a TTI type indication.
  • the TTI may have multiple types, for example, a TTI of 0.25 milliseconds, a TTI of 0.5 milliseconds, a TTI of 1 millisecond, etc., when the TTI is short, within one subframe.
  • the second field is used to indicate a group identifier of the at least one UE group.
  • the base station In the unlicensed frequency band, before the base station accesses the channel through the LBT, in order to facilitate the base station to schedule the UEs in the UE group to transmit the SR, the base station first groups all the UEs, assigns each UE a group identifier of the UE group, and passes High-level signaling informs all UEs.
  • the idea of dividing the UE group in the embodiment of the present invention may facilitate the base station to schedule the UE in one or more UE groups to send the SR at one time, and the base station may simultaneously schedule multiple UEs to send the scheduling request SR, thereby greatly improving the UE sending the SR. s efficiency.
  • a third aspect of the embodiment of the present invention discloses a base station, including:
  • a generating unit configured to generate downlink control information DCI, where the DCI carries a first field indicated by the scheduling request SR, where the SR indication is used to schedule at least one UE to send an SR to the base station;
  • a sending unit configured to send the DCI to the at least one UE, to schedule the at least one UE to send the SR to the base station.
  • the base station further includes:
  • a detecting unit configured to: when the base station works in an unlicensed frequency band, access the channel by listening to the LBT after listening;
  • Transmitting unit sends the DCI to the at least one UE when the detecting unit detects that the LBT is successful
  • the specific way is:
  • the transmitting unit sends the DCI to the at least one UE through the channel.
  • the DCI further carries a resource block allocation indication, where the resource block allocation indication is used to indicate that the at least one UE is allowed to send multiple resource blocks of the SR, where the number of the multiple resource blocks is less than or equal to the The number of resource blocks required by at least one UE to send the SR.
  • the DCI further carries an LBT type indication, where the LBT type indication is used to indicate whether the at least one UE needs to perform an LBT before sending the SR and an LBT type when an LBT needs to be performed.
  • the DCI further carries a sending time interval TTI type indication, where the TTI type indication is used to indicate that the at least one UE sends the type of one or more TTIs included in the subframe in which the SR is located.
  • the DCI further includes a second field, where the second field is used to indicate a UE identity of the at least one UE.
  • the DCI further includes a second field, where the second field is used to indicate a group identity of the at least one UE group, and the UE group includes the at least one UE.
  • a fourth aspect of the embodiment of the present invention discloses a UE, including:
  • a receiving unit configured to receive a DCI sent by the base station, where the DCI carries a first field indicated by the SR, where the SR indication is used to schedule the UE to send an SR to the base station;
  • a sending unit configured to send the SR to the base station according to the SR indication when the UE has an uplink resource that needs to be sent.
  • the DCI further includes a resource block allocation indication, where the resource block allocation indication is used to indicate that the UE is allowed to send multiple resource blocks of the SR, where the sending unit includes:
  • a first selecting subunit configured to randomly select an available resource block from the plurality of resource blocks according to the resource block allocation indication
  • a first sending subunit configured to send the SR to the base station on the selected available resource block according to the SR indication.
  • the DCI further includes a resource block allocation indication, where the resource block allocation indication is used to indicate that the UE is allowed to send multiple resource blocks of the SR, where the sending unit includes:
  • a second selection subunit configured to select, according to the resource block allocation indication and a preset correspondence between the UE and the resource block, a resource block corresponding to the UE from the multiple resource blocks;
  • a second sending subunit configured to send, according to the SR indication, the SR to the base station on a resource block corresponding to the UE.
  • the DCI further includes an LBT type indication, where the LBT type indication is used to indicate whether the UE needs to perform an LBT before the sending of the SR, and an LBT type when the LBT needs to be performed, where the UE further includes:
  • a determining unit configured to determine, according to the LBT type indication, whether an LBT needs to be executed and an LBT type when the LBT needs to be executed;
  • the sending unit is further configured to: when the determining unit determines that the LBT does not need to be performed, send the SR to the base station according to the SR indication;
  • a detecting unit configured to: when the determining unit determines that the LBT needs to be performed, perform LBT according to the LBT type to access the channel;
  • An access unit configured to access the channel when the detecting unit detects that the LBT is successful
  • the manner in which the sending unit sends the SR to the base station according to the indication of the SR is specifically:
  • the sending unit After the access unit accesses the channel, the sending unit sends the SR to the base station by using the channel according to the SR indication.
  • the UE further includes:
  • the detecting unit is further configured to: when the detecting unit detects that the LBT fails, continue to perform the LBT according to the LBT type to access the channel, and when the LBT succeeds, trigger the access unit Accessing the channel;
  • the manner in which the sending unit sends the SR to the base station according to the indication of the SR is specifically:
  • the sending unit After the access unit accesses the channel, the sending unit sends the SR to the base station by using the channel according to the SR indication.
  • the DCI further carries a sending time interval TTI type indication, where the TTI type indicates a type of one or more TTIs that are used to indicate that the UE sends a subframe in which the SR is located, and the detecting unit is configured according to the The way in which the LBT type performs LBT to access the channel is specifically as follows:
  • the detecting unit performs an LBT to access a channel according to the LBT type in at least one TTI included in the subframe; wherein each TTI includes a channel idle evaluation CCA slot and an SR transmission slot, where the CCA is The slot is used by the UE to perform the LBT to access the channel, and the SR transmission slot is used by the UE to perform SR transmission after the LBT succeeds in the CCA slot.
  • a fifth aspect of the embodiments of the present invention discloses a base station, including a processor, a network interface, a memory, and a communication bus, where the processor, the network interface, and the memory are connected by using the communication bus, and the memory is used for Storing instructions and data; the processor being configured to execute instructions stored in the memory; the processor, by executing the instructions, to implement scheduling request transmission provided by any one of the possible implementations of the first aspect above method.
  • the processor is configured to generate downlink control information DCI, where the DCI carries a first field indicated by a scheduling request SR, where the SR indication is used to schedule at least one UE to send an SR to the base station;
  • the network interface is configured to send the DCI to the at least one UE, to schedule the at least one UE to send the SR to the base station.
  • a base station is used to schedule a UE to send an SR.
  • the base station may send a DCI to at least one UE, and one or more UEs may be scheduled to send an SR at a time.
  • the base station may simultaneously schedule multiple UEs to send an SR, which is actively initiated by the UE in the prior art.
  • the SR transmission period in the mMTC scenario is shortened, so that the efficiency of transmitting the SR by the UE can be improved.
  • a sixth aspect of the embodiments of the present invention discloses a UE, including a processor, a network interface, a memory, and a communication bus, where the processor, the network interface, and the memory are connected by using the communication bus, and the memory is used for Storing instructions and data; the processor being configured to execute instructions stored in the memory; the processor, by executing the instructions, to implement scheduling request transmission provided by any one of the possible implementations of the second aspect above method.
  • the network interface is configured to receive a DCI sent by a base station, where the DCI carries a first field indicated by the SR, where the SR indication is used to schedule the UE to send an SR to the base station;
  • the network interface is further configured to: when the UE has an uplink resource that needs to be sent, send the SR to the base station according to the SR indication, where the SR is an SR that the UE needs to send.
  • Each UE may determine, according to a second field of the UE identifier of the at least one UE that is carried in the DCI, whether the DCI is a DCI sent to itself, and when multiple UEs need to send an SR, multiple UEs receive the SR transmission.
  • the multiple UEs may send the SRs on different time-frequency resources, and one or more UEs may be scheduled to send the scheduling request SR at the same time, so that the efficiency of sending the SR by the UE may be improved.
  • the base station generates the downlink control information DCI, where the DCI carries a first field indicated by the scheduling request SR and a second field used to indicate the UE identifier of the at least one user equipment UE, where the SR indicates that the at least one UE is scheduled to be sent to the base station.
  • Sending an SR the base station sends a DCI to at least one UE to schedule at least one UE to send an SR to the base station.
  • the base station can schedule one or more UEs to send the SRs by sending the DCI at a time.
  • the UE can schedule multiple UEs to send the scheduling request SR at the same time, so that the UE can send the SR. s efficiency.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of another network architecture disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a scheduling request transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a scheduling request transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of another scheduling request transmission method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an LBT process disclosed in an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart diagram of another scheduling request transmission method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of an LBT type according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a subframe according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart diagram of another scheduling request transmission method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart diagram of another scheduling request transmission method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of still another base station according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of still another UE according to an embodiment of the present invention.
  • the embodiment of the invention discloses a scheduling request transmission method, a user equipment and a base station, which can improve the efficiency of the UE transmitting the SR. The details are described below separately.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • the network architecture includes a base station 10 and a plurality of user equipments UE (such as 1001, 1002, ..., 100N, etc. in FIG. 1), and the base station 10 is connected to each UE through a wireless network.
  • UE user equipments
  • the base station 10 in the implementation of the present invention may schedule one or more UEs to send a scheduling request (Scheduling Request, SR for short), and allocate a corresponding time-frequency resource for the one or more UEs to send an SR. After receiving the SR sent by the one or more UEs, the base station allocates uplink time-frequency resources for the one or more UEs to perform uplink data transmission.
  • SR scheduling request
  • SR scheduling request
  • FIG. 2 is a schematic diagram of another network architecture disclosed in an embodiment of the present invention.
  • the network architecture includes a base station 10 and a plurality of user equipment UE groups (such as 201, 202, . . . 20M in FIG. 2), and the base station 10 and each UE in the UE group pass the wireless network. connection.
  • UE groups such as 201, 202, . . . 20M in FIG. 2
  • Each UE group includes a plurality of UEs.
  • the UE group 201 in FIG. 2 includes a UE 2011, a UE 2012, a UE 2013, and a UE 2014.
  • the UE group 202 includes a UE 2021, a UE 2022, a UE 2023, a UE 2024, a UE 2025, and a UE 2026.
  • the UE group 20M includes UEs 20M1 and UE20M2. , UE20M3, UE20M4, UE20M5, where M is a positive integer.
  • the UEs in the cell covered by the base station 10 may be logically divided into multiple UE groups, and each UE group may include at least one UE, and the number of UEs in each UE group may be the same or different.
  • the base station 10 in the implementation of the present invention may schedule all UEs in one or more UE groups to send a scheduling request SR at a time.
  • the UE may be a mobile device, such as a mobile phone, a portable computer, and a similar device having telecommunications capabilities, or a device that has telecommunications capabilities but is not portable, such as a desktop computer, a set top box, and It can be any hardware or software component that performs a communication session, and the like.
  • the base station 10 may be referred to as an evolved base station (English: evolved NodeB, eNB for short), and the eNB may be a station that communicates with the UE, and may also be referred to as a Node B, an access point, or the like.
  • Each eNB can provide communication coverage for a particular geographic area.
  • the term "cell" may refer to such a particular geographic coverage area of an eNB and/or such a particular geographic coverage area of an eNB subsystem serving the coverage area, depending on the context in which the term is used.
  • the eNB may provide communication coverage for macro cells, micro cells, femto cells, and/or other types of cells.
  • a macro cell typically covers a relatively large geographic area (e.g., a range of several kilometers in radius) and may allow unrestricted access by UEs having subscriptions to services of the network provider.
  • a microcell typically covers a relatively small geographic area and may allow unrestricted access by UEs having subscriptions to services of the network provider.
  • a femto cell typically also covers a relatively small geographic area (e.g., a home) and may provide restricted access (e.g., a closed user group) with UEs associated with the femto cell in addition to unrestricted access.
  • the eNB of the macro cell may be referred to as a macro eNB.
  • An eNB of a micro cell may be referred to as a micro eNB.
  • the eNB of the femto cell may be referred to as a femto eNB or a home eNB.
  • FIG. 3 is a schematic flowchart of a scheduling request transmission method according to an embodiment of the present invention.
  • the method shown in FIG. 3 is applicable to the network architecture of FIG. 1.
  • the scheduling request transmission method includes the following steps.
  • the base station generates downlink control information DCI, where the DCI carries a first field indicated by the scheduling request SR, and the SR indicates that the at least one UE is scheduled to send the SR to the base station.
  • the embodiment of the present invention uses a base station to schedule a UE to send an SR.
  • the base station When a base station needs to schedule a UE to send an SR, the base station generates downlink control information (English: Downlink Control Information, DCI for short), and the DCI carries a scheduling request.
  • the first field indicated by the SR indicates that the at least one UE is scheduled to send the SR to the base station.
  • the first field is used for the SR indication, and the first field indicated by the SR may be represented by a binary bit. For example, the length of the first field may be 1 bit or 2 bits, and the first field may be "SR request".
  • the foregoing DCI further includes a second field, where the second field is used to indicate a UE identity of at least one UE (English identity: UE identity, English abbreviation: UE ID).
  • the UE identity of each UE is different, that is, for each UE identity, it refers to a unique UE.
  • the length of the second field may be 16 bits, or 8 bits, and the second field may be “UE-1, UE-2”, which is used to indicate the first UE and the second UE, respectively.
  • the UE identifier is not explicitly transmitted, but implicitly includes In the calculation of Cyclic Redundancy Check (English: CRC), the CRC is scrambled according to the UE ID, so that the CRC after the scrambling implicitly includes the UE identifier. .
  • CRC Cyclic Redundancy Check
  • the base station sends a DCI to the at least one UE, to schedule at least one UE to send the SR to the base station.
  • the base station After the base station generates the downlink control information DCI, the base station sends a DCI to the at least one UE to schedule the at least one UE to send the SR to the base station.
  • the method for the base station to send the DCI to the at least one UE may be: the base station sends the DCI to all the UEs in the cell covered by the base station in a broadcast manner; or the base station may also send the manner to all the UEs in the cell covered by the base station in a multicast manner.
  • the DCI; or, the base station may also separately send DCI to all UEs in the cell covered by the base station in a unicast manner.
  • the DCI sent by the base station may schedule one UE at a time, or may schedule multiple UEs at a time. Specifically, when the DCI sent by the base station schedules one UE at a time, the UE identifier in the second field carried by the DCI includes only one UE identifier, and Indicates one UE that is scheduled; when the DCI sent by the base station schedules multiple UEs at a time, the second field carried by the DCI includes multiple UE identifiers, and the multiple UE identifiers respectively indicate multiple UEs scheduled.
  • the UE may decode the DCI to obtain the first field and the second field in the DCI.
  • the UE determines whether there is a UE identifier in the UE identifier of the at least one UE carried in the second field.
  • the UE If the UE does not exist, it indicates that the DCI is not used to schedule the UE, and the UE discards the DCI; if yes, it indicates that the UE The DCI is used to schedule the UE, and then the UE further reads the other signaling included in the DCI, for example, the first field carrying the SR indication, where the SR indication is used to indicate that the UE that needs to send the SR in the at least one UE sends the signal to the base station. If the UE has uplink data to be transmitted, the UE sends an SR to the base station according to the SR indication in the DCI. After receiving the SR sent by the UE, the base station allocates an uplink resource to the UE for uplink data transmission.
  • the UE When the UE identifies the implicit transmission as described above, when the UE completes the CRC check, the UE identifier is obtained, and the SR is sent according to the received DCI when there is uplink data to be transmitted.
  • the base station may periodically send DCI to at least one UE, or may send DCI to at least one UE aperiodically. For example, when a UE in a cell covered by a base station needs to frequently send more important uplink data (for example, during the period from 7:00 to 10:00 pm), the base station may periodically send a DCI to schedule at least one UE to send to the base station.
  • the SR may be configured to set a period in which the DCI is sent by the base station to a smaller value; when the UE in the cell covered by the base station does not need to frequently send uplink data (for example, during the period from 1 am to 6 am), the base station may The non-period issuance of the DCI to schedule the at least one UE to send the SR to the base station, or the base station may periodically send the DCI to schedule the at least one UE to send the SR to the base station, and set the period during which the base station delivers the DCI to a larger value.
  • a method for the UE to directly send an SR to a base station is used.
  • the UE When the UE has uplink data to be transmitted, the UE sends an SR to the base station, and each UE periodically transmits the SR to the base station.
  • the UE sends a SR with a long period due to the large number of UEs, which makes the UE less efficient in transmitting SRs.
  • the method shown in FIG. 3 is used to perform a method for a UE to send an SR by using a base station.
  • the base station may send a DCI to at least one UE, and schedule one or more UEs to send an SR at a time.
  • the base station may simultaneously schedule multiple UEs to send a scheduling request SR. Therefore, the efficiency of the UE to transmit the SR can be improved.
  • FIG. 4 is a schematic flowchart of a scheduling request transmission method according to an embodiment of the present invention.
  • the method shown in FIG. 4 is applicable to the network architecture of FIG. 2.
  • the scheduling request transmission method includes the following steps.
  • the base station generates a DCI, where the DCI carries a first field indicated by the SR, and the SR indicates that the UE that needs to send the SR in the at least one UE group is configured to send the SR to the base station.
  • the UE in the cell covered by the base station is divided into multiple UE groups, and each UE group has a group identifier (English group name: UE group identity, English abbreviation: UE group ID), and each UE group Group IDs are different.
  • the UE has a unique UE identity; if the UE is assigned to a certain group, the UE will assign a group identity.
  • the first field is used for the SR indication, and the first field indicated by the SR may be represented by a binary bit.
  • the length of the first field may be 1 bit or 2 bits, and the first field may be "SR request".
  • the foregoing DCI further includes a second field, where the second field is used to indicate a group identifier of the at least one UE group.
  • the group identity of each UE group is different, that is, for each UE group identity, it refers to a unique UE group.
  • the length of the second field may be 16 bits, or 8 bits, and the second field may be “UE group-1, UE group-2”, which is used to indicate the first UE group and the second UE group, respectively.
  • the group identifier of the at least one UE group is carried by the second field to indicate that the UE in the at least one UE group that is scheduled is an explicit transmission, and in other embodiments, the group identifier of the UE group. It does not explicitly transmit, but implicitly includes transmission in the CRC calculation, for example, scrambling the CRC check code according to the UE group ID, so that the scrambled CRC implicitly includes the group identifier of the UE group.
  • the SR indicates that the UE that needs to send the SR in the foregoing one UE group sends the SR to the base station; when the DCI carries the second field
  • the SR indicates that the UEs that need to send the SRs in the multiple UE groups are scheduled to send the SRs to the base station.
  • the base station sends a DCI to the at least one UE group, to schedule one or more UEs in the at least one UE group to send the SR to the base station.
  • the base station may send DCI to all UEs in all UE groups in the cell covered by the base station in a broadcast, multicast, or unicast manner.
  • the base station schedules one UE group at a time, and the base station can perform polling for all the UE groups in the cell to be covered, that is, the UEs in each UE group are scheduled to send the SR at one time.
  • the base station may periodically send the DCI to schedule the UEs in the UE group to send the SR, and may also schedule the UE in the UE group to send the SR by sending the DCI aperiodically.
  • the method shown in FIG. 4 is implemented by using a base station to schedule a UE in a UE group to send an SR.
  • the base station may send a DCI to at least one UE group, and schedule one or more UEs in the UE group to send an SR at one time.
  • a plurality of UEs are scheduled to send a scheduling request SR, so that the efficiency of transmitting the SR by the UE can be improved.
  • FIG. 5 is a schematic flowchart of another scheduling request transmission method according to an embodiment of the present invention.
  • the scheduling request transmission method shown in FIG. 5 is applied to an unlicensed frequency band.
  • the scheduling request transmission method includes the following steps.
  • the base station generates downlink control information DCI, where the DCI carries a first field indicated by the scheduling request SR, and the SR indicates that the at least one UE is scheduled to send the SR to the base station.
  • the DCI may be used to explicitly transmit the UE identifier.
  • the DCI may further include a second field, where the second field is used to indicate the UE identifier of the at least one UE; or
  • the UE identifier is transmitted, for example, the CRC is scrambled according to the UE ID, so that the scrambled CRC implicitly includes the UE identifier.
  • the step 501 in the embodiment of the present invention reference may be made to the step 301 in FIG. 3, which is not repeatedly described in the embodiment of the present invention.
  • the base station If the base station works in an unlicensed frequency band, the base station accesses the channel by listening to the LBT after listening.
  • the base station when the base station and the UE work in an unlicensed frequency band, the base station accesses the channel by listening to the following (English: Listen Before Talk, LBT for short), and the channel is a channel under the unlicensed frequency band.
  • LBT Listen Before Talk
  • the core idea of LBT is that the base station and the UE need to listen to the channel before sending data, and can only send data when the channel is detected to be idle (when the LBT is successful).
  • the base station and the UE need to listen to whether the channel is idle within a time interval (for example, 34 microseconds) before transmitting the data. If the channel is idle during the time interval, the random backoff phase is entered. In the Backoff phase, The backoff is performed according to the randomly selected random number N (N is a positive integer), that is, backoff is performed in N slots (Slot). If the channel is still idle in N slots, it indicates that the LBT is successful and data can be transmitted.
  • N is a positive integer
  • Slot N slots
  • FIG. 6 is a schematic diagram of an LBT process disclosed in an embodiment of the present invention.
  • the time interval in FIG. 6 is 34 microseconds (us)
  • the Slot is 9 us
  • the random backoff is the duration of N slots.
  • FIG. 6 is only an LBT process according to an embodiment of the present invention.
  • the base station may also adopt other LBT modes, which are not limited in the embodiment of the present invention.
  • the base station sends the DCI to the at least one UE by using the foregoing channel.
  • the base station when the base station performs the LBT successfully, it indicates that the channel is in an idle state, and the base station may send the downlink control information DCI to send at least one UE to send the SR.
  • the DCI carries a first field indicated by the SR, and the SR indicates that the at least one UE is scheduled to send the SR to the base station.
  • step 502 can be continued.
  • the DCI further includes a second field, where the second field is used to indicate a group identity of the at least one UE group, and the UE group includes at least one UE.
  • the DCI may explicitly transmit the group identifier of the UE group through the second field, or implicitly transmit the group identifier of the UE group through the CRC.
  • the second field included in the DCI is used to indicate the group identifier of the at least one UE group, and when the LBT is successful, the base station sends the DCI to the at least one UE group through the foregoing channel, to The UEs in at least one UE group are scheduled to transmit SRs.
  • the base station In the unlicensed frequency band, the base station needs to perform LBT for channel contention. Only when the LBT is successful, the base station can send DCI to schedule at least one UE to send the SR.
  • the method shown in FIG. 5 is implemented. After the LBT succeeds in the unlicensed frequency band, the base station can schedule one or more UEs to send SRs by sending DCI at a time, and the base station can simultaneously schedule multiple UEs to send scheduling.
  • the SR is requested, so that the efficiency of the UE to send the SR can be improved.
  • FIG. 7 is a schematic flowchart diagram of another scheduling request transmission method according to an embodiment of the present invention.
  • the method shown in FIG. 7 is applicable to the network architecture of FIG. 2.
  • the scheduling request transmission method includes the following steps.
  • the base station divides all UEs in the cell covered by the base station into M UE groups, and assigns a group identifier to each UE group in the M UE group, where the group identifiers of different UE groups are different, and M is positive. Integer.
  • the base station may group all UEs in the cell it covers, assuming that there are a total of N UEs, the base station divides the N UEs into M groups, and assigns a group identifier to each UE group, and Group IDs of different UE groups are not the same
  • the UE group may also divide the UEs of the same radio frequency remote head (English: Remote Radio Head, RHH:) into one UE group, each UE group may include multiple UEs, and the base station may also be based on the UE.
  • the geographical location divides UEs with similar geographical locations into one UE group.
  • the base station configures the group information for all the UEs, where the group information includes the correspondence between the UE and the group identifier, and the correspondence between the UE and the group identifier includes the correspondence between the group identifiers of all the UEs and the M UE groups.
  • a group ID includes the correspondence between the group identifiers of all the UEs and the M UE groups.
  • the base station allocates group information for the N UEs, and the group information includes a correspondence between the UE and the group identifier, for example, a correspondence between the UE and the group identifier.
  • Table 1 is a correspondence table between a UE and a group identifier disclosed in the embodiment of the present invention.
  • N-th UE UE are divided into M groups, wherein, UE-1, UE-2 and UE-3 is divided into a first group UE, UE group ID of a group of U 1, UE-4 and UE-5 is assigned to the second UE group, the group identifier of the second UE group is U 2 , the UE-N is assigned to the Mth UE group, and the group identifier of the Mth UE group is U M , according to the table.
  • each UE may correspond to one group identifier
  • UE-1 corresponds to group identifier U 1
  • UE-2 corresponds to group identifier U 1
  • UE-3 corresponds to group identifier U 1
  • the UE-4 corresponds to the group identifier U 2
  • the UE-5 corresponds to the group identifier U 2
  • the UE-N corresponds to the group identifier U M .
  • the group identifiers of the UEs in the same UE group are the same, and are the group identifiers of the UE group.
  • the base station may send the group information to all the UEs through the high layer signaling, so that the target UEs in all the UEs determine the group identifier corresponding to the target UE according to the correspondence between the UE and the group identifier in the group information.
  • the target UE is any of all UEs.
  • the base station sends the group information to all the UEs in the coverage of the base station by using the high layer signaling (for example, RRC signaling), and after the target UE receives the high layer signaling, according to the UE and the group identifier in the group information.
  • the corresponding relationship determines the group identifier corresponding to the target UE, and the target UE is any one of all UEs.
  • the base station can notify the packet information of all UEs and inform the group identity of the UE group corresponding to each UE.
  • step 703 to step 705 are performed.
  • the base station generates downlink control information DCI, where the DCI carries a first field indicated by the scheduling request SR and a second field used to indicate a UE group identifier of the at least one UE group, where the SR indicates that the at least one UE is scheduled to send the SR to the base station.
  • the base station accesses the channel by listening to the LBT after listening.
  • the base station sends the DCI to the at least one UE by using the foregoing channel.
  • the base station in the unlicensed frequency band, before the base station accesses the channel through the LBT, in order to facilitate the base station to schedule the UE in the UE group to send the SR, the base station first groups all the UEs, and allocates one UE group to each UE. Group ID and notify all UEs through high layer signaling.
  • the method shown in FIG. 7 is implemented.
  • the idea of dividing the UE group in the embodiment of the present invention may facilitate the base station to schedule one or more UEs in the UE group to send the SR at one time, and the base station may simultaneously schedule multiple UEs to send the scheduling request SR. Therefore, the efficiency of the UE to transmit the SR can be improved.
  • the DCI further carries a resource block allocation indication.
  • the resource block allocation indication is used to indicate multiple resource blocks that allow at least one UE to send an SR, and the number of multiple resource blocks. Less than or equal to the number of resource blocks required by at least one UE to transmit an SR.
  • the resource block allocation indication is used to indicate that multiple resource blocks are allowed to be sent by at least one UE group, and the number of multiple resource blocks is less than or equal to resources required by all UEs in at least one UE group to send SRs. The number of blocks.
  • the UE needs to allocate a resource block (English: Resource Block, RB for short).
  • a resource block (English: Resource Block, RB for short).
  • an RB is defined to occupy 0.5 milliseconds in the time domain. It occupies 180Hz.
  • RBs may be defined in LTE or other definitions.
  • the base station schedules 10 UEs at a time.
  • the resource block allocation indication carried by the DCI may indicate that the number of RBs that allow the 10 UEs to send the SR is 20, and the base station allocates 20 to the 10 UEs.
  • the base station can ensure that all 10 UEs can be allocated to 2 RBs to send the SR.
  • the resource block allocation indication carried by the DCI may indicate that the number of RBs that allow the 10 UEs to send the SR is 10, and the base station allocates 10 to the 10 UEs. RB, the base station can ensure that 5 of the 10 UEs can allocate 2 RBs to send the SR.
  • the ratio of the UEs that need to send the SRs in the unit time to all the UEs in the unit time is not high, and the RBs allocated by the UE for the 10 UEs for transmitting the SR are smaller than the 10
  • the RB resources for transmitting the SR can be saved.
  • the base station schedules one UE group at a time.
  • the resource block allocation indication carried by the DCI may indicate that the number of RBs that allow the UE in the UE group to send the SR is 100, and the base station allocates 100 RBs to one UE group, and the base station can guarantee All the UEs in the UE group can be allocated to 2 RBs.
  • the UE may select two RBs from the 100 RBs to perform SR transmission (for example, the UE).
  • the two RBs corresponding to the UE may be selected from the 100 RBs for SR transmission according to the preset relationship between the UE and the resource block.
  • the resource block allocation indication carried by the DCI may indicate that the number of RBs that allow the UE in the UE group to send the SR is 20, and the base station allocates 20 RBs to one UE group, and the base station allocates RB can allow 10 within the UE group
  • the UEs send SRs. Since the UE does not need frequent communication in the mMTC scenario, the proportion of UEs that need to send SRs per unit time is not high. In order to save RB resources, only 20 are allocated to each UE group.
  • the RBs are used to send the SRs.
  • the RBs required for the UEs that need to send the SRs in the UE group to send the SRs can be satisfied, and the RB resources used for sending the SRs can be saved.
  • the DCI further carries an LBT type indication.
  • the LBT type indication is used to indicate whether the at least one UE needs to execute the LBT before transmitting the SR and the LBT type when the LBT needs to be performed.
  • the LBT type indication is used to indicate whether the UE that needs to send the SR in at least one UE group needs to execute the LBT before transmitting the SR and the LBT type when the LBT needs to be executed.
  • the network architecture of FIG. 1 is taken as an example.
  • the base station may indicate, according to the load condition of the network, whether at least one UE performs LBT before transmitting the SR, and the LBT type when performing LBT, LBT.
  • Types may include Type 1 and Type 2, for example, LBT may be indicated with a 2-bit binary bit stream, "00" indicates that LBT is not executed, "01" indicates that Type 1 LBT is performed, and "10" indicates Type 2 LBT.
  • FIG. 8 is a schematic structural diagram of an LBT type disclosed in an embodiment of the present invention, and FIG. 8 includes schematic diagrams of an LBT of type 1 and an LBT of type 2.
  • a wireless node eg, a base station, a UE
  • the CCA slot includes a time interval (eg, 20 microseconds)
  • the LBT fails. It is necessary to wait until the channel is idle after re-executing the LBT to access the channel; if the channel is idle during the time interval, the LBT is successful and the wireless node can transmit data.
  • the wireless node performs LBT in the CCA slot, which includes a time interval (eg, 34 microseconds) and a random backoff phase, and the wireless node first performs channel idle evaluation within the time interval. If the channel is busy during the time interval, the LBT fails, and the LBT is re-executed after the channel is idle to access the channel; if the channel is idle during the time interval, the wireless node enters a random backoff phase, in the Backoff phase.
  • a time interval eg, 34 microseconds
  • N is a positive integer
  • Slot backoff in N slots
  • the base station may indicate, according to the load condition of the current network, whether the at least one UE performs the LBT before transmitting the SR, and the LBT type when the LBT is executed. For example, if the current network load rate is low, the LBT type indication in the DCI delivered by the base station is used to indicate that at least one UE does not need to perform LBT, so as to improve data transmission efficiency; if the current network load rate is high, the base station is The LBT type indication in the delivered DCI is used to indicate that at least one UE needs to perform LBT1 or LBT2 to ensure data transmission quality.
  • the base station may further indicate, according to the urgency of the data that the UE needs to transmit, whether the at least one UE performs the LBT before transmitting the SR, and the LBT type when the LBT is executed. For example, if the data to be transmitted by the UE is very urgent, the LBT type in the DCI sent by the base station indicates that the UE does not need to perform the LBT, and the speed of the UE to upload the SR can be improved. If the data that the UE needs to transmit is not very urgent, the base station sends the data. The LBT type in the DCI indicates that the UE performs the type 1 LBT.
  • the LBT type in the DCI delivered by the base station indicates that the UE performs the Type 2 LBT. .
  • the base station may further determine, according to other factors, whether the UE needs to perform the LBT and the type of the LBT before the SR is sent, which is not limited in the embodiment of the present invention.
  • the LBT type indication can satisfy the data transmission of the UE in multiple scenarios.
  • the DCI further carries a transmission time interval TTI type indication.
  • the TTI type indication is used to indicate that the at least one UE sends one or more TTIs included in the subframe in which the SR is located.
  • the TTI type indication is used to indicate that the UE in the at least one UE group sends the type of one or more TTIs included in the subframe in which the SR is located.
  • the transmission time interval (TTI) type indication is used to indicate that at least one UE sends one or more TTIs included in the subframe in which the SR is located.
  • the type of the present invention may define multiple TTI types, for example, a TTI of 1 millisecond, a TTI of 0.5 milliseconds, a TTI of 0.25 milliseconds, and the like.
  • the subframe in which the UE sends the SR may include one TTI type, and may also include multiple TTI types.
  • FIG. 9 is a schematic structural diagram of a subframe according to an embodiment of the present invention. In FIG.
  • a subframe i in which an SR is transmitted by a UE includes four TTIs of the same type (four 0.25 milliseconds).
  • the TTIs which are TTI1, TTI2, TTI3, and TTI4, respectively, may include a CCA slot and an SR transmission slot in each TTI, the CCA slot is used for the UE to perform LBT access to the channel, and the SR transmission slot is used for The UE performs SR transmission after the LBT succeeds in the CCA slot.
  • the UE may perform LBT in the CCA slot of the TTI1 in the subframe i. If the LBT succeeds, the UE transmits the SR in the SR transmission slot of the TTI1.
  • the UE may perform LBT in the CCA slot of the TTI2 if the UE If the LBT succeeds in accessing the channel in the CTA slot of a certain TTI, the UE transmits the SR in the SR transmission slot of the TTI, and does not continue to perform LBT in other TTIs in the subframe i, if the UE is in the 4 TTIs.
  • the LBT of the CCA slot fails, and the UE cannot send the SR, waiting for the next scheduling of the base station.
  • the TTI type indication provided by the embodiment of the present invention can perform LBT in each TTI when there are multiple TTIs in one subframe, which can improve the probability of successful LBT.
  • the DCI may also carry a carrier indicator (English: Carrier indicator), a resource cluster indication (English: Multi-cluster), a padding (English: Padding) indication, and the like.
  • the carrier indication is used to indicate whether the cross-carrier scheduling is performed
  • the resource cluster indication is used to indicate whether one or two resource clusters are used for the UE to perform SR transmission
  • the padding indication is used to indicate which data in the subframe where the DCI is located. Data input.
  • FIG. 10 is a schematic flowchart diagram of another scheduling request transmission method according to an embodiment of the present invention. As shown in FIG. 10, the scheduling request transmission method includes the following steps.
  • the UE receives the DCI sent by the base station, where the DCI carries a first field indicated by the SR, and the SR indication is used to schedule the UE to send the SR to the base station.
  • the network architecture of FIG. 1 is taken as an example.
  • the base station needs to schedule the UE to send the SR, the base station sends a DCI, and the first field indicated by the SR carried by the DCI.
  • the first field is used for the SR indication, and the first field indicated by the SR may be represented by a binary bit.
  • the length of the first field may be 1 bit or 2 bits, and the first field may be "SR request".
  • the foregoing DCI further includes a second field, where the second field is used to indicate a UE identifier of the at least one UE, and the UE identifier of each UE is different, that is, for each In terms of UE identity, it refers to a unique UE.
  • the length of the second field may be 16 bits, or 8 bits, and the second field may be “UE-1, UE-2”, which is used to indicate the first UE and the second UE, respectively.
  • the UE identifier is not explicitly transmitted, but implicitly includes
  • the CRC calculation is performed, for example, the CRC is scrambled according to the UE ID, so that the scrambled CRC implicitly includes the UE identifier.
  • the UE When the UE has an uplink resource that needs to be sent, the UE sends the SR to the base station according to the SR indication.
  • the UE when the UE has an uplink resource to be transmitted, the UE sends an SR to the base station according to the SR indication; when the UE does not have an uplink resource to be sent, the UE ignores the received DCI.
  • the DCI further includes a second field, where the second field is used to indicate the UE identifier of the at least one UE, and before performing step 1002, step 1003 may also be performed.
  • the UE determines whether the identifier of the UE exists in the UE identifier of the at least one UE.
  • the UE may decode the DCI, obtain the UE identifier of the at least one UE carried in the DCI, and determine whether the identifier of the UE exists in the UE identifier of the at least one UE. If yes, it is determined that the DCI is sent to the UE, and step 1002 is performed; if not, it is determined that the DCI is not sent to the UE, and the DCI is discarded.
  • the method shown in FIG. 10 can be used to schedule at least one UE to send an SR according to the DCI sent by the base station, and use the base station to schedule the UE to send the SR.
  • the one or more UEs can be scheduled to send the scheduling request SR at the same time, so that the UE can be sent.
  • the efficiency of the SR can be used to schedule at least one UE to send an SR according to the DCI sent by the base station, and use the base station to schedule the UE to send the SR.
  • the DCI further carries a resource block allocation indication.
  • the resource block allocation indication is used to indicate multiple resource blocks that allow the UE to send the SR.
  • the resource block allocation indication is used to indicate that multiple resource blocks are allowed to be sent by at least one UE group, and the number of the multiple resource blocks is smaller than the resource blocks required by all UEs in the at least one UE group to send the SR. Quantity.
  • the sending, by the UE, the SR to the base station according to the SR indication includes:
  • the UE randomly selects available resource blocks from the plurality of resource blocks according to the resource block allocation indication
  • the UE sends an SR to the base station on the selected available resource block according to the SR indication.
  • the resource block allocation indication carried by the DCI is used to indicate that at least one UE sends multiple resource blocks of the SR, and the resource block is also called RB.
  • the resource block is also called RB.
  • One RB occupies 0.5 milliseconds in the time domain and 180 Hz in the frequency domain.
  • RBs may be defined in LTE or other definitions.
  • the base station schedules 10 UEs at a time.
  • the resource block allocation indication carried by the DCI may indicate that the number of RBs that allow the 10 UEs to send the SR is 10, and the base station allocates 10 RBs to the 10 UEs, and the base station can guarantee this. Five of the 10 UEs can allocate 2 RBs to transmit the SR.
  • step (11) and step (12) may be performed.
  • the RBs required for the UEs that need to send the SRs in the 10 UEs to transmit the SRs are satisfied, and the RB resources for transmitting the SRs can be saved.
  • each UE needs to occupy 2 RBs to send an SR, and the base station schedules one UE group at a time.
  • the resource block allocation indication carried by the DCI may indicate that the number of RBs that allow the UE in the UE group to send the SR is 20, and the base station allocates 20 RBs to one UE group, and the RB allocated by the base station may allow 10 UEs in the UE group to send the SR.
  • the UE randomly selects 2 available RBs from the 20 RBs according to the resource block allocation indication carried in the DCI, and sends the SR to the base station on the selected 2 available RBs.
  • the UE Since the UE does not need frequent communication in the mM TC scenario, the UE that needs to send the SR in a unit time does not occupy a large proportion of all UEs. To save RB resources, only 20 RBs are allocated for each UE group.
  • SR in the mM TC scenario, performing step (11) and step (12), which can satisfy the RBs required for the UEs in the UE group that need to send the SR to send the SR, and can save the RB resources used for sending the SR.
  • the DCI further carries a resource block allocation indication.
  • the resource block allocation indication is used to indicate multiple resource blocks that allow the UE to send the SR.
  • the resource block allocation indication is used to indicate that a resource block of at least one UE group is allowed to send an SR, and the number of the multiple resource blocks is equal to a resource block required by all UEs in the at least one UE group to send an SR. Quantity.
  • the sending, by the UE, the SR to the base station according to the SR indication includes:
  • the UE selects a resource block corresponding to the UE from the plurality of resource blocks according to the resource block allocation indication and the preset correspondence between the UE and the resource block;
  • the UE sends an SR to the base station on the resource block corresponding to the UE according to the SR indication.
  • the resource block allocation indication carried by the DCI is used to indicate that at least one UE sends multiple resource blocks of the SR, and the resource block is also called RB.
  • the resource block is also called RB.
  • One RB occupies 0.5 milliseconds in the time domain and 180 Hz in the frequency domain.
  • RBs may be defined in LTE or other definitions.
  • each UE needs to occupy 2 RBs to send an SR, and the base station schedules 10 UEs at a time.
  • the resource block allocation indication carried by the DCI may indicate that the number of RBs that allow the 10 UEs to send the SR is 20, and the base station allocates 20 RBs to the 10 UEs, and the base station can guarantee this.
  • Each of the 10 UEs can be assigned 2 RBs to transmit the SR. Steps (21) and (22) are performed to ensure that each UE in at least one UE can allocate a resource block to send an SR, which can improve the success rate of the UE sending the SR.
  • each UE needs to occupy 2 RBs to send an SR, and the base station schedules one UE group at a time.
  • the resource block allocation indication carried by the DCI may indicate that the number of RBs that allow the UE in the UE group to send the SR is 100, and the base station allocates 100 RBs to one UE group, and all the UEs in the UE group can be guaranteed.
  • the UE can be allocated to 2 RBs.
  • the UE selects the corresponding UE from the 100 RBs according to the resource block allocation indication and the preset correspondence between the UE and the resource block.
  • RB the correspondence table between the UE and the resource block can be referred to Table 2.
  • Table 2 is a correspondence table between the UE and the resource block disclosed in the embodiment of the present invention.
  • the i-th UE group has 50 UEs (such as UE-1, UE-2, ... UE-50 in Table 2), and each UE in the UE group allocates two 2RBs, as shown in Table 2,
  • the resource blocks corresponding to UE-1 are RB1 and RB2
  • the resource blocks corresponding to UE-2 are RB3 and RB4
  • the resource blocks corresponding to UE-3 are RB5 and RB6
  • the resource blocks corresponding to UE-4 are RB7 and RB8, UE-
  • the corresponding resource blocks are RB9 and RB10
  • the resource blocks corresponding to UE-50 are RB99 and RB100.
  • the UE may select a resource block corresponding to the UE according to a preset relationship between the UE and the resource block, and send the SR to the base station on the resource block corresponding to the UE. Steps (21) and (22) are performed to ensure that each UE in the UE group can allocate a resource block to send the SR, which can improve the success rate of the UE in the UE group.
  • FIG. 11 is a schematic flowchart diagram of another scheduling request transmission method according to an embodiment of the present invention. Applied to the unlicensed frequency band, as shown in FIG. 11, the scheduling request transmission method includes the following steps.
  • the UE receives the DCI sent by the base station, where the DCI carries a first field indicated by the SR, and is used to indicate at least one UE.
  • the second field of the UE identifier, the third field of the resource block allocation indication, and the fourth field indicated by the LBT type, the SR indication is used to schedule at least one UE to send an SR to the base station, and the resource block allocation indication is used to indicate that at least one UE is allowed to send
  • the LBT type indication is used to indicate whether at least one U needs to execute the LBT before transmitting the SR and the LBT type when the LBT needs to be executed.
  • the base station may indicate whether at least one UE performs LBT before transmitting the SR, and an LBT type when performing LBT, the LBT type may include type 1 and type 2, and the LBT type uses the fourth field.
  • LBT can be indicated by a 2-bit binary bit, "00" indicates that LBT is not executed, "01” indicates that LBT of type 1 is performed, and "10" indicates LBT of type 2.
  • the type of the LBT may include the type 1 and the type 2.
  • the type of the LBT may include the type 1 and the type 2.
  • FIG. 8 For details, refer to the description of FIG. 8 above, which is not described in detail in the embodiment of the present invention.
  • the speed of the UE to upload the SR may be increased.
  • the LBT type in the DCI sent by the base station indicates that the UE performs the type 1 LBT, the UE is guaranteed to upload the SR. In the case of the speed, the transmission quality of the UE uploading the SR is improved.
  • the LBT type in the DCI sent by the base station indicates that the UE performs the type 2 LBT, the transmission quality of the UE uploading the SR can be improved.
  • the UE determines whether the identifier of the UE exists in the UE identifier of the at least one UE.
  • the UE determines, according to the LBT type indication, whether the LBT needs to be executed and the LBT type when the LBT needs to be executed.
  • the UE sends the SR to the base station according to the SR indication.
  • the UE performs LBT according to the LBT type to access the channel.
  • the LBT type is indicated as a 2-bit binary bit stream
  • "00" indicates that LBT is not executed
  • "01" indicates that type 1 LBT is performed
  • "10” indicates type 2 LBT.
  • the LBT type indication is “00”
  • the UE does not need to perform LBT, and the UE directly sends the SR to the base station
  • the LBT type indication is “01”
  • the LBT When the type indication is "10”, the UE performs type 2 LBT according to the LBT type to access the channel.
  • the UE accesses the channel, and the UE sends the SR to the base station through the channel according to the SR indication.
  • the UE when the UE performs the LBT (for example, the type 1 LBT or the type 2 LBT), the UE accesses the channel for which the LBT is successful, and the UE sends the SR to the base station through the channel according to the SR indication.
  • the LBT for example, the type 1 LBT or the type 2 LBT
  • FIG. 11 may further include the following step 1107.
  • the UE when the LBT fails, the UE abandons sending the SR; or, the UE continues to perform LBT according to the LBT type to access the channel, until the LBT succeeds, the UE accesses the channel, and the UE sends the SR to the base station through the channel according to the SR indication.
  • the UE when the UE fails to perform LBT (for example, LBT of type 1 or LBT of type 2), the UE may continue to access the channel according to the LBT type, until the LBT is successful (when the channel is in an idle state), The UE accesses the channel, and the UE sends the SR to the base station through the channel according to the SR indication. If the type 1 LBT fails, the UE continues to perform the type 1 LBT to access the channel. When the LBT succeeds, the UE accesses the channel, and the UE sends the SR to the base station through the channel. Or when the UE fails to perform LBT, the UE abandons sending the SR, and the UE can wait for the next scheduling of the base station again.
  • LBT for example, LBT of type 1 or LBT of type 2
  • LBT LBT of type 1 or LBT of type 2
  • the UE may continue to access the channel according to the LBT type, until the LBT is successful (when the channel is in an idle state), The
  • the UE may abandon sending the SR and wait for the next scheduling of the base station; when the data to be transmitted by the UE is urgent, if the LBT fails, the UE continues to execute the LBT until the LBT Access the channel when successful.
  • the LBT indication in the embodiment of the present invention can be applied to different application scenarios.
  • step 1102 in the embodiment of the present invention, reference may be made to the step 1003 in FIG. 10, which is not described in detail in the embodiment of the present invention.
  • the UE may determine, according to the LBT type indication in the DCI, whether it needs to perform the type of the LBT that has been executed by the LBT, and implement the method shown in FIG.
  • the urgency of transmitting data determines whether to perform LBT and the type of LBT to be executed, which can satisfy the data transmission of the UE in various scenarios.
  • the DCI further carries a transmission time interval TTI type indication, where the TTI type indication is used to indicate that at least one UE sends the type of one or more TTIs included in the subframe in which the SR is located, and in step 1105, the UE is based on the LBT.
  • Types for LBT to access channels include:
  • the UE accesses the channel by performing LBT in at least one TTI included in the subframe according to the LBT type; wherein each TTI includes a channel idle evaluation CCA slot and an SR transmission slot, and the CCA slot is used for the UE to perform LBT access.
  • the channel, the SR transmission slot is used for the UE to perform SR transmission after the LBT succeeds in the CCA slot.
  • the transmission time interval (English: Transmission Time Interval, TTI) type indication is used to indicate the type of one or more TTIs that are included in the subframe in which the at least one UE sends the SR, and may be defined in this embodiment of the present invention.
  • TTI types for example, a TTI of 1 millisecond, a TTI of 0.5 milliseconds, a TTI of 0.25 milliseconds, and the like.
  • the subframe in which the UE sends the SR may include one TTI type, and may also include multiple TTI types. For example, as shown in FIG.
  • the subframe i in which the UE transmits the SR includes four TTIs of the same type (four 0.25 millisecond TTIs, which are TTI1, TTI2, TTI3, and TTI4, respectively), and within each TTI. Both the CCA slot and the SR transmission slot may be included.
  • the CCA slot is used for the UE to perform the LBT access channel
  • the SR transmission slot is used for the UE to perform the SR transmission after the LBT succeeds in the CCA slot.
  • the UE may perform LBT in the CCA slot of the TTI1 in the subframe i. If the LBT succeeds, the UE transmits the SR in the SR transmission slot of the TTI1.
  • the UE may perform LBT in the CCA slot of the TTI2 if the UE If the LBT succeeds in accessing the channel in the CTA slot of a certain TTI, the UE transmits the SR in the SR transmission slot of the TTI, and does not continue to perform LBT in other TTIs in the subframe i, if the UE is in the 4 TTIs.
  • the LBT of the CCA slot fails, and the UE cannot send the SR, waiting for the next scheduling of the base station.
  • the TTI type indication provided by the embodiment of the present invention can perform LBT in each TTI when there are multiple TTIs in one subframe, which can improve the probability of successful LBT.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present invention. As shown in FIG. 12, the base station includes a generating unit 1201 and a sending unit 1202, where:
  • the generating unit 1201 is configured to generate downlink control information DCI, where the DCI carries a first field indicated by the scheduling request SR, and the SR indicates that the at least one UE is scheduled to send the SR to the base station.
  • the sending unit 1202 is configured to send DCI to at least one UE, to schedule at least one UE to send an SR to the base station.
  • the base station may send DCI to at least one UE, and one or more UEs may be scheduled to send the SR at one time.
  • the base station may simultaneously schedule multiple UEs to send the scheduling request SR, so that the efficiency of transmitting the SR by the UE may be improved.
  • FIG. 13 is a schematic structural diagram of a UE according to an embodiment of the present invention. As shown in FIG. 13, the UE includes a receiving unit 1301 and a sending unit 1302, where:
  • the receiving unit 1301 is configured to receive a DCI sent by the base station, where the DCI carries a first field indicated by the SR, and the SR indication is used to At least one UE is scheduled to transmit an SR to the base station.
  • the sending unit 1302 is configured to send an SR to the base station according to the SR indication when the UE has an uplink resource that needs to be sent.
  • the UE may send an SR according to the DCI sent by the base station, and use the base station to schedule the at least one UE group to send the SR.
  • the one or more UEs may be scheduled to send the scheduling request SR at the same time, so that the UE can improve the sending of the SR.
  • the efficiency of the SR may be used to send an SR according to the DCI sent by the base station, and use the base station to schedule the at least one UE group to send the SR.
  • the one or more UEs may be scheduled to send the scheduling request SR at the same time, so that the UE can improve the sending of the SR.
  • the efficiency of the SR may be performed by the base station, and use the base station to schedule the at least one UE group to send the SR.
  • FIG. 14 is a schematic structural diagram of still another base station according to an embodiment of the present invention.
  • the base station includes at least one processor 1401, such as a CPU, at least one network interface 1402, a memory 1403, and at least A communication bus 1404 in which the communication bus 1404 is used to implement connection communication between these components.
  • the network interface 1402 may be a wired interface, such as a Fiber Distributed Data Interface (FDDI) or a Gigabit Ethernet (GE) interface; the network interface 1402 may also be a wireless interface. interface.
  • FDDI Fiber Distributed Data Interface
  • GE Gigabit Ethernet
  • Memory 1403 includes, but is not limited to, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), or portable read only memory (CD-ROM).
  • the processor 1401 may be one or more central processing units (English: Central Processing Unit, CPU for short). In the case where the processor 1401 is a CPU, the CPU may be a single core CPU or a multi-core CPU.
  • the memory 1403 is used to store instructions and data.
  • the processor 1401 is configured to execute instructions stored in the memory 1403.
  • the processor 1401 is configured to generate downlink control information DCI, where the DCI carries a first field indicated by the scheduling request SR, and the SR indication is used to schedule at least one UE to send an SR to the base station;
  • the network interface 1402 is configured to send DCI to at least one UE to schedule at least one UE to send an SR to the base station.
  • the processor 1401 is further configured to: when the base station operates in an unlicensed frequency band, access the channel by listening to the late LBT;
  • the manner in which the network interface 1402 sends the DCI to the at least one UE is specifically:
  • the network interface 1402 transmits DCI to at least one UE over a channel.
  • the DCI further carries a resource block allocation indication, where the resource block allocation indication is used to indicate that the at least one UE is allowed to send the multiple resource blocks of the SR, where the number of the multiple resource blocks is less than or equal to that required by at least one UE to send the SR. The number of resource blocks.
  • the DCI also carries an LBT type indication, which is used to indicate whether at least one UE needs to perform an LBT before transmitting the SR and an LBT type when the LBT needs to be performed.
  • the DCI further carries a transmission time interval TTI type indication, and the TTI type indication is used to indicate that at least one UE sends the type of one or more TTIs included in the subframe in which the SR is located.
  • the DCI further includes a second field, the second field is used to indicate the UE identity of the at least one UE.
  • the DCI further includes a second field, the second field is used to indicate a group identity of the at least one UE group, and the UE group includes at least one UE.
  • the base station shown in FIG. 14 can be used to transmit the DCI to the at least one UE, and the one or more UEs can be scheduled to send the SR at one time.
  • the base station can simultaneously schedule multiple UEs to send the scheduling request SR, so that the efficiency of the UE transmitting the SR can be improved.
  • FIG. 15 is a schematic structural diagram of still another UE according to an embodiment of the present invention.
  • the UE includes at least one processor 1501, such as a CPU, at least one network interface 1502, a memory 1503, and at least one communication bus 1504, wherein the communication bus 1504 is used to implement connection communication between these components.
  • the network interface 1502 may be a wired interface, such as a Fiber Distributed Data Interface (FDDI) or a Gigabit Ethernet (GE) interface; the network interface 1502 may also be a wireless interface. interface.
  • FDDI Fiber Distributed Data Interface
  • GE Gigabit Ethernet
  • Memory 1503 includes, but is not limited to, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), or portable read only memory (CD-ROM).
  • the processor 1501 may be one or more central processing units (English: Central Processing Unit, CPU for short). In the case that the processor 1501 is a CPU, the CPU may be a single core CPU or a multi-core CPU.
  • the memory 1503 is used to store instructions and data.
  • the processor 1501 is configured to execute instructions stored in the memory 1503.
  • the network interface 1502 is configured to receive the DCI sent by the base station, where the DCI carries the first field indicated by the SR, and the SR indication is used to schedule the UE to send the SR to the base station;
  • the network interface 1502 is further configured to: when the UE has an uplink resource that needs to be sent, send an SR to the base station according to the SR indication, where the SR is an SR that the UE needs to send.
  • the DCI further carries a resource block allocation indication, where the resource block allocation indication is used to indicate multiple resource blocks that allow the UE to send an SR, and the processor 1501 is configured to randomly select from multiple resource blocks according to the resource block allocation indication.
  • the available resource block is selected, and the network interface 1502 sends an SR to the base station according to the SR indication, specifically:
  • the network interface 1502 transmits the SR to the base station on the selected available resource block according to the SR indication.
  • the DCI further carries a resource block allocation indication, where the resource block allocation indication is used to indicate multiple resource blocks that allow the UE to send the SR, and the processor 1501 is further configured to allocate the indication according to the resource block and the preset UE and the resource.
  • the corresponding relationship of the blocks, the resource blocks corresponding to the UE are selected from the plurality of resource blocks, and the network interface 1502 sends the SR to the base station according to the SR indication, specifically:
  • the network interface 1502 transmits an SR to the base station on the resource block corresponding to the UE according to the SR indication.
  • the DCI further carries an LBT type indication
  • the LBT type indication is used to indicate whether the UE needs to perform an LBT before the SR is sent, and an LBT type when the LBT needs to be performed
  • the network interface 1502 is configured to send the SR to the base station according to the SR indication.
  • the processor 1501 is further configured to determine, according to the LBT type indication, whether the LBT needs to be executed and the LBT type when the LBT needs to be executed;
  • the network interface 1502 is further configured to send an SR to the base station according to the SR indication when the LBT is not required to be performed;
  • the processor 1501 is further configured to: when the LBT needs to be performed, perform LBT according to the LBT type to access the channel;
  • the processor 1501 is further configured to: when the LBT succeeds, access the channel, and the network interface 1502 sends the SR to the base station according to the SR indication, specifically:
  • the network interface 1502 transmits the SR to the base station through the channel according to the SR indication.
  • the network interface 1502 is configured to abandon sending the SR when the LBT fails; or the processor 1501 is configured to continue to access the channel according to the LBT type when the LBT fails, until the LBT succeeds, accessing The channel, the network interface 1502 sends an SR to the base station according to the SR indication, specifically:
  • the network interface 1502 transmits the SR to the base station through the channel according to the SR indication.
  • the DCI further carries a transmission time interval TTI type indication, the TTI type indication is used to indicate the type of one or more TTIs included in the subframe in which the UE sends the SR, and the processor 1501 performs LBT according to the LBT type.
  • TTI type indication is used to indicate the type of one or more TTIs included in the subframe in which the UE sends the SR, and the processor 1501 performs LBT according to the LBT type.
  • the processor 1501 performs an LBT in at least one TTI included in the subframe according to the LBT type to access the channel; wherein each TTI includes a channel idle evaluation CCA slot and an SR transmission slot, and the CCA slot is used for the UE to perform LBT.
  • the access channel, the SR transmission slot is used for the UE to perform SR transmission after the LBT succeeds in the CCA slot.
  • the UE shown in FIG. 15 can transmit the SR according to the DCI sent by the base station, and use the base station to schedule at least one UE to send the SR.
  • the one or more UEs can be scheduled to send the scheduling request SR at the same time, so that the UE can improve the sending of the SR. s efficiency.
  • the unit or subunit in the terminal or the device in the embodiment of the present invention may be combined, divided, and deleted according to actual needs.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • OTPROM One-Time Programmable Read-Only Memory
  • EEPROM Electronically-Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种调度请求传输方法、用户设备以及基站,该方法包括:基站生成下行控制信息DCI,该DCI携带调度请求SR指示的第一字段,该SR指示用于调度至少一个UE向基站发送SR;基站向至少一个UE发送DCI,以调度至少一个UE向基站发送SR。实施本发明实施例,基站可以同时调度多个UE来发送调度请求SR,从而可以提高UE发送SR的效率。

Description

一种调度请求传输方法、用户设备以及基站
本申请要求在2016年08月31日提交中国专利局、申请号为201610799424.8、申请名称为“一种调度请求传输方法、用户设备以及基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种调度请求传输方法、用户设备以及基站。
背景技术
大规模机器类通信(英文:Mass Machine Type Communications,简称:mMTC)是第五代移动通信技术(英文:5th-Generation,简称:5G)支持的典型场景之一,mMTC主要针对物联网类型的应用,可以支持大量机器类型的通信,包括人与机器、机器与机器之间的通信。
在mMTC场景中,用户设备(英文:User Equipment,简称:UE)需要发送上行数据时,UE首先在物理上行控制信道(英文:Physical Uplink Control Channel,简称:PUCCH)上周期性的向演进型基站(英文:evolved Node B,简称eNB)发送调度请求(Scheduling Request,简称SR),eNB接收到SR之后,为UE分配上行资源(即SR资源)供用户进行上行数据传输。当某个小区支持上报SR的UE很多时,eNB配置的SR传输周期会很长或者eNB需要配置很多PUCCH资源供UE发送SR;另外,当系统工作在非授权频段时,由于需要执行LBT机制,UE能否接入信道具有不确定性。可见,在非授权频段下大量UE存在时,现有的SR发送方式效率较低,难以适应非授权频段下的mMTC场景。
发明内容
本发明实施例公开了一种调度请求传输方法、用户设备以及基站,可以提高UE发送SR的效率。
本发明实施例第一方面公开了一种调度请求传输方法,包括:
基站生成下行控制信息DCI,所述DCI携带调度请求SR指示的第一字段,所述SR指示用于调度至少一个用户设备UE向所述基站发送SR;
所述基站向所述至少一个UE发送所述DCI,以调度所述至少一个UE向所述基站发送所述SR。
采用基站来调度UE发送SR的方法,基站可以向至少一个UE发送DCI,一次性调度一个或多个UE发送SR,基站可以同时调度多个UE来发送SR,与现有技术中由UE主动向基站发送SR相比,mMTC场景中的SR传输周期会变短,从而可以提高UE发送SR的效率。
可选地,为了适应非授权频段场景下的应用,所述基站向所述至少一个UE发送所述DCI之前,所述方法还包括:
若所述基站在非授权频段下工作,所述基站通过先听后发LBT来接入信道;
当所述LBT成功时,所述基站向所述至少一个UE发送所述DCI包括:
所述基站通过所述信道向所述至少一个UE发送所述DCI。
在非授权频段下,现有技术中UE主动向基站发送SR时,每个UE都需要周期性的通过LBT竞争信道,竞争信道成功会后才能发送SR,本发明实施例采用基站来调度UE发送SR的方法,当基站通过LBT竞争信道成功之后,可以直接调度多个UE来发送SR,从而可以提高UE发送SR的效率。
可选地,所述DCI还携带资源块分配指示,所述资源块分配指示用于指示允许所述至少一个UE发送所述SR的多个资源块,所述多个资源块的数量小于或者等于所述至少一个UE发送所述SR所需的资源块数量。
当资源块分配指示用于指示允许至少一个UE发送SR的多个资源块的数量小于上述至少一个UE发送SR所需的资源块数量时,由于在mMTC场景中,UE并不需要频繁的通信,可以在满足上述至少一个UE发送SR所需的RB的同时,节省用于发送SR的RB资源;当资源块分配指示用于指示允许至少一个UE发送SR的多个资源块的数量等于至少一个UE中的所有UE发送SR所需的资源块数量时,基站可以保证上述至少一个UE都能够分配到用于发送SR的资源块,从而可以提高UE发送SR的成功率。
可选地,所述DCI还携带LBT类型指示,所述LBT类型指示用于指示所述至少一个UE在发送所述SR之前是否需要执行LBT以及需要执行LBT时的LBT类型。
其中,LBT类型指示可以满足UE在多种场景下的数据传输,例如,若当前网络的负载率较低,则基站下发的DCI中的LBT类型指示用于指示至少一个UE不需要执行LBT,以提高数据传输效率;若当前网络的负载率较高,则基站下发的DCI中的LBT类型指示用于指示至少一个UE执行LBT,以保证数据传输质量。
可选地,所述DCI还携带发送时间区间TTI类型指示,所述TTI类型指示用于指示所述至少一个UE发送所述SR所在的子帧包括的一个或多个TTI的类型。
本发明实施例提供的TTI类型指示,当一个子帧内有多个TTI时,UE在发送SR时,可以在每个TTI内都做LBT,增加UE做LBT的次数,从而可以提高LBT成功的几率。
可选地,所述DCI还包括第二字段,所述第二字段用于指示所述至少一个UE的UE标识。
每个UE的UE标识是不同的,对于每个UE标识而言,其指代的是唯一的UE。
可选地,所述DCI还包括第二字段,所述第二字段用于指示至少一个UE组的组标识,所述UE组包括所述至少一个UE。
基站将基站覆盖的小区内的所有UE进行分组,例如,分为M(M为正整数)个UE组,并为M个UE组中每个UE组分配一个组标识,不同的UE组的组标识不相同;基站为所有UE配置分组信息,分组信息包括UE与组标识的对应关系,UE与组标识的对应关系包括所有UE与M个UE组的组标识的对应关系,每个UE对应一个组标识;当基站配置好分组信息之后,基站可以通过高层信令将分组信息发送给所有UE,以使所有UE根据分组信息中的UE与组标识的对应关系确定所有UE对应的组标识。
在非授权频段下,基站通过LBT来接入信道之前,为了方便基站调度UE组内的UE发送SR,基站首先对所有的UE进行分组,为每个UE分配一个UE组的组标识,并通过高层信令通知所有的UE。本发明实施例中的划分UE组的思想,可以方便基站一次性调度一个或多 个UE组内的UE发送SR,基站可以同时调度多个UE来发送调度请求SR,从而可以大大提高UE发送SR的效率。
本发明实施例第二方面公开一种调度请求传输方法,包括:
UE接收基站发送的DCI,所述DCI携带SR指示的第一字段,所述SR指示用于调度所述UE向所述基站发送SR;
当所述UE存在需要发送的上行资源时,所述UE根据所述SR指示向所述基站发送所述SR。
当有多个UE需要发送SR时,多个UE接收到用于SR传输的DCI是用于调度该多个UE时,该多个UE可以在不同的时频资源上发送SR,可以同时调度一个或多个UE来发送调度请求SR,从而可以提高UE发送SR的效率。
可选地,所述DCI还携带资源块分配指示,所述资源块分配指示用于指示允许所述UE发送SR的多个资源块,所述UE根据所述SR指示向所述基站发送所述SR包括:
所述UE根据所述资源块分配指示,从所述多个资源块中随机选择可用资源块;
所述UE根据所述SR指示在所述选择的可用资源块上向所述基站发送所述SR。
由于在mMTC场景中,UE并不需要频繁的通信,也可以满足至少一个UE中需要发送SR的UE发送SR所需的RB,可以在满足至少一个UE中需要发送SR的UE发送SR所需的RB的同时,节省用于发送SR的RB资源。
可选地,所述DCI还携带资源块分配指示,所述资源块分配指示用于指示允许所述UE发送SR的多个资源块,所述UE根据所述SR指示向所述基站发送所述SR包括:
所述UE根据所述资源块分配指示和预先设置的UE与资源块的对应关系,从所述多个资源块中选择所述UE对应的资源块;
所述UE根据所述SR指示在所述UE对应的资源块上向所述基站发送所述SR。
当基站覆盖的小区内的UE需要频繁的进行上行数据传输时,基站为至少一个UE中的所有的UE都分配用于发送SR的资源块,基站可以保证至少一个UE中的所有的UE都能够分配到用于发送SR的资源块,提高UE发送SR的成功率。
可选地,所述DCI还携带LBT类型指示,所述LBT类型指示用于指示所述UE在发送所述SR之前是否需要执行LBT以及需要执行LBT时的LBT类型,所述UE根据所述SR指示向所述基站发送所述SR之前,所述方法还包括:
所述UE根据所述LBT类型指示确定是否需要执行LBT以及需要执行LBT时的LBT类型;
若不需要执行LBT,则所述UE执行所述根据所述SR指示向所述基站发送所述SR的步骤;
若需要执行LBT,则所述UE根据所述LBT类型进行LBT来接入信道;
当所述LBT成功时,所述UE接入所述信道,所述UE根据所述SR指示向所述基站发送所述SR包括:
所述UE根据所述SR指示通过所述信道向所述基站发送所述SR。
在非授权频段下,UE在发送SR之前,UE可以根据DCI中的LBT类型指示确定自身是否需要执行LBT已经执行LBT的类型。基站可以根据UE当前网络的负载状况、需要传输数 据的紧急性或者其他因素决定被调度的至少一个UE是否执行LBT以及执行LBT的类型,可以满足UE在多种场景下的数据传输。
可选地,所述方法还包括:
当所述LBT失败时,所述UE放弃发送所述SR;或者,
所述UE继续根据所述LBT类型进行所述LBT来接入所述信道,直至所述LBT成功时,所述UE接入所述信道,所述UE根据所述SR指示向所述基站发送所述SR包括:
所述UE根据所述SR指示通过所述信道向所述基站发送所述SR。
本发明实施例中的LBT指示可以适用于不同的应用场景。当UE需要传输的数据不太紧急时,若LBT失败,UE可以放弃发送SR重新等待基站的下一次调度;当UE需要传输的数据比较紧急时,若LBT失败,UE继续执行LBT,直至LBT成功时接入信道。
可选地,所述DCI还携带发送时间区间TTI类型指示,所述TTI类型指示用于指示所述UE发送SR所在的子帧包括的一个或多个TTI的类型,所述UE根据所述LBT类型进行LBT来接入信道包括:
所述UE根据所述LBT类型在所述子帧包括的至少一个TTI中进行LBT来接入信道;其中,每个TTI均包括信道空闲评估CCA时隙和SR传输时隙,所述CCA时隙用于所述UE进行所述LBT来接入所述信道,所述SR传输时隙用于所述UE在所述CCA时隙内LBT成功后进行SR传输。其中,空闲信道评估(英文:Clear Channel Assessment,简称:CCA)。
本发明实施例可以提供TTI类型指示,在5G场景中,TTI可以有多种类型,例如,0.25毫秒的TTI、0.5毫秒的TTI、1毫秒的TTI等,当TTI较短时,一个子帧内可以有多个TTI,UE可以在一个子帧内的第一个TTI做LBT失败后,继续在这个子帧的第二个TTI内做LBT,直至LBT成功后发送SR,由于UE可以在每个TTI内都做LBT,从而可以提高LBT成功的几率。
可选地,当至少两个UE被分配到至少一个UE组中时,所述第二字段用于指示所述至少一个UE组的组标识。
在非授权频段下,基站通过LBT来接入信道之前,为了方便基站调度UE组内的UE发送SR,基站首先对所有的UE进行分组,为每个UE分配一个UE组的组标识,并通过高层信令通知所有的UE。本发明实施例中的划分UE组的思想,可以方便基站一次性调度一个或多个UE组内的UE发送SR,基站可以同时调度多个UE来发送调度请求SR,从而可以大大提高UE发送SR的效率。
本发明实施例第三方面公开了一种基站,包括:
生成单元,用于生成下行控制信息DCI,所述DCI携带调度请求SR指示的第一字段,所述SR指示用于调度至少一个UE向所述基站发送SR;
发送单元,用于向所述至少一个UE发送所述DCI,以调度所述至少一个UE向所述基站发送所述SR。
结合本发明实施例第三方面,在本发明实施例第三方面的第一种实现方式中,所述基站还包括:
检测单元,用于当所述基站在非授权频段下工作时,通过先听后发LBT来接入信道;
当所述检测单元检测所述LBT成功时,所述发送单元向所述至少一个UE发送所述DCI 的方式具体为:
所述发送单元通过所述信道向所述至少一个UE发送所述DCI。
可选地,所述DCI还携带资源块分配指示,所述资源块分配指示用于指示允许所述至少一个UE发送SR的多个资源块,所述多个资源块的数量小于或者等于所述至少一个UE发送所述SR所需的资源块数量。
可选地,所述DCI还携带LBT类型指示,所述LBT类型指示用于指示所述至少一个UE在发送所述SR之前是否需要执行LBT以及需要执行LBT时的LBT类型。
可选地,所述DCI还携带发送时间区间TTI类型指示,所述TTI类型指示用于指示所述至少一个UE发送所述SR所在的子帧包括的一个或多个TTI的类型。
可选地,所述DCI还包括第二字段,所述第二字段用于指示所述至少一个UE的UE标识。
可选地,所述DCI还包括第二字段,所述第二字段用于指示至少一个UE组的组标识,所述UE组包括所述至少一个UE。
本发明实施例第四方面公开了一种UE,包括:
接收单元,用于接收基站发送的DCI,所述DCI携带SR指示的第一字段,所述SR指示用于调度所述UE向所述基站发送SR;
发送单元,用于当所述UE存在需要发送的上行资源时,根据所述SR指示向所述基站发送所述SR。
可选地,所述DCI还携带资源块分配指示,所述资源块分配指示用于指示允许所述UE发送SR的多个资源块,所述发送单元包括:
第一选择子单元,用于根据所述资源块分配指示,从所述多个资源块中随机选择可用资源块;
第一发送子单元,用于根据所述SR指示在所述选择的可用资源块上向所述基站发送所述SR。
可选地,所述DCI还携带资源块分配指示,所述资源块分配指示用于指示允许所述UE发送SR的多个资源块,所述发送单元包括:
第二选择子单元,用于根据所述资源块分配指示和预先设置的UE与资源块的对应关系,从所述多个资源块中选择所述UE对应的资源块;
第二发送子单元,用于根据所述SR指示在所述UE对应的资源块上向所述基站发送所述SR。
可选地,所述DCI还携带LBT类型指示,所述LBT类型指示用于指示所述UE在发送所述SR之前是否需要执行LBT以及需要执行LBT时的LBT类型,所述UE还包括:
确定单元,用于根据所述LBT类型指示确定是否需要执行LBT以及需要执行LBT时的LBT类型;
所述发送单元,还用于当所述确定单元确定不需要执行LBT时,根据所述SR指示向所述基站发送所述SR;
检测单元,用于当所述确定单元确定需要执行LBT时,根据所述LBT类型进行LBT来接入信道;
接入单元,用于当所述检测单元检测所述LBT成功时,接入所述信道;
所述发送单元根据所述SR指示向所述基站发送所述SR的方式具体为:
当所述接入单元接入所述信道之后,所述发送单元根据所述SR指示通过所述信道向所述基站发送所述SR。
可选地,所述UE还包括:
放弃发送单元,用于当所述检测单元检测所述LBT失败时,放弃发送所述SR;
或者,
所述检测单元,还用于当所述检测单元检测所述LBT失败时,继续根据所述LBT类型进行所述LBT来接入所述信道,直至所述LBT成功时,触发所述接入单元接入所述信道;
所述发送单元根据所述SR指示向所述基站发送所述SR的方式具体为:
当所述接入单元接入所述信道之后,所述发送单元根据所述SR指示通过所述信道向所述基站发送所述SR。
可选地,所述DCI还携带发送时间区间TTI类型指示,所述TTI类型指示用于指示所述UE发送SR所在的子帧包括的一个或多个TTI的类型,所述检测单元根据所述LBT类型进行LBT来接入信道的方式具体为:
所述检测单元根据所述LBT类型在所述子帧包括的至少一个TTI中进行LBT来接入信道;其中,每个TTI均包括信道空闲评估CCA时隙和SR传输时隙,所述CCA时隙用于所述UE进行所述LBT来接入所述信道,所述SR传输时隙用于所述UE在所述CCA时隙内LBT成功后进行SR传输。
本发明实施例第五方面公开一种基站,包括处理器、网络接口、存储器、和通信总线,所述处理器、所述网络接口和所述存储器通过所述通信总线连接,所述存储器用于存储指令和数据;所述处理器被配置为执行所述存储器中存储的指令;所述处理器通过执行所述指令来实现上述第一方面中任意一种可能的实现方式所提供的调度请求传输方法。
所述处理器用于生成下行控制信息DCI,所述DCI携带调度请求SR指示的第一字段,所述SR指示用于调度至少一个UE向所述基站发送SR;
所述网络接口用于向所述至少一个UE发送所述DCI,以调度所述至少一个UE向所述基站发送所述SR。
采用基站来调度UE发送SR的方法,基站可以向至少一个UE发送DCI,一次性调度一个或多个UE发送SR,基站可以同时调度多个UE来发送SR,与现有技术中由UE主动向基站发送SR相比,mMTC场景中的SR传输周期会变短,从而可以提高UE发送SR的效率。
本发明实施例第六方面公开一种UE,包括处理器、网络接口、存储器、和通信总线,所述处理器、所述网络接口和所述存储器通过所述通信总线连接,所述存储器用于存储指令和数据;所述处理器被配置为执行所述存储器中存储的指令;所述处理器通过执行所述指令来实现上述第二方面中任意一种可能的实现方式所提供的调度请求传输方法。
所述网络接口用于接收基站发送的DCI,所述DCI携带SR指示的第一字段,所述SR指示用于调度所述UE向所述基站发送SR;
所述网络接口还用于当所述UE存在需要发送的上行资源时,根据所述SR指示向所述基站发送所述SR,所述SR为所述UE需要发送的SR。
每个UE可以根据DCI中携带的指示至少一个UE的UE标识的第二字段判断该DCI是否是发给自己的DCI,当有多个UE需要发送SR时,多个UE接收到用于SR传输的DCI是用于调度该多个UE时,该多个UE可以在不同的时频资源上发送SR,可以同时调度一个或多个UE来发送调度请求SR,从而可以提高UE发送SR的效率。
本发明实施例中,基站生成下行控制信息DCI,DCI携带调度请求SR指示的第一字段和用于指示至少一个用户设备UE的UE标识的第二字段,SR指示用于调度至少一个UE向基站发送SR;基站向至少一个UE发送DCI,以调度至少一个UE向基站发送SR。基站可以通过下发DCI一次性调度一个或多个UE发送SR,与现有技术中UE主动向基站发送SR相比,基站可以同时调度多个UE来发送调度请求SR,从而可以提高UE发送SR的效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种网络架构示意图;
图2是本发明实施例公开的另一种网络架构示意图;
图3是本发明实施例公开的一种调度请求传输方法的流程示意图;
图4是本发明实施例公开的一种调度请求传输方法的流程示意图;
图5是本发明实施例公开的另一种调度请求传输方法的流程示意图;
图6是本发明实施例公开的一种LBT过程的示意图;
图7是本发明实施例公开的另一种调度请求传输方法的流程示意图;
图8是本发明实施例公开的一种LBT类型的结构示意图;
图9是本发明实施例公开的一种子帧结构示意图;
图10是本发明实施例公开的另一种调度请求传输方法的流程示意图;
图11是本发明实施例公开的另一种调度请求传输方法的流程示意图;
图12是本发明实施例公开的一种基站的结构示意图;
图13是本发明实施例公开的一种UE的结构示意图;
图14是本发明实施例公开的又一种基站的结构示意图;
图15是本发明实施例公开的又一种UE的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种调度请求传输方法、用户设备以及基站,可以提高UE发送SR的效率。以下分别进行详细说明。
为了更好的理解本发明实施例,下面先对本发明实施例适用的网络架构进行描述。
请参阅图1,图1是本发明实施例公开的一种网络架构示意图。如图1所示,该网络架构包括一个基站10和多个用户设备UE(如图1中的1001、1002、...100N等),基站10与每个UE通过无线网络连接。
本发明实施中的基站10可以一次调度一个或多个UE发送调度请求(Scheduling Request,简称SR),并为上述一个或多个UE分配相应的时频资源发送SR。当基站接收到上述一个或多个UE发送的SR之后,为上述一个或多个UE分配上行时频资源以便上述一个或多个UE进行上行数据传输。
请参阅图2,图2是本发明实施例公开的另一种网络架构示意图。如图2所示,该网络架构包括一个基站10和多个用户设备UE组(如图2中的201、202、...20M等),基站10与每个UE组内的UE通过无线网络连接。
每个UE组包括多个UE,例如,图2中的UE组201包括UE2011、UE2012、UE2013、UE2014,UE组202包括UE2021、UE2022、UE2023、UE2024、UE2025、UE2026,UE组20M包括UE20M1、UE20M2、UE20M3、UE20M4、UE20M5,其中M为正整数。基站10覆盖的小区内的UE可以在逻辑上被划分为多个UE组,每个UE组可以包括至少一个UE,每个UE组的UE数量可以相同,也可以不同。本发明实施中的基站10可以一次调度一个或多个UE组内的所有UE发送调度请求SR。
在图1和图2的网络架构中,UE可以是移动设备,例如移动电话、便携性计算机以及具有电信能力的类似设备,或者是具有电信能力但是不可携带的设备,例如台式计算机、机顶盒,还可以是进行通信会话的任何硬件或软件组件等等。基站10可以称为演进型基站(英文:evolved NodeB,简称:eNB),eNB可以是与UE通信的站,并且也可以称为节点B、接入点等。每个eNB可以针对特定的地理区域提供通信覆盖。术语“小区”根据使用该术语的上下文可以指eNB的这种特定的地理覆盖区域和/或服务于该覆盖区域的eNB子系统的这种特定的地理覆盖区域。
eNB可以针对宏小区、微小区、毫微小区和/或其它类型的小区提供通信覆盖。宏小区通常覆盖相对较大的地理区域(例如,半径为几千米的范围),并且可以允许由具有与网络提供商的服务签约的UE无限制的接入。微小区通常覆盖相对较小的地理区域,并且可以允许由具有与网络提供商的服务签约的UE无限制的接入。毫微小区通常也覆盖相对较小的地理区域(例如,家庭),并且除了无限制的接入以外还可以提供由具有与毫微小区关联的UE的受限的接入(例如,封闭用户组(Closed Subscriber Group,CSG)中的UE、家庭中的用户的UE等)。宏小区的eNB可被称为宏eNB。微小区的eNB可被称为微eNB。以及,毫微小区的eNB可被称为毫微eNB或家庭eNB。
请参阅图3,图3是本发明实施例公开的一种调度请求传输方法的流程示意图。图3所示的方法适用于图1的网络架构,如图3所示,该调度请求传输方法包括如下步骤。
301,基站生成下行控制信息DCI,DCI携带调度请求SR指示的第一字段,SR指示用于调度至少一个UE向基站发送SR。
本发明实施例采用基站来调度UE发送SR的方法,当基站需要调度UE发送SR时,基站生成下行控制信息(英文:Downlink Control Information,简称:DCI),DCI携带调度请求 SR指示的第一字段,SR指示用于调度上述至少一个UE向基站发送SR。第一字段用于SR指示,SR指示的第一字段可以由二进制比特来表示。例如,第一字段的长度可以是1比特,或者是2比特,第一字段可以为“SR request”。
可选地,在其它的实施方式中,前述DCI还包括第二字段,该第二字段用于指示至少一个UE的UE标识(英文全称:UE identity,英文简称:UE ID)。每个UE的UE标识是不同的,也就是说,对于每个UE标识而言,其指代的是唯一的UE。示例性地,第二字段的长度可以是16比特,或者是8比特,第二字段可以为“UE-1、UE-2”,分别用于指示第一UE和第二UE。需要说明的是,前述通过第二字段承载UE标识来指示被调度的至少一个UE,为一种显性传输,在另一些实施方式中,UE标识并不会显性传输,而是隐含包括在循环冗余校验(英文全称:Cyclic Redundancy Check,英文简称:CRC)计算中进行传输,例如根据UE ID对CRC校验码进行扰码,从而使扰码后的CRC隐式包含了UE标识。
302,基站向至少一个UE发送DCI,以调度至少一个UE向基站发送SR。
当基站生成下行控制信息DCI之后,基站向至少一个UE发送DCI,以调度上述至少一个UE向基站发送SR。基站向至少一个UE发送DCI的方式具体可以为:基站以广播的方式向基站覆盖的小区内的所有UE发送DCI;或者,基站也可以采用组播的方式向基站覆盖的小区内的所有UE发送DCI;或者,基站还可以采用单播的方式分别向基站覆盖的小区内的所有UE发送DCI。
基站发送的DCI可以一次调度一个UE,也可以一次调度多个UE,具体地,当基站发送的DCI一次调度一个UE时,DCI所携带的第二字段中的UE标识仅包括一个UE标识,其指示被调度的一个UE;当基站发送的DCI一次调度多个UE时,DCI所携带的第二字段中包括多个UE标识,该多个UE标识分别指示被调度的多个UE。
当UE标识如前所述进行显性传输,即DCI包含第二字段时,当UE接收到基站发送的DCI之后,UE可以对该DCI进行解码,获取该DCI中的第一字段和第二字段,UE判断第二字段中携带的至少一个UE的UE标识中是否存在自己的UE标识,若不存在,则表明该DCI不是用于调度该UE的,UE丢弃该DCI;若存在,则表明该DCI是用于调度该UE的,然后UE进一步读取该DCI中包含的其他信令,例如携带SR指示的第一字段,SR指示用于指示该至少一个UE中需要发送SR的UE向基站发送SR,若该UE有上行数据需要传输,则该UE根据DCI中的SR指示向基站发送SR,基站接收该UE发送的SR之后为该UE分配上行资源以便该UE进行上行数据传输。
当UE标识如前所述进行隐性传输时,当UE完成CRC校验后,则获得UE标识,并根据接收到的DCI在有上行数据需要传输时发送SR。
基站可以周期性的向至少一个UE发送DCI,也可以非周期性的向至少一个UE发送DCI。例如,当基站覆盖的小区内的UE需要频繁发送较为重要的上行数据时(例如,晚上7点到10点这段时间内),基站可以周期性的下发DCI来调度至少一个UE向基站发送SR,并可以设置基站下发DCI的周期为较小的值;当基站覆盖的小区内的UE不需要频繁的发送上行数据时(例如,凌晨1点到6点这段时间内),基站可以非周期性的下发DCI来调度至少一个UE向基站发送SR,或者基站可以周期性的下发DCI来调度至少一个UE向基站发送SR,并且设置基站下发DCI的周期为较大的值。
现有技术中,采用UE直接向基站发送SR的方法,当UE有上行数据需要传输时,UE发送SR告诉基站,每个UE周期性的轮流发送SR给基站。在mMTC场景下,由于存在大量的UE,UE发送SR的周期较长,导致UE发送SR的效率较低。
实施图3所示的方法,采用基站来调度UE发送SR的方法,基站可以向至少一个UE发送DCI,一次性调度一个或多个UE发送SR,基站可以同时调度多个UE来发送调度请求SR,从而可以提高UE发送SR的效率。
请参阅图4,图4是本发明实施例公开的一种调度请求传输方法的流程示意图。图4所示的方法适用于图2的网络架构,如图4所示,该调度请求传输方法包括如下步骤。
401,基站生成DCI,DCI携带SR指示的第一字段,SR指示用于调度至少一个UE组内需要发送SR的UE向基站发送SR。
本发明实施例中,基站覆盖的小区内的UE被分成多个UE组,每个UE组都有一个组标识(英文全称:UE group identity,英文简称:UE group ID),每个UE组的组标识都不相同。示例性地,对于一个UE而言,UE具有唯一的UE标识;如果该UE被分配到某个组里,那么该UE会分配一个组标识。第一字段用于SR指示,SR指示的第一字段可以由二进制比特来表示。例如,第一字段的长度可以是1比特,或者是2比特,第一字段可以为“SR request”。
可选地,在其它的实施方式中,前述DCI还包括第二字段,该第二字段用于指示至少一个UE组的组标识。每个UE组的组标识是不同的,也就是说,对于每个UE组标识而言,其指代的是唯一的UE组。示例性地,第二字段的长度可以是16比特,或者是8比特,第二字段可以为“UE group-1、UE group-2”,分别用于指示第一UE组和第二UE组。需要说明的是,前述通过第二字段承载至少一个UE组的组标识来指示被调度的至少一个UE组内的UE,为一种显性传输,在另一些实施方式中,UE组的组标识并不会显性传输,而是隐含包括在CRC计算中进行传输,例如根据UE group ID对CRC校验码进行扰码,从而使扰码后的CRC隐式包含了UE组的组标识。
当DCI携带的第二字段中的组标识仅包括一个UE组的组标识时,SR指示用于调度上述一个UE组内需要发送SR的UE向基站发送SR;当DCI携带的第二字段中的组标识包括多个UE组的组标识时,SR指示用于调度上述多个UE组内需要发送SR的UE向基站发送SR。
402,基站向至少一个UE组发送DCI,以调度上述至少一个UE组内的一个或多个UE向基站发送SR。
本发明实施例中,基站可以以广播、组播或者单播的方式向基站覆盖的小区内的所有UE组内的所有UE发送DCI。当DCI中仅携带一个UE组的组标识时,基站一次调度一个UE组,基站可以对其覆盖的小区内的所有UE组进行轮询,即一次调度各个UE组内的UE发送SR。基站可以周期性的下发DCI来调度UE组内的UE发送SR,也可以非周期性的下发DCI来调度UE组内的UE发送SR。
实施图4所示的方法,采用基站来调度UE组内的UE发送SR的方法,基站可以向至少一个UE组发送DCI,一次性调度一个或多个UE组内的UE发送SR,基站可以同时调度多个UE来发送调度请求SR,从而可以提高UE发送SR的效率。
请参阅图5,图5是本发明实施例公开的另一种调度请求传输方法的流程示意图。图5所示的调度请求传输方法应用于非授权频段上,如图5所示,该调度请求传输方法包括如下步骤。
501,基站生成下行控制信息DCI,DCI携带调度请求SR指示的第一字段,SR指示用于调度至少一个UE向基站发送SR。
可选地,DCI可以通过显性地传输UE标识,例如,在图1的网络架构中,DCI还可以包括第二字段,第二字段用于指示至少一个UE的UE标识;或者通过CRC隐性地传输UE标识,例如,根据UE ID对CRC校验码进行扰码,从而使扰码后的CRC隐式包含了UE标识。本发明实施例中的步骤501的具体实施方式可以参见图3中的步骤301,本发明实施例不再赘述。
502,若基站在非授权频段下工作,基站通过先听后发LBT来接入信道。
本发明实施例中,当基站和UE在非授权频段下工作时,基站通过先听后发(英文:Listen Before Talk,简称:LBT)来接入信道,该信道为非授权频段下的信道。LBT的核心思想是:基站和UE在发送数据之前需要先对信道进行侦听,当侦听到信道为空闲时(LBT成功时)才能发送数据。
具体的,基站和UE在发送数据之前需要在一段时间间隔(例如34微秒)内侦听信道是否空闲,如果该时间间隔内信道一直空闲,则进入随机退避(Backoff)阶段,在Backoff阶段,根据随机选择的随机数N(N为正整数)进行退避,即在N个时隙(Slot)内进行退避,如果在N个Slot内信道仍然空闲,则表明LBT成功,可以发送数据。如图6所示,图6是本发明实施例公开的一种LBT过程的示意图。图6中的一段时间间隔为34微秒(us),Slot为9us,随机退避(Backoff)为N个Slot的时长。图6仅是本发明实施例提供的一种LBT过程,基站还可以采用其他的LBT方式,本发明实施例不做限定。
503,当LBT成功时,基站通过上述信道向至少一个UE发送DCI。
本发明实施例中,当基站做LBT成功时,表明上述信道处于空闲状态,基站可以通过上述信道下发下行控制信息DCI来调度至少一个UE发送SR。其中,DCI携带SR指示的第一字段,SR指示用于调度至少一个UE向基站发送SR。
当基站做LBT失败时,可以继续执行步骤502。
在一个实施例中,可选地,在图2的网络架构中,DCI还包括第二字段,第二字段用于指示至少一个UE组的组标识,UE组包括至少一个UE。DCI可以通过第二字段显性地传输UE组的组标识,或者通过CRC隐性地传输UE组的组标识。当至少两个UE被分配到至少一个UE组中时,DCI包括的第二字段用于指示至少一个UE组的组标识,当LBT成功时,基站通过上述信道向至少一个UE组发送DCI,以调度至少一个UE组内的UE发送SR。
在非授权频段下,基站需要做LBT进行信道竞争,仅当LBT成功时,基站才可以下发DCI来调度至少一个UE发送SR。实施图5所示的方法,在非授权频段的mMTC场景下,基站在做LBT成功之后,可以通过下发DCI一次性调度一个或多个UE发送SR,基站可以同时调度多个UE来发送调度请求SR,从而可以提高UE发送SR的效率。
请参阅图7,图7是本发明实施例公开的另一种调度请求传输方法的流程示意图。图7所示的方法适用于图2的网络架构,如图7所示,该调度请求传输方法包括如下步骤。
701,基站将基站覆盖的小区内的所有UE分为M个UE组,并为M个UE组中每个UE组分配一个组标识,其中,不同的UE组的组标识不相同,M为正整数。
本发明实施例中,基站可以将其覆盖的小区内的所有UE进行分组,假设总共有N个UE,基站将这N个UE分为M组,并为每个UE组分配一个组标识,并且不同的UE组的组标识不相
Figure PCTCN2017095082-appb-000001
UE组,也可以将接入基站的同一个射频拉远头(英文:Remote Radio Head简称RHH:)的UE分为一个UE组,每个UE组可以包括多个UE,基站还可以根据UE的地理位置将地理位置相近的UE分为一个UE组。
702,基站为所有UE配置分组信息,分组信息包括UE与组标识的对应关系,UE与组标识的对应关系包括所有UE与M个UE组的组标识的对应关系,所有UE中每个UE对应一个组标识。
本发明实施例中,假设基站覆盖的小区内总共有N个UE,基站为N个UE分配分组信息,分组信息包括UE与组标识的对应关系,举例来说,UE与组标识的对应关系表可以参见表1,表1是本发明实施例公开的一种UE与组标识的对应关系表。
表1
Figure PCTCN2017095082-appb-000002
如表1所示,基站覆盖的小区内总共有N个UE(如表1中的UE-1、UE-2、UE-3、UE-4、UE-5、...、UE-N),N个UE被分为M个UE组,其中,UE-1、UE-2与UE-3被分入第一个UE组,第一个UE组的组标识为U1,UE-4与UE-5被分入第二个UE组,第二个UE组的组标识为U2,UE-N被分入第M个UE组,第M个UE组的组标识为UM,根据表1所示的UE与组标识的对应关系表,每个UE都可以对应一个组标识,UE-1对应组标识U1,UE-2对应组标识U1,UE-3对应组标识U1,UE-4对应组标识U2,UE-5对应组标识U2,...,UE-N对应组标识UM。同一个UE组内的UE对应的组标识都相同,都为该UE组的组标识。
当基站配置好分组信息之后,基站可以通过高层信令将分组信息发送给所有UE,以使所有UE中的目标UE根据分组信息中的UE与组标识的对应关系确定目标UE对应的组标识,目标UE为所有UE中的任一个。
本发明实施例中,基站通过高层信令(例如,RRC信令)将分组信息发送给基站覆盖范围内的所有UE,当目标UE接收到高层信令之后,根据分组信息中的UE与组标识的对应关系确定目标UE对应的组标识,目标UE为所有UE中的任一个。基站可以通知所有UE的分组信息,告知每个UE对应的UE组的组标识。
当基站将分组信息发送给所有UE之后,如果基站需要调度UE发送SR,则执行步骤703至步骤705。
703,基站生成下行控制信息DCI,DCI携带调度请求SR指示的第一字段和用于指示至少一个UE组的UE组标识的第二字段,SR指示用于调度至少一个UE向基站发送SR。
704,若基站在非授权频段下工作,基站通过先听后发LBT来接入信道。
705,当LBT成功时,基站通过上述信道向至少一个UE发送DCI。
本发明实施例中的步骤703至步骤705的具体实施方式可以参见图5中的步骤501至步骤503,本发明实施例不再详述。
本发明实施例中,在非授权频段下,基站通过LBT来接入信道之前,为了方便基站调度UE组内的UE发送SR,基站首先对所有的UE进行分组,为每个UE分配一个UE组的组标识,并通过高层信令通知所有的UE。实施图7所示的方法,本发明实施例中的划分UE组的思想,可以方便基站一次性调度一个或多个UE组内的UE发送SR,基站可以同时调度多个UE来发送调度请求SR,从而可以提高UE发送SR的效率。
进一步的,在一个实施例中,DCI还携带资源块分配指示,在图1的网络架构中,资源块分配指示用于指示允许至少一个UE发送SR的多个资源块,多个资源块的数量小于或者等于至少一个UE发送SR所需的资源块数量。在图2的网络架构中,资源块分配指示用于指示允许至少一个UE组发送SR的多个资源块,多个资源块的数量小于或者等于至少一个UE组内所有UE发送SR所需的资源块数量。
本发明实施例中,UE发送SR需要资源块(英文:Resource Block,简称:RB),在长期演进(英文:Long Term Evolution,LTE)中,定义一个RB在时域上占据0.5毫秒,频域上占据180Hz。在5G中,RB可以采用LTE中的定义,也可以采用其他的定义。
举例来说,在图1的网络架构中,若基站覆盖的小区内有100个UE,每个UE发送SR需要占用2个RB,基站一次性调度10个UE。在一个实施例中,基站向这10个UE发送DCI时,DCI携带的资源块分配指示可以指示允许这10个UE发送SR的RB的个数为20个,基站为这10个UE分配20个RB,基站可以保证这10个UE都能够分配到2个RB来发送SR。在另一个实施例中,基站向这10个UE发送DCI时,DCI携带的资源块分配指示可以指示允许这10个UE发送SR的RB的个数为10个,基站为这10个UE分配10个RB,基站可以保证这10个UE中的5个UE能够分配到2个RB来发送SR。由于在mMTC场景中,UE并不需要频繁的通信,因而单位时间内需要发送SR的UE占所有UE的比例不会很高,当UE为10个UE分配的用于发送SR的RB小于这10个UE都需要发送SR时所需的RB时,可以节省用于发送SR的RB资源。
在图2的网络架构中,若每个UE组内有50个UE,每个UE发送SR需要占用2个RB,基站一次性调度一个UE组。在一个实施例中,基站下发DCI时,DCI携带的资源块分配指示可以指示允许UE组内的UE发送SR的RB个数为100个,基站为一个UE组分配100个RB,基站可以保证UE组内的所有的UE都能够分配到2个RB,当UE组内的一个UE需要发送SR时,可以从资源块分配指示中指示100个RB中选择2个RB进行SR发送(例如,UE可以根据预先设置的UE与资源块的对应关系从100个RB中选择该UE对应的2个RB进行SR发送)。在另一个实施例中,基站下发DCI时,DCI携带的资源块分配指示可以指示允许UE组内的UE发送SR的RB个数为20个,基站为一个UE组分配20个RB,基站分配的RB可以允许UE组内的10 个UE发送SR,由于在mMTC场景中,UE并不需要频繁的通信,因而单位时间内需要发送SR的UE占所有UE的比例不会很高,为了节省RB资源,每个UE组仅分配20个RB用于发送SR,在mMTC场景中,可以满足UE组内需要发送SR的UE发送SR所需的RB,同时可以节省用于发送SR的RB资源。
进一步的,在一个实施例中,DCI还携带LBT类型指示,在图1的网络架构中,LBT类型指示用于指示至少一个UE在发送SR之前是否需要执行LBT以及需要执行LBT时的LBT类型。在图2的网络架构中,LBT类型指示用于指示至少一个UE组内需要发送SR的UE在发送SR之前是否需要执行LBT以及需要执行LBT时的LBT类型。
本发明实施例中,以图1的网络架构为例,在非授权频段下,基站可以根据网络的负载情况来指示至少一个UE在发送SR之前是否执行LBT,以及执行LBT时的LBT类型,LBT类型可以包括类型1和类型2,例如,可以用2位二进制比特流指示LBT,“00”指示不执行LBT,“01”指示执行类型1的LBT,“10”指示类型2的LBT。
如图8所示,图8是本发明实施例公开的一种LBT类型的结构示意图,图8中包括类型1的LBT和类型2的LBT的示意图。对于类型1的LBT,无线节点(例如,基站,UE)会在CCA时隙内执行LBT,CCA时隙包括一段时间间隔(例如20微秒),如果该时间间隔内信道繁忙,则LBT失败,需要等到信道空闲之后在重新执行LBT来接入信道;如果该时间间隔内信道空闲,则LBT成功,无线节点可以发送数据。对于类型2的LBT,无线节点会在CCA时隙内执行LBT,CCA时隙包括一段时间间隔(例如34微秒)和随机退避(Backoff)阶段,无线节点首先在该时间间隔内进行信道空闲评估,如果该时间间隔内信道繁忙,则LBT失败,需要等到信道空闲之后在重新执行LBT来接入信道;如果该时间间隔内信道空闲,则无线节点进入随机退避(Backoff)阶段,在Backoff阶段,根据随机选择的随机数N(N为正整数)进行退避,即在N个时隙(Slot)内进行退避,如果在N个Slot内信道仍然空闲,则表明LBT成功,可以发送数据,其中,一个Slot可以为9微秒。
基站可以根据当前网络的负载情况来指示至少一个UE在发送SR之前是否执行LBT,以及执行LBT时的LBT类型。例如,若当前网络的负载率较低,则基站下发的DCI中的LBT类型指示用于指示至少一个UE不需要执行LBT,以提高数据传输效率;若当前网络的负载率较高,则基站下发的DCI中的LBT类型指示用于指示至少一个UE需要执行LBT1或者LBT2,以保证数据传输质量。
基站还可以根据UE需要传输的数据的紧急性来指示至少一个UE在发送SR之前是否执行LBT,以及执行LBT时的LBT类型。例如,若UE需要传输的数据非常紧急,则基站下发的DCI中的LBT类型指示UE不需要执行LBT,可以提高UE上传SR的速度;若UE需要传输的数据不是非常紧急,则基站下发的DCI中的LBT类型指示UE执行类型1的LBT,若UE需要传输的数据不是非常紧急但是很重要(需要保证传输质量),则基站下发的DCI中的LBT类型指示UE执行类型2的LBT。基站还可以根据其他因素来确定UE在发送SR之前是否需要执行LBT以及执行LBT的类型,本发明实施例不做限定。实施本发明实施例,LBT类型指示可以满足UE在多种场景下的数据传输。
进一步的,在一个实施例中,DCI还携带发送时间区间TTI类型指示,在图1的网络架构中,TTI类型指示用于指示至少一个UE发送SR所在的子帧包括的一个或多个TTI的类型。 在图2的网络架构中,TTI类型指示用于指示至少一个UE组内的UE发送SR所在的子帧包括的一个或多个TTI的类型。
本发明实施例中,以图1的网络架构为例,发送时间区间(英文:Transmission Time Interval,简称:TTI)类型指示用于指示至少一个UE发送SR所在的子帧包括的一个或多个TTI的类型,本发明实施例可以定义多种TTI类型,例如,1毫秒的TTI、0.5毫秒的TTI、0.25毫秒的TTI,等等。UE发送SR所在的子帧可以包括一个TTI类型,也可以包括多个TTI类型。举例来说,如图9所示,图9是本发明实施例公开的一种子帧结构示意图,图9中,UE发送SR所在的子帧i包括4个类型相同的TTI(4个0.25毫秒的TTI,分别是TTI1、TTI2、TTI3和TTI4),在每个TTI内,都可以包括CCA时隙和SR传输时隙,CCA时隙用于UE进行LBT来接入信道,SR传输时隙用于UE在CCA时隙内LBT成功后进行SR传输。UE可以在子帧i内的TTI1的CCA时隙进行LBT,如果LBT成功,则UE在TTI1的SR传输时隙发送SR,如果LBT失败,则UE可以在TTI2的CCA时隙进行LBT,如果UE在某个TTI的CCA时隙内LBT成功并接入信道,则UE在这个TTI的SR传输时隙传输SR,不再继续在子帧i内的其他TTI进行LBT,如果UE在这4个TTI的CCA时隙的LBT都失败,则UE不能发送SR,等待基站的下次调度。本发明实施例提供的TTI类型指示,当一个子帧内有多个TTI时,可以在每个TTI内都做LBT,可以提高LBT成功的几率。
可选地,DCI中还可以携带载波指示(英文:Carrier indicator)、资源簇指示(英文:Multi-cluster)、填充(英文:Padding)指示等等。其中,载波指示用于指示是否为跨载波调度,资源簇指示用于指示是否有1个或2个资源簇用于UE进行SR的传输,填充指示用于指示DCI所在的子帧中哪些数据是填充数据。
请参阅图10,图10是本发明实施例公开的另一种调度请求传输方法的流程示意图。如图10所示,该调度请求传输方法包括如下步骤。
1001,UE接收基站发送的DCI,DCI携带SR指示的第一字段,SR指示用于调度该UE向基站发送SR。
本发明实施中,以图1的网络架构为例,当基站需要调度UE来发送SR时,基站下发DCI,DCI携带的SR指示的第一字段。第一字段用于SR指示,SR指示的第一字段可以由二进制比特来表示。例如,第一字段的长度可以是1比特,或者是2比特,第一字段可以为“SR request”。
可选地,在其它的实施方式中,前述DCI还包括第二字段,该第二字段用于指示至少一个UE的UE标识,每个UE的UE标识是不同的,也就是说,对于每个UE标识而言,其指代的是唯一的UE。示例性地,第二字段的长度可以是16比特,或者是8比特,第二字段可以为“UE-1、UE-2”,分别用于指示第一UE和第二UE。需要说明的是,前述通过第二字段承载UE标识来指示被调度的至少一个UE,为一种显性传输,在另一些实施方式中,UE标识并不会显性传输,而是隐含包括在CRC计算中进行传输,例如根据UE ID对CRC校验码进行扰码,从而使扰码后的CRC隐式包含了UE标识。
1002,当UE存在需要发送的上行资源时,UE根据SR指示向基站发送SR。
本发明实施例中,当UE存在需要发送的上行资源时,则该UE根据SR指示向基站发送SR;当UE不存在需要发送的上行资源时,则该UE忽略收到的DCI。
可选地,DCI还包括第二字段,该第二字段用于指示至少一个UE的UE标识,在执行步骤1002之前,还可以执行步骤1003。
1003,UE判断至少一个UE的UE标识中是否存在该UE的标识。
本发明实施中,UE接收基站发送的DCI之后,可以对该DCI进行解码,获取该DCI中携带的至少一个UE的UE标识,并判断至少一个UE的UE标识中是否存在该UE的标识。若存在,则确定该DCI是发给该UE,执行步骤1002;若不存在,则确定该DCI不是发给该UE的,丢弃该DCI。
实施图10所示的方法,可以根据基站发送的DCI调度至少一个UE发送SR,采用基站来调度UE发送SR的方法,可以同时调度一个或多个UE来发送调度请求SR,从而可以提高UE发送SR的效率。
进一步的,在一个实施例中,DCI还携带资源块分配指示,在图1的网络架构中,资源块分配指示用于指示允许该UE发送SR的多个资源块。在图2的网络架构中,资源块分配指示用于指示允许至少一个UE组发送SR的多个资源块,多个资源块的数量小于上述至少一个UE组内所有UE发送SR所需的资源块数量。步骤1002中UE根据SR指示向基站发送SR包括:
(11)、UE根据资源块分配指示,从多个资源块中随机选择可用资源块;
(12)、UE根据SR指示在选择的可用资源块上向基站发送SR。
本发明实施例中,DCI携带的资源块分配指示用于指示至少一个UE发送SR的多个资源块,资源块,也称RB,一个RB在时域上占据0.5毫秒,频域上占据180Hz。在5G中,RB可以采用LTE中的定义,也可以采用其他的定义。
举例来说,在图1的网络架构中,若基站覆盖的小区内有100个UE,每个UE发送SR需要占用2个RB,基站一次性调度10个UE。基站向这10个UE发送DCI时,DCI携带的资源块分配指示可以指示允许这10个UE发送SR的RB的个数为10个,基站为这10个UE分配10个RB,基站可以保证这10个UE中的5个UE能够分配到2个RB来发送SR。由于在mMTC场景中,UE并不需要频繁的通信,因而单位时间内需要发送SR的UE占所有UE的比例不会很高,在mMTC场景中,执行步骤(11)和步骤(12),可以满足这10个UE内需要发送SR的UE发送SR所需的RB,同时可以节省用于发送SR的RB资源。
在图2的网络架构中,若每个UE组内有50个UE,每个UE发送SR需要占用2个RB,基站一次性调度一个UE组。DCI携带的资源块分配指示可以指示允许UE组内的UE发送SR的RB个数为20个,基站为一个UE组分配20个RB,基站分配的RB可以允许UE组内的10个UE发送SR,UE收到DCI之后,UE根据DCI中携带的资源块分配指示从20个RB中随机选择2个可用的RB,并在选择的2个可用的RB上向基站发送SR。由于在mMTC场景中,UE并不需要频繁的通信,因而单位时间内需要发送SR的UE占所有UE的比例不会很高,为了节省RB资源,每个UE组仅分配20个RB用于发送SR,在mMTC场景中,执行步骤(11)和步骤(12),可以满足UE组内需要发送SR的UE发送SR所需的RB,同时可以节省用于发送SR的RB资源。
进一步的,在另一个实施例中,DCI还携带资源块分配指示,在图1的网络架构中,资源块分配指示用于指示允许该UE发送SR的多个资源块。在图2的网络架构中,资源块分配指示用于指示允许至少一个UE组发送SR的多个资源块,多个资源块的数量等于上述至少一个UE组内所有UE发送SR所需的资源块数量。步骤1002中UE根据SR指示向基站发送SR包括:
(21)、UE根据资源块分配指示和预先设置的UE与资源块的对应关系,从多个资源块中选择UE对应的资源块;
(22)、UE根据SR指示在UE对应的资源块上向基站发送SR。
本发明实施例中,DCI携带的资源块分配指示用于指示至少一个UE发送SR的多个资源块,资源块,也称RB,一个RB在时域上占据0.5毫秒,频域上占据180Hz。在5G中,RB可以采用LTE中的定义,也可以采用其他的定义。
举例来说,在图1的网络架构中,若基站覆盖的小区内有100个UE,每个UE发送SR需要占用2个RB,基站一次性调度10个UE。基站向这10个UE发送DCI时,DCI携带的资源块分配指示可以指示允许这10个UE发送SR的RB的个数为20个,基站为这10个UE分配20个RB,基站可以保证这10个UE都能够分配到2个RB来发送SR。执行步骤(21)和步骤(22),可以保证至少一个UE内的每个UE都能分配到资源块来发送SR,可以提高UE发送SR的成功率。
在图2的网络架构中,若每个UE组内有50个UE,每个UE发送SR需要占用2个RB,基站一次性调度一个UE组。基站下发DCI时,DCI携带的资源块分配指示可以指示允许UE组内的UE发送SR的RB个数为100个,基站为一个UE组分配100个RB,可以保证UE组内的所有的UE都能够分配到2个RB,当UE组内的一个UE需要发送SR时,该UE根据资源块分配指示和预先设置的UE与资源块的对应关系,从100个RB中选择该UE对应的2个RB。例如,UE与资源块的对应关系表可以参见表2,表2是本发明实施例公开的一种UE与资源块的对应关系表。
表2
Figure PCTCN2017095082-appb-000003
第i个UE组有50个UE(如表2中的UE-1、UE-2、...UE-50),UE组内的每一个UE都分配两个2RB,如表2所示,UE-1对应的资源块为RB1和RB2,UE-2对应的资源块为RB3和RB4,UE-3对应的资源块为RB5和RB6,UE-4对应的资源块为RB7和RB8,UE-5对应的资源块为RB9和RB10,...UE-50对应的资源块为RB99和RB100。UE可以根据预先设置的UE与资源块的对应关系选择该UE对应的资源块,并在该UE对应的资源块上向基站发送SR。执行步骤(21)和步骤(22),可以保证UE组内的每个UE都能分配到资源块来发送SR,可以提高UE组内的UE发送SR的成功率。
请参阅图11,图11是本发明实施例公开的另一种调度请求传输方法的流程示意图。应用于非授权频段,如图11所示,该调度请求传输方法包括如下步骤。
1101,UE接收基站发送的DCI,DCI携带SR指示的第一字段、用于指示至少一个UE 的UE标识的第二字段、资源块分配指示的第三字段和LBT类型指示的第四字段,SR指示用于调度至少一个UE向基站发送SR,资源块分配指示用于指示允许至少一个UE发送SR的多个资源块,LBT类型指示用于指示至少一个U在发送SR之前是否需要执行LBT以及需要执行LBT时的LBT类型。
本发明实施例中,在非授权频段下,基站可以指示至少一个UE在发送SR之前是否执行LBT,以及执行LBT时的LBT类型,LBT类型可以包括类型1和类型2,LBT类型用第四字段来标识,例如,可以用2位二进制比特指示LBT,“00”指示不执行LBT,“01”指示执行类型1的LBT,“10”指示类型2的LBT。
LBT类型可以包括类型1和类型2,具体请参阅上述图8的描述,本发明实施例不再详述。
当基站下发的DCI中的LBT类型指示UE不需要执行LBT时,可以提高UE上传SR的速度;当基站下发的DCI中的LBT类型指示UE执行类型1的LBT,在保证UE上传SR的速度的情况下,提高UE上传SR的传输质量;当基站下发的DCI中的LBT类型指示UE执行类型2的LBT,则可以提高UE上传SR的传输质量。
1102,UE判断至少一个UE的UE标识中是否存在该UE的标识。
1103,若存在,且UE存在需要发送的上行资源时,UE根据LBT类型指示确定是否需要执行LBT以及需要执行LBT时的LBT类型。
1104,若不需要执行LBT,UE根据SR指示向基站发送SR。
1105,若需要执行LBT,UE根据LBT类型进行LBT来接入信道。
本发明实施例中,举例来说,若LBT类型指示为2位二进制比特流,“00”指示不执行LBT,“01”指示执行类型1的LBT,“10”指示类型2的LBT。当LBT类型指示为“00”时,则UE不需要执行LBT,UE直接向基站发送SR;当LBT类型指示为“01”时,UE根据LBT类型进行类型1的LBT来接入信道;当LBT类型指示为“10”时,UE根据LBT类型进行类型2的LBT来接入信道。
1106,当LBT成功时,UE接入信道,UE根据SR指示通过该信道向基站发送SR。
本发明实施例中,当UE进行LBT(例如类型1的LBT或者类型2的LBT)成功时,UE接入进行LBT成功的信道,UE根据SR指示通过该信道向基站发送SR。
可选地,图11还可以包括如下步骤1107。
1107,当LBT失败时,UE放弃发送SR;或者,UE继续根据LBT类型进行LBT来接入信道,直至LBT成功时,UE接入信道,UE根据SR指示通过信道向基站发送SR。
本发明实施例中,当UE进行LBT(例如类型1的LBT或者类型2的LBT)失败时,UE可以继续根据LBT类型进行LBT来接入信道,直至LBT成功时(信道为空闲状态时),UE接入该信道,UE根据SR指示通过该信道向基站发送SR。若UE进行类型1的LBT失败后,UE继续进行类型1的LBT来接入该信道,直至LBT成功时,UE接入该信道,UE通过该信道向基站发送SR。或者当UE进行LBT失败时,UE放弃发送SR,UE可以重新等待基站的下一次调度。当UE需要传输的数据不太紧急时,若LBT失败,UE可以放弃发送SR,重新等待基站的下一次调度;当UE需要传输的数据比较紧急时,若LBT失败,UE继续执行LBT,直至LBT成功时接入信道。本发明实施例中的LBT指示可以适用于不同的应用场景。
本发明实施例中的步骤1102的具体实施方式可以参见图10中的步骤1003,本发明实施例不再详述。
本发明实施例中,在非授权频段下,UE在发送SR之前,UE可以根据DCI中的LBT类型指示确定自身是否需要执行LBT已经执行LBT的类型,实施图11所示的方法,可以根据UE需要传输数据的紧急性决定是否执行LBT以及执行LBT的类型,可以满足UE在多种场景下的数据传输。
进一步的,在一个实施例中,DCI还携带发送时间区间TTI类型指示,TTI类型指示用于指示至少一个UE发送SR所在的子帧包括的一个或多个TTI的类型,步骤1105中UE根据LBT类型进行LBT来接入信道包括:
UE根据LBT类型在子帧包括的至少一个TTI中进行LBT来接入信道;其中,每个TTI均包括信道空闲评估CCA时隙和SR传输时隙,CCA时隙用于UE进行LBT来接入信道,SR传输时隙用于UE在CCA时隙内LBT成功后进行SR传输。
本发明实施例中,发送时间区间(英文:Transmission Time Interval,简称:TTI)类型指示用于指示至少一个UE发送SR所在的子帧包括的一个或多个TTI的类型,本发明实施例可以定义多种TTI类型,例如,1毫秒的TTI、0.5毫秒的TTI、0.25毫秒的TTI,等等。UE发送SR所在的子帧可以包括一个TTI类型,也可以包括多个TTI类型。举例来说,如图9所示,UE发送SR所在的子帧i包括4个类型相同的TTI(4个0.25毫秒的TTI,分别是TTI1、TTI2、TTI3和TTI4),在每个TTI内,都可以包括CCA时隙和SR传输时隙,CCA时隙用于UE进行LBT来接入信道,SR传输时隙用于UE在CCA时隙内LBT成功后进行SR传输。UE可以在子帧i内的TTI1的CCA时隙进行LBT,如果LBT成功,则UE在TTI1的SR传输时隙发送SR,如果LBT失败,则UE可以在TTI2的CCA时隙进行LBT,如果UE在某个TTI的CCA时隙内LBT成功并接入信道,则UE在这个TTI的SR传输时隙传输SR,不再继续在子帧i内的其他TTI进行LBT,如果UE在这4个TTI的CCA时隙的LBT都失败,则UE不能发送SR,等待基站的下次调度。本发明实施例提供的TTI类型指示,当一个子帧内有多个TTI时,可以在每个TTI内都做LBT,可以提高LBT成功的几率。
请参阅图12,图12是本发明实施例公开的一种基站的结构示意图,如图12所示,该基站包括生成单元1201和发送单元1202,其中:
生成单元1201,用于生成下行控制信息DCI,DCI携带调度请求SR指示的第一字段,SR指示用于调度至少一个UE向基站发送SR。
发送单元1202,用于向至少一个UE发送DCI,以调度至少一个UE向基站发送SR。
实施图12所示的基站,基站可以向至少一个UE发送DCI,一次性调度一个或多个UE发送SR,基站可以同时调度多个UE来发送调度请求SR,从而可以提高UE发送SR的效率。
该基站的实施可以参见图3-图7所示的方法实施例,重复之处不再赘述。
请参阅图13,图13是本发明实施例公开的一种UE的结构示意图,如图13所示,该UE包括接收单元1301和发送单元1302,其中:
接收单元1301,用于接收基站发送的DCI,DCI携带SR指示的第一字段,SR指示用于 调度至少一个UE向基站发送SR。
发送单元1302,用于当UE存在需要发送的上行资源时,根据SR指示向基站发送SR。
实施图13所示的UE,UE可以根据基站发送的DCI发送SR,采用基站来调度至少一个UE组发送SR的方法,可以同时调度一个或多个UE来发送调度请求SR,从而可以提高UE发送SR的效率。
该UE的实施可以参见图10-图11所示的方法实施例,重复之处不再赘述。
请参阅图14,图14是本发明实施例公开的又一种基站的结构示意图,如图14所示,该基站包括至少一个处理器1401,例如CPU,至少一个网络接口1402、存储器1403、至少一个通信总线1404,其中,通信总线1404用于实现这些组件之间的连接通信。其中,网络接口1402可以是有线接口,例如光纤分布式数据接口(英文:Fiber Distributed Data Interface,简称FDDI)、千兆以太网(英文:Gigabit Ethernet,简称GE)接口;网络接口1402也可以是无线接口。存储器1403包括但不限于是随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或者快闪存储器)、或便携式只读存储器(CD-ROM)。处理器1401可以是一个或多个中央处理器(英文:Central Processing Unit,简称CPU),在处理器1401是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。存储器1403用于存储指令和数据。处理器1401被配置为执行存储器1403中存储的指令。
本发明实施例中,处理器1401用于生成下行控制信息DCI,DCI携带调度请求SR指示的第一字段,SR指示用于调度至少一个UE向基站发送SR;
网络接口1402用于向至少一个UE发送DCI,以调度至少一个UE向基站发送SR。
在一个实施例中,处理器1401还用于当基站在非授权频段下工作时,通过先听后发LBT来接入信道;
当LBT成功时,网络接口1402向至少一个UE发送DCI的方式具体为:
网络接口1402通过信道向至少一个UE发送DCI。
在一个实施例中,DCI还携带资源块分配指示,资源块分配指示用于指示允许至少一个UE发送SR的多个资源块,多个资源块的数量小于或者等于至少一个UE发送SR所需的资源块数量。
在一个实施例中,DCI还携带LBT类型指示,LBT类型指示用于指示至少一个UE在发送SR之前是否需要执行LBT以及需要执行LBT时的LBT类型。
在一个实施例中,DCI还携带发送时间区间TTI类型指示,TTI类型指示用于指示至少一个UE发送SR所在的子帧包括的一个或多个TTI的类型。
在一个实施例中,DCI还包括第二字段,第二字段用于指示至少一个UE的UE标识。
在一个实施例中,DCI还包括第二字段,第二字段用于指示至少一个UE组的组标识,UE组包括至少一个UE。
实施图14所示的基站,基站可以向至少一个UE发送DCI,一次性调度一个或多个UE发送SR,基站可以同时调度多个UE来发送调度请求SR,从而可以提高UE发送SR的效率。
请参阅图15,图15是本发明实施例公开的又一种UE的结构示意图。其中,图15所示的 UE包括:至少一个处理器1501,例如CPU,至少一个网络接口1502、存储器1503、至少一个通信总线1504,其中,通信总线1504用于实现这些组件之间的连接通信。其中,网络接口1502可以是有线接口,例如光纤分布式数据接口(英文:Fiber Distributed Data Interface,简称FDDI)、千兆以太网(英文:Gigabit Ethernet,简称GE)接口;网络接口1502也可以是无线接口。存储器1503包括但不限于是随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或者快闪存储器)、或便携式只读存储器(CD-ROM)。处理器1501可以是一个或多个中央处理器(英文:Central Processing Unit,简称CPU),在处理器1501是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。存储器1503用于存储指令和数据。处理器1501被配置为执行存储器1503中存储的指令。
本发明实施例中,网络接口1502用于接收基站发送的DCI,DCI携带SR指示的第一字段,SR指示用于调度UE向基站发送SR;
网络接口1502还用于当UE存在需要发送的上行资源时,根据SR指示向基站发送SR,SR为UE需要发送的SR。
在一个实施例中,DCI还携带资源块分配指示,资源块分配指示用于指示允许该UE发送SR的多个资源块,处理器1501用于根据资源块分配指示,从多个资源块中随机选择可用资源块,网络接口1502根据SR指示向基站发送SR,具体为:
网络接口1502根据SR指示在选择的可用资源块上向基站发送SR。
在一个实施例中,DCI还携带资源块分配指示,资源块分配指示用于指示允许该UE发送SR的多个资源块,处理器1501还用于根据资源块分配指示和预先设置的UE与资源块的对应关系,从多个资源块中选择UE对应的资源块,网络接口1502根据SR指示向基站发送SR,具体为:
网络接口1502根据SR指示在UE对应的资源块上向基站发送SR。
在一个实施例中,DCI还携带LBT类型指示,LBT类型指示用于指示该UE在发送SR之前是否需要执行LBT以及需要执行LBT时的LBT类型,网络接口1502用于根据SR指示向基站发送SR之前,处理器1501还用于根据LBT类型指示确定是否需要执行LBT以及需要执行LBT时的LBT类型;
网络接口1502还用于不需要执行LBT时,根据SR指示向基站发送SR;
处理器1501还用于需要执行LBT时,根据LBT类型进行LBT来接入信道;
处理器1501还用于当LBT成功时,接入信道,网络接口1502根据SR指示向基站发送SR,具体为:
网络接口1502根据SR指示通过信道向基站发送SR。
在一个实施例中,网络接口1502用于当LBT失败时,放弃发送SR;或者,处理器1501用于当LBT失败时,继续根据LBT类型进行LBT来接入信道,直至LBT成功时,接入信道,网络接口1502根据SR指示向基站发送SR,具体为:
网络接口1502根据SR指示通过信道向基站发送SR。
在一个实施例中,DCI还携带发送时间区间TTI类型指示,TTI类型指示用于指示该UE发送SR所在的子帧包括的一个或多个TTI的类型,处理器1501根据LBT类型进行LBT来接入信道,具体为:
处理器1501根据LBT类型在子帧包括的至少一个TTI中进行LBT来接入信道;其中,每个TTI均包括信道空闲评估CCA时隙和SR传输时隙,CCA时隙用于UE进行LBT来接入信道,SR传输时隙用于UE在CCA时隙内LBT成功后进行SR传输。
实施图15所示的UE,UE可以根据基站发送的DCI发送SR,采用基站来调度至少一个UE发送SR的方法,可以同时调度一个或多个UE来发送调度请求SR,从而可以提高UE发送SR的效率。
本发明实施例的方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例终端或设备中的单元或子单元可以根据实际需要进行合并、划分和删减。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上对本发明实施例公开的一种调度请求传输方法、用户设备以及基站进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (28)

  1. 一种调度请求传输方法,其特征在于,包括:
    基站生成下行控制信息DCI,所述DCI携带调度请求SR指示的第一字段,所述SR指示用于调度至少一个用户设备UE向所述基站发送SR;
    所述基站向所述至少一个UE发送所述DCI,以调度所述至少一个UE向所述基站发送所述SR。
  2. 根据权利要求1所述的方法,其特征在于,所述基站向所述至少一个UE发送所述DCI之前,所述方法还包括:
    若所述基站在非授权频段下工作,所述基站通过先听后发LBT来接入信道;
    当所述LBT成功时,所述基站向所述至少一个UE发送所述DCI包括:
    所述基站通过所述信道向所述至少一个UE发送所述DCI。
  3. 根据权利要求1或2所述的方法,其特征在于,所述DCI还携带资源块分配指示,所述资源块分配指示用于指示允许所述至少一个UE发送所述SR的多个资源块,所述多个资源块的数量小于或者等于所述至少一个UE发送所述SR所需的资源块数量。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述DCI还携带LBT类型指示,所述LBT类型指示用于指示所述至少一个UE在发送所述SR之前是否需要执行LBT以及需要执行LBT时的LBT类型。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述DCI还携带发送时间区间TTI类型指示,所述TTI类型指示用于指示所述至少一个UE发送所述SR所在的子帧包括的一个或多个TTI的类型。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述DCI还包括第二字段,所述第二字段用于指示所述至少一个UE的UE标识。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述DCI还包括第二字段,所述第二字段用于指示至少一个UE组的组标识,所述UE组包括所述至少一个UE。
  8. 一种调度请求传输方法,其特征在于,包括:
    UE接收基站发送的DCI,所述DCI携带SR指示的第一字段,所述SR指示用于调度所述UE向所述基站发送SR;
    当所述UE存在需要发送的上行资源时,所述UE根据所述SR指示向所述基站发送所述SR。
  9. 根据权利要求8所述的方法,其特征在于,所述DCI还携带资源块分配指示,所 述资源块分配指示用于指示允许所述UE发送SR的多个资源块,所述UE根据所述SR指示向所述基站发送所述SR包括:
    所述UE根据所述资源块分配指示,从所述多个资源块中随机选择可用资源块;
    所述UE根据所述SR指示在所述选择的可用资源块上向所述基站发送所述SR。
  10. 根据权利要求8所述的方法,其特征在于,所述DCI还携带资源块分配指示,所述资源块分配指示用于指示允许所述UE发送SR的多个资源块,所述UE根据所述SR指示向所述基站发送所述SR包括:
    所述UE根据所述资源块分配指示和预先设置的UE与资源块的对应关系,从所述多个资源块中选择所述UE对应的资源块;
    所述UE根据所述SR指示在所述UE对应的资源块上向所述基站发送所述SR。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述DCI还携带LBT类型指示,所述LBT类型指示用于指示所述UE在发送所述SR之前是否需要执行LBT以及需要执行LBT时的LBT类型,所述UE根据所述SR指示向所述基站发送所述SR之前,所述方法还包括:
    所述UE根据所述LBT类型指示确定是否需要执行LBT以及需要执行LBT时的LBT类型;
    若不需要执行LBT,则所述UE执行所述根据所述SR指示向所述基站发送所述SR的步骤;
    若需要执行LBT,则所述UE根据所述LBT类型进行LBT来接入信道;
    当所述LBT成功时,所述UE接入所述信道,所述UE根据所述SR指示向所述基站发送所述SR包括:
    所述UE根据所述SR指示通过所述信道向所述基站发送所述SR。
  12. 根据权利要求11所述的方法,其特征在于,所述DCI还携带发送时间区间TTI类型指示,所述TTI类型指示用于指示所述UE发送SR所在的子帧包括的一个或多个TTI的类型,所述UE根据所述LBT类型进行LBT来接入信道包括:
    所述UE根据所述LBT类型在所述子帧包括的至少一个TTI中进行LBT来接入信道;其中,每个TTI均包括信道空闲评估CCA时隙和SR传输时隙,所述CCA时隙用于所述UE进行所述LBT来接入所述信道,所述SR传输时隙用于所述UE在所述CCA时隙内LBT成功后进行SR传输。
  13. 一种基站,其特征在于,包括:
    生成单元,用于生成下行控制信息DCI,所述DCI携带调度请求SR指示的第一字段,所述SR指示用于调度至少一个用户设备UE向所述基站发送SR;
    发送单元,用于向所述至少一个UE发送所述DCI,以调度所述至少一个UE向所述基站发送所述SR。
  14. 根据权利要求13所述的基站,其特征在于,所述基站还包括:
    检测单元,用于当所述基站在非授权频段下工作时,通过先听后发LBT来接入信道;
    当所述检测单元检测所述LBT成功时,所述发送单元向所述至少一个UE发送所述DCI的方式具体为:
    所述发送单元通过所述信道向所述至少一个UE发送所述DCI。
  15. 根据权利要求13或14所述的基站,其特征在于,所述DCI还携带资源块分配指示,所述资源块分配指示用于指示允许所述至少一个UE发送所述SR的多个资源块,所述多个资源块的数量小于或者等于所述至少一个UE发送所述SR所需的资源块数量。
  16. 根据权利要求13-15任一项所述的基站,其特征在于,所述DCI还携带LBT类型指示,所述LBT类型指示用于指示所述至少一个UE在发送所述SR之前是否需要执行LBT以及需要执行LBT时的LBT类型。
  17. 根据权利要求13-16任一项所述的基站,其特征在于,所述DCI还携带发送时间区间TTI类型指示,所述TTI类型指示用于指示所述至少一个UE发送所述SR所在的子帧包括的一个或多个TTI的类型。
  18. 根据权利要求13-17任一项所述的基站,其特征在于,所述DCI还包括第二字段,所述第二字段用于指示所述至少一个UE的UE标识。
  19. 根据权利要求13-17任一项所述的基站,其特征在于,所述DCI还包括第二字段,所述第二字段用于指示至少一个UE组的组标识,所述UE组包括所述至少一个UE。
  20. 一种UE,其特征在于,包括:
    接收单元,用于接收基站发送的DCI,所述DCI携带SR指示的第一字段,所述SR指示用于调度所述UE向所述基站发送SR;
    发送单元,用于当所述UE存在需要发送的上行资源时,根据所述SR指示向所述基站发送所述SR。
  21. 根据权利要求20所述的UE,其特征在于,所述DCI还携带资源块分配指示,所述资源块分配指示用于指示允许所述UE发送SR的多个资源块,所述发送单元包括:
    第一选择子单元,用于根据所述资源块分配指示,从所述多个资源块中随机选择可用资源块;
    第一发送子单元,用于根据所述SR指示在所述选择的可用资源块上向所述基站发送所述SR。
  22. 根据权利要求20所述的UE,其特征在于,所述DCI还携带资源块分配指示,所述资源块分配指示用于指示允许所述UE发送SR的多个资源块,所述发送单元包括:
    第二选择子单元,用于根据所述资源块分配指示和预先设置的UE与资源块的对应关系,从所述多个资源块中选择所述UE对应的资源块;
    第二发送子单元,用于根据所述SR指示在所述UE对应的资源块上向所述基站发送所述SR。
  23. 根据权利要求20-22任一项所述的UE,其特征在于,所述DCI还携带LBT类型指示,所述LBT类型指示用于指示所述UE在发送所述SR之前是否需要执行LBT以及需要执行LBT时的LBT类型,所述UE还包括:
    确定单元,用于根据所述LBT类型指示确定是否需要执行LBT以及需要执行LBT时的LBT类型;
    所述发送单元,还用于当所述确定单元确定不需要执行LBT时,根据所述SR指示向所述基站发送所述SR;
    检测单元,用于当所述确定单元确定需要执行LBT时,根据所述LBT类型进行LBT来接入信道;
    接入单元,用于当所述检测单元检测所述LBT成功时,接入所述信道;
    所述发送单元根据所述SR指示向所述基站发送所述SR的方式具体为:
    当所述接入单元接入所述信道之后,所述发送单元根据所述SR指示通过所述信道向所述基站发送所述SR。
  24. 根据权利要求23所述的UE,其特征在于,所述DCI还携带发送时间区间TTI类型指示,所述TTI类型指示用于指示所述UE发送SR所在的子帧包括的一个或多个TTI的类型,所述检测单元根据所述LBT类型进行LBT来接入信道的方式具体为:
    所述检测单元根据所述LBT类型在所述子帧包括的至少一个TTI中进行LBT来接入信道;其中,每个TTI均包括信道空闲评估CCA时隙和SR传输时隙,所述CCA时隙用于所述UE进行所述LBT来接入所述信道,所述SR传输时隙用于所述UE在所述CCA时隙内LBT成功后进行SR传输。
  25. 一种基站,其特征在于,包括:
    处理器,用于生成下行控制信息DCI,所述DCI携带调度请求SR指示的第一字段,所述SR指示用于调度至少一个用户设备UE向所述基站发送SR;
    网络接口,用于向至少一个UE发送DCI。
  26. 一种UE,其特征在于,包括:
    网络接口,用于接收基站发送的DCI,所述DCI携带SR指示的第一字段,所述SR指示用于调度所述UE向所述基站发送SR;以及,
    所述网络接口,用于当所述UE存在需要发送的上行资源时,根据所述SR指示向所述 基站发送所述SR。
  27. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-7任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求8-12任一项所述的方法。
PCT/CN2017/095082 2016-08-31 2017-07-29 一种调度请求传输方法、用户设备以及基站 WO2018040818A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610799424.8A CN107787013B (zh) 2016-08-31 2016-08-31 一种调度请求传输方法、用户设备以及基站
CN201610799424.8 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018040818A1 true WO2018040818A1 (zh) 2018-03-08

Family

ID=61300197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095082 WO2018040818A1 (zh) 2016-08-31 2017-07-29 一种调度请求传输方法、用户设备以及基站

Country Status (2)

Country Link
CN (1) CN107787013B (zh)
WO (1) WO2018040818A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019245779A1 (en) * 2018-06-19 2019-12-26 Idac Holdings, Inc. Methods, apparatus and systems for system access in unlicensed spectrum
RU2808702C2 (ru) * 2018-06-19 2023-12-01 Идак Холдингз, Инк. Способы, устройство и системы для доступа к системе в нелицензированном спектре
US11956822B2 (en) 2018-06-19 2024-04-09 Interdigital Patent Holdings, Inc. Radio link monitoring in shared spectrum

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020097810A1 (zh) * 2018-11-14 2020-05-22 北京小米移动软件有限公司 调度请求发送方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548014A (zh) * 2011-12-07 2012-07-04 北京邮电大学 机器与机器的通信终端接入网络的方法
CN104125610A (zh) * 2013-04-28 2014-10-29 电信科学技术研究院 D2d通信中的数据发送方法和设备
CN105101104A (zh) * 2014-04-18 2015-11-25 成都鼎桥通信技术有限公司 集群业务中调整cce聚集级别的方法、基站及监听终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8964679B2 (en) * 2011-12-23 2015-02-24 Blackberry Limited Method implemented in an eNodeB base station
WO2014098444A1 (ko) * 2012-12-17 2014-06-26 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와 하향링크 신호 전송 방법 및 기지국
US9306721B2 (en) * 2013-03-15 2016-04-05 Google Technology Holdings LLC Method and apparatus for device-to-device communication
US10064080B2 (en) * 2013-10-28 2018-08-28 Lg Electronics Inc. Method and apparatus for wireless communication
US9578632B2 (en) * 2014-03-27 2017-02-21 Qualcomm Incorporated Methods and apparatus for UL DM-RS overhead reduction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548014A (zh) * 2011-12-07 2012-07-04 北京邮电大学 机器与机器的通信终端接入网络的方法
CN104125610A (zh) * 2013-04-28 2014-10-29 电信科学技术研究院 D2d通信中的数据发送方法和设备
CN105101104A (zh) * 2014-04-18 2015-11-25 成都鼎桥通信技术有限公司 集群业务中调整cce聚集级别的方法、基站及监听终端

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019245779A1 (en) * 2018-06-19 2019-12-26 Idac Holdings, Inc. Methods, apparatus and systems for system access in unlicensed spectrum
CN112567875A (zh) * 2018-06-19 2021-03-26 Idac控股公司 用于在非授权频谱中进行系统接入的方法、装置和系统
RU2808702C2 (ru) * 2018-06-19 2023-12-01 Идак Холдингз, Инк. Способы, устройство и системы для доступа к системе в нелицензированном спектре
US11956822B2 (en) 2018-06-19 2024-04-09 Interdigital Patent Holdings, Inc. Radio link monitoring in shared spectrum
CN112567875B (zh) * 2018-06-19 2024-04-12 交互数字专利控股公司 用于在非授权频谱中进行系统接入的方法、装置和系统

Also Published As

Publication number Publication date
CN107787013A (zh) 2018-03-09
CN107787013B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
EP3316651B1 (en) Random access method and corresponding device
CN108029120B (zh) 用于为低复杂度窄带终端指示对随机接入过程中的harq消息分配的资源的方法
WO2018103702A1 (zh) 一种上行信息处理的方法及装置
WO2017128878A1 (zh) 一种资源配置方法、网络侧设备、终端及计算机存储介质
WO2017050184A1 (zh) 系统信息发送方法、接收方法、发送装置及接收装置
WO2016184307A1 (zh) 一种上行资源分配方法、基站和用户终端
WO2017133354A1 (zh) 业务传输的方法和装置
WO2016049890A1 (zh) 数据传输方法和设备
WO2021223240A1 (zh) 资源选择方法、装置、设备及存储介质
WO2016155113A1 (zh) 一种群组通信的方法、用户设备、基站设备及系统
WO2014111038A1 (zh) Tdd上下行子帧比例的双周期动态配置方法、基站、系统和通信设备
JP7201081B2 (ja) ソースデバイスにより実行される方法、ネットワークノードにより実行される方法、宛先デバイスにより実行される方法、ソースデバイス及び宛先デバイス
WO2021031046A1 (zh) 一种随机接入方法、终端设备和网络设备
CN108810927B (zh) 一种调度请求的处理方法及系统
WO2019062838A1 (zh) 数据传输方法及装置
US20180041314A1 (en) Data transmission method, feedback information transmission method, and related device
US20200389910A1 (en) Scheduling-free transmission method and apparatus
WO2015165029A1 (zh) 资源复用的方法和装置
WO2018040818A1 (zh) 一种调度请求传输方法、用户设备以及基站
JP7307855B2 (ja) 無線通信ネットワークにおける設定ダウンリンク送信および動的ダウンリンク送信をハンドリングする方法および装置
WO2016169046A1 (zh) 一种终端、基站和数据传输方法
CN109075930B (zh) Mtc装置的搜索空间配置的方法、装置以及介质
TW202121924A (zh) 用於處理多個通道的方法
WO2020143734A1 (zh) 资源配置方法、装置、存储介质及电子装置
EP3398283B1 (en) Method, and apparatus for selecting downlink control information format

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845120

Country of ref document: EP

Kind code of ref document: A1