WO2018040668A1 - 一种hsdpa存储管理的方法和装置、设备、存储介质 - Google Patents

一种hsdpa存储管理的方法和装置、设备、存储介质 Download PDF

Info

Publication number
WO2018040668A1
WO2018040668A1 PCT/CN2017/088264 CN2017088264W WO2018040668A1 WO 2018040668 A1 WO2018040668 A1 WO 2018040668A1 CN 2017088264 W CN2017088264 W CN 2017088264W WO 2018040668 A1 WO2018040668 A1 WO 2018040668A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage
size
data
block
level
Prior art date
Application number
PCT/CN2017/088264
Other languages
English (en)
French (fr)
Inventor
徐超祥
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2018040668A1 publication Critical patent/WO2018040668A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • H04L47/62Queue scheduling characterised by scheduling criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, device, and storage medium for high speed downlink packet access (HSDPA) storage management.
  • HSDPA high speed downlink packet access
  • HSDPA is an enhancement proposed by the 3rd Generation Partnership Project (3GPP) Release 5 (Release 5), which is applicable to both Wideband Code Division Multiple Access (WCDMA) and Time Division Duplex. (Time Division Duplex, TD) system.
  • 3GPP 3rd Generation Partnership Project
  • WCDMA Wideband Code Division Multiple Access
  • TD Time Division Duplex
  • the main goal of HSDPA is to support high-speed packet data services while ensuring lower time delay, higher system throughput and greater Quality of Service (QoS) guarantees.
  • QoS Quality of Service
  • HSDPA services are characterized by strong real-time performance and large data volume.
  • the TD system receives a packet of HSDPA data every Transmission Timing Interval (TTI), where the TTI can be 5 milliseconds. (ms), etc.; in the WCDMA system, the system receives a packet of HSDPA data every TTI (2ms), where the TTI can be 2ms or the like. If the downlink quality is too poor, the amount of data accumulated in real time will be large.
  • TTI Transmission Timing Interval
  • ms milliseconds.
  • HSDPA does storage management.
  • the existing communication protocol is not clearly described. Allocating storage resources to HSDPA services according to the theoretical maximum is undoubtedly a great waste of storage resources. Therefore, based on the actual HSDPA service data volume, an HSDPA storage management method that satisfies the HSDPA service requirements needs to be studied to solve the current situation of storage resource waste.
  • the embodiment of the present invention is to provide a method, a device, a device, and a storage medium for HSDPA storage management, which can reduce waste of storage resources, thereby improving the use efficiency of storage resources.
  • An embodiment of the present invention provides a method for HSDPA storage management, including:
  • the hybrid automatic repeat request HARQ data is obtained multiple times in succession, and the HARQ data acquired each time is stored according to a preset storage management policy;
  • the storage management policy is: applying a storage block for data that needs to be stored, the storage block of the data is configured to be recovered after releasing the data, and the recycled storage block is recycled. .
  • the method further includes: pre-dividing n different levels of storage areas, n is greater than 1; wherein each level of the storage area includes at least one storage block; in any one of the storage areas When the number of storage blocks is greater than 1, the size of each storage block of the storage area of the corresponding level is the same; the size of the storage blocks of any two different levels of storage areas is different;
  • the storing the each queue data in the corresponding storage area includes: selecting, in the storage blocks of the divided storage areas, a storage block having a size that is the smallest difference from the size of the corresponding queue data, and corresponding queue data Stored in the selected memory block.
  • the method further includes: each level of the storage area corresponding to one level of the RLC PDU; and determining the number of storage blocks of the storage area of the corresponding level according to the size of the RLC PDU of each level.
  • each level of storage area corresponds to one level of RLC PDUs; the method further comprising: determining a size of a storage block of each level of storage area;
  • the determining the size of the storage block of the storage area of each level comprises: determining whether the sum of the Nmax*RLCsize and the S MAC header is less than Tbsize(max), wherein Nmax represents a corresponding level of the RLC PDU that can be carried by the queue data.
  • the maximum number, RLCsize represents the size of the corresponding level of RLC PDU
  • Tbsize (max) represents the size of the HSPDA maximum transport block
  • S MAC header represents the size of the MAC header pointer in a queue data
  • the size of the storage block of the storage area of the corresponding level is determined as Nmax*RLCsize; the sum of the Nmax*RLCsize and the S MAC header is greater than or equal to Tbsize ( In the case of max), the size of the storage block of the storage area of the corresponding level is determined as the Tbsize(max)-S MAC header .
  • the method further includes: applying a storage block for each acquired HARQ data and storing;
  • the number of the storage blocks of the acquired HARQ data request is determined according to the actual data processing capability of the UE, and the size of the storage block of the HARQ data request acquired each time is equal to the size of the HSPDA maximum transport block.
  • An embodiment of the present invention further provides an apparatus for HSDPA storage management, where the apparatus includes: an obtaining module, a first storage management module, and a second storage management module;
  • the acquiring module is configured to acquire the hybrid automatic repeat request HARQ data multiple times in succession;
  • the first storage management module is configured to store the HARQ data acquired each time according to a preset storage management policy
  • a second storage management module configured to determine each queue number of HARQ data acquired each time According to the storage area, each of the queue data is stored in a corresponding storage area according to the storage management policy, and the storage area of each queue data is determined by the size of the corresponding queue data.
  • the storage management policy is: applying a storage block for data that needs to be stored, the storage block of the data is configured to be recovered after releasing the data, and the recycled storage block is recycled. .
  • the second storage management module is configured to pre-divide n different levels of storage areas, where n is greater than 1; wherein each level of storage area includes at least one storage block; at any level When the number of storage blocks of the storage area is greater than 1, the size of each storage block of the storage area of the corresponding level is the same; the size of the storage blocks of any two different levels of storage areas is different;
  • the second storage management module is further configured to: in the storage blocks of the divided storage areas, select a storage block whose size is the smallest difference from the size of the corresponding queue data, and store the corresponding queue data in the selected storage block. in.
  • the storage area of each level corresponds to one level of RLC PDUs; and the second storage management module is further configured to determine storage of the storage area of the corresponding level according to the size of the RLC PDUs of each level. The number of blocks.
  • each level of storage area corresponds to one level of RLC PDUs; and the second storage management module is further configured to determine a size of a storage block of each level of storage area;
  • the second storage management module is further configured to determine whether the sum of the Nmax*RLCsize and the S MAC header is less than Tbsize(max), where Nmax represents the maximum number of RLC PDUs of a corresponding level that can be carried by the queue data, RLCsize Indicates the size of the corresponding level of RLC PDU, Tbsize(max) represents the size of the HSPDA maximum transport block; S MAC header represents the size of the MAC header pointer in a queue data;
  • the second storage management module is further configured to determine, when the sum of the Nmax*RLCsize and the S MAC header is less than Tbsize(max), the size of the storage block of the storage area of the corresponding level as Nmax*RLCsize; * When the sum of the RLCsize and S MAC headers is greater than or equal to Tbsize(max), the size of the storage block of the storage area of the corresponding level is determined as the Tbsize(max)-S MAC header .
  • the first storage management module is configured to apply for a storage block for each acquired HARQ data and store the storage block;
  • the number of the storage blocks of the acquired HARQ data request is determined according to the actual data processing capability of the UE, and the size of the storage block of the HARQ data request acquired each time is equal to the size of the HSPDA maximum transport block.
  • the embodiment of the present invention provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the HSDPA storage management method provided by the embodiment of the present invention.
  • the embodiment of the invention provides a device for HSDPA storage management, including:
  • a storage medium configured to store executable instructions
  • the processor is configured to execute the stored executable instructions, the executable instructions being used to perform the HSDPA storage management method provided by the embodiments of the present invention.
  • the HARQ data is acquired multiple times in succession, and the HARQ data acquired each time is stored according to a preset storage management policy; the storage area of each queue data of each acquired HARQ data is determined according to the storage management.
  • the policy stores each of the queue data in a corresponding storage area, and the storage area of each of the queue data is determined by the size of the corresponding queue data.
  • FIG. 2 is a HSDPA storage management diagram according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a HSDPA storage management method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of evaluating a storage block size of a Type storage area according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a HSDPA storage management method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a device for HSDPA storage management according to an embodiment of the present invention.
  • FIG. 1 is a flow chart of HSDPA data according to an embodiment of the present invention. As shown in FIG. 1 , the HSDPA data flow is as follows:
  • Hybrid Automatic Repeat request (HARQ) data is obtained.
  • the physical layer parses the High-Speed Downlink Shared Channel (HS-DSCH) successfully, it applies for the HARQ data storage block, and the media access control layer (Media Access Control, MAC layer) parses the HARQ data. Release the HARQ memory block.
  • HS-DSCH High-Speed Downlink Shared Channel
  • MAC layer Media Access Control
  • the queue data in the HARQ data is sequentially stored in Que(0) to Que(n) corresponding to the MAC layer.
  • Que(0) to Que(n) buffer the reordering data of queue 0 to queue n, respectively.
  • the buffered queue data of Que(0) to Que(n) in the MAC layer is respectively transmitted to the RBs (Idx0) to RB(Idxn) corresponding to the RLC layer.
  • RB(Idx0) to RB(Idxn) respectively represent an RB with an index of 0 to an RB with an index of n, and the window of these RBs buffers Radio Link Control Protocol Data Unit (RLC PDU) information.
  • RLC PDU Radio Link Control Protocol Data Unit
  • the HSDPA storage management may include: HARQ storage area management and Type storage area management, and management of the two types of data may be managed by using a free list.
  • HARQ storage area management and Type storage area management
  • management of the two types of data may be managed by using a free list.
  • FIG. 3 is a flowchart of a method for HSDPA storage management according to an embodiment of the present invention. As shown in FIG. 3, the method includes:
  • Step 100 Acquire HARQ data multiple times in succession, and store each acquired HARQ data according to a preset storage management policy.
  • the storage management policy is: applying a storage block for data that needs to be stored, the storage block of the data is configured to be recovered after releasing the data, and the recycled storage block is recycled.
  • a storage block is requested for the data to be stored, and the storage block of the data is configured to store the next data to be stored after releasing the data.
  • the method further includes: applying a storage block for each acquired HARQ data and storing the number of the storage blocks of the HARQ data application acquired each time according to the actual data processing capability of the UE.
  • the size of the storage block of the HARQ data request acquired each time is equal to the size of the HSPDA maximum transport block.
  • the size of the HSPDA maximum transport block is determined by the actual channel quality or the downlink packet service supported by the UE that obtains the HARQ data.
  • the HARQ0 storage block to the HARQm storage block in the HARQ storage area is used to store the continuously acquired HARQ data, and after the physical layer successfully parses the HARQ data, apply for a HARQi storage block in the HARQ0 storage block to the HARQm storage block.
  • the HARQi storage block is delivered to the MAC layer for processing.
  • the value of i ranges from 0 to m, and the number of storage blocks in the HARQ storage area may be two.
  • Step 101 Determine a storage area of each queue data of each acquired HARQ data, and store each queue data in a corresponding storage area according to the storage management policy, where a storage area of each queue data is corresponding The size of the queue data is determined.
  • this step may include:
  • the first step is to pre-divide n different levels of storage areas, where n is greater than 1; wherein, each level of storage area includes at least one storage block; when the number of storage blocks of any one of the storage areas is greater than 1, The size of each storage block of the storage area of the corresponding level is the same; the size of the storage blocks of any two different levels of storage areas is different.
  • Type0 to Typen represent pre-divided storage areas of different levels, and each level of storage area corresponds to one level RLC PDU, where RLCsize indicates the corresponding level.
  • the size of the RLC PDU is different for each level of RLC PDU.
  • the RLCsize used in the actual network includes 144 bits, 336 bits, 4800 bits, etc.
  • the storage area can be divided into three levels: Type0, Type1, and Type2, and different levels of storage areas Type0, Type1, and Type2 respectively correspond to RLCsize. It is 144bits, 336bits, 4800bits.
  • the network configuration of different storage areas is different, and the level of RLC PDUs can be adjusted appropriately.
  • the Type0 storage area includes Type0 storage block 0 to Type0 storage block i
  • the Type1 storage area includes Type1 storage block 0 to Type1 storage block j
  • the Typen storage area includes Typen storage block 0 to Typen storage block k.
  • the storage area of each level corresponds to one level of RLC PDUs; according to the size of the RLC PDUs of each level, the number of storage blocks of the storage area of the corresponding level is determined.
  • the method for determining the number of Type storage area storage blocks may include the following steps:
  • Step 1011a The maximum number of storage block evaluations.
  • one HSDPA queue window may contain up to 128 RLC PDUs and at least 1 RLC PDU.
  • the maximum number of RB windows is 4096.
  • One of the largest HSDPA queue window data is not enough to fill the RB entire window, when an HSDPA queue window
  • one RB window contains up to 4096 HSDPA queue windows. Since one HSDPA queue window requires one memory block, one RB window contains a maximum of 4096 memory blocks, so the number of memory blocks in each storage area is not more than 4096.
  • Step 1011b Evaluate the number of storage blocks of a single Type storage area.
  • the corresponding RLCsize of the Type0 storage area is 144 bits, and the RLC PDU with the RLCsize is generally used for transmitting signaling, and the rate is not high, and the RB window is generally configured within 128. Therefore, the Type0 storage area can be The number of storage blocks is set to 128; the RLCsize of the corresponding level of the Type1 storage area is 336 bits, and the RB window is generally configured at 2048. Therefore, the number of storage blocks in the Type 1 storage area can be set to 2048; the RLCsize corresponding to the Type 2 storage area is 4800 bits, the RB window is generally configured at 2048. Therefore, the number of memory blocks in the Type 2 storage area can be set to 2048. Due to actual network differences, the number of different levels of memory blocks can be dynamically adjusted according to the actual network.
  • the method further includes determining a size of the storage block in the storage area of each level. As shown in FIG. 5, the method for determining the size of the Type storage area storage block may include the following steps:
  • Step 1012a Acquire an RLCsize of a storage area corresponding level.
  • RLCsize represents the size of the corresponding level of RLC PDU.
  • Step 1012b Acquire a maximum number Nmax of corresponding levels of RLC PDUs that can be carried by one queue data in one HARQ data.
  • Nmax represents the maximum number of corresponding levels of RLC PDUs that can be carried by one queue data.
  • Nmax takes a value of 44; when the UE only supports HSDPA, Nmax takes a value of 70.
  • Step 1012c It is judged whether (Nmax*RLCsize+S MAC header ) is smaller than the size of Tbsize(max), and if yes, step 1012d is performed; if not, step 1012e is performed.
  • the S MAC header is the size of the MAC header pointer in a queue data
  • Tbsize(max) is the size of the largest transport block in the preset list in the downlink packet service supported by the UE.
  • WCDMA WCDMA as an example, when the UE supports HSDPA+, Tbsize(max) is 42192 bits; when the UE only supports HSDPA, Tbsize(max) is 27952 bits.
  • Step 1012d The storage block size is (Nmax*RLCsize).
  • Step 1012e The storage block size is Tbsize(max)-S MAC header .
  • the evaluation manner of the storage block size and the number of the storage areas in each level is determined according to the configuration of the corresponding level RLCsize, the HSDPA queue window size, and the RB window size.
  • the evaluation method of the storage block size and the number of storage areas in each level of storage area can also be evaluated by other methods, for example, according to the HSDPA TB size table (a table of transport block sizes in the HSDPA protocol), and the HSDPA TB size table is determined.
  • the storage block size is HSDPA TB size of different levels, and the number of storage blocks can take the average of three RB windows.
  • a storage block having a size that differs from the size of the corresponding queue data is selected, and the corresponding queue data is stored in the selected storage block.
  • a storage block whose size is the smallest difference from the size of the queue data is selected.
  • the sizes of the storage blocks in the storage areas of Type 0, Type 1, and Type 2 are 1450 bits, 3370 bits, and 4810 bits, respectively.
  • the size of a queue data in the HARQ data is 1500 bits. Therefore, the storage block is selected in the Type1 and Type2 storage areas.
  • the size of the storage block in the Type1 storage area is the closest to the queue data.
  • the storage area of the queue data in the HARQ data is determined to be Type1. And apply a storage block for the queue data in the Type1 storage area and store it.
  • the method for storing management acquires HARQ data multiple times in succession, and stores HARQ data acquired each time according to a preset storage management policy; and determines a storage area of each queue data of each acquired HARQ data, And storing, according to the storage management policy, each queue data in a corresponding storage area, where a storage area of each queue data is corresponding The size of the queue data is determined.
  • the method effectively implements storage management of HSDPA service data, reduces waste of storage resources, and improves usage efficiency of storage resources.
  • FIG. 6 is a flowchart of a HSDPA storage management method according to an embodiment of the present invention. As shown in FIG. 6, the process includes:
  • Step 200 Determine whether the physical layer receives the HARQ data. If no, go to step 201; if yes, go to step 202.
  • Step 201 The storage management process ends.
  • Step 202 Apply a storage block for the HARQ data and store it.
  • a storage block is requested for the HARQ data, and the HARQ data is saved in the HARQ storage area.
  • the number of storage blocks in the HARQ storage area is determined according to the actual data processing capability of the UE; the storage block size needs to be planned according to the maximum HSDPA TB size. Taking WCDMA as an example, the storage block size is 42192 bits.
  • Step 203 Parse the HARQ data.
  • the HARQ data is divided into a plurality of queue data, each queue data is parsed, and a storage block is requested for the parsed queue data.
  • Step 204 Determine whether there is unresolved queue data in the HARQ data. If yes, go to step 206; if no, go to step 205.
  • each queue data in the HARQ data needs to be parsed and managed by the Type storage area for each parsed.
  • the queue data is re-applied to the Type memory block and stored.
  • Step 205 Release the HARQ storage block, and return to step 200.
  • the storage block storing the HARQ data can be released to store the next HARQ data to be stored.
  • the transmission is performed.
  • TTI0 2ms
  • the HARQ0 memory block is applied, and the HARQ0 memory block is delivered to the MAC layer for processing.
  • TTI1 the transmission time interval
  • the physical layer is successfully parsed, and the HARQ1 storage block is applied.
  • the HARQ1 memory block is delivered to the MAC layer for processing.
  • the MAC layer needs to parse the HARQ0 memory block and release the HARQ0 memory block, so that the physical layer can continue to utilize the HARQ0 memory block when the transmission time interval TTI2 (2ms) arrives.
  • Step 206 Apply a storage block for the queue data and store it.
  • a storage block is requested for a queue data in the HARQ data, and a Type storage area is selected first, and a Type storage area closest to the size of the storage block in the Type storage area may be selected according to the size of the queue data. Then, according to the Type storage area management, a storage block is requested for the queue data in the Type storage area corresponding to the queue data.
  • the sizes of the storage blocks in the storage areas of Type 0, Type 1, and Type 2 are 1450 bits, 3370 bits, and 4810 bits, respectively.
  • the size of a queue data in the HARQ data is 1200 bits. Comparing the size of the queue data with the size of the storage block in the Type 0, Type 1, and Type 2 storage areas, the size of the storage block in the Type 0 storage area is the closest to the size of the queue data. Then, the storage area of the queue data in the HARQ data is determined to be a Type0 storage area; and the storage block is applied to the queue data in the Type0 storage area by the Type storage area management and stored.
  • Step 207 Group RLC PDUs and deliver them to the RLC layer.
  • the queue data is rearranged to form an RLC PDU and delivered to the RLC layer.
  • Step 208 The RLC layer group radio link control service data unit (RLC SDU) is completed, and the storage block in the Type storage area is released.
  • RLC SDU radio link control service data unit
  • the storage block is released through the Type storage area management.
  • an embodiment of the present invention further provides an apparatus for HSDPA storage management.
  • the device includes: an obtaining module 300, and a first storage management module. 301 and a second storage management module 302; wherein
  • the obtaining module 300 is configured to acquire HARQ data multiple times in succession.
  • the first storage management module 301 is configured to acquire HARQ data multiple times in succession, and store the HARQ data acquired each time according to a preset storage management policy.
  • the second storage management module 302 is configured to determine a storage area of each queue data of the HARQ data acquired each time, and store each queue data in a corresponding storage area according to the storage management policy, where each queue The storage area of the data is determined by the size of the corresponding queue data.
  • the storage management policy is: applying a storage block for data that needs to be stored, the storage block of the data is configured to be recovered after releasing the data, and the recycled storage block is recycled.
  • the first storage management module 301 is configured to apply for one storage block for each acquired HARQ data and store the number of storage blocks of the HARQ data request obtained each time according to the actual data processing capability of the UE. It is determined that the size of the storage block of the HARQ data request acquired each time is equal to the size of the HSPDA maximum transport block.
  • the second storage management module 302 is configured to pre-divide n different levels of storage areas, where n is greater than 1; wherein each level of storage area includes at least one storage block; and storage blocks of any one level of storage area When the number is greater than 1, the size of each memory block of the storage area of the corresponding level is the same; the size of the memory blocks of any two different levels of the storage area is different.
  • the second storage management module 302 is further configured to store the each queue data in the corresponding storage area, including: selecting a size and a size of the corresponding queue data in the storage blocks of the divided storage areas. The storage block with the smallest difference stores the corresponding queue data in the selected storage block.
  • the second storage management module 302 is further configured to determine the number of storage blocks of the storage area of the corresponding level according to the size of the RLC PDU of each level.
  • the storage area of each level corresponds to one level of RLC PDU.
  • the second storage management module 302 is further configured to determine the size of the storage block of the storage area of each level.
  • the second storage management module 302 is further configured to determine whether the sum of the Nmax*RLCsize and the S MAC header is less than Tbsize(max), where Nmax represents the maximum number of RLC PDUs of a corresponding level that can be carried by the queue data, and RLCsize represents The size of the RLC PDU of the corresponding level, Tbsize(max) represents the size of the HSPDA maximum transport block; and the S MAC header represents the size of the MAC header pointer in a queue data.
  • the second storage management module 302 is further configured to determine, when the sum of the Nmax*RLCsize and the S MAC header is less than Tbsize(max), the size of the storage block of the storage area of the corresponding level as Nmax*RLCsize; When the sum of the Nmax*RLCsize and the S MAC header is greater than or equal to Tbsize(max), the size of the storage block of the storage area of the corresponding level is determined as the Tbsize(max)-S MAC header .
  • the acquiring module, the first storage management module, and the second storage management module may each be a central processing unit (CPU), a microprocessor (MPU), and a central processing unit (MPU) located in the terminal device.
  • CPU central processing unit
  • MPU microprocessor
  • MPU central processing unit
  • DSP Digital signal processor
  • FPGA Field Programmable Gate Array
  • the above HSDPA storage management method is implemented in the form of a software function module and sold or used as a standalone product, it may also be stored in a computer readable storage medium.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • the embodiment of the present invention provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the HSDPA storage management method provided by the embodiment of the present invention.
  • An embodiment of the present invention provides a device (terminal) for HSDPA storage management, including:
  • a storage medium configured to store executable instructions
  • the processor is configured to execute the stored executable instructions, the executable instructions being used to perform the HSDPA storage management method provided by the embodiments of the present invention.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded into a computer or other programmable data processing device Having a series of operational steps performed on a computer or other programmable device to produce computer-implemented processing such that instructions executed on a computer or other programmable device are provided for implementing one or more processes in a flowchart and/or Or block diagram the steps of a function specified in a box or multiple boxes.
  • the HARQ data is acquired multiple times in succession, and the HARQ data acquired each time is stored according to a preset storage management policy; the storage area of each queue data of each acquired HARQ data is determined according to the storage.
  • the management policy stores each of the queue data in a corresponding storage area, and the storage area of each of the queue data is determined by the size of the corresponding queue data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种HSDPA存储管理的方法,包括:连续多次获取HARQ数据,并依据预设的存储管理策略存储每次获取的HARQ数据;确定每次获取的HARQ数据的每个队列数据的存储区域,依据所述存储管理策略将所述每个队列数据存储在相应的存储区域,所述每个队列数据的存储区域由对应的队列数据的大小确定。本发明实施例还公开了一种HSDPA存储管理的装置、设备、存储介质。

Description

一种HSDPA存储管理的方法和装置、设备、存储介质
相关申请的交叉引用
本申请基于申请号为201610801045.8、申请日为2016年09月01日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种高速下行分组接入(High Speed Downlink Packet Access,HSDPA)存储管理的方法和装置、设备、存储介质。
背景技术
HSDPA是第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)版本5(Release5)提出的一种增强方案,其同时适用于宽带码分多址(Wideband Code Division Multiple Access,WCDMA)和时分双工(Time Division Duplex,TD)系统。HSDPA的主要目标是支持高速分组数据业务,同时保证更低的时间延迟、更高的系统吞吐量和更强的服务质量(Quality of Service,QoS)保证。
在TD和WCDMA系统中,HSDPA业务具有实时性强和数据量大的特点;其中,TD系统每隔传输时间间隔(Transmission Timing Interval,TTI)接收到一包HSDPA数据,这里的TTI可以是5毫秒(ms)等;而在WCDMA系统中,则是系统每隔TTI(2ms)接收到一包HSDPA数据,这里的TTI可以是2ms等。如果下行链路质量过差,实时堆积的数据量会比较大。
目前,对HSDPA如何做存储管理现有的通信协议无明确描述,如果完 全按照理论最大值来给HSDPA业务划分存储资源,无疑是对存储资源是一种极大的浪费。因此需要依据实际HSDPA业务数据量,研究一种满足HSDPA业务需求的HSDPA存储管理方法,来解决存储资源浪费的现状。
发明内容
为解决上述技术问题,本发明实施例期望提供一种HSDPA存储管理的方法和装置、设备、存储介质,能够减少存储资源的浪费,从而提高存储资源的使用效率。
本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种HSDPA存储管理的方法,包括:
连续多次获取混合自动重传请求HARQ数据,并依据预设的存储管理策略存储每次获取的HARQ数据;
确定每次获取的HARQ数据的每个队列数据的存储区域,依据所述存储管理策略将所述每个队列数据存储在相应的存储区域,所述每个队列数据的存储区域由对应的队列数据的大小确定。
在其他的实施例中,所述存储管理策略为:为需要存储的数据申请一个存储块,所述数据的存储块,配置为在释放数据后被回收,所述被回收的存储块被循环利用。
在其他的实施例中,所述方法还包括:预先划分出n个不同等级的存储区域,n大于1;其中,每个等级的存储区域包括至少一个存储块;在任意一个等级的存储区域的存储块的个数大于1时,对应等级的存储区域的各个存储块的大小相同;任意两个不同等级的存储区域的存储块的大小不同;
所述将所述每个队列数据存储在相应的存储区域,包括:在划分出的各个存储区域的存储块中,选取出一个大小与对应队列数据的大小相差最小的存储块,将对应队列数据存储在选取出的存储块中。
在其他的实施例中,所述方法还包括:每个等级的存储区域与一个等级的RLC PDU对应;依据每个等级的RLC PDU的大小,确定对应等级的存储区域的存储块个数。
在其他的实施例中,每个等级的存储区域与一个等级的RLC PDU对应;所述方法还包括:确定每个等级的存储区域的存储块的大小;
所述确定每个等级的存储区域的存储块的大小,包括:判断Nmax*RLCsize与SMAC 头之和是否小于Tbsize(max),其中,Nmax表示一个队列数据所能承载的对应等级的RLC PDU的最大个数,RLCsize表示对应等级的RLC PDU的大小,Tbsize(max)表示HSPDA最大传输块的大小;SMAC 头表示一个队列数据中MAC头指针的大小;
所述Nmax*RLCsize与SMAC 头之和小于Tbsize(max)时,将对应等级的存储区域的存储块的大小确定为Nmax*RLCsize;所述Nmax*RLCsize与SMAC 头之和大于等于Tbsize(max)时,将对应等级的存储区域的存储块的大小确定为Tbsize(max)-SMAC 头
在其他的实施例中,在每次获取HARQ数据后,所述方法还包括:为每次获取的HARQ数据申请一个存储块并存储;
每次获取的HARQ数据申请的存储块的个数依据UE实际的数据处理能力确定,每次获取的HARQ数据申请的存储块的大小等于HSPDA最大传输块的大小。
本发明实施例还提供了一种HSDPA存储管理的装置,所述装置包括:获取模块、第一存储管理模块和第二存储管理模块;
其中,获取模块,配置为连续多次获取混合自动重传请求HARQ数据;
第一存储管理模块,配置为依据预设的存储管理策略存储每次获取的HARQ数据;
第二存储管理模块,配置为确定每次获取的HARQ数据的每个队列数 据的存储区域,依据所述存储管理策略将所述每个队列数据存储在相应的存储区域,所述每个队列数据的存储区域由对应的队列数据的大小确定。
在其他的实施例中,所述存储管理策略为:为需要存储的数据申请一个存储块,所述数据的存储块,配置为在释放数据后被回收,所述被回收的存储块被循环利用。
在其他的实施例中,所述第二存储管理模块,配置为预先划分出n个不同等级的存储区域,n大于1;其中,每个等级的存储区域包括至少一个存储块;在任意一个等级的存储区域的存储块的个数大于1时,对应等级的存储区域的各个存储块的大小相同;任意两个不同等级的存储区域的存储块的大小不同;
所述第二存储管理模块,还配置为在划分出的各个存储区域的存储块中,选取出一个大小与对应队列数据的大小相差最小的存储块,将对应队列数据存储在选取出的存储块中。
在其他的实施例中,每个等级的存储区域与一个等级的RLC PDU对应;所述第二存储管理模块,还配置为依据每个等级的RLC PDU的大小,确定对应等级的存储区域的存储块个数。
在其他的实施例中,每个等级的存储区域与一个等级的RLC PDU对应;所述第二存储管理模块,还配置为确定每个等级的存储区域的存储块的大小;
所述第二存储管理模块,还配置为判断Nmax*RLCsize与SMAC 头之和是否小于Tbsize(max),其中,Nmax表示一个队列数据所能承载的对应等级的RLC PDU的最大个数,RLCsize表示对应等级的RLC PDU的大小,Tbsize(max)表示HSPDA最大传输块的大小;SMAC 头表示一个队列数据中MAC头指针的大小;
所述第二存储管理模块,还配置为在所述Nmax*RLCsize与SMAC 头之 和小于Tbsize(max)时,将对应等级的存储区域的存储块的大小确定为Nmax*RLCsize;所述Nmax*RLCsize与SMAC 头之和大于等于Tbsize(max)时,将对应等级的存储区域的存储块的大小确定为Tbsize(max)-SMAC 头
在其他的实施例中,所述第一存储管理模块,配置为为每次获取的HARQ数据申请一个存储块并存储;
每次获取的HARQ数据申请的存储块的个数依据UE实际的数据处理能力确定,每次获取的HARQ数据申请的存储块的大小等于HSPDA最大传输块的大小。
本发明实施例提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行本发明实施例提供的HSDPA存储管理的方法。
本发明实施例提供一种HSDPA存储管理的设备,包括:
存储介质,配置为存储可执行指令;
处理器,配置为执行存储的可执行指令,所述可执行指令用于执行本发明实施例提供的HSDPA存储管理的方法。
本发明实施例中,连续多次获取HARQ数据,并依据预设的存储管理策略存储每次获取的HARQ数据;确定每次获取的HARQ数据的每个队列数据的存储区域,依据所述存储管理策略将所述每个队列数据存储在相应的存储区域,所述每个队列数据的存储区域由对应的队列数据的大小确定。与现有技术相比,该方法有效的实现了HSDPA业务数据的存储管理,减少存储资源的浪费,提高存储资源的使用效率。
附图说明
图1为本发明实施例HSDPA数据流向图;
图2为本发明实施例HSDPA存储管理图;
图3为本发明实施例HSDPA存储管理方法的流程图;
图4为本发明实施例Type存储区域存储块个数的评估流程图;
图5为本发明实施例Type存储区域存储块大小的评估流程图;
图6为本发明实施例HSDPA存储管理方法的流程图;
图7为本发明实施例HSDPA存储管理的装置的组成结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
图1为本发明实施例HSDPA数据流向图,如图1所示,HSDPA数据流向如下:
首先,获得混合自动重传请求(Hybrid Automatic Repeat request,HARQ)数据。物理层解析高速下行链路共享信道(High-Speed Downlink Shared Channel,HS-DSCH)成功后,则为HARQ数据申请存储块,媒体介入控制层(Media Access Control,MAC层)解析完HARQ数据,则释放HARQ存储块。
其次,将HARQ数据中的队列数据依次存入到MAC层对应的Que(0)到Que(n)。Que(0)到Que(n)分别缓存队列0到队列n的重排数据。
最后,将MAC层中Que(0)到Que(n)的缓存的队列数据分别传递到RLC层对应的RB(Idx0)到RB(Idxn)中。RB(Idx0)到RB(Idxn)分别表示索引为0的RB到索引为n的RB,这些RB的窗口缓存无线链路控制层协议数据单元(Radio Link Control Protocol Data Unit,RLC PDU)信息。
图2为本发明实施例HSDPA存储管理图,如图2所示,HSDPA存储管理可以包括:HARQ存储区管理和Type存储区管理,对于这两类数据的管理可以使用空闲链表的方式来管理,当有数据需要申请存储块时,可以直接从空闲链表的头获取一个存储块;释放数据后则将存储块保存于空闲链表尾部。
本发明的以下实施例可以基于上述记载的HSDPA数据流向和HSDPA存储管理而提出,图3为本发明实施例HSDPA存储管理的方法的流程图,如图3所示,该方法包括:
步骤100:连续多次获取HARQ数据,并依据预设的存储管理策略存储每次获取的HARQ数据。
所述存储管理策略为:为需要存储的数据申请一个存储块,所述数据的存储块,配置为在释放数据后被回收,所述被回收的存储块被循环利用。
也就是说,为需要存储的数据申请一个存储块,所述数据的存储块,配置为在释放数据后存储下一个需要存储的数据。
在每次获取HARQ数据后,所述方法还包括:为每次获取的HARQ数据申请一个存储块并存储,每次获取的HARQ数据申请的存储块的个数依据UE实际的数据处理能力确定,每次获取的HARQ数据申请的存储块的大小等于HSPDA最大传输块的大小。所述HSPDA最大传输块的大小由实际信道质量或获取HARQ数据的UE所支持的下行分组业务决定。
可以理解的是,UE每接收一个基站发送的HARQ数据,并在物理层解析完HARQ数据成功后,则申请一块存储块,并投递给MAC层,MAC层解析完该存储块,则释放之。
由图2可以看出,HARQ存储区域中HARQ0存储块到HARQm存储块用来存储连续获取的HARQ数据,物理层解析完HARQ数据成功后,在HARQ0存储块到HARQm存储块中申请一块HARQi存储块,并将该HARQi存储块投递给MAC层处理,i取值范围为0到m,HARQ存储区域中存储块的个数可以取2。
步骤101:确定每次获取的HARQ数据的每个队列数据的存储区域,依据所述存储管理策略将所述每个队列数据存储在相应的存储区域,所述每个队列数据的存储区域由对应的队列数据的大小确定。
在本发明的实施例中,本步骤可以包括:
第一步,预先划分出n个不同等级的存储区域,n大于1;其中,每个等级的存储区域包括至少一个存储块;在任意一个等级的存储区域的存储块的个数大于1时,对应等级的存储区域的各个存储块的大小相同;任意两个不同等级的存储区域的存储块的大小不同。
由图2的HSDPA存储管理图中的Type存储区管理可以看出,Type0到Typen表示预先划分的不同等级的存储区域,每个等级的存储区域与一个等级RLC PDU对应,这里,RLCsize表示对应等级的RLC PDU的大小,每个等级RLC PDU的大小均不同。
以WCDMA为例,实际网络中,用到的RLCsize包括144bits、336bits、4800bits等等,可以将存储区域划分成三个等级Type0、Type1、Type2,不同等级的存储区域Type0、Type1、Type2分别对应RLCsize是144bits、336bits、4800bits。不同存储区域的网络配置不同,RLC PDU的等级可以做适当的调整。
这里,Type0存储区域中包括Type0存储块0到Type0存储块i,Type1存储区域中包括Type1存储块0到Type1存储块j,以此类推,Typen存储区域中包括Typen存储块0到Typen存储块k。
这里,每个等级的存储区域与一个等级的RLC PDU对应;依据每个等级的RLC PDU的大小,确定对应等级的存储区域的存储块个数。
如图4所示,确定Type存储区域存储块个数的方法可以包括以下步骤:
步骤1011a:存储块个数最大范围评估。
示例性地,当一个HARQ数据包含一包RLC PDU数据,另外最大HSDPA队列窗口为128,一个HSDPA队列窗口可以最多包含128个RLC PDU,最少包含1个RLC PDU。RB最大窗口个数为4096,一个最大的HSDPA队列窗口数据不足以填满RB整个窗口,当一个HSDPA队列窗口 只包含1个RLC PDU时,一个RB窗口最多包含4096个HSDPA队列窗口。由于一个HSDPA队列窗口需要一个存储块,所以一个RB窗口最多包含4096个存储块,因此每个存储区域中存储块个数不大于4096。
步骤1011b:评估单个Type存储区域存储块个数。
示例性地,Type0存储区域的对应的RLCsize为144bits,具有该RLCsize的RLC PDU一般用于传输信令,且速率不高,而且RB窗口一般配置在128之内,因此,可以将Type0存储区域的存储块的个数设置为128;Type1存储区域对应等级的RLCsize为336bits,RB窗口一般配置在2048,因此,可以将Type1存储区域的存储块的个数设置为2048;Type2存储区域对应的RLCsize为4800bits,RB窗口一般配置在2048,因此,可以将Type2存储区域的存储块的个数设置为2048。由于实际网络差异,不同等级的存储块个数可以依据实际网络做动态调整。
所述方法还包括:确定每个等级的存储区域中存储块的大小,如图5所示,确定Type存储区域存储块大小的方法可以包括以下步骤:
步骤1012a:获取一个存储区域对应等级的RLCsize。
这里,RLCsize表示对应等级的RLC PDU的大小。
步骤1012b:获取一个HARQ数据中一个队列数据所能承载的对应等级的RLC PDU的最大个数Nmax。
这里,Nmax表示一个队列数据所能承载的对应等级的RLC PDU的最大个数。在实际应用中,当UE支持增强型高速下行分组接入HSDPA+时,Nmax取值44;当UE只支持HSDPA时,Nmax取值70。
步骤1012c:判断(Nmax*RLCsize+SMAC 头)是否小于Tbsize(max)的大小,如果是,执行步骤1012d;如果否,执行步骤1012e。
在其他的实施例中,SMAC 头为一个队列数据中MAC头指针的大小,Tbsize(max)是根据UE所支持的下行分组业务中预设列表中最大传输块 的大小。以WCDMA为例,当UE支持HSDPA+时,Tbsize(max)为42192bits;当UE只支持HSDPA时,Tbsize(max)为27952bits。
步骤1012d:存储块大小为(Nmax*RLCsize)。
步骤1012e:存储块大小为Tbsize(max)-SMAC 头
本发明实施例中,每个等级的存储区域中存储块大小和个数的评估方式,是依据对应等级的RLCsize的配置、HSDPA队列窗口大小、以及RB窗口大小来确定的。每个等级的存储区域中存储块大小和个数的评估方式也可以使用其他方式来评估,例如,依据HSDPA TB size表格(HSDPA协议中传输块大小的表格)来确定,将HSDPA TB size表格均分成多个等级,存储块大小为不同等级的HSDPA TB size,存储块个数可以取三个RB窗口的平均值。
第二步,在划分出的各个存储区域的存储块中,选取出一个大小与对应队列数据的大小相差最小的存储块,将对应队列数据存储在选取出的存储块中。
可以理解的是,在大于队列数据大小的存储块中,选取出一个大小与所述队列数据的大小相差最小的存储块。示例性地,Type0、Type1、Type2的存储区域中存储块的大小分别为1450bits、3370bits、4810bits。HARQ数据中的一个队列数据大小为1500bits,因此,在Type1和Type2存储区域中选取存储块,Type1存储区域中存储块的大小与队列数据最为接近,则确定HARQ数据中队列数据的存储区域为Type1,并在Type1存储区域中为队列数据申请存储块并存储。
本发明实施例提出的存储管理的方法,连续多次获取HARQ数据,并依据预设的存储管理策略存储每次获取的HARQ数据;确定每次获取的HARQ数据的每个队列数据的存储区域,依据所述存储管理策略将所述每个队列数据存储在相应的存储区域,所述每个队列数据的存储区域由对应 的队列数据的大小确定。与现有技术相比,该方法有效的实现了HSDPA业务数据的存储管理,减少存储资源的浪费,提高存储资源的使用效率。
图6为本发明实施例HSDPA存储管理方法的流程图,如图6所示,该流程包括:
步骤200:判断物理层是否接收到HARQ数据。如果否,执行步骤201;如果是,跳到步骤202。
步骤201:存储管理过程结束。
步骤202:为HARQ数据申请存储块,并存储。
在其他实施例中,依据HARQ存储区管理,为该HARQ数据申请存储块,保存HARQ数据到HARQ存储区域中。HARQ存储区域中存储块的个数依据UE的实际数据处理能力来确定;存储块大小需要按照最大HSDPA TB size来规划,以WCDMA为例,存储块大小取42192bits。
步骤203:解析HARQ数据。
可以理解的是,将HARQ数据分成多个队列数据,对每一个队列数据进行解析,并为解析后的队列数据申请存储块。
步骤204:判断HARQ数据中是否存在未解析的队列数据。如果是,跳到步骤206;如果否,执行步骤205。
可以理解的是,一个HARQ数据中包含至少一个队列数据,在将HARQ数据投递给RLC层之前,需要对HARQ数据中每一个队列数据进行解析处理,并通过Type存储区管理为每一个解析后的队列数据重新申请Type存储块,并存储。
步骤205:释放HARQ存储块,返回步骤200。
可以理解的是,将HARQ数据中的所有队列数据均解析完后,便可将存储该HARQ数据的存储块释放,用来存储下一个需要存储的HARQ数据。
本发明实施例中,当HARQ存储区域中存储块的个数取2时,在传输 时间间隔TTI0(2ms)内,物理层解析成功则申请HARQ0存储块,并将该HARQ0存储块投递给MAC层处理,在传输时间间隔TTI1(2ms)内,物理层解析成功则申请HARQ1存储块,并将该HARQ1存储块投递给MAC层处理。在TTI1结束之前,MAC层需要解析完HARQ0存储块,并释放HARQ0存储块,这样传输时间间隔TTI2(2ms)到来时,物理层才可以继续利用HARQ0存储块。
步骤206:为队列数据申请存储块,并存储。
本发明实施例中,为HARQ数据中的一个队列数据申请存储块,先选择Type存储区域,可以依据队列数据的大小选择与Type存储区域中存储块的大小最接近的Type存储区域。再依据Type存储区管理在队列数据对应的Type存储区域中为队列数据申请一个存储块。
示例性地,Type0、Type1、Type2的存储区域中存储块的大小分别为1450bits、3370bits、4810bits。HARQ数据中的一个队列数据的大小为1200bits,将队列数据的大小与Type0、Type1、Type2存储区域中存储块的大小比较后可知,Type0存储区域中存储块的大小与队列数据的大小最为接近,则确定HARQ数据中队列数据的存储区域为Type0存储区域;再通过Type存储区管理在Type0存储区域中为队列数据申请存储块并存储。
步骤207:组RLC PDU,并投递给RLC层。
将队列数据重排后组成RLC PDU,并投递给RLC层。
步骤208:RLC层组无线链路控制层服务数据单元(Radio Link Control Service Data Unit,RLC SDU)完成,释放Type存储区域中的存储块。
当RLC将RLC PDU组装成RLC SDU后,通过Type存储区管理释放存储块。
针对本发明实施例的方法,本发明实施例还提供了一种HSDPA存储管理的装置。如图7所示,所述装置包括:获取模块300、第一存储管理模块 301和第二存储管理模块302;其中,
获取模块300,配置为连续多次获取HARQ数据。
第一存储管理模块301,配置为连续多次获取HARQ数据,并依据预设的存储管理策略存储每次获取的HARQ数据。
第二存储管理模块302,配置为确定每次获取的HARQ数据的每个队列数据的存储区域,依据所述存储管理策略将所述每个队列数据存储在相应的存储区域,所述每个队列数据的存储区域由对应的队列数据的大小确定。
所述存储管理策略为:为需要存储的数据申请一个存储块,所述数据的存储块,配置为在释放数据后被回收,所述被回收的存储块被循环利用。
在其他的实施例中,第一存储管理模块301,配置为为每次获取的HARQ数据申请一个存储块并存储;每次获取的HARQ数据申请的存储块的个数依据UE实际的数据处理能力确定,每次获取的HARQ数据申请的存储块的大小等于HSPDA最大传输块的大小。
第二存储管理模块302,配置为预先划分出n个不同等级的存储区域,n大于1;其中,每个等级的存储区域包括至少一个存储块;在任意一个等级的存储区域的存储块的个数大于1时,对应等级的存储区域的各个存储块的大小相同;任意两个不同等级的存储区域的存储块的大小不同。
第二存储管理模块302,还配置为所述将所述每个队列数据存储在相应的存储区域,包括:在划分出的各个存储区域的存储块中,选取出一个大小与对应队列数据的大小相差最小的存储块,将对应队列数据存储在选取出的存储块中。
第二存储管理模块302,还配置为依据每个等级的RLC PDU的大小,确定对应等级的存储区域的存储块个数。每个等级的存储区域与一个等级的RLC PDU对应。
第二存储管理模块302,还配置为确定每个等级的存储区域的存储块的大小。
第二存储管理模块302,还配置为判断Nmax*RLCsize与SMAC 头之和是否小于Tbsize(max),其中,Nmax表示一个队列数据所能承载的对应等级的RLC PDU的最大个数,RLCsize表示对应等级的RLC PDU的大小,Tbsize(max)表示HSPDA最大传输块的大小;SMAC 头表示一个队列数据中MAC头指针的大小。
所述第二存储管理模块302,还配置为在所述Nmax*RLCsize与SMAC  之和小于Tbsize(max)时,将对应等级的存储区域的存储块的大小确定为Nmax*RLCsize;所述Nmax*RLCsize与SMAC 头之和大于等于Tbsize(max)时,将对应等级的存储区域的存储块的大小确定为Tbsize(max)-SMAC 头
在实际应用中,所述获取模块、第一存储管理模块和第二存储管理模块均可由位于终端设备中的中央处理器(Central Processing Unit,CPU)、微处理器(Micro Processor Unit,MPU)、数字信号处理器(Digital Signal Processor,DSP)、或现场可编程门阵列(Field Programmable Gate Array,FPGA)等实现。
本发明实施例中,如果以软件功能模块的形式实现上述的HSDPA存储管理的方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
本发明实施例提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行本发明实施例提供的HSDPA存储管理的方法。
本发明实施例提供一种HSDPA存储管理的设备(终端),包括:
存储介质,配置为存储可执行指令;
处理器,配置为执行存储的可执行指令,所述可执行指令用于执行本发明实施例提供的HSDPA存储管理的方法。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备 上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
在本发明实施例中,连续多次获取HARQ数据,并依据预设的存储管理策略存储每次获取的HARQ数据;确定每次获取的HARQ数据的每个队列数据的存储区域,依据所述存储管理策略将所述每个队列数据存储在相应的存储区域,所述每个队列数据的存储区域由对应的队列数据的大小确定。与现有技术相比,该方法有效的实现了HSDPA业务数据的存储管理,减少存储资源的浪费,提高存储资源的使用效率。

Claims (14)

  1. 一种高速下行分组接入HSDPA存储管理的方法,所述方法包括:
    连续多次获取混合自动重传请求HARQ数据,并依据预设的存储管理策略存储每次获取的HARQ数据;
    确定每次获取的HARQ数据的每个队列数据的存储区域,依据所述存储管理策略将所述每个队列数据存储在相应的存储区域,所述每个队列数据的存储区域由对应的队列数据的大小确定。
  2. 根据权利要求1所述的方法,其中,所述存储管理策略为:为需要存储的数据申请一个存储块,所述数据的存储块,配置为在释放数据后被回收,所述被回收的存储块被循环利用。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:预先划分出n个不同等级的存储区域,n大于1;其中,每个等级的存储区域包括至少一个存储块;在任意一个等级的存储区域的存储块的个数大于1时,对应等级的存储区域的各个存储块的大小相同;任意两个不同等级的存储区域的存储块的大小不同;
    所述将所述每个队列数据存储在相应的存储区域,包括:在划分出的各个存储区域的存储块中,选取出一个大小与对应队列数据的大小相差最小的存储块,将对应队列数据存储在选取出的存储块中。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:每个等级的存储区域与一个等级的RLC PDU对应;依据每个等级的RLC PDU的大小,确定对应等级的存储区域的存储块个数。
  5. 根据权利要求3所述的方法,其中,每个等级的存储区域与一个等级的RLC PDU对应;所述方法还包括:确定每个等级的存储区域的存储块的大小;
    所述确定每个等级的存储区域的存储块的大小,包括:判断Nmax* RLCsize与SMAC头之和是否小于Tbsize(max),其中,Nmax表示一个队列数据所能承载的对应等级的RLC PDU的最大个数,RLCsize表示对应等级的RLC PDU的大小,Tbsize(max)表示HSPDA最大传输块的大小;SMAC头表示一个队列数据中MAC头指针的大小;
    所述Nmax*RLCsize与SMAC头之和小于Tbsize(max)时,将对应等级的存储区域的存储块的大小确定为Nmax*RLCsize;所述Nmax*RLCsize与SMAC头之和大于等于Tbsize(max)时,将对应等级的存储区域的存储块的大小确定为Tbsize(max)-SMAC头
  6. 根据权利要求1所述的方法,其中,在每次获取HARQ数据后,所述方法还包括:为每次获取的HARQ数据申请一个存储块并存储;
    每次获取的HARQ数据申请的存储块的个数依据用户设备UE实际的数据处理能力确定,每次获取的HARQ数据申请的存储块的大小等于HSPDA最大传输块的大小。
  7. 一种高速下行分组接入HSDPA存储管理的装置,所述装置包括:获取模块、第一存储管理模块和第二存储管理模块;其中,
    获取模块,配置为连续多次获取混合自动重传请求HARQ数据;
    第一存储管理模块,配置为依据预设的存储管理策略存储每次获取的HARQ数据;
    第二存储管理模块,配置为确定每次获取的HARQ数据的每个队列数据的存储区域,依据所述存储管理策略将所述每个队列数据存储在相应的存储区域,所述每个队列数据的存储区域由对应的队列数据的大小确定。
  8. 根据权利要求7所述的装置,其中,所述存储管理策略为:为需要存储的数据申请一个存储块,所述数据的存储块,配置为在释放数据后被回收,所述被回收的存储块被循环利用。
  9. 根据权利要求7所述的装置,其中,所述第二存储管理模块,配置为预先划分出n个不同等级的存储区域,n大于1;其中,每个等级的存储区域包括至少一个存储块;在任意一个等级的存储区域的存储块的个数大于1时,对应等级的存储区域的各个存储块的大小相同;任意两个不同等级的存储区域的存储块的大小不同;
    所述第二存储管理模块,还配置为在划分出的各个存储区域的存储块中,选取出一个大小与对应队列数据的大小相差最小的存储块,将对应队列数据存储在选取出的存储块中。
  10. 根据权利要求9所述的装置,其中,每个等级的存储区域与一个等级的RLC PDU对应;所述第二存储管理模块,还配置为依据每个等级的RLC PDU的大小,确定对应等级的存储区域的存储块个数。
  11. 根据权利要求9所述的装置,其中,每个等级的存储区域与一个等级的RLC PDU对应;所述第二存储管理模块,还配置为确定每个等级的存储区域的存储块的大小;
    所述第二存储管理模块,还配置为判断Nmax*RLCsize与SMAC头之和是否小于Tbsize(max),其中,Nmax表示一个队列数据所能承载的对应等级的RLC PDU的最大个数,RLCsize表示对应等级的RLC PDU的大小,Tbsize(max)表示HSPDA最大传输块的大小;SMAC头表示一个队列数据中MAC头指针的大小;
    所述第二存储管理模块,还配置为在所述Nmax*RLCsize与SMAC头之和小于Tbsize(max)时,将对应等级的存储区域的存储块的大小确定为Nmax*RLCsize;所述Nmax*RLCsize与SMAC头之和大于等于Tbsize(max)时,将对应等级的存储区域的存储块的大小确定为Tbsize(max)-SMAC头
  12. 根据权利要求7所述的装置,其中,所述第一存储管理模块, 配置为为每次获取的HARQ数据申请一个存储块并存储;
    每次获取的HARQ数据申请的存储块的个数依据用户设备UE实际的数据处理能力确定,每次获取的HARQ数据申请的存储块的大小等于HSPDA最大传输块的大小。
  13. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求1至6任一项所述的HSDPA存储管理的方法。
  14. 一种HSDPA存储管理的设备,包括:
    存储介质,配置为存储可执行指令;
    处理器,配置为执行存储的可执行指令,所述可执行指令用于执行权利要求1至6任一项所述的HSDPA存储管理的方法。
PCT/CN2017/088264 2016-09-01 2017-06-14 一种hsdpa存储管理的方法和装置、设备、存储介质 WO2018040668A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610801045.8 2016-09-01
CN201610801045.8A CN107800516B (zh) 2016-09-01 2016-09-01 一种高速下行分组接入hsdpa存储管理的方法和装置

Publications (1)

Publication Number Publication Date
WO2018040668A1 true WO2018040668A1 (zh) 2018-03-08

Family

ID=61299969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088264 WO2018040668A1 (zh) 2016-09-01 2017-06-14 一种hsdpa存储管理的方法和装置、设备、存储介质

Country Status (2)

Country Link
CN (1) CN107800516B (zh)
WO (1) WO2018040668A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808815B (zh) * 2019-10-30 2021-10-22 紫光展锐(重庆)科技有限公司 数据存储方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034961A (zh) * 2007-04-11 2007-09-12 重庆重邮信科(集团)股份有限公司 多进程harq技术ir缓存的管理方法及装置
CN101799788A (zh) * 2010-03-23 2010-08-11 中兴通讯股份有限公司 一种分级管理存储资源的方法及系统
CN102479159A (zh) * 2010-11-25 2012-05-30 大唐移动通信设备有限公司 多进程harq数据的缓存方法和设备
US20150103752A1 (en) * 2013-10-11 2015-04-16 Mediatek, Inc. HARQ Memory Space Management for LTE Carrier Aggregation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9160496B2 (en) * 2007-06-29 2015-10-13 Qualcomm Incorporated Methods and apparatus for H-ARQ process memory management
US20160050049A1 (en) * 2014-08-12 2016-02-18 Qualcomm Incorporated Managing hybrid automatic repeat request (harq) soft buffer in td-hsdpa for dual sim dual standby (dsds) device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034961A (zh) * 2007-04-11 2007-09-12 重庆重邮信科(集团)股份有限公司 多进程harq技术ir缓存的管理方法及装置
CN101799788A (zh) * 2010-03-23 2010-08-11 中兴通讯股份有限公司 一种分级管理存储资源的方法及系统
CN102479159A (zh) * 2010-11-25 2012-05-30 大唐移动通信设备有限公司 多进程harq数据的缓存方法和设备
US20150103752A1 (en) * 2013-10-11 2015-04-16 Mediatek, Inc. HARQ Memory Space Management for LTE Carrier Aggregation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "CR to 25.321 on Blind HARQ Retransmissions for HSDPA", 3GPP TSG-WG2 MEETING #91B, R2-154231, 9 October 2015 (2015-10-09), XP051023406 *
TORREA-DURAN, RODOLFO ET AL.: "Reduction of HARQ Memory in Low Mobility LTE System. Communications (ICC", 2013 IEEE INTERNATIONAL CONFERENCE ON, 7 November 2013 (2013-11-07), XP032522132 *

Also Published As

Publication number Publication date
CN107800516B (zh) 2020-09-25
CN107800516A (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
JP6197073B2 (ja) 論理チャネルを優先順位付けするための方法および装置
US10986653B2 (en) Method and system for sending and receiving data
EP1706969B1 (en) System for processing data unit of radio protocol layer
JP6940121B2 (ja) データ伝送方法、機器およびシステム
CN110943815B (zh) 一种harq-ack的传输方法、终端设备及网络设备
EP3300421A1 (en) Slow mac-e for autonomous transmission in high speed uplink packet access (hsupa) along with service specific transmission time control
EP2037695A1 (en) Radio resource allocation method and radio base station
US20180219791A1 (en) Data sending method, data receiving method, and related device
WO2018121522A1 (zh) 数据传输方法及用户设备、无线接入设备
WO2018059308A1 (zh) 缓存状态上报及资源调度方法和终端、设备和存储介质
JP2011511587A (ja) アップリンク遅延バジェット・フィードバック
WO2019062838A1 (zh) 数据传输方法及装置
CN110100494B (zh) 一种数据传输的方法及设备
US20160278111A1 (en) Service scheduling method and device
WO2018076641A1 (zh) 一种减少时延的方法、装置及存储介质
US10601719B2 (en) User-equipment-based quality-of-service enforcement and control system and method for real-time traffic
WO2018040668A1 (zh) 一种hsdpa存储管理的方法和装置、设备、存储介质
EP3539275B1 (en) Optimization of logical channel processing for multiple transport blocks
CN111373807B (zh) 一种数据传输方法及装置
US20150201458A1 (en) Method and device for releasing common e-dch resource
WO2017113993A1 (zh) 资源调度调整方法及装置
WO2010016149A1 (ja) 通信装置、およびその通信方法、通信プログラム
CN107645782B (zh) 数据传输控制方法、装置及用户设备
WO2024092633A1 (en) Ue information reporting and packet delay management in wireless communication
CN114554545A (zh) 数据传输方法、装置、相关设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17844975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17844975

Country of ref document: EP

Kind code of ref document: A1