WO2018038529A1 - Test cell with high reliability in electrode property test - Google Patents

Test cell with high reliability in electrode property test Download PDF

Info

Publication number
WO2018038529A1
WO2018038529A1 PCT/KR2017/009206 KR2017009206W WO2018038529A1 WO 2018038529 A1 WO2018038529 A1 WO 2018038529A1 KR 2017009206 W KR2017009206 W KR 2017009206W WO 2018038529 A1 WO2018038529 A1 WO 2018038529A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
reference electrode
test cell
measuring
lithium
Prior art date
Application number
PCT/KR2017/009206
Other languages
French (fr)
Korean (ko)
Inventor
정혜란
최영근
오송택
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170106290A external-priority patent/KR102003709B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780004284.3A priority Critical patent/CN108369259B/en
Priority to EP17843949.3A priority patent/EP3370075A4/en
Priority to US16/082,840 priority patent/US11081736B2/en
Publication of WO2018038529A1 publication Critical patent/WO2018038529A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a test cell with high reliability for electrode characteristic testing.
  • lithium secondary battery cells such as lithium ion batteries, lithium ion polymer batteries, etc., which have advantages such as high energy density, discharge voltage, and output stability.
  • the potential, output, and capacity of the electrode are measured. This may be done in the development stage of the electrode or for quality discrimination of the mass produced electrode.
  • the performance test of the electrode is a coin cell (combination) of a combination of the pure lithium electrode and the electrode to be measured, which is already known characteristics, such as electrode potential or electrode resistance to enable accurate characteristics measurement After manufacturing, while repeatedly charging and discharging, the life characteristics, output characteristics and capacitance characteristics of the electrode are measured.
  • the can-type battery case used in manufacturing a coin cell has a high resistance, and thus, it is difficult to confirm precise output characteristics.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the object of the present invention unlike the conventional coin cell, it is possible to minimize the error of the measurement of the electrode characteristics by using a second reference electrode that can measure the characteristic change of the lithium electrode, while allowing accurate output characteristics of low resistance. To provide a test cell that can.
  • the test cell of the present invention for achieving the above object is a test cell for measuring the electrode characteristics, the electrode assembly including a first reference electrode, a second reference electrode, and a first electrode to be measured characteristics, It is sealed with the electrolyte solution in the state accommodated in the pouch type battery case of a laminate sheet.
  • the test cell according to the present invention instead of the can type battery case having a high resistance, the battery case is composed of a laminate sheet having a relatively low contact resistance, so that the resistance due to the battery case compared to the conventional coin cell is more accurate output You can check the characteristics.
  • test cell has a double check system for confirming electrode characteristics with the first reference electrode and the second reference electrode, and as described below, there is an advantage in that an error is significantly low in measuring the characteristics of the electrode.
  • a test cell measures an output characteristic and a capacitance characteristic of a first electrode by an electrochemical reaction between the first reference electrode and the first electrode;
  • the second reference electrode changes in electrochemical properties of the first reference electrode and the first electrode can be confirmed.
  • the test cell of the present invention checks the change of the electrochemical characteristics of the first reference electrode and the first electrode through the second reference electrode, and double checks to confirm the electrochemical characteristics of the first electrode through the first reference electrode.
  • the electrochemical reaction between the second reference electrode and the first electrode is negligible, so it is necessary to largely reflect the change in the electrochemical characteristics of the second reference electrode in determining the characteristics of the first reference electrode or the first electrode. It may not be.
  • test cell of the present invention can provide highly reliable measured values. It can be.
  • the first reference electrode is a lithium electrode made of pure lithium, the pure lithium can form a plate-shaped electrode.
  • the second reference electrode has a structure in which an electrode active material is coated on a main body of a wire structure made of copper (Cu) or aluminum (Al);
  • the test cell may have a structure in which the battery case is sealed while a part of the wire of the second reference electrode is led out of the battery case.
  • the second reference electrode is disposed between the first reference electrode and the first electrode, not only the relative potential with respect to each of the first reference electrode and the second reference electrode can be measured, By measuring the relative potential with respect to the first reference electrode at the location where the actual electrochemical reaction occurs, it is possible to precisely check the change in the electrochemical properties of the first reference electrode.
  • the second reference electrode is disposed between the first reference electrode and the first electrode in a small wire structure, there is little increase in the overall volume of the battery cell due to the second reference electrode, and the surface area is also small. It has the advantage of low contact resistance.
  • the second reference electrode has a wire structure extending from the inside of the test cell to the outside, and the user can easily measure the relative potential by connecting a potential measuring device to the second reference electrode on the outside. You can also use the test cell with the wire cut.
  • the electrode active material constituting the second reference electrode should be a stable material having low reactivity with the electrolyte and not interfering with the reversibility of lithium ions, and having a constant voltage range in a wide capacitance range for use as a reference electrode.
  • the material is not particularly limited, but in detail, the material may be lithium titanium oxide (LTO) having high structural stability and slow electrode degradation.
  • the first reference electrode serves as a cathode for the first electrode and the second reference electrode
  • the second reference electrode serves as a reference electrode for the first reference electrode and the first electrode. do.
  • the first electrode acts only as an anode
  • the second reference electrode acts as a reference electrode for the first reference electrode and the first electrode.
  • the electrochemical reaction of the second reference electrode in the test cell is negligible and may hardly affect the capacity or the life of the actual test cell.
  • the second reference electrode may measure a relative potential with respect to each of the first electrode and the first reference electrode in the test cell.
  • the electrode assembly may have a structure in which the first reference electrode, the first separator, the second reference electrode, the second separator and the first electrode are sequentially stacked.
  • the present invention also provides a method for measuring the characteristics of the first electrode using the test cell
  • step (ii) further measuring an electrode potential change of the first reference electrode based on the second reference electrode during the measurement of step (i);
  • the change of the electrochemical characteristics of the first reference electrode and the first electrode through the second reference electrode, and the double check of the electrochemical characteristics of the first electrode through the first reference electrode It is composed of a check system, according to the change in the electrochemical characteristics of the first reference electrode, and reflects the change in real time as the overall characteristics of the first reference electrode to the error and error of the output characteristics and capacitance characteristics of the first electrode It can be predicted.
  • the method of the present invention can more accurately confirm the first electrode characteristics, regardless of the number of cycles, and more accurately measure the electrode characteristics of the first electrode.
  • the internal resistance of the test cell may be 0.5 ⁇ to 5 ⁇ .
  • the first electrode may be an electrode for forming a positive electrode or a negative electrode of a lithium secondary battery.
  • the first electrode is prepared by applying a mixture of a positive electrode active material, a conductive material, and a binder to a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
  • the positive electrode current collector is generally made to a thickness of 3 to 500 micrometers.
  • the positive electrode current collector and the extension current collector are not particularly limited as long as they have high conductivity without causing chemical change in the battery.
  • stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum Surface treated with carbon, nickel, titanium, silver or the like on the surface of the stainless steel may be used.
  • the positive electrode current collector and the extension current collector may form fine irregularities on the surface thereof to increase adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the first electrode is manufactured by coating and drying a negative electrode active material on a negative electrode current collector, and optionally, the components as described above may be further included as necessary.
  • the negative electrode current collector is generally made to a thickness of 3 to 500 micrometers.
  • Such a negative electrode current collector and / or an extension current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, Surface treated with carbon, nickel, titanium, silver, or the like on the surface of copper or stainless steel, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • carbon such as hardly graphitized carbon and graphite type carbon
  • Metal complex oxides such as these; Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5 ; Conductive polymers such as
  • the separator is interposed between the anode and the cathode, an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 micrometers, the thickness is generally from 5 to 300 micrometers.
  • Such a separator in addition to the SRS (Safety-Reinforcing Separators) separator of the organic / inorganic composite porous described above; For example, olefin polymers, such as polypropylene of chemical resistance and hydrophobicity; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.
  • the electrolyte may be a lithium salt-containing non-aqueous electrolyte, and consists of a non-aqueous electrolyte and a lithium salt.
  • nonaqueous electrolyte nonaqueous organic solvents, organic solid electrolytes, inorganic solid electrolytes, and the like are used, but not limited thereto.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide
  • Nitrobenzene derivatives sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyr
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
  • lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC, which is a highly dielectric solvent, and DEC, DMC, or EMC, which are low viscosity solvents.
  • Lithium salt-containing non-aqueous electrolytes can be prepared by adding them to a mixed solvent of linear carbonates.
  • the battery case is composed of a laminate sheet having a relatively low contact resistance. Lower accuracy allows for more accurate output characteristics.
  • test cell has a double check system that checks electrode characteristics with the first reference electrode and the second reference electrode, and has an advantage that the error is significantly low in measuring the characteristics of the electrode.
  • FIG. 1 is a schematic diagram based on a vertical section of a test cell according to one embodiment of the present invention
  • FIG. 2 is a schematic diagram of the top of a test cell
  • FIG. 3 is a schematic diagram of a second reference electrode
  • FIG. 4 is a flowchart of a test cell using method according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram based on a vertical cross section of a test cell according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an upper portion of a test cell
  • 3 shows a schematic diagram of the second reference electrode.
  • the test cell 100 includes a first reference electrode 110 made of pure lithium, a second reference electrode 120 including an LTO electrode active material, and a first electrode to be measured.
  • the electrode assembly including 102 is sealed together with the electrolyte in a state of being housed in the pouch type battery case 104 of the laminate sheet.
  • the battery case 104 is formed of a laminate sheet having a relatively low contact resistance. The resistance due to the case 104 is low. This allows for more accurate measurements when checking the output characteristics.
  • the electrode assembly has a structure in which the first reference electrode 110, the first separator, the second reference electrode 120, the second separator and the first electrode 102 are sequentially stacked.
  • the second reference electrode 120 is a structure in which an electrode active material 124 is coated on a main body 122 of a wire structure made of copper (Cu), and the test cell 100 includes a second reference electrode 120.
  • a portion of the main body 122 of the wire structure of) may be a structure in which the battery case 104 is sealed in a state in which a part of the main body 122 is led out of the battery case 104.
  • the second reference electrode 120 is disposed between the first reference electrode 110 and the first electrode 102, relative potentials to the first reference electrode 110 and the second reference electrode 120, respectively. Not only can be measured, it is possible to accurately determine the change in the electrochemical properties of the first reference electrode 110 by measuring the relative potential with respect to the first reference electrode 110 at the location where the actual electrochemical reaction occurs.
  • the second reference electrode 120 is a wire structure extending from the inside of the test cell 100 to the outside, and the user can easily measure the relative potential by connecting a potential measuring device to the second reference electrode 120 on the outside. Can be. In some cases, the test cell 100 may be used while cutting the extended wire.
  • the first reference electrode 110 acts as a cathode for the first electrode 102 and the second reference electrode 120, and the second reference electrode 120 serves as the first reference electrode. It acts as a reference electrode for the 110 and the first electrode 102.
  • test cell 100 may measure the output characteristics and the capacitance characteristics of the first electrode 102 by an electrochemical reaction between the first reference electrode 110 and the first electrode 102, and the second reference electrode ( 120, a change in electrochemical properties of the first reference electrode 110 can be confirmed.
  • test cell 100 of the present invention checks the change in the electrochemical characteristics of the first reference electrode 110 through the second reference electrode 120, and the first electrode (1) through the first reference electrode 110. It consists of a double check system to confirm the electrochemical properties of 102.
  • the electrochemical reaction between the second reference electrode 120 and the first electrode 102 in the test cell 100 may be negligible.
  • FIG. 4 provides a method of measuring characteristics of the first electrode 102 using the test cell 100.
  • the first reference electrode 110, the first separator, the second reference electrode 120, the second separator and the first electrode 102 are formed.
  • the battery case 104 is sealed to prepare a test cell 100.
  • the pouch type battery case may use a laminate sheet.
  • the laminate sheet may have a multi-layered structure and may consist of an outermost outer coating layer, a metal layer that prevents penetration of material, and an inner sealant layer for sealing.
  • the inner sealant layer is thermally fused to each other by applied heat and pressure in a state in which the electrode assembly is embedded, and serves to provide a sealability, and mainly consists of CPP (non-stretched polypropylene film).
  • the metal layer may be aluminum (Al) to exhibit a function of preventing the inflow or leakage of foreign matter.
  • the metal layer may have a structure in which a chromium oxide film is formed on a surface thereof, and the film serves to prevent oxidation and corrosion of the metal layer by forming an oxide film in air by combining chromium contained in the metal layer with oxygen.
  • the chromium oxide film may be made of chromium trivalent oxide (Cr 2 O 3 ).
  • the thickness of the laminate sheet may be 70 ⁇ m to 150 ⁇ m, specifically 80 ⁇ m to 140 ⁇ m, and more specifically 100 ⁇ m to 130 ⁇ m.
  • the thickness of the laminate sheet is a thickness including all of the thicknesses of the resin layer, at least one metal layer, and the sealant layer.
  • the thickness of the metal layer is also reduced in proportion to protect the battery cell from external shock. It may be difficult, and if it is larger than 150 ⁇ m because the weight and volume of the entire secondary battery is increased, there is a problem that can be limited device applied is not preferable.
  • the laminate sheet may be configured to include one metal layer, in this case, the thickness of the metal layer may be formed from 10 ⁇ m to 100 ⁇ m within the range of the thickness of the laminate sheet described above And in detail, it may be formed of 15 ⁇ m to 80 ⁇ m.
  • the thickness of the metal layer is thinner than 10 mu m, it is difficult to exert an effect of improving mechanical strength.
  • the thickness of the laminate sheet increases, which makes it difficult to provide a compact secondary battery.
  • the laminate sheet may be a composition including two metal layers.
  • two metal layers when two metal layers are included, in order to prevent the thickness of the entire laminate sheet from increasing, it is preferable to use a thin metal layer as compared with the case where the metal layer has a thickness of 20 ⁇ m to 20 ⁇ m. It may be formed to 50 ⁇ m, in detail may be formed from 25 ⁇ m to 40 ⁇ m.
  • the adhesive layer is epoxy, phenolic, melamine, polyimide, polyester-based It may be made of one or more selected from the group consisting of urethane-based, polyethylene terephthalate-based and polyether urethane-based materials.
  • step 220 the charging and discharging of the test cell 100 is repeatedly performed in step 220, and when an arbitrary cycle in which the charging and discharging cycle is selected from 10 to 100 is completed, the process 230 is performed.
  • an operation 230a of measuring output and capacitance characteristics of the test cell 100 and an electrode potential change of the first reference electrode 110 are measured 230b.
  • steps 230a and 230b are irrelevant and may be performed simultaneously.
  • the characteristic of the test cell 100 measured in the process 230a may be assumed to be the characteristic of the first electrode 102, which indicates a state in which the overall performance of the first reference electrode 110 made of pure lithium is recognized in advance. On the premise.
  • the change of the electrode potential of the first reference electrode 110 is further measured based on the second reference electrode 120 to measure the electrochemical change of the first reference electrode 110.
  • the process 240 proceeds to correct the measured value of the process 230a based on the change of the electrode potential of the first reference electrode 110, thereby adjusting the first value based on the electrochemical change of the first reference electrode 110. Errors and errors in the output characteristics and the capacitance characteristics of the electrode 102 are predicted and reflected.
  • the characteristic of the first electrode 102 may be determined based on the corrected data.
  • the process 230 to 250 may be sequentially performed to sequentially perform the first cycle according to the cycle.
  • the reduction of the output characteristic and the capacitance characteristic of the electrode 102 is measured precisely.
  • Plate-shaped pure lithium metal was prepared as a first reference electrode.
  • LiNiCoMnO 2 96% by weight of LiNiCoMnO 2 , 2 % by weight Denka black (conductive material) and 2% by weight PVDF (polyvinylidene fluoride, binder) were added to slurry the cathode mixture.
  • NMP N-Methyl-2-Pyrrolidone
  • Ethylene carbonate in the electrode assembly having a structure in which the first reference electrode, the first separator (polypropylene-based porous membrane), the second reference electrode, the second separator (polypropylene-based porous membrane), and the first electrode are sequentially stacked (EC) and an electrolyte solution in which 1M lithium hexafluorophosphate (LiPF 6 ) was dissolved were injected into a solvent in which ethyl methyl carbonate (DEC) was mixed at a volume ratio of 50:50. Thereafter, the battery cell was sealed in a pouch-type battery case of a laminate sheet, and a test cell was manufactured by sealing the battery case.
  • EC lithium hexafluorophosphate
  • LiNiCoMnO 2 96% by weight of LiNiCoMnO 2 , 2 % by weight Denka black (conductive material) and 2% by weight PVDF (polyvinylidene fluoride, binder) were added to N-Methyl-2-Pyrrolidone (NMP) to slurry the cathode mixture.
  • NMP N-Methyl-2-Pyrrolidone
  • the prepared positive electrode mixture slurry was coated on one surface of an aluminum current collector to a thickness of 100 ⁇ m, dried and rolled, and then punched to a predetermined size to prepare an electrode.
  • As the counter electrode a plate-shaped pure lithium metal was prepared.
  • the test cell of the embodiment has much smaller capacity retention variation and resistance variation than the test cell of the comparative example, and thus it can be confirmed that the reliability of the electrode characteristic test is high.

Abstract

The present invention relates to a test cell for measuring electrode properties, in which an electrode assembly comprising a first reference electrode, a second reference electrode, and a first electrode subject to property measurement is stored and sealed alongside an electrolyte in a pouch-type cell case of a laminate sheet.

Description

전극 특성 테스트에 대한 신뢰성이 높은 테스트 셀Highly reliable test cell for electrode characteristic testing
본 발명은 전극 특성 테스트에 대한 신뢰성이 높은 테스트 셀에 관한 것이다.The present invention relates to a test cell with high reliability for electrode characteristic testing.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 이차전지셀에 대한 많은 연구가 행해지고 있다.As technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing, and accordingly, many researches on secondary battery cells capable of meeting various needs have been conducted.
특히, 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지셀에 대한 수요가 높다.In particular, there is a high demand for lithium secondary battery cells such as lithium ion batteries, lithium ion polymer batteries, etc., which have advantages such as high energy density, discharge voltage, and output stability.
한편, 새로운 전지셀의 개발, 제조된 전지셀의 성능 확인 등을 위해, 전극의 전위, 출력, 용량을 측정한다. 이는 전극의 개발 단계에서 수행될 수도 있고, 양산화된 전극의 품질 감별을 위해 수행될 수 있다.On the other hand, for the development of new battery cells, to confirm the performance of the manufactured battery cells, etc., the potential, output, and capacity of the electrode are measured. This may be done in the development stage of the electrode or for quality discrimination of the mass produced electrode.
일반적으로 전극의 성능 테스트는 이미 제반 특성, 예를 들어 전극 전위나 전극저항이 알려져 있어 정확한 특성 측정을 가능하게 하는 순수 리튬 전극과 특성 측정의 대상이 되는 전극이 조합된 코인셀(coin cell)을 제조한 후, 이를 반복적으로 충방전 하면서, 전극의 수명 특성, 출력 특성 그리고 용량 특성 등을 측정한다.In general, the performance test of the electrode is a coin cell (combination) of a combination of the pure lithium electrode and the electrode to be measured, which is already known characteristics, such as electrode potential or electrode resistance to enable accurate characteristics measurement After manufacturing, while repeatedly charging and discharging, the life characteristics, output characteristics and capacitance characteristics of the electrode are measured.
다만, 이러한 테스트에서도 하기와 같은 문제로 인하여, 충방전이 거듭될수록, 측정된 값의 신뢰성이 낮아지는 단점이 있다.However, even in such a test, due to the following problems, as the charge and discharge is repeated, there is a disadvantage that the reliability of the measured value is lowered.
첫째, 충방전을 반복할수록, 리튬 전극의 가역성이 저하되어 측정되는 전극 특성에 오차가 발생한다.First, as charging and discharging are repeated, the reversibility of the lithium electrode is lowered and an error occurs in the measured electrode characteristics.
둘째, 코인셀 제조 시, 이용되는 캔 타입 전지케이스는, 그 자체의 저항이 높아 정밀한 출력 특성 확인이 어렵다.Second, the can-type battery case used in manufacturing a coin cell has a high resistance, and thus, it is difficult to confirm precise output characteristics.
따라서, 신뢰성이 높은 전극 특성 측정이 가능한 기술에 대한 필요성이 높은 실정이다.Therefore, there is a high need for a technique capable of measuring highly reliable electrode characteristics.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다. The present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
구체적으로 본 발명의 목적은 기존의 코인셀과 달리, 저항이 낮아 정밀한 출력 특성 확인이 가능하면서도, 리튬 전극의 특성 변화를 측정할 수 있는 제 2 기준 전극을 이용하여 전극 특성 측정의 오차를 최소화할 수 있는 테스트 셀을 제공하는 것이다.Specifically, the object of the present invention, unlike the conventional coin cell, it is possible to minimize the error of the measurement of the electrode characteristics by using a second reference electrode that can measure the characteristic change of the lithium electrode, while allowing accurate output characteristics of low resistance. To provide a test cell that can.
이러한 목적을 달성하기 위한 본 발명의 테스트 셀은, 전극 특성을 측정하기 위한 테스트 셀로서, 제 1 기준전극, 제 2 기준전극, 및 특성 측정의 대상이 되는 제 1 전극을 포함하는 전극조립체가, 전해액과 함께, 라미네이트 시트의 파우치형 전지케이스에 수납된 상태로 밀봉되어 있는 것을 특징으로 한다.The test cell of the present invention for achieving the above object is a test cell for measuring the electrode characteristics, the electrode assembly including a first reference electrode, a second reference electrode, and a first electrode to be measured characteristics, It is sealed with the electrolyte solution in the state accommodated in the pouch type battery case of a laminate sheet.
즉, 본 발명에 따른 테스트 셀은, 저항이 높은 캔 타입 전지케이스 대신, 상대적으로 낮은 접촉 저항을 가지는 라미네이트 시트로 전지케이스가 구성되어 있어 기존의 코인셀 대비 전지케이스로 인한 저항이 낮아 보다 정밀한 출력 특성 확인이 가능하다.That is, the test cell according to the present invention, instead of the can type battery case having a high resistance, the battery case is composed of a laminate sheet having a relatively low contact resistance, so that the resistance due to the battery case compared to the conventional coin cell is more accurate output You can check the characteristics.
또한, 상기 테스트 셀은, 제 1 기준전극과 제 2 기준전극으로 전극 특성을 확인하는 더블 체크 시스템을 구비하고 있어, 이하 상술하는 바와 같이 전극의 특성 측정에 있어서 오차가 현저히 낮은 장점이 있다.In addition, the test cell has a double check system for confirming electrode characteristics with the first reference electrode and the second reference electrode, and as described below, there is an advantage in that an error is significantly low in measuring the characteristics of the electrode.
하나의 구체적인 예에서, 본 발명에 따른 테스트 셀은 상기 제 1 기준전극과 제 1 전극의 전기화학 반응으로 제 1 전극의 출력 특성과 용량 특성을 측정하고; In one specific example, a test cell according to the present invention measures an output characteristic and a capacitance characteristic of a first electrode by an electrochemical reaction between the first reference electrode and the first electrode;
상기 제 2 기준전극으로 제 1 기준전극 및 제 1 전극의 전기화학적 특성 변화를 확인할 수 있다.As the second reference electrode, changes in electrochemical properties of the first reference electrode and the first electrode can be confirmed.
즉, 본 발명의 테스트 셀은 제 2 기준전극을 통해, 제 1 기준전극 및 제 1 전극의 전기화학적 특성 변화를 확인하고, 제 1 기준전극을 통해 제 1 전극의 전기화학적 특성을 확인하는 더블 체크 시스템으로 구성되어 있는 바, 상기 제 1 기준전극의 전기화학적 특성 변화에 따라, 그 변화를 제 1 기준전극의 제반 특성으로 실시간 반영하여 제 1 전극의 출력 특성과 용량 특성에 대한 오차 및 오류를 예측할 수 있다.That is, the test cell of the present invention checks the change of the electrochemical characteristics of the first reference electrode and the first electrode through the second reference electrode, and double checks to confirm the electrochemical characteristics of the first electrode through the first reference electrode. As a system, it is possible to predict errors and errors in output characteristics and capacitance characteristics of the first electrode by reflecting the change in real time as the general characteristics of the first reference electrode according to the change of the electrochemical characteristics of the first reference electrode. Can be.
이때, 제 2 기준전극과 제 1 전극의 전기화학반응은, 무시 가능한 수준인 바, 제 2 기준전극의 전기화학적 특성 변화 분을 크게 제 1 기준전극이나 제 1 전극의 특성 판단에 반영할 필요는 없을 수 있다. At this time, the electrochemical reaction between the second reference electrode and the first electrode is negligible, so it is necessary to largely reflect the change in the electrochemical characteristics of the second reference electrode in determining the characteristics of the first reference electrode or the first electrode. It may not be.
이상과 같은 특징으로, 제 1 기준전극의 특성 변화에 관계 없이, 사이클 횟수가 많은 상태에서의 제 1 전극 특성을 보다 정확하게 확인할 수 있는 바, 본 발명의 테스트 셀은 신뢰성이 높은 측정 값을 제공할 수 있는 것이다.As described above, regardless of the characteristic change of the first reference electrode, it is possible to more accurately identify the first electrode characteristics in a state where the number of cycles is high, so that the test cell of the present invention can provide highly reliable measured values. It can be.
이는, 고 사이클에서 테스트 셀 자체의 성능이 저하됨에도 불구하고, 측정 대상인 전극만의 수명 특성과 용량 특성을 정확하게 확인할 수 있는 점에서 상당한 의의가 있다.This is significant in that the life characteristics and the capacitance characteristics of only the electrode to be measured can be accurately confirmed, even though the performance of the test cell itself is degraded at a high cycle.
본 발명에서, 상기 제 1 기준전극은 순수 리튬으로 이루어진 리튬 전극이고, 상기 순수 리튬이 판상형 전극을 형성할 수 있다.In the present invention, the first reference electrode is a lithium electrode made of pure lithium, the pure lithium can form a plate-shaped electrode.
상기 제 2 기준전극은, 구리(Cu) 또는 알루미늄(Al)으로 이루어진 와이어(wire) 구조의 본체상에, 전극활물질이 코팅되어 있는 구조로 이루어져 있으며;The second reference electrode has a structure in which an electrode active material is coated on a main body of a wire structure made of copper (Cu) or aluminum (Al);
상기 테스트 셀은, 상기 제 2 기준전극의 와이어 일부가 전지케이스 외측으로 도출된 상태로, 전지케이스가 밀봉된 구조일 수 있다.The test cell may have a structure in which the battery case is sealed while a part of the wire of the second reference electrode is led out of the battery case.
즉, 본 발명에 따른 테스트 셀은 제 2 기준전극이 제 1 기준전극과 제 1 전극 사이에 배치되어 있어, 제 1 기준전극과 제 2 기준전극 각각에 대한 상대 전위를 측정할 수 있을 뿐만 아니라, 실제 전기화학 반응이 일어나는 위치에서 제 1 기준전극에 대한 상대 전위를 측정하여 제 1 기준전극의 전기화학적 특성 변화를 정밀하게 확인할 수 있다.That is, in the test cell according to the present invention, since the second reference electrode is disposed between the first reference electrode and the first electrode, not only the relative potential with respect to each of the first reference electrode and the second reference electrode can be measured, By measuring the relative potential with respect to the first reference electrode at the location where the actual electrochemical reaction occurs, it is possible to precisely check the change in the electrochemical properties of the first reference electrode.
또한, 상기 제 2 기준전극은 부피가 작은 와이어 구조로 제 1 기준전극과 제 1 전극 사이에 배치되어 있어, 제 2 기준전극으로 인한 전지셀의 전반적인 부피 증가가 거의 없을 뿐만 아니라, 표면적 또한 작기 때문에 접촉 저항이 낮은 장점이 있다.In addition, since the second reference electrode is disposed between the first reference electrode and the first electrode in a small wire structure, there is little increase in the overall volume of the battery cell due to the second reference electrode, and the surface area is also small. It has the advantage of low contact resistance.
뿐만 아니라, 제 2 기준전극은 테스트 셀의 내부로부터 외측으로 연장된 와이어 구조로서, 사용자는 외측의 제 2 기준전극에 전위 측정 기구를 연결하여 간편하게 상대 전위를 측정할 수 있으며, 필요에 따라 연장된 와이어를 절단한 상태로 테스트 셀을 사용할 수도 있다.In addition, the second reference electrode has a wire structure extending from the inside of the test cell to the outside, and the user can easily measure the relative potential by connecting a potential measuring device to the second reference electrode on the outside. You can also use the test cell with the wire cut.
상기 제 2 기준전극을 구성하는 전극활물질은 전해액에 대한 반응성이 낮아 전극의 퇴화가 느리고 리튬 이온의 가역성을 방해하지 않는 안정된 물질이어야 하며, 기준전극으로 사용할 수 있도록 넓은 용량 범위에서 일정한 전압 범위를 가지는 물질이라면 크게 한정되는 것은 아니나, 상세하게는 구조적 안정성이 높고 전극 퇴화가 더딘 리튬 티타늄 산화물(Lithium Titanium Oxide: LTO)일 수 있다.The electrode active material constituting the second reference electrode should be a stable material having low reactivity with the electrolyte and not interfering with the reversibility of lithium ions, and having a constant voltage range in a wide capacitance range for use as a reference electrode. The material is not particularly limited, but in detail, the material may be lithium titanium oxide (LTO) having high structural stability and slow electrode degradation.
본 발명에서, 상기 제 1 기준전극은 제 1 전극과 제 2 기준전극에 대해 음극으로 작용하게 되며, 상기 제 2 기준전극은 제 1 기준전극 및 제 1 전극에 대해 기준전극(reference electrode)으로 작용한다. 달리 말하면, 본 발명의 테스트 셀에서는 제 1 전극은 양극으로만 작용하며, 제 2 기준전극은 제 1 기준전극 및 제 1 전극에 대해서는 기준전극으로 작동하게 된다. 다만, 테스트 셀에서 제 2 기준전극의 전기화학 반응은 무시 가능한 수준으로, 실제 테스트 셀의 용량이나 수명에 거의 영향을 미치지 않을 수 있다.In the present invention, the first reference electrode serves as a cathode for the first electrode and the second reference electrode, and the second reference electrode serves as a reference electrode for the first reference electrode and the first electrode. do. In other words, in the test cell of the present invention, the first electrode acts only as an anode, and the second reference electrode acts as a reference electrode for the first reference electrode and the first electrode. However, the electrochemical reaction of the second reference electrode in the test cell is negligible and may hardly affect the capacity or the life of the actual test cell.
상기 제 2 기준전극은 테스트 셀 내부에서, 제 1 전극 및 제 1 기준전극 각각에 대한 상대 전위를 측정할 수 있다.The second reference electrode may measure a relative potential with respect to each of the first electrode and the first reference electrode in the test cell.
하나의 구체적인 예에서, 상기 전극조립체는, 제 1 기준전극, 제 1 분리막, 제 2 기준전극, 제 2 분리막 및 제 1 전극이 순차적으로 적층되어 있는 구조일 수 있다.In one specific example, the electrode assembly may have a structure in which the first reference electrode, the first separator, the second reference electrode, the second separator and the first electrode are sequentially stacked.
본 발명은 또한, 상기 테스트 셀을 이용하여, 제 1 전극의 특성을 측정하는 방법으로서,The present invention also provides a method for measuring the characteristics of the first electrode using the test cell,
(i) 테스트 셀의 충방전을 반복적으로 수행하면서 10 사이클 내지 100 사이클 간격으로 테스트 셀의 출력과 용량 특성을 측정하는 과정;(i) measuring output and capacity characteristics of the test cell at intervals of 10 cycles to 100 cycles while repeatedly charging and discharging the test cells;
(ii) 상기 과정(i)의 측정 과정 중, 제 2 기준전극을 기준으로 제 1 기준전극의 전극 전위 변화를 추가로 측정하는 과정; 및(ii) further measuring an electrode potential change of the first reference electrode based on the second reference electrode during the measurement of step (i); And
(iii) 상기 제 1 기준전극의 전극 전위 변화를 토대로 상기 과정(i)에서의 출력과 용량 특성을 측정 값을 보정하는 과정;을 포함하는 것을 특징으로 하는 방법을 제공한다.(iii) correcting a measurement value of the output and capacitance characteristics of the step (i) based on the change of the electrode potential of the first reference electrode.
즉, 본 발명에 따른 방법은, 제 2 기준전극을 통해, 제 1 기준전극 및 제 1 전극의 전기화학적 특성 변화를 확인하고, 제 1 기준전극을 통해 제 1 전극의 전기화학적 특성을 확인하는 더블 체크 시스템으로 구성되어 있는 바, 상기 제 1 기준전극의 전기화학적 특성 변화에 따라, 그 변화를 제 1 기준전극의 제반 특성으로 실시간 반영하여 제 1 전극의 출력 특성과 용량 특성에 대한 오차 및 오류를 예측할 수 있다.That is, in the method according to the present invention, the change of the electrochemical characteristics of the first reference electrode and the first electrode through the second reference electrode, and the double check of the electrochemical characteristics of the first electrode through the first reference electrode It is composed of a check system, according to the change in the electrochemical characteristics of the first reference electrode, and reflects the change in real time as the overall characteristics of the first reference electrode to the error and error of the output characteristics and capacitance characteristics of the first electrode It can be predicted.
결과적으로, 본 발명의 방법은 사이클 횟수에 상관 없이, 제 1 전극 특성을 보다 정확하게 확인할 수 있어, 제 1 전극의 전극 특성을 보다 정밀하게 측정할 수 있다.As a result, the method of the present invention can more accurately confirm the first electrode characteristics, regardless of the number of cycles, and more accurately measure the electrode characteristics of the first electrode.
상기 테스트 셀의 내부 저항은 0.5Ω 내지 5Ω일 수 있다.The internal resistance of the test cell may be 0.5Ω to 5Ω.
이는, 캔 타입 전지케이스로 제조된 코인셀과 비교하여, 대략 10배 내지 100배 낮은 저항을 가지는 것으로, 이러한 특징에 기반하여 보다 정확한 전극의 출력 특성 확인이 가능하다.This has a resistance of approximately 10 to 100 times lower than that of a coin cell made of a can type battery case, and based on this characteristic, it is possible to more accurately identify output characteristics of an electrode.
본 발명의 테스트 셀에서 상기 제 1 전극은, 리튬 이차전지의 양극 또는 음극을 구성하기 위한 전극일 수 있다.In the test cell of the present invention, the first electrode may be an electrode for forming a positive electrode or a negative electrode of a lithium secondary battery.
하나의 구체적인 예에서, 상기 제 1 전극은 양극 집전체에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.In one specific example, the first electrode is prepared by applying a mixture of a positive electrode active material, a conductive material, and a binder to a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
상기 양극 집전체는 일반적으로 3 내지 500 마이크로미터의 두께로 만든다. 이러한 양극 집전체 및 연장 집전부는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 양극 집전체 및 연장 집전부는 그것의 표면에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.The positive electrode current collector is generally made to a thickness of 3 to 500 micrometers. The positive electrode current collector and the extension current collector are not particularly limited as long as they have high conductivity without causing chemical change in the battery. For example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum Surface treated with carbon, nickel, titanium, silver or the like on the surface of the stainless steel may be used. The positive electrode current collector and the extension current collector may form fine irregularities on the surface thereof to increase adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.The positive electrode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + x Mn 2-x O 4 (where x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2, and the like; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7 and the like; Ni-site type lithium nickel oxide represented by the formula LiNi 1 - x M x O 2 , wherein M = Co, Mn, Al, Cu, Fe, Mg, B, or Ga, and x = 0.01 to 0.3; Formula LiMn 2 - x M x O 2 (wherein M = Co, Ni, Fe, Cr, Zn or Ta and x = 0.01 to 0.1) or Li 2 Mn 3 MO 8 (wherein M = Fe, Co, Lithium manganese composite oxide represented by Ni, Cu or Zn); LiMn 2 O 4 in which a part of Li in the formula is substituted with alkaline earth metal ions; Disulfide compounds; Fe 2 (MoO 4 ) 3 and the like, but are not limited to these.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material. Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.The filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery. Examples of the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
또 다른 구체적인 예에서, 제 1 전극은 음극 집전체에 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 선택적으로 더 포함될 수도 있다.In another specific example, the first electrode is manufactured by coating and drying a negative electrode active material on a negative electrode current collector, and optionally, the components as described above may be further included as necessary.
상기 음극 집전체는 일반적으로 3 내지 500 마이크로미터의 두께로 만들어진다. 이러한 음극 집전체 및/또는 연장 집전부는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is generally made to a thickness of 3 to 500 micrometers. Such a negative electrode current collector and / or an extension current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery. For example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, Surface treated with carbon, nickel, titanium, silver, or the like on the surface of copper or stainless steel, aluminum-cadmium alloy, and the like can be used. In addition, like the positive electrode current collector, fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 음극 활물질로는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤≤x≤≤1), LixWO2(0≤≤x≤≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤≤1; 1≤≤y≤≤3; 1≤≤z≤≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.As said negative electrode active material, For example, carbon, such as hardly graphitized carbon and graphite type carbon; Li x Fe 2 O 3 (0≤≤x≤≤1), Li x WO 2 (0≤≤x≤≤1), Sn x Me 1 - x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen; 0 <x≤≤1;1≤≤y≤≤3; 1≤≤z≤≤8) Metal complex oxides such as these; Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials and the like can be used.
본 발명에서, 상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 마이크로미터이고, 두께는 일반적으로 5 ~ 300 마이크로미터다. 이러한 분리막으로는, 앞서 설명한 유/무기 복합 다공성의 SRS(Safety-Reinforcing Separators) 분리막 외에도; 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.In the present invention, the separator is interposed between the anode and the cathode, an insulating thin film having high ion permeability and mechanical strength is used. The pore diameter of the separator is generally from 0.01 to 10 micrometers, the thickness is generally from 5 to 300 micrometers. Such a separator, in addition to the SRS (Safety-Reinforcing Separators) separator of the organic / inorganic composite porous described above; For example, olefin polymers, such as polypropylene of chemical resistance and hydrophobicity; Sheets or non-woven fabrics made of glass fibers or polyethylene are used. When a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.
상기 전해액은 리튬염 함유 비수계 전해액일 수 있고, 비수 전해액과 리튬염으로 이루어져 있다. 비수 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.The electrolyte may be a lithium salt-containing non-aqueous electrolyte, and consists of a non-aqueous electrolyte and a lithium salt. As the nonaqueous electrolyte, nonaqueous organic solvents, organic solid electrolytes, inorganic solid electrolytes, and the like are used, but not limited thereto.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be used.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.Examples of the organic solid electrolyte include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
또한, 비수 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.In addition, for the purpose of improving charge / discharge characteristics, flame retardancy, etc., for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. have. In some cases, in order to impart nonflammability, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
하나의 구체적인 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수계 전해질을 제조할 수 있다.In one specific example, lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC, which is a highly dielectric solvent, and DEC, DMC, or EMC, which are low viscosity solvents. Lithium salt-containing non-aqueous electrolytes can be prepared by adding them to a mixed solvent of linear carbonates.
이상에서 설명한 바와 같이, 본 발명에 따른 테스트 셀은, 저항이 높은 캔 타입 전지케이스 대신, 상대적으로 낮은 접촉 저항을 가지는 라미네이트 시트로 전지케이스가 구성되어 있어 기존의 코인셀 대비 전지케이스로 인한 저항이 낮아 보다 정밀한 출력 특성 확인이 가능하다.As described above, in the test cell according to the present invention, instead of the can type battery case having a high resistance, the battery case is composed of a laminate sheet having a relatively low contact resistance. Lower accuracy allows for more accurate output characteristics.
또한, 상기 테스트 셀은, 제 1 기준전극과 제 2 기준전극으로 전극 특성을 확인하는 더블 체크 시스템을 구비하고 있어, 전극의 특성 측정에 있어서 오차가 현저히 낮은 장점이 있다.In addition, the test cell has a double check system that checks electrode characteristics with the first reference electrode and the second reference electrode, and has an advantage that the error is significantly low in measuring the characteristics of the electrode.
도 1은 본 발명의 하나의 실시예에 따른 테스트 셀의 수직 단면을 기준으로 한 모식도이다;1 is a schematic diagram based on a vertical section of a test cell according to one embodiment of the present invention;
도 2는 테스트 셀의 상부에 대한 모식도이다;2 is a schematic diagram of the top of a test cell;
도 3은 제 2 기준전극의 모식도이다;3 is a schematic diagram of a second reference electrode;
도 4는 본 발명의 하나의 실시예에 따른 테스트 셀 이용 방법의 흐름도이다.4 is a flowchart of a test cell using method according to an embodiment of the present invention.
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.Hereinafter, although described with reference to the drawings according to an embodiment of the present invention, this is for easier understanding of the present invention, the scope of the present invention is not limited thereto.
도 1에는 본 발명의 하나의 실시예에 따른 테스트 셀의 수직 단면을 기준으로 한 모식도가 도시되어 있고, 도 2에는 테스트 셀의 상부에 대한 모식도가 도시되어 있다. 또한, 도 3에는 제 2 기준전극의 모식도가 도시되어 있다.FIG. 1 is a schematic diagram based on a vertical cross section of a test cell according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of an upper portion of a test cell. 3 shows a schematic diagram of the second reference electrode.
이들 도면을 참조하면, 테스트 셀(100)은 순수 리튬으로 구성된 제 1 기준전극(110), LTO계 전극활물질을 포함하는 제 2 기준전극(120), 및 특성 측정의 대상이 되는 제 1 전극(102)을 포함하는 전극조립체가 전해액과 함께, 라미네이트 시트의 파우치형 전지케이스(104)에 수납된 상태로 밀봉되어 있는 구조로 이루어져 있다.Referring to these drawings, the test cell 100 includes a first reference electrode 110 made of pure lithium, a second reference electrode 120 including an LTO electrode active material, and a first electrode to be measured. The electrode assembly including 102 is sealed together with the electrolyte in a state of being housed in the pouch type battery case 104 of the laminate sheet.
즉, 본 발명에 따른 테스트 셀(100)은, 저항이 높은 캔 타입 전지케이스(104) 대신, 상대적으로 낮은 접촉 저항을 가지는 라미네이트 시트로 전지케이스(104)가 구성되어 있어 기존의 코인셀 대비 전지케이스(104)로 인한 저항이 낮다. 이는 출력 특성의 확인 시, 보다 정밀한 측정을 가능하게 한다.That is, in the test cell 100 according to the present invention, instead of the can type battery case 104 having a high resistance, the battery case 104 is formed of a laminate sheet having a relatively low contact resistance. The resistance due to the case 104 is low. This allows for more accurate measurements when checking the output characteristics.
전극조립체는, 제 1 기준전극(110), 제 1 분리막, 제 2 기준전극(120), 제 2 분리막 및 제 1 전극(102)이 순차적으로 적층되어 있는 구조로 이루어져 있다.The electrode assembly has a structure in which the first reference electrode 110, the first separator, the second reference electrode 120, the second separator and the first electrode 102 are sequentially stacked.
제 2 기준전극(120)은, 구리(Cu)로 이루어진 와이어 구조의 본체(122)상에, 전극활물질(124)이 코팅되어 있는 구조이고, 테스트 셀(100)은, 제 2 기준전극(120)의 와이어 구조의 본체(122) 일부가 전지케이스(104) 외측으로 도출된 상태로, 전지케이스(104)가 밀봉된 구조일 수 있다.The second reference electrode 120 is a structure in which an electrode active material 124 is coated on a main body 122 of a wire structure made of copper (Cu), and the test cell 100 includes a second reference electrode 120. A portion of the main body 122 of the wire structure of) may be a structure in which the battery case 104 is sealed in a state in which a part of the main body 122 is led out of the battery case 104.
따라서, 제 2 기준전극(120)이 제 1 기준전극(110)과 제 1 전극(102) 사이에 배치되어 있어, 제 1 기준전극(110)과 제 2 기준전극(120) 각각에 대한 상대 전위를 측정할 수 있을 뿐만 아니라, 실제 전기화학 반응이 일어나는 위치에서 제 1 기준전극(110)에 대한 상대 전위를 측정하여 제 1 기준전극(110)의 전기화학적 특성 변화를 정밀하게 확인할 수 있다.Therefore, since the second reference electrode 120 is disposed between the first reference electrode 110 and the first electrode 102, relative potentials to the first reference electrode 110 and the second reference electrode 120, respectively. Not only can be measured, it is possible to accurately determine the change in the electrochemical properties of the first reference electrode 110 by measuring the relative potential with respect to the first reference electrode 110 at the location where the actual electrochemical reaction occurs.
또한, 제 2 기준전극(120)은 테스트 셀(100)의 내부로부터 외측으로 연장된 와이어 구조로서, 사용자는 외측의 제 2 기준전극(120)에 전위 측정 기구를 연결하여 간편하게 상대 전위를 측정할 수 있다. 경우에 따라서는 연장된 와이어를 절단한 상태로 테스트 셀(100)을 사용할 수도 있다.In addition, the second reference electrode 120 is a wire structure extending from the inside of the test cell 100 to the outside, and the user can easily measure the relative potential by connecting a potential measuring device to the second reference electrode 120 on the outside. Can be. In some cases, the test cell 100 may be used while cutting the extended wire.
이러한 테스트 셀(100)에서, 제 1 기준전극(110)은 제 1 전극(102)과 제 2 기준전극(120)에 대해 음극으로 작용하게 되며, 제 2 기준전극(120)은 제 1 기준전극(110)과 제 1 전극(102)에 대해 기준전극으로 작용한다.In the test cell 100, the first reference electrode 110 acts as a cathode for the first electrode 102 and the second reference electrode 120, and the second reference electrode 120 serves as the first reference electrode. It acts as a reference electrode for the 110 and the first electrode 102.
여기서, 테스트 셀(100)은 제 1 기준전극(110)과 제 1 전극(102)의 전기화학 반응으로 제 1 전극(102)의 출력 특성과 용량 특성을 측정할 수 있으며, 제 2 기준전극(120)으로 제 1 기준전극(110)의 전기화학적 특성 변화를 확인할 수 있다.Here, the test cell 100 may measure the output characteristics and the capacitance characteristics of the first electrode 102 by an electrochemical reaction between the first reference electrode 110 and the first electrode 102, and the second reference electrode ( 120, a change in electrochemical properties of the first reference electrode 110 can be confirmed.
즉, 본 발명의 테스트 셀(100)은 제 2 기준전극(120)을 통해, 제 1 기준전극(110)의 전기화학적 특성 변화를 확인하고, 제 1 기준전극(110)을 통해 제 1 전극(102)의 전기화학적 특성을 확인하는 더블 체크 시스템으로 구성되어 있다.That is, the test cell 100 of the present invention checks the change in the electrochemical characteristics of the first reference electrode 110 through the second reference electrode 120, and the first electrode (1) through the first reference electrode 110. It consists of a double check system to confirm the electrochemical properties of 102.
다만, 테스트 셀(100)에서 제 2 기준전극(120)과 제 1 전극(102)의 전기화학반응은 무시 가능한 수준일 수 있다.However, the electrochemical reaction between the second reference electrode 120 and the first electrode 102 in the test cell 100 may be negligible.
한편 도 4에는 테스트 셀(100)을 이용하여, 제 1 전극(102)의 특성을 측정하는 방법을 제공한다. 도 4를 앞선 도 1 내지 도 3과 함께 참조하면, 과정(210)에서 제 1 기준전극(110), 제 1 분리막, 제 2 기준전극(120), 제 2 분리막 및 제 1 전극(102)이 순차적으로 적층된 구조의 전극조립체를 전해액과 함께 파우치형 전지케이스(104)에 수납한 후, 전지케이스(104)를 밀봉하여 테스트 셀(100)을 준비한다.Meanwhile, FIG. 4 provides a method of measuring characteristics of the first electrode 102 using the test cell 100. Referring to FIG. 4 together with FIGS. 1 to 3, in step 210, the first reference electrode 110, the first separator, the second reference electrode 120, the second separator and the first electrode 102 are formed. After the electrode assemblies having the sequentially stacked structure are accommodated together with the electrolyte in the pouch-type battery case 104, the battery case 104 is sealed to prepare a test cell 100.
상기 파우치형 전지케이스는 라미네이트 시트를 이용할 수 있다. 라미네이트 시트는 다층 구조를 가질 수 있고, 최외각을 이루는 외부 피복층, 물질의 관통을 방지하는 금속층 및 밀봉을 위한 내부 실란트층으로 구성될 수 있다. The pouch type battery case may use a laminate sheet. The laminate sheet may have a multi-layered structure and may consist of an outermost outer coating layer, a metal layer that prevents penetration of material, and an inner sealant layer for sealing.
내부 실란트층은 전극조립체를 내장한 상태에서 인가된 열과 압력에 의해 상호 열융착되어 밀봉성을 제공하는 역할을 하며, 주로 CPP(무연신 폴리프로필렌 필름)로 이루어져 있다.The inner sealant layer is thermally fused to each other by applied heat and pressure in a state in which the electrode assembly is embedded, and serves to provide a sealability, and mainly consists of CPP (non-stretched polypropylene film).
상기 금속층은 이물질의 유입 내지 누출을 방지하는 기능을 발휘할 수 있도록, 알루미늄(Al)이 사용될 수 있다. 상기 금속층은 표면에 산화크롬 피막이 형성되어 있는 구조일 수 있으며, 상기 피막은 금속층에 포함된 크롬이 산소와 결합하여 공기 중에 산화막을 형성하여 금속층의 산화 및 부식을 방지하는 역할을 한다. 구체적으로, 상기 산화크롬 피막은 크롬 3가의 산화물(Cr2O3)로 이루어질 수 있다.The metal layer may be aluminum (Al) to exhibit a function of preventing the inflow or leakage of foreign matter. The metal layer may have a structure in which a chromium oxide film is formed on a surface thereof, and the film serves to prevent oxidation and corrosion of the metal layer by forming an oxide film in air by combining chromium contained in the metal layer with oxygen. Specifically, the chromium oxide film may be made of chromium trivalent oxide (Cr 2 O 3 ).
하나의 구체적인 예에서, 상기 라미네이트 시트의 두께는 70 ㎛ 내지 150 ㎛일 수 있고, 상세하게는 80 ㎛ 내지 140 ㎛ 일 수 있으며, 더욱 상세하게는 100 ㎛ 내지 130 ㎛일 수 있다. 상기 라미네이트 시트의 두께는 수지층, 1개 이상의 금속층 및 실란트층의 두께를 모두 포함한 상태의 두께로서, 70 ㎛ 보다 작을 경우에는 금속층의 두께도 비례하여 작아지게 되기 때문에 외부충격으로부터 전지셀을 보호하는 데 어려움이 있을 수 있으며, 150 ㎛ 보다 클 경우에는 전체적인 이차전지의 무게 및 부피가 증가되므로 적용되는 디바이스가 제한될 수 있는 문제가 있으므로 바람직하지 않다.In one specific example, the thickness of the laminate sheet may be 70 μm to 150 μm, specifically 80 μm to 140 μm, and more specifically 100 μm to 130 μm. The thickness of the laminate sheet is a thickness including all of the thicknesses of the resin layer, at least one metal layer, and the sealant layer. When the thickness of the laminate sheet is smaller than 70 μm, the thickness of the metal layer is also reduced in proportion to protect the battery cell from external shock. It may be difficult, and if it is larger than 150 ㎛ because the weight and volume of the entire secondary battery is increased, there is a problem that can be limited device applied is not preferable.
하나의 구체적인 예에서, 상기 라미네이트 시트는 1개의 금속층을 포함하는 구성일 수 있으며, 이와 같은 경우, 상기 금속층의 두께는 상기에서 기재된 라미네이트 시트의 두께의 범위 내에서 10 ㎛ 내지 100 ㎛로 형성될 수 있고, 상세하게는 15 ㎛ 내지 80 ㎛로 형성될 수 있다. 상기 금속층의 두께가 10 ㎛ 보다 얇은 경우에는, 기계적인 강도 향상의 효과를 발휘하기 어렵고, 100 ㎛ 보다 두꺼운 경우에는, 라미네이트 시트의 두께가 증가하므로 컴팩트한 이차전지를 제공하기 어려우므로 바람직하지 않다.In one specific example, the laminate sheet may be configured to include one metal layer, in this case, the thickness of the metal layer may be formed from 10 ㎛ to 100 ㎛ within the range of the thickness of the laminate sheet described above And in detail, it may be formed of 15 ㎛ to 80 ㎛. When the thickness of the metal layer is thinner than 10 mu m, it is difficult to exert an effect of improving mechanical strength. When the thickness of the metal layer is thicker than 100 mu m, the thickness of the laminate sheet increases, which makes it difficult to provide a compact secondary battery.
다른 하나의 구체적인 예에서, 상기 라미네이트 시트는 2개의 금속층을 포함하는 구성일 수 있다. 이와 같이 2개의 금속층이 포함되는 경우에는 전체적인 라미네이트 시트의 두께가 증가되는 것을 방지하기 위하여, 1개를 포함하는 경우에 비하여 얇은 두께의 금속층이 사용되는 것이 바람직한 바, 상기 금속층의 두께는 20 ㎛ 내지 50 ㎛로 형성될 수 있고, 상세하게는 25 ㎛ 내지 40 ㎛로 형성될 수 있다.In another specific example, the laminate sheet may be a composition including two metal layers. As such, when two metal layers are included, in order to prevent the thickness of the entire laminate sheet from increasing, it is preferable to use a thin metal layer as compared with the case where the metal layer has a thickness of 20 μm to 20 μm. It may be formed to 50 ㎛, in detail may be formed from 25 ㎛ to 40 ㎛.
한편, 금속층의 사이 및 금속층 및 실란트층의 사이에는 서로 다른 소재로 이루어진 층들 간의 결합력을 높이기 위한 접착층이 더 포함되어 있으며, 상기 접착층은 에폭시계, 페놀계, 멜라민계, 폴리이미드계, 폴리에스테르계, 우레탄계, 폴리에틸렌테레프탈레이트계 및 폴리에테르우레탄계 물질들로 이루어진 군에서 선택되는 1종 이상으로 이루어질 수 있다.On the other hand, between the metal layer and between the metal layer and the sealant layer further includes an adhesive layer for increasing the bonding force between the layers made of different materials, the adhesive layer is epoxy, phenolic, melamine, polyimide, polyester-based It may be made of one or more selected from the group consisting of urethane-based, polyethylene terephthalate-based and polyether urethane-based materials.
이후, 과정(220)에서 테스트 셀(100)의 충방전을 반복적으로 수행하고, 충방전 사이클이 10 내지 100에서 선택되는 임의 사이클이 완료되면, 과정(230)을 진행한다.Thereafter, the charging and discharging of the test cell 100 is repeatedly performed in step 220, and when an arbitrary cycle in which the charging and discharging cycle is selected from 10 to 100 is completed, the process 230 is performed.
과정(230)에서는 테스트 셀(100)의 출력과 용량 특성을 측정하는 과정(230a)과 제 1 기준전극(110)의 전극 전위 변화를 측정하는 과정(230b)을 수행한다.In operation 230, an operation 230a of measuring output and capacitance characteristics of the test cell 100 and an electrode potential change of the first reference electrode 110 are measured 230b.
과정(230a)과 과정(230b)의 수행 순서는 상관 없으며, 동시에 진행할 수도 있다.The order of execution of steps 230a and 230b is irrelevant and may be performed simultaneously.
과정(230a)에서 측정된 테스트 셀(100) 특성은 제 1 전극(102) 특성으로 가정할 수 있으며, 이는 순수 리튬으로 구성된 제 1 기준전극(110)에 대한 제반 성능을 사전에 인식한 상태를 전제로 한다.The characteristic of the test cell 100 measured in the process 230a may be assumed to be the characteristic of the first electrode 102, which indicates a state in which the overall performance of the first reference electrode 110 made of pure lithium is recognized in advance. On the premise.
과정(230b)에서는 제 2 기준전극(120)을 기준으로 제 1 기준전극(110)의 전극 전위 변화를 추가로 측정하여, 제 1 기준전극(110)의 전기화학적 변화를 측정한다.In operation 230b, the change of the electrode potential of the first reference electrode 110 is further measured based on the second reference electrode 120 to measure the electrochemical change of the first reference electrode 110.
이 상태에서 과정(240)으로 진행하여, 제 1 기준전극(110)의 전극 전위 변화를 토대로 과정(230a)의 측정 값을 보정하며, 이로서 제 1 기준전극(110)의 전기화학적 변화 토대로 제 1 전극(102)의 출력 특성과 용량 특성에 대한 오차 및 오류를 예측하여 반영한다. In this state, the process 240 proceeds to correct the measured value of the process 230a based on the change of the electrode potential of the first reference electrode 110, thereby adjusting the first value based on the electrochemical change of the first reference electrode 110. Errors and errors in the output characteristics and the capacitance characteristics of the electrode 102 are predicted and reflected.
따라서, 이후 과정(250)에서는 보정된 데이터를 기준으로 제 1 전극(102)의 특성을 판별할 수 있다.Therefore, in operation 250, the characteristic of the first electrode 102 may be determined based on the corrected data.
이러한 일련의 과정 이후, 과정(220)을 다시 수행하면서 충방전 사이클이 10 내지 100에서 선택되는 임의 사이클이 완료되는 경우, 과정(230) 내지 과정(250)을 순차적으로 수행하여 사이클에 따른 제 1 전극(102)의 출력 특성 및 용량 특성의 감소 분을 정밀하게 측정한다.After such a series of processes, when the charging and discharging cycle is selected from 10 to 100 while completing the process 220, the process 230 to 250 may be sequentially performed to sequentially perform the first cycle according to the cycle. The reduction of the output characteristic and the capacitance characteristic of the electrode 102 is measured precisely.
이하 실시예를 통해 본 발명을 더욱 상세히 설명한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 본 발명의 범위가 이들 실시예 및 실험예에 의하여 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following examples. However, the following Examples and Experimental Examples are for illustrating the present invention and the scope of the present invention is not limited by these Examples and Experimental Examples.
실시예 Example
<제 1 기준전극의 제조><Production of First Reference Electrode>
판상형의 순수 리튬 금속을 제 1 기준 전극으로 준비하였다. Plate-shaped pure lithium metal was prepared as a first reference electrode.
<제 2 기준전극의 제조><Production of Second Reference Electrode>
양극 활물질로서 Li4Ti5O12 90중량%, Denka black(도전재) 4중량% 및 PVDF(폴리비닐리덴플로오라이드, 결합재) 6중량%를 NMP(N-Methyl-2-Pyrrolidone)에 첨가하여 제조한 양극 혼합물 슬러리를 구리로 이루어진 와이어 구조의 본체 상에 코팅하여 제 2 기준 전극을 제조하였다. 90% by weight of Li 4 Ti 5 O 12, 4 % by weight Denka black (conductor) and 6% by weight PVDF (polyvinylidene fluoride, binder) were added to N-Methyl-2-Pyrrolidone (NMP). The cathode mixture slurry prepared by coating was coated on a wire structure made of copper to prepare a second reference electrode.
<제 1 전극의 제조><Production of First Electrode>
양극 활물질로서 LiNiCoMnO2 96중량%, Denka black(도전재) 2중량% 및 PVDF(폴리비닐리덴플로오라이드, 결합재) 2중량%를 NMP(N-Methyl-2-Pyrrolidone)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 알루미늄 집전체의 일면에 상기 제조된 양극 혼합물 슬러리를 100㎛의 두께로 코팅하고, 이를 건조 및 압연한 후 일정 크기로 펀칭하여 제 1 전극을 제조하였다.96% by weight of LiNiCoMnO 2 , 2 % by weight Denka black (conductive material) and 2% by weight PVDF (polyvinylidene fluoride, binder) were added to N-Methyl-2-Pyrrolidone (NMP) to slurry the cathode mixture. Was prepared. The prepared positive electrode mixture slurry was coated on one surface of an aluminum current collector to a thickness of 100 μm, dried and rolled, and then punched to a predetermined size to prepare a first electrode.
<삼전극 테스트 셀의 제조>Fabrication of Triode Test Cell
상기 제조된 제 1 기준전극, 제 1 분리막(폴리프로필렌계 다공성 막), 제 2 기준전극, 제 2 분리막(폴리프로필렌계 다공성 막), 제 1 전극을 순차적으로 적층한 구조의 전극조립체에 에틸렌 카보네이트(EC), 에틸메틸카보네이트(DEC) 를 50:50의 부피비로 혼합한 용매에 1M 육불화인산리튬(LiPF6)이 용해된 전해액을 주입하였다. 이후 라미네이트 시트의 파우치형 전지케이스에 수납하고 전지케이스를 밀봉하여 테스트 셀을 제작하였다. Ethylene carbonate in the electrode assembly having a structure in which the first reference electrode, the first separator (polypropylene-based porous membrane), the second reference electrode, the second separator (polypropylene-based porous membrane), and the first electrode are sequentially stacked (EC) and an electrolyte solution in which 1M lithium hexafluorophosphate (LiPF 6 ) was dissolved were injected into a solvent in which ethyl methyl carbonate (DEC) was mixed at a volume ratio of 50:50. Thereafter, the battery cell was sealed in a pouch-type battery case of a laminate sheet, and a test cell was manufactured by sealing the battery case.
비교예 Comparative example
양극 활물질로서 LiNiCoMnO2 96중량%, Denka black(도전재) 2중량% 및 PVDF(폴리비닐리덴플로오라이드, 결합재) 2중량%를 NMP(N-Methyl-2-Pyrrolidone)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 알루미늄 집전체의 일면에 상기 제조된 양극 혼합물 슬러리를 100㎛의 두께로 코팅하고, 이를 건조 및 압연한 후 일정 크기로 펀칭하여 전극을 제조하였다. 대전극으로는 판상형의 순수 리튬 금속을 준비하였다. 상기 제조된 전극과 분리막(폴리프로필렌계 다공성 막), 상기 제조된 대전극을 순차적으로 적층한 전극조립체를 캔 형의 전지케이스에 수납해 테스트 셀을 제작하였다.96% by weight of LiNiCoMnO 2 , 2 % by weight Denka black (conductive material) and 2% by weight PVDF (polyvinylidene fluoride, binder) were added to N-Methyl-2-Pyrrolidone (NMP) to slurry the cathode mixture. Was prepared. The prepared positive electrode mixture slurry was coated on one surface of an aluminum current collector to a thickness of 100 μm, dried and rolled, and then punched to a predetermined size to prepare an electrode. As the counter electrode, a plate-shaped pure lithium metal was prepared. The electrode assembly obtained by sequentially stacking the prepared electrode, the separator (polypropylene-based porous membrane), and the prepared counter electrode was accommodated in a can-type battery case to manufacture a test cell.
실험예 1 용량 유지율 및 용량 유지율 편차 Experimental Example 1 Dose retention rate and dose retention rate deviation
상기 실시예 및 비교예에서 제조한 테스트 셀에 대해 상온(25℃)에서 3 내지 4.2V 구동전압 범위 내에서 0.5C/2C의 조건으로 충방전시 율 특성을 측정해 표 1에 나타내었다. 편차 계산은 5개 셀에 대해 표준편차를 계산하였다. For the test cells prepared in Examples and Comparative Examples, the charge and discharge rate characteristics were measured in a condition of 0.5C / 2C within a range of 3 to 4.2V driving voltage at room temperature (25 ° C) and are shown in Table 1. Deviation calculations calculated standard deviations for five cells.
실험예 2 EIS 저항 및 저항 편차 Experimental Example 2 EIS Resistance and Resistance Deviation
EIS로 SOC50의 계면 저항을 측정하여 그 결과를 표 1에 나타내고, 저항 편차를 계산하여 표 1에 나타내었다. 편차 계산은 5개 셀에 대해 표준편차를 계산하였다. The interfacial resistance of SOC50 was measured by EIS, and the results are shown in Table 1, and the resistance deviation was calculated and shown in Table 1. Deviation calculations calculated standard deviations for five cells.
2C 방전용량 유지율(%)2C discharge capacity retention rate (%) 용량유지율 편차Capacity maintenance rate deviation EIS 저항(ohm·㎠)EIS resistance (ohmcm2) 저항 편차Resistance deviation
실시예Example 9090 0.360.36 3.33.3 0.50.5
비교예Comparative example 8585 55 14.914.9 1111
상기 결과에서 알 수 있는 바와 같이, 실시예의 테스트 셀은 비교예의 테스트 셀보다 용량유지율 편차 및 저항 편차가 훨씬 작은바, 전극 특성 테스트에 대한 신뢰성이 높음을 확인할 수 있다. As can be seen from the above results, the test cell of the embodiment has much smaller capacity retention variation and resistance variation than the test cell of the comparative example, and thus it can be confirmed that the reliability of the electrode characteristic test is high.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.Those skilled in the art to which the present invention pertains will be able to perform various applications and modifications within the scope of the present invention based on the above contents.

Claims (13)

  1. 전극 특성을 측정하기 위한 테스트 셀로서, 제 1 기준전극, 제 2 기준전극, 및 특성 측정의 대상이 되는 제 1 전극을 포함하는 전극조립체가, 전해액과 함께, 라미네이트 시트의 파우치형 전지케이스에 수납된 상태로 밀봉되어 있는 것을 특징으로 하는 테스트 셀.As a test cell for measuring electrode characteristics, an electrode assembly including a first reference electrode, a second reference electrode, and a first electrode to be measured is stored together with an electrolyte in a pouch-type battery case of a laminate sheet. And the test cell is sealed in a closed state.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 제 1 기준전극과 제 1 전극의 전기화학 반응으로 제 1 전극의 출력 특성과 용량 특성을 측정하고;Measuring an output characteristic and a capacitance characteristic of the first electrode by an electrochemical reaction between the first reference electrode and the first electrode;
    상기 제 2 기준전극으로 제 1 기준전극의 전기화학적 특성 변화를 확인하는 것을 특징으로 하는 테스트 셀.The test cell, characterized in that for confirming the change in the electrochemical characteristics of the first reference electrode as the second reference electrode.
  3. 제 2 항에 있어서, 상기 제 1 기준전극의 전기화학적 특성 변화에 따라, 제 1 전극의 출력 특성과 용량 특성에 대한 오차 및 오류를 예측하는 것을 특징으로 하는 테스트 셀.The test cell of claim 2, wherein an error and an error of an output characteristic and a capacitance characteristic of the first electrode are predicted according to a change in the electrochemical characteristic of the first reference electrode.
  4. 제 2 항에 있어서, 상기 제 1 기준전극은 순수 리튬으로 이루어진 리튬 전극이고, 상기 순수 리튬이 판상형 전극을 형성하고 있는 것을 특징으로 하는 테스트 셀.The test cell according to claim 2, wherein the first reference electrode is a lithium electrode made of pure lithium, and the pure lithium forms a plate-shaped electrode.
  5. 제 2 항에 있어서, The method of claim 2,
    상기 제 2 기준전극은, 구리(Cu) 또는 알루미늄(Al)으로 이루어진 와이어(wire) 구조의 본체상에, 전극활물질이 코팅되어 있는 구조로 이루어져 있으며;The second reference electrode has a structure in which an electrode active material is coated on a main body of a wire structure made of copper (Cu) or aluminum (Al);
    상기 테스트 셀은, 상기 제 2 기준전극의 와이어 일부가 전지케이스 외측으로 도출된 상태로, 전지케이스가 밀봉된 구조인 것을 특징으로 하는 테스트 셀.The test cell is a test cell, characterized in that the structure of the battery case is sealed, a part of the wire of the second reference electrode is led to the outside of the battery case.
  6. 제 5 항에 있어서, 상기 전극활물질은 리튬 티타늄 산화물(Lithium Titanium Oxide: LTO)인 것을 특징으로 하는 테스트 셀.The test cell of claim 5, wherein the electrode active material is lithium titanium oxide (LTO).
  7. 제 2 항에 있어서, 상기 제 1 기준전극은 제 1 전극과 제 2 기준전극에 대해 음극으로 작용하는 것을 특징으로 하는 테스트 셀.The test cell of claim 2, wherein the first reference electrode serves as a cathode for the first electrode and the second reference electrode.
  8. 제 2 항에 있어서, 상기 제 2 기준전극은 제 1 기준전극 및 제 1 전극에 대해 기준전극으로 작용하는 것을 특징으로 하는 테스트 셀.The test cell of claim 2, wherein the second reference electrode serves as a reference electrode with respect to the first reference electrode and the first electrode.
  9. 제 2 항에 있어서, 상기 제 2 기준전극은 제 1 전극 및 제 1 기준전극 각각에 대한 상대 전위를 측정하는 것을 특징으로 하는 테스트 셀.The test cell of claim 2, wherein the second reference electrode measures a relative potential with respect to each of the first electrode and the first reference electrode.
  10. 제 1 항에 있어서, 상기 전극조립체는, 제 1 기준전극, 제 1 분리막, 제 2 기준전극, 제 2 분리막 및 제 1 전극이 순차적으로 적층되어 있는 구조인 것을 특징으로 하는 테스트 셀.The test cell of claim 1, wherein the electrode assembly has a structure in which a first reference electrode, a first separator, a second reference electrode, a second separator, and a first electrode are sequentially stacked.
  11. 제 1 항 내지 제 10 항 중 어느 하나에 따른 테스트 셀을 이용하여, 제 1 전극의 특성을 측정하는 방법으로서,A method for measuring the characteristics of a first electrode using a test cell according to any one of claims 1 to 10,
    (i) 테스트 셀의 충방전을 반복적으로 수행하면서 10 사이클 내지 100 사이클 간격으로 테스트 셀의 출력과 용량 특성을 측정하는 과정;(i) measuring output and capacity characteristics of the test cell at intervals of 10 cycles to 100 cycles while repeatedly charging and discharging the test cells;
    (ii) 상기 과정(i)의 측정 과정 중, 제 2 기준전극을 기준으로 제 1 기준전극의 전극 전위 변화를 추가로 측정하는 과정; 및(ii) further measuring an electrode potential change of the first reference electrode based on the second reference electrode during the measurement of step (i); And
    (iii) 상기 제 1 기준전극의 전극 전위 변화를 토대로 상기 과정(i)에서의 출력과 용량 특성을 측정 값을 보정하는 과정;(iii) correcting a measurement value of the output and capacitance characteristics in the step (i) based on the change of the electrode potential of the first reference electrode;
    을 포함하는 것을 특징으로 하는 방법.Method comprising a.
  12. 제 11 항에 있어서, 상기 방법은, 임피던스 분광학(electrochemical impedance spectroscopy)을 이용하여, 테스트 셀의 내부 저항을 측정하는 과정을 추가로 포함하는 것을 특징으로 하는 방법.12. The method of claim 11, wherein the method further comprises measuring internal resistance of the test cell using electrochemical impedance spectroscopy.
  13. 제 12 항에 있어서, 상기 테스트 셀의 내부 저항은 0.5Ω 내지 5Ω인 것을 특징으로 하는 방법.The method of claim 12, wherein the internal resistance of the test cell is 0.5Ω to 5Ω.
PCT/KR2017/009206 2016-08-23 2017-08-23 Test cell with high reliability in electrode property test WO2018038529A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780004284.3A CN108369259B (en) 2016-08-23 2017-08-23 Test cell with high reliability in electrode characteristic test
EP17843949.3A EP3370075A4 (en) 2016-08-23 2017-08-23 Test cell with high reliability in electrode property test
US16/082,840 US11081736B2 (en) 2016-08-23 2017-08-23 Test cell with high reliability in electrode characteristic test

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0106913 2016-08-23
KR20160106913 2016-08-23
KR1020170106290A KR102003709B1 (en) 2016-08-23 2017-08-22 Test Cell Providing High-Reliable Test Result Regarding Test of Electrode Characteristic
KR10-2017-0106290 2017-08-22

Publications (1)

Publication Number Publication Date
WO2018038529A1 true WO2018038529A1 (en) 2018-03-01

Family

ID=61246174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009206 WO2018038529A1 (en) 2016-08-23 2017-08-23 Test cell with high reliability in electrode property test

Country Status (1)

Country Link
WO (1) WO2018038529A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108519410A (en) * 2018-03-15 2018-09-11 合肥国轩高科动力能源有限公司 A kind of method that lithium concentration changes in electrolyte in characterization cyclic process
CN113140820A (en) * 2021-03-22 2021-07-20 同济大学 Three-electrode button cell device for accurate measurement and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110250478A1 (en) * 2010-04-08 2011-10-13 Gm Global Technology Operations, Inc. Lithium-ion cell with an array of reference electrodes
US20140023888A1 (en) * 2007-09-14 2014-01-23 A123 Systems, LLC Lithium rechargable cell with reference electrode for state of health monitoring
WO2015077669A1 (en) * 2013-11-23 2015-05-28 Hrl Laboratories, Llc Voltage protection and health monitoring of batteries with reference electrodes
WO2015127442A1 (en) * 2014-02-24 2015-08-27 Oned Material Llc Anode, cell, and method of stabilizing an anode for use in a lithium ion electrochemical cell
KR20160039474A (en) * 2014-10-01 2016-04-11 주식회사 엘지화학 Three electrode cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140023888A1 (en) * 2007-09-14 2014-01-23 A123 Systems, LLC Lithium rechargable cell with reference electrode for state of health monitoring
US20110250478A1 (en) * 2010-04-08 2011-10-13 Gm Global Technology Operations, Inc. Lithium-ion cell with an array of reference electrodes
WO2015077669A1 (en) * 2013-11-23 2015-05-28 Hrl Laboratories, Llc Voltage protection and health monitoring of batteries with reference electrodes
WO2015127442A1 (en) * 2014-02-24 2015-08-27 Oned Material Llc Anode, cell, and method of stabilizing an anode for use in a lithium ion electrochemical cell
KR20160039474A (en) * 2014-10-01 2016-04-11 주식회사 엘지화학 Three electrode cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3370075A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108519410A (en) * 2018-03-15 2018-09-11 合肥国轩高科动力能源有限公司 A kind of method that lithium concentration changes in electrolyte in characterization cyclic process
CN113140820A (en) * 2021-03-22 2021-07-20 同济大学 Three-electrode button cell device for accurate measurement and application

Similar Documents

Publication Publication Date Title
KR102154327B1 (en) Jelly roll tape for rechargeable battery and rechargeable battery having the same
WO2015126074A1 (en) Battery cell including hole
WO2017034210A1 (en) Method for manufacturing battery cell including reference electrode for measurement of relative electrode potential and battery cell manufactured thereby
WO2016060521A1 (en) Electrode tab having electrical insulation layer coated thereon and secondary battery comprising same
WO2013157823A1 (en) Electrode assembly having different anode and cathode welding portion shapes and secondary battery including same
WO2016056875A2 (en) Electrode assembly and method for manufacturing same
WO2017188605A1 (en) Battery cell having excellent manufacturing processability based on standardized structure and improved insulating properties of electrode lead, and battery pack including same
WO2018084675A1 (en) Reaction estimation method for secondary battery and secondary battery comprising battery cell used for same
WO2014168398A1 (en) Electrode laminate comprising electrodes having different areas and secondary battery comprising same
WO2021054595A1 (en) Electrode current collector comprising resistive layer between two or more metal foils, electrode comprising same, and lithium secondary battery
WO2015034263A1 (en) Pouch exterior for secondary battery and pouch-type secondary battery including same
WO2020105974A1 (en) Method for activating secondary battery
WO2013157854A1 (en) Lithium secondary battery exhibiting excellent performance
WO2020251165A1 (en) Method for manufacturing lithium secondary battery, comprising additional heat treatment step, and lithium secondary battery manufactured thereby
WO2019093836A1 (en) Strip-shaped electrode used for cylindrical jelly roll and lithium secondary battery comprising same
KR20120096388A (en) Lithium battery and method for fabricating the same
WO2015016568A1 (en) Lithium secondary battery having improved safety
WO2021045580A1 (en) Method for pre-sodiation of negative electrode, pre-sodiated negative electrode, and lithium secondary battery comprising same
WO2019022541A2 (en) Positive electrode for lithium secondary battery and lithium secondary battery including same
KR20230037451A (en) An electrode for electrochemical device and an electrochemical device comprising the same
WO2017065417A1 (en) Pouch-type battery cell including electrode lead of bending structure
WO2020116851A1 (en) Internal pressure measuring jig for cylindrical battery cell
WO2019182242A1 (en) Method for manufacturing lithium secondary battery and lithium secondary battery manufactured thereby
WO2018038529A1 (en) Test cell with high reliability in electrode property test
WO2016056775A1 (en) Electrode comprising alternately arranged electrode mixture parts and irreversible parts, and secondary battery comprising same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017843949

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE