KR20230037451A - An electrode for electrochemical device and an electrochemical device comprising the same - Google Patents

An electrode for electrochemical device and an electrochemical device comprising the same Download PDF

Info

Publication number
KR20230037451A
KR20230037451A KR1020220110984A KR20220110984A KR20230037451A KR 20230037451 A KR20230037451 A KR 20230037451A KR 1020220110984 A KR1020220110984 A KR 1020220110984A KR 20220110984 A KR20220110984 A KR 20220110984A KR 20230037451 A KR20230037451 A KR 20230037451A
Authority
KR
South Korea
Prior art keywords
electrode
electrochemical device
conductive polymer
current collector
polymer layer
Prior art date
Application number
KR1020220110984A
Other languages
Korean (ko)
Inventor
권순호
김민규
박성빈
조우형
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to PCT/KR2022/013560 priority Critical patent/WO2023038474A1/en
Priority to JP2023553712A priority patent/JP2024509209A/en
Priority to CN202280019145.9A priority patent/CN116918093A/en
Priority to EP22867742.3A priority patent/EP4293742A1/en
Publication of KR20230037451A publication Critical patent/KR20230037451A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention comprises: a conductive polymer layer located on at least one surface of an electrode current collector; and an electrode active material layer located on an upper surface of the conductive polymer layer and including an electrode active material and a binder polymer. The conductive polymer layer includes a poly (thiophene)-based polymer represented by chemical formula 1 in the description of the invention.

Description

전기화학소자용 전극 및 이를 구비한 전기화학소자{AN ELECTRODE FOR ELECTROCHEMICAL DEVICE AND AN ELECTROCHEMICAL DEVICE COMPRISING THE SAME}Electrode for electrochemical device and electrochemical device having the same

본 발명은 전기화학소자용 전극 및 이를 구비한 전기화학소자에 관한 것이다. 보다 상세하게는, 안전성이 향상된 전기화학소자용 전극 및 이를 구비한 전기화학소자에 관한 것이다.The present invention relates to an electrode for an electrochemical device and an electrochemical device having the same. More specifically, it relates to an electrode for an electrochemical device having improved safety and an electrochemical device having the same.

최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다.Recently, interest in energy storage technology is increasing. Efforts in the research and development of electrochemical devices are becoming more and more specific as the fields of application are expanded to mobile phones, camcorders, notebook PCs, and even the energy of electric vehicles.

이러한 전기화학소자는 양극, 음극, 분리막, 전해액으로 크게 구분될 수 있다. 그런데, 이러한 전기화학소자는 과충전, 고온 노출, 외부 충격 등에 의해 발화 또는 폭발이 일어날 수 있다. 전기화학소자가 과충전되거나 고온에 노출되어 이로 인해 전지의 내부 온도가 상승하여 분리막이 수축하는 경우, 또는 외부충격으로 전기화학소자의 내부 구조가 파괴될 경우, 양극과 음극이 만나는 단락 현상이 일어나 열폭주가 발생하게 된다.These electrochemical devices can be largely classified into an anode, a cathode, a separator, and an electrolyte solution. However, such an electrochemical device may ignite or explode due to overcharging, high temperature exposure, external impact, and the like. If the electrochemical device is overcharged or exposed to high temperatures, which causes the internal temperature of the battery to rise and the separator to shrink, or if the internal structure of the electrochemical device is destroyed by external shock, a short-circuit phenomenon occurs where the anode and cathode meet, resulting in heat runaway will occur.

단락 현상이 발생하였을 때, 양극과 음극이 직접 접촉하는 부위를 통하여 리튬이온을 비롯한 전자의 이동이 집중되어 전지 내부 발열이 촉진된다. 이로 인해, 가스 발생으로 인한 부피 팽창 및 발화위험성이 커지는 것으로 알려져 있다.When a short circuit occurs, the movement of electrons, including lithium ions, is concentrated through the direct contact between the positive electrode and the negative electrode, thereby promoting internal heat generation of the battery. Due to this, it is known that the risk of volume expansion and ignition due to gas generation increases.

따라서, 단락 현상에 따른 전지의 발화위험성을 낮출 수 있는 기술에 대한 필요성이 매우 높은 실정이다.Therefore, there is a very high need for a technology capable of reducing the risk of ignition of a battery due to a short circuit.

따라서 본 발명이 해결하고자 하는 과제는, 안전성이 개선된 전기화학소자용 전극 및 이를 구비한 전기화학소자를 제공하는 것이다.Therefore, the problem to be solved by the present invention is to provide an electrode for an electrochemical device having improved safety and an electrochemical device having the same.

상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 하기 구현예들의 전기화학소자용 전극이 제공된다.In order to solve the above problems, according to an aspect of the present invention, an electrode for an electrochemical device of the following embodiments is provided.

제1 구현예에 따른 전기화학소자용 전극은,The electrode for an electrochemical device according to the first embodiment,

전극 집전체;electrode current collector;

상기 전극 집전체의 적어도 일면에 위치한 전도성 고분자층; 및a conductive polymer layer located on at least one surface of the electrode current collector; and

상기 전도성 고분자층의 상면에 위치하고, 전극 활물질 및 바인더 고분자를 포함하는 전극 활물질층을 포함하고.Located on the upper surface of the conductive polymer layer, and comprising an electrode active material layer containing an electrode active material and a binder polymer.

상기 전도성 고분자층은 하기 화학식 1로 표시되는 폴리사이오펜(poly(thiophene))계 고분자를 포함하는 것이다.The conductive polymer layer includes a poly(thiophene)-based polymer represented by Formula 1 below.

제2 구현예는, 제1 구현예에 있어서,The second embodiment, in the first embodiment,

상기 전도성 고분자층과 상기 전극 집전체 간의 접착력이 200 gf/20 mm 이상일 수 있다.Adhesion between the conductive polymer layer and the electrode current collector may be 200 gf/20 mm or more.

제3 구현예는, 제1 구현예 또는 제2 구현예에 있어서,In the third embodiment, in the first embodiment or the second embodiment,

상기 전도성 고분자층과 상기 전극 활물질층 간의 계면 저항(interface resistance)이 3.0 ohm·cm2 이하일 수 있다.An interface resistance between the conductive polymer layer and the electrode active material layer may be 3.0 ohm·cm 2 or less.

제4 구현예는, 제1 구현예 내지 제3 구현예 중 어느 한 구현예에 있어서,In the fourth embodiment, in any one of the first to third embodiments,

상기 R1 및 R2의 탄소수의 합 및 R3 및 R4의 탄소수의 합 중 적어도 하나는 5 이상인 것일 수 있다.At least one of the sum of carbon atoms of R 1 and R 2 and the sum of carbon atoms of R 3 and R 4 may be 5 or more.

제5 구현예는, 제1 구현예 내지 제4 구현예 중 어느 한 구현예에 있어서,In the fifth embodiment, in any one of the first to fourth embodiments,

상기 m 또는 n이 0일 수 있다.The m or n may be 0.

제6 구현예는, 제1 구현예 내지 제5 구현예 중 어느 한 구현예에 있어서 In the sixth embodiment, in any one of the first to fifth embodiments

상기 전도성 고분자층의 두께가 0.1 ㎛ 내지 8 ㎛일 수 있다.The conductive polymer layer may have a thickness of 0.1 μm to 8 μm.

제7 구현예는, 제1 구현예 내지 제6 구현예 중 어느 한 구현예에 있어서In the seventh embodiment, in any one of the first to sixth embodiments

상기 전도성 고분자층이 폴리아닐린 (poly(aniline))계 고분자; 폴리피롤 (poly(pyrrole))계 고분자; 폴리페닐렌(poly(phenylene))계 고분자; 폴리아세틸렌(poly(acetylene))계 고분자; 이들의 유도체; 또는 이들 중 2 이상을 더 포함하는 것일 수 있다.The conductive polymer layer may be a polyaniline (poly(aniline))-based polymer; polypyrrole (poly(pyrrole))-based polymer; poly(phenylene)-based polymer; poly(acetylene)-based polymer; derivatives thereof; Or it may further include two or more of these.

제8 구현예는, 제1 구현예 내지 제7 구현예 중 어느 한 구현예에 있어서,In the eighth embodiment, in any one of the first to seventh embodiments,

상기 전기화학소자용 전극이 양극인 것일 수 있다.The electrode for the electrochemical device may be an anode.

상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 하기 구현예의 전기화학소자가 제공된다.In order to solve the above problems, according to an aspect of the present invention, an electrochemical device of the following embodiment is provided.

제8 구현예에 따른 전기화학소자는,The electrochemical device according to the eighth embodiment,

양극, 음극, 및 상기 양극과 음극 사이에 개재된 분리막을 포함하고,Including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode,

상기 양극 또는 음극이 제1 구현예 내지 제8 구현예 중 어느 한 구현예에 따른 전기화학소자용 전극을 포함하는 것일 수 있다.The positive electrode or the negative electrode may include the electrode for an electrochemical device according to any one of the first to eighth embodiments.

본 발명의 일 실시양태에 따른 전기화학소자용 전극은 전극 집전체와 전극 활물질층의 사이에 전도성 고분자층이 위치하여 전지의 정상적인 작동 시에는 전극 집전체와 전극 활물질층의 간의 도전 경로를 방해하지 않으면서, 단락 현상 발생 시 전극 집전체 간의 직접적인 접촉을 방지할 수 있다.In the electrode for an electrochemical device according to an embodiment of the present invention, a conductive polymer layer is positioned between an electrode current collector and an electrode active material layer so that the conductive path between the electrode current collector and the electrode active material layer is not disturbed during normal operation of the battery. However, when a short circuit occurs, direct contact between electrode current collectors can be prevented.

본 발명의 일 실시양태에 따른 전기화학소자용 전극은 전극 집전체와 전극 활물질층의 사이에 위치하는 전도성 고분자층이 저항층의 역할을 함에 따라 단락 저항을 크게 하여 급격한 단락 전류의 흐름을 막아 안전성을 확보할 수 있다.In the electrode for an electrochemical device according to an embodiment of the present invention, as the conductive polymer layer positioned between the electrode current collector and the electrode active material layer serves as a resistance layer, the short-circuit resistance is increased to prevent the rapid flow of short-circuit current, resulting in safety. can be obtained.

본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 실시양태에 따른 전기화학소자용 전극을 개략적으로 나타낸 도면이다.
The following drawings attached to this specification illustrate preferred embodiments of the present invention, and serve to further understand the technical idea of the present invention together with the contents of the above-described invention, so the present invention is limited to those described in the drawings. It should not be construed as limiting.
1 is a diagram schematically showing an electrode for an electrochemical device according to an embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, the terms or words used in this specification and claims should not be construed as being limited to the usual or dictionary meaning, and the inventor appropriately uses the concept of the term in order to explain his/her invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, since the embodiments described in this specification and the configurations shown in the drawings are only one of the most preferred embodiments of the present invention and do not represent all of the technical ideas of the present invention, various alternatives may be used at the time of this application. It should be understood that there may be equivalents and variations.

본 발명의 일 실시양태에 따른 전기화학소자용 전극은, An electrode for an electrochemical device according to an embodiment of the present invention,

전극 집전체;electrode current collector;

상기 전극 집전체의 적어도 일면에 위치한 전도성 고분자층; 및a conductive polymer layer located on at least one surface of the electrode current collector; and

상기 전도성 고분자층의 상면에 위치하고, 전극 활물질 및 바인더 고분자를 포함하는 전극 활물질층을 포함하고,Located on the upper surface of the conductive polymer layer, comprising an electrode active material layer containing an electrode active material and a binder polymer,

상기 전도성 고분자층은 하기 화학식 1로 표시되는 폴리사이오펜(poly(thiophene))계 고분자를 포함하는 것을 특징으로 한다.The conductive polymer layer is characterized by comprising a poly(thiophene)-based polymer represented by Formula 1 below.

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에서, 상기 R1, R2, R3 및 R4는 각각 독립적으로 수소, 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기이고, R1 및 R2의 탄소수의 합 및 R3 및 R4의 탄소수의 합 중 적어도 하나는 3 이상이며, 상기 m 및 n은 각각 독립적으로 0 내지 20,000의 정수이며, m+n > 0이다.In Formula 1, R 1 , R 2 , R 3 and R 4 are each independently hydrogen or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, and the sum of carbon atoms of R 1 and R 2 and R 3 and At least one of the sum of carbon atoms in R 4 is 3 or more, m and n are each independently an integer of 0 to 20,000, and m+n > 0.

상기 화학식 1에서, 상기 m 및 상기 n이 각각 1 이상의 정수인 경우, 상기 반복단위 m으로 표시된 단량체 및 반복단위 n으로 표시된 단량체는 서로 상이한 구조를 나타내기 위함이다.In Formula 1, when m and n are each an integer of 1 or more, the monomer represented by the repeating unit m and the monomer represented by the repeating unit n represent different structures from each other.

본 발명의 일 실시양태에 있어서, 상기 화학식 1에서 상기 m 및 상기 n이 각각 1 이상의 정수인 경우, 상기 화학식 1로 표시되는 폴리사이오펜계 고분자는 반복단위 m으로 표시된 단량체 및 반복단위 n으로 표시된 단량체의 교호 중합체, 랜덤 중합체 또는 블록 중합체일 수 있으며, 이에 한정되는 것은 아니다.In one embodiment of the present invention, when m and n in Formula 1 are each an integer of 1 or more, the polythiophene-based polymer represented by Formula 1 is a monomer represented by repeating unit m and a monomer represented by repeating unit n. It may be an alternating polymer, random polymer or block polymer of, but is not limited thereto.

도 1은 본 발명의 일 실시양태에 따른 전기화학소자용 전극을 개략적으로 나타낸 도이다.1 is a diagram schematically showing an electrode for an electrochemical device according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 일 실시양태에 따른 전기화학소자용 전극(1)은 전극 집전체(10)를 구비한다.Referring to FIG. 1 , an electrode 1 for an electrochemical device according to an embodiment of the present invention includes an electrode current collector 10 .

상기 전극 집전체(10)는 전기화학소자에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별한 제한 없이 사용이 가능하다. 예컨대, 본 발명의 일 실시양태에서, 상기 전극 집전체(10)로 구리; 스테인레스 스틸; 알루미늄; 니켈; 티탄; 소성 탄소; 구리, 알루미늄, 또는 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은, 크롬 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 상기 집전체는 또한 그것의 표면에 미세한 요철을 형성하여 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다. The electrode current collector 10 may be used without particular limitation as long as it has conductivity without causing chemical change in the electrochemical device. For example, in one embodiment of the present invention, copper as the electrode current collector 10; stainless steel; aluminum; nickel; titanium; calcined carbon; Surface treatment of copper, aluminum, or stainless steel with carbon, nickel, titanium, silver, chromium, or the like, an aluminum-cadmium alloy, or the like may be used. The current collector may also form fine irregularities on its surface to increase the adhesive strength of the active material, and various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics are possible.

본 발명의 일 실시양태에서, 상기 전기화학소자용 전극(1)이 양극인 경우, 상기 전극 집전체(10)는 스테인리스 스틸; 알루미늄; 니켈; 티탄; 소성 탄소; 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은, 크롬 등으로 표면 처리한 것 등이 사용될 수 있다.In one embodiment of the present invention, when the electrode 1 for the electrochemical device is an anode, the electrode current collector 10 is made of stainless steel; aluminum; nickel; titanium; calcined carbon; Alternatively, aluminum or stainless steel surface treated with carbon, nickel, titanium, silver, chromium, etc. may be used.

본 발명의 다른 실시양태에서, 상기 전기화학소자용 전극(1)이 음극인 경우, 상기 전극 집전체(10)는 구리; 스테인레스 스틸; 니켈; 티탄; 소성 탄소; 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은, 크롬 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.In another embodiment of the present invention, when the electrode 1 for the electrochemical device is a negative electrode, the electrode current collector 10 is copper; stainless steel; nickel; titanium; calcined carbon; Surface treatment of copper or stainless steel with carbon, nickel, titanium, silver, chromium, etc., aluminum-cadmium alloy, etc. may be used.

본 발명의 일 실시양태에서, 상기 전극 집전체(10)의 두께는 3 내지 500 ㎛, 예를 들어 10㎛ 내지 50㎛ 또는 10㎛ 내지 20㎛일 수 있으나, 이에 특별히 한정되는 것은 아니다.In one embodiment of the present invention, the electrode current collector 10 may have a thickness of 3 to 500 μm, for example, 10 μm to 50 μm or 10 μm to 20 μm, but is not particularly limited thereto.

도 1을 참조하면, 본 발명의 일 실시양태에 따른 전기화학소자용 전극(1)은 상기 전극 집전체(10)의 적어도 일면에 전도성 고분자층(20)을 구비한다.Referring to FIG. 1 , an electrode 1 for an electrochemical device according to an embodiment of the present invention includes a conductive polymer layer 20 on at least one surface of the electrode current collector 10 .

전기화학소자가 과충전되거나 고온에 노출되어 전기화학소자의 내부 온도가 상승하는 경우, 분리막이 수축하여 양극과 음극 간의 단락현상이 발생할 수 있다. 또는, 외부 충격에 의해 전기화학소자의 내부 구조가 파괴되어 양극과 음극 간의 단락(short circuit)이 발생할 수 있다.When the electrochemical device is overcharged or exposed to a high temperature and the internal temperature of the electrochemical device rises, the separator shrinks and a short circuit between the anode and the cathode may occur. Alternatively, the internal structure of the electrochemical device may be destroyed by an external impact, causing a short circuit between the positive electrode and the negative electrode.

이러한 단락은 양극 활물질과 음극 활물질 간의 접촉으로 인한 소프트(soft) 단락과 양극 집전체와 음극 집전체, 또는 양극 집전체와 음극 활물질, 또는 음극 집전체와 양극 활물질이 직접 접촉하여 일어나는 하드(hard) 단락이 있다. 하드 단락의 경우 단락 저항이 낮아 그에 따른 발열이 더욱 많이 발생하여 전지의 안전성에 매우 위협이 된다.Such a short circuit is a soft short circuit caused by contact between the positive electrode active material and the negative electrode active material and a hard short circuit caused by direct contact between the positive current collector and the negative electrode current collector, the positive current collector and the negative electrode current collector, or the negative electrode current collector and the positive electrode active material. there is a paragraph In the case of a hard short circuit, short circuit resistance is low, resulting in more heat generation, which poses a serious threat to the safety of the battery.

상기 전도성 고분자층(20)은 전극 집전체(10)의 적어도 일면에 형성되어, 단락 현상이 일어나는 경우 전극 집전체(10)의 보호막 역할을 한다. 전도성 고분자층(20)은 전극 집전체(10)의 적어도 일면에 형성되어 전극 집전체(10)가 대향하는 전극 집전체, 또는 대향하는 전극 활물질과 직접적으로 접촉하는 것을 방지할 수 있다. 이에 따라, 하드 단락 현상이 일어나는 것을 방지할 수 있다.The conductive polymer layer 20 is formed on at least one surface of the electrode current collector 10 and serves as a protective film for the electrode current collector 10 when a short circuit occurs. The conductive polymer layer 20 is formed on at least one surface of the electrode current collector 10 to prevent the electrode current collector 10 from directly contacting the opposing electrode current collector or the opposing electrode active material. Accordingly, it is possible to prevent a hard short circuit from occurring.

이러한 전도성 고분자층(20)이 전극 집전체(10)의 보호막 역할을 하기 위해서는 전도성 고분자층(20)이 전극 집전체(10)와 강하게 결합하여 단락 현상이 일어나는 경우에도 전도성 고분자층(20)이 전극 집전체(10)로부터 박리되지 않아야 한다. 전도성 고분자층(20)이 전극 집전체(10)로부터 쉽게 박리되면 단락 현상이 일어나는 경우 전극 집전체(10)의 보호막 역할을 할 수 없다.In order for the conductive polymer layer 20 to serve as a protective film for the electrode current collector 10, the conductive polymer layer 20 is strongly bonded to the electrode current collector 10 and the conductive polymer layer 20 remains intact even when a short circuit occurs. It should not be peeled off from the electrode current collector 10 . If the conductive polymer layer 20 is easily peeled off from the electrode current collector 10, it cannot serve as a protective film for the electrode current collector 10 when a short circuit occurs.

본 발명의 일 실시양태에서, 상기 전도성 고분자층(20)과 전극 집전체(10) 간의 접착력이 200 gf/20 mm 이상, 구체적으로 210 gf/20 mm 이상일 수 있다. 상기 전도성 고분자층과 전극 집전체 간의 접착력의 상한을 특별히 제한되는 것은 아니나, 예를 들어 400 gf/20 mm 이하, 또는 350 gf/20 mm 이하일 수 있다. 상기 전도성 고분자층(20)과 전극 집전체(10) 간의 접착력이 전술한 범위를 만족하는 경우, 단락 현상이 일어나는 경우 전도성 고분자층(20)이 전극 집전체(10)로부터 탈리되지 않고 전극 집전체(10)와 강하게 결합하는 것이 용이하여 전도성 고분자층(20)이 전극 집전체(10)의 보호막 역할을 하기 용이할 수 있다.In one embodiment of the present invention, the adhesive strength between the conductive polymer layer 20 and the electrode current collector 10 may be 200 gf/20 mm or more, specifically 210 gf/20 mm or more. The upper limit of the adhesive force between the conductive polymer layer and the electrode current collector is not particularly limited, but may be, for example, 400 gf/20 mm or less, or 350 gf/20 mm or less. When the adhesive force between the conductive polymer layer 20 and the electrode current collector 10 satisfies the above range, the conductive polymer layer 20 does not detach from the electrode current collector 10 when a short circuit occurs and the electrode current collector Since it is easy to strongly bond with (10), the conductive polymer layer 20 can easily serve as a protective film for the electrode current collector 10.

상기 전도성 고분자층(20)과 전극 집전체(10) 간의 접착력은 전도성 고분자층(20)이 형성된 전극 집전체(10)를 양면 테이프를 이용하여 유리판에 부착하여 고정하고, 전극 집전체(10) 부분을 25℃에서 20 mm/min 속도로 90°의 각도로 박리하였을 때의 강도를 측정하여 알 수 있다.The adhesive strength between the conductive polymer layer 20 and the electrode current collector 10 is determined by attaching and fixing the electrode current collector 10 on which the conductive polymer layer 20 is formed to a glass plate using double-sided tape, and the electrode current collector 10 It can be found by measuring the strength when the part is peeled at an angle of 90° at a rate of 20 mm/min at 25°C.

또한, 상기 전도성 고분자층(20)은 전극 집전체(10)와 후술하는 전극 활물질층 사이에 위치하여 전극 집전체(10)와 전극 활물질층이 직접 접촉하는 경우보다, 전극 집전체(10)와 전극 활물질층 사이의 계면 저항을 증가시켜, 단락 현상이 발생하더라도 이러한 계면 저항에 의해 전기화학소자가 발화되는 현상을 방지할 수 있다.In addition, the conductive polymer layer 20 is located between the electrode current collector 10 and the electrode active material layer to be described later, so that the electrode current collector 10 and the electrode active material layer are in direct contact with each other, rather than in direct contact. By increasing the interfacial resistance between the electrode active material layers, even if a short circuit occurs, ignition of the electrochemical device due to the interfacial resistance can be prevented.

본 발명의 일 실시양태에서, 상기 전도성 고분자층(20)과 전극 활물질층 간의 계면 저항은 종래 전극 집전체와 전극 활물질층이 직접 접촉하는 경우보다 계면 저항이 0.1 내지 1000%, 또는 1 내지 500% 증가한 것일 수 있다.In one embodiment of the present invention, the interface resistance between the conductive polymer layer 20 and the electrode active material layer is 0.1 to 1000%, or 1 to 500%, compared to the case where the electrode current collector and the electrode active material layer are in direct contact. may have increased

본 발명의 일 실시양태에서, 상기 전도성 고분자층(20)과 전극 활물질층 간의 계면 저항(interface resistance)이 3.0 ohm·cm2 이하, 또는 2.5 ohm·cm2 이하, 또는 0.01 ohm·cm2 내지 2.5 ohm·cm2일 수 있다. 상기 전도성 고분자층(20)과 전극 활물질층 간의 계면 저항이 전술한 범위를 만족하는 경우, 사이클 특성을 확보할 수 있으면서도 단락 현상 발생 시 전기화학소자가 발화되는 현상을 방지하기 용이할 수 있다. 예컨대, 사이클 효율이 80% 미만이 되는 것을 방지하면서 단락 현상 발생 시 전기화학소자가 발화되는 현상을 방지하기 용이할 수 있다.In one embodiment of the present invention, the interface resistance between the conductive polymer layer 20 and the electrode active material layer is 3.0 ohm·cm 2 or less, or 2.5 ohm·cm 2 or less, or 0.01 ohm·cm 2 to 2.5 It may be ohm·cm 2 . When the interfacial resistance between the conductive polymer layer 20 and the electrode active material layer satisfies the aforementioned range, it is possible to secure cycle characteristics and easily prevent ignition of an electrochemical device when a short circuit occurs. For example, it may be easy to prevent ignition of an electrochemical device when a short circuit occurs while preventing cycle efficiency from being less than 80%.

상기 전도성 고분자층(20)과 전극 활물질층 간의 계면 저항(interface resistance)은 Multi probe tester로 측정할 수 있다.The interface resistance between the conductive polymer layer 20 and the electrode active material layer can be measured with a multi probe tester.

또한, 상기 전도성 고분자층(20)은 전해액에 있는 염과 상호작용하여 전도성을 띄는 고분자를 포함하여, 상기 전극 집전체(10)와 후술하는 전극 활물질층 간의 도전 네트워크가 이어질 수 있게 한다. 이에 따라, 전지가 정상적으로 작동할 때에는 상기 전도성 고분자층(20)이 전극 집전체(10)와 전극 활물질층 사이에 존재하여도 전극의 성능을 유지할 수 있다.In addition, the conductive polymer layer 20 includes a polymer exhibiting conductivity by interacting with a salt in the electrolyte solution, so that a conductive network between the electrode current collector 10 and the electrode active material layer described later can be connected. Accordingly, when the battery operates normally, the performance of the electrode can be maintained even if the conductive polymer layer 20 is present between the electrode current collector 10 and the electrode active material layer.

본 발명의 일 실시양태에서, 상기 전도성 고분자층에 포함되는 폴리사이오펜계 고분자를 나타내는 화학식 1에 있어서, 상기 R1 및 R2의 탄소수의 합 및 R3 및 R4의 탄소수의 합 중 적어도 하나는 5 이상, 예를 들어 6 내지 20, 7 내지 20, 8 내지 20, 8 내지 15 또는 8 내지 10일 수 있다. 상기 R1 및 R2의 탄소수의 합 및 R3 및 R4의 탄소수의 합 중 적어도 하나가 상술한 범위인 경우 이를 이용한 전도성 고분자층과 전극 집전체 간의 접착력은 우수하게 유지하면서도 이를 이용한 전지의 수명을 더욱 향상시킬 수 있는 측면에서 유리한 효과가 있을 수 있으나, 본 발명이 이에 제한되는 것은 아니다.In one embodiment of the present invention, in Formula 1 representing the polythiophene-based polymer included in the conductive polymer layer, at least one of the sum of carbon atoms of R 1 and R 2 and the sum of carbon atoms of R 3 and R 4 may be 5 or more, for example 6 to 20, 7 to 20, 8 to 20, 8 to 15 or 8 to 10. When at least one of the sum of carbon atoms of R 1 and R 2 and the sum of carbon atoms of R 3 and R 4 is within the above range, the adhesive force between the conductive polymer layer using the same and the electrode current collector is excellently maintained, and the life of the battery using the same There may be advantageous effects in terms of further improving, but the present invention is not limited thereto.

본 발명의 일 실시양태에서, 상기 전도성 고분자층에 포함되는 폴리사이오펜계 고분자를 나타내는 화학식 1에 있어서, 상기 m 또는 n이 0일 수 있다. 상기 m 또는 n이 0 인 경우 이를 이용한 전도성 고분자층과 전극 집전체 간의 접착력은 우수하게 유지하면서도 이를 이용한 전지의 수명을 더욱 향상시킬 수 있는 측면에서 유리한 효과가 있을 수 있으나, 본 발명이 이에 제한되는 것은 아니다.In one embodiment of the present invention, in Formula 1 representing the polythiophene-based polymer included in the conductive polymer layer, m or n may be 0. When m or n is 0, there may be an advantageous effect in terms of further improving the lifespan of a battery using the same while maintaining excellent adhesion between the conductive polymer layer and the electrode current collector using the same, but the present invention is limited thereto. It is not.

본 발명의 일 실시양태에서, 상기 전도성 고분자의 중량평균분자량(Mw)은 예를 들어 10,000 g/mol 내지 100,000 g/mol일 수 있다. 구체적으로, 상기 전도성 고분자의 중량평균분자량(Mw)은 10,000 g/mol 내지 80,000 g/mol 또는 30,000 g/mol 내지 60,000 g/mol일 수 있다. 상기 전도성 고분자의 중량평균분자량이 상술한 범위일 때 상기 전도성 고분자층과 상기 전극 활물질층 간의 접착력 및 계면 저항의 측면에서 유리한 효과가 있을 수 있으나, 본 발명이 이에 한정되는 것은 아니다.In one embodiment of the present invention, the weight average molecular weight (Mw) of the conductive polymer may be, for example, 10,000 g/mol to 100,000 g/mol. Specifically, the weight average molecular weight (Mw) of the conductive polymer may be 10,000 g/mol to 80,000 g/mol or 30,000 g/mol to 60,000 g/mol. When the weight average molecular weight of the conductive polymer is within the above range, advantageous effects may be obtained in terms of adhesion and interfacial resistance between the conductive polymer layer and the electrode active material layer, but the present invention is not limited thereto.

본 명세서에 있어서, 상기 전도성 고분자의 중량평균분자량은 겔 투과 크로마토그래피를 이용하여 측정한 값일 수 있다. 구체적으로, 상기 중량평균분자량은 PL GPC220(Agilent Technologies 社)를 이용하여 다음과 같은 조건에서 측정한 값일 수 있다.In the present specification, the weight average molecular weight of the conductive polymer may be a value measured using gel permeation chromatography. Specifically, the weight average molecular weight may be a value measured under the following conditions using PL GPC220 (Agilent Technologies Co.).

- 컬럼: PL Olexis(Polymer Laboratories 社)- Column: PL Olexis (Polymer Laboratories)

- 용매: TCB(Trichlorobenzene)- Solvent: TCB (Trichlorobenzene)

- 유속: 1.0 ml/min- Flow rate: 1.0 ml/min

- 시료농도: 1.0 mg/ml- Sample concentration: 1.0 mg/ml

- 주입량: 200 ㎕- Injection amount: 200 μl

- 컬럼온도: 160℃- Column temperature: 160 ℃

- Detector: Agilent High Temperature RI detector- Detector: Agilent High Temperature RI detector

- Standard: Polystyrene (3차 함수로 보정)- Standard: Polystyrene (correction with cubic function)

본 발명의 일 실시양태에서, 상기 전도성 고분자층의 두께는 예를 들어 0.1 ㎛ 내지 15 ㎛, 구체적으로 0.1 ㎛ 내지 10 ㎛, 0.1 ㎛ 내지 8 ㎛, 0.5 ㎛ 내지 10 ㎛, 0.5 내지 8 ㎛, 0.5 ㎛ 내지 5 ㎛, 1 ㎛ 내지 5 ㎛ 또는 1 ㎛ 내지 3 ㎛일 수 있다. 상기 전도성 고분자층의 두께가 상술한 범위인 경우 전도성 고분자층과 전극 집전체 간의 계면 저항을 개선하고 이에 따라 전지의 수명 특성을 향상시키는 측면에서 유리한 효과를 나타낼 수 있으나, 본 발명이 이에 제한되는 것은 아니다.In one embodiment of the present invention, the thickness of the conductive polymer layer is, for example, 0.1 μm to 15 μm, specifically 0.1 μm to 10 μm, 0.1 μm to 8 μm, 0.5 μm to 10 μm, 0.5 to 8 μm, or 0.5 μm. μm to 5 μm, 1 μm to 5 μm, or 1 μm to 3 μm. When the thickness of the conductive polymer layer is within the above range, an advantageous effect may be exhibited in terms of improving the interface resistance between the conductive polymer layer and the electrode current collector and thus improving the lifespan characteristics of the battery, but the present invention is not limited thereto. no.

본 명세서에 있어서, 상기 전도성 고분자층의 “두께”는 두께를 측정하는 공지의 방법에 의해 측정된 값을 나타낼 수 있다. 두께의 측정 방법은 이에 제한되는 것은 아니지만, 예를 들어 두께측정기 (Mitutoyo社, VL-50S-B)를 이용하여 측정한 값일 수 있다.In the present specification, the “thickness” of the conductive polymer layer may represent a value measured by a known method for measuring thickness. The method for measuring the thickness may be, but is not limited to, a value measured using, for example, a thickness meter (Mitutoyo, VL-50S-B).

본 발명의 일 실시양태에서, 상기 전도성 고분자층(20)이 전도성 고분자로서 상기 폴리사이오펜계 고분자 외에 폴리아닐린(poly(aniline))계 고분자; 폴리피롤(poly(pyrrole))계 고분자; 폴리페닐렌(poly(phenylene))계 고분자; 폴리아세틸렌(poly(acetylene))계 고분자; 이들의 유도체; 또는 이들 중 2 이상을 더 포함할 수 있다.In one embodiment of the present invention, the conductive polymer layer 20 is a poly(aniline)-based polymer in addition to the polythiophene-based polymer as a conductive polymer; polypyrrole (poly(pyrrole))-based polymer; poly(phenylene)-based polymer; poly(acetylene)-based polymer; derivatives thereof; Or two or more of these may be further included.

상기 폴리아닐린계 고분자는 아닐린 반복단위를 포함하는 것이면 크게 제한되지 않는다. 예컨대, 아닐린 반복단위만으로 구성된 호모폴리머를 포함할 수 있고, 아닐린 단량체와 다른 단량체와의 공중합체를 포함할 수도 있다. The polyaniline-based polymer is not particularly limited as long as it contains an aniline repeating unit. For example, it may include a homopolymer composed of only aniline repeating units, or may include a copolymer of aniline monomers and other monomers.

상기 폴리피롤계 고분자는 피롤 반복단위를 포함하는 것이면 크게 제한되지 않는다. 예컨대, 피롤 반복단위만으로 구성된 호모폴리머를 포함할 수 있고, 피롤 단량체와 다른 단량체와의 공중합체를 포함할 수도 있다.The polypyrrole-based polymer is not particularly limited as long as it includes a pyrrole repeating unit. For example, it may include a homopolymer composed of only pyrrole repeating units, or may include a copolymer of a pyrrole monomer and other monomers.

상기 폴리피롤계 고분자는 하기의 화학식 2 또는 3의 구조를 포함할 수 있다:The polypyrrole-based polymer may include a structure represented by Chemical Formula 2 or 3 below:

[화학식 2][Formula 2]

Figure pat00002
Figure pat00002

상기 화학식 2에서,In Formula 2,

상기 R1, 및 R2는 각각 독립적으로 수소, 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기이고,Wherein R 1 and R 2 are each independently hydrogen or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,

상기 m은 1 내지 20,000이다.The m is 1 to 20,000.

[화학식 3][Formula 3]

Figure pat00003
Figure pat00003

상기 화학식 3에서,In Formula 3,

상기 X는

Figure pat00004
이고,The X is
Figure pat00004
ego,

상기 Q는 산소 또는 황이고,Wherein Q is oxygen or sulfur,

상기 R은 치환 또는 비치환된 탄소수 1 내지 5의 알킬렌기이고,Wherein R is a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms,

상기 p는 1 이상의 자연수이고,Wherein p is a natural number of 1 or more,

상기 n은 1 내지 20,000이다.The n is 1 to 20,000.

본 명세서 전체에서, “치환”은 메틸기, 에틸기, 이소프로필기, 부틸기 등의 알킬기; 메톡시기, 에톡시기 등의 알콕시기; 아렌기; 알코올기; 카복실산기 등으로 치환된 경우를 지칭할 수 있다.Throughout this specification, “substitution” refers to an alkyl group such as a methyl group, an ethyl group, an isopropyl group, or a butyl group; Alkoxy groups, such as a methoxy group and an ethoxy group; Arengi; alcohol group; It may refer to a case where it is substituted with a carboxylic acid group or the like.

상기 폴리페닐렌계 고분자는 페닐렌 반복단위를 포함하는 것이면 크게 제한되지 않는다. 예컨대, 페닐렌 반복단위만으로 구성된 호모폴리머를 포함할 수 있고, 페닐렌 단량체와 다른 단량체와의 공중합체를 포함할 수도 있다.The polyphenylene-based polymer is not particularly limited as long as it includes a phenylene repeating unit. For example, it may include a homopolymer composed of only phenylene repeating units, or may include a copolymer of a phenylene monomer and another monomer.

상기 폴리페닐렌계 고분자는 다음과 같은 구조 중 어느 하나 이상을 포함할 수 있다:The polyphenylene-based polymer may include any one or more of the following structures:

Figure pat00005
,
Figure pat00006
,
Figure pat00007
,
Figure pat00008
,
Figure pat00009
.
Figure pat00005
,
Figure pat00006
,
Figure pat00007
,
Figure pat00008
,
Figure pat00009
.

상기 R1, R2, R3, 및 R4는 각각 독립적으로 수소 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기 중 어느 하나이고,Wherein R 1 , R 2 , R 3 , and R 4 are each independently hydrogen or a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms,

상기 n은 1 내지 20,000이다.The n is 1 to 20,000.

상기 폴리아세틸렌계 고분자는 탄소와 수소원자 각각 1개가 폴리엔(polyene) 구조를 가지는 반복단위, 예컨대 (CH)x 구조를 가지는 반복단위를 포함하는 것이면 크게 제한되지 않는다. 예컨대, 폴리엔 구조를 가지는 반복단위만으로 구성된 호모폴리머를 포함할 수 있고, 폴리엔 단량체와 다른 단량체와의 공중합체를 포함할 수도 있다.The polyacetylene-based polymer is not particularly limited as long as it includes a repeating unit having a polyene structure, for example, a repeating unit having a (CH) x structure, in which one carbon atom and one hydrogen atom each have a polyene structure. For example, it may include a homopolymer composed only of repeating units having a polyene structure, or may include a copolymer of a polyene monomer and another monomer.

상기 폴리아세틸렌계 고분자는 하기 화학식 4의 구조를 가질 수 있다:The polyacetylene-based polymer may have a structure represented by Formula 4 below:

[화학식 4][Formula 4]

Figure pat00010
Figure pat00010

상기 화학식 4에서, 상기 n은 1 내지 20,000이다.In Formula 4, n is 1 to 20,000.

본 발명의 일 실시양태에서, 상기 전도성 고분자층(20)은 전극 집전체(10) 상에 전도성 고분자 용액을 코팅한 후 건조하여 형성할 수 있다.In one embodiment of the present invention, the conductive polymer layer 20 may be formed by coating a conductive polymer solution on the electrode current collector 10 and then drying it.

도 1을 참조하면, 본 발명의 일 실시양태에 따른 전기화학소자용 전극(1)은 상기 전도성 고분자층(20)의 상면에 전극 활물질층(30)을 구비한다. 상기 전극 활물질층(30)은 전극 활물질 및 바인더 고분자를 포함한다.Referring to FIG. 1 , an electrode 1 for an electrochemical device according to an embodiment of the present invention includes an electrode active material layer 30 on an upper surface of the conductive polymer layer 20 . The electrode active material layer 30 includes an electrode active material and a binder polymer.

본 발명의 일 실시양태에서, 상기 전극 활물질층은 전극 활물질 및 바인더 고분자 외에도 도전재를 더 포함할 수 있다.In one embodiment of the present invention, the electrode active material layer may further include a conductive material in addition to the electrode active material and the binder polymer.

본 발명의 일 실시양태에서, 상기 전기화학소자용 전극(1)이 양극인 경우, 상기 전극 활물질(즉, 양극 활물질)은 예를 들어 리튬 전이금속 산화물; 리튬 금속 철인산화물; 리튬 니켈-망간-코발트 산화물; 리튬 니켈-망간-코발트 산화물에 일부가 다른 전이금속으로 치환된 산화물; 또는 이들 중 2 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다. 구체적으로, 상기 양극 활물질은 예를 들어 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 구리 산화물(Li2CuO2); LiV3O8, LiV3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 리튬 금속 인산화물 LiMPO4 (여기서, M은 M = Fe, CO, Ni, 또는 Mn임); 리튬 니켈-망간-코발트 산화물 Li1+x(NiaCobMnc)1-xO2(x = 0 ~ 0.03, a = 0.3 ~ 0.95, b = 0.01 ~ 0.35, c = 0.01 ~ 0.5, a+b+c=1); 리튬 니켈-망간-코발트 산화물에 일부가 알루미늄으로 치환된 산화물 Lia[NibCocMndAle]1-fM1fO2 (M1은 Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상이고, 0.8≤a≤1.2, 0.5≤b≤0.99, 0<c<0.5, 0<d<0.5, 0.01≤e≤0.1, 0≤f≤0.1); 리튬 니켈-망간-코발트 산화물에 일부가 다른 전이금속으로 치환된 산화물 Li1+x(NiaCobMncMd)1-xO2(x = 0 ~ 0.03, a = 0.3 ~ 0.95, b = 0.01 ~ 0.35, c = 0.01 ~ 0.5, d = 0.001 ~ 0.03, a+b+c+d=1, M은 Fe, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나임), 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.In one embodiment of the present invention, when the electrode 1 for the electrochemical device is a positive electrode, the electrode active material (ie, positive electrode active material) is, for example, lithium transition metal oxide; lithium metal iron phosphate; lithium nickel-manganese-cobalt oxide; an oxide in which a part of lithium nickel-manganese-cobalt oxide is substituted with another transition metal; Or it may include two or more of these, but is not limited thereto. Specifically, the cathode active material may include, for example, layered compounds such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ), or compounds substituted with one or more transition metals; lithium manganese oxides such as Li 1+x Mn 2-x O 4 (where x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; lithium copper oxide (Li 2 CuO 2 ); vanadium oxides such as LiV 3 O 8 , LiV 3 O 4 , V 2 O 5 , and Cu 2 V 2 O 7 ; Ni site type lithium nickel oxide represented by the formula LiNi 1-x M x O 2 , where M = Co, Mn, Al, Cu, Fe, Mg, B or Ga, and x = 0.01 to 0.3; Formula LiMn 2-x M x O 2 where M = Co, Ni, Fe, Cr, Zn or Ta and x = 0.01 to 0.1 or Li 2 Mn 3 MO 8 where M = Fe, Co, Ni, Cu or Zn) lithium manganese composite oxide; lithium metal phosphate LiMPO 4 where M is M = Fe, CO, Ni, or Mn; Lithium nickel-manganese-cobalt oxide Li 1+x (Ni a Co b Mn c ) 1-x O 2 (x = 0 to 0.03, a = 0.3 to 0.95, b = 0.01 to 0.35, c = 0.01 to 0.5, a +b+c=1); Lithium nickel-manganese-cobalt oxide partially substituted with aluminum Li a [Ni b Co c Mn d Al e ] 1-f M1 f O 2 (M1 is Zr, B, W, Mg, Ce, Hf, Ta , La, Ti, Sr, Ba, F, P, and at least one selected from the group consisting of S, 0.8≤a≤1.2, 0.5≤b≤0.99, 0<c<0.5, 0<d<0.5, 0.01 ≤e≤0.1, 0≤f≤0.1); Oxides in which lithium nickel-manganese-cobalt oxide is partially substituted with other transition metals Li 1+x (Ni a Co b Mn c M d ) 1-x O 2 (x = 0 ~ 0.03, a = 0.3 ~ 0.95, b = 0.01 to 0.35, c = 0.01 to 0.5, d = 0.001 to 0.03, a + b + c + d = 1, M is any selected from the group consisting of Fe, V, Cr, Ti, W, Ta, Mg and Mo one), disulfide compounds; Fe 2 (MoO 4 ) 3 etc. are mentioned, but it is not limited only to these.

본 발명의 다른 실시양태에서, 상기 전기화학소자용 전극(1)이 음극인 경우, 상기 전극 활물질(즉, 음극 활물질)은 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬 금속, 규소계 물질 또는 주석 등을 포함할 수 있다. 상기 탄소재로는 천연흑연, 인조흑연, 저결정 탄소, 및 고결정성 탄소 등을 포함할 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다. 규소계 물질로는 이산화규소 등을 포함할 수 있다.In another embodiment of the present invention, when the electrode 1 for the electrochemical device is a negative electrode, the electrode active material (ie, negative electrode active material) is a carbon material capable of occluding and releasing lithium ions, lithium metal, silicon It may contain sub-total materials or tin. The carbon material may include natural graphite, artificial graphite, low crystalline carbon, and high crystalline carbon. Soft carbon and hard carbon are typical examples of low crystalline carbon, and examples of high crystalline carbon include natural graphite, kish graphite, pyrolytic carbon, and liquid crystal pitch-based carbon fibers. High-temperature calcined carbon such as mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches, and petroleum or coal tar pitch derived cokes are representative examples. The silicon-based material may include silicon dioxide and the like.

상기 바인더 고분자는 폴리불화비닐리덴(polyvinylidene fluoride). 폴리비닐알코올, 카르복시메틸셀룰로즈, 히드록시프로필렌 셀룰로즈, 디아세틸렌셀룰로즈, 폴리비닐클로라이드, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드, 폴리에틸렌 또는 폴리프로필렌, 아크릴로나이트릴-부타디엔고무, 스티렌-부타디엔 고무, 아크릴 고무, 또는 이들 중 2 이상을 포함할 수 있다.The binder polymer is polyvinylidene fluoride. Polyvinyl alcohol, carboxymethyl cellulose, hydroxypropylene cellulose, diacetylene cellulose, polyvinyl chloride, polyvinylpyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene or polypropylene, acrylonitrile-butadiene rubber, styrene-butadiene rubber, acrylic rubber, or two or more of these.

상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니다. 상기 도전재는 예컨대, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체; 그래핀 등의 도전성 소재 등을 포함할 수 있다.The conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery. The conductive material may be, for example, graphite such as natural graphite or artificial graphite; carbon black such as carbon black, acetylene black, ketjen black, channel black, farnes black, lamp black, and thermal black; conductive fibers such as carbon fibers and metal fibers; conductive tubes such as carbon nanotubes; fluorocarbons; metal powders such as aluminum and nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; polyphenylene derivatives; A conductive material such as graphene may be included.

본 발명의 일 실시양태에서, 상기 전극 활물질 및 바인더 고분자의 중량비는 90:10 내지 98:2, 95:5 내지 98:2 또는 97:3 내지 98:2일 수 있다.In one embodiment of the present invention, the weight ratio of the electrode active material and the binder polymer may be 90:10 to 98:2, 95:5 to 98:2, or 97:3 to 98:2.

본 발명의 다른 실시양테엇, 상기 전극 활물질층에 도전재가 더 포함되는 경우, 상기 전극 활물질, 도전재, 및 바인더 고분자의 중량비는 90:5:5 내지 98:1:1, 또는 95:2:3 내지 98:1:1, 또는 97:1:2 내지 98:1:1일 수 있다.In another embodiment of the present invention, when a conductive material is further included in the electrode active material layer, the weight ratio of the electrode active material, the conductive material, and the binder polymer is 90:5:5 to 98:1:1, or 95:2:3 to 98:1:1, or 97:1:2 to 98:1:1.

상기 전극 활물질층(30)은 전극 활물질 및 바인더 고분자, 필요에 따라 도전재를 분산매와 혼합한 전극 활물질층 형성용 슬러리를 상기 전도성 고분자층(20)의 상면에 코팅 및 건조한 후에 압연하여 제조할 수 있다.The electrode active material layer 30 may be prepared by coating a slurry for forming an electrode active material layer in which an electrode active material, a binder polymer, and, if necessary, a conductive material is mixed with a dispersion medium, on the upper surface of the conductive polymer layer 20, drying, and then rolling. there is.

본 발명의 일 실시양태에 따른 전기화학소자용 전극은 전극 집전체의 적어도 일면에 전도성 고분자층이 존재하여, 단락 현상이 일어나는 경우 전극 집전체 간의 직접적인 단락을 방지할 수 있다.In the electrode for an electrochemical device according to an embodiment of the present invention, a conductive polymer layer is present on at least one surface of an electrode current collector, so that when a short circuit occurs, a direct short circuit between electrode current collectors can be prevented.

전기화학소자용 양극의 전위와 전도성 고분자층(20)이 전해액에 있는 염과 상호작용하는 전위가 비슷하여, 상기 전도성 고분자층(20)이 양극에 적용되는 것이 유리할 수 있다. 상기 전기화학소자용 전극이 양극인 경우, Hard short 경로로부터 양극을 보호할 수 있어, 전기화학소자의 안전성이 확보되는 데에 더욱 유리할 수 있다. Since the potential of the anode for an electrochemical device and the potential at which the conductive polymer layer 20 interacts with the salt in the electrolyte are similar, it may be advantageous to apply the conductive polymer layer 20 to the anode. When the electrode for the electrochemical device is an anode, it can protect the anode from a hard short path, which can be more advantageous in securing the safety of the electrochemical device.

특히, 본 발명의 일 실시양태에 따른 전기화학소자용 전극은, 전극 활물질층에 전극 활물질층과 함께 전도성 고분자를 포함하는 경우에 비해, 전극 집전체의 적어도 일면에 전도성 고분자층이 존재하여 전극 집전체를 전도성 고분자층이 감쌀 수 있어 단락 현상이 발생하였을 때 전극의 안전성 향상에 더욱 효과적일 수 있다.In particular, the electrode for an electrochemical device according to an embodiment of the present invention has a conductive polymer layer on at least one surface of the electrode current collector, compared to the case where the electrode active material layer and the conductive polymer are included together with the electrode active material layer. Since the entire conductive polymer layer can be wrapped, it can be more effective in improving the safety of the electrode when a short circuit occurs.

본 발명의 일 실시양태에 따른 전기화학소자용 전극은 분리막과 함께 전기화학소자로 제조될 수 있다.An electrode for an electrochemical device according to an embodiment of the present invention may be manufactured as an electrochemical device together with a separator.

본 발명의 일 실시양태에 따른 전기화학소자는 본 발명의 일 실시양태에 따른 전기화학소자요 전극을 구비함으로써 안전성이 더욱 향상될 수 있다.Safety of the electrochemical device according to an embodiment of the present invention may be further improved by having an electrode of the electrochemical device according to an embodiment of the present invention.

상기 전기화학소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 이차 전지, 연료 전지, 태양 전지 또는 수퍼캐패시터 소자와 같은 캐퍼시터(capacitor) 등이 있다.The electrochemical device includes all devices that undergo an electrochemical reaction, and specific examples include all types of primary and secondary cells, fuel cells, solar cells, and capacitors such as supercapacitor devices.

본 발명의 일 실시양태에서, 상기 전기화학소자는 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함하는 리튬 이차전지일 수 있다.In one embodiment of the present invention, the electrochemical device may be a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery.

상기 분리막은 특별히 제한되지 않으며, 다공성 고분자 기재만으로 구성되거나, 다공성 고분자 기재; 및 상기 다공성 고분자 기재의 적어도 일면에 형성되며, 다수의 무기물 입자들, 및 바인더 고분자를 포함하는 유무기 복합 다공성층;을 포함할 수 있다. 상기 분리막은 상기 양극과 음극 사이에 개재되어 양극과 음극 사이를 절연하는 역할을 한다.The separator is not particularly limited, and is composed of only a porous polymer substrate, or a porous polymer substrate; and an organic-inorganic composite porous layer formed on at least one surface of the porous polymer substrate and containing a plurality of inorganic particles and a binder polymer. The separator is interposed between the positive electrode and the negative electrode and serves to insulate between the positive electrode and the negative electrode.

상기 다공성 고분자 기재는 당해 분야에서 통상적으로 사용되는 다공성 고분자 기재라면 모두 사용이 가능하다. 예를 들면 상기 다공성 고분자 기재로 폴리올레핀계 다공성 고분자 막(membrane) 또는 부직포를 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다.Any porous polymer substrate commonly used in the art may be used as the porous polymer substrate. For example, a polyolefin-based porous polymer membrane or non-woven fabric may be used as the porous polymer substrate, but is not particularly limited thereto.

상기 폴리올레핀계 다공성 고분자 막은 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자, 또는 이들 중 2 이상으로 형성한 막(membrane)을 들 수 있다.The polyolefin-based porous polymer membrane is polyethylene such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene, and ultra-high molecular weight polyethylene, polyolefin-based polymers such as polypropylene, polybutylene, and polypentene, or a membrane formed of two or more of these can be heard

상기 부직포로는 폴리올레핀계 부직포 외에 예를 들어, 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트 (polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈 (polyacetal), 폴리아미드 (polyamide), 폴리카보네이트 (polycarbonate), 폴리이미드 (polyimide), 폴리에테르에테르케톤 (polyetheretherketone), 폴리에테르설폰 (polyethersulfone), 폴리페닐렌옥사이드 (polyphenyleneoxide), 폴리페닐렌설파이드 (polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalene), 또는 이들 중 2 이상으로 형성한 부직포를 들 수 있다. 부직포의 구조는 장섬유로 구성된 스폰본드 부직포 또는 멜트 블로운 부직포일 수 있다.In addition to the polyolefin nonwoven fabric, the nonwoven fabric includes, for example, polyethyleneterephthalate, polybutyleneterephthalate, polyester, polyacetal, polyamide, and polycarbonate. ), polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfide, polyethylenenaphthalene, or two or more of these and nonwoven fabrics formed by The structure of the nonwoven fabric may be a spunbond nonwoven fabric or a melt blown nonwoven fabric composed of long fibers.

상기 다공성 고분자 기재의 두께는 특별히 제한되지 않으나, 3 ㎛ 내지 50 ㎛, 또는 3 ㎛ 내지 15 ㎛일 수 있다. 다공성 고분자 기재에 존재하는 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.01 ㎛ 내지 50 ㎛ 및 10% 내지 95%일 수 있다.The thickness of the porous polymer substrate is not particularly limited, but may be 3 μm to 50 μm, or 3 μm to 15 μm. The pore size and porosity present in the porous polymer substrate are also not particularly limited, but may be 0.01 μm to 50 μm and 10% to 95%, respectively.

본 발명의 일 실시양태에서, 상기 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전지의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0 ~ 5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 상기 무기물 입자는 유전율 상수가 5 이상, 또는 10 이상인 고유전율 무기물 입자, 리튬이온 전달 능력을 갖는 무기물 입자, 또는 이들 중 2종 이상을 포함할 수 있다. 유전율 상수가 5 이상인 무기물 입자는 BaTiO3, BaSO4, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3 (PLZT, 여기서, 0<x<1 , 0<y<1임), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, Mg(OH)2, NiO, CaO, ZnO, ZrO2, Y2O3, SiO2, Al2O3, γ-AlOOH, Al(OH)3, SiC, TiO2, 또는 이들 중 2종 이상을 혼합하여 사용할 수 있으나, 이에 한정되지 않는다.In one embodiment of the present invention, the inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles usable in the present invention are not particularly limited as long as oxidation and/or reduction reactions do not occur in the operating voltage range of the applied battery (eg, 0 to 5V based on Li/Li + ). The inorganic particles may include high dielectric constant inorganic particles having a dielectric constant of 5 or more or 10 or more, inorganic particles having lithium ion transfer ability, or two or more of them. Inorganic particles with a dielectric constant of 5 or more are BaTiO 3 , BaSO 4 , Pb(Zr,Ti)O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, where 0<x<1 , 0<y<1), Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, Mg (OH) 2 , NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , SiO 2 , Al 2 O 3 , γ-AlOOH, Al(OH) 3 , SiC, TiO 2 , or a mixture of two or more of these may be used, but is not limited thereto.

본 발명의 일 실시양태에서, 상기 무기물 입자의 크기는 제한이 없으나, 균일한 두께의 유무기 복합 다공성층 형성 및 적절한 공극률을 위하여, 0.01 내지 10 ㎛, 또는 0.05 내지 1.0 ㎛ 범위의 평균 입경을 가질 수 있다. 이 때, 상기 무기물 입자의 평균 입경은 일반적인 입도 분포계에 의해 분급 후의 입자의 입도 분포를 측정하고, 그 측정결과에 근거하여 산출되는 작은 입경 측으로부터의 적산값 50%의 입도(D50)를 의미한다. 이러한 입도 분포는 레이저 회절 분석법에 의해 측정될 수 있다.In one embodiment of the present invention, the size of the inorganic particles is not limited, but has an average particle diameter in the range of 0.01 to 10 μm, or 0.05 to 1.0 μm in order to form an organic-inorganic composite porous layer with a uniform thickness and an appropriate porosity. can At this time, the average particle diameter of the inorganic particles means the particle size (D50) of 50% of the integrated value from the small particle diameter side calculated based on the particle size distribution of the particles after classification by a general particle size distribution analyzer and the measurement result. do. This particle size distribution can be measured by laser diffraction analysis.

본 발명의 일 실시양태에서, 상기 분리막에 포함되는 바인더 고분자는 폴리비닐리덴플루오라이드(PVdF), 폴리비닐리덴플루오라이드-헥사플루오로프로필렌(polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴플루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리비닐리덴플루오라이드-클로로트리플루오로에틸렌(polyvinylidene fluoride-co-chlorotrifluoroethylene), 폴리메틸메타크릴레이트(polymethyl methacrylate), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트(polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부티레이트(cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate), 시아노에틸풀루란(cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스(cyanoethyl cellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란(pullulan), 카르복실 메틸 셀룰로오스(carboxyl methyl cellulose), 아크릴로니트릴 스티렌 부타디엔 공중합체(acrylonitrile-styrene-butadiene copolymer), 폴리이미드(polyimide), 또는 이들 중 2종 이상을 포함할 수 있으나, 이에 한정되지 않는다.In one embodiment of the present invention, the binder polymer included in the separator is polyvinylidene fluoride (PVdF), polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-hexafluoropropylene, Trichlorethylene (polyvinylidene fluoride-co-trichloroethylene), polyvinylidene fluoride-co-chlorotrifluoroethylene, polymethyl methacrylate, polyacrylonitrile, Polyvinylpyrrolidone, polyvinylacetate, ethylene-co-vinyl acetate, polyethylene oxide, cellulose acetate, cellulose acetate butyrate butyrate), cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, It may include pullulan, carboxyl methyl cellulose, acrylonitrile-styrene-butadiene copolymer, polyimide, or two or more of these, Not limited to this.

본 발명의 일 실시양태에서, 상기 분리막에 포함되는 무기물 입자와 바인더 고분자의 함량비는 20:80 내지 99.9:0.1, 50:50 내지 99.5:0.5, 또는 70:30 내지 80:20일 수 있다. 상기 무기물 입자와 바인더 고분자의 함량비가 전술한 범위일 경우, 무기물 입자 사이의 충분한 접착력을 확보하면서도 무기물 입자들 사이에 형성되는 빈 공간을 충분히 확보할 수 있다.In one embodiment of the present invention, the content ratio of the inorganic particles and the binder polymer included in the separator may be 20:80 to 99.9:0.1, 50:50 to 99.5:0.5, or 70:30 to 80:20. When the content ratio of the inorganic particles to the binder polymer is within the above-described range, it is possible to sufficiently secure an empty space formed between the inorganic particles while securing sufficient adhesion between the inorganic particles.

본 발명의 일 실시양태에서, 상기 유무기 복합 다공성층은 상기 무기물 입자들이 충전되어 서로 접촉된 상태에서 상기 바인더 고분자에 의해 서로 결착되고, 이로 인해 무기물 입자들 사이에 인터스티셜 볼륨(interstitial volumes)이 형성되고, 상기 무기물 입자들 사이의 인터스티셜 볼륨은 빈 공간이 되어 기공을 형성하는 구조를 구비할 수 있다.In one embodiment of the present invention, the organic-inorganic composite porous layer is bound to each other by the binder polymer in a state in which the inorganic particles are filled and in contact with each other, thereby forming interstitial volumes between the inorganic particles is formed, and the interstitial volume between the inorganic particles becomes an empty space and may have a structure in which pores are formed.

본 발명의 일 실시양태에서, 상기 전기화학소자는 전해액을 포함하며, 상기 전해액은 유기 용매와 리튬염을 포함하는 것일 수 있다. 또한, 상기 전해액으로 유기 고체 전해질, 또는 무기 고체 전해질 등이 사용될 수 있다.In one embodiment of the present invention, the electrochemical device includes an electrolyte solution, and the electrolyte solution may include an organic solvent and a lithium salt. In addition, an organic solid electrolyte or an inorganic solid electrolyte may be used as the electrolyte solution.

상기 유기 용매로는, 예를 들어, N-메틸-2-피롤리돈, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥솔란, 포름아미드, 디메틸포름아미드, 디옥솔란, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥솔란 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이비다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the organic solvent include N-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, 1,2-dimethoxyethane , tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid Triester, trimethoxy methane, dioxolane derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-ibidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, methyl propionate, ethyl propionate An aprotic organic solvent such as may be used.

상기 리튬염은 상기 유기 용매에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The lithium salt is a material that is easily soluble in the organic solvent, and is, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carbonate, lithium 4-phenyl borate, imide, and the like can be used. there is.

또한, 상기 전해액에 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.In addition, for the purpose of improving charge and discharge characteristics, flame retardancy, etc. in the electrolyte solution, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N,N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxy ethanol, aluminum trichloride, etc. may be added. there is. In some cases, halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included to impart incombustibility, and carbon dioxide gas may be further included to improve high-temperature storage properties.

상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.Examples of the organic solid electrolyte include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, polyagitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, A polymer containing an ionic dissociation group or the like can be used.

상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitride, halide, sulfate, and the like of Li such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , etc. may be used.

상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전기화학소자 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전기화학소자 조립 전 또는 전기화학소자 조립 최종 단계 등에서 적용될 수 있다.The injection of the electrolyte solution may be performed at an appropriate stage during the manufacturing process of the electrochemical device according to the manufacturing process and required physical properties of the final product. That is, it may be applied before assembling the electrochemical device or at the final stage of assembling the electrochemical device.

상기 분리막을 전기화학소자에 적용하는 공정으로는 일반적인 공정인 권취(winding) 이외에도 분리막과 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.As a process of applying the separator to an electrochemical device, lamination, stack, and folding processes of the separator and the electrode may be performed in addition to winding, which is a general process.

상기 분리막은 전기화학소자의 양극과 음극 사이에 개재될 수 있고, 복수의 셀 또는 전극을 집합시켜 전극조립체를 구성할 때 인접하는 셀 또는 전극 사이에 개재될 수 있다. 상기 전극조립체는 단순 스택형, 젤리-롤형, 스택-폴딩형, 라미네이션-스택형 등의 다양한 구조를 가질 수 있다.The separator may be interposed between an anode and a cathode of an electrochemical device, and may be interposed between adjacent cells or electrodes when configuring an electrode assembly by assembling a plurality of cells or electrodes. The electrode assembly may have various structures such as a simple stack type, a jelly-roll type, a stack-folding type, and a lamination-stack type.

상기 전기화학소자의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등일 수 있다.The appearance of the electrochemical device is not particularly limited, but may be a cylindrical shape using a can, an angular shape, a pouch shape, or a coin shape.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다. Hereinafter, examples will be described in detail to aid understanding of the present invention. However, the embodiments according to the present invention can be modified in many different forms, and the scope of the present invention should not be construed as being limited to the following examples. Embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

실시예 1Example 1

전도성 고분자의 합성 및 전도성 고분자 용액 제조Synthesis of conductive polymer and preparation of conductive polymer solution

하기 [반응 식 1]에 따라 전도성 고분자를 합성하였다.A conductive polymer was synthesized according to the following [Scheme 1].

[반응식 1][Scheme 1]

Figure pat00011
Figure pat00011

구체적으로, 염화철(III) 2.48 g(15.3 mmol, 3 eq)을 70 mL의 클로로포름에 용해시킨 용액에 단량체로서 3-Octylthiophene(화합물 1)을 1 g(5.093 mmol, 1 eq) 투입하여 상온에서 24시간 동안 교반하였다. 혼합 용액을 MWCO(molecular weight of cut off)가 5000인 삼투막에 담은 후, 아세토니트릴 200 mL 용매에 침지하여 미반응 염화철(III) 및 남은 반응물을 선택적으로 제거하였다. 삼투막 내부에 석출된 잔여물을 메탄올로 세척하고 상온에서 건조하여 전도성 고분자로서 화합물 2와 같은 구조를 가지며, 중량평균분자량 50,000 g/mol인 폴리사이오펜계 고분자를 얻었다.Specifically, 1 g (5.093 mmol, 1 eq) of 3-Octylthiophene (Compound 1) as a monomer was added to a solution in which 2.48 g (15.3 mmol, 3 eq) of iron (III) chloride was dissolved in 70 mL of chloroform, and the mixture was incubated at room temperature for 24 hours. Stir for an hour. After putting the mixed solution in an osmosis membrane having a molecular weight of cut off (MWCO) of 5000, it was immersed in 200 mL of acetonitrile solvent to selectively remove unreacted iron (III) chloride and remaining reactants. The residue precipitated inside the osmosis membrane was washed with methanol and dried at room temperature to obtain a polythiophene-based polymer having the same structure as Compound 2 as a conductive polymer and having a weight average molecular weight of 50,000 g/mol.

상기 전도성 고분자를 클로로포름에 녹여 1 중량%의 전도성 고분자 용액을 제조한 후, 1 ㎛의 기공을 갖는 폴리(테트라플루오로에틸렌)(PTFE) 필터를 사용하여 이를 여과하였다.The conductive polymer was dissolved in chloroform to prepare a 1% by weight conductive polymer solution, which was then filtered using a poly(tetrafluoroethylene) (PTFE) filter having pores of 1 μm.

전극 제조electrode manufacturing

상기 전도성 고분자 용액을 20 ㎛의 두께를 갖는 알루미늄 집전체의 본체 및 전극 탭의 일면에 코팅 및 건조하여 전극 집전체의 일면 상에 1 ㎛의 두께의 전도성 고분자층을 형성하였다. 전도성 고분자가 코팅된 집전체의 두께는 총 21 ㎛였다.The conductive polymer solution was coated on one surface of the main body of an aluminum current collector and an electrode tab having a thickness of 20 μm and dried to form a conductive polymer layer having a thickness of 1 μm on one surface of the electrode current collector. The total thickness of the current collector coated with the conductive polymer was 21 μm.

LiCoO2, 카본 블랙, 및 폴리(비닐리덴 플루오라이드)를 97.5:1:1.5의 중량비로 N-메틸-2-피롤리돈(NMP) 용액에 첨가한 후 혼합하여 전극 활물질층 형성용 슬러리를 제조하였다. 상기 전극 활물질층 형성용 슬러리의 고형분 함량은 60 중량%이었다.LiCoO 2 , carbon black, and poly(vinylidene fluoride) were added to an N-methyl-2-pyrrolidone (NMP) solution at a weight ratio of 97.5:1:1.5 and then mixed to prepare a slurry for forming an electrode active material layer did The solid content of the slurry for forming the electrode active material layer was 60% by weight.

상기 전극 활물질층 형성용 슬러리를 전도성 고분자층이 형성된 전극 집전체 상에 코팅 및 건조한 후, 롤 플레스(roll press)를 실시하여 총 두께 50 ㎛의 전극을 제조하였다.After coating and drying the slurry for forming the electrode active material layer on the electrode current collector on which the conductive polymer layer was formed, a roll press was performed to prepare an electrode having a total thickness of 50 μm.

실시예 2 Example 2

집전체의 일면에 형성된 전도성 고분자층의 두께가 10 ㎛이 되도록 전도성 고분자 용액을 코팅한 것을 제외하고, 실시예 1과 동일한 방법으로 전극을 제조하였다.An electrode was manufactured in the same manner as in Example 1, except that the conductive polymer solution was coated so that the thickness of the conductive polymer layer formed on one surface of the current collector was 10 μm.

실시예 3Example 3

하기 [반응식 2]에 따라 합성한 전도성 고분자를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 전극을 제조하였다.An electrode was prepared in the same manner as in Example 1, except that the conductive polymer synthesized according to the following [Scheme 2] was used.

[반응식 2][Scheme 2]

Figure pat00012
Figure pat00012

구체적으로, 염화철(III) 6.09 g (37.6 mmol)을 200ml의 메틸렌클로라이드에 용해시킨 용액에 1.23 g (6.26 mmol)의 3-octylthiophene 과 1.41 g (6.26 mmol) 의 3-decylthiophene을 투입하여 상온에서 24시간 동안 교반하였다. 혼합 용액을 MWCO(molecular weight of cut-off)가 5000인 삼투막에 담은 후, 아세토니트릴 150ml 용매에 침지하여 미반응된 염화철(Ⅲ) 및 남은 반응물을 선택적으로 제거하였다. 삼투막 내부에 석출된 잔여물을 메탄올로 세척하고 상온에서 건조하여 전도성 고분자로서 화합물 4와 같은 구조를 가지며, 중량평균분자량(Mw)이 33,000 g/mol인 폴리사이오펜계 고분자를 얻었다.Specifically, 1.23 g (6.26 mmol) of 3-octylthiophene and 1.41 g (6.26 mmol) of 3-decylthiophene were added to a solution in which 6.09 g (37.6 mmol) of iron (III) chloride was dissolved in 200 ml of methylene chloride, and the mixture was stirred at room temperature for 24 hours. Stir for an hour. After putting the mixed solution in an osmosis membrane having a molecular weight of cut-off (MWCO) of 5000, it was immersed in 150 ml of acetonitrile solvent to selectively remove unreacted iron (III) chloride and remaining reactants. The residue precipitated inside the osmosis membrane was washed with methanol and dried at room temperature to obtain a polythiophene-based polymer having the same structure as Compound 4 as a conductive polymer and having a weight average molecular weight (Mw) of 33,000 g/mol.

비교예 1Comparative Example 1

전극 집전체의 일면에 전도성 고분자를 코팅하지 않은 것을 제외하고, 실시예 1과 동일하게 전극을 제조하였다.An electrode was manufactured in the same manner as in Example 1, except that one surface of the current collector was not coated with a conductive polymer.

비교예 2Comparative Example 2

LiCoO2, 카본 블랙, 폴리(비닐리덴 플루오라이드) 및 상기 실시예 1에서 수득한 전도성 고분자를 95.5:1:1.5:2의 중량비로 N-메틸-2-피롤리돈(NMP) 용액에 첨가한 후 혼합하여 전극 활물질층 형성용 슬러리를 제조하였다. 상기 전극 활물질층 형성용 슬러리의 고형분 함량은 60 중량%이었다.LiCoO 2 , carbon black, poly(vinylidene fluoride) and the conductive polymer obtained in Example 1 were added to a N-methyl-2-pyrrolidone (NMP) solution in a weight ratio of 95.5:1:1.5:2. After mixing, a slurry for forming an electrode active material layer was prepared. The solid content of the slurry for forming the electrode active material layer was 60% by weight.

상기 전극 활물질층 형성용 슬러리를 20 ㎛의 두께를 갖는 알루미늄 집전체 상에 코팅 및 건조한 후, 롤 플레스(roll press)를 실시하여 총 두께 50 ㎛의 전극을 제조하였다.After coating and drying the slurry for forming the electrode active material layer on an aluminum current collector having a thickness of 20 μm, a roll press was performed to prepare an electrode having a total thickness of 50 μm.

비교예 3Comparative Example 3

폴리(이소시아나프텐)(poly(iso-thianaphthene))을 전도성 고분자로 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 전극을 제조하였다.An electrode was prepared in the same manner as in Example 1, except that poly(iso-thianaphthene) was used as the conductive polymer.

비교예 4 Comparative Example 4

하기 [반응식 3]에 따라 합성한 전도성 고분자를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 전극을 제조하였다.An electrode was prepared in the same manner as in Example 1, except that the conductive polymer synthesized according to the following [Scheme 3] was used.

[반응식 3][Scheme 3]

Figure pat00013
Figure pat00013

구체적으로, 염화철(III) 10.84 g (66.85 mmol)을 200ml의 메틸렌클로라이드에 용해시킨 용액에 2.5 g (22.3 mmol)의 3-ethylthiophene 을 투입하여 상온에서 24시간 동안 교반하였다. 혼합 용액을 MWCO(molecular weight of cut-off)가 5000인 삼투막에 담은 후, 아세토니트릴 150ml 용매에 침지하여 미반응된 염화철(Ⅲ)과 남은 반응물을 선택적으로 제거하였다. 삼투막 내부에 석출된 잔여물을 메탄올로 세척하고 상온에서 건조하여 전도성 고분자로서 중량평균분자량(Mw)이 25,000g/mol인 폴리사이오펜계 고분자를 얻었다.Specifically, 2.5 g (22.3 mmol) of 3-ethylthiophene was added to a solution of 10.84 g (66.85 mmol) of iron (III) chloride dissolved in 200 ml of methylene chloride, followed by stirring at room temperature for 24 hours. After putting the mixed solution in an osmosis membrane having a molecular weight of cut-off (MWCO) of 5000, it was immersed in 150 ml of acetonitrile solvent to selectively remove unreacted iron (III) chloride and remaining reactants. The residue precipitated inside the osmosis membrane was washed with methanol and dried at room temperature to obtain a polythiophene-based polymer having a weight average molecular weight (Mw) of 25,000 g/mol as a conductive polymer.

평가예evaluation example

실시예 1 내지 3 및 비교예 1 내지 4에서 제조한 전극의 전도성 고분자층과 전극 집전체 간의 접착력, 전도성 고분자층과 전극 활물질층 간의 계면 저항, 사이클 효율, 및 안전성을 평가하여 하기 표 1에 나타내었다.The adhesion between the conductive polymer layer and the electrode current collector, the interface resistance between the conductive polymer layer and the electrode active material layer, the cycle efficiency, and the safety of the electrodes prepared in Examples 1 to 3 and Comparative Examples 1 to 4 were evaluated and are shown in Table 1 below. was

(1) 전도성 고분자층과 전극 집전체 간의 접착력 측정(1) Measurement of adhesive strength between the conductive polymer layer and the electrode current collector

전도성 고분자층이 형성된 전극 집전체를 양면 테이프를 이용하여 유리판에 부착하여 고정하고, 전극 집전체 부분을 25℃에서 20 mm/min 속도로 90°의 각도로 박리하였을 때의 강도를 전도성 고분자층과 전극 집전체 간의 접착력으로 하였다.The electrode current collector on which the conductive polymer layer was formed was attached and fixed to a glass plate using double-sided tape, and the strength when the electrode current collector was peeled at an angle of 90° at a rate of 20 mm/min at 25 ° C was measured from that of the conductive polymer layer. It was taken as the adhesive force between electrode current collectors.

(2) 전도성 고분자층과 전극 활물질층 간의 계면 저항 측정(2) Measurement of interfacial resistance between the conductive polymer layer and the electrode active material layer

Multi probe tester를 이용하여 실시예 1 내지 3, 및 비교예 3 내지 비교예 4에서 제조한 전극에서의 전도성 고분자층과 전극 활물질층 간의 계면 저항을 측정하였다.Interfacial resistance between the conductive polymer layer and the electrode active material layer in the electrodes prepared in Examples 1 to 3 and Comparative Examples 3 to 4 was measured using a multi probe tester.

또한, Multi probe tester를 이용하여 비교예 1 및 2에서 제조한 전극에서의 전극 집전체와 전극 활물질층 간의 계면 저항을 측정하였다.In addition, the interface resistance between the electrode current collector and the electrode active material layer in the electrodes prepared in Comparative Examples 1 and 2 was measured using a multi probe tester.

(3) 사이클 효율 평가(3) Evaluation of cycle efficiency

인조흑연, 카본 블랙, 및 스티렌 부타디엔 고무를 95:3.5:1.5의 중량비로 혼합하여 음극 활물질층 형성용 슬러리를 제조하고, 이를 8 ㎛ 두께의 구리 박막의 일면에 코팅 및 건조한 후, 롤프레스를 이용하여 압연하여 음극을 제조하였다.A slurry for forming an anode active material layer was prepared by mixing artificial graphite, carbon black, and styrene butadiene rubber in a weight ratio of 95:3.5:1.5, coated on one side of an 8 μm thick copper film, dried, and then used with a roll press. and rolled to prepare a negative electrode.

실시예 1 내지 3 및 비교예 1 내지 4에서 제조한 전극(양극) 및 음극 사이에 10 ㎛ 두께의 폴리에틸렌 원단을 개재하고 80℃의 조건에서 가압하여 전극 조립체를 제조하였다.Electrode assemblies were prepared by interposing a polyethylene fabric having a thickness of 10 μm between the electrodes (anode) and the cathode prepared in Examples 1 to 3 and Comparative Examples 1 to 4 and pressing at 80° C.

상기 제조한 전극 조립체에 전해액(EC:PC:EP:PP=2:1:2.5:4.5, LiPF6 1.4M)(이온 전도도 ≥ 6.5 mS/cm)을 주입하여 전기화학소자를 제조하였다.An electrochemical device was prepared by injecting an electrolyte solution (EC:PC:EP:PP=2:1:2.5:4.5, LiPF 6 1.4M) (ionic conductivity ≥ 6.5 mS/cm) into the prepared electrode assembly.

상기 제조한 전기화학소자를 0.7C rate로 4.48 V까지 정전류/정전압(CC/CV) 충전 및 0.025C cut off 충전을 실시하고, 0.2C rate로 3.0V까지 정전류(CC) 방전하여 사이클 효율을 평가하였다.The electrochemical device prepared above is subjected to constant current/constant voltage (CC/CV) charging and 0.025C cut off charging to 4.48 V at a rate of 0.7C, and constant current (CC) discharging to 3.0V at a rate of 0.2C to evaluate cycle efficiency. did

(4) 안전성 평가(4) Safety evaluation

상기 제조한 전기화학소자를 각각 10개씩 준비하여 평판 위에 놓고, 15.8 mm 직경의 쇠막대를 올려놓은 후, 그 위 61 cm 높이에서 9.1 kg의 추를 자유 낙하하는 과정을 통해 충격 테스트를 진행한 후, 전기화학소자의 발화 여부를 확인하였다.After preparing 10 electrochemical devices prepared above, placing them on a flat plate, placing an iron bar with a diameter of 15.8 mm, and then performing an impact test by freely dropping a weight of 9.1 kg from a height of 61 cm above it, It was confirmed whether the electrochemical element was ignited.

전도성 고분자층의 두께 (㎛)Thickness of conductive polymer layer (㎛) 전도성 고분자층과 전극 집전체 간의 접착력
(gf/20mm)
Adhesion between the conductive polymer layer and the electrode current collector
(gf/20mm)
전도성 고분자층(또는 집전체)과 전극 활물질층 간의 계면저항
(ohm·cm2)
Interfacial resistance between the conductive polymer layer (or current collector) and the electrode active material layer
(ohm cm 2 )
사이클 효율 (cycle efficiency)
(300 cycles)
cycle efficiency
(300 cycles)
안전성 테스트 (Impact test)
Pass/Total
Safety test (Impact test)
Pass/Total
실시예 1Example 1 1One 246246 0.620.62 92.2%92.2% 9/109/10 실시예 2Example 2 1010 237237 4.324.32 75.1%75.1% 9/109/10 실시예 3Example 3 1One 212212 0.490.49 90.1%90.1% 8/108/10 비교예 1Comparative Example 1 00 -- 0.210.21 92.5%92.5% 0/100/10 비교예 2Comparative Example 2 00 -- 0.330.33 91.9%91.9% 5/105/10 비교예 3Comparative Example 3 1One 8484 0.570.57 92.4%92.4% 3/103/10 비교예 4Comparative Example 4 1One 2828 0.330.33 90.3%90.3% 2/102/10

상기 표 1에서 확인할 수 있는 바와 같이, 실시예 1 내지 3의 경우, 전도성 고분자층을 구비함에 따라, 우수한 안전성을 가짐을 확인할 수 있었다.As can be seen in Table 1, in the case of Examples 1 to 3, it was confirmed that they had excellent safety as they were provided with a conductive polymer layer.

특히, 실시예 1 및 실시예 3의 경우, 전도성 고분자층과 전극 활물질층 간의 계면저항이 3.0 ohm·cm2 이하임에 따라 실시예 2 보다 사이클 효율이 더욱 우수함을 확인할 수 있었다.In particular, in the case of Examples 1 and 3, since the interface resistance between the conductive polymer layer and the electrode active material layer was 3.0 ohm·cm 2 or less, it was confirmed that the cycle efficiency was more excellent than that of Example 2.

또한, 실시예 1의 경우, 전도성 고분자층과 전극 집전체 간의 접착력이 더 우수함에 따라서 실시예 3 대비 안전성이 더욱 향상된 것을 확인할 수 있었다.In addition, in the case of Example 1, it was confirmed that the safety was further improved compared to Example 3 as the adhesion between the conductive polymer layer and the electrode current collector was better.

반면, 비교예 1 내지 2의 경우, 전도성 고분자층을 구비하지 않아, 충분한 안전성을 확보할 수 없었다. On the other hand, in the case of Comparative Examples 1 and 2, since the conductive polymer layer was not provided, sufficient safety could not be secured.

특히, 비교예 3 및 비교예 4의 경우 전도성 고분자층을 구비하였음에도 불구하고, 이용된 전도성 고분자의 종류가 상이함에 따라 전도성 고분자층과 집전체 간에 충분한 접착력이 확보되지 못하였음을 확인하였다.In particular, in Comparative Example 3 and Comparative Example 4, despite having a conductive polymer layer, it was confirmed that sufficient adhesion between the conductive polymer layer and the current collector was not secured due to the different types of conductive polymers used.

1: 전기화학소자용 전극
10: 전극 집전체
20: 전도성 고분자층
30: 전극 활물질층
1: electrode for electrochemical device
10: electrode current collector
20: conductive polymer layer
30: electrode active material layer

Claims (9)

전극 집전체;
상기 전극 집전체의 적어도 일면에 위치한 전도성 고분자층; 및
상기 전도성 고분자층의 상면에 위치하고, 전극 활물질 및 바인더 고분자를 포함하는 전극 활물질층을 포함하고,
상기 전도성 고분자층은 하기 화학식 1로 표시되는 폴리사이오펜(poly(thiophene))계 고분자를 포함하는 것을 특징으로 하는 전기화학소자용 전극:
[화학식 1]
Figure pat00014

상기 화학식 1에서,
상기 R1, R2, R3 및 R4는 각각 독립적으로 수소, 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기이고, R1 및 R2의 탄소수의 합 및 R3 및 R4의 탄소수의 합 중 적어도 하나는 3 이상이며,
상기 m 및 n은 각각 독립적으로 0 내지 20,000의 정수이며, m+n > 0이다.
electrode current collector;
a conductive polymer layer located on at least one surface of the electrode current collector; and
Located on the upper surface of the conductive polymer layer, comprising an electrode active material layer containing an electrode active material and a binder polymer,
The conductive polymer layer is an electrode for an electrochemical device, characterized in that it comprises a poly (thiophene)-based polymer represented by the following formula (1):
[Formula 1]
Figure pat00014

In Formula 1,
Wherein R 1 , R 2 , R 3 and R 4 are each independently hydrogen or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, and the sum of carbon atoms of R 1 and R 2 and the carbon atoms of R 3 and R 4 at least one of the sums is 3 or greater;
The m and n are each independently an integer of 0 to 20,000, and m+n > 0.
청구항 1에 있어서,
상기 전도성 고분자층과 상기 전극 집전체 간의 접착력이 200 gf/20 mm 이상인 것을 특징으로 하는 전기화학소자용 전극.
The method of claim 1,
An electrode for an electrochemical device, characterized in that the adhesive strength between the conductive polymer layer and the electrode current collector is 200 gf / 20 mm or more.
청구항 1에 있어서,
상기 전도성 고분자층과 상기 전극 활물질층 간의 계면 저항(interface resistance)이 3.0 ohm·cm2 이하인 것을 특징으로 하는 전기화학소자용 전극.
The method of claim 1,
An electrode for an electrochemical device, characterized in that the interface resistance between the conductive polymer layer and the electrode active material layer is 3.0 ohm·cm 2 or less.
청구항 1에 있어서,
상기 R1 및 R2의 탄소수의 합 및 R3 및 R4의 탄소수의 합 중 적어도 하나는 5 이상인 것을 특징으로 하는 전기화학소자용 전극.
The method of claim 1,
The electrode for an electrochemical device, characterized in that at least one of the sum of carbon atoms of R 1 and R 2 and the sum of carbon atoms of R 3 and R 4 is 5 or more.
청구항 1에 있어서,
상기 m 또는 n이 0인 것을 특징으로 하는 전기화학소자용 전극.
The method of claim 1,
An electrode for an electrochemical device, characterized in that the m or n is 0.
청구항 1에 있어서,
상기 전도성 고분자층의 두께가 0.1 ㎛ 내지 8 ㎛인 것을 특징으로 하는 전기화학소자용 전극.
The method of claim 1,
An electrode for an electrochemical device, characterized in that the thickness of the conductive polymer layer is 0.1 ㎛ to 8 ㎛.
청구항 1에 있어서,
상기 전도성 고분자층이 폴리아닐린 (poly(aniline))계 고분자; 폴리피롤 (poly(pyrrole))계 고분자; 폴리페닐렌(poly(phenylene))계 고분자; 폴리아세틸렌(poly(acetylene))계 고분자; 이들의 유도체; 또는 이들 중 2 이상을 더 포함하는 것을 특징으로 하는 전기화학소자용 전극.
The method of claim 1,
The conductive polymer layer may be a polyaniline (poly(aniline))-based polymer; polypyrrole (poly(pyrrole))-based polymer; poly(phenylene)-based polymer; poly(acetylene)-based polymer; derivatives thereof; Or an electrode for an electrochemical device, characterized in that it further comprises two or more of these.
청구항 1에 있어서,
상기 전기화학소자용 전극이 양극인 것을 특징으로 하는 전기화학소자용 전극.
The method of claim 1,
An electrode for an electrochemical device, characterized in that the electrode for the electrochemical device is an anode.
양극, 음극, 및 상기 양극과 음극 사이에 개재된 분리막을 포함하고,
상기 양극 또는 음극이 청구항 1 내지 청구항 8 중 어느 한 청구항에 따른 전기화학소자용 전극을 포함하는 것을 특징으로 하는 전기화학소자.
Including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode,
An electrochemical device wherein the anode or cathode comprises the electrode for an electrochemical device according to any one of claims 1 to 8.
KR1020220110984A 2021-09-09 2022-09-01 An electrode for electrochemical device and an electrochemical device comprising the same KR20230037451A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/KR2022/013560 WO2023038474A1 (en) 2021-09-09 2022-09-08 Electrode for electrochemical device and electrochemical device comprising same
JP2023553712A JP2024509209A (en) 2021-09-09 2022-09-08 Electrode for electrochemical device and electrochemical device equipped with the same
CN202280019145.9A CN116918093A (en) 2021-09-09 2022-09-08 Electrode for electrochemical device and electrochemical device including the same
EP22867742.3A EP4293742A1 (en) 2021-09-09 2022-09-08 Electrode for electrochemical device and electrochemical device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210120653 2021-09-09
KR1020210120653 2021-09-09

Publications (1)

Publication Number Publication Date
KR20230037451A true KR20230037451A (en) 2023-03-16

Family

ID=85985431

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220110984A KR20230037451A (en) 2021-09-09 2022-09-01 An electrode for electrochemical device and an electrochemical device comprising the same

Country Status (1)

Country Link
KR (1) KR20230037451A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029912A1 (en) * 2022-08-02 2024-02-08 주식회사 엘지화학 Current collector
WO2024029913A1 (en) * 2022-08-02 2024-02-08 주식회사 엘지화학 Current collector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029912A1 (en) * 2022-08-02 2024-02-08 주식회사 엘지화학 Current collector
WO2024029913A1 (en) * 2022-08-02 2024-02-08 주식회사 엘지화학 Current collector

Similar Documents

Publication Publication Date Title
EP2648265B1 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
CN108352504B (en) Electrode for secondary battery and lithium secondary battery comprising the same
US7976977B2 (en) Electrochemical device with alternative separator system
KR102225305B1 (en) Method of Manufacturing Separator Having Inorganic Coating Layer Using Phase Separation
KR20230037451A (en) An electrode for electrochemical device and an electrochemical device comprising the same
KR101031179B1 (en) Electrochemical Device Having Improved Safety against Internal Short
KR20100051353A (en) Stacked electrochemical cell
KR102124105B1 (en) Electrode assembly and secondary battery comprising the same
KR102102982B1 (en) Heat resisting separator for secondary battery and lithium secondary battery comprising the same
KR102553116B1 (en) Negative electrode, and lithium secondarty battery comprising the negative electrode
EP3996196A1 (en) Electrode assembly with insulation film formed on tab, manufacturing method thereof, and lithium secondary battery comprising same
EP3993096A1 (en) Cathode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
KR101774516B1 (en) A method for manufacturing cathode, a cathode manufactured thereby and a lithium secondary battery including the same
CN111937214B (en) Separator for lithium secondary battery and lithium secondary battery comprising same
EP4181268A1 (en) Lithium secondary battery cathode comprising insulating layer with excellent wet adhesive strength and lithium secondary battery comprising same
KR101713082B1 (en) Battery Cell Comprising Unit Cells Having Different Electrode Structures
KR101684315B1 (en) Battery Cell Comprising Unit Cells Having Different Electrode Structures
EP4293742A1 (en) Electrode for electrochemical device and electrochemical device comprising same
EP3522269B1 (en) Method for manufacturing electrode for secondary battery suitable for high loading
KR101441362B1 (en) Electrochemical cell using Gas to Liquid catalyst
KR102608975B1 (en) A separator for electrochemical device and a electrochemical device comprising the same
KR101658591B1 (en) Battery Cell Comprising Unit Cells Having Different Electrode Structures
KR101606449B1 (en) Battery Cell Comprising Unit Cells Having Different Electrode Structures
CN116918093A (en) Electrode for electrochemical device and electrochemical device including the same
KR102191478B1 (en) Secondary Battery Comprising Separator Having Fine Pores

Legal Events

Date Code Title Description
A201 Request for examination