WO2018038528A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2018038528A1
WO2018038528A1 PCT/KR2017/009205 KR2017009205W WO2018038528A1 WO 2018038528 A1 WO2018038528 A1 WO 2018038528A1 KR 2017009205 W KR2017009205 W KR 2017009205W WO 2018038528 A1 WO2018038528 A1 WO 2018038528A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet
valve body
valve
adjustment groove
outlet port
Prior art date
Application number
PCT/KR2017/009205
Other languages
French (fr)
Korean (ko)
Inventor
세오타츠야
마츠자키타카시
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017140384A external-priority patent/JP2018112305A/en
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020187032973A priority Critical patent/KR102403519B1/en
Priority to US16/327,752 priority patent/US11828502B2/en
Priority to EP17843948.5A priority patent/EP3486581B1/en
Publication of WO2018038528A1 publication Critical patent/WO2018038528A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/30Details
    • F16K3/314Forms or constructions of slides; Attachment of the slide to the spindle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • F16K31/043Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/062Capillary expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to, for example, a valve structure used in a refrigeration refrigerator and a refrigerator using the same.
  • valve seat As a valve structure used for a refrigerator, a valve seat having two outlets for flowing out refrigerant, as disclosed in Japanese Unexamined Patent Publication No. 2005-214508, and a valve seat which is rotatably provided with respect to the valve seat in order to open and close each outlet
  • the valve body may be configured so that the refrigerant may be selectively sent to the refrigerating chamber evaporator or the freezing chamber evaporator by rotating the valve body to open one or the other outlet.
  • the said valve body In order to control the refrigerant flow rate of the refrigerant
  • valve structure described above has a structure in which the tip end of the adjustment groove which starts to overlap with the outlet port rotates to pass through the center of the outlet port, so that when the coolant starts to flow, the tip end of the adjustment groove overlaps with the outlet port immediately from the front. You start to lose.
  • this invention is made
  • valve structure which concerns on this invention WHEREIN:
  • the valve structure provided with the valve seat in which the two outlets for outflowing a fluid are provided, and the valve body which is movable with respect to the said valve seat, and adjusts the opening degree of the said outlet port,
  • the valve body has an adjustment groove for controlling the flow rate flowing out of the outlet, and the center of the outlet is displaced from the movement trajectory of the distal end of the adjustment groove starting to overlap with the outlet by the movement of the valve body. It is characterized by.
  • tip part is a concept in which the movement trace of the front-end
  • the tip end portion of the adjustment groove overlaps at an angle shifted from the front directly with respect to the outlet port.
  • the coolant flow rate can be increased little by little, and the flow rate at the start of flowing the fluid can be precisely controlled. It becomes possible.
  • valve body is rotatably provided with respect to the valve seat, and the adjustment groove is formed along the circumferential direction so that the area overlapping with the outlet port is changed as the valve body rotates.
  • the distal end of the adjusting groove overlaps with the outlet so that the foreign material flows out of the outlet along with the fluid, so that the center of the outlet is connected with the center of the distal end of the adjusting groove. It is preferable to displace from the rotational trajectory.
  • the width dimension of the part which the said tip part of the said adjustment groove overlaps with the said outlet port is set based on the size of the said foreign material.
  • channel and an outflow opening may have the deviation at the time of a process or an assembly, and may deviate radially outward or inward with respect to the designed position (henceforth a reference position).
  • the valve opening degree is greater than when the outlet is at the reference position, and the rotation angle at which the coolant starts to flow becomes faster. Thereby, there is a concern that the flow rate increases all at once when the refrigerant starts to flow. The same problem also arises when the adjusting groove is deviated outward in the radial direction with respect to the reference position.
  • the narrowing part has a narrow width in which the adjusting groove has a constant width from the leading end to the rear end, and the narrowing part. It is preferable to have a widening part from which the width dimension becomes large toward the said rear end side.
  • the narrow width is formed to be substantially parallel to the rotational trajectory of the distal end portion in order to prevent the flow rate from increasing at the same time when the refrigerant starts to flow. It is preferable that it is done.
  • the outer edge of the said widening part moves away from the rotation trajectory of the said front end part.
  • the flow rate can be gradually increased after the coolant starts to flow to some extent, and the flow rate increases rapidly when the entire adjusting groove continues to pass through the outlet and the outlet is completely open. Can be prevented.
  • the internal combustion of the widening portion is a rotational trajectory of the tip portion. It is preferably close to or approximately parallel to the rotational trajectory of the tip.
  • the outer edge and the inner edge of the said wide part are asymmetric with respect to the rotational trajectory of the said tip part.
  • the valve opening degree is smaller than the case where the outlet is in the reference position, and the rotation angle at which the coolant starts to flow becomes slow.
  • the area where the tip of the adjusting groove and the outlet 3a overlap is too small, and the flow rate hardly increases even if the valve body is rotated when the coolant starts to flow.
  • the refrigerant may not flow at the same rotational angle as when the outlet is in the reference position, causing trouble such as uncooling, or even basic performance such as an increase in power consumption even if not uncooled. Damage may be a concern.
  • the same problem also occurs when the adjustment groove is repositioned radially inward with respect to the reference position.
  • the rotational trajectory of the tip of the adjustment groove is located on the rotation axis side of the valve body rather than the center of the outlet. It is preferable that the said outlet is arrange
  • the overlapping area can be secured even when the area where the adjustment groove and the outlet overlaps becomes the lower limit (minimum).
  • the area where the tip of the adjustment groove overlaps with the outlet is not too small when the refrigerant starts to flow, and damage to the basic performance such as trouble and increase in power consumption can be prevented.
  • valve structure according to the present invention is used as a three-way valve, that is, a case where the fluid flowing in from the inlet provided in the valve structure is discharged from two outlets formed in the valve seat will be described. Moreover, as such a three-way valve, what was described in said Japanese document is known.
  • valve structure according to the present invention is used as a three-way valve, for example, in a refrigerator having a refrigerating chamber and a freezing chamber, a fully open area in which the two outlets are completely opened at the same time according to the rotation angle of the valve body It is desirable to configure the valve structure so that it is formed.
  • the coolant can be adjusted to an appropriate flow rate in accordance with the load at the time of cooling each of the refrigerating chamber and the freezing chamber by setting the flow rate variable region.
  • the compressor when the compressor is stopped, it is possible to prevent a high temperature refrigerant from flowing into the evaporator from the condenser side by setting it as a completely closed area, and to prevent the temperature of each chamber from rising due to the refrigerant flowing in when the compressor is stopped. .
  • the rotation range of the valve body is less than 360 degrees, for example, by a stopper for starting point correction or position recognition.
  • manufacturing conditions are limited in order to make a valve structure small and simple, it is very difficult to form each area mentioned above.
  • the inventor of the present application has intensively studied to form a completely open region, a variable flow region, and a completely closed region using a small and simple valve structure.
  • the valve body is formed continuously from the rear end of the adjusting groove, and overlaps with the entirety of the outlet separately from the first fully open groove and the first completely open groove.
  • the adjustment groove is formed within 60 degrees around the axis of rotation of the valve body, using a valve structure such as a small and simple three-way valve, a fully open region, a flow variable region and It was found that it could form a completely closed region.
  • valve structure which concerns on this invention is used as a four-way valve.
  • such a four-way valve is used in, for example, a refrigeration refrigerator having a temperature changing chamber in addition to the refrigerating chamber and the freezing chamber.
  • the valve structure according to the present invention is provided with a second valve seat having a third outlet port through which fluid is discharged, and rotatably provided with respect to the second valve seat, and rotates in conjunction with the valve body so that It is provided with the 2nd valve body which adjusts an opening degree, and the said 2nd valve body has the adjustment groove along the circumferential direction which the area which overlaps with the said 3rd outlet opening changes by rotating.
  • one of two outlets formed in the valve seat and the third outlet formed in the second valve body are completely opened simultaneously according to rotation angles of the first valve body and the second valve body. It is preferable that it is comprised so that the fully open area
  • the refrigerant can be adjusted to an appropriate flow rate in accordance with the load at the time of cooling each of the refrigerating chamber, the freezing chamber, and the temperature changing chamber.
  • the compressor when the compressor is stopped, it is possible to prevent the high temperature refrigerant from flowing into the evaporator from the condenser side by setting it as a completely closed area, and to prevent the temperature of each chamber from rising due to the refrigerant flowing in when the compressor is stopped. .
  • valve structure which can form a fully open area
  • the said valve body and the said 2nd valve body are each formed continuously from the rear end of the said adjustment groove, and have a fully open groove which overlaps with the whole said outlet, and each said adjustment If the grooves are formed within 60 degrees of the rotation axis of the valve body or the second valve body, respectively, the fully open area, the flow rate variable area, and the fully closed area using a valve structure such as a small and simple four-way valve Found that can form.
  • a switching valve As a conventional refrigerator, it is common to arrange a switching valve in a machine room, and to use a capillary tube as a pressure reduction mechanism which connects a switching valve and an evaporator.
  • the flow rate adjusting width is expanded by switching a plurality of capillary tubes having different tube diameters to the switching valve.
  • heat exchange is performed by connecting a capillary tube and a return pipe returning from the evaporator to the compressor by soldering or the like.
  • an object of the present invention is to obtain a wider flow rate adjustment range in the refrigeration cycle for switching a plurality of evaporators, and to obtain an effect of preventing liquid return and increasing the freezing capacity.
  • the refrigerator which concerns on this invention provided the capillary tube between a three-way valve or a four-way valve, and an evaporator. It is characterized by the above-mentioned.
  • each flow rate adjustment range can be widened in the refrigeration cycle for switching a plurality of evaporators.
  • the refrigerant temperature at the outlet of the three-way valve and the four-way valve is about the same as the evaporation temperature, and the three-way valve and the four-way valve and the evaporator are connected. It is feared that condensation will occur in the part of the machine room in the piping which goes from the machine room into the furnace.
  • the temperature at the three-way valve and the four-way valve outlet can be made higher than the evaporation temperature, and condensation in the machine room part is caused. Can be suppressed, and the effect of preventing the liquid return by the heat exchange between the capillary tube and the return pipe described above and increasing the freezing capacity can also be obtained.
  • the fluid such as the refrigerant starts to flow
  • the fluid can be increased little by little, and the flow rate at the beginning of flowing the fluid can be controlled with high accuracy.
  • 1A is an internal schematic diagram of the freezer refrigerator of the first embodiment.
  • 1B is a layout view of a refrigerant circuit of the refrigeration refrigerator of the embodiment.
  • FIG. 2 is a schematic diagram showing a refrigerant circuit of the freezer refrigerator according to the embodiment.
  • FIG. 2 is a schematic diagram showing a refrigerant circuit of the freezer refrigerator according to the embodiment.
  • FIG. 7 is a plan view illustrating the valve seat and the valve body according to the embodiment.
  • FIG. 9 is a view for explaining the operation of the valve structure and the flow of the refrigerant in the embodiment.
  • valve 10 is experimental data in which a valve structure in the same embodiment is compared with a conventional valve structure.
  • FIG. 11 is a Moriel diagram of a refrigeration cycle in the embodiment.
  • FIG. 12B is a layout view of a refrigerant circuit of the freezer refrigerator according to the second embodiment.
  • FIG. 19 is a view for explaining the operation of the valve structure and the flow of refrigerant in the embodiment.
  • 20A to 20C are schematic views for explaining the positional change of the outlet.
  • 21A to 21C are schematic diagrams for explaining the variation of the valve opening degree with the change of the position of the outlet.
  • the valve structure according to the first embodiment is used as a so-called four-way valve.
  • valve structure 20 which concerns on this embodiment is used for the refrigerator refrigerator 100, for example.
  • this valve structure 20 is not limited to a refrigeration refrigerator and may be used for the fluid circuit which supplies a fluid in multiple places.
  • the freezer refrigerator 100 includes a refrigerating chamber 11, a freezing chamber 12 and a temperature changing chamber 13, and is provided in a machine room as shown in FIGS. 1A and 1B.
  • the refrigerator evaporator 231, the freezer compartment evaporator 232, the variable temperature room evaporator 233 the plurality of inlet sides provided in each of the inlet sides of each evaporator 231-233.
  • the refrigerant circuit 200 having the decompression means 241 to 243 (hereinafter, referred to as the decompression means 241 for the refrigerating chamber, the decompression means 242 for the freezer compartment, and the decompression means 243 for the temperature room chamber) is provided. Equipped.
  • the evaporator 233 for a temperature change room is provided in the inlet side of the freezer evaporator 232, and the check valve 25 is provided in the outlet side of the freezer compartment evaporator 232.
  • the temperature chamber evaporator 233 may be provided on the outlet side of the freezer compartment evaporator 232 or may be provided in parallel with the freezer compartment evaporator 232.
  • Refrigeration capillary tubes 241 are provided in series at the inlet side of the refrigerating chamber evaporator 231, and refrigeration capillary tubes 242 are provided at the inlet side of the freezer compartment evaporator 232 as freezer compartment decompression means in series.
  • a capillary tube 243 for alternating temperature is provided in series as a pressure reducing means for the chamber.
  • capillary tubes 241 to 243 are provided in parallel with each other, and in this case, the chamber evaporator 233 is provided at the inlet side of the freezer compartment evaporator 232, whereby the chamber chamber evaporator 233 and the freezer compartment evaporator 232 are provided. ) And the outlet side of the freezing chamber pressure reducing means 242, and the refrigerant flowing out of the freezing chamber pressure reducing means 242 to the freezer compartment evaporator 232 without flowing to the temperature chamber evaporator 233 I'm trying to.
  • the return pipe L connecting the outlet side of each evaporator 231, 232, 233 and the suction side of the compressor is thermally connected with the capillary tubes 241, 242, 243 described above. And a low temperature refrigerant flowing through the return pipe (L) and a high temperature refrigerant flowing through the capillary tubes (241, 242, 243).
  • the return pipe L and the capillary tubes 241, 242, 243 are connected by soldering or the like, for example.
  • valve structure 20 will be described.
  • the valve structure 20 is for flowing refrigerant into one or a plurality of evaporators 231 to 233, and as shown in FIGS. 1A to 2, the outlet side of the condenser 22 and the capillary tube ( 241-243 are provided in the form which connects the inlet side.
  • the valve structure 20 is a so-called four-way valve for flowing the refrigerant introduced into one or two of the three evaporators 231 to 233, and the refrigerant flowing through the evaporators 231 to 233.
  • the flow rate is adjustable.
  • this valve structure 20 is provided with at least the valve seat 3 and the valve body 4, as shown to FIG. 3 and FIG. 4,
  • the drive mechanism which rotates the valve body 4 is carried out.
  • coolant flows is formed is further provided.
  • the drive mechanism 5 rotates in conjunction with the motor 51 including the stator 511 and the rotor 512 provided inside the stator 511 and the rotor 512 to drive the driving force of the motor 51. It has an output gear 52 for outputting.
  • the casing 6 includes a hollow casing main body 61 having an opening formed in a bottom surface thereof, and a lid for closing the opening to form the refrigerant inflow space S together with the casing main body 61. It has a sieve (62).
  • the casing main body 61 is formed, for example, in the shape of a rotating body formed of metal or the like, and is disposed inside the stator 511 in a state where the rotor 512 is accommodated in the hollow.
  • the cover body 62 has a flat plate shape, and communicates with the coolant inflow space S so that an inlet 621 for introducing a coolant into the coolant inflow space S is formed. Diameter) of 35 mm or less.
  • the inlet 621 is connected to the outlet side of the condenser 22 by the inlet pipe 7, whereby the refrigerant flowing out of the condenser 22 flows into the refrigerant inlet space S.
  • the valve seat 3 is inserted into the through hole formed in the cover body 62 described above without a gap, and communicates with the coolant inflow space S so as to communicate with the coolant inflow space S.
  • An outlet port 3a for flowing out the refrigerant from the outlet is formed.
  • the through hole 3x in which the rotating shaft X of the valve body 4 mentioned later is inserted in the center of this valve seat 3 is formed.
  • the valve seat 3 of the present embodiment has the upper portion 31 having the same size as the through hole formed in the lid 62 so that the valve seat 3 can be easily mounted on the lid 62.
  • the end portion formed between the upper portion 31 and the lower portion 32 has a lower surface of the lid body 62.
  • the valve seat 3 has a disk shape having a diameter dimension (diameter) of 16 mm or less, and the upper surface 31 of the valve seat 3 penetrates in the thickness direction, for example, a diameter of 0.8 on the upper surface thereof.
  • the outlet 3a of mm is formed.
  • the lower portion 32 communicates with the outlet 3a and is provided with an outlet pipe hole 3s having a diameter larger than that of the outlet port 3a, and the outlet pipe 3s is formed in the outlet pipe hole 3s. 8) is configured to be inserted.
  • the outlet pipe 8 the outlet port 3a is connected to the inlet side of the evaporators 231 to 233, and any one of the evaporator 231 which has flowed out of the refrigerant inlet space S through the outlet port 3a. ⁇ 233)
  • the valve structure 20 of the present embodiment includes two valve seats 3 (hereinafter, these valve seats 3 are the first valve seat 3A and the second valve seat). (3B)), the first valve seat 3A is attached to one of the two through holes formed in the lid 62, and the second valve seat 3B is attached to the other.
  • the 1st valve seat 3A and the 2nd valve seat 3B are disk shapes of the same diameter dimension mutually.
  • first outlet 3a1 and second outlet 3a2 Two outlets 3a (hereinafter, these outlets 3a are referred to as first outlet 3a1 and second outlet 3a2) are formed in the first valve seat 3A.
  • first outlet 3a1 is connected to the inlet side of the refrigerating chamber evaporator 231 by the first outlet pipe 81
  • second outlet 3a2 is the second outlet pipe 82. Is connected to the inlet side of the freezer evaporator 232.
  • the said 1st outlet 3a1 and the said 2nd outlet 3a2 are mutually the same diameter dimension, and are arrange
  • One outlet 3a (hereinafter, this outlet 3a is called 3rd outlet 3a3) is formed in the 2nd valve seat 3B.
  • the third outlet 3a3 is connected to the inlet side of the evaporator 233 for the temperature change chamber by the third outlet pipe 83.
  • the 3rd outlet 3a3 is the same diameter dimension as the 1st outlet 3a1 and the 2nd outlet 3a2, and the distance from the center of the 2nd valve seat 3B to the center of the 3rd outlet 3a3 is And a distance from the center of the first valve seat 3A to the center of the first outlet 3a1 and the second outlet 3a2.
  • the valve body 4 is rotatably provided with respect to the valve seat 3, is for adjusting the opening degree of the said outlet 3a between a fully open state and a fully closed state, and it is an outlet port with rotation
  • the adjustment groove 4a which changes the area which overlaps with 3a is formed.
  • valve body 4A and the 2nd valve body 4B are provided corresponding to each of the 1st valve seat 3A and the 2nd valve seat 3B, here, the 1st valve body ( Since 4A and the 2nd valve body 4B are the same structure, 1st valve body 4A (henceforth simply called valve body 4) is demonstrated below on behalf of these.
  • this valve body 4 is provided above the valve seat 3, and rotates around the center axis of the valve seat 3, Here, the rotating shaft X penetrates through it. A through hole 4x is formed.
  • the valve body 4 is equipped with a manual gear 9 meshing with the output gear 52 described above, and the rotary shaft X is provided on the manual gear 9.
  • the manual gear 9 is provided with the some convex part 91,
  • the upper surface of the valve body 4 is formed with the some concave part 4y engaging with the said convex part 91, have.
  • the first valve body 4A and the second valve body 4B are provided corresponding to each of the first valve seat 3A and the second valve seat 3B.
  • Two manual gears 9 provided in each of the first valve body 4A and the second valve body 4B mesh with the common output gear 52. As a result, the first valve body 4A and the second valve body 4B rotate together with each other.
  • the valve body 4 of this embodiment is comprised from the flat part upper part 41 and the flat part lower part 42 which penetrated in the thickness direction, and the above-mentioned adjustment groove 4a was formed.
  • the upper part 41 is a disk-like thing which overlaps the whole of the lower part 42, for example, and the lower part 42 forms the said adjustment groove 4a in the disk.
  • the valve body 4 of this embodiment is a disk shape whose diameter dimension is 12 mm or less, for example, and the adjustment groove 4a is formed so that it may extend along a circumferential direction.
  • the adjustment groove 4a is formed so that the width dimension may change along the circumferential direction, and here the tip part 4b which starts to overlap with the outlet port 3a by rotation of the valve body 4 is shown. ), The width dimension is gradually increased toward the rear end portion 4c on the opposite side.
  • This adjustment groove 4a is comprised so that it may enter from the front end part 4b to the rear end part 4c within 60 degrees centering on the rotating shaft X of the valve body 4. As shown in FIG.
  • tip part 4b is a part (circle-circle part here) centering around the point Q located on the rotation trace P of the front-end
  • the front end 4x of the adjustment groove 4a is the end of the front end part 4b along the rotation direction of the valve body 4.
  • the tip portion 4b is shaped to have a width dimension of 0.2 mm or more.
  • the semicircular portion of a circle having a diameter of 0.2 mm or more is used as the tip portion 4b.
  • the width dimension here is a dimension along the direction perpendicular
  • the rear end portion 4c of the adjustment groove 4a is further formed with the rear end portion 4c continuously and overlaps with the entirety of the outlet port 3a. 4d) is formed.
  • channel 4d forms notched the lower part 42 of the valve body 4 along the circumferential direction from the rear end 4c toward the side opposite to the rotation direction of the valve body 4. It is.
  • the center O of the outlet port 3a is displaced from the rotational trajectory of the tip portion 4b of the adjustment groove 4a.
  • the tip 4x of the adjustment groove 4a from the imaginary circle Z centering on the rotation axis X of the valve body 4 passing through the center O of the outlet port 3a.
  • the rotational trajectory P of is displaced inward.
  • the refrigeration refrigerator 100 of this embodiment is equipped with the filter which is not shown in the upstream of the valve structure 20, the foreign material, such as a contaminant smaller than the mesh size of a filter, passes through a filter, and it is accompanied with a refrigerant
  • the width dimension of the part which overlaps with the said outlet port 3a in the said tip part 4b is set so that the foreign material which flowed in into the said tip part 4b may flow out from the outlet port 3a with a refrigerant
  • This width dimension is set based on the mesh size of the filter so that foreign matter which has passed through the filter flows out from the outlet port 3a.
  • the front end part is made into 0.1 mm or more of radius OL of the front end part 4b.
  • the width dimension of the part which overlaps with the outlet port 3a in (4b) is made larger than a foreign material.
  • valve structure 20 Next, the operation of the valve structure 20 and the flow of the refrigerant will be described.
  • valve structure 20 of the present embodiment rotates the first valve body 4A and the second valve body 4B in conjunction with these first valve bodies 4A and According to the rotation angle of the 2nd valve body 4B, it is comprised so that a fully closed area
  • the completely closed region is a region in which the first outlet 3a1, the second outlet 3a2, and the third outlet 3a3 are in a completely closed state at the same time.
  • region is an area
  • region of this embodiment is an area
  • the flow rate variable region is a region in which the flow rate of the refrigerant flowing out of each of the outlets 3a1 to 3a3 can be adjusted independently, that is, the first outlet 3a1, the second outlet 3a2, or the third outlet 3a3.
  • the adjustment groove 4a overlaps any one of them, and the other two are regions to be completely closed.
  • the flow rate variable region is provided for each of the outlets 3a1 to 3a3.
  • the flow rate of the refrigerant flowing out of the first outlet 3a1 and the second outlet 3a2 gradually increases, and the flow rate of the refrigerant flowing out of the third outlet 3a3 gradually decreases. Consists of.
  • any one of the first outlet 3a1, the second outlet 3a2, or the third outlet 3a3 is completely open except for the completely closed region, the fully open region, and the variable flow region described above. It is a state and the area
  • the first outlet 3a1, the second outlet 3a2, and the second outlet are provided as spare sections.
  • region in which all 3 outflow openings 3a3 become a fully closed state is provided.
  • the valve body 4 By rotating, the tip 4b of the adjusting groove 4a starts to overlap from the direction immediately away from the front with respect to the outlet port 3a.
  • the area where the tip portion 4b of the adjusting groove 4a overlaps with the outlet port 3a when the coolant starts to flow can be made smaller than in the related art.
  • the coolant flow rate can be increased little by little when the coolant starts to flow, and the flow rate at the start of flowing the fluid can be controlled with high accuracy.
  • the valve body 4 rotates and the front end 4x of the adjustment groove 4a overlaps with the outlet port 3a, since the magnitude
  • the two outlets 3a1 and the outlets 3a3 can be completely opened at the same time in a fully open state, the refrigerant is stored in the refrigerating chamber 11, the freezing chamber 12, and the temperature changing chamber ( 13 can be supplied to three rooms, and the cooling rate of each room can be improved in overload, such as a pull-down.
  • the refrigerant is appropriately flown according to the load at the time of cooling each of the chambers 11 to 13. I can adjust it.
  • Fig. 11 shows a Moriel diagram of the refrigerating circuit in the present embodiment.
  • the pressure reduction mechanism Z has the expansion valve V and the capillary tubes 241, 242, and 243, the refrigerant flowing out of the condenser 22 is used to expand the valve V and the capillary tubes 241, 242, 243. Can be depressurized step by step.
  • the refrigerant flowing through the capillary tubes 241, 242, and 243 from the expansion valve V can be made hotter than the refrigerant before flowing into the evaporators 231, 232, and 233.
  • V) Pipe condensation in the machine room part of the capillary tubes 241, 242, and 243 from the outlet to the furnace can be prevented.
  • the refrigerant return pipe L and the capillary tubes 241, 242, and 243 are thermally connected by, for example, soldering or the like, the refrigerant returned from the evaporators 231, 232, and 233 to the compressor 21, and the expansion are expanded. Heat exchange takes place between the refrigerant from the valve V and through the capillary tubes 241, 242, 243 towards the evaporator.
  • the liquid refrigerant which has not evaporated in the evaporators 231, 232, 233 can be evaporated before returning to the compressor 21 by heating in the refrigerant return pipe L, thereby allowing the liquid refrigerant to the compressor 21.
  • the return can be prevented.
  • the refrigerant in the capillaries 241, 242, and 243 is cooled during the reduced pressure, whereby the refrigerating capacity can be increased, and the efficiency of the refrigeration cycle can be improved.
  • the valve structure 20 according to the second embodiment is used as a so-called three-way valve. Moreover, the valve structure 20 in 2nd Embodiment is provided in the expansion valve V similarly to the said 1st Embodiment, and this expansion valve V and the capillary tubes 241 and 242 are a condenser.
  • the pressure reduction mechanism Z which changes the high pressure refrigerant
  • the valve structure 20 which concerns on this embodiment is used for the refrigerator refrigerator 100, for example as shown to FIG. 12A-FIG.
  • the freezer refrigerator 100 of the present embodiment differs from the freezer refrigerator 100 of the first embodiment in that the refrigerator compartment 100 does not include the temperature changing room, the evaporator for the temperature changing room, and the pressure reducing means for the temperature changing room, but in other respects, the first embodiment is the first embodiment. Since the configuration is the same as, detailed description thereof will be omitted.
  • the valve structure 20 of the present embodiment is a so-called three-way valve for flowing refrigerant into one or both of the refrigerating chamber evaporator 231 or the freezing chamber evaporator 232, and flows to each of the evaporators 231 and 232. It is comprised so that adjustment of a refrigerant flow volume is possible.
  • this valve structure 20 is provided with at least the valve seat 3 and the valve body 4, as shown to FIG. 14 and FIG. 15, Here, the drive mechanism which rotates the valve body 4 is carried out. (5) and a casing (6) in which the valve seat (3) and the valve body (4) are accommodated, and a coolant inflow space into which a coolant flows is formed.
  • corresponds to two valve seats 3 (1st valve seat 3A and 2nd valve seat 3B), and each of these valve seats 3, respectively.
  • two valve bodies 4 the first valve body 4A and the second valve body 4B
  • the valve structure 20 of the present embodiment includes the valve seat 3 and the valve body ( 4) is provided one by one.
  • the valve seat 3 of the present embodiment has the same configuration as the first valve seat 3A of the first embodiment, and as shown in FIG. 16, two outlets 3a (hereinafter, these outlets 3a) are provided.
  • the first outlet 3a1 and the second outlet 3a2 are formed.
  • the first outlet 3a1 is connected to the inlet side of the refrigerating chamber evaporator 231 by the first outlet pipe 81
  • the second outlet 3a2 is the second outlet pipe 82. Is connected to the inlet side of the freezer evaporator 232.
  • the dimension of the valve seat 3, the diameter dimension of each outlet 3a1, 3a2, and the distance from the center of the valve seat 3 to the center of each outlet 3a1, 3a2 are the same as that of 1st Embodiment, Since the operation
  • the valve body 4 is basically the same structure as the valve body 4 of 1st Embodiment. That is, the valve body 4 is rotatably provided with respect to the valve seat 3, and adjusts the opening degree of the said outlet 3a between a fully open state and a fully closed state. As shown in FIG. 17 and FIG. 18, the valve body 4 is completely open to overlap with the adjustment groove 4a in which the area overlapping with the outlet port 3a changes with the rotation and the entire outlet port 3a.
  • a groove 4d (hereinafter also referred to as a first fully open groove 4d) is formed.
  • the adjusting groove 4a is configured such that the front end 4b to the rear end 4c fall within 60 degrees around the rotational axis X of the valve body 4.
  • the first full opening groove 4d is angled from the first embodiment in order to bring the two outlets 3a1 and the outlet 3a2 into the fully open state at the same time by using one valve body 4. It is composed widely.
  • tip part 4b. Is set in view of the size of the foreign matter that can flow into the tip portion 4b, as in the first embodiment.
  • valve body 4 of this embodiment overlaps with the whole outflow opening 3a1 separately from the said adjustment groove 4a and the 1st full opening groove 4d, as shown to FIG. 17 and FIG.
  • the second full opening groove 4f is formed, which is different from the valve body of the first embodiment.
  • the second full opening groove 4f is formed by digging the lower portion 42 of the valve body 4 in the circumferential direction, and is provided so as not to be continuous with the first full opening groove 4d and the adjustment groove 4a. have.
  • channel 4f is comprised so that it may overlap with the whole outflow opening 3a1.
  • the said 2nd fully open groove 4f will be made into the whole of the other outlet 3a. It is formed in the position where it overlaps.
  • the relative positional relationship between the first fully open groove 4d and the second fully open groove 4f is designed based on the relative positional relationship between the two outlets, and here the second fully open groove (
  • the rotary shaft X of the valve body 4 is arranged between 4f) and the first full opening groove 4d.
  • valve structure 20 Next, the operation of the valve structure 20 and the flow of the refrigerant will be described.
  • the valve structure 20 of this embodiment is a fully closed area
  • the completely closed region is a region in which the first outlet 3a1 and the second outlet 3a2 are completely closed at the same time.
  • region is an area
  • 2 A region in which one of the fully open grooves 4f overlaps and the other of the first fully open grooves 4d or the second fully open grooves 4f overlaps the entire second outlet 3a2. to be.
  • the flow rate variable region is a region in which the flow rate of the refrigerant flowing out of each of the outlets 3a1 and 3a2 can be independently adjusted, that is, in one of the first outlet 3a1 or the second outlet 3a2, the adjustment groove 4a is provided. Along with this overlap, the other side is an area that is completely closed. This flow rate variable region is provided for each of the outlets 3a1 and 3a2.
  • the flow rate of the refrigerant flowing out from the first outlet 3a1 and the second outlet 3a2 is gradually increased.
  • one of the first outlet 3a1 or the second outlet 3a2 is in the fully open state, and the other is the fully closed state.
  • region to become is provided.
  • the second fully open groove 4f does not overlap one of the first outlet 3a1 or the second outlet 3a2, and the fully open groove 4d overlaps the other. It is an area
  • the valve body 4 is provided with the 2nd full opening groove
  • the second fully open groove 4f is configured to overlap the entirety of the other outlet 3a, so that a pair of valves
  • the seat 3 and the valve body 4 not only a completely closed state and a variable flow region, but also a completely open region can be formed.
  • the tip 4b of the adjusting groove 4a is rotated by rotating the valve body 4. Starts to overlap from the direction away from the front immediately with respect to the outlet port 3a.
  • the area where the tip portion 4b of the adjusting groove 4a overlaps with the outlet port 3a is made smaller than in the related art, and the coolant flow rate can be increased little by little, and when the fluid starts to flow.
  • the flow rate of can be controlled with high accuracy.
  • the foreign material such as the contaminant which flowed in the tip part 4b of the adjustment groove 4a and overlaps with the outlet port 3a in the front end part 4b, flows from the outlet port 3a with a refrigerant
  • the expansion valve V and the capillary tubes 241 and 242 are provided as the pressure reducing mechanism Z, thereby allowing the liquid refrigerant condensed in the condenser 22 to expand the expansion valve V and the capillary tube ( 241, 242 may be reduced in stages.
  • the effect thereof can be made to be higher than the evaporation temperature of the refrigerant flowing out of the expansion valve V, so that the pipe in the machine room part of the capillary tubes 241 and 242 can be used. Condensation can be prevented.
  • the capillary tubes 241 and 242 and the refrigerant return pipe L are thermally connected, for example, by soldering or the like, as in the first embodiment, the liquid refrigerant returned from the evaporators 231 and 232 to the compressor is heated. And the effect of increasing the refrigerating capacity by cooling the refrigerant directed from the expansion valve V to the evaporators 231 and 232 through the capillary tubes 241 and 242.
  • the pipe diameters of the inlet pipe 7 and the plurality of outlet pipes 8 can be variously changed regardless of the refrigerant flow rate. It is possible to make the pipe diameter of the outflow pipe 8 the same, or to make the pipe diameter of the inflow pipe 7 and the outflow pipe 8 the same.
  • this invention is not limited to 1st Embodiment and 2nd Embodiment.
  • the rotational trajectory of the tip of the adjusting groove is displaced from the imaginary circle so that the tip of the adjusting groove overlaps the outlet, but the tip of the adjusting groove does not overlap the outlet, A portion other than the tip may overlap the outlet.
  • tip 4x of the adjustment groove 4a is in contact with the outer edge of the outlet 3a. It is formed to.
  • valve opening degree rotation angle at which refrigerant starts to flow
  • the valve opening degree is smaller than in the case where the outlet 3a is in the reference position as shown in Fig. 21A, and
  • the valve opening degree is larger than when the outlet 3a is at the reference position, and the rotational angle at which the coolant starts to flow. Is faster.
  • the outlet port 3a of a reference position was arrange
  • the outlet 3a is arrange
  • the adjusting groove 4a of the present embodiment has a shape different from that of the first embodiment and the second embodiment, and specifically, as shown in FIG. It has a narrow part 4g formed toward the edge part 4c side, and the wide part 4h formed from the narrow part 4g toward the rear end part 4c side.
  • the narrow portion 4g is shaped to have a smaller width dimension than the wider portion 4h, and is formed here so that the width dimension does not change along the circumferential direction, that is, the width dimension becomes constant along the circumferential direction.
  • the narrow portion 4g has a pair of opposing inner edges 4g1 parallel to each other, and the width dimension thereof is the same as the diameter of the tip portion 4b constituting the partially circular shape (for example, the minimum that can be machined). Dimensions). All of these internal edges 4g1 extend in a tangential direction from both ends of the front end part 4b, and are parallel to the rotation trace P of the front end 4x.
  • the wide part 4h is formed so that the width dimension may change along the circumferential direction, specifically, the shape where the width dimension gradually increases toward the rear end part 4c, in other words, from the narrow part 4g to the rear end part 4c. It is a shape spreading toward).
  • the outer edge 4h1 of the widening portion 4h is formed so as to move outward from the rotational trajectory P of the tip 4x
  • the inner edge 4h2 of the widening portion 4h is the tip ( It is formed so as to be close to the rotation trajectory P of 4x).
  • the outer edge 4h1 and the inner edge 4h2 of the widened portion 4h are asymmetric with respect to the rotational trajectory P of the tip 4x.
  • the internal combustion 4h2 may be parallel to the rotation trajectory P of the tip 4x.
  • the narrow part 4g is formed in parallel with the rotation trace P of the front-end
  • the flow volume can gradually increase after a coolant starts to flow to some extent, and it will adjust.
  • the entirety of the grooves 4a continues to pass through the outlet port 3a and the outlet port 3a is fully opened, the flow rate can be prevented from increasing rapidly.
  • the flow rate can be prevented from increasing at once, and the flow rate can be gradually increased, so that the flow path area generated in the narrow portion.
  • the variation in ratio can be reduced.
  • valve structure 20 of the present embodiment As described above, in the valve structure 20 of the present embodiment, as shown in FIG. 24, even when the outlet port 3a is positioned outward in the radial direction, the flow rate at the start of flowing the refrigerant can be ensured. In addition, even when the outlet port 3a is positioned in the radially outer side, it is possible to prevent the flow rate from increasing at the same time when the coolant starts to flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Multiple-Way Valves (AREA)

Abstract

The present invention provides a valve structure capable of a high-precision control of a flow rate at the time in which fluid starts to flow. The valve structure (20) comprises: a valve seat (3) in which two outlet ports (3a) for discharging fluid are formed; and a valve body (4) which is provided to be rotatable with respect to the valve seat (3) to adjust the opening degree of the outlet ports (3a), wherein the valve body (4) has a flow control groove (4d) along the circumferential direction in which the overlapping area of the valve body (4) with the outlet ports (3a) is changed by rotation, and wherein the center (O) of the outlet ports (3a) is displaced from a rotational trace of a front end (4b) of the flow control groove (4d) which starts to overlap with the outlet ports (3a) by a rotation of the valve body (4).

Description

냉장고Refrigerator
본 발명은, 예를 들면 냉동 냉장고에 이용되는 밸브 구조 및 이것을 이용한 냉장고에 관한 것이다.The present invention relates to, for example, a valve structure used in a refrigeration refrigerator and a refrigerator using the same.
냉장고에 이용되는 밸브 구조로서는, 종래의 경우 일본 공개특허공보 2005-214508호에 개시된 바와 같이 냉매를 유출시키는 2개의 유출구가 형성된 밸브 시트와, 이 밸브 시트에 대하여 회전 가능하게 마련되어 각 유출구를 개폐하는 밸브체를 구비하고, 밸브체가 회전하여 한쪽 또는 다른 한쪽의 유출구를 개방하는 것에 의하여, 냉매를 냉장실용 증발기 또는 냉동실용 증발기에 선택적으로 보낼 수 있도록 구성된 것이 있다.As a valve structure used for a refrigerator, a valve seat having two outlets for flowing out refrigerant, as disclosed in Japanese Unexamined Patent Publication No. 2005-214508, and a valve seat which is rotatably provided with respect to the valve seat in order to open and close each outlet The valve body may be configured so that the refrigerant may be selectively sent to the refrigerating chamber evaporator or the freezing chamber evaporator by rotating the valve body to open one or the other outlet.
상기 밸브체에는, 각 증발기에 보내는 냉매의 냉매 유량을 제어하기 위하여, 밸브체가 회전하는 것에 의하여 유출구와 겹쳐치는 면적이 바뀌는 원주 방향을 따른 조정 홈이 형성되어 있다. 이 구성에 의하여, 유출구가 폐쇄되어 있는 상태로부터 밸브체를 회전시킴으로써, 유출구와 조정 홈이 겹쳐치는 면적이 커져, 이로 인하여 냉매 유량을 증가시킬 수 있다.In order to control the refrigerant flow rate of the refrigerant | coolant sent to each evaporator, the said valve body is provided with the adjustment groove | channel along the circumferential direction by which the area which overlaps with an outlet port changes by rotation of a valve body. By this structure, by rotating the valve body from the state in which the outlet port is closed, the area where the outlet port and the adjustment groove overlap is large, whereby the refrigerant flow rate can be increased.
그러나, 상기 설명한 밸브 구조는, 유출구와 겹쳐지기 시작하는 조정 홈의 선단부가 유출구의 중심을 통과하도록 회전하는 구성이기 때문에, 냉매를 흘려 보내기 시작할 때에, 조정 홈의 선단부가 유출구에 대하여 바로 정면으로부터 겹쳐지기 시작하게 된다.However, the valve structure described above has a structure in which the tip end of the adjustment groove which starts to overlap with the outlet port rotates to pass through the center of the outlet port, so that when the coolant starts to flow, the tip end of the adjustment groove overlaps with the outlet port immediately from the front. You start to lose.
그 결과, 냉매를 흘려 보내기 시작할 때에, 유출구와 조정 홈의 선단부가 겹쳐치는 면적이 커, 냉매 유량이 유출구에 한꺼번에 흘러 들어가, 냉매 유량을 고정밀도로 제어하는 것이 어렵다는 문제가 있다.As a result, when the coolant starts to flow, the area where the tip of the outlet and the adjustment groove overlap is large, and the flow rate of the coolant flows into the outlet at once, making it difficult to accurately control the coolant flow rate.
따라서, 본원 발명은, 상기 문제점을 해결하기 위하여 이루어진 것이며, 유체를 흘려 보내기 시작할 때의 유량을 고정밀도로 제어할 수 있는 밸브 구조를 제공하는 것을 주된 과제로 하는 것이다.Therefore, this invention is made | formed in order to solve the said problem, and makes it a main subject to provide the valve structure which can control the flow volume at the time of starting to flow a fluid with high precision.
즉, 본 발명에 관한 밸브 구조는, 유체를 유출시키는 유출구가 2개 형성된 밸브 시트와, 상기 밸브 시트에 대하여 이동 가능하게 마련되어 상기 유출구의 개방도를 조정하는 밸브체를 구비한 밸브 구조에 있어서, 상기 밸브체가, 상기 유출구로부터 유출되는 유량을 제어하기 위한 조정 홈을 가지며, 상기 유출구의 중심이, 상기 밸브체의 이동에 의하여 상기 유출구와 겹쳐지기 시작하는 상기 조정 홈의 선단부의 이동 궤적으로부터 변위하고 있는 것을 특징으로 하는 것이다.That is, the valve structure which concerns on this invention WHEREIN: The valve structure provided with the valve seat in which the two outlets for outflowing a fluid are provided, and the valve body which is movable with respect to the said valve seat, and adjusts the opening degree of the said outlet port, The valve body has an adjustment groove for controlling the flow rate flowing out of the outlet, and the center of the outlet is displaced from the movement trajectory of the distal end of the adjustment groove starting to overlap with the outlet by the movement of the valve body. It is characterized by.
또한, 여기에서 말하는 선단부의 이동 궤적이란, 조정 홈의 선단의 이동 궤적이나, 선단보다 뒷쪽에 위치하는 부분의 이동 궤적 등이 포함되는 개념이다.In addition, the movement trace of the front-end | tip part here is a concept in which the movement trace of the front-end | tip of an adjustment groove | channel, the movement trace of the part located behind a front end, etc. are included.
이와 같이 구성된 밸브 구조라면, 유출구의 중심이, 조정 홈의 선단부의 이동 궤적으로부터 변위하고 있으므로, 조정 홈과 유출구가 겹쳐지기 시작할 때에, 조정 홈의 선단부가 유출구에 대하여 바로 정면으로부터 어긋난 각도로 겹쳐진다.According to the valve structure configured as described above, since the center of the outlet port is displaced from the movement trajectory of the tip end portion of the adjustment groove, when the adjustment groove and the outlet port start to overlap, the tip end portion of the adjustment groove overlaps at an angle shifted from the front directly with respect to the outlet port. .
이로써, 냉매를 흘려 보내기 시작할 때에, 조정 홈의 선단부와 유출구가 겹쳐치는 면적을 종래에 비해 작게 할 수 있으므로, 냉매 유량을 조금씩 증가시킬 수 있어, 유체를 흘려 보내기 시작할 때의 유량을 고정밀도로 제어하는 것이 가능해진다.As a result, when the coolant starts to flow, the area where the tip of the adjusting groove overlaps with the outlet can be made smaller than in the related art. Thus, the coolant flow rate can be increased little by little, and the flow rate at the start of flowing the fluid can be precisely controlled. It becomes possible.
구체적인 실시형태로서는, 상기 밸브체가, 상기 밸브 시트에 대하여 회전 가능하게 마련되어 있고, 상기 조정 홈이, 상기 밸브체가 회전하는 것에 의하여 상기 유출구와 겹쳐치는 면적이 바뀌도록 원주 방향을 따라 형성되어 있는 구성을 들 수 있다.As a specific embodiment, the valve body is rotatably provided with respect to the valve seat, and the adjustment groove is formed along the circumferential direction so that the area overlapping with the outlet port is changed as the valve body rotates. Can be mentioned.
그런데, 유출구의 중심이 조정 홈의 선단부의 회전 궤적으로부터 크게 변위하여, 선단부와 유출구가 겹쳐치는 면적이 매우 작아지면, 선단부에 이물이 흘러들어간 경우에, 그 이물이 유출구로부터 흘러나가지 못한다.By the way, when the center of the outlet port is largely displaced from the rotational trajectory of the tip end of the adjusting groove, and the area where the tip part and the outlet port overlap is very small, the foreign material does not flow out of the outlet port when foreign material flows into the tip part.
따라서, 상기 조정 홈의 선단부에 이물이 흘러들어간 경우에, 상기 선단부가 상기 유출구와 겹쳐침으로써, 상기 이물이 상기 유체와 함께 상기 유출구로부터 유출되도록, 상기 유출구의 중심을, 상기 조정 홈의 선단부의 회전 궤적으로부터 변위시키고 있는 것이 바람직하다.Therefore, when foreign matter flows into the distal end of the adjusting groove, the distal end overlaps with the outlet so that the foreign material flows out of the outlet along with the fluid, so that the center of the outlet is connected with the center of the distal end of the adjusting groove. It is preferable to displace from the rotational trajectory.
이러한 구성이라면, 만일 조정 홈의 선단부에 이물이 흘러들어갔다고 해도, 그 이물을 유체와 함께 흘려내보낼 수 있다.With such a configuration, even if foreign matter has flowed into the distal end of the adjustment groove, the foreign matter can flow out with the fluid.
이물을 확실히 흘려내보내기 위해서는, 상기 조정 홈의 상기 선단부와 상기 유출구가 겹쳐치는 부분의 폭치수가, 상기 이물의 크기에 근거하여 설정되어 있는 것이 바람직하다.In order to flow out a foreign material certainly, it is preferable that the width dimension of the part which the said tip part of the said adjustment groove overlaps with the said outlet port is set based on the size of the said foreign material.
상기 조정 홈의 구체적인 형상으로서는, 선단부로부터 그 반대측인 후단부를 향해 폭치수가 커지는 형상을 들 수 있다.As a specific shape of the said adjustment groove | channel, the shape from which a width dimension becomes large toward the rear end part on the opposite side is mentioned.
그런데, 조정 홈이나 유출구의 위치는, 가공 시나 조립 시의 편차가 있어, 설계된 위치(이하, 기준 위치라고 한다)에 대하여 직경 방향 외측 혹은 내측으로 벗어나는 경우가 있다.By the way, the position of an adjustment groove | channel and an outflow opening may have the deviation at the time of a process or an assembly, and may deviate radially outward or inward with respect to the designed position (henceforth a reference position).
유출구가 기준 위치에 대하여 직경 방향 내측으로 위치 변경된 경우, 유출구가 기준 위치에 있는 경우에 비하여 밸브 개방도가 크고, 또한 냉매가 흐르기 시작하는 회전 각도가 빨라진다. 이로써, 냉매를 흘려 보내기 시작할 때에 유량이 한꺼번에 증가할 것이 우려된다. 또한 조정 홈이 기준 위치에 대하여 직경 방향 외측으로 벗어난 경우에도 동일한 문제가 발생한다.When the outlet is repositioned radially inward with respect to the reference position, the valve opening degree is greater than when the outlet is at the reference position, and the rotation angle at which the coolant starts to flow becomes faster. Thereby, there is a concern that the flow rate increases all at once when the refrigerant starts to flow. The same problem also arises when the adjusting groove is deviated outward in the radial direction with respect to the reference position.
따라서, 유출구가 직경 방향 내측으로 위치 변경되는 것이나, 조정 홈이 직경 방향 외측으로 위치 변경되는 것을 감안하면, 상기 조정 홈이, 상기 선단부로부터 상기 후단부를 향해 폭치수가 일정한 협소부와, 상기 협소부로부터 상기 후단부측을 향해 폭치수가 커지는 확폭부를 갖고 있는 것이 바람직하다.Accordingly, in view of the fact that the outlet port is repositioned in the radially inward direction and the adjustment groove is repositioned in the radially outward direction, the narrowing part has a narrow width in which the adjusting groove has a constant width from the leading end to the rear end, and the narrowing part. It is preferable to have a widening part from which the width dimension becomes large toward the said rear end side.
이러한 구성이라면, 상기 설명한 위치 변경에 의하여 조정 홈과 유출구가 겹쳐지는 면적이 상한치(최대)가 되는 경우여도, 냉매를 흘려 보내기 시작할 때에 유량이 한꺼번에 증가하는 것을 저감할 수 있어, 미소 유량역에 있어서 조정 홈이나, 유출구의 가공 시나 조립 시에 있어서의 편차의 영향을 최소한으로 하여 유량 제어하는 것이 가능해진다.With such a structure, even if the area where the adjustment groove and the outlet port overlap by the position change mentioned above becomes an upper limit (maximum), it can reduce that the flow volume increases all at once when the refrigerant starts to flow, so that in the small flow region It becomes possible to control the flow rate by minimizing the influence of the variation in the adjustment groove and the outlet or at the time of processing or assembling.
조정 홈과 유출구가 겹쳐지는 면적이 상한치(최대)가 되는 경우여도, 냉매를 흘려 보내기 시작할 때에 유량이 한꺼번에 증가하게 되는 것을 방지하기 위해서는, 상기 협소폭이, 상기 선단부의 회전 궤적과 대략 평행으로 형성되어 있는 것이 바람직하다.Even in the case where the area where the adjustment groove and the outlet port overlap is the upper limit (maximum), the narrow width is formed to be substantially parallel to the rotational trajectory of the distal end portion in order to prevent the flow rate from increasing at the same time when the refrigerant starts to flow. It is preferable that it is done.
상기 확폭부의 외연이, 상기 선단부의 회전 궤적으로부터 외측으로 멀어져 가는 것이 바람직하다.It is preferable that the outer edge of the said widening part moves away from the rotation trajectory of the said front end part.
확폭부의 외연을 이러한 형상으로 함으로써, 냉매가 어느 정도 흐르기 시작한 후, 유량을 서서히 증가시킬 수 있어, 조정 홈 전체가 유출구를 계속해서 통과하여 유출구가 완전 개방이 될 때에, 유량이 급격하게 증가하게 되는 것을 방지할 수 있다.By making the outer edge of the widening portion such a shape, the flow rate can be gradually increased after the coolant starts to flow to some extent, and the flow rate increases rapidly when the entire adjusting groove continues to pass through the outlet and the outlet is completely open. Can be prevented.
한편 협소부에서 발생하는 유로 면적 비율의 편차를 저감하기 위하여, 냉매가 어느 정도 흐르기 시작한 후, 유량이 한꺼번에 증가하는 것을 방지하여 유량을 서서히 증가시키기 위해서는, 상기 확폭부의 내연이, 상기 선단부의 회전 궤적에 가까워지거나 또는 상기 선단부의 회전 궤적과 대략 평행한 것이 바람직하다.On the other hand, in order to reduce the deviation of the flow path area ratio occurring in the narrow portion, in order to prevent the flow rate from increasing at a time after the refrigerant starts to flow to some extent and to gradually increase the flow rate, the internal combustion of the widening portion is a rotational trajectory of the tip portion. It is preferably close to or approximately parallel to the rotational trajectory of the tip.
구체적인 실시형태로서는, 상기 확폭부의 외연과 내연이, 상기 선단부의 회전 궤적에 대하여 비대칭인 구성을 들 수 있다.As a specific embodiment, the outer edge and the inner edge of the said wide part are asymmetric with respect to the rotational trajectory of the said tip part.
한편, 유출구가 직경 방향 외측으로 위치 변경된 경우, 유출구가 기준 위치에 있는 경우에 비하여 밸브 개방도가 작고, 또한 냉매가 흐르기 시작하는 회전 각도가 늦어진다. 이로써, 냉매를 흘려 보내기 시작할 때에, 조정 홈의 선단부와 유출구(3a)가 겹쳐지는 면적이 너무 작아져, 냉매를 흘려 보내기 시작할 때에 밸브체를 회전시켜도 유량이 좀처럼 증가하지 않는다. 그 결과, 유출구가 직경 방향 외측으로 벗어난 경우에는, 유출구가 기준 위치에 있는 경우와 동일한 회전 각도에서는 냉매가 흐르지 않아 불랭이라는 트러블이 발생할 가능성이 있거나, 불랭까지는 아니더라도 소비 전력량의 증가와 같은 기본 성능의 손상이 우려된다. 또한 조정 홈이 기준 위치에 대하여 직경 방향 내측으로 위치 변경된 경우에도 동일한 문제가 발생한다.On the other hand, when the outlet is repositioned outward in the radial direction, the valve opening degree is smaller than the case where the outlet is in the reference position, and the rotation angle at which the coolant starts to flow becomes slow. Thereby, when the coolant starts to flow, the area where the tip of the adjusting groove and the outlet 3a overlap is too small, and the flow rate hardly increases even if the valve body is rotated when the coolant starts to flow. As a result, when the outlet exits outward in the radial direction, the refrigerant may not flow at the same rotational angle as when the outlet is in the reference position, causing trouble such as uncooling, or even basic performance such as an increase in power consumption even if not uncooled. Damage may be a concern. The same problem also occurs when the adjustment groove is repositioned radially inward with respect to the reference position.
따라서, 유출구가 직경 방향 외측으로 위치 변경되는 것이나, 조정 홈이 직경 방향 내측으로 위치 변경되는 것을 감안하면, 상기 조정 홈의 선단의 회전 궤적이, 상기 유출구의 중심보다 상기 밸브체의 회전축측에 있어서 상기 유출구와 겹쳐지도록, 상기 유출구가 배치되어 있는 것이 바람직하다.Accordingly, in view of the fact that the outlet is repositioned radially outward or the adjustment groove is relocated radially inward, the rotational trajectory of the tip of the adjustment groove is located on the rotation axis side of the valve body rather than the center of the outlet. It is preferable that the said outlet is arrange | positioned so that it may overlap with the said outlet.
이러한 구성이라면, 유출구가 직경 방향 외측으로 위치 변경되었다고 해도, 조정 홈과 유출구가 겹쳐지는 면적이 하한치(최소)가 되는 경우여도, 겹쳐지는 면적을 확보할 수 있다. 이로써, 조정 홈의 선단부와 유출구가 겹쳐지는 면적이 냉매를 흘려 보내기 시작할 때에 너무 작아지지 않아, 불랭이라는 트러블이나 소비 전력량의 증가와 같은 기본 성능의 손상을 방지할 수 있다.With such a configuration, even if the outlet is repositioned outward in the radial direction, the overlapping area can be secured even when the area where the adjustment groove and the outlet overlaps becomes the lower limit (minimum). As a result, the area where the tip of the adjustment groove overlaps with the outlet is not too small when the refrigerant starts to flow, and damage to the basic performance such as trouble and increase in power consumption can be prevented.
계속해서, 본 발명에 관한 밸브 구조를 삼방 밸브로 하여 이용하는 경우, 즉 밸브 구조에 마련된 유입구로부터 유입된 유체를 밸브 시트에 형성된 2개의 유출구로부터 유출시키는 경우에 대해 설명한다. 또한, 이러한 삼방 밸브로서는, 상기의 일본 문헌에 기재된 것이 알려져 있다.Subsequently, a case where the valve structure according to the present invention is used as a three-way valve, that is, a case where the fluid flowing in from the inlet provided in the valve structure is discharged from two outlets formed in the valve seat will be described. Moreover, as such a three-way valve, what was described in said Japanese document is known.
본 발명에 관한 밸브 구조를 삼방 밸브로 하여 예를 들면 냉장실 및 냉동실을 구비한 냉동 냉장고에 이용하는 경우, 상기 밸브체의 회전 각도에 따라, 상기 2개의 유출구가 동시에 완전 개방 상태가 되는 완전 개방 영역이 형성되도록, 밸브 구조를 구성하는 것이 바람직하다.In the case where the valve structure according to the present invention is used as a three-way valve, for example, in a refrigerator having a refrigerating chamber and a freezing chamber, a fully open area in which the two outlets are completely opened at the same time according to the rotation angle of the valve body It is desirable to configure the valve structure so that it is formed.
이러한 구성이라면, 완전 개방 영역으로 하여 2개의 유출구를 완전 개방 상태로 함으로써, 풀다운 시 등의 과부하에 있어서, 냉장실 및 냉동실의 냉각 속도를 향상시킬 수 있다.With such a configuration, by making the two outlets completely open as the completely open area, the cooling rates of the refrigerating compartment and the freezing compartment can be improved in overload during pull down.
상기 밸브체의 회전 각도에 따라, 상기 2개의 유출구 중 한쪽에 상기 조정 홈이 겹쳐져 있는 동안, 다른 한쪽이 완전 폐쇄 상태가 되는 유량 가변 영역과, 상기 2개의 유출구가 동시에 완전 폐쇄 상태가 되는 완전 폐쇄 영역이 형성되도록, 밸브 구조를 구성하는 것이 바람직하다.In accordance with the rotation angle of the valve body, while the adjustment groove is overlapped on one of the two outlets, the flow rate variable region in which the other side is in the fully closed state, and the complete closure in which the two outlets are in the fully closed state at the same time. It is desirable to configure the valve structure so that the region is formed.
이러한 구성이라면, 유량 가변 영역으로 함으로써 냉장실 및 냉동실 각각의 냉각 시에 있어서의 부하에 따라 냉매를 적절한 유량으로 조정할 수 있다. 또, 압축기의 정지 시에는, 완전 폐쇄 영역으로 함으로써 응축기측으로부터 고온 냉매가 증발기에 유입되는 것 방지할 수 있어, 압축기의 정지 시에 냉매 유입에 의하여 각 실의 온도가 상승하는 것을 방지할 수 있다.With such a configuration, the coolant can be adjusted to an appropriate flow rate in accordance with the load at the time of cooling each of the refrigerating chamber and the freezing chamber by setting the flow rate variable region. In addition, when the compressor is stopped, it is possible to prevent a high temperature refrigerant from flowing into the evaporator from the condenser side by setting it as a completely closed area, and to prevent the temperature of each chamber from rising due to the refrigerant flowing in when the compressor is stopped. .
상기 설명한 완전 개방 영역, 유량 가변 영역, 및 완전 폐쇄 영역을 형성할 수 있는 밸브 구조를 제조할 때, 예를 들면 기점 보정이나 위치 인식을 목적으로 한 스토퍼 등에 의하여 밸브체의 회전 범위를 360도 미만으로 설정함과 함께, 밸브 구조를 소형이면서 간단한 것으로 하려면 제조 조건이 한정되기 때문에, 상기 설명한 각 영역을 형성하는 것은 매우 어렵다. 이러던 중 본원 발명자는, 소형이면서 간단한 밸브 구조를 이용하여 완전 개방 영역, 유량 가변 영역 및 완전 폐쇄 영역을 형성하기 위하여, 예의 검토를 거듭했다.When manufacturing a valve structure capable of forming the fully open region, the variable flow region, and the completely closed region described above, the rotation range of the valve body is less than 360 degrees, for example, by a stopper for starting point correction or position recognition. In addition, since manufacturing conditions are limited in order to make a valve structure small and simple, it is very difficult to form each area mentioned above. In the meantime, the inventor of the present application has intensively studied to form a completely open region, a variable flow region, and a completely closed region using a small and simple valve structure.
그 결과, 상기 밸브체가, 상기 조정 홈의 후단부로부터 연속해서 형성되고, 상기 유출구 전체와 겹쳐치는 제1 완전 개방용 홈과, 상기 제1 완전 개방용 홈과는 별도로 상기 유출구 전체와 겹쳐치는 제2 완전 개방용 홈을 가지며, 상기 조정 홈이, 상기 밸브체의 회전축을 중심으로 한 60도 이내에 형성되어 있는 것이라면, 소형이면서 간단한 삼방 밸브와 같은 밸브 구조를 이용하여 완전 개방 영역, 유량 가변 영역 및 완전 폐쇄 영역을 형성할 수 있는 것을 발견했다.As a result, the valve body is formed continuously from the rear end of the adjusting groove, and overlaps with the entirety of the outlet separately from the first fully open groove and the first completely open groove. 2 having a fully open groove, and the adjustment groove is formed within 60 degrees around the axis of rotation of the valve body, using a valve structure such as a small and simple three-way valve, a fully open region, a flow variable region and It was found that it could form a completely closed region.
다음으로, 본 발명에 관한 밸브 구조를 사방 밸브로서 이용하는 경우를 설명한다. 또한, 사방 밸브로서는, 예를 들면 일본 공개특허공보 2004-293573호에 기재되어 있는 바와 같이, 상기 설명한 밸브 시트 및 밸브체와는 별도로, 3번째의 유출구가 형성된 제2 밸브 시트와, 이 제2 밸브 시트에 대하여 회전 가능하게 마련된 제2 밸브체를 구비한 것이 알려져 있다.Next, the case where the valve structure which concerns on this invention is used as a four-way valve is demonstrated. In addition, as a four-way valve, as described in Unexamined-Japanese-Patent No. 2004-2953573, the 2nd valve seat in which the 3rd outlet port was formed separately from the above-mentioned valve seat and valve body, and this 2nd It is known to have a second valve body provided rotatably with respect to the valve seat.
이러한 사방 밸브는, 예를 들면 냉장실 및 냉동실 외에 변온실을 구비하는 냉동 냉장고에 이용되는 것을 생각할 수 있다.It is conceivable that such a four-way valve is used in, for example, a refrigeration refrigerator having a temperature changing chamber in addition to the refrigerating chamber and the freezing chamber.
이러한 경우, 본 발명에 관한 밸브 구조는, 유체를 유출시키는 제3 유출구가 형성된 제2 밸브 시트와, 상기 제2 밸브 시트에 대하여 회전 가능하게 마련됨과 함께 상기 밸브체에 연동하여 회전하여 상기 유출구의 개방도를 조정하는 제2 밸브체를 구비하고, 상기 제2 밸브체가, 회전하는 것에 의하여 상기 제3 유출구와 겹쳐치는 면적이 바뀌는 원주 방향을 따른 조정 홈을 갖고 있다.In such a case, the valve structure according to the present invention is provided with a second valve seat having a third outlet port through which fluid is discharged, and rotatably provided with respect to the second valve seat, and rotates in conjunction with the valve body so that It is provided with the 2nd valve body which adjusts an opening degree, and the said 2nd valve body has the adjustment groove along the circumferential direction which the area which overlaps with the said 3rd outlet opening changes by rotating.
그리고 이 밸브 구조는, 상기 제1 밸브체 및 상기 제2 밸브체의 회전 각도에 따라, 상기 밸브 시트에 형성된 2개의 유출구 중 1개와, 상기 제2 밸브체에 형성된 상기 제3 유출구가 동시에 완전 개방 상태가 되는 완전 개방 영역이 형성되도록 구성되어 있는 것이 바람직하다.In this valve structure, one of two outlets formed in the valve seat and the third outlet formed in the second valve body are completely opened simultaneously according to rotation angles of the first valve body and the second valve body. It is preferable that it is comprised so that the fully open area | region to become a state may be formed.
이러한 구성이라면, 상기 설명한 삼방 밸브의 경우와 마찬가지로, 완전 개방 영역으로 하여 2개의 유출구를 완전 개방 상태로 함으로써, 풀다운 시 등의 과부하에 있어서, 냉장실이나 냉동실이나 변온실의 냉각 속도를 향상시킬 수 있다.With such a configuration, as in the case of the three-way valve described above, by setting the two outlets to the fully open state as the fully open region, the cooling rate of the refrigerating compartment, the freezing compartment, or the temperature changing chamber can be improved in overload during pull down. .
상기 밸브체 및 상기 제2 밸브체의 회전 각도에 따라, 상기 3개의 유출구 중 1개에 상기 조정 홈이 겹쳐져 있는 동안, 나머지 2개가 완전 폐쇄 상태가 되는 유량 가변 영역과, 상기 3개의 유출구가 동시에 완전 폐쇄 상태가 되는 완전 폐쇄 영역이 형성되도록, 밸브 구조를 구성하는 것이 바람직하다.According to the rotation angle of the said valve body and the said 2nd valve body, while the said adjusting groove overlaps with one of the said three outlets, the flow volume variable area | region which the other two will be in a fully closed state, and the said three outlets simultaneously It is desirable to configure the valve structure so that a fully closed region is formed which becomes a fully closed state.
이러한 구성이라면, 상기 설명한 삼방 밸브와 마찬가지로, 유량 가변 영역으로 함으로써 냉장실, 냉동실, 및 변온실 각각의 냉각 시에 있어서의 부하에 따라 냉매를 적절한 유량으로 조정할 수 있다. 또, 압축기의 정지 시에는, 완전 폐쇄 영역으로 함으로써 응축기측으로부터 고온 냉매가 증발기에 유입되는 것을 방지할 수 있어, 압축기의 정지 시에 냉매 유입에 의하여 각 실의 온도가 상승하는 것을 방지할 수 있다.With such a configuration, similarly to the three-way valve described above, by setting the flow rate variable region, the refrigerant can be adjusted to an appropriate flow rate in accordance with the load at the time of cooling each of the refrigerating chamber, the freezing chamber, and the temperature changing chamber. In addition, when the compressor is stopped, it is possible to prevent the high temperature refrigerant from flowing into the evaporator from the condenser side by setting it as a completely closed area, and to prevent the temperature of each chamber from rising due to the refrigerant flowing in when the compressor is stopped. .
완전 개방 영역, 유량 가변 영역, 및 완전 폐쇄 영역을 형성할 수 있는 밸브 구조를 소형이면서 간단한 것으로 하는 것이 매우 곤란한 것은 상기 설명한 바와 같다.It is as mentioned above that it is very difficult to make the valve structure which can form a fully open area | region, a flow-variable area | region, and a fully closed area | region small and simple.
그리고 본원 발명자가 예의 검토를 거듭한 결과, 상기 밸브체 및 상기 제2 밸브체가 각각, 상기 조정 홈의 후단부로부터 연속해서 형성되고, 상기 유출구 전체와 겹쳐치는 완전 개방용 홈을 가지며, 상기 각 조정 홈이, 각각 상기 밸브체 또는 상기 제2 밸브체의 회전축을 중심으로 한 60도 이내에 형성되어 있는 것이라면, 소형이면서 간단한 사방 밸브와 같은 밸브 구조를 이용하여 완전 개방 영역, 유량 가변 영역 및 완전 폐쇄 영역을 형성할 수 있는 것을 발견했다.And as a result of earnest examination by the inventor of this application, the said valve body and the said 2nd valve body are each formed continuously from the rear end of the said adjustment groove, and have a fully open groove which overlaps with the whole said outlet, and each said adjustment If the grooves are formed within 60 degrees of the rotation axis of the valve body or the second valve body, respectively, the fully open area, the flow rate variable area, and the fully closed area using a valve structure such as a small and simple four-way valve Found that can form.
계속해서, 상기 설명한 삼방 밸브 및 사방 밸브 등의 전환 밸브를 탑재한 냉장고에 관해서 설명한다.Next, the refrigerator equipped with switching valves, such as the above-mentioned three-way valve and a four-way valve, is demonstrated.
종래의 냉장고로서는 전환 밸브를 기계실에 배치하고, 전환 밸브와 증발기를 접속하는 감압 기구로서 모세관(capillary tube)을 사용하는 것이 일반적이다.As a conventional refrigerator, it is common to arrange a switching valve in a machine room, and to use a capillary tube as a pressure reduction mechanism which connects a switching valve and an evaporator.
이 공보에 기재된 냉장고에서는, 모세관에 의한 감압에서는 유량 조정폭이 없는 점에서, 관 직경이 다른 복수의 모세관을 전환 밸브로 전환하는 것에 의하여 유량 조정폭을 확대하고 있다.In the refrigerator described in this publication, there is no flow rate adjusting width in the decompression by the capillary tube. Therefore, the flow rate adjusting width is expanded by switching a plurality of capillary tubes having different tube diameters to the switching valve.
또, 종래의 냉장고로서는 모세관과 증발기로부터 압축기로 돌아오는 복귀 배관을 납땜 등에 의하여 접속하여 열교환을 실시하고 있는 것도 일반적이다. 모세관과 복귀 배관에서 열교환을 실시함으로써 복귀 배관을 가열하는 것에 의한 액복귀 방지와 모세관을 냉각하는 것에 의한 냉동 능력 증대의 효과를 얻을 수 있다.In addition, as a conventional refrigerator, heat exchange is performed by connecting a capillary tube and a return pipe returning from the evaporator to the compressor by soldering or the like. By performing heat exchange in the capillary tube and the return pipe, the effect of preventing liquid return by heating the return pipe and increasing the freezing capacity by cooling the capillary can be obtained.
이러한 종래의 냉장고에 있어서 복수의 모세관을 이용하여 유량 조정폭을 확대하는 수단을 복수의 증발기로 이루어지는 냉동 사이클에 적용하는 경우는, 전환 수가 증가하기 때문에 전환 밸브가 복수 필요한 경우가 있어, 비용 증가의 우려가 있는 점, 또, 모세관과 복귀 배관을 접속하는 경우에는 1개의 복귀 배관에 접속할 수 있는 모세관의 수는 가공상 한정되기 때문에, 복귀 배관과 접속할 수 없는 모세관이 생기므로 상기 설명한 바와 같은 액복귀 방지와 냉동 능력 증대 효과를 얻을 수 없다는 문제점이 있다.In such a conventional refrigerator, when a means for expanding the flow rate adjusting width using a plurality of capillaries is applied to a refrigeration cycle composed of a plurality of evaporators, a plurality of switching valves may be required because of the increase in the number of switching. In addition, when the capillary tube and the return pipe are connected, the number of capillaries that can be connected to one return pipe is limited in processing, so that a capillary tube that cannot be connected to the return pipe is generated. And there is a problem that can not obtain the effect of increasing the freezing capacity.
따라서 본 발명은, 복수의 증발기를 전환하는 냉동 사이클에 있어서 각각의 유량 조정폭을 넓게 취함과 함께, 액복귀 방지와 냉동 능력 증대 효과를 얻는 것을 목적으로 한 것이다.Therefore, an object of the present invention is to obtain a wider flow rate adjustment range in the refrigeration cycle for switching a plurality of evaporators, and to obtain an effect of preventing liquid return and increasing the freezing capacity.
즉, 본 발명에 관한 냉장고는, 삼방 밸브 또는 사방 밸브와 증발기 사이에 모세관을 마련한 것을 특징으로 하는 것이다.That is, the refrigerator which concerns on this invention provided the capillary tube between a three-way valve or a four-way valve, and an evaporator. It is characterized by the above-mentioned.
이러한 구성이라면, 상기 설명한 유량 조정역을 가진 삼방 밸브나 사방 밸브를 냉장고에서 사용함으로써 복수의 증발기를 전환하는 냉동 사이클에 있어서 각각의 유량 조정폭을 넓게 취할 수 있다.With such a configuration, by using the three-way valve or the four-way valve having the flow rate adjustment zone described above in the refrigerator, each flow rate adjustment range can be widened in the refrigeration cycle for switching a plurality of evaporators.
한편, 기계실에서 삼방 밸브, 사방 밸브에 의해서만 냉매의 유량 조정을 실시하면 삼방 밸브 및 사방 밸브의 출구에 있어서의 냉매 온도가 증발 온도와 대략 같은 온도가 되어, 삼방 밸브 및 사방 밸브와 증발기를 접속하는 기계실로부터 고(庫) 내로 향하는 배관 중의 기계실 부분에서 결로가 발생할 것이 우려된다.On the other hand, if the flow rate of the refrigerant is adjusted only by the three-way valve and the four-way valve in the machine room, the refrigerant temperature at the outlet of the three-way valve and the four-way valve is about the same as the evaporation temperature, and the three-way valve and the four-way valve and the evaporator are connected. It is feared that condensation will occur in the part of the machine room in the piping which goes from the machine room into the furnace.
이것에 대하여 상기 설명한 구성이라면, 삼방 밸브, 사방 밸브에서 1차 감압, 모세관에서 2차 감압이 되기 때문에 삼방 밸브, 사방 밸브 출구에서의 온도를 증발 온도보다 높게 할 수 있어, 기계실 부분에서의 배관 결로의 발생을 억제할 수 있음과 함께, 상기 설명한 모세관과 복귀 배관의 열교환에 의한 액복귀 방지와 냉동 능력 증대의 효과도 얻을 수 있다.On the other hand, in the above-described configuration, since the primary pressure reduction is performed at the three-way valve and the four-way valve, and the secondary pressure reduction is performed at the capillary tube, the temperature at the three-way valve and the four-way valve outlet can be made higher than the evaporation temperature, and condensation in the machine room part is caused. Can be suppressed, and the effect of preventing the liquid return by the heat exchange between the capillary tube and the return pipe described above and increasing the freezing capacity can also be obtained.
이와 같이 구성한 본 발명에 의하면, 냉매 등의 유체를 흘려 보내기 시작할 때에, 유체를 조금씩 증가시킬 수 있어, 유체를 흘려 보내기 시작할 때의 유량을 고정밀도로 제어하는 것이 가능해진다.According to the present invention configured as described above, when the fluid such as the refrigerant starts to flow, the fluid can be increased little by little, and the flow rate at the beginning of flowing the fluid can be controlled with high accuracy.
또, 삼방 밸브나 사방 밸브로서 이용한 경우에, 소형이면서 간단한 구성으로, 완전 개방 영역이나 유량 가변 영역이나 완전 폐쇄 영역을 형성할 수 있고, 예를 들면 냉동 냉장고에 이용하면, 냉각 속도의 향상, 냉매 유량의 적절한 조정, 압축기 정지 시에 있어서의 각 실의 온도 상승의 방지, 기계실 내에서의 배관의 결로 방지, 모세관과 복귀 배관의 열교환에 의한 액복귀 방지, 냉동 능력 증대 등을 도모할 수 있다.In addition, when used as a three-way valve or a four-way valve, it is possible to form a completely open area, a variable flow rate area, or a completely closed area with a compact and simple configuration. Proper adjustment of the flow rate, prevention of temperature rise in each chamber when the compressor is stopped, prevention of condensation of pipes in the machine room, prevention of liquid return by heat exchange between capillary tubes and return pipes, and improvement of freezing capacity can be achieved.
도 1a은 제1 실시형태의 냉동 냉장고의 내부 모식도이다.1A is an internal schematic diagram of the freezer refrigerator of the first embodiment.
도 1b는 동 실시형태의 냉동 냉장고의 냉매 회로의 배치도이다.1B is a layout view of a refrigerant circuit of the refrigeration refrigerator of the embodiment.
도 2는 동 실시형태의 냉동 냉장고의 냉매 회로를 나타내는 모식도이다.FIG. 2 is a schematic diagram showing a refrigerant circuit of the freezer refrigerator according to the embodiment. FIG.
도 3은 동 실시형태의 밸브 구조의 전체를 상방으로부터 본 모식도이다.It is a schematic diagram which looked at the whole valve structure of the same embodiment from upper direction.
도 4는 동 실시형태의 밸브 구조의 전체를 하방으로부터 본 모식도이다.It is a schematic diagram which looked at the whole of the valve structure of the same embodiment from the bottom.
도 5는 동 실시형태의 밸브 시트 및 밸브체를 상방으로부터 본 모식도이다.It is a schematic diagram which looked at the valve seat and the valve body of the same embodiment from above.
도 6은 동 실시형태의 밸브 시트 및 밸브체를 하방으로부터 본 모식도이다.It is a schematic diagram which looked at the valve seat and the valve body of the same embodiment from the bottom.
도 7은 동 실시형태의 밸브 시트 및 밸브체를 나타내는 평면도이다.7 is a plan view illustrating the valve seat and the valve body according to the embodiment.
도 8은 동 실시형태의 조정 홈을 설명하기 위한 모식도이다.It is a schematic diagram for demonstrating the adjustment groove | channel of the same embodiment.
도 9는 동 실시형태에 있어서의 밸브 구조의 동작 및 냉매의 흐름을 설명하기 위한 도면이다.9 is a view for explaining the operation of the valve structure and the flow of the refrigerant in the embodiment.
도 10은 동 실시형태에 있어서의 밸브 구조와 종래의 밸브 구조를 비교한 실험 데이터이다.10 is experimental data in which a valve structure in the same embodiment is compared with a conventional valve structure.
도 11은 동 실시형태에 있어서의 냉동 사이클의 모리엘선도이다.11 is a Moriel diagram of a refrigeration cycle in the embodiment.
도 12a은 제2 실시형태의 냉동 냉장고의 내부 모식도이다.It is an internal schematic diagram of the refrigeration refrigerator of 2nd Embodiment.
도 12b는 제 2실시형태의 냉동 냉장고의 냉매 회로의 배치도이다.12B is a layout view of a refrigerant circuit of the freezer refrigerator according to the second embodiment.
도 13은 제2 실시형태의 냉동 냉장고의 냉매 회로를 나타내는 모식도이다.It is a schematic diagram which shows the refrigerant circuit of the refrigeration refrigerator of 2nd Embodiment.
도 14는 동 실시형태의 밸브 구조의 전체를 상방으로부터 본 모식도이다.It is a schematic diagram which looked at the whole valve structure of the same embodiment from upper direction.
도 15는 동 실시형태의 밸브 구조의 전체를 하방으로부터 본 모식도이다.It is a schematic diagram which looked at the whole of the valve structure of the same embodiment from the bottom.
도 16은 동 실시형태의 밸브 시트 및 밸브체를 상방으로부터 본 모식도이다.It is a schematic diagram which looked at the valve seat and the valve body of the same embodiment from above.
도 17은 동 실시형태의 밸브 시트 및 밸브체를 하방으로부터 본 모식도이다.It is a schematic diagram which looked at the valve seat and the valve body of the same embodiment from the bottom.
도 18은 동 실시형태의 밸브 시트 및 밸브체를 나타내는 평면도이다.It is a top view which shows the valve seat and the valve body of the same embodiment.
도 19는 동 실시형태에 있어서의 밸브 구조의 동작 및 냉매의 흐름을 설명하기 위한 도면이다.FIG. 19 is a view for explaining the operation of the valve structure and the flow of refrigerant in the embodiment. FIG.
도 20a 내지 도 20c는 유출구의 위치 변경을 설명하기 위한 모식도이다.20A to 20C are schematic views for explaining the positional change of the outlet.
도 21a 내지 도 21c는 유출구의 위치 변경에 수반하는 밸브 개방도의 편차를 설명하기 위한 모식도이다.21A to 21C are schematic diagrams for explaining the variation of the valve opening degree with the change of the position of the outlet.
도 22는 제1 실시형태 및 제2 실시형태에 있어서의 유량 변화를 나타내는 도면이다.It is a figure which shows the flow volume change in 1st Embodiment and 2nd Embodiment.
도 23은 제3 실시형태에 있어서의 유출구 및 조정 홈을 설명하기 위한 모식도이다.It is a schematic diagram for demonstrating the outflow port and adjustment groove | channel in 3rd Embodiment.
도 24는 제3 실시형태에 있어서의 유량 변화를 나타내는 도면이다.It is a figure which shows the flow volume change in 3rd Embodiment.
<제1 실시형태><1st embodiment>
먼저 본 발명의 제1 실시형태에 대해 도면을 참조해 설명한다.First, a first embodiment of the present invention will be described with reference to the drawings.
제1 실시형태에 관한 밸브 구조는, 이른바 사방 밸브로서 이용되는 것이다.The valve structure according to the first embodiment is used as a so-called four-way valve.
본 실시형태에 관한 밸브 구조(20)는, 도 1에 나타낸 바와 같이, 예를 들면 냉동 냉장고(100)에 이용되는 것이다. 또한, 이 밸브 구조(20)는, 냉동 냉장고에 한정하지 않고, 유체를 복수 개소에 공급하는 유체 회로에 이용해도 상관없다.As shown in FIG. 1, the valve structure 20 which concerns on this embodiment is used for the refrigerator refrigerator 100, for example. In addition, this valve structure 20 is not limited to a refrigeration refrigerator and may be used for the fluid circuit which supplies a fluid in multiple places.
먼저, 본 실시형태의 냉동 냉장고(100)에 대해 설명한다.First, the refrigerator refrigerator 100 of this embodiment is demonstrated.
냉동 냉장고(100)는, 도 1a 내지 도 2에 나타낸 바와 같이, 냉장실(11), 냉동실(12) 및 변온실(13)을 가진 것이며, 또, 도 1a 및 도1b에 나타낸 바와 같이 기계실에 구비한 압축기(21)와, 압축기(21)의 토출측에 마련된 응축기(22)와, 응축기(22)의 출구측 및 압축기(21)의 흡입측의 사이에서 각 고 내에 마련된 복수의 증발기(231~233)(이하, 이것들을 구별하는 경우, 냉장실용 증발기(231), 냉동실용 증발기(232), 변온실용 증발기(233)라고 한다)와, 각 증발기(231~233)의 입구측 각각에 마련된 복수의 감압 수단(241~243)(이하, 이것들을 구별하는 경우, 냉장실용 감압 수단(241), 냉동실용 감압 수단(242), 변온실용 감압 수단(243)이라고 한다)을 가진 냉매 회로(200)를 구비하고 있다.As shown in FIGS. 1A to 2, the freezer refrigerator 100 includes a refrigerating chamber 11, a freezing chamber 12 and a temperature changing chamber 13, and is provided in a machine room as shown in FIGS. 1A and 1B. One compressor 21, a condenser 22 provided on the discharge side of the compressor 21, and a plurality of evaporators 231 to 233 provided in each chamber between the outlet side of the condenser 22 and the suction side of the compressor 21. (Hereinafter, when distinguishing these, it is called the refrigerator evaporator 231, the freezer compartment evaporator 232, the variable temperature room evaporator 233), and the plurality of inlet sides provided in each of the inlet sides of each evaporator 231-233. The refrigerant circuit 200 having the decompression means 241 to 243 (hereinafter, referred to as the decompression means 241 for the refrigerating chamber, the decompression means 242 for the freezer compartment, and the decompression means 243 for the temperature room chamber) is provided. Equipped.
여기에서는, 냉동실용 증발기(232)의 입구측에 변온실용 증발기(233)가 마련되어 있고, 냉동실용 증발기(232)의 출구측에는 체크 밸브(25)가 마련되어 있다. 또한, 변온실용 증발기(233)는, 냉동실용 증발기(232)의 출구측에 마련되어 있어도 되고, 냉동실용 증발기(232)와 병렬로 마련되어 있어도 된다.Here, the evaporator 233 for a temperature change room is provided in the inlet side of the freezer evaporator 232, and the check valve 25 is provided in the outlet side of the freezer compartment evaporator 232. As shown in FIG. The temperature chamber evaporator 233 may be provided on the outlet side of the freezer compartment evaporator 232 or may be provided in parallel with the freezer compartment evaporator 232.
냉장실용 증발기(231)의 입구측에는 냉장실용 감압 수단으로서 냉장용 모세관(241)가 직렬로 마련되어 있고, 냉동실용 증발기(232)의 입구측에는 냉동실용 감압 수단으로서 냉동용 모세관(242)가 직렬로 마련되어 있으며, 변온실용 증발기(233)의 입구측에는 변온실용 감압 수단으로서 변온용 모세관(243)가 직렬로 마련되어 있다.Refrigeration capillary tubes 241 are provided in series at the inlet side of the refrigerating chamber evaporator 231, and refrigeration capillary tubes 242 are provided at the inlet side of the freezer compartment evaporator 232 as freezer compartment decompression means in series. On the inlet side of the chamber evaporator 233, a capillary tube 243 for alternating temperature is provided in series as a pressure reducing means for the chamber.
이들 모세관(241~243)는 서로 병렬로 마련되어 있고, 여기에서는 변온실용 증발기(233)가 냉동실용 증발기(232)의 입구측에 마련되어 있는 점에서, 변온실용 증발기(233) 및 냉동실용 증발기(232)의 사이와 냉동실용 감압 수단(242)의 출구측을 배관 접속하여, 냉동실용 감압 수단(242)으로부터 흘러나온 냉매를 변온실용 증발기(233)에 흘려보내지 않고 냉동실용 증발기(232)에 흘려보내도록 하고 있다.These capillary tubes 241 to 243 are provided in parallel with each other, and in this case, the chamber evaporator 233 is provided at the inlet side of the freezer compartment evaporator 232, whereby the chamber chamber evaporator 233 and the freezer compartment evaporator 232 are provided. ) And the outlet side of the freezing chamber pressure reducing means 242, and the refrigerant flowing out of the freezing chamber pressure reducing means 242 to the freezer compartment evaporator 232 without flowing to the temperature chamber evaporator 233 I'm trying to.
본 실시형태의 냉매 회로(200)는, 각 증발기(231, 232, 233)의 출구측과 압축기의 흡입측을 접속하는 복귀 배관(L)이, 상기 설명한 모세관(241, 242, 243)와 열적으로 접속되어 있고, 복귀 배관(L)을 흐르는 저온 냉매와 모세관(241, 242, 243)를 흐르는 고온 냉매와의 사이에서 열교환이 이루어지도록 구성되어 있다. 구체적으로는, 복귀 배관(L)과 모세관(241, 242, 243)를 예를 들면 납땜 등에 의하여 접속하고 있다.In the refrigerant circuit 200 of the present embodiment, the return pipe L connecting the outlet side of each evaporator 231, 232, 233 and the suction side of the compressor is thermally connected with the capillary tubes 241, 242, 243 described above. And a low temperature refrigerant flowing through the return pipe (L) and a high temperature refrigerant flowing through the capillary tubes (241, 242, 243). Specifically, the return pipe L and the capillary tubes 241, 242, 243 are connected by soldering or the like, for example.
상기 설명한 모세관(241, 242, 243)는, 후술하는 밸브 구조(20)를 구비한 팽창 밸브(V)와 함께, 응축기(22)로부터 유출된 고압 냉매를 저압 냉매로 변화시키는 감압 기구(Z)를 구성하고 있다.The capillary tubes 241, 242, and 243 described above, together with the expansion valve V having the valve structure 20 described later, reduce the high pressure refrigerant flowing out of the condenser 22 into a low pressure refrigerant Z. Consists of.
다음으로, 밸브 구조(20)에 대해 설명한다.Next, the valve structure 20 will be described.
밸브 구조(20)는, 복수의 증발기(231~233) 중 1개 또는 복수에 냉매를 흘려보내기 위한 것이며, 도 1a 내지 도 2에 나타낸 바와 같이, 기계실에서 응축기(22)의 출구측과 모세관(241~243)의 입구측을 접속하는 형태로 마련되어 있다.The valve structure 20 is for flowing refrigerant into one or a plurality of evaporators 231 to 233, and as shown in FIGS. 1A to 2, the outlet side of the condenser 22 and the capillary tube ( 241-243 are provided in the form which connects the inlet side.
본 실시형태의 밸브 구조(20)는, 유입된 냉매를, 3개의 증발기(231~233) 중 1개 또는 2개에 흘려보내기 위한 이른바 사방 밸브이며, 각 증발기(231~233)에 흘려보내는 냉매 유량을 조정 가능하게 구성되어 있다.The valve structure 20 according to the present embodiment is a so-called four-way valve for flowing the refrigerant introduced into one or two of the three evaporators 231 to 233, and the refrigerant flowing through the evaporators 231 to 233. The flow rate is adjustable.
구체적으로 이 밸브 구조(20)는, 도 3 및 도 4에 나타낸 바와 같이, 적어도 밸브 시트(3) 및 밸브체(4)를 구비한 것이며, 여기에서는, 밸브체(4)를 회전시키는 구동 기구(5)와, 밸브 시트(3) 및 밸브체(4)를 수용함과 함께 냉매가 유입하는 냉매 유입 공간(S)이 형성된 케이싱(6)을 더 구비하고 있다.Specifically, this valve structure 20 is provided with at least the valve seat 3 and the valve body 4, as shown to FIG. 3 and FIG. 4, Here, the drive mechanism which rotates the valve body 4 is carried out. (5) and the casing 6 in which the refrigerant | coolant inflow space S into which the valve seat 3 and the valve body 4 are accommodated, and in which the refrigerant | coolant flows is formed is further provided.
구동 기구(5)는, 스테이터(511) 및 이 스테이터(511)의 내측에 마련된 로터(512)를 구비하는 모터(51)와, 상기 로터(512)와 연동하여 회전함으로써 모터(51)의 구동력을 출력하는 출력 기어(52)를 가진 것이다.The drive mechanism 5 rotates in conjunction with the motor 51 including the stator 511 and the rotor 512 provided inside the stator 511 and the rotor 512 to drive the driving force of the motor 51. It has an output gear 52 for outputting.
케이싱(6)은, 도 4에 나타낸 바와 같이, 저면에 개구가 형성된 중공의 케이싱 본체(61)와, 상기 개구를 폐쇄하여 케이싱 본체(61)와 함께 상기 냉매 유입 공간(S)을 형성하는 덮개체(62)를 가진 것이다.As shown in FIG. 4, the casing 6 includes a hollow casing main body 61 having an opening formed in a bottom surface thereof, and a lid for closing the opening to form the refrigerant inflow space S together with the casing main body 61. It has a sieve (62).
케이싱 본체(61)는, 금속 등으로 형성된 예를 들면 회전체 형상을 이루는 것이며, 여기에서는 상기 로터(512)를 중공 안에 수용한 상태로 상기 스테이터(511)의 내측에 배치된다.The casing main body 61 is formed, for example, in the shape of a rotating body formed of metal or the like, and is disposed inside the stator 511 in a state where the rotor 512 is accommodated in the hollow.
상기 덮개체(62)는, 평판 형상을 이루고, 냉매 유입 공간(S)과 연통하여 냉매 유입 공간(S)에 냉매를 유입시키기 위한 유입구(621)가 형성된 것이며, 여기에서는 예를 들면 직경 치수(직경)가 35mm 이하인 원판 형상을 이룬다. 이 유입구(621)는, 유입관(7)에 의하여 응축기(22)의 출구측에 접속되어 있고, 이로써 응축기(22)로부터 흘러나온 냉매가 냉매 유입 공간(S)에 흘러들어간다.The cover body 62 has a flat plate shape, and communicates with the coolant inflow space S so that an inlet 621 for introducing a coolant into the coolant inflow space S is formed. Diameter) of 35 mm or less. The inlet 621 is connected to the outlet side of the condenser 22 by the inlet pipe 7, whereby the refrigerant flowing out of the condenser 22 flows into the refrigerant inlet space S.
밸브 시트(3)는, 도 3 내지 도 6에 나타낸 바와 같이, 상기 설명한 덮개체(62)에 형성된 관통공에 간극 없이 삽입되는 것이며, 냉매 유입 공간(S)과 연통하여 냉매 유입 공간(S)으로부터 냉매를 유출시키기 위한 유출구(3a)가 형성되어 있다. 또, 이 밸브 시트(3)의 중심에는, 후술하는 밸브체(4)의 회전축(X)이 삽입되는 관통공(3x)이 형성되어 있다.3 to 6, the valve seat 3 is inserted into the through hole formed in the cover body 62 described above without a gap, and communicates with the coolant inflow space S so as to communicate with the coolant inflow space S. An outlet port 3a for flowing out the refrigerant from the outlet is formed. Moreover, the through hole 3x in which the rotating shaft X of the valve body 4 mentioned later is inserted in the center of this valve seat 3 is formed.
본 실시형태의 밸브 시트(3)는, 덮개체(62)에 간단하게 장착되도록 하기 위하여, 상부(31)를 덮개체(62)에 형성된 관통공과 같은 크기로 하면서, 하부(32)를 상부(31)보다 큰 형상으로 함으로써, 상부(31)를 덮개체(62)의 관통공에 하방으로부터 끼워넣었을 때에, 상부(31) 및 하부(32)의 사이에 형성된 단부가 덮개체(62)의 하면에 당접하도록 되어 있다.The valve seat 3 of the present embodiment has the upper portion 31 having the same size as the through hole formed in the lid 62 so that the valve seat 3 can be easily mounted on the lid 62. By making the shape larger than 31, when the upper part 31 is inserted into the through hole of the lid body 62 from below, the end portion formed between the upper portion 31 and the lower portion 32 has a lower surface of the lid body 62. FIG. To meet
구체적으로 이 밸브 시트(3)는, 직경 치수(직경)가 16mm 이하인 원판 형상을 이루는 것이며, 이 밸브 시트(3)의 상부(31)를 두께 방향으로 관통시킴으로써, 그 상면에 예를 들면 직경 0.8mm의 유출구(3a)를 형성하고 있다.Specifically, the valve seat 3 has a disk shape having a diameter dimension (diameter) of 16 mm or less, and the upper surface 31 of the valve seat 3 penetrates in the thickness direction, for example, a diameter of 0.8 on the upper surface thereof. The outlet 3a of mm is formed.
또, 하부(32)에는, 상기 유출구(3a)와 연통함과 함께, 유출구(3a)보다 직경 치수가 큰 유출관용 구멍(3s)이 형성되어 있고, 이 유출관용 구멍(3s)에 유출관(8)이 삽입되도록 구성되어 있다. 이 유출관(8)에 의하여, 유출구(3a)는 증발기(231~233)의 입구측에 접속되어, 유출구(3a)를 통하여 냉매 유입 공간(S)으로부터 유출된 냉매가 어느 1개의 증발기(231~233)에 흘러나온다.In addition, the lower portion 32 communicates with the outlet 3a and is provided with an outlet pipe hole 3s having a diameter larger than that of the outlet port 3a, and the outlet pipe 3s is formed in the outlet pipe hole 3s. 8) is configured to be inserted. By this outlet pipe 8, the outlet port 3a is connected to the inlet side of the evaporators 231 to 233, and any one of the evaporator 231 which has flowed out of the refrigerant inlet space S through the outlet port 3a. ~ 233)
본 실시형태의 밸브 구조(20)는, 도 3~도 6에 나타낸 바와 같이, 2개의 밸브 시트(3)(이하, 이들 밸브 시트(3)를 제1 밸브 시트(3A), 제2 밸브 시트(3B)라고 한다)를 구비하고 있고, 덮개체(62)에 형성된 2개의 관통공 중 한쪽에 제1 밸브 시트(3A)가 장착되고, 다른 한쪽에 제2 밸브 시트(3B)가 장착된다. 여기에서는, 제1 밸브 시트(3A)와 제2 밸브 시트(3B)는, 서로 동일한 직경 치수의 원판 형상의 것이다.As shown in FIGS. 3 to 6, the valve structure 20 of the present embodiment includes two valve seats 3 (hereinafter, these valve seats 3 are the first valve seat 3A and the second valve seat). (3B)), the first valve seat 3A is attached to one of the two through holes formed in the lid 62, and the second valve seat 3B is attached to the other. Here, the 1st valve seat 3A and the 2nd valve seat 3B are disk shapes of the same diameter dimension mutually.
제1 밸브 시트(3A)에는, 2개의 유출구(3a)(이하, 이들 유출구(3a)를 제1 유출구(3a1), 제2 유출구(3a2)라고 한다)가 형성되어 있다. 본 실시형태에서는, 제1 유출구(3a1)는, 제1 유출관(81)에 의하여 냉장실용 증발기(231)의 입구측에 접속되어 있고, 제2 유출구(3a2)는, 제2 유출관(82)에 의하여 냉동실용 증발기(232)의 입구측에 접속되어 있다.Two outlets 3a (hereinafter, these outlets 3a are referred to as first outlet 3a1 and second outlet 3a2) are formed in the first valve seat 3A. In the present embodiment, the first outlet 3a1 is connected to the inlet side of the refrigerating chamber evaporator 231 by the first outlet pipe 81, and the second outlet 3a2 is the second outlet pipe 82. Is connected to the inlet side of the freezer evaporator 232.
상기 제1 유출구(3a1) 및 상기 제2 유출구(3a2)는, 서로 동일한 직경 치수이며, 제1 밸브 시트(3A)의 중심 둘레로 원주 방향을 따라 배치되어 있다. 즉, 제1 밸브 시트(3A)의 중심으로부터 제1 유출구(3a1)의 중심까지의 거리와, 제1 밸브 시트(3A)의 중심으로부터 제2 유출구(3a2)의 중심까지의 거리를 등거리로 하고 있다.The said 1st outlet 3a1 and the said 2nd outlet 3a2 are mutually the same diameter dimension, and are arrange | positioned along the circumferential direction around the center of 3 A of valve seats. That is, a distance from the center of the first valve seat 3A to the center of the first outlet port 3a1 and the distance from the center of the first valve seat 3A to the center of the second outlet port 3a2 are equal distances. have.
제2 밸브 시트(3B)에는, 1개의 유출구(3a)(이하, 이 유출구(3a)를 제3 유출구(3a3)라고 한다)가 형성되어 있다. 본 실시형태에서는, 제3 유출구(3a3)는, 제3 유출관(83)에 의하여 변온실용 증발기(233)의 입구측에 접속되어 있다.One outlet 3a (hereinafter, this outlet 3a is called 3rd outlet 3a3) is formed in the 2nd valve seat 3B. In the present embodiment, the third outlet 3a3 is connected to the inlet side of the evaporator 233 for the temperature change chamber by the third outlet pipe 83.
또한, 제3 유출구(3a3)는, 제1 유출구(3a1) 및 제2 유출구(3a2)와 동일한 직경 치수이며, 제2 밸브 시트(3B)의 중심으로부터 제3 유출구(3a3)의 중심까지의 거리는, 제1 밸브 시트(3A)의 중심으로부터 제1 유출구(3a1) 및 제2 유출구(3a2)의 중심까지의 거리와 등거리로 하고 있다.In addition, the 3rd outlet 3a3 is the same diameter dimension as the 1st outlet 3a1 and the 2nd outlet 3a2, and the distance from the center of the 2nd valve seat 3B to the center of the 3rd outlet 3a3 is And a distance from the center of the first valve seat 3A to the center of the first outlet 3a1 and the second outlet 3a2.
밸브체(4)는, 밸브 시트(3)에 대하여 회전 가능하게 마련되어 있고, 상기 유출구(3a)를 완전 개방 상태 및 완전 폐쇄 상태의 사이에서 그 개방도를 조정하기 위한 것이며, 회전에 수반해 유출구(3a)와 겹쳐치는 면적이 바뀌는 조정 홈(4a)이 형성되어 있다.The valve body 4 is rotatably provided with respect to the valve seat 3, is for adjusting the opening degree of the said outlet 3a between a fully open state and a fully closed state, and it is an outlet port with rotation The adjustment groove 4a which changes the area which overlaps with 3a is formed.
본 실시형태에서는, 제1 밸브 시트(3A) 및 제2 밸브 시트(3B) 각각에 대응하여 제1 밸브체(4A) 및 제2 밸브체(4B)가 마련되어 있지만, 여기에서는 제1 밸브체(4A) 및 제2 밸브체(4B)는 서로 동일한 구성이므로, 이하에서는 이것들을 대표하여 제1 밸브체(4A)(이하, 간단히 밸브체(4)라고 한다)에 대해 설명한다.In this embodiment, although the 1st valve body 4A and the 2nd valve body 4B are provided corresponding to each of the 1st valve seat 3A and the 2nd valve seat 3B, here, the 1st valve body ( Since 4A and the 2nd valve body 4B are the same structure, 1st valve body 4A (henceforth simply called valve body 4) is demonstrated below on behalf of these.
이 밸브체(4)는, 도 3~도 6에 나타낸 바와 같이, 밸브 시트(3)의 상측에 마련되어 밸브 시트(3)의 중심축을 중심으로 하여 회전하는 것이며, 여기에서는 회전축(X)이 관통하는 관통공(4x)이 형성되어 있다. 이 밸브체(4)에는, 상기 설명한 출력 기어(52)에 맞물리는 수동 기어(9)가 장착되도록 되어 있으며, 이 수동 기어(9)에 상기 회전축(X)을 마련하고 있다. 보다 상세하게 설명하면, 수동 기어(9)에는 복수의 볼록부(91)가 마련되어 있고, 밸브체(4)의 상면에는 상기 볼록부(91)와 계합하는 복수의 오목부(4y)가 형성되어 있다. 이로써, 회전축(X)을 관통공(4x)에 삽입함과 함께, 볼록부(91)를 오목부(4y)에 계합시킴으로써, 밸브체(4)가 구동 기구(5)의 구동력에 의하여 수동 기어(9)와 연동하여 회전한다.As shown in FIGS. 3-6, this valve body 4 is provided above the valve seat 3, and rotates around the center axis of the valve seat 3, Here, the rotating shaft X penetrates through it. A through hole 4x is formed. The valve body 4 is equipped with a manual gear 9 meshing with the output gear 52 described above, and the rotary shaft X is provided on the manual gear 9. In more detail, the manual gear 9 is provided with the some convex part 91, The upper surface of the valve body 4 is formed with the some concave part 4y engaging with the said convex part 91, have. Thereby, while inserting the rotating shaft X into the through-hole 4x, the convex part 91 engages with the recessed part 4y, and the valve body 4 is a manual gear by the drive force of the drive mechanism 5 by this. Rotate in conjunction with (9).
또한, 본 실시형태에서는, 상기 설명한 바와 같이 제1 밸브 시트(3A) 및 제2 밸브 시트(3B) 각각에 대응하여 제1 밸브체(4A) 및 제2 밸브체(4B)가 마련되어 있고, 제1 밸브체(4A) 및 제2 밸브체(4B) 각각에 마련된 2개의 수동 기어(9)가 공통의 출력 기어(52)에 맞물리고 있다. 이로써, 제1 밸브체(4A) 및 제2 밸브체(4B)는 연동하여 회전한다.In the present embodiment, as described above, the first valve body 4A and the second valve body 4B are provided corresponding to each of the first valve seat 3A and the second valve seat 3B. Two manual gears 9 provided in each of the first valve body 4A and the second valve body 4B mesh with the common output gear 52. As a result, the first valve body 4A and the second valve body 4B rotate together with each other.
본 실시형태의 밸브체(4)는, 평판 형상의 상부(41)와, 두께 방향으로 관통하여 상기 설명한 조정 홈(4a)이 형성된 평판 형상의 하부(42)로 구성되어 있다. 상부(41)는 하부(42)의 전체와 겹쳐치는 예를 들면 원판 형상의 것이며, 하부(42)는 원판에 상기 조정 홈(4a)을 형성한 것이다. 본 실시형태의 밸브체(4)는, 예를 들면 직경 치수가 12mm 이하인 원판 형상을 이루는 것이며, 조정 홈(4a)은 원주 방향을 따라 뻗도록 형성되어 있다.The valve body 4 of this embodiment is comprised from the flat part upper part 41 and the flat part lower part 42 which penetrated in the thickness direction, and the above-mentioned adjustment groove 4a was formed. The upper part 41 is a disk-like thing which overlaps the whole of the lower part 42, for example, and the lower part 42 forms the said adjustment groove 4a in the disk. The valve body 4 of this embodiment is a disk shape whose diameter dimension is 12 mm or less, for example, and the adjustment groove 4a is formed so that it may extend along a circumferential direction.
조정 홈(4a)은, 도 7에 나타낸 바와 같이, 원주 방향을 따라 그 폭치수가 변화하도록 형성된 것이며, 여기에서는 밸브체(4)의 회전에 의하여 유출구(3a)와 겹쳐지기 시작하는 선단부(4b)로부터, 그 반대측의 후단부(4c)를 향해 폭치수가 서서히 커지도록 형성되어 있다. 이 조정 홈(4a)은, 선단부(4b)로부터 후단부(4c)까지가 밸브체(4)의 회전축(X)을 중심으로 한 60도 이내에 들어가도록 구성되어 있다.As shown in FIG. 7, the adjustment groove 4a is formed so that the width dimension may change along the circumferential direction, and here the tip part 4b which starts to overlap with the outlet port 3a by rotation of the valve body 4 is shown. ), The width dimension is gradually increased toward the rear end portion 4c on the opposite side. This adjustment groove 4a is comprised so that it may enter from the front end part 4b to the rear end part 4c within 60 degrees centering on the rotating shaft X of the valve body 4. As shown in FIG.
선단부(4b)는, 도 8에 나타낸 바와 같이, 선단(4x)의 회전 궤적(P) 상에 위치하는 점(Q)을 중심으로 한 원의 일부(여기에서는 반원 부분)이다. 또한, 조정 홈(4a)의 선단(4x)은, 밸브체(4)의 회전 방향을 따른 선단부(4b)의 단이다.As shown in FIG. 8, the front-end | tip part 4b is a part (circle-circle part here) centering around the point Q located on the rotation trace P of the front-end | tip 4x. In addition, the front end 4x of the adjustment groove 4a is the end of the front end part 4b along the rotation direction of the valve body 4.
구체적으로 이 선단부(4b)는, 폭치수가 0.2mm 이상이 되는 형상이며, 본 실시형태에서는 직경 0.2mm 이상의 원의 반원 부분을 선단부(4b)로 하고 있다. 또한, 여기에서 말하는 폭치수란, 선단(4x)의 회전 궤적(P)과 수직인 방향을 따른 치수이다.Specifically, the tip portion 4b is shaped to have a width dimension of 0.2 mm or more. In this embodiment, the semicircular portion of a circle having a diameter of 0.2 mm or more is used as the tip portion 4b. In addition, the width dimension here is a dimension along the direction perpendicular | vertical to the rotation trace P of the front-end | tip 4x.
또, 도 7에 나타낸 바와 같이, 조정 홈(4a)의 후단부(4c)의 더욱 뒷쪽에는, 후단부(4c)와 연속해서 형성되어, 유출구(3a)의 전체와 겹쳐치는 완전 개방용 홈(4d)이 형성되어 있다. 이 완전 개방용 홈(4d)은, 후단부(4c)로부터 밸브체(4)의 회전 방향과는 반대측을 향해, 밸브체(4)의 하부(42)를 원주 방향을 따라 파(notched) 형성한 것이다.In addition, as shown in Fig. 7, the rear end portion 4c of the adjustment groove 4a is further formed with the rear end portion 4c continuously and overlaps with the entirety of the outlet port 3a. 4d) is formed. This fully opening groove | channel 4d forms notched the lower part 42 of the valve body 4 along the circumferential direction from the rear end 4c toward the side opposite to the rotation direction of the valve body 4. It is.
그리고 본 실시형태에서는, 도 7 및 도 8에 나타낸 바와 같이, 유출구(3a)의 중심(O)을, 조정 홈(4a)의 선단부(4b)의 회전 궤적으로부터 변위시키고 있다.In this embodiment, as shown in FIG. 7 and FIG. 8, the center O of the outlet port 3a is displaced from the rotational trajectory of the tip portion 4b of the adjustment groove 4a.
보다 상세하게 설명하면, 여기에서는 유출구(3a)의 중심(O)을 지나 밸브체(4)의 회전축(X)을 중심으로 하는 가상 원(Z)으로부터, 조정 홈(4a)의 선단(4x)의 회전 궤적(P)을 내측으로 변위시키고 있다.In more detail, here, the tip 4x of the adjustment groove 4a from the imaginary circle Z centering on the rotation axis X of the valve body 4 passing through the center O of the outlet port 3a. The rotational trajectory P of is displaced inward.
그런데, 본 실시형태의 냉동 냉장고(100)는, 밸브 구조(20)의 상류측에 마련된 도시하지 않은 필터를 구비하고 있지만, 필터의 메쉬 사이즈보다 작은 오염물 등의 이물은 필터를 통과해 냉매와 함께 냉매 유입 공간(S)에 흘러들어갈 가능성이 있다.By the way, although the refrigeration refrigerator 100 of this embodiment is equipped with the filter which is not shown in the upstream of the valve structure 20, the foreign material, such as a contaminant smaller than the mesh size of a filter, passes through a filter, and it is accompanied with a refrigerant | coolant. There is a possibility of flowing into the refrigerant inflow space S.
그렇다면, 예를 들면 도 7에 나타내는 밸브체(4A)에 있어서, 이물이 조정 홈(4a)의 선단부(4b)에 들어가면, 밸브체(4)의 회전 동작만으로는 이물을 긁어낼 수 없어, 이물이 조정 홈(4a)의 선단부(4b)에 퇴적될 우려가 있다.Then, in the valve body 4A shown in FIG. 7, for example, when a foreign material enters the front-end | tip part 4b of the adjustment groove 4a, a foreign material cannot be scraped only by the rotation operation of the valve body 4, There exists a possibility of depositing in the front-end | tip part 4b of the adjustment groove 4a.
따라서, 상기 선단부(4b)에 유입된 이물이 냉매와 함께 유출구(3a)로부터 흘러나오도록, 상기 선단부(4b)에 있어서의 상기 유출구(3a)와 겹쳐치는 부분의 폭치수를 설정해 둔다. 이 폭치수는, 필터를 통과한 이물이 유출구(3a)로부터 흘러나오도록 하기 위하여, 필터의 메쉬 사이즈에 근거하여 설정해 두며, 예를 들면 상정되는 이물의 크기를 감안하여 0.1mm 이상으로 하고 있다.Therefore, the width dimension of the part which overlaps with the said outlet port 3a in the said tip part 4b is set so that the foreign material which flowed in into the said tip part 4b may flow out from the outlet port 3a with a refrigerant | coolant. This width dimension is set based on the mesh size of the filter so that foreign matter which has passed through the filter flows out from the outlet port 3a.
본 실시형태에서는, 적어도 조정 홈(4a)의 선단(4x)이 유출구(3a)와 겹쳐지도록 하면서, 도 8에 나타낸 바와 같이, 선단부(4b)의 반경(OL)을 0.1mm 이상으로 함으로써, 선단부(4b)에 있어서의 유출구(3a)와 겹쳐치는 부분의 폭치수가 이물보다 커지도록 하고 있다.In this embodiment, as shown in FIG. 8, at least the front end 4x of the adjustment groove 4a overlaps the outlet 3a, the front end part is made into 0.1 mm or more of radius OL of the front end part 4b. The width dimension of the part which overlaps with the outlet port 3a in (4b) is made larger than a foreign material.
다음으로, 밸브 구조(20)의 동작과 냉매의 흐름에 대해 설명한다.Next, the operation of the valve structure 20 and the flow of the refrigerant will be described.
본 실시형태의 밸브 구조(20)는, 도 9에 나타낸 바와 같이, 제1 밸브체(4A) 및 제2 밸브체(4B)가 연동하여 회전하는 것에 의하여, 이들 제1 밸브체(4A) 및 제2 밸브체(4B)의 회전 각도에 따라, 완전 폐쇄 영역, 완전 개방 영역, 및 3개의 유량 가변 영역이 형성되도록 구성되어 있다.As shown in FIG. 9, the valve structure 20 of the present embodiment rotates the first valve body 4A and the second valve body 4B in conjunction with these first valve bodies 4A and According to the rotation angle of the 2nd valve body 4B, it is comprised so that a fully closed area | region, a fully open area | region, and three flow volume variable regions are formed.
완전 폐쇄 영역은, 제1 유출구(3a1), 제2 유출구(3a2), 및 제3 유출구(3a3)가 동시에 완전 폐쇄 상태가 되는 영역이다.The completely closed region is a region in which the first outlet 3a1, the second outlet 3a2, and the third outlet 3a3 are in a completely closed state at the same time.
완전 개방 영역은, 제1 유출구(3a1) 또는 제2 유출구(3a2) 중 어느 한쪽과 제3 유출구(3a3)가 동시에 완전 개방 상태가 되는 영역이다. 본 실시형태의 완전 개방 영역은, 제1 유출구(3a1)와 제3 유출구(3a3)가 동시에 완전 개방 상태가 되는 영역이며, 바꾸어 말하면, 제1 유출구(3a1)의 전체에 제1 밸브체(4A)의 완전 개방용 홈(4d)이 겹쳐침과 함께, 제3 유출구(3a3)의 전체에 제2 밸브체(4B)의 완전 개방용 홈(4d)이 겹쳐치는 영역이다.A fully open area | region is an area | region in which either the 1st outflow port 3a1 or the 2nd outflow port 3a2 and the 3rd outflow port 3a3 become a fully open state simultaneously. The fully open area | region of this embodiment is an area | region in which the 1st outflow port 3a1 and the 3rd outflow port 3a3 become a fully open state simultaneously, in other words, the 1st valve body 4A in the whole 1st outflow port 3a1. (4d) of the fully open groove | channel of (), and the fully open groove | channel 4d of the 2nd valve body 4B overlap with the whole 3rd outlet port 3a3.
유량 가변 영역은, 각 유출구(3a1~3a3)로부터 유출되는 냉매의 유량을 단독으로 조정 가능한 영역이며, 바꾸어 말하면, 제1 유출구(3a1), 제2 유출구(3a2), 또는 제3 유출구(3a3) 중 어느 1개에 조정 홈(4a)이 겹쳐침과 함께, 그 외의 2개가 완전 폐쇄 상태가 되는 영역이다. 이 유량 가변 영역은, 각 유출구(3a1~3a3) 각각에 대해 마련되어 있다.The flow rate variable region is a region in which the flow rate of the refrigerant flowing out of each of the outlets 3a1 to 3a3 can be adjusted independently, that is, the first outlet 3a1, the second outlet 3a2, or the third outlet 3a3. The adjustment groove 4a overlaps any one of them, and the other two are regions to be completely closed. The flow rate variable region is provided for each of the outlets 3a1 to 3a3.
또한, 본 실시형태의 유량 가변 영역에 있어서, 제1 유출구(3a1) 및 제2 유출구(3a2)로부터 유출되는 냉매 유량은 서서히 증대하고, 제3 유출구(3a3)로부터 유출되는 냉매 유량은 서서히 감소하도록 구성되어 있다.In the flow rate variable region of the present embodiment, the flow rate of the refrigerant flowing out of the first outlet 3a1 and the second outlet 3a2 gradually increases, and the flow rate of the refrigerant flowing out of the third outlet 3a3 gradually decreases. Consists of.
상기 설명한 완전 폐쇄 영역, 완전 개방 영역, 및 유량 가변 영역 외에는, 도 9에 나타낸 바와 같이, 제1 유출구(3a1), 제2 유출구(3a2), 또는 제3 유출구(3a3) 중 어느 1개가 완전 개방 상태이며, 그 외의 2개가 완전 폐쇄 상태가 되는 영역이 마련되어 있다. 바꾸어 말하면, 이 영역은, 제1 유출구(3a1), 제2 유출구(3a2), 또는 제3 유출구(3a3) 중 어느 1개에 완전 개방용 홈(4d)이 겹쳐침과 함께, 그 외의 2개가 폐쇄되어 있는 영역이다.As shown in FIG. 9, any one of the first outlet 3a1, the second outlet 3a2, or the third outlet 3a3 is completely open except for the completely closed region, the fully open region, and the variable flow region described above. It is a state and the area | region in which the other two become a fully closed state is provided. In other words, this area has a fully open groove 4d overlapping any one of the first outlet 3a1, the second outlet 3a2, or the third outlet 3a3, and the other two It is an enclosed area.
또한, 제3 유출구(3a3)에 대하여 형성된 유량 가변 영역과, 제2 유출구(3a2)에 대하여 형성된 유량 가변 영역 사이에는, 여유 구간으로서 제1 유출구(3a1), 제2 유출구(3a2), 및 제3 유출구(3a3) 전부가 완전 폐쇄 상태가 되는 영역이 마련되어 있다.In addition, between the flow rate variable region formed with respect to the third outlet 3a3 and the flow rate variable region formed with respect to the second outlet 3a2, the first outlet 3a1, the second outlet 3a2, and the second outlet are provided as spare sections. The area | region in which all 3 outflow openings 3a3 become a fully closed state is provided.
이와 같이 구성된 본 실시형태의 냉동 냉장고(100)라면, 유출구(3a)의 중심(O)을 조정 홈(4a)의 선단부(4b)의 회전 궤적(P)으로부터 변위시키고 있으므로, 밸브체(4)를 회전시킴으로써, 조정 홈(4a)의 선단부(4b)가 유출구(3a)에 대하여 바로 정면으로부터 벗어난 방향으로부터 겹쳐지기 시작한다. 이로써, 도 10의 설계 데이터로부터 알 수 있듯이, 냉매를 흘려 보내기 시작할 때에, 조정 홈(4a)의 선단부(4b)와 유출구(3a)가 겹쳐치는 면적을 종래에 비해 작게 할 수 있다. 그 결과, 냉매를 흘려 보내기 시작할 때에, 냉매 유량을 조금씩 증가시킬 수 있어, 유체를 흘려 보내기 시작할 때의 유량을 고정밀도로 제어하는 것이 가능해진다.In the refrigerator refrigerator 100 of this embodiment comprised in this way, since the center O of the outlet port 3a is displaced from the rotation trace P of the front-end | tip part 4b of the adjustment groove 4a, the valve body 4 By rotating, the tip 4b of the adjusting groove 4a starts to overlap from the direction immediately away from the front with respect to the outlet port 3a. As a result, as can be seen from the design data in FIG. 10, the area where the tip portion 4b of the adjusting groove 4a overlaps with the outlet port 3a when the coolant starts to flow can be made smaller than in the related art. As a result, the coolant flow rate can be increased little by little when the coolant starts to flow, and the flow rate at the start of flowing the fluid can be controlled with high accuracy.
또, 밸브체(4)가 회전하여 조정 홈(4a)의 선단(4x)이 유출구(3a)와 겹쳐져 있는 상태에 있어서, 그 겹쳐져 있는 부분의 크기를 상정되는 이물보다 크게 하고 있으므로, 조정 홈(4a)의 선단부(4b)에 이물이 흘러들어갔다고 해도, 그 이물을 냉매와 함께 유출구(3a)로부터 흘려내보낼 수 있다.Moreover, since the valve body 4 rotates and the front end 4x of the adjustment groove 4a overlaps with the outlet port 3a, since the magnitude | size of the overlapping part is made larger than the foreign material to be assumed, the adjustment groove ( Even if foreign matter has flowed into the distal end portion 4b of 4a, the foreign matter can flow out from the outlet port 3a together with the refrigerant.
또, 3개의 유출구(3a1~3a3)를 동시에 완전 폐쇄 상태로 하는 완전 폐쇄 영역으로 할 수 있으므로, 압축기(21)의 정지 시에 응축기(22)측으로부터 고온 냉매가 각 증발기(231~233)에 유입되는 것을 방지할 수 있어, 압축기(21)의 정지 시에 냉매 유입에 의하여 각 실(11~13)의 온도가 상승하는 것을 방지할 수 있다.In addition, since the three outlets 3a1 to 3a3 can be completely closed at the same time in a completely closed state, a high temperature refrigerant is supplied to each evaporator 231 to 233 from the condenser 22 side when the compressor 21 is stopped. Inflow can be prevented and the temperature of each chamber 11-13 can be prevented from rising by the inflow of a refrigerant | coolant at the time of the compressor 21 stop.
또한, 2개의 유출구(3a1)와 유출구(3a3)를 동시에 완전 개방 상태로 하는 완전 개방 영역으로 할 수 있으므로, 이 완전 개방 상태에 있어서 냉매를 냉장실(11), 냉동실(12), 및 변온실(13)의 3실에 공급할 수 있어, 풀다운 시 등의 과부하에 있어서, 각 실의 냉각 속도를 향상시킬 수 있다.Further, since the two outlets 3a1 and the outlets 3a3 can be completely opened at the same time in a fully open state, the refrigerant is stored in the refrigerating chamber 11, the freezing chamber 12, and the temperature changing chamber ( 13 can be supplied to three rooms, and the cooling rate of each room can be improved in overload, such as a pull-down.
또한, 3개의 유출구(3a1~3a3) 각각에 대해 단독으로의 유량 조정이 가능한 유량 가변 영역으로 할 수 있으므로, 각 실(11~13) 각각의 냉각 시에 있어서의 부하에 따라 냉매를 적절한 유량으로 조정할 수 있다.In addition, since it is possible to set the flow rate variable region in which the flow rate alone can be adjusted for each of the three outlets 3a1 to 3a3, the refrigerant is appropriately flown according to the load at the time of cooling each of the chambers 11 to 13. I can adjust it.
도 11에 본 실시형태에 있어서의 냉동 회로의 모리엘선도를 나타낸다. 본 실시형태에서는 감압 기구(Z)가 팽창 밸브(V)와 모세관(241, 242, 243)를 갖고 있으므로, 응축기(22)로부터 유출된 냉매를 팽창 밸브(V) 및 모세관(241, 242, 243)를 이용하여 단계적으로 감압시킬 수 있다.Fig. 11 shows a Moriel diagram of the refrigerating circuit in the present embodiment. In this embodiment, since the pressure reduction mechanism Z has the expansion valve V and the capillary tubes 241, 242, and 243, the refrigerant flowing out of the condenser 22 is used to expand the valve V and the capillary tubes 241, 242, 243. Can be depressurized step by step.
이로써, 도 11에 나타낸 바와 같이 팽창 밸브(V)로부터 모세관(241, 242, 243)에 흐르는 냉매를, 증발기(231, 232, 233)에 유입하기 전의 냉매보다 고온으로 할 수 있어, 팽창 밸브(V) 출구로부터 고 내로 향하는 모세관(241, 242, 243) 중 기계실 부분에 있어서의 배관 결로를 방지할 수 있다.As a result, as shown in FIG. 11, the refrigerant flowing through the capillary tubes 241, 242, and 243 from the expansion valve V can be made hotter than the refrigerant before flowing into the evaporators 231, 232, and 233. V) Pipe condensation in the machine room part of the capillary tubes 241, 242, and 243 from the outlet to the furnace can be prevented.
또, 냉매 복귀 배관(L)과 모세관(241, 242, 243)를 예를 들면 납땜 등에 의하여 열적으로 접속하고 있으므로, 증발기(231, 232, 233)로부터 압축기(21)로 돌아오는 냉매와, 팽창 밸브(V)로부터 모세관(241, 242, 243)를 통하여 증발기를 향하는 냉매 사이에서 열교환이 이루어진다.In addition, since the refrigerant return pipe L and the capillary tubes 241, 242, and 243 are thermally connected by, for example, soldering or the like, the refrigerant returned from the evaporators 231, 232, and 233 to the compressor 21, and the expansion are expanded. Heat exchange takes place between the refrigerant from the valve V and through the capillary tubes 241, 242, 243 towards the evaporator.
이로써, 증발기(231, 232, 233)에서 증발되지 않았던 액냉매를, 냉매 복귀 배관(L) 내에서 가열하는 것에 의하여 압축기(21)로 돌아오기 전에 증발시킬 수 있어, 압축기(21)로의 액냉매 복귀를 방지할 수 있다.Thereby, the liquid refrigerant which has not evaporated in the evaporators 231, 232, 233 can be evaporated before returning to the compressor 21 by heating in the refrigerant return pipe L, thereby allowing the liquid refrigerant to the compressor 21. The return can be prevented.
또, 도 11에 나타낸 바와 같이 모세관(241, 242, 243) 내의 냉매가 감압중에 냉각됨으로써 냉동 능력을 높일 수 있어, 냉동 사이클의 효율 향상을 도모할 수 있다.As shown in FIG. 11, the refrigerant in the capillaries 241, 242, and 243 is cooled during the reduced pressure, whereby the refrigerating capacity can be increased, and the efficiency of the refrigeration cycle can be improved.
<제2 실시형태><2nd embodiment>
다음으로 본 발명의 제2 실시형태에 대해 도면을 참조해 설명한다.Next, a second embodiment of the present invention will be described with reference to the drawings.
제2 실시형태에 관한 밸브 구조(20)는, 이른바 삼방 밸브로서 이용되는 것이다. 또, 제2 실시형태에 있어서의 밸브 구조(20)는, 상기 제1 실시형태와 마찬가지로, 팽창 밸브(V)에 구비되어 있고, 이 팽창 밸브(V)와 모세관(241, 242)가, 응축기(22)로부터의 고압 냉매를 저압 냉매로 변화시키는 감압 기구(Z)를 구성하고 있다.The valve structure 20 according to the second embodiment is used as a so-called three-way valve. Moreover, the valve structure 20 in 2nd Embodiment is provided in the expansion valve V similarly to the said 1st Embodiment, and this expansion valve V and the capillary tubes 241 and 242 are a condenser. The pressure reduction mechanism Z which changes the high pressure refrigerant | coolant from 22 into a low pressure refrigerant | coolant is comprised.
본 실시형태에 관한 밸브 구조(20)는, 도 12a 내지 도 13에 나타낸 바와 같이, 예를 들면 냉동 냉장고(100)에 이용되는 것이다. 본 실시형태의 냉동 냉장고(100)는, 변온실, 변온실용 증발기, 및 변온실용 감압 수단을 구비하지 않은 점에서 제1 실시형태의 냉동 냉장고(100)와는 다르지만, 그 외의 점에서는 제1 실시형태와 동일한 구성이므로, 상세한 설명을 생략한다.The valve structure 20 which concerns on this embodiment is used for the refrigerator refrigerator 100, for example as shown to FIG. 12A-FIG. The freezer refrigerator 100 of the present embodiment differs from the freezer refrigerator 100 of the first embodiment in that the refrigerator compartment 100 does not include the temperature changing room, the evaporator for the temperature changing room, and the pressure reducing means for the temperature changing room, but in other respects, the first embodiment is the first embodiment. Since the configuration is the same as, detailed description thereof will be omitted.
본 실시형태의 밸브 구조(20)는, 냉장실용 증발기(231) 또는 냉동실용 증발기(232)의 한쪽 또는 양쪽 모두에 냉매를 흘려보내기 위한 이른바 삼방 밸브이며, 각 증발기(231, 232)에 흘려보내는 냉매 유량을 조정 가능하게 구성되어 있다.The valve structure 20 of the present embodiment is a so-called three-way valve for flowing refrigerant into one or both of the refrigerating chamber evaporator 231 or the freezing chamber evaporator 232, and flows to each of the evaporators 231 and 232. It is comprised so that adjustment of a refrigerant flow volume is possible.
구체적으로 이 밸브 구조(20)는, 도 14 및 도 15에 나타낸 바와 같이, 적어도 밸브 시트(3) 및 밸브체(4)를 구비한 것이며, 여기에서는, 밸브체(4)를 회전시키는 구동 기구(5)와, 밸브 시트(3) 및 밸브체(4)를 수용함과 함께 냉매가 유입하는 냉매 유입 공간이 형성된 케이싱(6)을 더 구비하고 있다.Specifically, this valve structure 20 is provided with at least the valve seat 3 and the valve body 4, as shown to FIG. 14 and FIG. 15, Here, the drive mechanism which rotates the valve body 4 is carried out. (5) and a casing (6) in which the valve seat (3) and the valve body (4) are accommodated, and a coolant inflow space into which a coolant flows is formed.
구동 기구(5) 및 케이싱(6)은, 제1 실시형태와 동일한 구성이므로, 상세한 설명을 생략한다.Since the drive mechanism 5 and the casing 6 are the same structures as 1st Embodiment, detailed description is abbreviate | omitted.
또, 제1 실시형태의 밸브 구조(20)는, 2개의 밸브 시트(3)(제1 밸브 시트(3A) 및 제2 밸브 시트(3B))와, 이들 밸브 시트(3) 각각에 대응하여 마련된 2개의 밸브체(4)(제1 밸브체(4A) 및 제2 밸브체(4B))를 구비하고 있었지만, 본 실시형태의 밸브 구조(20)는, 밸브 시트(3) 및 밸브체(4)를 1개씩 구비한 것이다.Moreover, the valve structure 20 of 1st Embodiment respond | corresponds to two valve seats 3 (1st valve seat 3A and 2nd valve seat 3B), and each of these valve seats 3, respectively. Although two valve bodies 4 (the first valve body 4A and the second valve body 4B) were provided, the valve structure 20 of the present embodiment includes the valve seat 3 and the valve body ( 4) is provided one by one.
본 실시형태의 밸브 시트(3)는, 제1 실시형태의 제1 밸브 시트(3A)와 동일한 구성이며, 도 16에 나타낸 바와 같이, 2개의 유출구(3a)(이하, 이들 유출구(3a)를 제1 유출구(3a1), 제2 유출구(3a2)라고 한다)가 형성되어 있다. 본 실시형태에서는, 제1 유출구(3a1)는, 제1 유출관(81)에 의하여 냉장실용 증발기(231)의 입구측에 접속되어 있고, 제2 유출구(3a2)는, 제2 유출관(82)에 의하여 냉동실용 증발기(232)의 입구측에 접속되어 있다. 또한, 밸브 시트(3)의 치수나, 각 유출구(3a1, 3a2)의 직경 치수나, 밸브 시트(3)의 중심으로부터 각 유출구(3a1, 3a2)의 중심까지의 거리는, 제1 실시형태와 같지만, 밸브 구조(20)의 동작이 다르기 때문에, 각 유출구(3a1, 3a2)의 배치는 제1 실시형태와는 다르다.The valve seat 3 of the present embodiment has the same configuration as the first valve seat 3A of the first embodiment, and as shown in FIG. 16, two outlets 3a (hereinafter, these outlets 3a) are provided. The first outlet 3a1 and the second outlet 3a2 are formed. In the present embodiment, the first outlet 3a1 is connected to the inlet side of the refrigerating chamber evaporator 231 by the first outlet pipe 81, and the second outlet 3a2 is the second outlet pipe 82. Is connected to the inlet side of the freezer evaporator 232. In addition, although the dimension of the valve seat 3, the diameter dimension of each outlet 3a1, 3a2, and the distance from the center of the valve seat 3 to the center of each outlet 3a1, 3a2 are the same as that of 1st Embodiment, Since the operation | movement of the valve structure 20 differs, arrangement | positioning of each outlet 3a1, 3a2 differs from 1st Embodiment.
밸브체(4)는, 기본적으로는 제1 실시형태의 밸브체(4)와 동일한 구성이다. 즉, 밸브체(4)는, 밸브 시트(3)에 대하여 회전 가능하게 마련되어 있고, 상기 유출구(3a)를 완전 개방 상태 및 완전 폐쇄 상태의 사이에서 그 개방도를 조정하는 것이다. 이 밸브체(4)에는, 도 17 및 도 18에 나타낸 바와 같이, 회전에 수반해 유출구(3a)와 겹쳐치는 면적이 바뀌는 조정 홈(4a)이나, 유출구(3a)의 전체와 겹쳐치는 완전 개방용 홈(4d)(이하, 제1 완전 개방용 홈(4d)이라고도 한다)이 형성되어 있다.The valve body 4 is basically the same structure as the valve body 4 of 1st Embodiment. That is, the valve body 4 is rotatably provided with respect to the valve seat 3, and adjusts the opening degree of the said outlet 3a between a fully open state and a fully closed state. As shown in FIG. 17 and FIG. 18, the valve body 4 is completely open to overlap with the adjustment groove 4a in which the area overlapping with the outlet port 3a changes with the rotation and the entire outlet port 3a. A groove 4d (hereinafter also referred to as a first fully open groove 4d) is formed.
조정 홈(4a)은, 제1 실시형태와 마찬가지로, 선단부(4b)로부터 후단부(4c)까지가 밸브체(4)의 회전축(X)을 중심으로 한 60도 이내에 들어가도록 구성되어 있다.Similarly to the first embodiment, the adjusting groove 4a is configured such that the front end 4b to the rear end 4c fall within 60 degrees around the rotational axis X of the valve body 4.
한편, 제1 완전 개방용 홈(4d)은, 1개의 밸브체(4)를 이용하여 2개의 유출구(3a1)와 유출구(3a2)를 동시에 완전 개방 상태로 하기 위하여, 제1 실시형태보다 각도를 넓게 구성하고 있다.On the other hand, the first full opening groove 4d is angled from the first embodiment in order to bring the two outlets 3a1 and the outlet 3a2 into the fully open state at the same time by using one valve body 4. It is composed widely.
또한, 유출구(3a)의 중심(O)을 조정 홈(4a)의 선단부(4b)의 회전 궤적으로부터 변위시키고 있는 것이나, 그 선단부(4b)에 있어서의 유출구(3a)와 겹쳐치는 부분의 폭치수를 선단부(4b)에 유입할 수 있는 이물의 크기를 감안하여 설정해 두는 것은, 제1 실시형태와 같다.Moreover, the width dimension of the part which displaces the center O of the outlet port 3a from the rotational trajectory of the front-end | tip part 4b of the adjustment groove 4a, and overlaps with the outflow port 3a in the front-end | tip part 4b. Is set in view of the size of the foreign matter that can flow into the tip portion 4b, as in the first embodiment.
그리고 본 실시형태의 밸브체(4)는, 도 17 및 도 18에 나타낸 바와 같이, 상기 조정 홈(4a) 및 제1 완전 개방용 홈(4d)과는 별도로, 유출구(3a1) 전체와 겹쳐치는 제2 완전 개방용 홈(4f)이 형성되어 있는 점에 있어서, 제1 실시형태의 밸브체와는 다르다.And the valve body 4 of this embodiment overlaps with the whole outflow opening 3a1 separately from the said adjustment groove 4a and the 1st full opening groove 4d, as shown to FIG. 17 and FIG. The second full opening groove 4f is formed, which is different from the valve body of the first embodiment.
제2 완전 개방용 홈(4f)은, 밸브체(4)의 하부(42)를 원주 방향을 따라 파 형성된 것이며, 제1 완전 개방용 홈(4d) 및 조정 홈(4a)와는 연속하지 않게 마련되어 있다. 이 제2 완전 개방용 홈(4f)은, 유출구(3a1) 전체와 겹쳐지도록 구성되어 있다.The second full opening groove 4f is formed by digging the lower portion 42 of the valve body 4 in the circumferential direction, and is provided so as not to be continuous with the first full opening groove 4d and the adjustment groove 4a. have. This 2nd full opening groove | channel 4f is comprised so that it may overlap with the whole outflow opening 3a1.
보다 상세하게 설명하면, 상기 제2 완전 개방용 홈(4f)은, 제1 완전 개방용 홈(4d)이 한쪽의 유출구(3a) 전체와 겹쳐친 경우에, 다른 한쪽의 유출구(3a) 전체와 겹쳐치는 위치에 형성되어 있다.In more detail, when the 1st fully open groove 4d overlaps with the whole one outlet 3a, the said 2nd fully open groove 4f will be made into the whole of the other outlet 3a. It is formed in the position where it overlaps.
즉, 제1 완전 개방용 홈(4d) 및 제2 완전 개방용 홈(4f)의 상대적인 위치 관계는, 2개의 유출구의 상대적인 위치 관계에 근거하여 설계되어 있고, 여기에서는 제2 완전 개방용 홈(4f)과 제1 완전 개방용 홈(4d) 사이에서 밸브체(4)의 회전축(X)을 배치하도록 하고 있다.That is, the relative positional relationship between the first fully open groove 4d and the second fully open groove 4f is designed based on the relative positional relationship between the two outlets, and here the second fully open groove ( The rotary shaft X of the valve body 4 is arranged between 4f) and the first full opening groove 4d.
다음으로, 본 실시형태의 밸브 구조(20)의 동작과 냉매의 흐름에 대해 설명한다.Next, the operation of the valve structure 20 and the flow of the refrigerant will be described.
본 실시형태의 밸브 구조(20)는, 도 19에 나타낸 바와 같이, 밸브체(4)가 회전하는 것에 의하여, 이 밸브체(4)의 회전 각도에 따라, 완전 폐쇄 영역, 완전 개방 영역, 및 2개의 유량 가변 영역이 형성되도록 구성되어 있다.As shown in FIG. 19, the valve structure 20 of this embodiment is a fully closed area | region, a fully open area | region, according to the rotation angle of this valve body 4 by rotating the valve body 4, and Two flow rate variable regions are formed.
완전 폐쇄 영역은, 제1 유출구(3a1) 및 제2 유출구(3a2)가 동시에 완전 폐쇄 상태가 되는 영역이다.The completely closed region is a region in which the first outlet 3a1 and the second outlet 3a2 are completely closed at the same time.
완전 개방 영역은, 제1 유출구(3a1) 및 제2 유출구(3a2)가 동시에 완전 개방 상태가 되는 영역이며, 바꾸어 말하면, 제1 유출구(3a1) 전체에 제1 완전 개방용 홈(4d) 또는 제2 완전 개방용 홈(4f) 중 한쪽이 겹쳐침과 함께, 제2 유출구(3a2) 전체에 제1 완전 개방용 홈(4d) 또는 제2 완전 개방용 홈(4f) 중 다른 한쪽이 겹쳐치는 영역이다.A fully open area | region is an area | region in which the 1st outflow port 3a1 and the 2nd outflow port 3a2 become a fully open state simultaneously, in other words, the 1st full opening groove | channel 4d or the 1st whole opening 3a1 whole is made. 2 A region in which one of the fully open grooves 4f overlaps and the other of the first fully open grooves 4d or the second fully open grooves 4f overlaps the entire second outlet 3a2. to be.
유량 가변 영역은, 각 유출구(3a1, 3a2)로부터 유출되는 냉매의 유량을 단독으로 조정 가능한 영역이며, 바꾸어 말하면, 제1 유출구(3a1) 또는 제2 유출구(3a2) 중 한쪽에 조정 홈(4a)이 겹쳐침과 함께, 다른 한쪽이 완전 폐쇄 상태가 되는 영역이다. 이 유량 가변 영역은, 각 유출구(3a1, 3a2) 각각에 대해 마련되어 있다.The flow rate variable region is a region in which the flow rate of the refrigerant flowing out of each of the outlets 3a1 and 3a2 can be independently adjusted, that is, in one of the first outlet 3a1 or the second outlet 3a2, the adjustment groove 4a is provided. Along with this overlap, the other side is an area that is completely closed. This flow rate variable region is provided for each of the outlets 3a1 and 3a2.
또한, 본 실시형태의 유량 가변 영역에 있어서, 제1 유출구(3a1) 및 제2 유출구(3a2)로부터 유출되는 냉매 유량은 서서히 증대하도록 구성되어 있다.In the flow rate variable region of the present embodiment, the flow rate of the refrigerant flowing out from the first outlet 3a1 and the second outlet 3a2 is gradually increased.
상기 설명한 완전 폐쇄 영역, 완전 개방 영역, 및 유량 가변 영역 외에는, 도 16에 나타낸 바와 같이, 제1 유출구(3a1) 또는 제2 유출구(3a2) 중 한쪽이 완전 개방 상태이며, 다른 한쪽이 완전 폐쇄 상태가 되는 영역이 마련되어 있다. 바꾸어 말하면, 이 영역은, 제1 유출구(3a1) 또는 제2 유출구(3a2) 중 한쪽에 제2 완전 개방용 홈(4f)이 겹쳐지지 않고, 다른 한쪽에 완전 개방용 홈(4d)이 겹쳐치는 영역이며, 이것은 제1 완전 개방용 홈(4d)과 제2 완전 개방용 홈(4f)이 형성되어 있는 각도차에 의하여 얻어지는 영역이다.Except for the completely closed region, the completely open region, and the variable flow region described above, as shown in FIG. 16, one of the first outlet 3a1 or the second outlet 3a2 is in the fully open state, and the other is the fully closed state. The area | region to become is provided. In other words, in this region, the second fully open groove 4f does not overlap one of the first outlet 3a1 or the second outlet 3a2, and the fully open groove 4d overlaps the other. It is an area | region, and this is an area | region obtained by the angle difference in which the 1st full opening groove | channel 4d and the 2nd full opening groove | channel 4f are formed.
이와 같이 구성된 본 실시형태의 냉동 냉장고(100)라면, 밸브체(4)가, 제1 완전 개방용 홈(4d)과는 별도로, 제2 완전 개방용 홈(4f)이 형성되어 있고, 제1 완전 개방용 홈(4d)이 한쪽의 유출구(3a) 전체와 겹쳐친 경우에, 제2 완전 개방용 홈(4f)이 다른 한쪽의 유출구(3a) 전체와 겹쳐지도록 구성되어 있으므로, 한 쌍의 밸브 시트(3) 및 밸브체(4)를 이용하여, 완전 폐쇄 상태 및 유량 가변 영역뿐만 아니라, 완전 개방 영역도 형성할 수 있다.In the refrigerator refrigerator 100 of this embodiment comprised in this way, the valve body 4 is provided with the 2nd full opening groove | channel 4f separately from the 1st full opening groove | channel 4d, and the 1st When the fully open groove 4d overlaps the entirety of one outlet 3a, the second fully open groove 4f is configured to overlap the entirety of the other outlet 3a, so that a pair of valves By using the seat 3 and the valve body 4, not only a completely closed state and a variable flow region, but also a completely open region can be formed.
이 결과, 완전 개방 영역으로 함으로써, 냉장실용 증발기(231) 및 냉동실용 증발기(232)의 양쪽 모두에 냉매를 흘려보낼 수 있어, 풀다운 시 등의 과부하에 있어서의 냉각 속도를 향상시킬 수 있다.As a result, by setting it as a fully open area | region, a refrigerant | coolant can be sent to both the refrigerating chamber evaporator 231 and the freezing chamber evaporator 232, and the cooling rate in overload at the time of pulldown etc. can be improved.
또, 완전 폐쇄 영역으로 함으로써, 압축기(21)의 정지 시에 응축기(22)측으로부터 고온 냉매가 각 증발기(231, 232)에 유입되는 것을 방지할 수 있어, 압축기(21)의 정지 시에 냉매 유입에 의하여 각 실(11, 12)의 온도가 상승하는 것을 방지할 수 있다.Moreover, by setting it as a fully closed area | region, it can prevent that a high temperature refrigerant | coolant flows into each evaporator 231, 232 from the condenser 22 side at the time of the compressor 21 stop, and it cools at the time of the compressor 21 stop. It can prevent that the temperature of each chamber 11 and 12 raises by inflow.
또, 유량 가변 영역으로 함으로써, 각 실(11, 12) 각각의 냉각 시에 있어서의 부하에 따라 냉매를 적절한 유량으로 조정할 수 있다.Moreover, by setting it as a flow volume variable area | region, it can adjust a refrigerant | coolant to appropriate flow volume according to the load at the time of each cooling of each chamber 11 and 12.
또한, 조정 홈(4a)의 선단부(4b)의 회전 궤적이, 유출구(3a)의 중심(O)으로부터 변위하고 있으므로, 밸브체(4)를 회전시킴으로써, 조정 홈(4a)의 선단부(4b)가 유출구(3a)에 대하여 바로 정면으로부터 벗어난 방향으로부터 겹쳐지기 시작한다.Further, since the rotational trajectory of the tip 4b of the adjusting groove 4a is displaced from the center O of the outlet port 3a, the tip 4b of the adjusting groove 4a is rotated by rotating the valve body 4. Starts to overlap from the direction away from the front immediately with respect to the outlet port 3a.
이로써, 냉매를 흘려 보내기 시작할 때에, 조정 홈(4a)의 선단부(4b)와 유출구(3a)가 겹쳐치는 면적을 종래에 비해 작게 하여, 냉매 유량을 조금씩 증가시킬 수 있어, 유체를 흘려 보내기 시작할 때의 유량을 고정밀도로 제어하는 것이 가능해진다.As a result, when the coolant starts to flow, the area where the tip portion 4b of the adjusting groove 4a overlaps with the outlet port 3a is made smaller than in the related art, and the coolant flow rate can be increased little by little, and when the fluid starts to flow. The flow rate of can be controlled with high accuracy.
이것에 비하여, 조정 홈의 선단부가 유출구의 중심을 통과하는 종래의 구성에서는, 고정밀도로 유량을 조정할 수 없고, 조정 홈을 이용하지 않고 완전 개방용 홈에 의하여 유량을 변경하려고 하면, 정밀도가 현저하게 저하하므로 유량을 제어할 수 있다고는 할 수 없다.On the other hand, in the conventional structure in which the tip of the adjusting groove passes through the center of the outlet, if the flow rate cannot be adjusted with high precision and the flow rate is changed by the fully open groove without using the adjusting groove, the accuracy is remarkably high. Since it falls, it cannot be said that flow rate can be controlled.
또, 조정 홈(4a)의 선단부(4b)에 있어서의 유출구(3a)와 겹쳐치는 부분의 폭치수가, 상기 선단부(4b)에 유입된 오염물 등의 이물이 냉매와 함께 유출구(3a)로부터 흘러나오도록 설정하고 있으므로, 조정 홈(4a)의 선단부(4b)에 이물이 흘러들어갔다고 해도, 냉매와 함께 유출구(3a)로부터 흘려내보낼 수 있다.Moreover, the foreign material, such as the contaminant which flowed in the tip part 4b of the adjustment groove 4a and overlaps with the outlet port 3a in the front end part 4b, flows from the outlet port 3a with a refrigerant | coolant. Since it is set to go out, even if a foreign material flowed into the front-end | tip part 4b of the adjustment groove 4a, it can flow out from the outlet port 3a with a refrigerant | coolant.
또, 제1 실시형태와 마찬가지로 감압 기구(Z)로서 팽창 밸브(V)와 모세관(241, 242)를 갖고 있는 것에 의하여, 응축기(22)에서 응축된 액냉매를 팽창 밸브(V) 및 모세관(241, 242)에서 단계적으로 감압할 수 있다.In addition, as in the first embodiment, the expansion valve V and the capillary tubes 241 and 242 are provided as the pressure reducing mechanism Z, thereby allowing the liquid refrigerant condensed in the condenser 22 to expand the expansion valve V and the capillary tube ( 241, 242 may be reduced in stages.
그 작용 효과도 제1 실시형태와 마찬가지로, 도 11에 나타낸 바와 같이 팽창 밸브(V)로부터 유출된 냉매의 온도를 증발 온도보다 높게 할 수 있기 때문에, 모세관(241, 242) 중 기계실 부분에서의 배관 결로를 방지할 수 있다.Similarly to the first embodiment, the effect thereof can be made to be higher than the evaporation temperature of the refrigerant flowing out of the expansion valve V, so that the pipe in the machine room part of the capillary tubes 241 and 242 can be used. Condensation can be prevented.
또, 제1 실시형태와 마찬가지로 모세관(241, 242)와 냉매 복귀 배관(L)을 예를 들어 납땜 등에 의하여 열적으로 접속하고 있으므로, 증발기(231, 232)로부터 압축기로 돌아오는 액냉매를 가열하는 것에 의한 액복귀 방지 효과와, 팽창 밸브(V)로부터 모세관(241, 242)를 통하여 증발기(231, 232)로 향하는 냉매를 냉각하는 것에 의한 냉동 능력의 증대 효과를 얻을 수 있다.In addition, since the capillary tubes 241 and 242 and the refrigerant return pipe L are thermally connected, for example, by soldering or the like, as in the first embodiment, the liquid refrigerant returned from the evaporators 231 and 232 to the compressor is heated. And the effect of increasing the refrigerating capacity by cooling the refrigerant directed from the expansion valve V to the evaporators 231 and 232 through the capillary tubes 241 and 242.
또, 밸브체에 마련한 유체 제어 홈에 의하여 냉매 유량을 제어하고 있으므로, 냉매 유량에 관계없이 유입관(7)이나 복수의 유출관(8)의 관 직경을 다양하게 변경할 수 있으며, 예를 들면 복수의 유출관(8)의 관 직경을 동일하게 하거나 유입관(7)과 유출관(8)의 관 직경을 동일하게 하거나 하는 것이 가능해진다.In addition, since the refrigerant flow rate is controlled by the fluid control groove provided in the valve body, the pipe diameters of the inlet pipe 7 and the plurality of outlet pipes 8 can be variously changed regardless of the refrigerant flow rate. It is possible to make the pipe diameter of the outflow pipe 8 the same, or to make the pipe diameter of the inflow pipe 7 and the outflow pipe 8 the same.
단, 본 발명은 제1 실시형태 및 제2 실시형태에 한정되는 것은 아니다.However, this invention is not limited to 1st Embodiment and 2nd Embodiment.
예를 들면, 제1 실시형태에서는, 조정 홈의 선단이 유출구와 겹쳐지도록, 조정 홈의 선단의 회전 궤적을, 가상 원으로부터 변위시키고 있었지만, 조정 홈의 선단을 유출구와 겹치지 않고, 선단부에 있어서의 선단 이외의 일부가 유출구와 겹쳐지도록 해도 된다.For example, in the first embodiment, the rotational trajectory of the tip of the adjusting groove is displaced from the imaginary circle so that the tip of the adjusting groove overlaps the outlet, but the tip of the adjusting groove does not overlap the outlet, A portion other than the tip may overlap the outlet.
<제3 실시형태><Third embodiment>
다음으로 본 발명의 제3 실시형태에 대하여 도면을 참조하여 설명한다.Next, a third embodiment of the present invention will be described with reference to the drawings.
제3 실시형태에 관한 밸브 구조(20)는, 유출구(3a)의 위치가 특징적이므로, 이 점에 대하여 이하에 상세히 설명한다.Since the position of the outlet port 3a is characteristic of the valve structure 20 which concerns on 3rd Embodiment, this point is demonstrated in detail below.
우선, 제1 실시형태나 제2 실시형태의 유출구(3a)는, 도 8에 나타내는 바와 같이, 조정 홈(4a)의 선단(4x)의 회전 궤적(P)이 유출구(3a)의 외연과 접하도록 형성되어 있다.First, in the outlet 3a of 1st Embodiment or 2nd Embodiment, as shown in FIG. 8, the rotation trace P of the front-end | tip 4x of the adjustment groove 4a is in contact with the outer edge of the outlet 3a. It is formed to.
그런데, 유출구(3a)의 위치 즉 유출구(3a)의 중심(O)의 위치에는, 가공 시나 조립 시의 편차가 있으므로, 도 20a에 나타내는 바와 같이, 예를 들면 상기 각 실시형태에 있어서의 유출구(3a)의 중심(O)을 기준 위치로 한 경우, 실제의 중심(O)은 기준 위치에 비하여 도 20b 또는 도 20c와 같이 직경 방향 외측 혹은 직경 방향 내측으로(예를 들면 0.15mm) 벗어나는 경우가 있다.By the way, since there is a deviation at the time of processing or assembly at the position of the outlet 3a, ie, the position of the center O of the outlet 3a, as shown in FIG. 20A, for example, the outlet in each said embodiment ( When the center O of 3a) is the reference position, the actual center O may deviate radially outward or radially inward (for example, 0.15 mm) as shown in FIG. 20B or 20C compared to the reference position. have.
이 변경에 의하여, 도 21a 내지 도 21c에 나타내는 바와 같이, 조정 홈(4a)과 유출구(3a)가 겹쳐질 때의 밸브체(4)의 밸브 개방도(냉매가 흐르기 시작하는 회전 각도)에 차가 발생한다. 구체적으로는, 도 21b에 도시된 바와 같이 유출구(3a)가 직경 방향 외측으로 벗어난 경우에는, 도 21a에 도시된 바와 같이 유출구(3a)가 기준 위치에 있는 경우에 비하여 밸브 개방도가 작고, 또한 냉매가 흐르기 시작하는 회전 각도가 늦어지며, 유출구(3a)가 직경 방향 내측으로 벗어난 경우에는, 유출구(3a)가 기준 위치에 있는 경우에 비하여 밸브 개방도가 크고, 또한 냉매가 흐르기 시작하는 회전 각도가 빨라진다.By this change, as shown in FIGS. 21A to 21C, the difference in the valve opening degree (rotation angle at which refrigerant starts to flow) of the valve body 4 when the adjustment groove 4a and the outlet port 3a overlap. Occurs. Specifically, in the case where the outlet 3a is deviated outward in the radial direction as shown in Fig. 21B, the valve opening degree is smaller than in the case where the outlet 3a is in the reference position as shown in Fig. 21A, and When the rotational angle at which the coolant starts to flow becomes slow, and the outlet 3a is deviated inward in the radial direction, the valve opening degree is larger than when the outlet 3a is at the reference position, and the rotational angle at which the coolant starts to flow. Is faster.
또, 유출구(3a)의 중심(O)이 기준 위치보다 직경 방향 외측으로 벗어난 경우에는, 상기 제1 실시형태 및 상기 제2 실시형태의 구성이라면, 냉매를 흘려 보내기 시작할 때에, 조정 홈(4a)의 선단부(4b)와 유출구(3a)가 겹쳐지는 면적이 너무 작아져, 도 22에 나타내는 바와 같이, 냉매를 흘려 보내기 시작할 때에 밸브체(4)를 회전시켜도 유량이 좀처럼 증가하지 않는다.Moreover, when the center O of the outlet port 3a deviates radially outward from a reference position, if it is the structure of the said 1st Embodiment and the said 2nd Embodiment, the adjustment groove 4a at the time of starting to flow a refrigerant | coolant will flow. The area where the tip portion 4b and the outlet port 3a overlap with each other becomes too small, and as shown in FIG. 22, even if the valve body 4 is rotated when the coolant starts to flow, the flow rate hardly increases.
이러한 점에서, 유출구(3a)가 직경 방향 외측으로 벗어난 경우에는, 유출구(3a)가 기준 위치에 있는 경우와 동일한 회전 각도에서는 냉매가 흐르지 않아 냉각이 부족해지는 불랭(不冷)이라는 트러블이 발생할 가능성이 있거나, 불랭까지는 아니더라도 소비 전력량의 증가와 같은 기본 성능이 손상될 것이 우려된다.In this regard, when the outlet port 3a deviates outward in the radial direction, there is a possibility that a trouble such as uncooling that the coolant is insufficient because the refrigerant does not flow at the same rotation angle as when the outlet port 3a is at the reference position is caused. There is a fear that the basic performance, such as the increase in the amount of power consumption, even if there is no, or even not cold.
따라서, 본 실시형태에 관한 밸브 구조(20)는, 도 23에 나타내는 바와 같이, 기준 위치의 유출구(3a)를 상기 각 실시형태보다 직경 방향 내측에 배치했다. 보다 구체적으로는, 조정 홈(4a)의 선단(4x)의 회전 궤적(P)이, 유출구(3a)의 중심(O)보다 밸브체(4)의 회전축(X)측에 있어서 유출구(3a)와 겹쳐지도록, 유출구(3a)를 배치하고 있다.Therefore, in the valve structure 20 which concerns on this embodiment, as shown in FIG. 23, the outlet port 3a of a reference position was arrange | positioned inside radial direction from each said embodiment. More specifically, the rotational trace P of the tip 4x of the adjustment groove 4a is located on the rotational axis X side of the valve body 4 rather than the center O of the outlet 3a on the outlet 3a. The outlet 3a is arrange | positioned so that it may overlap with.
이와 같이 기준 위치의 유출구(3a)를 상기 각 실시형태보다 직경 방향 내측에 배치함으로써, 도 24에 나타내는 바와 같이, 만일 유출구(3a)가 직경 방향 외측으로 벗어났다고 해도, 즉, 조정 홈(4a)과 유출구(3a)가 겹쳐지는 면적이 하한치가 되는 경우여도, 조정 홈(4a)의 선단부(4b)와 유출구(3a)가 겹쳐지는 면적이 냉매를 흘려 보내기 시작할 때에 너무 작아지게 되는 것을 방지할 수 있어, 상기 설명한 불랭이라는 트러블이나 소비 전력량의 증가와 같은 기본 성능이 손상되는 것을 회피할 수 있다.Thus, by arrange | positioning the outlet 3a of a reference position in radial direction inner side than each said embodiment, as shown in FIG. 24, even if the outlet 3a deviates outward in the radial direction, ie, the adjustment groove 4a, Even when the area where the outlet port 3a overlaps becomes the lower limit, the area where the tip portion 4b of the adjustment groove 4a overlaps with the outlet port 3a can be prevented from becoming too small when the refrigerant starts to flow. In addition, it is possible to avoid the damage of the basic performance such as the trouble described above and an increase in the amount of power consumption.
한편 본 실시형태의 구성에 있어서, 가공 시나 조립 시의 편차에 의하여 도 21c에 도시된 바와 같이 유출구(3a)가 직경 방향 내측으로 벗어난 경우, 조정 홈(4a)의 선단부(4b)와 유출구(3a)가 겹쳐지기 시작한 후 더욱 밸브체(4)를 회전시켜 갔을 때의 겹쳐지는 면적이, 제1 실시형태나 제2 실시형태의 구성에 비하여 커져, 유량이 한꺼번에 증가하게 되어, 미소 유량역에 있어서의 유량 제어가 어려워질 우려가 있다.On the other hand, in the structure of this embodiment, when the exit port 3a deviates inwardly in the radial direction as shown to FIG. 21C by the deviation at the time of processing or assembly, the front-end | tip part 4b of the adjustment groove 4a, and the exit port 3a ) And the overlapping area when the valve body 4 is rotated after the start of overlapping becomes larger than the configuration of the first embodiment or the second embodiment, and the flow rate increases all at once, so that in the small flow range The flow rate control may become difficult.
이 점을 감안하여, 본 실시형태의 조정 홈(4a)은, 제1 실시형태나 제2 실시형태와는 다른 형상을 하고 있으며, 구체적으로는 도 23에 나타내는 바와 같이, 선단부(4b)로부터 후단부(4c)측을 향해 형성된 협소부(4g)와, 협소부(4g)로부터 후단부(4c)측을 향해 형성된 확폭부(4h)를 갖고 있다.In view of this point, the adjusting groove 4a of the present embodiment has a shape different from that of the first embodiment and the second embodiment, and specifically, as shown in FIG. It has a narrow part 4g formed toward the edge part 4c side, and the wide part 4h formed from the narrow part 4g toward the rear end part 4c side.
또한 조정 홈(4a)의 형상이 선단(4x)의 회전 궤적(P)에 대하여 비대칭인 점이나, 선단부(4b)가 부분 원형상인 점에 있어서는, 제1 실시형태나 제2 실시형태와 공통되고 있다.In addition, in the point where the shape of the adjustment groove 4a is asymmetrical with respect to the rotational track P of the tip 4x, and the point 4b is partially circular, it is common to 1st Embodiment and 2nd Embodiment. have.
협소부(4g)는, 확폭부(4h)보다 폭치수가 작은 형상이며, 여기에서는 원주 방향을 따라 폭치수가 변화하지 않도록, 즉 원주 방향을 따라 폭치수가 일정해지도록 형성되어 있다. 구체적으로 이 협소부(4g)는, 대향하는 한 쌍의 내연(4g1)이 서로 평행이며, 그 폭치수는 부분 원형상을 이루는 선단부(4b)의 직경과 같은 치수(예를 들면, 가공 가능한 최소 치수)로 되어 있다. 이들 내연(4g1)은, 모두 선단부(4b)의 양단으로부터 접선 방향으로 뻗어 있으며, 선단(4x)의 회전 궤적(P)과는 평행하다.The narrow portion 4g is shaped to have a smaller width dimension than the wider portion 4h, and is formed here so that the width dimension does not change along the circumferential direction, that is, the width dimension becomes constant along the circumferential direction. Specifically, the narrow portion 4g has a pair of opposing inner edges 4g1 parallel to each other, and the width dimension thereof is the same as the diameter of the tip portion 4b constituting the partially circular shape (for example, the minimum that can be machined). Dimensions). All of these internal edges 4g1 extend in a tangential direction from both ends of the front end part 4b, and are parallel to the rotation trace P of the front end 4x.
확폭부(4h)는, 원주 방향을 따라 그 폭치수가 변화하도록 형성되어 있고, 구체적으로는 후단부(4c)를 향해 폭치수가 서서히 커지는 형상, 바꾸어 말하면 협소부(4g)로부터 후단부(4c)를 향해 퍼져가는 형상이다.The wide part 4h is formed so that the width dimension may change along the circumferential direction, specifically, the shape where the width dimension gradually increases toward the rear end part 4c, in other words, from the narrow part 4g to the rear end part 4c. It is a shape spreading toward).
보다 구체적으로는, 확폭부(4h)의 외연(4h1)은, 선단(4x)의 회전 궤적(P)으로부터 외측으로 멀어져 가도록 형성되어 있고, 확폭부(4h)의 내연(4h2)은, 선단(4x)의 회전 궤적(P)에 가까워지도록 형성되어 있다. 이로써, 확폭부(4h)의 외연(4h1)과 내연(4h2)은, 선단(4x)의 회전 궤적(P)에 대하여 비대칭이다. 또한 내연(4h2)은, 선단(4x)의 회전 궤적(P)과 평행해도 된다.More specifically, the outer edge 4h1 of the widening portion 4h is formed so as to move outward from the rotational trajectory P of the tip 4x, and the inner edge 4h2 of the widening portion 4h is the tip ( It is formed so as to be close to the rotation trajectory P of 4x). As a result, the outer edge 4h1 and the inner edge 4h2 of the widened portion 4h are asymmetric with respect to the rotational trajectory P of the tip 4x. In addition, the internal combustion 4h2 may be parallel to the rotation trajectory P of the tip 4x.
이와 같이, 선단부(4b)로부터 후단부(4c)측을 향해 형성된 협소부(4g)를, 원주 방향을 따라 폭치수가 일정해지는 형상으로 함으로써, 유출구(3a)가 직경 방향 내측으로 위치 변경되었다고 해도, 조정 홈(4a)의 선단부(4b)와 유출구(3a)가 겹쳐지기 시작한 후 더욱 밸브체(4)를 회전시켜 갔을 때의 겹쳐지는 면적의 증대를 억제할 수 있다.In this way, even when the outlet port 3a is repositioned in the radial direction by making the narrow portion 4g formed from the tip portion 4b toward the rear end portion 4c to have a shape in which the width dimension is constant along the circumferential direction Since the front end part 4b of the adjustment groove 4a and the outlet port 3a start to overlap, the increase of the overlapping area at the time of rotating the valve body 4 can be suppressed.
이로 인하여, 조정 홈(4a)과 유출구(3a)가 겹쳐지는 면적이 상한치가 되는 경우여도, 냉매를 흘려 보내기 시작할 때에 유량이 한꺼번에 증가하는 것을 방지할 수 있어, 미소 유량역에 있어서 조정 홈(4a)이나, 유출구(3a)의 가공 시나 조립 시의 편차의 영향을 최소로 하여 유량 제어하는 것이 가능해진다.For this reason, even if the area where the adjustment groove 4a and the outlet port 3a overlap is at the upper limit, it is possible to prevent the flow rate from increasing all at once when the refrigerant starts to flow, and thus the adjustment groove 4a in the minute flow range. ) And flow rate control can be minimized with the influence of the variation during processing or assembling of the outlet port 3a.
또, 협소부(4g)가, 선단(4x)의 회전 궤적(P)과 평행으로 형성되어 있으므로, 조정 홈(4a)과 유출구(3a)가 겹쳐지는 면적이 상한치(최대)가 되는 경우여도, 냉매를 흘려 보내기 시작할 때에 유량이 한꺼번에 증가하게 되는 것을 방지할 수 있다.Moreover, since the narrow part 4g is formed in parallel with the rotation trace P of the front-end | tip 4x, even if the area which the adjustment groove 4a and the outflow opening 3a overlap becomes an upper limit (maximum), When the refrigerant starts to flow, the flow rate can be prevented from increasing all at once.
또, 확폭부(4h)의 외연(4h1)이, 선단(4x)의 회전 궤적(P)으로부터 외측으로 멀어져 가도록 형성되어 있으므로, 냉매가 어느 정도 흐르기 시작한 후, 유량을 서서히 증가시킬 수 있어, 조정 홈(4a)의 전체가 유출구(3a)를 계속해서 통과하여 유출구(3a)가 완전 개방이 될 때에, 유량이 급격하게 증가하게 되는 것을 방지할 수 있다.Moreover, since the outer edge 4h1 of the wide part 4h is formed so that it may move away from the rotational trace P of the front end 4x, the flow volume can gradually increase after a coolant starts to flow to some extent, and it will adjust. When the entirety of the grooves 4a continues to pass through the outlet port 3a and the outlet port 3a is fully opened, the flow rate can be prevented from increasing rapidly.
또한, 확폭부의 내연이, 상기 선단부의 회전 궤적에 가까워지도록 형성되어 있으므로, 냉매가 어느 정도 흐르기 시작한 후, 유량이 한꺼번에 증가하는 것을 방지하여 유량을 서서히 증가시킬 수 있어, 협소부에서 발생하는 유로 면적 비율의 편차를 저감할 수 있다.In addition, since the inner edge of the wide portion is formed so as to be close to the rotational trajectory of the tip portion, after the coolant starts to flow to some extent, the flow rate can be prevented from increasing at once, and the flow rate can be gradually increased, so that the flow path area generated in the narrow portion. The variation in ratio can be reduced.
이상과 같이, 본 실시형태의 밸브 구조(20)라면, 도 24에 나타내는 바와 같이, 유출구(3a)가 직경 방향 외측으로 위치 변경되었다고 해도, 냉매를 흘려 보내기 시작할 때에 있어서의 유량을 확보할 수 있음과 함께, 유출구(3a)가 직경 방향 외측으로 위치 변경되었다고 해도, 냉매를 흘려 보내기 시작할 때에 유량이 한꺼번에 증대하는 것을 방지할 수 있다.As described above, in the valve structure 20 of the present embodiment, as shown in FIG. 24, even when the outlet port 3a is positioned outward in the radial direction, the flow rate at the start of flowing the refrigerant can be ensured. In addition, even when the outlet port 3a is positioned in the radially outer side, it is possible to prevent the flow rate from increasing at the same time when the coolant starts to flow.
다만, 제3 실시형태에서는, 기준 위치의 유출구(3a)를 상기 제1 실시형태나 상기 제2 실시형태보다 직경 방향 내측에 배치한 양태를 설명했지만, 기준 위치의 조정 홈(4a)을 상기 제1 실시형태나 상기 제2 실시형태보다 직경 방향 외측에 배치해도, 제3 실시형태와 동일한 작용 효과를 얻을 수 있다.In addition, in 3rd Embodiment, although the aspect which arrange | positioned the outlet 3a of the reference position in radial direction inner side than the said 1st Embodiment or the said 2nd Embodiment was demonstrated, the adjustment groove 4a of the reference position was described above. Even if it arrange | positions radially outer side rather than 1st Embodiment or the said 2nd Embodiment, the effect similar to 3rd Embodiment can be acquired.
그 외, 본 발명은 상기 각 실시형태에 한정되지 않고, 그 취지를 벗어나지 않는 범위에서 다양한 변형이 가능한 것은 말할 필요도 없다.In addition, this invention is not limited to said each embodiment, Needless to say that various deformation | transformation is possible in the range which does not deviate from the meaning.

Claims (15)

  1. 압축기, 응축기, 증발기;Compressors, condensers, evaporators;
    상기 응축기에서 유출되는 냉매를 상기 증발기에 전달하는 밸브;를 포함하고,And a valve configured to transfer the refrigerant flowing out of the condenser to the evaporator.
    상기 밸브는 상기 밸브 내의 냉매가 유출되는 유출구를 가지는 밸브 시트와 상기 유출구에 대해 이동 가능하고 상기 유출구의 개방도를 조정하는 밸브체를 포함하고 The valve includes a valve seat having an outlet through which the refrigerant in the valve flows, and a valve body that is movable relative to the outlet and adjusts the opening degree of the outlet.
    상기 밸브체는 상기 유출구의 개방도를 조정하는 조정 홈을 포함하고,The valve body includes an adjustment groove for adjusting the opening of the outlet,
    상기 유출구의 중심은 상기 조정 홈의 단부 중심의 이동 궤적의 외측에 마련되는 냉장고.The center of the outlet is provided on the outside of the movement trajectory of the end center of the adjustment groove.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 밸브체는 상기 밸브 시트에 대해 회전 가능하게 마련되고,The valve body is provided rotatably with respect to the valve seat,
    상기 조정 홈이 상기 밸브체의 회전에 의해 상기 유출구와 중첩되게 배치될 시 상기 유출구는 상기 증발기와 연통 가능하게 마련되고,When the adjustment groove is disposed to overlap with the outlet by the rotation of the valve body, the outlet is provided in communication with the evaporator,
    상기 조정 홈이 상기 이동 궤적을 따라 회전되어 유출구와 중첩되기 시작할 시, 상기 조정 홈의 중첩되는 면적은 상기 조정 홈의 회전 각도에 대해 불규칙하게 증가되도록 마련되는 냉장고.And the overlapping area of the adjusting groove is irregularly increased with respect to the rotation angle of the adjusting groove when the adjusting groove is rotated along the movement trajectory and starts to overlap with the outlet.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 조정 홈은 상기 유출구의 개방 방향으로 개방되고, 상기 밸브체의 회전축의 원주 방향으로 연장되도록 마련되고,The adjustment groove is provided to open in the opening direction of the outlet, extend in the circumferential direction of the rotation axis of the valve body,
    상기 단부에서 상기 밸브체의 회전 방향의 반대 방향으로 개방되도록 마련되는 개방부를 포함하는 냉장고.And an opening part provided at the end to open in a direction opposite to the rotation direction of the valve body.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 조정 홈은 상기 단부에서부터 개방부 방향으로 폭이 커지도록 마련되는 냉장고.The adjusting groove is provided so as to increase in width in the direction of the opening portion from the end.
  5. 제 3 항에 있어서, The method of claim 3, wherein
    상기 조정 홈은 상기 단부에서부터 개방부 방향으로 폭이 일정한 제 1영역과 상기 제 1영역에서부터 상기 개방부를 향해 폭이 커지는 제 2영역을 가지도록 마련되는 냉장고.And the adjustment groove has a first region having a constant width in the direction of the opening from the end portion and a second region having a width extending from the first region toward the opening.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    상기 제 1영역의 폭은 상기 단부 중심의 이동 궤적과 평행하게 마련되는 냉장고.The width of the first region is provided in parallel with the movement trajectory of the end center.
  7. 제 5 항에 있어서,The method of claim 5, wherein
    상기 제 2영역의 외주면은 상기 개방부 방향으로 상기 단부 중심의 이동 궤적으로부터 멀어지도록 형성되는 냉장고.The outer circumferential surface of the second region is formed to move away from the movement trajectory of the end center in the opening direction.
  8. 제 5 항에 있어서,The method of claim 5, wherein
    상기 제 2영역의 내주면과 외주면은 상기 개방부 방향으로 비대칭으로 연장되는 냉장고.The inner circumferential surface and the outer circumferential surface of the second region extend asymmetrically in the direction of the opening.
  9. 제 2항에 있어서,The method of claim 2,
    상기 유출구의 중심은 상기 조정 홈의 단부 중심의 이동 궤적보다 상기 밸브체의 회전축에 대해 반경 방향 외측에 마련되는 냉장고.The center of the said outlet port is provided in the radially outer side with respect to the rotating shaft of the said valve body rather than the movement trace of the center of the edge part of the said adjustment groove.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 응축기와 상기 밸브 사이에 배치되고 복수의 투과 홀을 가지는 필터를 더 포함하고,And a filter disposed between the condenser and the valve and having a plurality of through holes.
    상기 조정 홈의 단부가 상기 유출구와 중첩되게 배치될 시, 단부가 상기 유출구와 중첩되게 배치될 시의 중첩되는 면적은 상기 복수의 투과 홀 중 어느 하나의 면적보다 크게 마련되는 냉장고.When the end of the adjustment groove is disposed to overlap the outlet, the overlapping area when the end is disposed to overlap with the outlet is greater than the area of any one of the plurality of transmission holes.
  11. 제 2 항에 있어서,The method of claim 2,
    상기 조정 홈은 상기 밸브체의 회전축을 중심으로 반경 방향으로 60도 이내의 영역에 배치되는 냉장고.The adjustment groove is a refrigerator disposed in an area within 60 degrees in the radial direction about the axis of rotation of the valve body.
  12. 제 2 항에 있어서,The method of claim 2,
    제 2증발기를 더 포함하고,Further comprising a second evaporator,
    상기 밸브는 상기 제 1증발기와 상기 제 2증발기에 상기 응축기에서 유출되는 냉매를 전달하고,The valve delivers the refrigerant flowing out of the condenser to the first evaporator and the second evaporator,
    상기 제 2증발기로 냉매가 유출되는 제 2유출구를 가지는 제 2밸브 시트와 상기 제 2밸브 시트에 대해 회전 가능하게 마련되고 상기 제 2유출구의 개방도를 조정하는 제 2조정 홈을 가지는 제 2밸브체를 더 포함하고,A second valve seat having a second outlet port through which refrigerant flows into the second evaporator and a second valve rotatably provided with respect to the second valve seat and having a second adjustment groove for adjusting the opening degree of the second outlet port; More sieves,
    상기 제 2조정 홈이 상기 제 2밸브체의 회전에 의해 상기 제 2유출구와 중첩되게 배치될 시 상기 제 2유출구는 상기 제 2증발기와 연통 가능하게 마련되고,When the second adjustment groove is arranged to overlap the second outlet by the rotation of the second valve body, the second outlet is provided so as to be in communication with the second evaporator,
    상기 제 2유출구의 중심은 상기 제 2조정 홈의 단부 중심의 이동 궤적의 외측에 마련되는 냉장고.The center of the second outlet is provided on the outside of the movement trajectory of the end center of the second adjustment groove.
  13. 제12항에 있어서,The method of claim 12,
    상기 밸브는 모터와 상기 모터의 회전축에 결합되는 구동 기어를 더 포함하고,The valve further includes a drive gear coupled to the motor and the rotating shaft of the motor,
    상기 제 1밸브체와 상기 제 2밸브체는 각각 구동 기어와 치합되고, 상기 구동 기어의 회전에 연동되어 각각 회전되는 냉장고.And the first valve body and the second valve body are engaged with the driving gear, respectively, and rotated in association with the rotation of the driving gear.
  14. 제 2 항에 있어서,The method of claim 2,
    제 2증발기를 더 포함하고,Further comprising a second evaporator,
    상기 밸브는 상기 제 1증발기와 상기 제 2증발기에 상기 응축기에서 유출되는 냉매를 전달하고,The valve delivers the refrigerant flowing out of the condenser to the first evaporator and the second evaporator,
    상기 밸브 시트는 상기 제 2증발기로 냉매가 유출되는 제 2유출구를 더 포함하고,The valve seat further includes a second outlet port through which refrigerant flows into the second evaporator,
    상기 조정 홈은 상기 제 2유출구의 개방도를 조정하고,The adjustment groove adjusts the opening degree of the second outlet,
    상기 밸브체가 제 1회전 각도로 회전될 시 상기 제 1유출구와 상기 제 2유출구가 개방되고,The first outlet and the second outlet are opened when the valve body is rotated at a first rotational angle;
    상기 밸브체가 제 2회전 각도로 회전될 시 상기 제 1유출구와 상기 제 2유출구 중 어느 하나가 상기 조정 홈과 중첩되게 배치되고 다른 하나는 폐쇄되고,When the valve body is rotated at a second rotational angle, one of the first outlet port and the second outlet port is disposed to overlap the adjustment groove, and the other is closed.
    상기 밸브체가 제 3회전 각도로 회전될 시 상기 제 1유출구와 상기 제 2유출구가 폐쇄되도록 마련되는 냉장고.And the first outlet and the second outlet are closed when the valve body is rotated at a third rotational angle.
  15. 제 13 항에 있어서,The method of claim 13,
    상기 구동 기어가 제 1회전 각도로 회전될 시,When the drive gear is rotated at the first rotation angle,
    상기 밸브체와 상기 제 2밸브체는 각각 상기 제 1유출구와 상기 제 2유출구가 개방되도록 마련되고,The valve body and the second valve body are provided such that the first outlet port and the second outlet port are opened, respectively.
    상기 구동 기어가 제 2회전 각도로 회전될 시,When the drive gear is rotated at the second rotation angle,
    상기 밸브체는 상기 제 1유출구가 상기 조정 홈과 중첩되게 배치되도록 마련되고, 상기 제 밸브체는 상기 제 2유출구가 폐쇄되도록 마련되고,The valve body is provided so that the first outlet port overlaps with the adjustment groove, and the second valve body is provided so that the second outlet port is closed.
    상기 구동 기어가 제 3회전 각도로 회전될 시,When the drive gear is rotated at a third rotational angle,
    상기 벨브체와 상기 제 2밸브체는 각각 상기 제 1유출구와 상기 제 2유출구가 폐쇄되도록 마련되고,The valve body and the second valve body are provided such that the first outlet port and the second outlet port are closed, respectively.
    상기 구동 기어가 제 4회전 각도로 회전될 시,When the drive gear is rotated at the fourth rotation angle,
    상기 밸브체는 상기 제 1유출구가 폐쇄되도록 마련되고, 상기 제 2밸브체는 상기 제 2밸브체의 상기 제 2조정 홈이 상기 제 2유출구와 중첩되게 배치되도록 마련되는 냉장고.And the valve body is provided such that the first outlet port is closed, and the second valve body is provided such that the second adjustment groove of the second valve body overlaps with the second outlet port.
PCT/KR2017/009205 2016-08-24 2017-08-23 Refrigerator WO2018038528A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187032973A KR102403519B1 (en) 2016-08-24 2017-08-23 refrigerator
US16/327,752 US11828502B2 (en) 2016-08-24 2017-08-23 Refrigerator
EP17843948.5A EP3486581B1 (en) 2016-08-24 2017-08-23 Refrigerator

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016164198 2016-08-24
JP2016-164198 2016-08-24
JP2016-184799 2016-09-21
JP2016184799 2016-09-21
JP2017-003115 2017-01-12
JP2017003115 2017-01-12
JP2017-140384 2017-07-19
JP2017140384A JP2018112305A (en) 2016-08-24 2017-07-19 Valve structure and refrigerator

Publications (1)

Publication Number Publication Date
WO2018038528A1 true WO2018038528A1 (en) 2018-03-01

Family

ID=61245061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009205 WO2018038528A1 (en) 2016-08-24 2017-08-23 Refrigerator

Country Status (2)

Country Link
KR (1) KR102403519B1 (en)
WO (1) WO2018038528A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040084784A (en) * 2003-03-25 2004-10-06 가부시기가이샤 산교세이기 세이사꾸쇼 Apparatus for driving valve assembly
JP2005214508A (en) 2004-01-29 2005-08-11 Toshiba Corp Refrigerator
KR20130071124A (en) * 2011-12-20 2013-06-28 위니아만도 주식회사 Five way step valve
JP2015010815A (en) * 2013-07-02 2015-01-19 株式会社東芝 Refrigerator
JP2015014294A (en) * 2013-07-03 2015-01-22 日立アプライアンス株式会社 Flow rate control valve, and equipment provided with flow rate control valve
KR20150063930A (en) * 2013-12-02 2015-06-10 삼성전자주식회사 Cooling apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5893532B2 (en) * 2012-08-31 2016-03-23 大成建設株式会社 Valve structure
JP2015129625A (en) * 2013-12-02 2015-07-16 三星電子株式会社Samsung Electronics Co.,Ltd. Cooling device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040084784A (en) * 2003-03-25 2004-10-06 가부시기가이샤 산교세이기 세이사꾸쇼 Apparatus for driving valve assembly
JP2004293573A (en) 2003-03-25 2004-10-21 Sankyo Seiki Mfg Co Ltd Valve element driving device
JP2005214508A (en) 2004-01-29 2005-08-11 Toshiba Corp Refrigerator
KR20130071124A (en) * 2011-12-20 2013-06-28 위니아만도 주식회사 Five way step valve
JP2015010815A (en) * 2013-07-02 2015-01-19 株式会社東芝 Refrigerator
JP2015014294A (en) * 2013-07-03 2015-01-22 日立アプライアンス株式会社 Flow rate control valve, and equipment provided with flow rate control valve
KR20150063930A (en) * 2013-12-02 2015-06-10 삼성전자주식회사 Cooling apparatus

Also Published As

Publication number Publication date
KR20190035604A (en) 2019-04-03
KR102403519B1 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
EP3172510A1 (en) Refrigerator and control method thereof
WO2018194324A1 (en) Refrigeration cycle device and three-way flow rate control valve
WO2019172532A1 (en) Refrigerator and controlling method thereof
WO2017069360A1 (en) Air conditioner
WO2017164711A1 (en) Control method for refrigerator
WO2021132866A1 (en) Air conditioning apparatus
WO2016013869A1 (en) Vehicle air conditioner system
WO2019194637A1 (en) Fan assembly and air conditioner
WO2018038528A1 (en) Refrigerator
WO2018217068A1 (en) Air guide for ceiling-type air conditioner and ceiling-type air conditioner having same
WO2021172752A1 (en) Vapor injection module and heat pump system using same
WO2022050586A1 (en) Vapor injection module and heat pump system using same
WO2009136726A2 (en) Heat exchange system
WO2020197044A1 (en) Air conditioning apparatus
WO2021045361A1 (en) Rotary compressor and home appliance including same
WO2021118021A1 (en) Refrigerator
WO2021066356A1 (en) Electronic expansion-and-redirection integrated valve
WO2015083983A1 (en) Cooling device
WO2022145734A1 (en) Refrigerator
WO2022145847A1 (en) Refrigerator and control method therefor
WO2020235801A1 (en) Air conditioning apparatus
WO2021206241A1 (en) Refrigerator
WO2019143194A1 (en) Distributor of air conditioner
WO2021015456A1 (en) Heat exchanger
WO2023054843A1 (en) Valve apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187032973

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017843948

Country of ref document: EP

Effective date: 20190215

NENP Non-entry into the national phase

Ref country code: DE