WO2018038413A1 - Spectrometer and spectrum measurement method utilizing same - Google Patents

Spectrometer and spectrum measurement method utilizing same Download PDF

Info

Publication number
WO2018038413A1
WO2018038413A1 PCT/KR2017/008256 KR2017008256W WO2018038413A1 WO 2018038413 A1 WO2018038413 A1 WO 2018038413A1 KR 2017008256 W KR2017008256 W KR 2017008256W WO 2018038413 A1 WO2018038413 A1 WO 2018038413A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
filter
spectrum
unit
photodetector
Prior art date
Application number
PCT/KR2017/008256
Other languages
French (fr)
Korean (ko)
Inventor
이경석
김원목
황규원
김인호
이욱성
정두석
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170053894A external-priority patent/KR102320479B1/en
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US16/069,241 priority Critical patent/US10908019B2/en
Priority to CN201780050521.XA priority patent/CN109642822B/en
Publication of WO2018038413A1 publication Critical patent/WO2018038413A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/08Beam switching arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means

Definitions

  • the present invention relates to a spectroscope, and more particularly, to a spectrometer using a spectroscopic filter having a stopband characteristic and a spectrum measurement method using the same.
  • Spectrometers using optical filters are used in various wavelength ranges, such as visible light and infrared light.
  • the wavelength band used for infrared spectroscopy can be divided into a near infrared region and a mid infrared region. The prior art will be described below by taking an example of a mid-infrared spectrometer.
  • the mid-infrared wavelength region (2-20 mm) is a region in which the fundamental vibrational mode of almost all chemical molecules exists and is also called molecular fingerprint band because it shows different infrared absorption spectra according to molecular bonding state. Lost is an important wavelength band. Regardless of solid, liquid, or gas, unknown samples can be discriminated or qualitative and quantitative analysis can be performed with high selectivity for specific target molecules.
  • the near-infrared region (0.78-2 mm) is also a section in which a mode by overtone and combination of the mid-infrared band basic vibration modes exists and its intensity is low, but the substance can be identified or quantified.
  • the visible region (0.38-0.78 mm)
  • it can be used not only for the material's unique absorption spectrum but also for the color of the object, the analysis of the phosphor, and the detection of the biomolecule.
  • benchtop spectroscopy such as Fourier transform infrared (FTIR) spectroscopy
  • FTIR Fourier transform infrared
  • a typical band pass filter is a Fabry-Perot filter that uses the optical interference effect of a dielectric resonator placed between two reflective films.
  • a linear variable filter LPF
  • the linear variable filter is an optical filter of a Fabry-Perot resonator structure, and has a structure in which the thickness of the dielectric resonant layer varies linearly in the longitudinal direction.
  • a lower mirror layer and an upper mirror layer are positioned with a dielectric resonance layer interposed therebetween.
  • Such a linear variable filter has a limitation in process reproducibility due to the linear structure whose thickness varies in the longitudinal direction.
  • the resolution of a spectrometer using a linear variable filter is determined by the height-to-length ratio of the linear variable filter, it is difficult to miniaturize the device of the spectrometer.
  • the linear structure is disadvantageous in terms of productivity due to the lack of process compatibility with the two-dimensional imaging sensor technology.
  • an object of the present invention is to provide a spectrometer that is capable of wideband control and advantageous for two-dimensional integration only by controlling the horizontal structure.
  • One aspect of the present invention is a first unit spectroscopic filter that absorbs or reflects light of a portion of the wavelength band of the light spectrum of the incident object, and a light absorbing or reflecting light of a wavelength band different from the wavelength range
  • a processing unit for performing a function of restoring the light spectrum of the object incident from the spectrum of the light detected from the first and second photodetectors.
  • the unit spectroscopic filters have a stopband characteristic.
  • the stopband characteristic is that the unit spectral filters have a peak of reverse transmittance according to the wavelength so that light of a specific wavelength band cannot be transmitted.
  • this is another characteristic of the filter having the peak of reverse transmittance according to the wavelength by preventing the light of the specific wavelength band from transmitting by absorbing or reflecting the light of the specific wavelength band corresponding to the central wavelength for each unit filter. Means.
  • the object spectrum is a peak function
  • the intensity distribution for each filter sequence measured in the photodetector is observed in the dip function
  • the photodetector measurement profile is in the form of a peak function. That is, it may be determined by expressing that the object spectrum and the reverse phase form, or inferred from the intensity distribution in the neighboring wavelength band during the spectral restoration process.
  • metal patterns having a predetermined shape may be periodically arranged, and the metal patterns of the first and second unit spectroscopic filters may be arranged. Have different periods.
  • the first and second photodetectors are comprised of some photodetecting pixels of the CMOS image sensor.
  • the plasmonic metal may be composed of a material selected from Au, Ag, Al, Cu, or an alloy including at least one of them.
  • a material selected from Au, Ag, Al, Cu, or an alloy including at least one of them For example, AgPd, CuNi alloy, etc. can also be used.
  • the metal patterns may be formed of Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, Si or at least one of the metals having both high absorption and refractive index in the visible and near infrared bands. It may be composed of a material selected from the alloy containing. In addition, at least one metal pattern may be selected from the group consisting of Ta, W, Mo, Ni, Cr, TiN, and TiON in which the optical behavior in the mid-infrared band follows the druid free electron model.
  • the metal patterns are formed of at least a double layer, and a low loss high reflectivity metal material and a light absorbing metal material are laminated, and the low loss high reflectivity metal material includes Ag, Au, Al, Mg and at least one of them.
  • the light-absorbing metal material may be selected from among alloys.
  • the light-absorbing metal material may be selected from among Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, and Si. And silicides, carbides, nitrides, or sulfides comprising alloys thereof and these metals.
  • the metal patterns of the first unit spectroscopic filter and the metal patterns of the second unit spectroscopic filter preferably have the same duty cycle.
  • a period of the metal patterns of the first and second unit spectroscopic filters is between 100 nm and 800 nm. This is a preferred range for Si-based photosensitive device operating band or visible-near-infrared region (380-1100 nm) spectrometer construction.
  • the preferred period of the metal patterns in the InGaAs or Ge based near infrared photosensitive device operating band (800-1700 nm) is between 0.6 um and 1.5 um.
  • the period of the metal nanopatterns is between 0.8 um and 8 um.
  • the first unit spectrometer and the second unit spectroscopic filter may further include a passivation layer.
  • the passivation layer is made of a material selected from HfO 2 , ZrO 2 , ZnO, ZnSe, TiO 2 , Al 2 O 3 , SiO x , SOG, or an alloy consisting of at least two of them.
  • the first unit spectroscopic filter and the second unit spectroscopic filter may further include a protective layer, and the protective layer may include a low refractive index silicon oxide, a silicon nitride film, magnesium fluoride, calcium fluoride, a low molecular resin, or a polymer material. desirable.
  • the process unit the step of calculating the intensity of light absorbed or light reflected by the first unit spectroscopic filter from the spectrum of the light of the first photodetector, the second unit spectroscopic filter from the spectrum of the light of the second photodetector Calculating an intensity of light absorbed or reflected by the light; and restoring a light spectrum of the incident object from the intensity of light absorbed or reflected by the first and second unit spectroscopic filters.
  • the light spectrum of the object is incident on the first and second unit spectroscopy filter and the first unit spectroscopy light absorbs or reflects light of some wavelength band
  • the second unit spectroscopy The filter absorbs or reflects light in a wavelength band different from the wavelength band
  • a first photodetector detects a first light spectrum passing through the first unit spectroscopic filter
  • a second photodetector detects the first light spectrum.
  • a spectroscope comprising detecting a second light spectrum passing through the two-unit spectroscopic filter and restoring the light spectrum of the object incident from the spectra of the light detected by the first and second photodetectors. It provides a spectrum measurement method used.
  • a direct readout or regularization technique is preferably used.
  • the reconstructing of the spectrum of the object may be performed by substituting the transmission spectrum f i ( ⁇ ) of the individual filter and the spectral sensitivity function d i ( ⁇ ) of the photodetector into the following equation and measuring the detected detection signal r i. Can be derived.
  • D i ( ⁇ ) is f i ( ⁇ ) d i ( ⁇ ).
  • the spectrum of the object to be analyzed is s ( ⁇ )
  • the transmission functions of the individual filters F are f i ( ⁇ )
  • the noise is n i
  • the sensitivity function of the photodetector PD is d i ( ⁇ ).
  • the detection signal r i generated when the spectrum of the object passes through the filter and reaches the photodetector.
  • the design and manufacturing process of the spectral filter is simplified, the metal material selectivity is extended, and the filter function can be easily measured and analyzed, thereby improving the signal restoration ability.
  • FIG. 1 is a spectroscopic filter array according to an embodiment of the present invention
  • Figure 2 is a view showing a part of the spectrometer using the same
  • Figure 3 is a block diagram of a spectrometer according to an embodiment of the present invention.
  • FIG. 4 is a plan view illustrating an array of spectral filters according to an embodiment of the present invention
  • FIG. 5 is a diagram illustrating the metal patterns of FIG. 4.
  • 6 to 8 are diagrams illustrating spectral filters according to another embodiment.
  • FIG. 13 is a simulation result showing that the free spectrum range of the metal nanostructure array type stopband filter according to the present invention can be extended not only to the near infrared band but also to the visible wavelength range.
  • FIG. 14 shows an example of constructing a spectrometer through a one-dimensional linear array coupling between the filter array and the photodetector of the present invention.
  • FIG. 15 shows an example of constructing a spectrometer through a two-dimensionally arranged coupling between the filter array and the photodetector of the present invention.
  • 16 is a flowchart for explaining the spectroscopic method of the present invention.
  • FIG. 17 illustrates a digital signal processing process for reconstructing an object spectrum for spectroscopic operation using an infrared optical filter according to an embodiment of the present invention.
  • 18 and 19 are graphs for comparing the transmission band type filter array and the stop band type filter array in the visible-near-infrared wavelength band.
  • FIG. 20 is a schematic diagram for explaining gain in terms of detection limits of spectral signals compared to transmission band filter arrays when using a stopband filter array according to the present invention.
  • 21 and 22 show graphs of the function reconstructed by varying the duty cycle in the metal nanodisk array filter.
  • FIG. 23 is a graph comparing spectral changes according to nanodisk shapes in a filter of a nanodisk array structure having a circle and a hexagonal lattice structure
  • FIG. 24 shows a spectroscopic filter array by mixing into disk arrays having two or more shapes. The constructed e is shown.
  • FIG. 25 is a graph showing the distribution of the absorption coefficient versus the refractive index of optical constant dispersion characteristics of metals, dielectrics, and semiconductor materials.
  • FIG. 26 is a light transmittance spectrum of a hexagonal lattice-structured nanodisk array using Cr and Ti and calculated in the visible-near-infrared band.
  • 27 is a graph of light transmittance and light reflectivity of a nanodisk array calculated using tungsten (W).
  • FIG. 28 is a graph illustrating spectral recovery performance by fabricating a tungsten nanodisk array of FIG. 26 using a stopband filter array and applying a digital signal processing algorithm.
  • FIG. 1 is a view showing a part of the spectroscopic filter array according to an embodiment of the invention
  • Figure 2 is a view showing a portion of the spectrometer using the spectroscopic filter array shown in FIG.
  • the spectroscopic filter array 10 includes a plurality of unit spectroscopic filters F 1 and F 2 .
  • the plurality of unit spectroscopic filters F 1 and F 2 are configured to filter light of different wavelengths.
  • a plurality of unit spectral filters means at least two unit spectral filters.
  • the spectrometer 20 according to the embodiment of the present invention includes the spectroscopic filter array 10 and each of the photodetection areas PD 1 and PD corresponding to each of the plurality of unit spectroscopic filters F 1 and F 2 . And a photodetector array 210 comprising 2 ).
  • the plurality of unit filters F 1 and F 2 are configured to filter light of different wavelengths, and each of the unit filters F 1 and F 2 corresponds to each of the photodetection areas PD 1 and PD 2 . do.
  • the plurality of unit filters mean at least two unit filters. 2 illustrates an example in which the unit filters F 1 and F 2 correspond to the photodetection areas PD 1 and PD 2 with the substrate 110 interposed therebetween.
  • F 1 and F 2 and corresponding light detection regions PD 1 and PD 2 mean that the unit filters F 1 and F 2 and the light detection regions PD 1 and PD 2 are directly connected to each other. It may include a situation in which it is in contact, in addition to that it is to be understood to include a separate modular module form, or a form in which an optical system such as a relay lens is separately inserted between the two.
  • the unit spectroscopic filters F 1 and F 2 have a main characteristic configuration using a stop band.
  • the unit spectroscopic filters F 1 and F 2 are formed of a plasmonic filter that forms a metal pattern 120 periodically to enable filtering.
  • the unit spectroscopic filters F 1 and F 2 of FIG. 1 illustrate the implementation of the stop band through a structure in which the protruding metal patterns 120 having a predetermined shape (embossing) are periodically arranged.
  • the metal patterns can form an array of metal nanostructures with a periodic lattice structure, and the extraordinary light absorption to light reflection enhanced in a specific wavelength band by coupling of the localized surface plasmon and the lattice mode. Indicates a phenomenon.
  • the spectrum of light passing through the array of metal nanostructures forms a dip curve in which the transmittance decreases rapidly in the selective wavelength band where specific light absorption to light reflection is enhanced. It acts as a stopband when based on transmitted light, and its spectral shape depends on the choice of metal and the geometry, such as the period and particle size of the nanostructure array, especially its central wavelength by the lattice period. Has a predominantly determined characteristic.
  • a metal nanohole array structure showing a transmission band has been utilized as a plasmonic filter.
  • the metal nanohole array structure exhibits an extraordinary optical transmission (EOT) phenomenon in which light transmittance is increased at a specific wavelength by coupling between a surface plasmon wave and a lattice mode that travels along the metal thin film surface.
  • EOT extraordinary optical transmission
  • the metal nanohole array structure is based on coupling between traveling waves, unlike the metal nanodisk array structure, various modes exist and are not defined as a single transmission band.
  • This multimode spectrometer in the filter array method In operation distortion may occur in the process of processing signal wavelengths incident on the respective light detection regions.
  • the array of metal patterns made of highly reflective metal material shows the reflectance peak curve in a specific wavelength band by coupling with the lattice mode, it is used for the limited use such as reflective color filter or decorative coating using reflected light. come.
  • the present invention provides a spectroscopic technique in which the arrangement of the metal nanostructures with the photodetector array in the form of a stopband filter is not a reflective structure, but a transmissive structure.
  • the present inventors have a relatively wide spectral free spectral range when using the stop band formed by the arrangement of the plasmonic nanostructures in the visible wavelength region and the infrared wavelength band, so that the visible and infrared wavelengths are larger than those of the transmission band filter. It was confirmed that there is an advantage of covering the entire band.
  • the inventors of the present invention have confirmed that the phenomenon of deterioration occurs especially when the spectrometer is composed of a transmission band in the infrared wavelength band, but in the case of the stopband filter, this problem can be solved.
  • the spectroscope of the mid-infrared band can be defined as operating in the wavelength band of 2 to 15 m, more preferably the spectrometer covers the mid-infrared of 2.5 m to 12 m.
  • a processing unit 330 (see FIG. 3) is separately provided, and the processing unit is incident by using the optical signal detected from the photodetector array including the photodetection areas PD 1 and PD 2 . It performs the function of reconstructing the spectrum of light. It will be described later in detail.
  • the photodetector array in the mid-infrared wavelength band may be a one-dimensional array type infrared photodetector using a pyroelectric, thermopile, volometer, photoconductive and photovoltaic type photodetector elements or an infrared image sensor in the form of a two-dimensional array.
  • one-dimensional photodetector arrays or two-dimensional CMOS image sensors using Si, Ge, InGaAs-based photodetectors may be used.
  • the periodic metal patterns 120 are formed on a separate substrate 110 and then optically coupled with the photodetector array, or directly monolithic with a buffer layer (not shown) interposed on the photodetector array.
  • the buffer layer (not shown) is preferably an optically transparent dielectric layer serving as a protective layer for each pixel of the photodetector, and may be a SiNx or SiO 2 layer.
  • an interfacial adhesion layer such as Ti, Cr, and transition metal oxide in order to enhance adhesion with the upper metal pattern layer.
  • the substrate 110 may be various kinds without being particularly limited, and may be a flexible light-transmissive substrate such as glass or a polymer, Ge, GeSe, ZnS, ZnSe, sapphire, CaF 2 , MgF 2, or the like.
  • the flexible light transmissive substrate is preferably composed of a transparent or translucent polymer having appropriate adhesion and shock absorption.
  • polystyrene PS
  • expandable polystyrene EPS
  • polyvinyl chloride PVC
  • styrene acrylonitrile copolymer SAN
  • polyurethane PU
  • PA Polyamide
  • PC Polycarbonate
  • Modified Polycarbonate Poly (vinyl butyral), Polyvinyl acetate, Acrylic It can be resin (Acrylic Resin), epoxy resin (EP: Epoxy Resin), silicone resin (Silicone Resin), unsaturated polyester (UP: Unsaturated Polyester), polyimide, polyethylene naphtalate, polyethylene terephtalate, etc. Can be used.
  • the silicon wafer is preferably in the mid-infrared wavelength band, but is not limited thereto.
  • the substrate When manufacturing a spectrometer that operates effectively in the infrared region, it may be inappropriate for the substrate itself to generate a lot of absorption in the infrared band.
  • the metal material constituting the metal patterns 120 may be appropriately selected according to the wavelength band. This will be described in detail.
  • a low loss high reflectance metal material widely used as a plasmonic metal may be suitably used in the visible-near-infrared wavelength band, the mid-infrared wavelength band, and the like.
  • the metal patterns may include Au, Ag, Al, Cu or at least one of the plasmonic metals. It may be an alloy comprising two alloys or at least one of them and other elements.
  • the optical behavior may be at least one selected from the group consisting of Ta, W, Mo, Ni, Cr, TiN, and TiON following the druid free electron model.
  • the spectrometer 30 includes a spectroscopic filter array 310, a photodetector array 320, and a processing unit 330.
  • the spectral filter array 310 includes a plurality of unit spectral filters F 1 and F 2 for filtering light in different wavelength regions, and the photodetector array 320 corresponds to each of the plurality of spectral filters.
  • the photodetection regions PD 1 and PD 2 are provided, and the processing unit 330 performs a function of reconstructing the spectrum of incident light using the optical signal detected from the photodetector array 320.
  • the plurality of unit spectroscopic filters F 1 and F 2 are filters having stop band characteristics as described above.
  • the processing unit 330 according to the present invention serves as a spectrometer for restoring the object spectrum by applying a subsequent digital signal processing algorithm, and it becomes possible to implement a filter array-based spectrometer. It will be described later in detail.
  • FIG. 4 is a plan view illustrating a spectral filter array according to an embodiment of the present invention. It is understood that a cross section taken along the line II ′ in FIG. 4 is shown as in FIG. 1.
  • 5 exemplarily shows metal patterns of the spectral filter array. As can be seen in FIG. 5, both the linear lattice structure and the two-dimensional lattice structure are applicable.
  • the two-dimensional lattice structure may be a square lattice or a hexagonal lattice.
  • the shape of the metal nanostructure may be a variety of shapes, such as rectangular disk, circular disk, polygonal structure, nano-bar unit structure, cross bar.
  • each of the unit spectroscopic filters (F 1 , F 2 ) are implemented to have the same duty cycle or filling rate of the nanostructure. That is, when D 1 / P 1 is a duty cycle in the unit spectroscopic filter F 1 , this value is preferably 30% to 80%. If the duty cycle is less than 30%, the transmittance dip is very small and if it is more than 80%, too broad a dip curve tends to be generated.
  • the duty cycle of D 2 / P 2 in the spectral filter unit (F 2) is kept equal to the duty cycle of the spectral filter unit (F 1). However, the period of the unit spectroscopic filter F 1 and the unit spectroscopic filter F 2 is changed.
  • the element that determines the resonant wavelength of the unit spectroscopic filters F 1 and F 2 is determined by the period, the shape of the metal structure, the thickness of the metal structure, the duty cycle, and the like.
  • the main factor determining the resonant wavelength here is the period.
  • the period of the metal patterns is preferably determined between 0.1 ⁇ m and 1.5 ⁇ m, and when targeting the mid infrared range, it is determined between 0.8 ⁇ m and 8 ⁇ m. desirable.
  • the period of the metal patterns is preferably determined between 0.8 ⁇ m and 4 ⁇ m.
  • the thickness of the metal patterns is preferably 5 nm to 500 nm, more preferably 10 nm to 300 nm. If it is smaller than 5 nm, the ratio of free electrons scattered on the surface is increased to act as a large factor of plasmon attenuation, and if it is more than 500 nm, multipole resonance may occur due to a volume increase effect.
  • FIG. 6 is a diagram illustrating an example of a spectral filter according to another embodiment.
  • a low reflection coating layer 180 is additionally formed on a lower portion of the substrate 110 opposite to the upper portion of the substrate 110 on which the unit spectroscopic filters F 1 and F 2 are formed.
  • the low reflection coating layer 180 may be coated with a thin film layer having a refractive index that satisfies graded index conditions between the substrate 110 and a neighboring medium or may be formed of a nanocon structure having a motheye shape.
  • the coupling with the lower photodetection area may be configured such that the periodic metal patterns face the lower photodetector areas so that light may enter the surface of the low reflection coating layer.
  • the refractive index of the substrate materials showing high transmittance in the mid-infrared wavelength band is high except for some materials such as CaF 2 , the opposite side of the upper part where the periodic metal patterns 120 are formed to reduce the reflection loss at the interface.
  • a structure in which the low reflection coating layer 180 is additionally formed below the phosphorus substrate 110 may be effective.
  • the double layer 130 may be configured as a double layer of a low loss high reflectance metal material 134 and a light absorbing metal material 132.
  • the low loss high reflectivity metal material may be selected from Ag, Au, Al, Mg and alloys thereof, and the light absorbing metal material may include Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, Si, and the like are included, and alloys therebetween, and silicides, carbides, nitrides, sulfides, etc. including these metals are also possible.
  • nanodisk arrays can be constructed in the form of double layers of relatively low-loss metals and light-absorbing metal materials for the purpose of improving the modulation depth of the stopband curve or improving the line width.
  • the light absorption type metal material 132 is disposed on the low loss high reflectivity metal material 134.
  • the metal patterns 120 are formed by forming the passivation layer 140 in a conformal manner for protecting the metal nanodisk layer. An example is shown.
  • the passivation layer 140 is preferably formed to a thickness of less than 10 nm, more preferably several nm or less in order to minimize the effect on the optical characteristics of the nanodisk array filter.
  • the passivation layer 140 may be at least one selected from HfO 2 , ZrO 2 , ZnO, ZnSe, TiO 2 , Al 2 O 3 , SiO x , SOG, and the like, and may be formed using a metal surface oxidation method or an atomic layer deposition method. It is possible.
  • the passivation layer 140 may further include a protective layer 150 such as a light transmissive polymer and a dielectric layer.
  • a protective layer 150 such as a light transmissive polymer and a dielectric layer.
  • a configuration including only the upper passivation layer 150 without the passivation layer 140 is possible.
  • the protective layer 150 may be silicon oxide, silicon nitride, magnesium fluoride, calcium fluoride, low molecular resin, or a polymer material.
  • polymer materials include polymers including poly (dimethyl siloxane), polycarbonate, poly (vinyl phenyl sulfide), poly (methyl metharcylate) poly (vinyl alcohol), poly (vinyl butyral), poly (methyl acrylate) and air It is a polymer material which is not particularly limited including the coalescing.
  • FIGS. 9, 10 and 11 are graphs showing simulation results of transmission characteristics of stop bands for several metal materials and patterns according to an exemplary embodiment of the present invention.
  • Hexagonal lattice structure was assumed as the metal nanostructure array formed on the Si substrate, and the period was calculated at 40 nm intervals from 1 um to 2.92 um.
  • the transmission characteristics of the stop band were simulated in the mid-infrared region of 2 ⁇ m to 10 ⁇ m.
  • the type of material forming the metal nanostructure array may be an important factor.
  • alkali and precious metal materials such as Al, Ag, Au, and Cu have been used as metal materials for causing surface plasmon resonance.
  • transition metals such as Ta, W, Mo, Ni, Cr, and metal nitrides such as TiN and TiON, which have optical behaviors in the mid-infrared region, follow the druid free electron model. To be effective.
  • these materials are particularly preferred as mid-infrared wavelength band materials because of their excellent thermal and mechanical stability.
  • these materials have the advantage that additional adhesive layers are not necessary because of their excellent adhesion to the substrate.
  • Metal nitrides have an advantage that additional control of optical properties is possible through composition control.
  • FIG. 9 and 10 show that the nanodisk having a duty cycle of 50% using Au and Ta as a metal pattern, respectively, and its transmittance dip curves are shown through theoretical computational calculations.
  • FIG. 11 illustrates the results of calculating the optical transmittance curve by simulation after forming a nano-pattern having a duty cycle of 60% using Ni and W as a metal pattern.
  • Ni and Cr but the real value of the refractive index shows a relatively high value in the short wavelength, but is characterized by maintaining a lower value than the heat-resistant metal toward the longer wavelength. Therefore, it is not suitable for the nanohole array structure using the excitation of the surface plasmon wave traveling along the surface of the thin film, but it is very suitable as the nanodisc type stopband filter coupled with the lattice mode and using specific light absorption or light reflection phenomenon. It can be usefully used.
  • Alkali and noble metals such as Al, Ag, Au, etc. which are generally used as plasmonic metal materials, may use a heat light source and may have a problem in that heat resistance is somewhat insufficient in an infrared region where thermal excitation is expected due to the plasmon resonance effect.
  • FIG. 12 is a scanning electron micrograph showing the thermal stability according to the selection of the metal material system constituting the nanostructure array.
  • 50 nm-thick Ta and Au nanodisk array patterns were formed on a Si substrate, and heat treatments were performed to compare shape changes. It was produced using the same template, but the shape after vacuum heat treatment at 900 ° C. for 30 minutes showed that the Ta nanodisks remained unchanged, whereas in the case of Au, spherical particles were formed by self diffusion.
  • Ag which has a lower melting point and higher atomic mobility than Au, is expected to have stability problems even at a much lower temperature.
  • the fundamental vibration of the molecule shows the light absorption mode by harmonics and combinations in the near infrared region band (0.78-2 um).
  • These harmonic and combination vibration modes have the disadvantages of low intensity and broad absorption line width compared to the mid-infrared band, but are well developed light sources and detectors, and thus become very effective spectroscopy areas.
  • the infrared stopband filter according to the present invention can also operate as a near infrared spectrometer by shifting the wavelength band toward the near infrared region.
  • FIG. 13 is a simulation result showing that the free spectrum range of the metal nanostructure array type stopband filter according to the present invention can be extended not only to the near infrared band but also to the visible wavelength range.
  • the transmission spectrum is calculated by varying the period from 200 nm to 1500 nm at 100 nm intervals.
  • the duty cycle was fixed at 50%. It can be seen that it shows a single stopband characteristic that continuously varies from 0.35 um to 2 um band.
  • the spectral filter array of the present invention can be formed on the substrate to be manufactured as a separate spectral filter module.
  • the substrate may be used as long as it is a transparent material in each wavelength band in the operating wavelength, and may be glass or a polymer as described above.
  • a light-transmissive film is used as the substrate, and the light-transmissive film is preferably composed of a transparent or semitransparent polymer having appropriate adhesive force and shock absorbency.
  • the spectral filter module is manufactured in a form in which the photodetector array is not integrated, and thus can be attached to the photodetector array module and used in actual use. When the spectral filter module is attached to the photodetector in actual use, for example, the optical filter module may be used by combining the optical filter module in front of the lens of the camera.
  • FIG. 14 shows an example of configuring the spectrometer 10000a through a one-dimensional linear array coupling between the spectroscopic filter array 1000a and the photodetector array 2000a of the present invention.
  • the schematic diagram shown in FIG. 14 shows a spectrometer 10000a including a spectral filter array 1000a composed of M spectral filters F and a photodetector array 2000a composed of M photodetection regions PD. do.
  • the period of each unit spectral filter F may be determined to match the period of the photodetection area PD of the combined one-dimensional linear array photodetector array or to match the size of the plurality of photodetection areas PD.
  • the coupling between the unit spectroscopic filter and the photodetection pixel may be 1: 1 or 1: N (N is 2 or more) coupling.
  • the spectrometer 10000b shows an example of configuring the spectrometer 10000b through a two-dimensional coupling between the spectroscopic filter array 1000b and the photodetector array 2000b of the present invention.
  • the spectrometer 10000a of the one-dimensional coupling it is advantageous for integration, and it is advantageous for coupling with a conventional CMOS image sensor, a thermal imaging camera, and the like.
  • the spectrometers 10000a and 10000b of FIGS. 14 and 15 include the spectroscopic filter arrays 1000a and 1000b and the photodetector arrays 2000a and 2000b of the present invention.
  • the spectrometers 10000a and 10000b may be spectrometer chips.
  • the spectral filter arrays 1000a and 1000b may be formed of a plurality of unit spectral filters F. Details of the spectroscopic filters F have been described above.
  • the plurality of spectral filters F may form a stopband filter array structure by continuously forming a stopband characteristic of varying a center wavelength.
  • the photodetector array 2000a is arranged such that the plurality of photodetection regions PD correspond to the plurality of unit spectral filters F, and is installed to detect light passing through each unit spectral filter.
  • the photodetector array 2000a is disposed to be spaced apart from the spectroscopic filter array 1000a by a predetermined distance. In other variations, the photodetector array 2000a may be manufactured to be in direct contact with the spectral filter array 1000a.
  • the photodetection area PD may be a unit pixel.
  • the spectrometers 10000a and 10000b according to the present invention can output subtractive intensity of light incident through a stopband filter in which the center wavelength is moved slightly by position in one direction of the spectroscopic filter in measuring an object spectrum. Let's do it.
  • the intensity distribution according to the wavelength of light is shown to be inversely related to the case of a conventional transmission band filter array-based spectrometer, and serves as a spectrometer that restores an object spectrum by applying a subsequent digital signal processing algorithm. It is possible to implement a spectrometer based.
  • the processing unit 330 of FIG. 3 performs an integral function of reconstructing the spectrum of incident light using the optical signal detected from the photodetector array.
  • 16 is a flowchart of a spectroscopic method according to an embodiment of the present invention.
  • the object spectrum is incident on the spectrometer (S100).
  • the spectrometer includes a photodetector array having photodetection regions corresponding to each of the spectroscopic filter array and the unit spectroscopic filters.
  • the spectra of the incident object may selectively generate light reflection or light absorption through the spectroscopic filter array (S110).
  • This characteristic is a characteristic of the above-mentioned "stop band” filter, the unit spectral filters have a characteristic that the transmittance according to the wavelength has a peak in the reverse direction so that light of a specific wavelength band does not transmit.
  • the light spectrum signal transmitted through the spectroscopic filter array is detected by the photodetector array (S120). Then, the spectrum of the object is restored by the signal restoration algorithm (S130).
  • the spectrum of the object to be analyzed is s ( ⁇ )
  • the transmission function of the individual filters F is f i ( ⁇ )
  • the sensitivity function of the photodetector PD is d i ( ⁇ )
  • the spectrum of the object is filtered.
  • the detection signal r i generated when passing through the photodetector is expressed by the following relation (1), and can be developed by the determinant such as equation (2).
  • Equation (2) results in an ill-posed problem. Since there is no explicit inverse of D ( ⁇ ) with MXN (M ⁇ N) size, pseudo inverse can be used to recover the spectral signal, but it is very susceptible to small fluctuations or system noise, making it unstable. Results are shown.
  • the regularization technique is used to obtain more effective and numerically stable solutions.
  • the most representative method is Tikhonov regularization. This method recovers the spectrum of the object to be analyzed by determining the solution S ⁇ that minimizes the sum of residual norm and side constraint norm as shown in Eq. (3).
  • is a regularization factor that determines the weight of side constraint minimization versus minimization of residual norm, and there is an optimal value to obtain a robust solution.
  • Singular value decomposition (SVD) and L-curve analysis can be used to adapt the system to determine the optimal regularization factor for itself and to enable real-time spectrum recovery.
  • the L-curve method solves the Tikhonov regularization equation when substituting and increasing the value of ⁇ and reconstructs the residual norm And Solution norm After substituting in, and plotting on the log scale coordinate axis, L-curve-shaped graph is obtained.
  • the method of calculating corner values is to take the log scale values of residual norm and solution norm as variables and determine a with the smallest radius of curvature. Substitute this value in Tikhonov regularization By recovering the object spectrum can be restored.
  • the signal restoration algorithm is not limited to the illustrated regularization technique and can be applied to various techniques.
  • FIG. 17 shows an example of a calculation result for explaining a signal restoration principle of a spectrometer using a plasmonic stopband filter array according to the present invention.
  • the subject spectrum to be analyzed was assumed to have two separate peaks as shown in the image on the top left.
  • the intensity distribution measured by the photodetector array through each filter is determined by Equation (1) and is distorted or unclear due to the filter function. Indicates the distribution of.
  • the digital signal processing algorithm of equation (3) is performed. As shown in the lower left, it is possible to accurately restore the object spectrum.
  • the transmission spectrum f i ( ⁇ ) of the individual filter is determined by using an optical system previously measured for each filter area (for example, by using a spectroscopic microscope for each filter area) or by using a photodetector.
  • the spectral sensitivity function (d i ( ⁇ )) can be measured using the value provided by the manufacturer or by measuring the ratio of detector output intensity to wavelength intensity of each light source using a monochromator.
  • the D i ( ⁇ ) value which is the intensity distribution reaching the photodetector region through each filter region by varying the wavelength of incident light through a monochromator in the combined or integrated state with the photodetector array, is obtained. It is also possible to use directly measured.
  • the intensity distribution measured in the actual photodetector array includes system noise and the like, it is preferable to add a noise canceling algorithm for stabilizing the restored signal.
  • the plasmonic filter can change the resonant wavelength in the wide-range range only by adjusting the two-dimensional horizontal structure without changing the vertical structure, the highly integrated band stop having different spectroscopic characteristics even with a low-cost single layer process using photolithography or nanoimprint, etc.
  • the advantage is that an array of filters can be formed.
  • FIGS. 18 and 19 are graphs for comparing the transmission band type filter array and the stop band type filter array in the visible-near-infrared wavelength band.
  • a calculation example for explaining the difference between the signal acquisition and the spectral restoration process in a spectrometer using a transmission band filter array and a stopband filter array is shown.
  • the transmission band type and the stop band type filter Al nanohole array and Al nanodisk array were selected, and the transmission spectrum according to the lattice period variation was calculated by FDTD computer simulation. In both cases, the hexagonal lattice was assumed, and the period was varied from 200 nm to 700 nm at 5 nm intervals. A glass substrate was used and the Al thickness was the same at 50 nm and the duty cycle was fixed at 50%.
  • the filter function light transmission spectrum of the transmission band filter array composed of the Al metal nano hole array shows the filter function light transmission spectrum of the transmission band filter array composed of the Al metal nano hole array. It can be seen that the transmission band due to the EOT phenomenon is continuously changed according to the period.
  • the intensity signal at a specific wavelength of the object spectrum is determined from the intensity of light detected through a filter forming a transmission band at that wavelength. If the half width of the transmission band filter is very narrow, such as a delta function, the spectrum of the object may be reproduced by directly measuring the intensity distribution detected for each center wavelength of the transmission band of the filter array.
  • the signal distribution measured by the photodetector is significantly distorted out of the object spectrum due to overlap of transmission bands between neighboring filters. .
  • the intensity distribution for each filter measured in the photodetector array through the filter function of FIG. 18 is as shown in the center graph of FIG. 18. appear.
  • the characteristic of the transmission band filter reflects the shape of the peak function of the object spectrum.
  • the photodetector measurement signal is substituted into Equation (2), and the object spectrum is restored by finding a solution using a regularization technique.
  • the reconstructed spectrum is illustrated as the object spectrum. The two curves are nearly identical, indicating that the spectral recovery is very good.
  • FIG. 19 shows a signal restoration process using a stopband filter array.
  • the left graph of FIG. 19 shows the filter function of the stopband filter array.
  • the intensity distribution observed in the photodetector array through the stopband filter array for the same object spectrum as in FIG. 18 is the same as the center curve in FIG. 19.
  • the peak function of the object spectrum appears in the photodetector in the form of reverse dip curve. That is, the signal measured by the photodetector through the stopband filter array is characterized in that the intensity distribution in the reverse phase form as opposed to the case of the transmission band filter array.
  • the graph on the right side of FIG. 19 confirms that the spectrum recovery by the digital signal processing algorithm is performed well even in the case of the stopband filter array.
  • FIG. 20 is a schematic diagram for explaining gain in terms of detection limit of the spectral signal compared to the transmission band filter array in the wavelength range where the intensity of the light source and the sensitivity index of the photodetector decrease when using the stopband filter array according to the present invention; FIG. to be.
  • FIG. 20 shows the wavelength-specific sensitivity index of a typical Si-CMOS image sensor. Due to the energy band structure of Si semiconductors, it can be seen that the quantum efficiency drops rapidly toward the near-infrared wavelength band where the natural vibration mode of chemical molecules can be observed. Therefore, when the transmission band filter array is used in this section, there is a disadvantage in that spectrum analysis becomes very difficult due to the detection limit of the detection device.
  • the stopband blocks the light of the designed central wavelength band and transmits the light of the remaining bands, the object signal information on the corresponding wavelength has a characteristic of being traced back from the transmission intensity distribution in the neighboring wavelength band. Therefore, even in the near-infrared region where the sensitivity index of the detection element itself is very low, such as the Si-CMOS image sensor, the signal analysis is inferred from the light intensity distribution in the other wavelength bands, not the light intensity detected in the wavelength band. There is a big gain in terms of band scalability and detection limit.
  • FIG. 21 shows the calculated filter function when the duty cycle is reduced to 30% and the number of filters is reduced to 50 in the Al nanodisk array filter shown in FIG. 19.
  • FIG. 22 shows a graph of the restored function when the duty cycle is 30% and 50% in the Al nanodisk array filter.
  • spectral recovery resolution is known to improve as the bandwidth of the filter used is narrower and the number of filters increases.
  • the bandwidth of the filter function is narrow, if the overlap between neighboring filters is small, it can be seen that a situation in which signal restoration becomes disadvantageous compared with the case of using a filter having a wider bandwidth.
  • FIG. 23 is a graph comparing spectral changes according to nanodisk shapes in a filter of a nanodisk array structure having a hexagonal lattice structure.
  • FIG. FIG. 23 shows only the calculation results for the circular and hexagonal disk structures, but when the disk shape is isotropic symmetrical structure and the duty cycle is similar, the polygonal and cross-shaped disks show almost similar filter spectrum regardless of the shape. And it was found.
  • FIG. 24 shows an example in which a spectroscopic filter array is formed by mixing into two or more disk arrays.
  • Such a mixed configuration has an effect of providing process convenience such as reducing process complexity for manufacturing a circular disk and shortening process time when manufacturing a filter array.
  • FIG. 25 is a graph showing the distribution of the absorption coefficient versus the refractive index of optical constant dispersion characteristics of metals, dielectrics, and semiconductor materials.
  • the complex optical constant values from the infrared band to the near infrared band of 1300 nm are shown on two-dimensional coordinates. From the features of the optical constant combination, it can be divided into three zones. First, the region labeled I is characterized by an absorption rate of less than one and converging to zero, which is the imaginary term of the complex refractive index, most of which is an optically transparent dielectric.
  • semiconductor materials may also belong to this group in the wavelength region where the wavelength of light is smaller than the band gap.
  • Zone II is characterized in that the refractive index value is less than 1 or close to 0, as opposed to zone I, and is a low loss high reflectivity precious metal material widely used as a plasmonic metal.
  • region III is a region in which both the refractive index and the absorptance exhibit a value of a certain size or more, which corresponds to most light absorbing metals and semiconductor materials in the wavelength band below the band gap. Materials of these III zones may be utilized as a material for constructing a nanodisk array for implementing a stopband type filter array according to the present invention.
  • Light absorbing metal materials include Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, Si, and the like, and alloys therebetween and silicides, carbides, nitrides containing these metals. Also, sulfide, sulfide, etc. can be used without distinction if the distribution of refractive index and absorption rate satisfies the conditions of zone III in the operating wavelength band.
  • FIG. 26 is a light transmittance spectrum of a hexagonal lattice-structured nanodisk array using Cr and Ti and calculated in the visible-near-infrared band.
  • a hexagonal lattice-type nanodisk array is formed using Cr and Ti, which are light-absorbing metal materials, and computed in the visible-near-infrared band using computer simulation.
  • the transmittance spectrum was obtained. Compared to the Al nanodisk array of FIG. 17, the modulation depth is smaller and the line width is wider.
  • the stopband formation is clear and the wavelength variability according to the lattice period is continuous and clear, it can be used as a filter array for the spectroscope. Do.
  • Tungsten (W) is a material commonly used in semiconductor processes.
  • the optical transmittance and the light reflectivity of the nanodisk array calculated using tungsten (W) show that, unlike the low-loss plasmonic metal materials, the reflectance peak curve is greatly attenuated by the light loss of the material itself, while the stopband on the transmission curve is shown.
  • the curves can be seen to be characterized by relatively very pronounced by the increased light absorption effect. This feature may be advantageous in terms of suppressing unnecessary noise elements caused by reflected light when implementing a spectrometer chip.
  • FIG. 28 is a graph illustrating spectral recovery performance by fabricating a tungsten nanodisk array of FIG. 26 using a stopband filter array and applying a digital signal processing algorithm.
  • the spectral reconstruction performance was tested using a digital signal processing algorithm using a stopband type filter array composed of 100 filters in the lattice period from 200 nm to 700 nm. Assuming a white LED spectrum as an object and calculating a filter function, it can be seen that the spectral restoration is relatively superior as in the case of using the Al nanodisk array filter of FIG. 20. This proves that the light-absorbing metal material can be used as the stopband filter material of the nanodisc array structure for the transmission-on-chip spectrometer.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Disclosed is a spectrometer provided with: a first unit spectral filter for absorbing or reflecting the incoming light of a partial wavelength band of the light spectrum of a target object; a second unit spectral filter for absorbing or reflecting the light of a wavelength band different from the partial wavelength band; a first light detector for detecting a first light spectrum passing through the first unit spectral filter; a second light detector for detecting a second light spectrum passing through the second unit spectral filter; and a processing unit for executing the function of reconstructing the entered light spectrum of the target object from the spectrum of light detected from the first light detector and second light detector.

Description

분광기 및 이를 이용한 스펙트럼 측정방법 Spectroscope and spectral measurement method using the same
본 발명은 분광기에 관한 것으로, 보다 구체적으로는 스탑밴드 특성을 갖는 분광필터를 이용한 분광기와 이를 이용한 스펙트럼 측정방법에 관한 것이다. The present invention relates to a spectroscope, and more particularly, to a spectrometer using a spectroscopic filter having a stopband characteristic and a spectrum measurement method using the same.
광학필터를 이용한 분광기는 가시광선 영역, 적외선 영역 등 다양한 파장 영역에서 활용되고 있다. 예를 들어 적외선 분광학에 사용되는 파장대역은 근적외선 영역과 중적외선 영역으로 나뉠 수 있다. 이하 중적외선 분광기에 대해서 예로 들어 종래 기술에 대해 설명한다.Spectrometers using optical filters are used in various wavelength ranges, such as visible light and infrared light. For example, the wavelength band used for infrared spectroscopy can be divided into a near infrared region and a mid infrared region. The prior art will be described below by taking an example of a mid-infrared spectrometer.
중적외선 파장 영역(2-20 mm) 은 거의 모든 화학분자들의 고유한 기본진동모드(fundamental vibration mode)가 존재하는 구간으로 분자결합상태에 따라 서로 다른 적외선 흡수스펙트럼을 나타내기 때문에 분자지문 대역이라고도 일컬어지는 중요한 파장대역이다. 고체, 액체, 기체에 상관없이 미지의 시료를 판별하거나, 특정 타겟분자에 대해 고선택성을 갖고 정성적, 정량적 분석이 가능하다는 장점이 있다. The mid-infrared wavelength region (2-20 mm) is a region in which the fundamental vibrational mode of almost all chemical molecules exists and is also called molecular fingerprint band because it shows different infrared absorption spectra according to molecular bonding state. Lost is an important wavelength band. Regardless of solid, liquid, or gas, unknown samples can be discriminated or qualitative and quantitative analysis can be performed with high selectivity for specific target molecules.
근적외선 영역(0.78-2 mm) 역시, 중적외선 대역 기본진동모드들의 배음현상(overtone)과 조합(combination)에 의한 모드가 존재하는 구간으로 그 강도는 낮지만 물질을 확인 또는 정량할 수 있다. 가시광 영역(0.38-0.78 mm)의 경우에도 물질고유의 흡수 스펙트럼은 물론 사물의 색상, 발광체 분석, 바이오 분자의 탐지등에 활용될 수 있다. The near-infrared region (0.78-2 mm) is also a section in which a mode by overtone and combination of the mid-infrared band basic vibration modes exists and its intensity is low, but the substance can be identified or quantified. In the visible region (0.38-0.78 mm), it can be used not only for the material's unique absorption spectrum but also for the color of the object, the analysis of the phosphor, and the detection of the biomolecule.
종래에는 퓨리에변환적외선(FTIR) 분광기와 같이 benchtop 형태의 분광기가 유무기 물질 분석기기로 활용되었으나, 점차 환경유해인자검출, 수질검사, 산업 및 농업 공정라인 모니터링을 통한 process 제어, 잔류농약검출 및 원산지 증명등 식품분야, 오일산화도 측정, 그리고 의학 바이오 분야 등 다양한 응용분야에서의 활용성이 주목받으면서 현장측정을 위한 소형화 기기로의 개발수요가 증대되고 있다. Conventionally, benchtop spectroscopy, such as Fourier transform infrared (FTIR) spectroscopy, has been used as an organic-inorganic material analyzer, but gradually control of environmental factors, water quality inspection, industrial and agricultural process line monitoring, process control, residual pesticide detection and country of origin. The demand for development as a miniaturized device for field measurement is increasing with the applicability in various applications such as food, oil oxidation measurement, and medical biotechnology.
분광기를 소형화시키는 가장 효과적인 방법으로 빛의 분산을 담당하는 광학부품을 기존의 프리즘, 회절격자 대신 밴드투과필터를 어레이 형태로 제작하여 광검출기 어레이와 집적화하는 방식이 제안되고 있다. 퓨리에변환적외선 방식과 달리 이동체가 필요 없기 때문에 견고하고 소형화가 용이하다는 장점이 있다. As the most effective method of miniaturizing the spectrometer, a method of integrating an optical component, which is responsible for light dispersion, with an optical detector array by manufacturing a band pass filter in an array form instead of a conventional prism and a diffraction grating has been proposed. Unlike the Fourier transform infrared method, there is no need for a moving object, which makes it robust and compact.
밴드투과필터로는 두 반사막 사이에 놓인 유전체 공진기의 광간섭효과를 이용하는 파브리-페롯 필터가 대표적이다. 하지만, 분광기 구성에 요구되는 필터의 개수가 많고, 이에 필요한 유전체 공진층의 개수만큼 리소공정 단계도 크게 증가하기 때문에 평면형 구조의 분광기에 응용하기에는 적합하다는 단점이 있다. 이러한 문제를 해소하기 위해 선형가변필터(Linear variable filter, LVF)가 개발되어 사용되고 있다. A typical band pass filter is a Fabry-Perot filter that uses the optical interference effect of a dielectric resonator placed between two reflective films. However, since the number of filters required for constructing the spectroscope is large, and the lithography step is increased as much as the number of dielectric resonant layers required for the spectroscope, it is suitable for application to a planar spectrometer. In order to solve this problem, a linear variable filter (LVF) has been developed and used.
선형가변필터(Linear Variable Filter, LVF)는 일종의 파브리-페롯 공진기 구조의 광학필터로서 길이방향으로 유전체 공진층의 두께가 선형적으로 가변되는 구조로 이루어진다. 선형가변필터에는 유전체 공진층을 사이에 두고 하부 거울층과 상부 거울층이 각기 위치된다. The linear variable filter (LVF) is an optical filter of a Fabry-Perot resonator structure, and has a structure in which the thickness of the dielectric resonant layer varies linearly in the longitudinal direction. In the linear variable filter, a lower mirror layer and an upper mirror layer are positioned with a dielectric resonance layer interposed therebetween.
이러한 선형가변필터는, 길이방향으로 두께가 가변되는 선형구조로 인해 공정 재현성에 한계가 있었다. 또한, 종래의 선형가변필터를 이용한 분광기의 해상도는 선형가변필터의 높이 대 길이비로 결정되기에 분광기의 소자를 소형화하는데 어려움이 있었다. 특히, 선형구조로 인해 2차원 이미징 센서기술과의 공정적합성이 부족하여 생산성 측면에서 불리하였다. Such a linear variable filter has a limitation in process reproducibility due to the linear structure whose thickness varies in the longitudinal direction. In addition, since the resolution of a spectrometer using a linear variable filter is determined by the height-to-length ratio of the linear variable filter, it is difficult to miniaturize the device of the spectrometer. In particular, the linear structure is disadvantageous in terms of productivity due to the lack of process compatibility with the two-dimensional imaging sensor technology.
선형가변필터 위치별 투과스펙트럼이 연속적인 스펙트럼의 중첩으로 이루어지고, 선형가변필터와 광검출기 간의 집적화가 모놀리식(monolithic)하지 못하기 때문에 필터와 광 검출기들 어레이 사이에 거리가 존재하였으며, 이에 따른 미광(stray light) 효과로 인해, 필터성능이 저하되는 단점이 존재하였다.The distance between the filter and the array of photodetectors existed because the transmission spectra of each linear variable filter consisted of continuous spectral superposition and the integration between the linear variable filter and the photodetector was not monolithic. Due to the stray light effect, there was a disadvantage that the filter performance is reduced.
또한 간섭형 필터의 특성상 다중 투과 모드가 발생하는데 이러한 점 때문에 자유스펙트럼범위(free spectral range)가 제한되고 광대역을 분석하고자 하는 경우 별도의 소자를 필요로 하는 문제점이 있었다.In addition, due to the characteristics of the interference filter, a multi-transmission mode occurs, which limits the free spectral range and requires a separate device in order to analyze the broadband.
또한, 중적외선 파장대역에 활용되는 분광기에 있어서는 높은 투과도를 갖는 물질계에 제한이 있기 때문에 간섭형 광학필터 구성에 한계가 있다. In addition, in the spectroscope utilized in the mid-infrared wavelength band, there is a limitation in the construction of the interference type optical filter because there is a limitation in the material system having high transmittance.
또한, 이웃 셀과의 간섭 효과로 인한 문제점이 있었고, 이용가능한 물질도 제한되었다.In addition, there was a problem due to interference effects with neighboring cells, and the available materials were also limited.
상술한 문제점을 해결하기 위하여, 본 발명의 목적은 수평구조의 제어만으로 광대역의 제어가 가능하고 2차원 집적화에 유리한 분광기를 제공하고자 하는 것이다. In order to solve the above problems, an object of the present invention is to provide a spectrometer that is capable of wideband control and advantageous for two-dimensional integration only by controlling the horizontal structure.
한편, 본 발명의 다른 목적은 내열, 내구성이 우수한 분광필터 어레이 및 이를 이용한 분광기를 제공하고자 하는 것이다. On the other hand, it is another object of the present invention to provide a spectroscopic filter array having excellent heat resistance and durability, and a spectrometer using the same.
본 발명의 일측면은 입사되는 대상체의 광스펙트럼의 일부 파장대역의 광을 광흡수하거나 광반사하는 제1 단위분광필터와, 상기 일부 파장대역과 다른 파장대역의 광을 광흡수하거나 광반사하는 제2단위분광필터와, 상기 제 1단위분광필터를 투과하는 제1 광스펙트럼을 검출하기 위한 제 1광검출기와, 상기 제 2단위분광필터를 투과하는 제2 광스펙트럼을 검출하기 위한 제 2광검출기와, 상기 제 1광검출기 및 제 2광검출기로부터 검출된 광의 스펙트럼으로부터 입사한 상기 대상체의 광 스펙트럼을 복원하는 기능을 수행하는 프로세싱 유닛을 구비하는 분광기를 제공한다.One aspect of the present invention is a first unit spectroscopic filter that absorbs or reflects light of a portion of the wavelength band of the light spectrum of the incident object, and a light absorbing or reflecting light of a wavelength band different from the wavelength range A two-unit spectroscopic filter, a first photodetector for detecting a first light spectrum passing through the first unit spectroscopic filter, and a second photodetector for detecting a second light spectrum passing through the second unit spectroscopic filter And a processing unit for performing a function of restoring the light spectrum of the object incident from the spectrum of the light detected from the first and second photodetectors.
상기 단위 분광필터들은 스탑밴드 특성을 갖는다. 스탑밴드 특성이라 함은 단위 분광필터들이 특정파장대역의 빛이 투과하지 못하도록 파장에 따른 투과율이 역방향의 피크를 갖는다. 또한, 이는 다른 표현으로 단위필터들 마다 중심파장에 해당하는 특정파장대역의 광을 광흡수하거나 광반사함으로써 특정파장대역의 광이 투과하지 못하도록 함으로써 파장에 따른 투과율이 역방향의 peak을 갖는 필터의 특성을 의미한다. 한편, 대상체 스펙트럼이 피크 함수일 때, 광검출기에서 측정되는 필터순번별 세기분포는 dip 함수형태로 관찰되고, 대상체 스펙트럼이 dip 함수이면, 광검출기 측정 profile은 피크함수 형태를 띠게 된다. 즉, 대상체 스펙트럼과 역상 형태임을 표현하거나, 스펙트럼 복원과정에서 이웃 파장대역에서의 세기분포로부터 유추하여 결정되는 것도 가능하다. The unit spectroscopic filters have a stopband characteristic. The stopband characteristic is that the unit spectral filters have a peak of reverse transmittance according to the wavelength so that light of a specific wavelength band cannot be transmitted. In addition, this is another characteristic of the filter having the peak of reverse transmittance according to the wavelength by preventing the light of the specific wavelength band from transmitting by absorbing or reflecting the light of the specific wavelength band corresponding to the central wavelength for each unit filter. Means. On the other hand, when the object spectrum is a peak function, the intensity distribution for each filter sequence measured in the photodetector is observed in the dip function, if the object spectrum is a dip function, the photodetector measurement profile is in the form of a peak function. That is, it may be determined by expressing that the object spectrum and the reverse phase form, or inferred from the intensity distribution in the neighboring wavelength band during the spectral restoration process.
바람직하게는, 상기 제 1단위분광필터 및 제 2 단위분광필터는 일정한 형상을 갖는 금속패턴들이 주기적으로 배열될 수 있고, 제 1단위분광필터의 금속패턴들과 제 2단위분광필터의 금속패턴들은 서로 다른 주기를 갖는다.Preferably, in the first and second unit spectroscopic filters, metal patterns having a predetermined shape may be periodically arranged, and the metal patterns of the first and second unit spectroscopic filters may be arranged. Have different periods.
바람직하게는, 제 1광검출기 및 제 2광검출기는 CMOS 이미지 센서의 일부 광검출 픽셀로 구성된다.Preferably, the first and second photodetectors are comprised of some photodetecting pixels of the CMOS image sensor.
먼저, 플라즈모닉 금속인 Au, Ag, Al, Cu 혹은 이들 중 적어도 하나를 포함하는 합금 중에서 선택된 물질로 구성될 수 있다. 예를 들어, AgPd, CuNi 합금등도 사용가능하다. First, the plasmonic metal may be composed of a material selected from Au, Ag, Al, Cu, or an alloy including at least one of them. For example, AgPd, CuNi alloy, etc. can also be used.
또한, 금속패턴들은 가시광 및 근적외선 대역에서 광의 흡수율과 굴절율이 모두 큰 금속인 Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, Si 혹은 이들 중 적어도 하나를 포함하는 합금 중에서 선택된 물질로 구성될 수 있다. 또한, 금속패턴들은 중적외선 대역에서 광학적 거동이 드루드 자유전자 모델을 따라가는 Ta, W, Mo, Ni, Cr, TiN, TiON 을 포함하여 구성된 그룹으로부터 적어도 하나가 선택될 수 있다. In addition, the metal patterns may be formed of Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, Si or at least one of the metals having both high absorption and refractive index in the visible and near infrared bands. It may be composed of a material selected from the alloy containing. In addition, at least one metal pattern may be selected from the group consisting of Ta, W, Mo, Ni, Cr, TiN, and TiON in which the optical behavior in the mid-infrared band follows the druid free electron model.
또한, 상기 금속패턴들을 적어도 이중층으로 구성되고, 저손실 고반사도 금속물질과 광흡수형 금속물질을 적층하고, 상기 저손실 고반사도의 금속 물질로는 Ag, Au, Al, Mg 및 이들 중 적어도 하나를 포함하는 합금 중에서 선택된 물질로 구성될 수 있다.중에서 선택될 수 있고, 상기 광흡수형 금속 물질로는 Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, Si 및 이들 간의 합금 및 이들 금속을 포함하는 silicide, carbide, nitride, 또는 sulfide 일 수 있다. In addition, the metal patterns are formed of at least a double layer, and a low loss high reflectivity metal material and a light absorbing metal material are laminated, and the low loss high reflectivity metal material includes Ag, Au, Al, Mg and at least one of them. The light-absorbing metal material may be selected from among alloys. The light-absorbing metal material may be selected from among Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, and Si. And silicides, carbides, nitrides, or sulfides comprising alloys thereof and these metals.
한편, 제 1단위분광필터의 금속패턴들과 제 2단위분광필터의 금속패턴들은 같은 듀티사이클을 갖는 것이 바람직하다. Meanwhile, the metal patterns of the first unit spectroscopic filter and the metal patterns of the second unit spectroscopic filter preferably have the same duty cycle.
바람직하게는, 상기 제 1단위분광필터와 제 2단위분광필터의 상기 금속패턴들의 주기는 100nm와 800nm사이이다. 이는 Si 기반 광감지소자 동작대역 또는 가시광-근적외선 영역(380-1100 nm) 분광계 구성을 위한 바람직한 범위이다. InGaAs 또는 Ge 기반 근적외선 광감지소자 동작대역 (800-1700 nm) 에서의 바람직한 금속패턴들의 주기는 0.6 um 와 1.5 um 사이이다. 중적외선 대역 (2-15 um) 에서 바람직하게는 상기 금속나노패턴들의 주기는 0.8 um 와 8 um 사이이다. Preferably, a period of the metal patterns of the first and second unit spectroscopic filters is between 100 nm and 800 nm. This is a preferred range for Si-based photosensitive device operating band or visible-near-infrared region (380-1100 nm) spectrometer construction. The preferred period of the metal patterns in the InGaAs or Ge based near infrared photosensitive device operating band (800-1700 nm) is between 0.6 um and 1.5 um. In the mid-infrared band (2-15 um) preferably the period of the metal nanopatterns is between 0.8 um and 8 um.
상기 제 1단위분광필터와 제 2단위분광필터는 패시베이션층을 더 포함하는 것이 바람직하다. 상기 패시베이션층은 HfO2, ZrO2, ZnO, ZnSe, TiO2, Al2O3, SiOx, SOG 혹은 이들중 적어도 2개로 이루어진 합금 중에서 선택된 물질로 구성된다.The first unit spectrometer and the second unit spectroscopic filter may further include a passivation layer. The passivation layer is made of a material selected from HfO 2 , ZrO 2 , ZnO, ZnSe, TiO 2 , Al 2 O 3 , SiO x , SOG, or an alloy consisting of at least two of them.
한편, 상기 제 1단위분광필터와 제 2단위분광필터는 보호층을 더 포함할 수 있고, 상기 보호층은 굴절률이 낮은 실리콘옥사이드, 실리콘 질화막, 불화 마그네슘, 불화 칼슘, 저분자 레진, 또는 폴리머 물질이 바람직하다. The first unit spectroscopic filter and the second unit spectroscopic filter may further include a protective layer, and the protective layer may include a low refractive index silicon oxide, a silicon nitride film, magnesium fluoride, calcium fluoride, a low molecular resin, or a polymer material. desirable.
바람직하게는, 상기 프로세스유닛은, 제 1광검출기의 광의 스펙트럼으로부터 제 1단위분광필터에 의해 광흡수되거나 광반사되는 광의 세기를 산출하는 단계, 제 2광검출기의 광의 스펙트럼으로부터 제 2단위분광필터에 의해 광흡수되거나 광반사되는 광의 세기를 산출하는 단계와, 상기 제 1단위분광필터 및 제 2단위분광필터에 의해 광흡수되거나 광반사되는 광의 세기로부터 입사된 대상체의 광 스펙트럼을 복원한다.Preferably, the process unit, the step of calculating the intensity of light absorbed or light reflected by the first unit spectroscopic filter from the spectrum of the light of the first photodetector, the second unit spectroscopic filter from the spectrum of the light of the second photodetector Calculating an intensity of light absorbed or reflected by the light; and restoring a light spectrum of the incident object from the intensity of light absorbed or reflected by the first and second unit spectroscopic filters.
본 발명의 다른 측면은, 대상체의 광스펙트럼이 제1 및 제2 단위분광필터에 입사되는 단계와 상기 제1 단위분광필터는 일부 파장대역의 광을 광흡수하거나 광반사하고, 상기 제2 단위분광필터는 상기 일부 파장대역과 다른 파장대역의 광을 광흡수하거나 광반사하는 단계와, 제1 광검출기는 상기 제 1단위분광필터를 투과하는 제1 광스펙트럼을 검출하고 제2 광검출기는 상기 제2 단위분광필터를 투과하는 제2 광스펙트럼을 검출하는 단계와, 상기 제 1광검출기 및 제 2광검출기로부터 검출된 광의 스펙트럼들로부터 입사한 상기 대상체의 광 스펙트럼을 복원하는 단계를 구비하는 분광기를 이용한 스펙트럼 측정방법을 제공한다. According to another aspect of the present invention, the light spectrum of the object is incident on the first and second unit spectroscopy filter and the first unit spectroscopy light absorbs or reflects light of some wavelength band, the second unit spectroscopy The filter absorbs or reflects light in a wavelength band different from the wavelength band, and a first photodetector detects a first light spectrum passing through the first unit spectroscopic filter, and a second photodetector detects the first light spectrum. A spectroscope comprising detecting a second light spectrum passing through the two-unit spectroscopic filter and restoring the light spectrum of the object incident from the spectra of the light detected by the first and second photodetectors. It provides a spectrum measurement method used.
바람직하게는, 대상체의 광 스펙트럼을 복원하는 단계는, 상기 제 1광검출기의 제1 광 스펙트럼으로부터 제 1단위분광필터에 의해 광흡수되거나 광반사되는 광의 세기를 산출하는 단계와 상기 제 2광검출기의 제2 광 스펙트럼으로부터 제 2단위분광필터에 의해 광흡수되거나 광반사되는 광의 세기를 산출원하는 단계와 복원된 상기 제 1단위분광필터 및 제 2단위분광필터에 의해 광흡수되거나 광반사되는 광의 세기로부터 입사된 광의 스펙트럼을 복원한다. Preferably, the restoring the light spectrum of the object may include calculating an intensity of light absorbed or reflected by the first unit spectroscopic filter from the first light spectrum of the first light detector and the second light detector. Calculating the intensity of the light absorbed or reflected by the second unit spectroscopic filter from the second light spectrum of < RTI ID = 0.0 > and / or < / RTI > Restore the spectrum of light incident from it.
상기 대상체의 스펙트럼을 복원하는 단계에서는 direct readout 또는 regularization 기법이 이용되는 것이 바람직하다. In the step of restoring the spectrum of the object, a direct readout or regularization technique is preferably used.
상기 대상체의 스펙트럼을 복원하는 단계는, 아래 식에 개별필터의 투과스펙트럼(fi(λ))와 광검출기의 spectral 감도함수(di(λ)) 정보를 대입하고, 측정된 검출신호 ri를 이용하여, 도출할 수 있다. 여기서, Di(λ)는 fi(λ)di(λ) 이다.The reconstructing of the spectrum of the object may be performed by substituting the transmission spectrum f i (λ) of the individual filter and the spectral sensitivity function d i (λ) of the photodetector into the following equation and measuring the detected detection signal r i. Can be derived. Here, D i (λ) is f i (λ) d i (λ).
Figure PCTKR2017008256-appb-I000001
Figure PCTKR2017008256-appb-I000001
(여기서, 분석하고자 하는 대상체의 스펙트럼을 s(λ), 개별 필터(F)들의 투과함수를 fi(λ), 노이즈를 ni, 그리고 광검출기(PD)의 감도함수를 di(λ)라 하면, 대상체의 스펙트럼이 필터를 통과해 광검출기에 도달할 때 발생하는 검출신호 ri)Here, the spectrum of the object to be analyzed is s (λ), the transmission functions of the individual filters F are f i (λ), the noise is n i , and the sensitivity function of the photodetector PD is d i (λ). In this case, the detection signal r i generated when the spectrum of the object passes through the filter and reaches the photodetector.
이상에서 설명한 바와 같은 발명에 의하면, 저가의 단순 공정으로 2차원 집적화가 용이한 분광기를 제공할 수 있는 효과가 있다.According to the invention as described above, there is an effect that it is possible to provide a spectrometer that is easy to integrate two-dimensional in a low cost simple process.
또한, 가시광선 영역부터 근적외선, 적외선 파장대역을 커버할 수 있는 광대역 동작 범위를 구현할 수 있다.In addition, it is possible to implement a wide-range operating range that can cover the wavelength range from the visible light to near infrared, infrared.
또한, 단일 스탑밴드를 이용한 분광기를 채용함으로써 분광필터의 설계와 제조공정이 단순해지고, 금속소재 선택자유도가 확장되며, 필터함수 측정과 해석이 용이해져 신호복원능을 향상시킬 수 있는 효과가 있다. In addition, by adopting a spectrometer using a single stop band, the design and manufacturing process of the spectral filter is simplified, the metal material selectivity is extended, and the filter function can be easily measured and analyzed, thereby improving the signal restoration ability.
또한, 중적외선 영역에서 장기간 열적 안정성과 내구성이 우수하면서도 중적외선 대역에서의 플라즈모닉 특성 발현이 가능한 물질계의 적용으로 소자의 신뢰도를 향상시킬 수 있는 효과가 있다.In addition, there is an effect that can improve the reliability of the device by applying a material system that is excellent in the long-term thermal stability and durability in the mid-infrared region, while being able to express plasmonic properties in the mid-infrared band.
도 1은 본 발명의 일 실시예에 따른 분광필터 어레이이고, 도 2는 이를 이용한 분광기의 일부를 도시하는 도면이고, 도 3은 본 발명의 일 실시예에 따른 분광기의 블럭도이다.1 is a spectroscopic filter array according to an embodiment of the present invention, Figure 2 is a view showing a part of the spectrometer using the same, Figure 3 is a block diagram of a spectrometer according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 분광필터의 어레이를 설명하기 위한 평면도이고, 도 5는 도 4의 금속패턴들을 예시하고 있는 도면들이다. 4 is a plan view illustrating an array of spectral filters according to an embodiment of the present invention, and FIG. 5 is a diagram illustrating the metal patterns of FIG. 4.
도 6 내지 도 8은 다른 실시예에 따른 분광필터들을 도시하는 도면들이다.6 to 8 are diagrams illustrating spectral filters according to another embodiment.
도 9, 도 10 및 도 11은 본 발명의 실시예에 따라서 몇가지 금속물질과 패턴들에 대한 스탑밴드의 투과특성을 시뮬레이션 결과 그래프들이다.9, 10 and 11 are graphs showing simulation results of transmission characteristics of stop bands for several metal materials and patterns according to an exemplary embodiment of the present invention.
도 12는 나노구조체 배열을 구성하는 금속 물질계 선택에 따른 열적안정성을 보여주는 주사전자현미경 사진이다.12 is a scanning electron micrograph showing the thermal stability according to the selection of the metal material system constituting the nanostructure array.
도 13은 본 발명에 따른 금속 나노구조체 어레이형 스탑밴드 필터의 자유스펙트럼 범위가 근적외선 대역은 물론 가시광 파장 영역까지 확장될 수 있음을 보여주는 전산모사 결과이다. 13 is a simulation result showing that the free spectrum range of the metal nanostructure array type stopband filter according to the present invention can be extended not only to the near infrared band but also to the visible wavelength range.
도 14은 본 발명의 필터 어레이와 광검출기 간의 1차원 선형 배열 결합을 통해 분광기를 구성하는 예시를 보여준다. 14 shows an example of constructing a spectrometer through a one-dimensional linear array coupling between the filter array and the photodetector of the present invention.
도 15은 본 발명의 필터 어레이와 광검출기 간의 2차원으로 배열되는 결합을 통해서 분광기를 구성되는 일례가 도시된다. 15 shows an example of constructing a spectrometer through a two-dimensionally arranged coupling between the filter array and the photodetector of the present invention.
도 16는 본 발명의 분광방법을 설명하기 위한 흐름도이다.16 is a flowchart for explaining the spectroscopic method of the present invention.
도 17은 본 발명의 실시예에 따라 적외선 광학필터를 적용한 분광기 동작을 위해 대상체 스펙트럼을 복원하는 디지털 신호처리 프로세스를 보여준다.FIG. 17 illustrates a digital signal processing process for reconstructing an object spectrum for spectroscopic operation using an infrared optical filter according to an embodiment of the present invention.
도 18 및 도 19는 가시광-근적외선 파장대역에서 투과밴드형 필터어레이와 스탑밴드형 필터어레이를 비교하기 위한 그래프들이다.18 and 19 are graphs for comparing the transmission band type filter array and the stop band type filter array in the visible-near-infrared wavelength band.
도 20는 본 발명에 따라서 스탑밴드형 필터어레이를 이용할 때, 투과밴드형 필터어레이 대비 분광신호 검출 한계 측면에서의 이득을 설명하기 위한 모식도이다. FIG. 20 is a schematic diagram for explaining gain in terms of detection limits of spectral signals compared to transmission band filter arrays when using a stopband filter array according to the present invention.
도 21 및 도 22는 금속 나노디스크 어레이 필터에서 듀티사이클을 변화시켜 복원된 함수의 그래프들을 도시하고 있다.21 and 22 show graphs of the function reconstructed by varying the duty cycle in the metal nanodisk array filter.
도 23은 circle과 육방정 격자구조를 갖는 나노디스크 어레이 구조의 필터에서 나노디스크 형상에 따른 스펙트럼 변화를 비교한 그래프이고, 도 24는 2개 이상 형상을 갖는 디스크 어레이 들로 혼합하여 분광 필터 어레이를 구성한 에를 도시하고 있다.FIG. 23 is a graph comparing spectral changes according to nanodisk shapes in a filter of a nanodisk array structure having a circle and a hexagonal lattice structure, and FIG. 24 shows a spectroscopic filter array by mixing into disk arrays having two or more shapes. The constructed e is shown.
도 25는 금속과 유전체, 반도체 물질별 광학상수 분산특성을 굴절율 대비 흡수율의 분포로 나타낸 그래프이다.FIG. 25 is a graph showing the distribution of the absorption coefficient versus the refractive index of optical constant dispersion characteristics of metals, dielectrics, and semiconductor materials.
도 26은 Cr과 Ti을 이용하여 육방정 격자구조의 나노디스크 어레이를 형성하고 가시광-근적외선 대역에서 계산한 광투과도 스펙트럼이다.FIG. 26 is a light transmittance spectrum of a hexagonal lattice-structured nanodisk array using Cr and Ti and calculated in the visible-near-infrared band.
도 27은 텅스텐(W)을 이용하여 계산된 나노디스크 어레이의 광투과도와 광반사도 그래프이다. 27 is a graph of light transmittance and light reflectivity of a nanodisk array calculated using tungsten (W).
도 28은 도 26의 텅스텐의 나노디스크 어레이를 스탑밴드형 필터어레이로 제작하여 디지털 신호처리 알고리즘을 적용하여 스펙트럼 복원능을 테스트한 그래프이다.FIG. 28 is a graph illustrating spectral recovery performance by fabricating a tungsten nanodisk array of FIG. 26 using a stopband filter array and applying a digital signal processing algorithm.
이하, 첨부 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. 그러나, 다음에 예시하는 본 발명의 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되어지는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, embodiments of the present invention illustrated below may be modified in many different forms, and the scope of the present invention is not limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
도 1은 발명의 일 실시예에 따른 분광필터 어레이의 일부를 도시한 도면이고, 도 2는 도 1에 도시된 분광필터 어레이를 이용한 분광기의 일부를 도시하는 도면이다.1 is a view showing a part of the spectroscopic filter array according to an embodiment of the invention, Figure 2 is a view showing a portion of the spectrometer using the spectroscopic filter array shown in FIG.
본 발명의 실시예에 따른 분광필터 어레이(10)는 다수의 단위 분광필터들(F1,F2)을 포함한다. 다수의 단위 분광필터들(F1,F2)은 각기 다른 파장의 광을 필터링하도록 구성된다. 다수의 단위 분광필터들은 적어도 2개의 단위 분광필터들을 의미한다. 본 발명의 실시예 따른 분광기(20)는 상기 분광필터 어레이(10)을 포함하며, 다수의 단위 분광필터들(F1,F2) 각각에 대응되는 각각의 광검출영역들(PD1, PD2)을 포함하는 광검출기 어레이(210)를 구비하여 구성된다. 다수의 단위필터들(F1,F2)은 각기 다른 파장의 광을 필터링하도록 구성되며, 단위필터들(F1,F2) 각각은 광검출영역들(PD1, PD2) 각각에 대응된다. 다수의 단위필터들은 적어도 2개의 단위필터들을 의미한다. 도 2의 예시에서는 단위필터들(F1,F2)이 기판(110)을 사이에 두고 광검출영역들(PD1, PD2)이 대응되는 상황을 예로 들어 도시하고 있으나, 단위필터들(F1,F2)과 이에 대응되는 광검출영역들(PD1, PD2)을 구비한다는 의미는 단위필터들(F1,F2)과 광검출영역들(PD1, PD2)이 직접 접촉되어 있는 상황을 포함할 수 있고, 그 이외에도 분리된 모듈 형태된 모듈 형태, 또는 양자 사이에 릴레이 렌즈와 같은 광학계 등이 별도로 삽입되는 형태 등을 포함하는 것으로 이해되어야 한다. The spectroscopic filter array 10 according to the embodiment of the present invention includes a plurality of unit spectroscopic filters F 1 and F 2 . The plurality of unit spectroscopic filters F 1 and F 2 are configured to filter light of different wavelengths. A plurality of unit spectral filters means at least two unit spectral filters. The spectrometer 20 according to the embodiment of the present invention includes the spectroscopic filter array 10 and each of the photodetection areas PD 1 and PD corresponding to each of the plurality of unit spectroscopic filters F 1 and F 2 . And a photodetector array 210 comprising 2 ). The plurality of unit filters F 1 and F 2 are configured to filter light of different wavelengths, and each of the unit filters F 1 and F 2 corresponds to each of the photodetection areas PD 1 and PD 2 . do. The plurality of unit filters mean at least two unit filters. 2 illustrates an example in which the unit filters F 1 and F 2 correspond to the photodetection areas PD 1 and PD 2 with the substrate 110 interposed therebetween. F 1 and F 2 and corresponding light detection regions PD 1 and PD 2 mean that the unit filters F 1 and F 2 and the light detection regions PD 1 and PD 2 are directly connected to each other. It may include a situation in which it is in contact, in addition to that it is to be understood to include a separate modular module form, or a form in which an optical system such as a relay lens is separately inserted between the two.
단위 분광필터들(F1,F2)은 스탑밴드를 이용하는 것을 주된 특징적 구성으로 하는데, 그 일예로서 금속패턴들(120)을 주기적으로 형성하여 필터링이 가능하도록 하는 플라즈모닉스 필터로 구현된다.The unit spectroscopic filters F 1 and F 2 have a main characteristic configuration using a stop band. For example, the unit spectroscopic filters F 1 and F 2 are formed of a plasmonic filter that forms a metal pattern 120 periodically to enable filtering.
도 1의 단위 분광필터들(F1,F2)은 돌출된 일정 형상(엠보싱)의 금속패턴들(120)이 주기적으로 배치되는 구조를 통해서 스탑밴드를 구현하는 것을 예시하고 있다.The unit spectroscopic filters F 1 and F 2 of FIG. 1 illustrate the implementation of the stop band through a structure in which the protruding metal patterns 120 having a predetermined shape (embossing) are periodically arranged.
금속패턴들은 주기적 격자구조를 갖는 금속 나노구조체 배열을 이룰 수 있고, 국소표면 플라즈몬(localized surface plasmon)과 격자모드와의 커플링에 의해 특정파장대역에서 강화된 특이적(extraordinary) 광흡수 내지 광반사 현상을 나타낸다. 이로 인해 금속 나노구조체 배열을 투과하는 빛의 스펙트럼은 특이적 광흡수 내지 광반사 현상이 강화되는 선택적 파장대역에서 투과도가 급격히 낮아지는 dip 곡선을 형성하게 된다. 이는 투과광을 기준으로 할 때, 스탑밴드로서 역할을 하게 되며, 그 스펙트럼 형상은 금속물질의 선택과 나노구조체 배열의 주기 및 입자크기와 같은 기하학적 구조에 의존하며, 특히 그 중심파장은 격자주기에 의해 지배적으로 결정되는 특징을 갖는다. The metal patterns can form an array of metal nanostructures with a periodic lattice structure, and the extraordinary light absorption to light reflection enhanced in a specific wavelength band by coupling of the localized surface plasmon and the lattice mode. Indicates a phenomenon. As a result, the spectrum of light passing through the array of metal nanostructures forms a dip curve in which the transmittance decreases rapidly in the selective wavelength band where specific light absorption to light reflection is enhanced. It acts as a stopband when based on transmitted light, and its spectral shape depends on the choice of metal and the geometry, such as the period and particle size of the nanostructure array, especially its central wavelength by the lattice period. Has a predominantly determined characteristic.
종래에는 플라즈모닉 필터로 투과형 밴드를 나타내는 금속 나노홀 어레이 구조가 활용되어져 왔다. 금속 나노홀 어레이 구조는 금속박막 표면을 따라 진행하는 표면 플라즈몬파와 격자모드와의 커플링에 의해 특정 파장에서 광투과도가 증가하는 특이적 광 투과(extraordinary optical transmission, EOT) 현상을 나타낸다. 또한, 금속 나노홀 어레이 구조는 금속 나노디스크 어레이 구조의 경우와 달리 진행파 간의 커플링에 기반하기 때문에 다양한 모드가 존재하며, 단일 투과밴드로 정의 되지 않는 특징이 있다. 이러한 다중모드의 존재는 필터 어레이 방식의 분광기 동작시 각 광검출영역에 입사되는 신호파장을 처리하는 과정에서 왜곡을 초래할 수 있다. 또한, 금속박막표면을 따라 진행하는 감쇄없는 표면플라즈몬 파의 생성이 요구되기 때문에 광흡수성 금속의 사용이 어렵고 Ag, Au로 대표되는 저손실 고반사도의 귀금속 계열 금속등으로 재료계가 한정된다는 한계가 존재한다. 더욱이, 이들 귀금속 소재들도 중적외선 대역에서는 유전상수의 허수항이 커지기 때문에 금속나노홀 어레이 기반의 투과밴드 필터 형성을 위한 구조적 설계에 많은 제약이 따른다는 단점이 있다.Conventionally, a metal nanohole array structure showing a transmission band has been utilized as a plasmonic filter. The metal nanohole array structure exhibits an extraordinary optical transmission (EOT) phenomenon in which light transmittance is increased at a specific wavelength by coupling between a surface plasmon wave and a lattice mode that travels along the metal thin film surface. In addition, since the metal nanohole array structure is based on coupling between traveling waves, unlike the metal nanodisk array structure, various modes exist and are not defined as a single transmission band. The presence of this multimode spectrometer in the filter array method In operation, distortion may occur in the process of processing signal wavelengths incident on the respective light detection regions. In addition, since the generation of attenuated surface plasmon waves traveling along the metal thin film surface is required, it is difficult to use light-absorbing metals and there is a limitation that the material system is limited to low loss high reflectivity noble metals such as Ag and Au. . Moreover, these precious metal materials also have a disadvantage in that structural design for forming a transmission band filter based on a metal nanohole array has a lot of limitations because the imaginary constant of the dielectric constant increases in the mid-infrared band.
한편, 고반사도 금속물질로 이루어진 금속패턴들의 배열은 격자 모드와의 커플링에 의해 특정 파장대역에서 반사도 피크곡선을 보여주기 때문에, 반사광을 이용하는 반사형 칼라필터 혹은 장식코팅 등의 제한적 용도로 사용되어 왔다. 본 발명에서는 금속 나노구조체 배열을 반사형 구조가 아닌, 스탑밴드 필터 형태로 광검출기 어레이와의 배치가 투과형 구조로 구성되는 분광기 기술을 제공한다. On the other hand, since the array of metal patterns made of highly reflective metal material shows the reflectance peak curve in a specific wavelength band by coupling with the lattice mode, it is used for the limited use such as reflective color filter or decorative coating using reflected light. come. The present invention provides a spectroscopic technique in which the arrangement of the metal nanostructures with the photodetector array in the form of a stopband filter is not a reflective structure, but a transmissive structure.
본 발명자들은 가시광 파장 영역과 적외선 파장 대역에서 플라즈모닉 나노구조체 배열에 의해 형성되는 스탑밴드를 이용하는 경우에 주기에 의존하는 자유스펙트럼범위(free spectral range)가 비교적 넓어서 투과형 밴드 필터에 비해 가시광과 적외선 파장 대역 전반을 커버할 수 있다는 장점이 있다는 것을 확인하였다. The present inventors have a relatively wide spectral free spectral range when using the stop band formed by the arrangement of the plasmonic nanostructures in the visible wavelength region and the infrared wavelength band, so that the visible and infrared wavelengths are larger than those of the transmission band filter. It was confirmed that there is an advantage of covering the entire band.
또한, 본 발명자들은 적외선 파장 대역에서는 투과형 밴드로 분광기를 구성하는 경우 특히 특성이 저하되는 현상이 발생함을 확인하기도 하였는데 스탑밴드 필터의 경우는 이러한 문제점도 해결할 수 있었다. 이 경우, 중적외선 대역의 분광기는 2㎛ 내지 15㎛ 의 파장 대역에서 동작하는 것으로 정의할 수 있고, 더욱 바람직하게는 분광기는 2.5㎛ 내지 12㎛ 의 중적외선을 커버한다. In addition, the inventors of the present invention have confirmed that the phenomenon of deterioration occurs especially when the spectrometer is composed of a transmission band in the infrared wavelength band, but in the case of the stopband filter, this problem can be solved. In this case, the spectroscope of the mid-infrared band can be defined as operating in the wavelength band of 2 to 15 m, more preferably the spectrometer covers the mid-infrared of 2.5 m to 12 m.
한편, 분광기를 구성하기 위해서는 프로세싱 유닛(330, 도 3 참조)을 별도로 구비하는데, 프로세싱 유닛은 광검출영역들(PD1, PD2)로 구성된 광검출기 어레이로부터 검출된 광신호를 이용하여 입사한 광의 스펙트럼을 재구성하는 기능을 수행한다. 상세히 후술한다. In order to configure the spectrometer, a processing unit 330 (see FIG. 3) is separately provided, and the processing unit is incident by using the optical signal detected from the photodetector array including the photodetection areas PD 1 and PD 2 . It performs the function of reconstructing the spectrum of light. It will be described later in detail.
중적외선 파장대역에서의 광검출기 어레이로는 pyroelectric, thermopile, volometer, photoconductive 및 photovoltaic 방식의 광검출기소자를 이용한 1차원 어레이 형태의 적외선 광검출기 혹은 2차원 어레이 형태의 적외선 이미지 센서가 사용될 수 있다. 가시광 및 근적외선 파장대역에서는 Si, Ge, InGaAs 기반 광검출 소자를 이용한 1차원 광검출기 어레이 혹은 2차원 CMOS 이미지센서가 사용될 수 있다.The photodetector array in the mid-infrared wavelength band may be a one-dimensional array type infrared photodetector using a pyroelectric, thermopile, volometer, photoconductive and photovoltaic type photodetector elements or an infrared image sensor in the form of a two-dimensional array. In the visible and near-infrared wavelength bands, one-dimensional photodetector arrays or two-dimensional CMOS image sensors using Si, Ge, InGaAs-based photodetectors may be used.
한편, 주기적인 금속패턴들(120)을 별도의 기판(110) 상에 형성한 뒤 광검출기 어레이와 광학적으로 커플링시켜 사용하거나, 혹은 광검출기 어레이 위에 버퍼층(미도시)을 사이에 두고 직접 monolithic하게 형성될 수 있다. 버퍼층(미도시)은 광검출기의 각 픽셀의 보호층 역할을 하면서 광학적으로 투명한 유전체층이 선호되며, SiNx나 SiO2층일 수 있다. 또한 상부 금속패턴층과의 접착력 증진을 위해 Ti, Cr, 및 전이금속산화물 등의 계면접착층을 추가로 구비하는 것도 가능하다. Meanwhile, the periodic metal patterns 120 are formed on a separate substrate 110 and then optically coupled with the photodetector array, or directly monolithic with a buffer layer (not shown) interposed on the photodetector array. Can be formed. The buffer layer (not shown) is preferably an optically transparent dielectric layer serving as a protective layer for each pixel of the photodetector, and may be a SiNx or SiO 2 layer. In addition, it is possible to further include an interfacial adhesion layer such as Ti, Cr, and transition metal oxide in order to enhance adhesion with the upper metal pattern layer.
기판(110)은 특별히 한정되지 않은 다양한 종류가 가능하고, 유리 또는 고분자와 같은 유연한(flexible) 투광성 기판, Ge, GeSe, ZnS, ZnSe, 사파이어, CaF2, MgF2등이 가능하다. 유연한 투광성 기판은 적절한 점착력과 충격흡수성을 가지는 투명 또는 반투명한 고분자로 구성되는 것이 바람직하다. 고분자의 구체적인 예는 비제한적으로, 폴리스티렌 (PS: Polystyrene), 발포폴리스티렌 (EPS : Expandable Polystyrene) 폴리염화비닐 (PVC: Polyvinyl Chloride), 스티렌 아크릴로니트릴 공중합체 (SAN: Styrene Acrylonitrile Copolymer), 폴리우레탄 (PU: Polyurethane), 폴리아마이드 (PA: Polyamide), 폴리카보네이트 (PC: Polycarbonate) 변성 폴리카보네이트 (Modified Polycarbonate), 폴리비닐부티랄 (Poly(vinyl butyral)), 폴리비닐아세테이트 (Polyvinyl acetate), 아크릴 수지(Acrylic Resin), 에폭시 수지 (EP: Epoxy Resin), 실리콘 수지(Silicone Resin), 불포화폴리에스테르 (UP: Unsaturated Polyester), polyimide, polyethylene naphtalate, polyethylene terephtalate 등일 수 있으며 이들을 단독 또는 2종 이상 혼합하여 사용할 수 있다. 한편, 중적외선 파장대역에서 바람직하게는 실리콘 웨이퍼이지만 이에 한정되지 않는다. 적외선 영역에서 효과적으로 동작하는 분광기를 제조하는 경우, 기판 자체가 적외선 대역에서 흡수가 많이 발생하는 것은 부적합할 수 있다. The substrate 110 may be various kinds without being particularly limited, and may be a flexible light-transmissive substrate such as glass or a polymer, Ge, GeSe, ZnS, ZnSe, sapphire, CaF 2 , MgF 2, or the like. The flexible light transmissive substrate is preferably composed of a transparent or translucent polymer having appropriate adhesion and shock absorption. Specific examples of the polymer include, but are not limited to, polystyrene (PS), expandable polystyrene (EPS), polyvinyl chloride (PVC), styrene acrylonitrile copolymer (SAN), polyurethane (PU: Polyurethane), Polyamide (PA: Polyamide), Polycarbonate (PC: Polycarbonate) Modified Polycarbonate, Poly (vinyl butyral), Polyvinyl acetate, Acrylic It can be resin (Acrylic Resin), epoxy resin (EP: Epoxy Resin), silicone resin (Silicone Resin), unsaturated polyester (UP: Unsaturated Polyester), polyimide, polyethylene naphtalate, polyethylene terephtalate, etc. Can be used. On the other hand, the silicon wafer is preferably in the mid-infrared wavelength band, but is not limited thereto. When manufacturing a spectrometer that operates effectively in the infrared region, it may be inappropriate for the substrate itself to generate a lot of absorption in the infrared band.
금속패턴들(120)을 구성하는 금속물질은 파장대역에 따라서 적절하게 선택할 수 있다. 이에 대해 상세히 설명한다. The metal material constituting the metal patterns 120 may be appropriately selected according to the wavelength band. This will be described in detail.
먼저, 플라즈모닉 금속으로 널리 사용되는 저손실 고반사도의 금속 물질은 가시광-근적외선 파장 대역, 중적외선 파장 대역 등에서 적절히 사용될 수 있는데, 금속패턴들은 플라즈모닉 금속인 Au, Ag, Al, Cu 혹은 이들 중 적어도 2개의 합금 또는 이들 중 적어도 하나를 포함하고 다른 원소를 포함하는 합금일 수도 있다. First, a low loss high reflectance metal material widely used as a plasmonic metal may be suitably used in the visible-near-infrared wavelength band, the mid-infrared wavelength band, and the like. The metal patterns may include Au, Ag, Al, Cu or at least one of the plasmonic metals. It may be an alloy comprising two alloys or at least one of them and other elements.
다음으로, 가시광 영역 및 근적외선 대역에서는 광의 흡수율과 굴절율이 큰 금속인 Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, Si 혹은 이들 중 적어도 2개의 합금 또는 이들 중 적어도 하나를 포함하고 다른 원소를 포함하는 합금일 수도 있다. Next, in the visible region and the near-infrared band, Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, Si or at least two alloys thereof, which are metals having a high light absorption and refractive index, It may be an alloy containing at least one of these and other elements.
중적외선 대역에서는 광학적 거동이 드루드 자유전자 모델을 따라가는 Ta, W, Mo, Ni, Cr, TiN, TiON 을 포함하여 구성된 그룹으로부터 적어도 하나가 선택된 물질일 수 있다. In the mid-infrared band, the optical behavior may be at least one selected from the group consisting of Ta, W, Mo, Ni, Cr, TiN, and TiON following the druid free electron model.
도 3은 본 발명의 다른 실시예에 따른 분광기의 블록도이다. 도 3을 참조하면, 분광기(30)는 분광필터 어레이(310)와, 광검출기 어레이(320), 그리고 프로세싱 유닛(330)을 구비한다. 분광필터 어레이(310)는 서로 다른 파장 영역의 광을 필터링하는 다수의 단위 분광필터들(F1,F2)을 구비하고, 광검출기 어레이(320)는 상기 다수의 분광필터들 각각에 대응하여 광검출영역들(PD1, PD2)을 구비하며, 프로세싱 유닛(330)은 광검출기 어레이(320)로부터 검출된 광신호를 이용하여 입사한 광의 스펙트럼을 재구성하는 기능을 수행한다. 다수의 단위 분광필터들(F1,F2)은 전술한 바와 같이 스탑밴드(stop band) 특성을 갖는 필터이다. 본 발명에 따른 프로세싱 유닛(330)은 후속 디지털신호처리 알고리즘 적용을 통해 대상체 스펙트럼을 복원하는 분광계 역할을 하게 되고, 필터 어레이 기반의 분광기의 구현이 가능해진다. 이하, 상세히 후술한다. 3 is a block diagram of a spectrometer according to another embodiment of the present invention. Referring to FIG. 3, the spectrometer 30 includes a spectroscopic filter array 310, a photodetector array 320, and a processing unit 330. The spectral filter array 310 includes a plurality of unit spectral filters F 1 and F 2 for filtering light in different wavelength regions, and the photodetector array 320 corresponds to each of the plurality of spectral filters. The photodetection regions PD 1 and PD 2 are provided, and the processing unit 330 performs a function of reconstructing the spectrum of incident light using the optical signal detected from the photodetector array 320. The plurality of unit spectroscopic filters F 1 and F 2 are filters having stop band characteristics as described above. The processing unit 330 according to the present invention serves as a spectrometer for restoring the object spectrum by applying a subsequent digital signal processing algorithm, and it becomes possible to implement a filter array-based spectrometer. It will be described later in detail.
도 4는 본 발명의 일 실시예에 따른 분광필터 어레이를 설명하기 위한 평면도이다. 도 4에서 I-I'를 자른 단면이 도 1과 같이 도시되는 것으로 이해된다. 도 5는 분광필터 어레이의 금속패턴들을 예시적으로 도시하고 있다. 도 5에서 확인되는 바와 같이, 선형격자 구조와 2차원 격자구조 모두 적용가능하다. 2차원 격자구조는 정사각 격자 혹은 육방정 격자구조가 가능하다. 금속 나노구조체의 형상은 사각 디스크, 원형디스크, 다각형 구조, 나노막대형 단위구조, 크로스 바 등 다양한 형상이 가능하다. 4 is a plan view illustrating a spectral filter array according to an embodiment of the present invention. It is understood that a cross section taken along the line II ′ in FIG. 4 is shown as in FIG. 1. 5 exemplarily shows metal patterns of the spectral filter array. As can be seen in FIG. 5, both the linear lattice structure and the two-dimensional lattice structure are applicable. The two-dimensional lattice structure may be a square lattice or a hexagonal lattice. The shape of the metal nanostructure may be a variety of shapes, such as rectangular disk, circular disk, polygonal structure, nano-bar unit structure, cross bar.
한편, 단위 분광필터들(F1,F2) 각각은 나노구조체의 듀티사이클(duty cycle) 혹은 충전률이 동일하게 구현된다. 즉, 단위 분광필터(F1)에서 D1/P1을 듀티사이클로 하면, 이 값은 바람직하게는 30% 내지 80%를 가진다. 듀티사이클이 30% 미만인 경우는 투과도 dip의 크기가 매우 작고 80% 초과인 경우는 너무 broad한 dip 곡선이 생성되는 경향이 있다. On the other hand, each of the unit spectroscopic filters (F 1 , F 2 ) are implemented to have the same duty cycle or filling rate of the nanostructure. That is, when D 1 / P 1 is a duty cycle in the unit spectroscopic filter F 1 , this value is preferably 30% to 80%. If the duty cycle is less than 30%, the transmittance dip is very small and if it is more than 80%, too broad a dip curve tends to be generated.
단위 분광필터(F2)에서 D2/P2의 듀티사이클은 단위 분광필터(F1)에서의 듀티사이클과 동일하게 유지한다. 다만, 단위 분광필터(F1)과 단위 분광필터(F2)의 주기가 변화되는 것이 특징이다. The duty cycle of D 2 / P 2 in the spectral filter unit (F 2) is kept equal to the duty cycle of the spectral filter unit (F 1). However, the period of the unit spectroscopic filter F 1 and the unit spectroscopic filter F 2 is changed.
단위 분광필터들(F1,F2)의 공진 파장을 결정하는 요소는 주기, 금속구조체의 형상, 금속구조체의 두께, 듀티사이클 등에 의해서 결정된다. 여기서 공진 파장을 결정하는 주된 요소는 주기이다. 단위 분광필터들(F1,F2)을 이용하여 분광기를 제조하는 경우, 장점 중 하나는 이와 같이 공진 파장을 비교적 간단한 요소의 변경으로 통해서 손쉽게 확보할 수 있다는 것이다. The element that determines the resonant wavelength of the unit spectroscopic filters F 1 and F 2 is determined by the period, the shape of the metal structure, the thickness of the metal structure, the duty cycle, and the like. The main factor determining the resonant wavelength here is the period. When manufacturing a spectrometer using unit spectroscopic filters F 1 and F 2 , one of the advantages is that the resonance wavelength can be easily obtained by changing a relatively simple element.
가시광 파장 영역 내지 근적외선 파장 대역을 대상으로 할 경우, 금속패턴들의 주기는 0.1 ㎛ 내지 1.5 ㎛ 사이에서 결정되는 것이 바람직하고, 중적외선 영역을 대상으로 할 때, 0.8 ㎛ 내지 8 ㎛ 사이에서 결정되는 것이 바람직하다. In the case of the visible light wavelength range to the near infrared wavelength band, the period of the metal patterns is preferably determined between 0.1 μm and 1.5 μm, and when targeting the mid infrared range, it is determined between 0.8 μm and 8 μm. desirable.
예를 들어, 중적외선 대역을 대상으로 하고 굴절율이 큰 Si을 기판으로 사용하는 경우, 금속패턴들의 주기는 0.8 ㎛ 내지 4 ㎛ 사이에서 결정되는 것이 바람직하다. 금속패턴들의 두께는 5nm 내지 500nm가 바람직하며 더욱 바람직하게는 10nm 내지 300nm이다. 만약 5nm 보다 작으면, 표면에서 산란되는 자유전자의 비율이 증대되어 플라즈몬 감쇄의 큰 요소로 작용하게 되고 500nm 이상이면 부피증가 효과로 다극자(multipole) 공진이 발생하게 되어 부적합할 수 있다. For example, when using Si as a substrate for the mid-infrared band and having a large refractive index, the period of the metal patterns is preferably determined between 0.8 µm and 4 µm. The thickness of the metal patterns is preferably 5 nm to 500 nm, more preferably 10 nm to 300 nm. If it is smaller than 5 nm, the ratio of free electrons scattered on the surface is increased to act as a large factor of plasmon attenuation, and if it is more than 500 nm, multipole resonance may occur due to a volume increase effect.
도 6은 다른 실시예에 따른 분광필터의 일예를 도시하는 도면이다. 도 6을 참조하면, 단위 분광필터들(F1,F2)이 형성된 기판(110)의 상부의 반대편인 기판(110)의 하부에 저반사코팅층(180)이 부가적으로 형성되어 있다. 6 is a diagram illustrating an example of a spectral filter according to another embodiment. Referring to FIG. 6, a low reflection coating layer 180 is additionally formed on a lower portion of the substrate 110 opposite to the upper portion of the substrate 110 on which the unit spectroscopic filters F 1 and F 2 are formed.
저반사코팅층(180)은 기판(110)과 이웃 매질간에 graded index 조건을 만족시키는 굴절율을 갖는 박막층을 코팅하거나 motheye 형태의 나노콘 구조로 형성될 수도 있다. 이때, 하부 광검출영역과의 결합은 저반사코팅층 면으로 빛이 입사할 수 있도록 주기적 금속패턴들이 하부 광검출기영역들과 마주보도록 구성될 수 있다. 예를 들어, 중적외선 파장대역에서 고투과도를 보이는 기판소재들의 굴절률이 CaF2등의 일부 물질을 제외하고 높기 때문에 계면에서의 반사손실을 낮추기 위해 주기적 금속패턴들(120)이 형성되는 상부의 반대편인 기판(110) 하부에 저반사코팅층(180)을 부가적으로 형성된 구조가 효과적일 수 있다. The low reflection coating layer 180 may be coated with a thin film layer having a refractive index that satisfies graded index conditions between the substrate 110 and a neighboring medium or may be formed of a nanocon structure having a motheye shape. In this case, the coupling with the lower photodetection area may be configured such that the periodic metal patterns face the lower photodetector areas so that light may enter the surface of the low reflection coating layer. For example, since the refractive index of the substrate materials showing high transmittance in the mid-infrared wavelength band is high except for some materials such as CaF 2 , the opposite side of the upper part where the periodic metal patterns 120 are formed to reduce the reflection loss at the interface. A structure in which the low reflection coating layer 180 is additionally formed below the phosphorus substrate 110 may be effective.
도 7은 또 다른 실시예에 따른 분광필터의 일예를 도시하는 도면이다. 도 7을 참조하면, 도 1과 도 2의 금속패턴들을 이중층(130)으로 구성하고 있다. 이중층(130)은 저손실 고반사도 금속물질(134)과 광흡수형 금속물질(132)의 이중층으로 구성하는 것이 가능하다. 저손실 고반사도의 금속 물질로는 Ag, Au, Al, Mg 및 이들의 합금중에서 선택될 수 있고, 광흡수형 금속 물질로는 Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, Si 등이 포함되며 이들 간의 합금 및 이들 금속을 포함하는 silicide, carbide, nitride, sulfide 등도 가능하다. 7 is a diagram illustrating an example of a spectral filter according to another embodiment. Referring to FIG. 7, the metal patterns of FIGS. 1 and 2 are formed as the double layer 130. The double layer 130 may be configured as a double layer of a low loss high reflectance metal material 134 and a light absorbing metal material 132. The low loss high reflectivity metal material may be selected from Ag, Au, Al, Mg and alloys thereof, and the light absorbing metal material may include Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, Si, and the like are included, and alloys therebetween, and silicides, carbides, nitrides, sulfides, etc. including these metals are also possible.
광흡수형 금속물질을 사용시 스탑밴드 곡선의 변조깊이를 향상시키거나 선폭을 개선할 목적으로 상대적 저손실 금속과 광흡수형 금속물질을 이중층 형태로 나노디스크 어레이를 구성할 수 있다. 이 경우 적층 순서는 도 7에 도시된 바와 같이, 저손실 고반사도 금속물질(134) 상부에 광흡수형 금속물질(132)을 배치하거나. 그 반대로 광흡수형 금속물질 상부에 저손실 고반사도 금속물질을 배치하는 구조 모두가 가능하다. 또한, 이중층 구조대신 두 물질간의 합금형태로 단일층으로 구성하는 것도 가능하다.When using light-absorbing metal materials, nanodisk arrays can be constructed in the form of double layers of relatively low-loss metals and light-absorbing metal materials for the purpose of improving the modulation depth of the stopband curve or improving the line width. In this case, as shown in FIG. 7, the light absorption type metal material 132 is disposed on the low loss high reflectivity metal material 134. On the contrary, it is possible to have a structure in which a low loss high reflectance metal material is disposed on the light absorbing metal material. It is also possible to construct a single layer in the form of an alloy between two materials instead of a double layer structure.
도 8은 또 다른 실시예에 따른 분광필터의 일예를 도시하는 도면이다. 도 8을 참조하면, 금속패턴들(120)을 금속나노디스크을 채용하여 분광필터 어레이(10)를 구성함에 있어서, 금속나노디스크 층의 보호를 위해 conformal 한 방식으로 패시베이션 층(140)을 형성한 실시예를 보여준다. 이때, 패시베이션층(140)은 나노디스크 어레이 필터의 광학특성에 미치는 영향을 최소화하기 위해 10 nm 이하 두께로 형성되는 것이 바람직하며, 보다 바람직하게는 수 nm 이하로 형성되는 것이 유리하다.  8 is a diagram illustrating an example of a spectral filter according to another embodiment. Referring to FIG. 8, in the case of constructing the spectral filter array 10 using the metal nanodisks, the metal patterns 120 are formed by forming the passivation layer 140 in a conformal manner for protecting the metal nanodisk layer. An example is shown. At this time, the passivation layer 140 is preferably formed to a thickness of less than 10 nm, more preferably several nm or less in order to minimize the effect on the optical characteristics of the nanodisk array filter.
패시베이션층(140)은 HfO2, ZrO2, ZnO, ZnSe, TiO2, Al2O3, SiOx, SOG 등에서 적어도 하나 이상이 선택된 것일 수 있고, 금속 표면산화법이나 원자층 증착법등을 이용하여 형성 가능하다. The passivation layer 140 may be at least one selected from HfO 2 , ZrO 2 , ZnO, ZnSe, TiO 2 , Al 2 O 3 , SiO x , SOG, and the like, and may be formed using a metal surface oxidation method or an atomic layer deposition method. It is possible.
패시베이션층(140) 상부에는 필요에 따라 투광성 고분자와 유전체층과 같은 보호층(150)을 추가로 구비하는 것도 가능하다. 또한, 패시베이션층(140) 없이 상부 보호층(150)만을 구비하는 구성도 가능하다. If necessary, the passivation layer 140 may further include a protective layer 150 such as a light transmissive polymer and a dielectric layer. In addition, a configuration including only the upper passivation layer 150 without the passivation layer 140 is possible.
보호층(150)은 실리콘옥사이드, 실리콘 질화막, 불화 마그네슘, 불화 칼슘, 저분자 레진, 또는 폴리머 물질일 수 있다. 폴리머 물질의 예시로는, Poly(dimethyl siloxane), polycarbonate, poly(vinyl phenyl sulfide), poly (methyl metharcylate) poly(vinyl alcohol), poly(vinyl butyral), poly(methyl acrylate)를 포함한 고분자 물질과 공중합체들을 포함한 특별히 한정되지 않는 고분자 물질이다. The protective layer 150 may be silicon oxide, silicon nitride, magnesium fluoride, calcium fluoride, low molecular resin, or a polymer material. Examples of polymer materials include polymers including poly (dimethyl siloxane), polycarbonate, poly (vinyl phenyl sulfide), poly (methyl metharcylate) poly (vinyl alcohol), poly (vinyl butyral), poly (methyl acrylate) and air It is a polymer material which is not particularly limited including the coalescing.
도 9, 도 10 및 도 11은 본 발명의 실시예에 따라서 몇가지 금속물질과 패턴들에 대한 스탑밴드의 투과특성을 시뮬레이션 결과 그래프들이다. Si 기판위에 형성된 금속나노구조체 배열로 Hexagonal 격자구조를 가정하였고, 주기를 1 um부터 2.92 um 까지 40 nm 간격으로 계산한 결과이다. 중적외선 영역인 2μm 내지 10μm 대역에서 스탑밴드의 투과특성을 시뮬레이션하였다. 9, 10 and 11 are graphs showing simulation results of transmission characteristics of stop bands for several metal materials and patterns according to an exemplary embodiment of the present invention. Hexagonal lattice structure was assumed as the metal nanostructure array formed on the Si substrate, and the period was calculated at 40 nm intervals from 1 um to 2.92 um. The transmission characteristics of the stop band were simulated in the mid-infrared region of 2 μm to 10 μm.
플라즈모닉 필터어레이 구현을 위해서는 금속 나노구조체 배열을 형성하는 물질 종류가 중요한 요인이 될 수 있다. 일반적으로 표면플라즈몬 공진현상을 일으키기 위한 금속물질로는 Al, Ag, Au, Cu와 같은 알칼리 및 귀금속 물질이 사용되어 왔다. 본 발명에서는 이들 금속외에도 중적외선 영역에서 광학적 거동이 드루드 자유전자 모델을 따라가는 Ta, W, Mo, Ni, Cr등의 전이금속과 TiN, TiON 등의 금속질화물이 스탑밴드형 나노디스크 어레이 필터 소재로 효과적일 수 있음을 보여준다. In order to implement the plasmonic filter array, the type of material forming the metal nanostructure array may be an important factor. In general, alkali and precious metal materials such as Al, Ag, Au, and Cu have been used as metal materials for causing surface plasmon resonance. In the present invention, in addition to these metals, transition metals such as Ta, W, Mo, Ni, Cr, and metal nitrides such as TiN and TiON, which have optical behaviors in the mid-infrared region, follow the druid free electron model. To be effective.
특히, 이들 물질은 열적, 기계적 안정성이 우수하기 때문에 특히 중적외선 파장대역 소재로 바람직하다. 또한 이들 물질은 부가적으로 기판과의 접착력이 매우 우수하기 때문에 추가적인 접착층이 필요하지 않다는 장점이 있다. 금속질화물은 조성제어를 통해 광학 물성의 추가적 제어가 가능하다는 장점이 있다.In particular, these materials are particularly preferred as mid-infrared wavelength band materials because of their excellent thermal and mechanical stability. In addition, these materials have the advantage that additional adhesive layers are not necessary because of their excellent adhesion to the substrate. Metal nitrides have an advantage that additional control of optical properties is possible through composition control.
도 9 와 도 10은 각각 Au와 Ta를 이용하여 듀티사이클이 50%인 나노디스크를 금속패턴으로 형성한 후, 그 투과도 dip 곡선들을 이론전산모사 계산을 통해 나타낸 것이다. 도 11는 Ni과 W을 이용하여 듀티사이클이 60%인 나노디스크를 금속패턴으로 형성한 후, 그 광투과도 곡선을 시뮬레이션으로 계산한 결과를 나타내었다. 9 and 10 show that the nanodisk having a duty cycle of 50% using Au and Ta as a metal pattern, respectively, and its transmittance dip curves are shown through theoretical computational calculations. FIG. 11 illustrates the results of calculating the optical transmittance curve by simulation after forming a nano-pattern having a duty cycle of 60% using Ni and W as a metal pattern.
도 9와 도 10 및 도 11 모두 약 3㎛ 내지 10㎛ 의 중적외선 대역에서 금속물질의 종류에 따라 스펙트럼 형상에 약간의 차이는 존재하지만 단일 스탑밴드들이 그 중심파장이 연속적으로 가변되며 전체 범위를 커버하고 있음을 확인할 수 있다. 전이금속 중 특히 내열금속으로 분류되는 Ta, W, Mo 은 중적외선 대역에서의 광학상수 분산특성이 Au와 매우 유사한 특징이 있다. 9, 10, and 11 have slight differences in the spectral shape depending on the type of metal in the mid-infrared band of about 3 μm to 10 μm, but single-stop bands vary in their center wavelength continuously. You can see that it covers. Among the transition metals, Ta, W, and Mo, which are classified as heat-resistant metals, have the characteristics of optical constant dispersion in the mid-infrared band very similar to Au.
반면, Ni 이나 Cr등은 굴절율의 실수값이 단파장에서 상대적으로 높은 값을 나타내지만, 장파장으로 갈수록 내열금속보다 낮은 값을 유지하는 특징이 있다. 따라서, 박막의 표면을 따라 진행하는 표면플라즈몬 파의 여기를 이용하는 나노홀 어레이 구조에는 적합하지 않지만, 격자모드와 커플링되어 특이적 광흡수 내지 광반사 현상을 이용하는 나노디스크형 스탑밴드 필터로는 매우 유용하게 사용될 수 있다. On the other hand, Ni and Cr, but the real value of the refractive index shows a relatively high value in the short wavelength, but is characterized by maintaining a lower value than the heat-resistant metal toward the longer wavelength. Therefore, it is not suitable for the nanohole array structure using the excitation of the surface plasmon wave traveling along the surface of the thin film, but it is very suitable as the nanodisc type stopband filter coupled with the lattice mode and using specific light absorption or light reflection phenomenon. It can be usefully used.
플라즈모닉 금속물질로 일반적으로 사용되는 Al, Ag, Au 등의 알칼리 및 귀금속은 열광원을 사용하고 플라즈몬 공진 효과로 인해 열적여기상태가 예상되는 적외선 영역에서는 내열성이 다소 부족한 문제점이 발생할 가능성이 있다. Alkali and noble metals such as Al, Ag, Au, etc., which are generally used as plasmonic metal materials, may use a heat light source and may have a problem in that heat resistance is somewhat insufficient in an infrared region where thermal excitation is expected due to the plasmon resonance effect.
도 12는 나노구조체 배열을 구성하는 금속 물질계 선택에 따른 열적안정성을 보여주는 주사전자현미경 사진이다. 내열성을 확인하기 위해 50nm 두께의 Ta과 Au 나노디스크 어레이 패턴을 Si 기판위에 형성하고 열처리를 한 후 형상의 변화를 비교하였다. 동일한 템플릿을 이용하여 제작되었으나 900oC, 30분간 진공열처리 후의 형상은 Ta 나노디스크는 변화가 없이 유지된 반면, Au의 경우에는 자기확산에 의해 구형입자로 되었음을 알 수 있다. Au보다 용융점이 낮고 원자이동도가 높은 Ag는 훨씬 낮은 온도에서도 안정성에 문제가 있을 것으로 예상된다. 12 is a scanning electron micrograph showing the thermal stability according to the selection of the metal material system constituting the nanostructure array. In order to confirm the heat resistance, 50 nm-thick Ta and Au nanodisk array patterns were formed on a Si substrate, and heat treatments were performed to compare shape changes. It was produced using the same template, but the shape after vacuum heat treatment at 900 ° C. for 30 minutes showed that the Ta nanodisks remained unchanged, whereas in the case of Au, spherical particles were formed by self diffusion. Ag, which has a lower melting point and higher atomic mobility than Au, is expected to have stability problems even at a much lower temperature.
분자의 기본진동은 근적외선 영역대역(0.78-2 um)에서 배음과 조합에 의한 광흡수 모드를 나타낸다. 이러한 배음 및 조합 진동모드는 중적외선 대역에 비해 세기가 작고 흡수 선폭이 넓다는 단점이 있지만, 광원과 검출기가 잘 개발된 영역으로 매우 효과적인 분광학 영역이 된다. 본 발명에 따른 적외선 스탑밴드 필터도 파장대역을 근적외선 영역대로 이동하여 근적외선 분광계로서 동작하는 것이 가능하다. The fundamental vibration of the molecule shows the light absorption mode by harmonics and combinations in the near infrared region band (0.78-2 um). These harmonic and combination vibration modes have the disadvantages of low intensity and broad absorption line width compared to the mid-infrared band, but are well developed light sources and detectors, and thus become very effective spectroscopy areas. The infrared stopband filter according to the present invention can also operate as a near infrared spectrometer by shifting the wavelength band toward the near infrared region.
도 13은 본 발명에 따른 금속 나노구조체 어레이형 스탑밴드 필터의 자유스펙트럼 범위가 근적외선 대역은 물론 가시광 파장 영역까지 확장될 수 있음을 보여주는 전산모사 결과이다. 13 is a simulation result showing that the free spectrum range of the metal nanostructure array type stopband filter according to the present invention can be extended not only to the near infrared band but also to the visible wavelength range.
50 nm 두께의 Al 나노디스크 어레이가 hexagonal 격자구조를 이루고 있을 때, 그 주기를 200 nm부터 1500 nm까지 100 nm간격으로 변화시켜가며 계산한 투과스펙트럼을 도시한 것이다. 여기서, 듀티사이클은 50%로 고정하였다. 0.35 um부터 2 um 대역까지 연속적으로 가변되는 단일 스탑밴드 특성을 보여주고 있음을 알 수 있다. When the 50 nm-thick Al nanodisk array has a hexagonal lattice structure, the transmission spectrum is calculated by varying the period from 200 nm to 1500 nm at 100 nm intervals. Here, the duty cycle was fixed at 50%. It can be seen that it shows a single stopband characteristic that continuously varies from 0.35 um to 2 um band.
본 발명의 분광필터 어레이는 기판 상부에 형성하여 별도의 분광필터 모듈로 제작하는 것이 가능하다. 기판은 동작파장에서 각 파장 대역에서 투명한 물질이면 구분없이 사용가능하며, 유리 또는 고분자일 수 있음은 전술한 바와 같다. 일례로 기판으로 투광성 필름을 사용하고, 투광성 필름은 적절한 점착력과 충격흡수성을 가지는 투명 또는 반투명한 고분자로 구성되는 것이 바람직하다. 분광필터 모듈은 광검출기 어레이가 집적되지 않은 형태로 제작되어 실제 사용시 광검출기 어레이 모듈 등에 부착하여 사용하는 것이 가능하다. 분광필터 모듈을 실제 사용시 광검출기에 부착하여 사용하는 경우는 예를 들어, 카메라의 렌즈 앞에 본 광학필터 모듈을 결합하여 활용하는 방식으로 사용하는 것도 가능하다. The spectral filter array of the present invention can be formed on the substrate to be manufactured as a separate spectral filter module. The substrate may be used as long as it is a transparent material in each wavelength band in the operating wavelength, and may be glass or a polymer as described above. As an example, a light-transmissive film is used as the substrate, and the light-transmissive film is preferably composed of a transparent or semitransparent polymer having appropriate adhesive force and shock absorbency. The spectral filter module is manufactured in a form in which the photodetector array is not integrated, and thus can be attached to the photodetector array module and used in actual use. When the spectral filter module is attached to the photodetector in actual use, for example, the optical filter module may be used by combining the optical filter module in front of the lens of the camera.
도 14는 본 발명의 분광필터 어레이(1000a)와 광검출기 어레이(2000a) 간의 1차원 선형 배열 결합을 통해 분광기(10000a)를 구성하는 예시를 보여주고 있다. FIG. 14 shows an example of configuring the spectrometer 10000a through a one-dimensional linear array coupling between the spectroscopic filter array 1000a and the photodetector array 2000a of the present invention.
도 14에 도시된 모식도에서는 M개의 분광필터들(F)로 구성된 분광필터 어레이(1000a) 및 M개의 광검출영역들(PD)으로 구성된 광검출기 어레이(2000a)를 포함하는 분광기(10000a)를 도시한다. 각각의 단위 분광필터(F)의 주기는 결합되는 1차원 선형 배열 광검출기 어레이의 광검출영역(PD)의 주기에 맞추거나 혹은 복수개의 광검출영역들(PD) 그룹의 크기와 일치시키도록 결정될 수 있다. 즉, 단위 분광필터와 광검출영역 픽셀간의 결합은 1:1 혹은 1:N (N은 2이상) 결합일수 있다.The schematic diagram shown in FIG. 14 shows a spectrometer 10000a including a spectral filter array 1000a composed of M spectral filters F and a photodetector array 2000a composed of M photodetection regions PD. do. The period of each unit spectral filter F may be determined to match the period of the photodetection area PD of the combined one-dimensional linear array photodetector array or to match the size of the plurality of photodetection areas PD. Can be. That is, the coupling between the unit spectroscopic filter and the photodetection pixel may be 1: 1 or 1: N (N is 2 or more) coupling.
도 15는 본 발명의 분광필터 어레이(1000b)와 광검출기 어레이(2000b) 간의 2차원으로 배열되는 결합을 통해서 분광기(10000b)를 구성하는 일례가 도시된다. 1차원 결합의 분광기(10000a)에 비해 집적화에 유리하며, 기존의 CMOS 이미지 센서, 열화상 카메라등과의 결합에 유리하다.15 shows an example of configuring the spectrometer 10000b through a two-dimensional coupling between the spectroscopic filter array 1000b and the photodetector array 2000b of the present invention. Compared to the spectrometer 10000a of the one-dimensional coupling, it is advantageous for integration, and it is advantageous for coupling with a conventional CMOS image sensor, a thermal imaging camera, and the like.
한편, 도 14 및 도 15의 분광기(10000a, 10000b)는 본 발명의 분광필터 어레이(1000a, 1000b) 및 광검출기 어레이(2000a, 2000b)를 포함한다. 분광기(10000a, 10000b)는 분광계 칩일 수 있다. Meanwhile, the spectrometers 10000a and 10000b of FIGS. 14 and 15 include the spectroscopic filter arrays 1000a and 1000b and the photodetector arrays 2000a and 2000b of the present invention. The spectrometers 10000a and 10000b may be spectrometer chips.
본 발명의 분광기(10000a, 10000b)에서, 분광필터 어레이(1000a, 1000b)는 복수 개의 단위 분광필터들(F)로 이루어질 수 있는데, 분광필터들(F)의 세부 특징에 관하여는 전술하였다. 복수 개의 분광필터들(F)은 연속적으로 중심 파장이 가변되는 스탑밴드 특성을 형성하여 스탑밴드 필터 어레이 구조를 형성할 수 있다. In the spectrometers 10000a and 10000b of the present invention, the spectral filter arrays 1000a and 1000b may be formed of a plurality of unit spectral filters F. Details of the spectroscopic filters F have been described above. The plurality of spectral filters F may form a stopband filter array structure by continuously forming a stopband characteristic of varying a center wavelength.
광검출기 어레이(2000a)는 복수 개의 광검출영역(PD)이 복수 개의 단위 분광필터들(F)에 대응되도록 배치되는데, 각각의 단위 분광필터를 통과한 광을 검출 가능하도록 설치된다. 광검출기 어레이(2000a)는 분광필터 어레이(1000a)에 소정 거리 이격되도록 배치된다. 다른 변형에 있어서는 광검출기 어레이(2000a)는 분광필터 어레이(1000a)에 직접 접촉하게 제작하는 것도 가능함은 물론이다. 광검출영역(PD)은 단위 픽셀일 수 있다.The photodetector array 2000a is arranged such that the plurality of photodetection regions PD correspond to the plurality of unit spectral filters F, and is installed to detect light passing through each unit spectral filter. The photodetector array 2000a is disposed to be spaced apart from the spectroscopic filter array 1000a by a predetermined distance. In other variations, the photodetector array 2000a may be manufactured to be in direct contact with the spectral filter array 1000a. The photodetection area PD may be a unit pixel.
본 발명에 따른 분광기(10000a, 10000b)는 대상체 스펙트럼을 측정함에 있어서, 분광필터의 일방향으로 위치별로 중심파장이 조금씩 이동된 스탑밴드 필터를 통해 입사되는 빛의 감법 세기(subtractive intensity)의 출력을 가능하게 한다. 이로 인해, 빛의 파장에 따른 세기 분포가 종래의 투과밴드필터 어레이 기반의 분광계의 경우와 역상의 관계로 나타나며, 후속 디지털신호처리 알고리즘 적용을 통해 대상체 스펙트럼을 복원하는 분광계 역할을 하게 되고, 필터 어레이 기반의 분광기의 구현이 가능해진다. 도 3의 프로세싱 유닛(330)은 광검출기 어레이로부터 검출된 광신호를 이용하여 입사한 광의 스펙트럼을 재구성하는 일체의 기능을 수행한다. The spectrometers 10000a and 10000b according to the present invention can output subtractive intensity of light incident through a stopband filter in which the center wavelength is moved slightly by position in one direction of the spectroscopic filter in measuring an object spectrum. Let's do it. As a result, the intensity distribution according to the wavelength of light is shown to be inversely related to the case of a conventional transmission band filter array-based spectrometer, and serves as a spectrometer that restores an object spectrum by applying a subsequent digital signal processing algorithm. It is possible to implement a spectrometer based. The processing unit 330 of FIG. 3 performs an integral function of reconstructing the spectrum of incident light using the optical signal detected from the photodetector array.
이하, 본 발명의 실시예에 따른 분광기를 이용한 분광방법을 설명한다. 도 16은 본 발명의 실시예에 따른 분광 방법의 흐름도이다.Hereinafter, a spectroscopic method using a spectrometer according to an embodiment of the present invention will be described. 16 is a flowchart of a spectroscopic method according to an embodiment of the present invention.
먼저, 대상체 스펙트럼이 분광기에 입사된다(S100). 분광기는 분광필터 어레이와 단위 분광필터들 각각에 대응하여 광검출영역들을 구비하는 광검출기 어레이를 구비하고 있다.First, the object spectrum is incident on the spectrometer (S100). The spectrometer includes a photodetector array having photodetection regions corresponding to each of the spectroscopic filter array and the unit spectroscopic filters.
입사된 대상체의 스펙트럼은 분광필터 어레이를 통해서 선택적으로 광반사 또는 광흡수를 발생하게 된다(S110). 이러한 특성은 전술한 “스탑밴드”필터의 특성으로, 단위 분광필터들은 특정파장대역의 빛이 투과하지 못하도록 파장에 따른 투과율이 역방향의 피크를 갖는 특성을 보인다. The spectra of the incident object may selectively generate light reflection or light absorption through the spectroscopic filter array (S110). This characteristic is a characteristic of the above-mentioned "stop band" filter, the unit spectral filters have a characteristic that the transmittance according to the wavelength has a peak in the reverse direction so that light of a specific wavelength band does not transmit.
다음으로, 광검출기 어레이에 분광필터 어레이를 투과한 광스펙트럼 신호가 검출된다(S120). 그런 다음, 신호복원 알고리즘에 의해 대상체의 스펙트럼이 복원된다(S130). Next, the light spectrum signal transmitted through the spectroscopic filter array is detected by the photodetector array (S120). Then, the spectrum of the object is restored by the signal restoration algorithm (S130).
이하, 본 발명에 따른 스탑밴드 필터 어레이에 기반한 분광기에서의 신호복원 원리는 도 14를 참조하여 수학적으로 설명한다. Hereinafter, the signal restoration principle in the spectrometer based on the stopband filter array according to the present invention will be described mathematically with reference to FIG.
분석하고자 하는 대상체의 스펙트럼을 s(λ), 개별 필터(F)들의 투과함수를 fi(λ), 그리고 광검출기(PD)의 감도함수를 di(λ)라 하면, 대상체의 스펙트럼이 필터를 통과해 광검출기에 도달할 때 발생하는 검출신호 ri는 아래의 관계식 (1)로 표현되며, 이산화된 모델로 나타내면 식 (2)와 같은 행렬식으로 전개가능하다.If the spectrum of the object to be analyzed is s (λ), the transmission function of the individual filters F is f i (λ), and the sensitivity function of the photodetector PD is d i (λ), the spectrum of the object is filtered. The detection signal r i generated when passing through the photodetector is expressed by the following relation (1), and can be developed by the determinant such as equation (2).
Figure PCTKR2017008256-appb-I000002
(1)
Figure PCTKR2017008256-appb-I000002
(One)
Figure PCTKR2017008256-appb-I000003
(2)
Figure PCTKR2017008256-appb-I000003
(2)
일반적으로 파장 샘플링 개수(N)에 비해 필터의 개수(M)가 작기 때문에 식(2)의 선형대수식은 불량조건문제(ill-posed problem)로 귀결된다. MXN (M<N) 크기를 갖는 D(λ)의 명시적 역행렬이 존재하지 않기 때문에 유사역행렬(pseudo inverse)을 이용하여 스펙트럼신호를 복원해 낼 수 있으나, 작은 요동이나 시스템 잡음에 매우 취약하여 불안정한 결과를 나타낸다. In general, since the number M of filters is smaller than the number N of wavelength samplings, the linear algebraic expression of Equation (2) results in an ill-posed problem. Since there is no explicit inverse of D (λ) with MXN (M <N) size, pseudo inverse can be used to recover the spectral signal, but it is very susceptible to small fluctuations or system noise, making it unstable. Results are shown.
보다 효과적이고 수치적으로 안정한 해를 얻기 위한 방안으로 regularization 기법이 사용되고 있다. 가장 대표적인 방법으로 Tikhonov regularization 기법을 사용할 수 있다. 이 방법은 식(3)과 같이 residual norm과 side constraint norm의 합을 최소화시키는 해 Sα를 결정함으로써 분석하고자 하는 대상체의 스펙트럼을 복원하는 기법이다. 여기서, α는 residual norm의 최소화 대비 side constraint 최소화의 가중치를 결정하는 regularization 인자로 robust한 해를 얻기 위한 최적값이 존재한다.The regularization technique is used to obtain more effective and numerically stable solutions. The most representative method is Tikhonov regularization. This method recovers the spectrum of the object to be analyzed by determining the solution S α that minimizes the sum of residual norm and side constraint norm as shown in Eq. (3). Here, α is a regularization factor that determines the weight of side constraint minimization versus minimization of residual norm, and there is an optimal value to obtain a robust solution.
Figure PCTKR2017008256-appb-I000004
(3)
Figure PCTKR2017008256-appb-I000004
(3)
Singular value decomposition (SVD)과 L-curve 분석법을 이용하면 시스템에 적응하여 스스로 최적의 regularization 인자를 결정하고, 실시간 스펙트럼 복원을 가능하도록 할 수 있다. Singular value decomposition (SVD) and L-curve analysis can be used to adapt the system to determine the optimal regularization factor for itself and to enable real-time spectrum recovery.
L-curve 분석법은 α값을 점점 증가시켜가며 대입할 때 Tikhonov regularization 방정식의 해를 구하고 이 해를 다시 residual norm
Figure PCTKR2017008256-appb-I000005
과 Solution norm
Figure PCTKR2017008256-appb-I000006
에 대입 후 log scale의 좌표축에 나타내면 L-curve 모양의 그래프를 얻게 되는 데 최적의 α값으로 L-curve의 코너 값을 취하는 방법이다.
The L-curve method solves the Tikhonov regularization equation when substituting and increasing the value of α and reconstructs the residual norm
Figure PCTKR2017008256-appb-I000005
And Solution norm
Figure PCTKR2017008256-appb-I000006
After substituting in, and plotting on the log scale coordinate axis, L-curve-shaped graph is obtained.
코너 값을 구하는 방식은 residual norm 과 solution norm의 log scale 값을 변수로 잡고 곡률 반경이 가장 작은 a를 결정하는 것이다. 이렇게 구한 α값을 Tikhonov regularization에 다시 대입하여
Figure PCTKR2017008256-appb-I000007
을 구함으로써 대상체 스펙트럼을 복원할 수 있다.
The method of calculating corner values is to take the log scale values of residual norm and solution norm as variables and determine a with the smallest radius of curvature. Substitute this value in Tikhonov regularization
Figure PCTKR2017008256-appb-I000007
By recovering the object spectrum can be restored.
이러한 regularization 기법을 이용하면, 넓은 반가폭을 갖는 비이상적 필터어레이를 이용하면서도 비교적 고분해능으로 분광스펙트럼의 복원이 가능하다는 이점이 있다. 신호복원 알고리즘은 예시한 regularization 기법에 제한되지 않고 다양한 기법의 적용이 가능하다. Using this regularization technique, it is possible to restore the spectral spectrum with a relatively high resolution while using a non-ideal filter array having a wide half width. The signal restoration algorithm is not limited to the illustrated regularization technique and can be applied to various techniques.
도 17은 본 발명에 따른 플라즈모닉 스탑밴드 필터어레이를 이용한 분광계의 신호복원 원리를 설명하는 계산결과 일예를 보여준다. 17 shows an example of a calculation result for explaining a signal restoration principle of a spectrometer using a plasmonic stopband filter array according to the present invention.
분석하고자 하는 대상체 스펙트럼은 좌상의 이미지에 보여주는 바와 같이 두 개의 분리된 피크를 갖고 있다고 가정하였다. 이 대상체 스펙트럼이 우상에 보여주는 스탑밴드형 필터어레이를 투과하게 되면, 각 필터를 통과해 광검출기 어레이에서 측정되는 세기분포는 식(1)에 의해 결정되며 필터함수의 영향을 받아 왜곡되거나 불선명한 역상의 분포를 나타낸다. 이때, 개별필터의 투과스펙트럼(fi(λ))와 광검출기의 spectral 감도함수(di(λ)) 정보를 식(2)에 대입한 후 식(3)의 디지털신호처리 알고리즘을 수행하면, 좌하에 나타낸바와 같이 대상체 스펙트럼을 정확히 복원해 내는 것이 가능해진다. 개별필터의 투과스펙트럼(fi(λ))은 필터영역별로 사전에 광학계를 이용하여 측정된 값을 사용하거나(예를 들어, 필터영역별로 분광현미경등을 이용하여 사전에 측정), 광검출기의 spectral 감도함수(di(λ))는 제조사에서 제공되는 값을 사용하거나 단색화 장치를 이용해 파장별 광원 세기 대비 검출기 출력세기 비로 측정하여 사용하는 것이 가능하다. 다른 방식으로는, 광검출기 어레이와 결합 혹은 집적화된 상태에서 단색화 장치를 통해 입사광의 파장을 변화시켜가며, 파장별로 각 필터영역을 통과하여 광검출기 영역에 도달한 세기분포인 D i(λ) 값을 직접 측정하여 사용하는 것도 가능하다.The subject spectrum to be analyzed was assumed to have two separate peaks as shown in the image on the top left. When this object spectrum passes through the stopband filter array shown in the upper right, the intensity distribution measured by the photodetector array through each filter is determined by Equation (1) and is distorted or unclear due to the filter function. Indicates the distribution of. In this case, after substituting the information of the transmission spectrum f i (λ) of the individual filter and the spectral sensitivity function d i (λ) of the photodetector into equation (2), the digital signal processing algorithm of equation (3) is performed. As shown in the lower left, it is possible to accurately restore the object spectrum. The transmission spectrum f i (λ) of the individual filter is determined by using an optical system previously measured for each filter area (for example, by using a spectroscopic microscope for each filter area) or by using a photodetector. The spectral sensitivity function (d i (λ)) can be measured using the value provided by the manufacturer or by measuring the ratio of detector output intensity to wavelength intensity of each light source using a monochromator. Alternatively, the D i (λ) value, which is the intensity distribution reaching the photodetector region through each filter region by varying the wavelength of incident light through a monochromator in the combined or integrated state with the photodetector array, is obtained. It is also possible to use directly measured.
실제 광검출기 어레이에서 측정되는 세기분포는 시스템 노이즈 등을 포함하기 때문에 잡음제거 알고리즘이 추가되는 것이 복원신호 안정화를 위해 바람직하다. Since the intensity distribution measured in the actual photodetector array includes system noise and the like, it is preferable to add a noise canceling algorithm for stabilizing the restored signal.
플라즈모닉 필터는 수직구조 변형 없이도 2차원적 수평구조의 조절만으로 공진파장을 광대역범위에서 가변시키는 것이 가능하기 때문에 포토리소그래피나 나노임프린트등을 이용한 저가의 단일 레이어 공정만으로도 분광학적 특성이 상이한 고집적 대역 스탑필터 어레이를 형성할 수 있다는 장점이 있다.Since the plasmonic filter can change the resonant wavelength in the wide-range range only by adjusting the two-dimensional horizontal structure without changing the vertical structure, the highly integrated band stop having different spectroscopic characteristics even with a low-cost single layer process using photolithography or nanoimprint, etc. The advantage is that an array of filters can be formed.
도 18 및 도 19는 가시광-근적외선 파장대역에서 투과밴드형 필터어레이와 스탑밴드형 필터어레이를 비교하기 위한 그래프들이다. 투과밴드형 필터어레이와 스탑밴드형 필터어레이를 이용한 분광계에서 신호 취득과 스펙트럼복원 과정상의 차이점을 설명하기 위한 계산예를 도시하고 있다.  18 and 19 are graphs for comparing the transmission band type filter array and the stop band type filter array in the visible-near-infrared wavelength band. A calculation example for explaining the difference between the signal acquisition and the spectral restoration process in a spectrometer using a transmission band filter array and a stopband filter array is shown.
투과밴드형과 스탑밴드형 필터로는 각각 Al 나노홀 어레이와 Al 나노디스크 어레이를 선택하고 FDTD 전산모사법을 이용하여 격자주기 변화에 따른 투과스펙트럼을 계산하였다. 두 경우 모두 Hexagonal 격자구조를 가정하고, 그 주기를 200 nm에서 700 nm까지 5 nm 간격으로 변화시켰다. 유리기판을 사용하였고 Al의 두께는 50 nm로 동일하고 듀티사이클은 50%로 고정하였다.  As the transmission band type and the stop band type filter, Al nanohole array and Al nanodisk array were selected, and the transmission spectrum according to the lattice period variation was calculated by FDTD computer simulation. In both cases, the hexagonal lattice was assumed, and the period was varied from 200 nm to 700 nm at 5 nm intervals. A glass substrate was used and the Al thickness was the same at 50 nm and the duty cycle was fixed at 50%.
도 18의 왼쪽 그래프는 Al 금속나노홀 어레이로 구성된 투과밴드 필터어레이의 필터함수 광투과 스펙트럼을 보여준다. EOT 현상에 의한 투과밴드가 주기에 따라 연속적으로 가변됨을 알 수 있다. 투과밴드형 필터어레이를 이용하는 경우, 대상체 스펙트럼의 특정파장에서의 세기 신호는 해당파장에서 투과밴드를 형성하는 필터를 통과해 검출되는 빛의 세기로부터 결정된다. 투과밴드 필터의 반가폭이 델타함수와 같이 매우 좁은 경우에는 필터어레이의 투과밴드 중심파장별로 검출되는 세기 분포를 직접측정(direct readout)하는 방식으로 대상체의 스펙트럼을 재현해 낼 수 있다. 18 shows the filter function light transmission spectrum of the transmission band filter array composed of the Al metal nano hole array. It can be seen that the transmission band due to the EOT phenomenon is continuously changed according to the period. When a transmission band type filter array is used, the intensity signal at a specific wavelength of the object spectrum is determined from the intensity of light detected through a filter forming a transmission band at that wavelength. If the half width of the transmission band filter is very narrow, such as a delta function, the spectrum of the object may be reproduced by directly measuring the intensity distribution detected for each center wavelength of the transmission band of the filter array.
하지만, 도 19의 왼쪽 그래프와 같이 반가폭이 넓은 비이상적 필터어레이를 사용하는 경우에는 이웃 필터간 투과밴드의 오버랩으로 인해 광검출기에서 측정되는 신호분포가 대상체 스펙트럼에서 벗어나 상당히 왜곡된 형태를 보이게 된다. However, in the case of using a non-ideal filter array having a wide half-width as shown in the left graph of FIG. 19, the signal distribution measured by the photodetector is significantly distorted out of the object spectrum due to overlap of transmission bands between neighboring filters. .
대상체 스펙트럼을 도 18의 오른쪽 그래프와 같이 서로 떨어진 2개의 가우시안 피크함수로 구성되어 있다고 가정할 때, 도 18의 필터함수를 통해 광검출기 어레이에서 측정되는 필터별 세기분포는 도 18의 가운데 그래프와 같이 나타난다. 스펙트럼의 왜곡은 존재하나 투과밴드 필터의 특성상 대상체 스펙트럼의 피크함수 형상을 반영하는 것이 특징이다. Assuming that the object spectrum is composed of two Gaussian peak functions separated from each other as shown in the right graph of FIG. 18, the intensity distribution for each filter measured in the photodetector array through the filter function of FIG. 18 is as shown in the center graph of FIG. 18. appear. Although there is a distortion of the spectrum, the characteristic of the transmission band filter reflects the shape of the peak function of the object spectrum.
광검출기 측정신호는 상기 식(2)에 대입하고, regularization 기법을 이용하여 해를 찾음으로써 대상체 스펙트럼을 복원해 내게 된다. 도 18의 오른쪽 그래프에는 복원된 스펙트럼을 대상체 스펙트럼과 같이 도시하였다. 두 곡선이 거의 일치하는 것으로 보아 스펙트럼 복원이 매우 잘 이루어졌음을 확인할 수 있다. The photodetector measurement signal is substituted into Equation (2), and the object spectrum is restored by finding a solution using a regularization technique. In the right graph of FIG. 18, the reconstructed spectrum is illustrated as the object spectrum. The two curves are nearly identical, indicating that the spectral recovery is very good.
도 19는 스탑밴드 필터어레이를 이용한 신호복원 과정을 보여준다. 도 19의 왼쪽 그래프는 스탑밴드 필터어레이의 필터함수를 도시하고 있다. 도 18과 동일한 대상체 스펙트럼에 대해 스탑밴드 필터어레이를 투과하여 광검출기 어레이에서 관찰되는 세기분포는 도 19의 가운데 곡선과 같다. 투과밴드필터를 사용한 경우와 반대로, 대상체 스펙트럼의 피크함수가 역상의 dip 곡선 형태로 광검출기에서 나타남을 알 수 있다. 즉, 스탑밴드필터어레이를 통해 광검출기에서 측정되는 신호는 투과밴드필터어레이 경우와 반대로 역상형태의 세기분포가 나타나는 것을 특징으로 한다. 도 19의 오른쪽 그래프는 스탑밴드 필터어레이의 경우에도 디지털신호처리 알고리즘에 의한 스펙트럼 복원이 잘 이루어짐을 확인시켜 준다.19 shows a signal restoration process using a stopband filter array. The left graph of FIG. 19 shows the filter function of the stopband filter array. The intensity distribution observed in the photodetector array through the stopband filter array for the same object spectrum as in FIG. 18 is the same as the center curve in FIG. 19. In contrast to the case where the transmission band filter is used, it can be seen that the peak function of the object spectrum appears in the photodetector in the form of reverse dip curve. That is, the signal measured by the photodetector through the stopband filter array is characterized in that the intensity distribution in the reverse phase form as opposed to the case of the transmission band filter array. The graph on the right side of FIG. 19 confirms that the spectrum recovery by the digital signal processing algorithm is performed well even in the case of the stopband filter array.
도 20은 본 발명에 따라서 스탑밴드형 필터어레이를 이용할 때, 광원의 세기나 광검출기의 감도지수가 낮아지는 파장구간에서 투과밴드형 필터어레이 대비 분광신호 검출 한계 측면에서의 이득을 설명하기 위한 모식도이다. FIG. 20 is a schematic diagram for explaining gain in terms of detection limit of the spectral signal compared to the transmission band filter array in the wavelength range where the intensity of the light source and the sensitivity index of the photodetector decrease when using the stopband filter array according to the present invention; FIG. to be.
설명의 편의를 위해, 도 20에는 전형적인 Si-CMOS 이미지 센서의 파장별 감도지수가 도시되어 있다. Si 반도체의 에너지 밴드구조 특성상 화학분자의 고유진동모드를 관찰할 수 있는 근적외선 파장대역으로 갈수록 급격히 양자효율이 떨어짐을 알 수 있다. 따라서, 이 구간에서 투과밴드형 필터어레이를 사용하게 되면 검출소자의 감지한계로 인해 스펙트럼 분석이 매우 어려워진다는 단점이 있다. For ease of explanation, FIG. 20 shows the wavelength-specific sensitivity index of a typical Si-CMOS image sensor. Due to the energy band structure of Si semiconductors, it can be seen that the quantum efficiency drops rapidly toward the near-infrared wavelength band where the natural vibration mode of chemical molecules can be observed. Therefore, when the transmission band filter array is used in this section, there is a disadvantage in that spectrum analysis becomes very difficult due to the detection limit of the detection device.
반면, 스탑밴드는 설계된 중심파장대역의 빛은 차단하고 나머지 대역의 빛을 투과시키기 때문에, 해당파장에 대한 대상체 신호정보는 이웃파장대역에서의 투과세기 분포로부터 역 추적해 파악하는 특징을 갖는다. 따라서, Si-CMOS 이미지센서와 같이 검출소자 자체의 감도지수가 매우 낮은 근적외선 구간에서도 신호분석이 해당 파장대역에서의 검출되는 광세기가 아닌 그외 파장대역에서의 광세기 분포로부터 유추하여 결정되기 때문에 동작대역 확장성과 검출한계 측면에서 큰 이득을 얻게 된다.On the other hand, because the stopband blocks the light of the designed central wavelength band and transmits the light of the remaining bands, the object signal information on the corresponding wavelength has a characteristic of being traced back from the transmission intensity distribution in the neighboring wavelength band. Therefore, even in the near-infrared region where the sensitivity index of the detection element itself is very low, such as the Si-CMOS image sensor, the signal analysis is inferred from the light intensity distribution in the other wavelength bands, not the light intensity detected in the wavelength band. There is a big gain in terms of band scalability and detection limit.
도 21은 도 19와 같은 Al 나노디스크 어레이 필터에서 듀티사이클을 30 %로 낮추고 필터개수는 50개로 줄였을 때의 계산된 필터함수를 보여준다. 도 22는 Al 나노디스크 어레이 필터에서 듀티사이클을 30 %와 50%인 경우 복원된 함수의 그래프를 도시하고 있다. FIG. 21 shows the calculated filter function when the duty cycle is reduced to 30% and the number of filters is reduced to 50 in the Al nanodisk array filter shown in FIG. 19. FIG. 22 shows a graph of the restored function when the duty cycle is 30% and 50% in the Al nanodisk array filter.
도 21을 참조하면, 듀티사이클이 감소함에 따라 스탑밴드 dip의 변조깊이가 얕아지는 반면 선폭은 좁고 날카로워지는 효과가 발생함을 알 수 있다. 이 경우, 이웃필터간의 스탑밴드 곡선의 오버랩 정도가 감소함을 알 수 있다. 듀티사이클 50%인 경우, 필터개수가 50개인 경우에도 밴드선폭이 넓어지는 효과로 인해 이웃필터간 오버랩이 80% 이상으로 크게 발생한다. 두 경우에 대해 백색 LED 광원의 스펙트럼을 대상체로 하여 스펙트럼 복원을 수행한 결과, 오버랩 정도가 낮은 듀티사이클 30%인 경우에 복원된 스펙트럼에 노이즈 신호가 많이 수반되고 듀티사이클 50%인 경우에는 노이즈 없이 스펙트럼 복원이 만족스럽게 이루어졌음을 확인할 수 있다. 필터어레이 기반의 분광계에서 스펙트럼복원 분해능은 사용되는 필터의 밴드폭이 좁고 필터개수가 증가할수록 향상된다고 알려져 있다. 하지만, 필터함수의 밴드폭이 좁더라도 이웃필터간 오버랩이 작게 되면 밴드폭이 넓은 필터를 사용하는 경우에 비해 신호복원이 불리해지는 상황도 발생함을 확인할 수 있다. Referring to FIG. 21, it can be seen that as the duty cycle decreases, the modulation depth of the stopband dip becomes shallow while the line width becomes narrow and sharp. In this case, it can be seen that the overlapping degree of the stopband curve between neighboring filters decreases. In the case of 50% duty cycle, even when the number of filters is 50, the overlap between neighboring filters is largely generated by 80% or more due to the effect of widening the band line width. In both cases, spectral restoration was performed using the spectrum of the white LED light source as an object. As a result, when the duty cycle is 30% with low overlap, the restored spectrum is accompanied by a lot of noise signals, and when the duty cycle is 50%, no noise is obtained. It can be confirmed that the spectral restoration has been satisfactorily achieved. In filter array-based spectrometers, spectral recovery resolution is known to improve as the bandwidth of the filter used is narrower and the number of filters increases. However, even if the bandwidth of the filter function is narrow, if the overlap between neighboring filters is small, it can be seen that a situation in which signal restoration becomes disadvantageous compared with the case of using a filter having a wider bandwidth.
도 23은 육방정 격자구조를 갖는 나노디스크 어레이 구조의 필터에서 나노디스크 형상에 따른 스펙트럼 변화를 비교한 그래프이다. 도 23에는 원형과 육각형 디스크 구조에 대한 계산결과만을 도시하고 있지만, 디스크 형상이 등방성 대칭구조를 갖고 듀티사이클이 유사한 경우, 다각형 구조는 물론 십자가형 디스크등 그 형상과 상관없이 거의 유사한 필터스펙트럼을 보임을 알 수 있었다. FIG. 23 is a graph comparing spectral changes according to nanodisk shapes in a filter of a nanodisk array structure having a hexagonal lattice structure. FIG. FIG. 23 shows only the calculation results for the circular and hexagonal disk structures, but when the disk shape is isotropic symmetrical structure and the duty cycle is similar, the polygonal and cross-shaped disks show almost similar filter spectrum regardless of the shape. And it was found.
이는 금속 나노디스크 어레이가 주기적 격자구조를 이루게 될 때, 그 중심파장과 광학스펙트럼이 격자주기에 지배적으로 의존하기 때문이다. 결과적으로 필터어레이 구성과정에서 단일 형상의 디스크 구조를 사용하거나 혹은 도 24에 도시한 것과 같이 2개 이상 형상을 갖는 디스크 어레이 들로 혼합하여 구성하는 것도 가능하다. 도 24는 2개 이상 형상을 갖는 디스크 어레이 들로 혼합하여 분광 필터 어레이를 구성한 에를 도시하고 있다. 이러한 혼합 구성은 필터 어레이 제작시 원형 디스크 제작을 위한 공정복잡성을 줄이고 공정시간을 단축하는 등 공정상 편이를 제공하는 효과가 있다.  This is because when the metal nanodisk array forms a periodic lattice structure, its center wavelength and optical spectrum are dominantly dependent on the lattice period. As a result, it is possible to use a single-shaped disk structure in the filter array configuration process or to mix and configure a disk array having two or more shapes as shown in FIG. FIG. 24 shows an example in which a spectroscopic filter array is formed by mixing into two or more disk arrays. Such a mixed configuration has an effect of providing process convenience such as reducing process complexity for manufacturing a circular disk and shortening process time when manufacturing a filter array.
도 25는 금속과 유전체, 반도체 물질별 광학상수 분산특성을 굴절율 대비 흡수율의 분포로 나타낸 그래프이다. 적외선대역에서 근적외선 대역인 1300 nm 파장범위까지의 복소 광학상수값을 2차원 좌표상에 도시한 것이다. 광학상수 조합의 특징으로부터 크게 3개 구역으로 구분할 수 있다. 첫째, I로 표시된 구역은 복소굴절율의 허수항인 흡수율이 1보다 작고 0에 수렴하는 것을 특징으로 하며 대부분 광학적으로 투명한 유전체가 이에 해당한다. 또한, 빛의 파장이 밴드갭 보다 작아지는 파장영역에서 반도체 소재들도 이 군에 속할 수 있다. FIG. 25 is a graph showing the distribution of the absorption coefficient versus the refractive index of optical constant dispersion characteristics of metals, dielectrics, and semiconductor materials. The complex optical constant values from the infrared band to the near infrared band of 1300 nm are shown on two-dimensional coordinates. From the features of the optical constant combination, it can be divided into three zones. First, the region labeled I is characterized by an absorption rate of less than one and converging to zero, which is the imaginary term of the complex refractive index, most of which is an optically transparent dielectric. In addition, semiconductor materials may also belong to this group in the wavelength region where the wavelength of light is smaller than the band gap.
II 구역은 I구역과 반대로 굴절율값이 1보다 작거나 0에 근접한 값을 나타내는 것을 특징으로 하며, 플라즈모닉 금속으로 널리 사용되는 저손실 고반사도의 귀금속 물질이 대표적이다. 반면, III 구역은 굴절율과 흡수율이 모두 일정한 크기 이상의 값을 나타내는 영역으로 대부분의 광흡수형 금속과 밴드갭 이하 파장대역에서의 반도체 물질이 이에 해당한다. 본 발명에 따른 스탑밴드형 필터어레이 구현을 위한 나노디스크 어레이 구조용 물질로 이들 III 구역의 소재가 활용가능하다. 광흡수형 금속 물질로는 Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, Si 등이 포함되며 이들 간의 합금 및 이들 금속을 포함하는 silicide, carbide, nitride, sulfide 등도 굴절율과 흡수율의 분포가 동작파장대역에서 III 구역의 조건을 만족하면 구분없이 사용가능하다.Zone II is characterized in that the refractive index value is less than 1 or close to 0, as opposed to zone I, and is a low loss high reflectivity precious metal material widely used as a plasmonic metal. On the other hand, region III is a region in which both the refractive index and the absorptance exhibit a value of a certain size or more, which corresponds to most light absorbing metals and semiconductor materials in the wavelength band below the band gap. Materials of these III zones may be utilized as a material for constructing a nanodisk array for implementing a stopband type filter array according to the present invention. Light absorbing metal materials include Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, Si, and the like, and alloys therebetween and silicides, carbides, nitrides containing these metals. Also, sulfide, sulfide, etc. can be used without distinction if the distribution of refractive index and absorption rate satisfies the conditions of zone III in the operating wavelength band.
도 26은 Cr과 Ti을 이용하여 육방정 격자구조의 나노디스크 어레이를 형성하고 가시광-근적외선 대역에서 계산한 광투과도 스펙트럼이다. 일반적인 저손실 귀금속 물질로 대변되는 플라즈모닉 소재 외에 광흡수성(absorptive)의 금속소재인 Cr과 Ti을 이용하여 육방정 격자구조의 나노디스크 어레이를 형성하고 전산모사 기법을 이용해 가시광-근적외선 대역에서 계산한 광투과도 스펙트럼을 구했다. 도 17의 Al 나노디스크 어레이와 비교시 상대적으로 변조 깊이가 작고 선폭이 더 넓어지는 현상이 발생하나, 스탑밴드 형성이 뚜렷하고 격자주기에 따른 파장가변능이 연속적이고 명확하기 때문에 분광기용 필터 어레이로 사용가능하다. FIG. 26 is a light transmittance spectrum of a hexagonal lattice-structured nanodisk array using Cr and Ti and calculated in the visible-near-infrared band. In addition to the plasmonic material, which is represented by a common low-loss noble metal material, a hexagonal lattice-type nanodisk array is formed using Cr and Ti, which are light-absorbing metal materials, and computed in the visible-near-infrared band using computer simulation. The transmittance spectrum was obtained. Compared to the Al nanodisk array of FIG. 17, the modulation depth is smaller and the line width is wider. However, since the stopband formation is clear and the wavelength variability according to the lattice period is continuous and clear, it can be used as a filter array for the spectroscope. Do.
도 27은 텅스텐(W)을 이용하여 계산된 나노디스크 어레이의 광투과도와 광반사도 그래프이다. 텅스텐(W)은 반도체 공정에서 흔히 사용되는 물질이다. 텅스텐(W)을 이용하여 계산된 나노디스크 어레이의 광투과도와 광반사도를 보면, 저손실 플라즈모닉 금속소재와 달리 소재자체의 광손실에 의해 반사도 피크 곡선은 크게 감쇄되어 나타나는 반면, 투과곡선상의 스탑밴드 곡선은 증대된 광흡수 효과에 의해 상대적으로 매우 뚜렷하게 나타나는 특징을 확인할 수 있다. 이러한 특징은 분광계 칩 구현시, 반사광에 의한 불필요한 잡음요소를 억제한다는 측면에서 유리할 수 있다. 27 is a graph of light transmittance and light reflectivity of a nanodisk array calculated using tungsten (W). Tungsten (W) is a material commonly used in semiconductor processes. The optical transmittance and the light reflectivity of the nanodisk array calculated using tungsten (W) show that, unlike the low-loss plasmonic metal materials, the reflectance peak curve is greatly attenuated by the light loss of the material itself, while the stopband on the transmission curve is shown. The curves can be seen to be characterized by relatively very pronounced by the increased light absorption effect. This feature may be advantageous in terms of suppressing unnecessary noise elements caused by reflected light when implementing a spectrometer chip.
도 28은 도 26의 텅스텐의 나노디스크 어레이를 스탑밴드형 필터어레이로 제작하여 디지털 신호처리 알고리즘을 적용하여 스펙트럼 복원능을 테스트한 그래프이다. 격자주기 200 nm에서 700 nm까지 범위에서 필터개수를 100개로 하여 구성한 스탑밴드형 필터어레이를 이용하여 디지털 신호처리 알고리즘을 적용하여 스펙트럼 복원능을 테스트하였다. 대상체로 백색 LED 스펙트럼을 가정하고, 필터함수를 넣어 계산한 결과 도 20의 Al 나노디스크 어레이 필터를 이용한 경우와 마찬가지로 스펙트럼 복원이 비교적 우수하게 이루어졌음을 확인할 수 있다. 이는 광흡수형 금속물질도 투과방식 온칩 분광계 구현을 위한 나노디스크 어레이 구조의 스탑밴드형 필터 소재로 활용할 수 있음을 증명한다.FIG. 28 is a graph illustrating spectral recovery performance by fabricating a tungsten nanodisk array of FIG. 26 using a stopband filter array and applying a digital signal processing algorithm. The spectral reconstruction performance was tested using a digital signal processing algorithm using a stopband type filter array composed of 100 filters in the lattice period from 200 nm to 700 nm. Assuming a white LED spectrum as an object and calculating a filter function, it can be seen that the spectral restoration is relatively superior as in the case of using the Al nanodisk array filter of FIG. 20. This proves that the light-absorbing metal material can be used as the stopband filter material of the nanodisc array structure for the transmission-on-chip spectrometer.
전술한 본 발명에 따른 분광기에 대한 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명에 속한다.Although preferred embodiments of the spectrometer according to the present invention have been described above, the present invention is not limited thereto, and various modifications can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. This also belongs to the present invention.

Claims (20)

  1. 입사되는 대상체의 광스펙트럼의 일부 파장대역의 광을 광흡수하거나 광반사하는 제1 단위분광필터;A first unit spectroscopic filter that absorbs or reflects light of a part of a wavelength band of an incident light spectrum of the object;
    상기 일부 파장대역과 다른 파장대역의 광을 광흡수하거나 광반사하는 제2단위분광필터; A second unit spectroscopic filter that absorbs light or reflects light in a wavelength band different from the wavelength band;
    상기 제 1단위분광필터를 투과하는 제1 광스펙트럼을 검출하기 위한 제 1광검출기;A first photodetector for detecting a first light spectrum passing through the first unit spectroscopic filter;
    상기 제 2단위분광필터를 투과하는 제2 광스펙트럼을 검출하기 위한 제 2광검출기; 및 A second photodetector for detecting a second light spectrum passing through the second unit spectroscopic filter; And
    상기 제 1광검출기 및 제 2광검출기로부터 검출된 광의 스펙트럼들로부터 입사한 상기 대상체의 광 스펙트럼을 복원하는 기능을 수행하는 프로세싱 유닛을 구비하는 것을 특징으로 하는 분광기.And a processing unit performing a function of restoring a light spectrum of the object incident from the spectra of light detected from the first and second photodetectors.
  2. 제1 항에 있어서, According to claim 1,
    상기 제 1단위분광필터 및 제 2 단위분광필터는 일정한 형상을 갖는 금속패턴들이 주기적으로 배열된 것을 특징으로 하는 분광기.And the first unit spectroscopic filter and the second unit spectroscopic filter are arranged in a metal pattern having a predetermined shape periodically.
  3. 제 2항에 있어서, The method of claim 2,
    상기 제 1단위분광필터의 금속패턴들과 제 2단위분광필터의 금속패턴들은 서로 다른 주기를 갖는 것을 특징으로 하는 분광기.And the metal patterns of the first unit spectroscopic filter and the metal patterns of the second unit spectroscopic filter have different periods.
  4. 제 2항에 있어서, The method of claim 2,
    제 1광검출기 및 제 2광검출기는 CMOS 이미지 센서의 일부 광검출 픽셀로 구성되는 것을 특징으로 하는 분광기.And a first photodetector and a second photodetector comprising some photodetecting pixels of the CMOS image sensor.
  5. 제 2항에 있어서, The method of claim 2,
    상기 금속패턴들은 플라즈모닉 금속인 Au, Ag, Al, Cu 혹은 이들 중 적어도 하나를 포함하는 합금 중에서 선택된 물질로 구성된 것을 특징으로 하는 분광기. The metal pattern is a spectrometer, characterized in that composed of a material selected from the alloy containing at least one of Au, Ag, Al, Cu plasmonic metal.
  6. 제 2항에 있어서, The method of claim 2,
    상기 금속패턴들은 가시광 및 근적외선 대역에서 광의 흡수율과 굴절율이 모두 큰 금속인 Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, Si 혹은 이들 중 적어도 하나를 포함하는 합금 중에서 선택된 물질로 구성된 것을 특징으로 하는 분광기.The metal patterns include Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, Si, or at least one of these metals having both high absorption and refractive indexes in the visible and near infrared bands. Spectrometer, characterized in that consisting of a material selected from the alloy.
  7. 제 2항에 있어서, The method of claim 2,
    상기 금속패턴들은 중적외선 대역에서 광학적 거동이 드루드 자유전자 모델을 따라가는 Ta, W, Mo, Ni, Cr, TiN, TiON 을 포함하여 구성된 그룹으로부터 적어도 하나가 선택된 것을 특징으로 하는 분광기.And at least one of the metal patterns is selected from the group consisting of Ta, W, Mo, Ni, Cr, TiN, and TiON, whose optical behavior follows the druid free electron model in the mid-infrared band.
  8. 제 2항에 있어서, The method of claim 2,
    상기 금속패턴들을 적어도 이중층으로 구성되고, 저손실고반사도 금속물질과 광흡수형 금속물질을 적층하는 것을 특징으로 하는 분광기.The metal pattern is composed of at least a double layer, the spectrometer, characterized in that the low-loss high reflectivity metal material and the light-absorbing metal material laminated.
  9. 제 8항에 있어서,The method of claim 8,
    상기 저손실 고반사도의 금속 물질로는 Ag, Au, Al, Mg 및 이들의 합금중에서 선택될 수 있고, 상기 광흡수형 금속 물질로는 Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, V, Ta, Te, Ge, Si 및 이들 간의 합금 및 이들 금속을 포함하는 silicide, carbide, nitride, 또는 sulfide 인 것을 특징으로 하는 분광기.The low loss high reflectivity metal material may be selected from Ag, Au, Al, Mg, and alloys thereof, and the light absorbing metal material may include Cr, Ni, Ti, Pt, Sn, Sb, Mo, W, And a silicide, carbide, nitride, or sulfide comprising V, Ta, Te, Ge, Si, and alloys therebetween and these metals.
  10. 제 2항에 있어서, The method of claim 2,
    상기 제 1단위분광필터의 금속패턴들과 제 2단위분광필터의 금속패턴들은 같은 듀티사이클을 갖는 것을 특징으로 하는 분광기.And the metal patterns of the first unit spectroscopic filter and the metal patterns of the second unit spectroscopic filter have the same duty cycle.
  11. 제2 항에 있어서,  The method of claim 2,
    상기 제 1단위분광필터와 제 2단위분광필터의 상기 금속패턴들의 주기는 100nm와 800nm사이인 것을 특징으로 하는 분광기.And a period of the metal patterns of the first and second unit spectroscopic filters is between 100 nm and 800 nm.
  12. 제 2항에 있어서, The method of claim 2,
    상기 제 1단위분광필터와 제 2단위분광필터는 페시베이션층을 더 포함하는 것을 특징으로 하는 분광기.And the first unit spectroscopic filter and the second unit spectroscopic filter further comprise a passivation layer.
  13. 제 11항에 있어서, The method of claim 11,
    상기 페시베이션층은 HfO2, ZrO2, ZnO, ZnSe, TiO2, Al2O3, SiOx, SOG 혹은 이들중 적어도 2개로 이루어진 합금 중에서 선택된 물질로 구성된 것을 특징으로 하는 분광기.The passivation layer is spectrometer, characterized in that consisting of a material selected from the alloy consisting of HfO 2 , ZrO 2 , ZnO, ZnSe, TiO 2 , Al 2 O 3 , SiO x , SOG or at least two of them.
  14. 제 2항에 있어서,The method of claim 2,
    상기 제 1단위분광필터와 제 2단위분광필터는 보호층을 더 포함하는 것을 특징으로 하는 분광기.And the first unit spectroscopic filter and the second unit spectroscopic filter further comprise a protective layer.
  15. 제 12항에 있어서, The method of claim 12,
    상기 보호층은 굴절률이 낮은 실리콘옥사이드, 실리콘 질화막, 불화 마그네슘, 불화 칼슘, 저분자 레진, 또는 폴리머 물질인 것을 특징으로 하는 분광기. The protective layer is a spectrometer, characterized in that the low refractive index silicon oxide, silicon nitride film, magnesium fluoride, calcium fluoride, low molecular resin, or a polymer material.
  16. 제 1항에 있어서, 상기 프로세스유닛은,The method of claim 1, wherein the process unit,
    제 1광검출기의 광의 스펙트럼으로부터 제 1단위분광필터에 의해 광흡수되거나 광반사되는 광의 세기를 산출하는 단계;Calculating the intensity of light absorbed or reflected by the first unit spectroscopic filter from the spectrum of light of the first photodetector;
    제 2광검출기의 광의 스펙트럼으로부터 제 2단위분광필터에 의해 광흡수되거나 광반사되는 광의 세기를 산출하는 단계; 및Calculating the intensity of light absorbed or reflected by the second unit spectroscopic filter from the spectrum of light of the second photodetector; And
    상기 제 1단위분광필터 및 제 2단위분광필터에 의해 광흡수되거나 광반사되는 광의 세기로부터 입사된 대상체의 광스펙트럼을 복원하는 것을 특징으로 하는 분광기.The spectroscope of claim 1, wherein the spectrometer recovers the light spectrum of the incident object from the intensity of light absorbed or reflected by the first and second unit spectroscopic filters.
  17. 대상체의 광스펙트럼이 제1 및 제2 단위분광필터에 입사되는 단계;Incident light spectra of the object onto the first and second unit spectroscopic filters;
    상기 제1 단위분광필터는 일부 파장대역의 광을 광흡수하거나 광반사하고, 상기 제2 단위분광필터는 상기 일부 파장대역과 다른 파장대역의 광을 광흡수하거나 광반사하는 단계;The first unit spectroscopic filter absorbs or reflects light of a portion of the wavelength band, and the second unit spectroscopic filter absorbs or reflects light of a wavelength of a wavelength band different from that of the partial wavelength band;
    제1 광검출기는 상기 제 1단위분광필터를 투과하는 제1 광스펙트럼을 검출하고 제2 광검출기는 상기 제2 단위분광필터를 투과하는 제2 광스펙트럼을 검출하는 단계; 및A first photodetector detecting a first light spectrum passing through the first unit spectroscopic filter and a second photodetector detecting a second light spectrum passing through the second unit spectroscopic filter; And
    상기 제 1광검출기 및 제 2광검출기로부터 검출된 광의 스펙트럼들로부터 입사한 상기 대상체의 광 스펙트럼을 재구성하는 단계를 구비하는 분광기를 이용한 스펙트럼 측정방법.And reconstructing the light spectrum of the object incident from the spectra of the light detected from the first and second photodetectors.
  18. 제17 항에 있어서,The method of claim 17,
    상기 대상체의 광 스펙트럼을 복원하는 단계는,Restoring the light spectrum of the object,
    상기 제 1광검출기의 제1 광 스펙트럼으로부터 제 1단위분광필터에 의해 광흡수되거나 광반사되는 광의 세기를 산출하는 단계;Calculating an intensity of light absorbed or reflected by the first unit spectroscopic filter from the first light spectrum of the first photodetector;
    상기 제 2광검출기의 제2 광 스펙트럼으로부터 제 2단위분광필터에 의해 광흡수되거나 광반사되는 광의 세기를 산출하는 단계; 및Calculating an intensity of light absorbed or reflected by the second unit spectroscopic filter from the second light spectrum of the second photodetector; And
    복원된 상기 제 1단위분광필터 및 제 2단위분광필터에 의해 광흡수되거나 광반사되는 광의 세기로부터 입사된 광의 스펙트럼을 복원하는 분광기를 이용한 스펙트럼 측정방법.And a spectrometer for recovering the spectrum of the light incident from the intensity of the light absorbed or reflected by the restored first and second unit spectroscopic filters.
  19. 제18 항에 있어서,The method of claim 18,
    상기 대상체의 스펙트럼을 복원하는 단계에서는 direct readout 또는 regularization 기법이 이용되는 것을 특징으로 하는 분광기를 이용한 스펙트럼 측정방법.Restoring the spectrum of the object is a spectrum measurement method using a spectroscope, characterized in that a direct readout or regularization technique is used.
  20. 제18 항에 있어서,The method of claim 18,
    상기 대상체의 광 스펙트럼을 복원하는 단계는, 아래 식에 개별필터의 투과스펙트럼(fi(λ))와 광검출기의 spectral 감도함수(di(λ)) 정보를 대입하고, 측정된 검출신호 ri를 이용하여, 도출할 수 있는 것을 특징으로 하는 분광기를 이용한 스펙트럼 측정방법.The restoring of the light spectrum of the object may be performed by substituting the transmission spectrum f i (λ) of the individual filter and the spectral sensitivity function d i (λ) of the photodetector in the following equation and measuring the detected signal r A spectrum measurement method using a spectroscope, which can be derived using i .
    Figure PCTKR2017008256-appb-I000008
    Figure PCTKR2017008256-appb-I000008
    여기서, Di(l)는 fi(l)di(l)이며, Where D i (l) is f i (l) d i (l),
    분석하고자 하는 대상체의 스펙트럼을 s(λ), 개별 필터(F)들의 투과함수를 fi(λ), 노이즈를 ni, 그리고 광검출기(PD)의 감도함수를 di(λ)라 하면, ri 는 대상체의 스펙트럼이 필터를 통과해 광검출기에 도달할 때 발생하는 검출신호임If the spectrum of the object to be analyzed is s (λ), the transmission function of each filter F is f i (λ), the noise is n i , and the sensitivity function of the photodetector PD is d i (λ), r i is the detection signal generated when the spectrum of the object passes through the filter and reaches the photodetector
PCT/KR2017/008256 2016-08-22 2017-07-31 Spectrometer and spectrum measurement method utilizing same WO2018038413A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/069,241 US10908019B2 (en) 2016-08-22 2017-07-31 Spectrometer and spectrum measurement method utilizing same
CN201780050521.XA CN109642822B (en) 2016-08-22 2017-07-31 Spectrometer and spectral measurement method using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0106422 2016-08-22
KR20160106422 2016-08-22
KR1020170053894A KR102320479B1 (en) 2016-08-22 2017-04-26 Spectrometer and Method for Measuring spectrum using the same
KR10-2017-0053894 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018038413A1 true WO2018038413A1 (en) 2018-03-01

Family

ID=61245081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008256 WO2018038413A1 (en) 2016-08-22 2017-07-31 Spectrometer and spectrum measurement method utilizing same

Country Status (1)

Country Link
WO (1) WO2018038413A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257358A (en) * 2004-03-10 2005-09-22 Matsushita Electric Ind Co Ltd Gas measuring instrument and gas measuring method
JP2008275600A (en) * 2007-03-29 2008-11-13 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Color sensor with infrared correction
JP2013504051A (en) * 2009-09-04 2013-02-04 ラディセンズ ダイアグノスティクス リミテッド Integrated cytometry sensor system and method
KR20130069714A (en) * 2010-07-15 2013-06-26 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Optical bandpass filter system, in particular for multichannel spectral-selective measurements
US20160187254A1 (en) * 2014-12-31 2016-06-30 Ci Systems (Israel) Ltd. Single Device for Gas and Flame Detection, Imaging and Measurement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257358A (en) * 2004-03-10 2005-09-22 Matsushita Electric Ind Co Ltd Gas measuring instrument and gas measuring method
JP2008275600A (en) * 2007-03-29 2008-11-13 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Color sensor with infrared correction
JP2013504051A (en) * 2009-09-04 2013-02-04 ラディセンズ ダイアグノスティクス リミテッド Integrated cytometry sensor system and method
KR20130069714A (en) * 2010-07-15 2013-06-26 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Optical bandpass filter system, in particular for multichannel spectral-selective measurements
US20160187254A1 (en) * 2014-12-31 2016-06-30 Ci Systems (Israel) Ltd. Single Device for Gas and Flame Detection, Imaging and Measurement

Similar Documents

Publication Publication Date Title
CN109642822B (en) Spectrometer and spectral measurement method using the same
US7329871B2 (en) Plasmonic enhanced infrared detector element
US9952096B2 (en) Ultra-thin optical coatings and devices and methods of using ultra-thin optical coatings
US8212213B2 (en) Chemically-selective detector and methods relating thereto
US11719575B2 (en) Transmission guided-mode resonant grating integrated spectroscopy device and method for manufacturing same
CN111142179B (en) Ladder structured optical filter
US10052052B2 (en) Optical sensing array architectures for spatial profiling
KR101234152B1 (en) Spectrally diverse spectrometer and associated methods
KR101841131B1 (en) Optical Filter, and Optical device using the same
CN113588085A (en) Miniature snapshot type spectrometer
US20170241836A1 (en) Apparatus for spectrometrically capturing light with a photodiode which is monolithically integrated in the layer structure of a wavelength-selective filter
Gonzalez et al. An extremely compact and high-speed line-scan hyperspectral imager covering the SWIR range
EP2084503B1 (en) Integrated monolithic interference detection device
US10353124B1 (en) Omni-directional ultra-thin reflection optical filters and methods of fabrication
WO2018038413A1 (en) Spectrometer and spectrum measurement method utilizing same
US10162091B1 (en) Silicon film optical filtering systems and methods of fabrication
CN114582990B (en) Ultra-wideband random spectrum field effect transistor based on super surface
Yasunaga et al. Plasmonic mid-infrared photodetector with narrow trenches for reconstructive spectroscopy
CN113406017A (en) High-integration surface plasma resonance sensor system
He et al. Metasurfaces and Multispectral Imaging
CN111539234A (en) Molecular barcode detection method based on modular super-structure surface and CMOS image sensor
Zhang et al. A compact MEMS-based infrared spectrometer for multi-gases measurement
Knipp et al. Thin-film-technology-based micro-Fourier spectrometer
Ghobadi Strong light-matter interaction in lithography-free perfect absorbers for photoconversion, photodetection, light emission, sensing, and filtering applications
EP2243009B1 (en) Color detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843833

Country of ref document: EP

Kind code of ref document: A1