WO2018038404A1 - Method for manufacturing epoxy reactive diluent - Google Patents

Method for manufacturing epoxy reactive diluent Download PDF

Info

Publication number
WO2018038404A1
WO2018038404A1 PCT/KR2017/007913 KR2017007913W WO2018038404A1 WO 2018038404 A1 WO2018038404 A1 WO 2018038404A1 KR 2017007913 W KR2017007913 W KR 2017007913W WO 2018038404 A1 WO2018038404 A1 WO 2018038404A1
Authority
WO
WIPO (PCT)
Prior art keywords
epichlorohydrin
monocarboxylic acid
acid
branched monocarboxylic
reaction
Prior art date
Application number
PCT/KR2017/007913
Other languages
French (fr)
Korean (ko)
Inventor
이정현
안희철
김진회
이연주
전준섭
Original Assignee
주식회사 케이씨씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이씨씨 filed Critical 주식회사 케이씨씨
Publication of WO2018038404A1 publication Critical patent/WO2018038404A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/27Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/36Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms

Definitions

  • the present invention relates to a process for preparing an epoxy reactive diluent.
  • Epoxy-reactive diluents are primary addition reactions in which epichlorohydrin is added to branched monocarboxylic acids in the presence of a metal ammonium catalyst and hydrolyzable in the primary addition polymerization product.
  • the chlorine powder structure can be obtained by secondary epoxy ring-closure reaction which is closed by an alkali metal catalyst, that is, caustic soda to form an epoxy functional group.
  • the detailed reaction mechanism is as follows.
  • R1, R2 and R3 are organic groups such as alkyl group.
  • hydrolysis proceeds as follows by water in the caustic soda solution and reaction condensation water generated during the secondary epoxy ring closure reaction. Hydrolysis residues are generated as the decomposition progresses, and problems of epoxy equivalent increase, side reactant content increase, and viscosity increase are caused by re-participation of the reaction of the hydrolysis residue.
  • This hydrolysis mechanism is as follows.
  • R1, R2 and R3 are organic groups such as alkyl group.
  • Korean Patent Publication No. 10-2012-0016313 discloses a method for preparing a branched monocarboxylic acid glycidyl ester by adding 1.4-1.6 times moles of metal hydroxide relative to monocarboxylic acid in a ring closing reaction (epoxy cyclization). Is disclosed. However, when an excess amount of metal hydroxide, a strong alkaline substance, is added in the presence of the water generated during the ring closure reaction, hydrolysis and side reactions are promoted, such that the epoxy functional group content decreases due to the decrease in purity, the viscosity rises, discoloration, etc. May cause problems.
  • the present invention minimizes the amount and process time of epichlorohydrin removed in the addition reaction of branched monocarboxylic acid and epichlorohydrin, and increases productivity by not using a separate nonpolar solvent in the neutralization process,
  • An object of the present invention is to provide a method for preparing an epoxy reactive diluent which can improve quality problems.
  • the process for producing a branched monocarboxylic acid-modified epoxy reactive diluent of the present invention comprises the steps of: (1) adding a branched monocarboxylic acid and epichlorohydrin in the presence of a catalyst; (2) performing an epoxy ring closure of the addition reaction product of step (1) while azeotropic epichlorohydrin with water and refluxing epichlorohydrin in the presence of metal hydroxide and under reduced pressure; (3) removing unreacted epichlorohydrin from the resultant mixture of step (2); (4) adding a metal hydroxide to the resultant of step (3), stirring, and then separating the layers to collect the upper organic layer; And (5) adding water to the organic layer collected as a result of step (4), stirring, and separating the upper organic layer by layer separation, wherein the monocarboxylic acid and epichlorohydrin of step (1) are used.
  • the molar ratio of 1: 1.5 to 1: 2.5, and in step (5) does not add a separate non-polar organic solvent.
  • epichlorohydrin and organic solvent are minimized by minimizing the amount of epichlorohydrin used in the addition reaction of monocarboxylic acid and epichlorohydrin, and by not using a separate nonpolar organic solvent in the neutralization process.
  • the branched monocarboxylic acid-modified reactive epoxy of high purity can be produced, improving the problems, such as a quality problem and energy loss which arise in a removal process.
  • step (1) of the method for preparing a branched monocarboxylic acid-modified epoxy reactive diluent of the present invention the branched monocarboxylic acid and epichlorohydrin are added and reacted in the presence of a catalyst.
  • the catalyst usable in step (1) may include a metal ammonium catalyst such as tetramethylammonium chloride, tetraethylammonium chloride, alkali metal catalyst such as sodium hydroxide, potassium hydroxide, and the like, but is not limited thereto. It may be used without limitation as long as it is a known catalyst known to be usable for the addition reaction of carboxylic acid and epichlorohydrin. There is no particular limitation on the amount of the catalyst, and for example, 0.01 to 1 part by weight of the catalyst may be used based on 100 parts by weight of the total amount of the reactant branched monocarboxylic acid and epichlorohydrin.
  • a metal ammonium catalyst such as tetramethylammonium chloride, tetraethylammonium chloride, alkali metal catalyst such as sodium hydroxide, potassium hydroxide, and the like, but is not limited thereto. It may be used without limitation as long as it is a known catalyst known to be usable for
  • branched monocarboxylic acid usable in step (1) examples include branched alkanoic monocarboxylic acids having 3 to 20 carbon atoms, for example, having 5 to 15 carbon atoms.
  • neodecanoic acid, 2-ethylhexanoic acid, and the like but are not limited thereto, and may be used without limitation as long as it can react with epichlorohydrin to form a modified epoxy reactive diluent.
  • the molar ratio of the branched monocarboxylic acid and epichlorohydrin used in step (1) may be 1: 1.5 to 1: 2.5 of branched monocarboxylic acid: epichlorohydrin in a molar ratio, for example, 1: 1.6 to 1: 2.4.
  • step (1) The addition reaction conditions of the branched monocarboxylic acid and epichlorohydrin in step (1) is not particularly limited, and known reaction conditions may be used as they are or as appropriately modified.
  • the reaction of step (1) may be performed at 70 to 100 ° C. (eg, 80 to 90 ° C.) for 1 to 4 hours (eg, 1.5 to 3 hours) at normal pressure, but is not limited thereto.
  • step (2) of the method for preparing a branched monocarboxylic acid-modified epoxy reactive diluent of the present invention in the presence of a metal hydroxide and under reduced pressure, azeotropes epichlorohydrin with water to reflux epichlorohydrin. While performing the epoxy ring closure of the addition reaction product of step (1).
  • metal hydroxides examples include caustic soda (sodium hydroxide), potassium hydroxide, and the like, but are not limited thereto. It can be used without limitation. There is no particular limitation on the amount of metal hydroxide used in step (2), and branched monocarboxylic acid: metal hydroxide may be 1: 0.9 to 1: 1.1 in molar ratio, for example, 1: 0.95 to 1: 1.05. Can be.
  • the pressure in the reactor may be 100 to 200 torr, for example, 120 to 180 torr, for example 130 to 170 torr.
  • the temperature condition of the reaction of step (2) may be 50-70 ° C, for example 60-65 ° C. If the temperature of the step (2) reaction is less than 50 °C may have a problem that the epoxy ring-closure reaction is not performed smoothly, if it exceeds 70 °C may have a problem of the molecular weight and epoxy equivalent rise by the side reaction occurs.
  • the ring-closure reaction was performed while leaving the water generated during the epoxy ring-closure reaction corresponding to step (2) in the reaction system, but in the present invention, the reduced pressure during the ring-closure reaction was performed to reduce the water generated during the reaction. Remove the reaction and proceed with the reaction.
  • azeotropic distillation may occur due to reduced pressure, and the effluent discharged from the azeotropic distillation may flow out of a mixture of water and excess epichlorohydrin.
  • the effluent is transferred to the separation tank and phase separated into water and epichlorohydrin due to the specific gravity difference, so that the relatively large epichlorohydrin is collected in the lower phase of the phase separation.
  • Epichlorohydrin thus collected is re-injected into the reaction tank to maintain a constant epichlorohydrin concentration in the reaction system.
  • step (3) of the method for preparing a branched monocarboxylic acid-modified epoxy reactive diluent of the present invention unreacted epichlorohydrin is removed from the resultant mixture of step (2).
  • the removal of epichlorohydrin can be carried out under elevated temperature and reduced pressure conditions, for example after completion of the reaction of step (2) the resulting mixture is heated to 110-140 ° C. (eg 120-130 ° C.) and the degree of pressure reduction in the reactor is stepwise.
  • the residual epichlorohydrin can be removed by maintaining the pressure at a final 80 to 110 torr, such as 90 to 100 torr. If the pressure is lower than the numerical range, the epoxy equivalent of the final resin may be high due to the loss of the low molecular weight material. If the pressure is higher than the numerical value, the pressure may not be sufficiently removed or the efficiency of the process may be reduced.
  • step (4) of the method for preparing a branched monocarboxylic acid-modified epoxy reactive diluent of the present invention metal hydroxide is added to the resultant of step (3), stirred, and the layers are separated to collect the upper organic layer. .
  • Examples of the metal hydroxide that can be used in the step (4) include caustic soda (sodium hydroxide), potassium hydroxide, and the like, but are not limited thereto. Can be used. There is no particular limitation on the amount of metal hydroxide used in step (4), for example, 0.1-2 parts by weight (for example, 0.5-2 parts by weight) based on 100 parts by weight of the total amount of the branched monocarboxylic acid and epichlorohydrin as reactants. Metal hydroxides of may be used.
  • step (4) is 60-100 °C, for example, may be 65-95 °C.
  • the stirring may be performed for 1 to 3 hours.
  • an appropriate amount of water may be added for layer separation after stirring.
  • the result of the completion of the epoxy ring closure and the removal of unreacted epichlorohydrin contains a significant amount (eg, about 10,000 ppm) of hydrolyzed chlorine, in addition to a small amount of side reactions.
  • a significant amount eg, about 10,000 ppm
  • the use of the diluent of the present invention in paints applied to metal deposits may cause problems of corrosion resistance and water resistance, and in addition, the above-mentioned purity decrease and side effects may occur. have.
  • the ring-closure reaction of the residual hydrolyzable chlorine may be further progressed, and the minor residual reactants may be easily reacted to precipitate and then removed.
  • step (5) of the method for preparing a branched monocarboxylic acid-modified epoxy reactive diluent of the present invention water is added to the organic layer collected as a result of step (4), stirred, and the layers are separated to collect the upper organic layer. .
  • step (5) of the method for preparing a branched monocarboxylic acid-modified epoxy reactive diluent of the present invention water is added to the organic layer collected as a result of step (4), stirred, and the layers are separated to collect the upper organic layer. .
  • step (5) of the method for preparing a branched monocarboxylic acid-modified epoxy reactive diluent of the present invention water is added to the organic layer collected as a result of step (4), stirred, and the layers are separated to collect the upper organic layer. .
  • step (5) of the method for preparing a branched monocarboxylic acid-modified epoxy reactive diluent of the present invention water is added to the organic layer collected as
  • step (5) There is no particular limitation on the amount of water used in step (5), for example, 15 to 30 parts by weight of water may be used based on 100 parts by weight of the total amount of the branched monocarboxylic acid and epichlorohydrin as reactants.
  • the acid may be further added to the organic layer of step (4).
  • the additionally charged acid is removed by agglomeration and precipitation of ionic impurities from the organic layer of step (4).
  • the acid usable in step (5) may include an organic acid, an inorganic acid, or a combination thereof, and for example, one selected from acetic acid, phosphoric acid, and a combination thereof may be used.
  • There is no particular restriction on the amount of such acid and for example, 0.01 to 2 parts by weight (for example, 0.02 to 0.5 parts by weight) of acid may be used based on 100 parts by weight of the total amount of the branched monocarboxylic acid and epichlorohydrin as reactants.
  • the temperature conditions of the process of layer separation may be 60-100 °C, for example 65-95 °C.
  • a high purity epoxy reactive diluent having an epoxy equivalent (g / eq) of 235-245eq, a hydrolyzable chlorine content of 400 ppm or less, and a total chlorine content of 900 ppm or less can be prepared.
  • the epoxy equivalent (EEW) of the branched monocarboxylic acid-modified reactive epoxy diluent thus prepared was 239 g / eq, the hydrolyzable chlorine content was 110 ppm, and the total chlorine content was 608 ppm.
  • step (1) of Example 1 392 g of epichlorohydrin was added, and in step (4), the same procedure as in Example 1 was carried out except that 7.7 g of 50% caustic soda solution was added. Acid-modified reactive epoxy diluents were prepared.
  • the epoxy equivalent (EEW) of the resultant product was 240 g / eq, the hydrolyzable chlorine content was 210 ppm, and the total chlorine content was 705 ppm.
  • step (1) of Example 1 351 g of epichlorohydrin was added, and in step (3), after completion of temperature rise of 130 ⁇ 5 ° C., 1 ⁇ 0.5 hours at 150torr and 1 ⁇ 0.5 hours at 105torr, A branched monocarboxylic acid-modified reactive epoxy diluent was prepared in the same manner as in Example 1 except that 6.3 g of 50% aqueous sodium hydroxide solution was added in step (4).
  • epoxy equivalent (EEW) was 241g / eq
  • hydrolyzable chlorine content was 310ppm
  • total chlorine content was 810ppm.
  • step (1) of Example 1 310 g of epichlorohydrin was added, and in step (3), after completion of the temperature rise of 130 ⁇ 5 ° C., 1 ⁇ 0.5 hour at 150torr and 1 ⁇ 0.5 hour at 110torr, A branched monocarboxylic acid-modified reactive epoxy diluent was prepared in the same manner as in Example 1, except that 4.2 g of 50% aqueous caustic soda solution was added in step (4).
  • the resulting epoxy equivalent (EEW) was 241 g / eq
  • the hydrolyzable chlorine content was 350 ppm
  • the total chlorine content was 854 ppm.
  • step (1) of Example 1 516 g of epichlorohydrin was added, and in step (3), after completion of the temperature rise of 130 ⁇ 5 ° C, 1 ⁇ 0.5 hours at 150torr and 1 ⁇ 0.5 hours at 80torr, the remaining epichlorohydrin
  • the branched monocarboxylic acid-modified reactive epoxy diluent was prepared in the same manner as in Example 1, except that 12.9 g of 50% aqueous caustic soda solution was added in step (4).
  • the epoxy equivalent (EEW) of the resultant product was 240 g / eq, the hydrolyzable chlorine content was 110 ppm, and the total chlorine content was 608 ppm.
  • the epoxy equivalent (EEW) of the branched monocarboxylic acid-modified reactive epoxy diluent thus prepared was 240.7 g / eq, the hydrolyzable chlorine content was 112 ppm, and the total chlorine content was 811 ppm.
  • step (3) of Example 2 the reaction was performed in the same manner as in Example 2 except that 1 ⁇ 0.5 hours at 150torr and 1 ⁇ 0.5 hours at 70torr after completion of the temperature increase at 130 ⁇ 5 ° C.
  • Topographic monocarboxylic acid modified reactive epoxy diluents were prepared.
  • epoxy equivalent (EEW) was 246g / eq
  • hydrolyzable chlorine content was 220ppm
  • total chlorine content was 715ppm.
  • step (3) of Example 2 the reaction was performed in the same manner as in Example 2 except that 1 ⁇ 0.5 hours at 150torr and 1 ⁇ 0.5 hours at 120torr after removal of the temperature of 130 ⁇ 5 ° C.
  • Topographic monocarboxylic acid modified reactive epoxy diluents were prepared.
  • the resulting epoxy equivalent (EEW) was 244 g / eq, the hydrolyzable chlorine content was 1,256 ppm and the total chlorine content was 1,843 ppm.
  • a branched monocarboxylic acid-modified reactive epoxy diluent was prepared in the same manner as in Example 2, except that 34.2 g of a 50% caustic soda solution was added in step (4) of Example 2.
  • epoxy equivalent (EEW) was 247g / eq
  • the hydrolyzable chlorine content was 250ppm
  • the total chlorine content was 873ppm.
  • the present invention minimizes the amount and process time of epichlorohydrin removed in the addition reaction of branched monocarboxylic acid and epichlorohydrin, and increases productivity by not using a separate nonpolar solvent in the neutralization process, Provided is a method for preparing an epoxy reactive diluent that can improve quality problems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

The present invention relates to a method for manufacturing an epoxy reactive diluent which minimizes the amount of epichlorohydrin that is removed in an addition reaction of a branched monocarboxylic acid and epichlorohydrin and a process time and does not use a separate nonpolar solvent in the neutralization process, thereby capable of increasing productivity and improving quality issues.

Description

에폭시 반응성 희석제의 제조 방법Process for preparing epoxy reactive diluent
본 발명은 에폭시 반응성 희석제의 제조 방법에 관한 것이다. The present invention relates to a process for preparing an epoxy reactive diluent.
에폭시 반응성 희석제, 특히 분지형 모노카르복실산 변성 에폭시 반응성 희석제는, 금속 암모늄 촉매 존재 하에서 분지형 모노카르복실산에 에피클로로히드린이 부가결합되는 1차 부가 반응과 1차 부가중합 결과물 내의 가수분해성 염소분 구조가 알칼리금속 촉매, 즉, 가성소다에 의하여 폐환되어 에폭시 관능기를 형성하는 2차 에폭시 폐환반응에 의해 얻어질 수 있다. 세부적인 반응 메커니즘은 아래와 같다.Epoxy-reactive diluents, especially branched monocarboxylic acid-modified epoxy reactive diluents, are primary addition reactions in which epichlorohydrin is added to branched monocarboxylic acids in the presence of a metal ammonium catalyst and hydrolyzable in the primary addition polymerization product. The chlorine powder structure can be obtained by secondary epoxy ring-closure reaction which is closed by an alkali metal catalyst, that is, caustic soda to form an epoxy functional group. The detailed reaction mechanism is as follows.
[분지형 모노카르복실산 변성 에폭시 반응성 희석제 제조시 반응 메커니즘][Reaction Mechanism in Preparation of Branched Monocarboxylic Acid-Modified Epoxy Reactive Diluent]
1차 부가 반응: 분지형 모노카르복실산과 에피클로로히드린의 부가결합Primary addition reaction: addition bond of branched monocarboxylic acid and epichlorohydrin
Figure PCTKR2017007913-appb-I000001
Figure PCTKR2017007913-appb-I000001
2차 에폭시 폐환반응2nd epoxy ring closure
Figure PCTKR2017007913-appb-I000002
Figure PCTKR2017007913-appb-I000002
(상기 식에서 R1, R2 및 R3는 알킬기 등의 유기기이다.)(In the formula, R1, R2 and R3 are organic groups such as alkyl group.)
그러나, 상기 메커니즘의 각 반응공정에서 촉매로 사용되는 가성소다를 수용액 상태로 첨가 시 가성소다 용액 내의 수분과, 2차 에폭시 폐환반응 중 발생하는 반응 축합수에 의해 아래와 같이 가수분해가 진행되고, 가수분해 진행에 따른 가수분해 잔유물이 발생하게 되며, 가수분해 잔유물의 반응 재참여에 따른 에폭시 당량 상승, 부반응물 함량 증가 및 점도 상승의 문제가 발생하게 된다. 이러한 가수분해 반응 메커니즘은 아래와 같다.However, when the caustic soda used as a catalyst in each reaction step of the above mechanism is added in an aqueous state, hydrolysis proceeds as follows by water in the caustic soda solution and reaction condensation water generated during the secondary epoxy ring closure reaction. Hydrolysis residues are generated as the decomposition progresses, and problems of epoxy equivalent increase, side reactant content increase, and viscosity increase are caused by re-participation of the reaction of the hydrolysis residue. This hydrolysis mechanism is as follows.
[가수분해 반응 메커니즘]Hydrolysis Reaction Mechanism
반응 중간물의 가수분해Hydrolysis of the reaction intermediate
Figure PCTKR2017007913-appb-I000003
Figure PCTKR2017007913-appb-I000003
최종 합성물의 가수분해Hydrolysis of the Final Composite
Figure PCTKR2017007913-appb-I000004
Figure PCTKR2017007913-appb-I000004
(상기 식에서 R1, R2 및 R3는 알킬기 등의 유기기이다.)(In the formula, R1, R2 and R3 are organic groups such as alkyl group.)
상기와 같은 가수분해 산물이 발생하게 되면 강알칼리 조건 하에서 강한 반응성을 보이는 에폭시 관능기의 특성상 다량의 부반응이 발생하게 되고, 그에 따른 순도저하, 관능기 함량저하, 점도상승, 색상 변화 등의 문제가 발생하게 된다.When the above hydrolysis products are generated, a large amount of side reactions occur due to the properties of the epoxy functional groups exhibiting strong reactivity under strong alkali conditions, resulting in problems such as lowering purity, lower functional group content, higher viscosity, and color change. .
대한민국 공개특허 제10-2012-0016313호에는 고리닫힘 반응(에폭시 폐환반응) 시 모노카르복실산 대비 1.4-1.6배 몰의 금속 하이드록사이드를 첨가하여 분지형 모노카르복시산 글리시딜 에스테르를 제조하는 방법이 개시되어 있다. 그러나, 폐환반응 중 발생하는 수분이 반응계 내에 존재하는 중에 과량의 강알칼리 물질인 금속 하이드록사이드를 과량 첨가할 경우, 가수분해 및 부반응이 촉진되어 순도저하에 따른 에폭시 관능기 함량 저하 및 점도상승, 변색 등의 문제가 발생할 수 있다.Korean Patent Publication No. 10-2012-0016313 discloses a method for preparing a branched monocarboxylic acid glycidyl ester by adding 1.4-1.6 times moles of metal hydroxide relative to monocarboxylic acid in a ring closing reaction (epoxy cyclization). Is disclosed. However, when an excess amount of metal hydroxide, a strong alkaline substance, is added in the presence of the water generated during the ring closure reaction, hydrolysis and side reactions are promoted, such that the epoxy functional group content decreases due to the decrease in purity, the viscosity rises, discoloration, etc. May cause problems.
본 발명은 분지형 모노카르복실산 및 에피클로로히드린의 부가반응에서 제거되는 에피클로로히드린의 양 및 공정시간을 최소화하고, 중화 공정에서 별도의 비극성 용매를 사용하지 않음으로써, 생산성을 높이고, 품질문제를 개선할 수 있는 에폭시 반응성 희석제의 제조방법을 제공하는 것을 목적으로 한다.The present invention minimizes the amount and process time of epichlorohydrin removed in the addition reaction of branched monocarboxylic acid and epichlorohydrin, and increases productivity by not using a separate nonpolar solvent in the neutralization process, An object of the present invention is to provide a method for preparing an epoxy reactive diluent which can improve quality problems.
본 발명의 분지형 모노카르복실산 변성 에폭시 반응성 희석제의 제조방법은, (1) 촉매 존재 하에 분지형 모노카르복실산과 에피클로로히드린을 부가 반응시키는 단계; (2) 금속 하이드록사이드의 존재 하 및 감압 조건 하에서, 수분과 에피클로로히드린을 공비시키고 에피클로로히드린을 환류시키면서 상기 (1) 단계의 부가 반응 결과물의 에폭시 폐환반응을 수행하는 단계; (3) 상기 (2) 단계의 결과 혼합물로부터 미반응 에피클로로히드린을 제거하는 단계; (4) 상기 (3) 단계의 결과물에 금속 하이드록사이드를 첨가하고 교반한 후, 층분리하여 상부 유기층을 수거하는 단계; 및 (5) 상기 (4) 단계의 결과 수거된 유기층에 물을 투입하고 교반한 후, 층분리하여 상부 유기층을 수거하는 단계를 포함하고, 상기 (1) 단계의 모노카르복실산과 에피클로로히드린의 몰비가 1 : 1.5 내지 1 : 2.5이며, 상기 (5) 단계에서 별도의 비극성 유기용매를 투입하지 않는다.The process for producing a branched monocarboxylic acid-modified epoxy reactive diluent of the present invention comprises the steps of: (1) adding a branched monocarboxylic acid and epichlorohydrin in the presence of a catalyst; (2) performing an epoxy ring closure of the addition reaction product of step (1) while azeotropic epichlorohydrin with water and refluxing epichlorohydrin in the presence of metal hydroxide and under reduced pressure; (3) removing unreacted epichlorohydrin from the resultant mixture of step (2); (4) adding a metal hydroxide to the resultant of step (3), stirring, and then separating the layers to collect the upper organic layer; And (5) adding water to the organic layer collected as a result of step (4), stirring, and separating the upper organic layer by layer separation, wherein the monocarboxylic acid and epichlorohydrin of step (1) are used. The molar ratio of 1: 1.5 to 1: 2.5, and in step (5) does not add a separate non-polar organic solvent.
본 발명에 따르면, 모노카르복실산과 에피클로로히드린의 부가반응에서 사용되는 에피클로로히드린의 양을 최소화하고, 중화공정에서 별도의 비극성 유기 용매를 사용하지 않음으로써, 에피클로로히드린 및 유기용매 제거공정에서 발생되는 품질문제나 에너지의 손실 등의 문제를 개선하면서, 고순도의 분지형 모노카르복실산 변성 반응성 에폭시를 제조할 수 있다.According to the present invention, epichlorohydrin and organic solvent are minimized by minimizing the amount of epichlorohydrin used in the addition reaction of monocarboxylic acid and epichlorohydrin, and by not using a separate nonpolar organic solvent in the neutralization process. The branched monocarboxylic acid-modified reactive epoxy of high purity can be produced, improving the problems, such as a quality problem and energy loss which arise in a removal process.
이하에서 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 분지형 모노카르복실산 변성 에폭시 반응성 희석제 제조방법의 제(1)단계에서는, 촉매 존재 하에 분지형 모노카르복실산과 에피클로로히드린을 부가 반응시킨다. In step (1) of the method for preparing a branched monocarboxylic acid-modified epoxy reactive diluent of the present invention, the branched monocarboxylic acid and epichlorohydrin are added and reacted in the presence of a catalyst.
상기 (1)단계에서 사용가능한 촉매로는 테트라메틸암모늄 클로라이드, 테트라에틸암모늄 클로라이드 등과 같은 금속 암모늄 촉매, 소디움하이드록사이드, 포타슘하이드록사이드 등과 같은 알칼리 금속 촉매 등을 들 수 있으나, 이에 한정되는 것은 아니며, 카르복실산과 에피클로로히드린의 부가 반응에 사용가능한 것으로 알려진 공지의 촉매라면 제한 없이 사용될 수 있다. 촉매 사용량에는 특별한 제한이 없으며, 예컨대 반응물인 분지형 모노카르복실산과 에피클로로히드린의 총합 100중량부에 대하여 0.01 - 1중량부의 촉매가 사용될 수 있다.The catalyst usable in step (1) may include a metal ammonium catalyst such as tetramethylammonium chloride, tetraethylammonium chloride, alkali metal catalyst such as sodium hydroxide, potassium hydroxide, and the like, but is not limited thereto. It may be used without limitation as long as it is a known catalyst known to be usable for the addition reaction of carboxylic acid and epichlorohydrin. There is no particular limitation on the amount of the catalyst, and for example, 0.01 to 1 part by weight of the catalyst may be used based on 100 parts by weight of the total amount of the reactant branched monocarboxylic acid and epichlorohydrin.
상기 (1)단계에서 사용가능한 분지형 모노카르복실산으로는, 예컨대 탄소수 3 내지 20의, 예컨대 탄소수 5 내지 15의 분지형 알카노익 모노카르복실산을 들 수 있다. 예컨대 네오데카노익산, 2-에틸헥사노익산 등을 들 수 있으나, 이에 한정되는 것은 아니며, 에피클로로히드린과 반응하여 변성 에폭시 반응성 희석제를 형성할 수 있는 것이라면 제한 없이 사용될 수 있다.Examples of the branched monocarboxylic acid usable in step (1) include branched alkanoic monocarboxylic acids having 3 to 20 carbon atoms, for example, having 5 to 15 carbon atoms. For example, neodecanoic acid, 2-ethylhexanoic acid, and the like, but are not limited thereto, and may be used without limitation as long as it can react with epichlorohydrin to form a modified epoxy reactive diluent.
상기 (1)단계에서 사용되는 분지형 모노카르복실산과 에피클로로히드린의 사용량 비는 몰비로 분지형 모노카르복실산 : 에피클로로히드린이 1:1.5 내지 1:2.5일 수 있고, 예컨대 1:1.6 내지 1:2.4일 수 있다. 분지형 모노카르복실산 대비 에피클로로히드린 사용량이 상기 몰비 범위보다 지나치게 적으면 부반응에 의한 분자량 상승 및 에폭시 당량이 상승되는 문제가 있을 수 있고, 반대로 에피클로로히드린 사용량이 상기 몰비 범위보다 지나치게 많으면 미반응 에피클로로히드린의 제거공정에 많은 시간이 소요되고, 수용성의 부반응물질이 다량 발생하여 수층과 유기층의 분리가 원할하지 않아 후속(5)단계에서 톨루엔과 같은 별도의 비극성 유기용매를 사용해야 하는 문제가 있을 수 있다. The molar ratio of the branched monocarboxylic acid and epichlorohydrin used in step (1) may be 1: 1.5 to 1: 2.5 of branched monocarboxylic acid: epichlorohydrin in a molar ratio, for example, 1: 1.6 to 1: 2.4. If the amount of epichlorohydrin compared to the branched monocarboxylic acid is too small than the molar ratio range, there may be a problem that the molecular weight increase and the epoxy equivalent due to side reactions are increased, and if the amount of epichlorohydrin is excessively larger than the molar ratio range, It takes a long time to remove the unreacted epichlorohydrin, and a large amount of water-soluble side reactions are generated so that separation of the aqueous layer and the organic layer is not desired. Therefore, a separate nonpolar organic solvent such as toluene should be used in the subsequent step (5). There may be a problem.
상기 (1)단계에서 분지형 모노카르복실산과 에피클로로히드린의 부가 반응 조건에는 특별한 제한이 없으며, 공지의 반응 조건을 그대로 또는 적절히 변형하여 사용할 수 있다. 예컨대, 상압 하에서 70 - 100℃(예컨대 80 - 90℃)에서 1 - 4시간(예컨대 1.5 - 3시간)동안 상기 (1)단계의 반응이 수행될 수 있으나, 이에 한정되는 것은 아니다.The addition reaction conditions of the branched monocarboxylic acid and epichlorohydrin in step (1) is not particularly limited, and known reaction conditions may be used as they are or as appropriately modified. For example, the reaction of step (1) may be performed at 70 to 100 ° C. (eg, 80 to 90 ° C.) for 1 to 4 hours (eg, 1.5 to 3 hours) at normal pressure, but is not limited thereto.
본 발명의 분지형 모노카르복실산 변성 에폭시 반응성 희석제 제조방법의 제(2)단계에서는, 금속 하이드록사이드의 존재 하 및 감압 조건 하에서, 수분과 에피클로로히드린을 공비시키고 에피클로로히드린을 환류시키면서 상기 (1) 단계의 부가 반응 결과물의 에폭시 폐환반응을 수행한다.In step (2) of the method for preparing a branched monocarboxylic acid-modified epoxy reactive diluent of the present invention, in the presence of a metal hydroxide and under reduced pressure, azeotropes epichlorohydrin with water to reflux epichlorohydrin. While performing the epoxy ring closure of the addition reaction product of step (1).
상기 (2)단계에서 촉매로서 사용가능한 금속 하이드록사이드로는 가성소다(소듐하이드록사이드), 포타슘하이드록사이드 등을 들 수 있으나, 이에 한정되는 것은 아니며, 에폭시 폐환반응에 사용가능한 것으로 알려진 것이 제한 없이 사용될 수 있다. 상기 (2)단계에서 금속 하이드록사이드 사용량에는 특별한 제한이 없으며, 몰비로 분지형 모노카르복실산 : 금속 하이드록사이드가 1:0.9 내지 1:1.1일 수 있고, 예컨대 1:0.95 내지 1:1.05 일 수 있다.Examples of metal hydroxides that can be used as catalysts in the step (2) include caustic soda (sodium hydroxide), potassium hydroxide, and the like, but are not limited thereto. It can be used without limitation. There is no particular limitation on the amount of metal hydroxide used in step (2), and branched monocarboxylic acid: metal hydroxide may be 1: 0.9 to 1: 1.1 in molar ratio, for example, 1: 0.95 to 1: 1.05. Can be.
상기 (2)단계 반응의 감압 조건으로는, 반응기 내 압력이 100 - 200torr일 수 있으며, 예컨대 120 - 180torr, 예컨대 130 - 170torr일 수 있다. (2)단계 반응의 압력 조건이 100torr 미만이면 반응물 및 잔류 에피클로로히드린의 과다유출이 발생함에 따라 환류공정이 원활하지 못한 문제가 있을 수 있고, 200torr를 초과하면 반응계 내에 잔류하는 수분을 효과적으로 제거하지 못해 잔류 수분에 의한 가수분해 및 부반응이 발생하는 문제가 있을 수 있다.As the reduced pressure condition of the step (2), the pressure in the reactor may be 100 to 200 torr, for example, 120 to 180 torr, for example 130 to 170 torr. (2) If the pressure condition of the step reaction is less than 100torr, there may be a problem that the reflux process is not smooth due to the excessive outflow of the reactant and residual epichlorohydrin, and if it exceeds 200torr effectively removes the water remaining in the reaction system Failure to do so may cause problems such as hydrolysis and side reactions caused by residual moisture.
상기 (2)단계 반응의 온도 조건은 50 - 70℃일 수 있으며, 예컨대 60 - 65℃일 수 있다. (2)단계 반응의 온도 조건이 50℃ 미만이면 에폭시 폐환반응이 원활히 이뤄지지 않는 문제가 있을 수 있고, 70℃를 초과하면 부반응 발생에 의한 분자량 및 에폭시 당량 상승의 문제가 있을 수 있다.The temperature condition of the reaction of step (2) may be 50-70 ° C, for example 60-65 ° C. If the temperature of the step (2) reaction is less than 50 ℃ may have a problem that the epoxy ring-closure reaction is not performed smoothly, if it exceeds 70 ℃ may have a problem of the molecular weight and epoxy equivalent rise by the side reaction occurs.
기존의 공정들에서는 상기 (2)단계에 해당하는 에폭시 폐환반응 도중에 발생하는 수분을 반응계 내에 방치한 상태에서 폐환반응이 수행되었으나, 본 발명에서는 폐환반응 중에 감압을 실시하여, 반응 중 발생하는 수분을 연속적으로 제거하며 반응을 진행시킨다. 보다 상세하게는, 반응조 내부를 일정 온도와 감압도로 유지시키면 감압에 의한 공비 증류 현상이 나타나고, 공비 증류 현상으로 배출된 유출물은 수분과 과량 첨가된 에피클로로히드린의 혼합물 상태로 유출되며, 이 유출물은 분액조로 이송되어 비중차에 의해 수분과 에피클로로히드린으로 상분리되어, 상대적으로 비중이 큰 에피클로로히드린이 상분리 하층에 포집된다. 이렇게 포집된 에피클로로히드린은 반응조로 재투입되어 반응계 내의 에피클로로히드린 농도를 일정하게 유지시켜 준다. 이러한 감압 공비 증류현상을 이용하여 수분을 제거할 경우, 상압에서 수분을 제거하기 위해 요구되는 100℃에 크게 못 미치는 온도에서도 효과적으로 수분을 제거할 수 있어 수분 잔류에 의한 가수분해 방지 및 고온에 의한 부반응 방지효과가 있으며, 또한, 반응계 내의 에피클로로히드린의 농도를 일정하게 유지시켜 줌으로써 반응 생성물 간의 부반응을 방지할 수 있다.In the existing processes, the ring-closure reaction was performed while leaving the water generated during the epoxy ring-closure reaction corresponding to step (2) in the reaction system, but in the present invention, the reduced pressure during the ring-closure reaction was performed to reduce the water generated during the reaction. Remove the reaction and proceed with the reaction. In more detail, if the inside of the reactor is maintained at a constant temperature and a reduced pressure, azeotropic distillation may occur due to reduced pressure, and the effluent discharged from the azeotropic distillation may flow out of a mixture of water and excess epichlorohydrin. The effluent is transferred to the separation tank and phase separated into water and epichlorohydrin due to the specific gravity difference, so that the relatively large epichlorohydrin is collected in the lower phase of the phase separation. Epichlorohydrin thus collected is re-injected into the reaction tank to maintain a constant epichlorohydrin concentration in the reaction system. When water is removed using the reduced pressure azeotropic distillation, water can be effectively removed even at a temperature less than 100 ° C required to remove water at normal pressure, thereby preventing hydrolysis due to residual water and side reactions due to high temperature. There is a prevention effect, and side reaction between the reaction products can be prevented by keeping the concentration of epichlorohydrin in the reaction system constant.
본 발명의 분지형 모노카르복실산 변성 에폭시 반응성 희석제 제조방법의 제(3)단계에서는, 상기 (2) 단계의 결과 혼합물로부터 미반응 에피클로로히드린을 제거한다. 에피클로로히드린의 제거는 승온 및 감압 조건 하에서 수행될 수 있으며, 예컨대 (2) 단계의 반응 완료후 결과 혼합물을 110 - 140℃(예컨대 120 - 130℃)로 승온하고, 반응기 내의 감압도를 단계적으로 높여 최종 80 내지 110 torr, 예컨대 90 내지 100 torr의 압력으로 유지함으로써 잔류 에피클로로히드린을 제거할 수 있다. 압력이 상기 수치범위보다 낮으면 저분자 물질의 Loss로 인해 최종 수지의 에폭시 당량이 높을 수 있고, 압력이 상기 수치보다 높으면 충분하게 제거되지 않거나, 공정의 효율성이 저하될 수 있다.In step (3) of the method for preparing a branched monocarboxylic acid-modified epoxy reactive diluent of the present invention, unreacted epichlorohydrin is removed from the resultant mixture of step (2). The removal of epichlorohydrin can be carried out under elevated temperature and reduced pressure conditions, for example after completion of the reaction of step (2) the resulting mixture is heated to 110-140 ° C. (eg 120-130 ° C.) and the degree of pressure reduction in the reactor is stepwise. The residual epichlorohydrin can be removed by maintaining the pressure at a final 80 to 110 torr, such as 90 to 100 torr. If the pressure is lower than the numerical range, the epoxy equivalent of the final resin may be high due to the loss of the low molecular weight material. If the pressure is higher than the numerical value, the pressure may not be sufficiently removed or the efficiency of the process may be reduced.
본 발명의 분지형 모노카르복실산 변성 에폭시 반응성 희석제 제조방법의 제(4)단계에서는, 상기 (3) 단계의 결과물에 금속 하이드록사이드를 첨가하고 교반한 후, 층분리하여 상부 유기층을 수거한다. In step (4) of the method for preparing a branched monocarboxylic acid-modified epoxy reactive diluent of the present invention, metal hydroxide is added to the resultant of step (3), stirred, and the layers are separated to collect the upper organic layer. .
상기 (4)단계에서 사용가능한 금속 하이드록사이드로는 가성소다(소듐하이드록사이드), 포타슘하이드록사이드 등을 들 수 있으나, 이에 한정되는 것은 아니며, 에폭시 폐환반응에 사용가능한 것으로 알려진 것이 제한 없이 사용될 수 있다. 상기 (4)단계에서 금속 하이드록사이드 사용량에는 특별한 제한이 없으며, 예컨대 반응물인 분지형 모노카르복실산과 에피클로로히드린의 총합 100중량부에 대하여 0.1 - 2중량부(예컨대 0.5 - 2중량부)의 금속 하이드록사이드가 사용될 수 있다.Examples of the metal hydroxide that can be used in the step (4) include caustic soda (sodium hydroxide), potassium hydroxide, and the like, but are not limited thereto. Can be used. There is no particular limitation on the amount of metal hydroxide used in step (4), for example, 0.1-2 parts by weight (for example, 0.5-2 parts by weight) based on 100 parts by weight of the total amount of the branched monocarboxylic acid and epichlorohydrin as reactants. Metal hydroxides of may be used.
상기 (4)단계의 온도 조건은 60 - 100℃이며, 예컨대 65 - 95℃일 수 있다. 또한, 상기 (4)단계에서 (3) 단계의 결과물에 금속 하이드록사이드를 첨가한 후 교반은 1 - 3시간동안 수행될 수 있다. 또한, 교반 이후에 층분리를 위하여 적정량의 물을 첨가할 수 있다.The temperature condition of step (4) is 60-100 ℃, for example, may be 65-95 ℃. In addition, after addition of the metal hydroxide to the resultant of step (4) to (3), the stirring may be performed for 1 to 3 hours. In addition, an appropriate amount of water may be added for layer separation after stirring.
에폭시 폐환반응이 완료되고 미반응 에피클로로히드린이 제거된 결과물은 상당량(예컨대, 약 10,000ppm)의 가수분해 염소분을 함유하고 있으며, 그 외에도 미량의 부반응물을 함유하고 있다. 가수분해 염소분과 미량의 부반응물이 잔류할 경우, 금속 피착물에 적용되는 도료에 본 발명의 희석제 사용시 내식성 및 내수성 저하의 문제가 발생할 수 있으며, 그 밖에도 앞서 설명한 순도저하 및 그에 따른 부작용이 발생할 수 있다. 본 발명에서는, 상기 (4)단계를 통하여, 잔류 가수분해성 염소분의 폐환반응을 추가로 진행시키고, 미량 잔류하는 부반응물들을 과반응시켜 고상으로 석출시킨 뒤 쉽게 제거할 수 있다.The result of the completion of the epoxy ring closure and the removal of unreacted epichlorohydrin contains a significant amount (eg, about 10,000 ppm) of hydrolyzed chlorine, in addition to a small amount of side reactions. When the hydrolyzed chlorine content and a small amount of side reactions remain, the use of the diluent of the present invention in paints applied to metal deposits may cause problems of corrosion resistance and water resistance, and in addition, the above-mentioned purity decrease and side effects may occur. have. In the present invention, through the step (4), the ring-closure reaction of the residual hydrolyzable chlorine may be further progressed, and the minor residual reactants may be easily reacted to precipitate and then removed.
본 발명의 분지형 모노카르복실산 변성 에폭시 반응성 희석제 제조방법의 제(5)단계에서는, 상기 (4) 단계의 결과 수거된 유기층에 물을 투입하고 교반한 후, 층분리하여 상부 유기층을 수거한다. 이때 별도의 비극성 유기용매를 투입하지 않음으로써, 비극성 유기용매의 제거를 위한 고온 및 감압조건의 제거공정을 생략할 수 있다.In step (5) of the method for preparing a branched monocarboxylic acid-modified epoxy reactive diluent of the present invention, water is added to the organic layer collected as a result of step (4), stirred, and the layers are separated to collect the upper organic layer. . At this time, by not adding a separate non-polar organic solvent, it is possible to omit the step of removing the high temperature and reduced pressure conditions for the removal of the non-polar organic solvent.
상기 (5) 단계에서 물의 사용량에도 특별한 제한은 없으며, 예컨대 반응물인 분지형 모노카르복실산과 에피클로로히드린의 총합 100중량부에 대하여 15 - 30중량부의 물이 사용될 수 있다.There is no particular limitation on the amount of water used in step (5), for example, 15 to 30 parts by weight of water may be used based on 100 parts by weight of the total amount of the branched monocarboxylic acid and epichlorohydrin as reactants.
바람직하게 상기 (5) 단계에서는, (4) 단계의 유기층에 산을 추가로 투입할 수 있다. 추가로 투입되는 산은 (4) 단계의 유기층으로부터 이온성 불순물을 응집 및 석출시켜 제거한다. 상기 (5) 단계에서 사용가능한 산으로는 유기산, 무기산 또는 이들의 조합을 들 수 있으며, 예컨대 초산, 인산 및 이들의 조합 중에서 선택된 것을 사용할 수 있다. 이러한 산의 사용량에는 특별한 제한은 없으며, 예컨대 반응물인 분지형 모노카르복실산과 에피클로로히드린의 총합 100중량부에 대하여 0.01 - 2중량부(예컨대 0.02 - 0.5중량부)의 산이 사용될 수 있다.Preferably in step (5), the acid may be further added to the organic layer of step (4). The additionally charged acid is removed by agglomeration and precipitation of ionic impurities from the organic layer of step (4). The acid usable in step (5) may include an organic acid, an inorganic acid, or a combination thereof, and for example, one selected from acetic acid, phosphoric acid, and a combination thereof may be used. There is no particular restriction on the amount of such acid, and for example, 0.01 to 2 parts by weight (for example, 0.02 to 0.5 parts by weight) of acid may be used based on 100 parts by weight of the total amount of the branched monocarboxylic acid and epichlorohydrin as reactants.
상기 (5)단계에서, (4) 단계의 유기층에 물을 투입하고 교반한 후, 층분리하는 과정의 온도 조건은 60 - 100℃일 수 있으며, 예컨대 65 - 95℃일 수 있다.In the step (5), after the water is added to the organic layer of step (4) and stirred, the temperature conditions of the process of layer separation may be 60-100 ℃, for example 65-95 ℃.
본 발명에 따르면 에폭시 당량(g/eq)이 235 - 245eq, 가수분해성 염소분 함량이 400ppm이하, 전염소분 함량이 900ppm이하인 고순도의 에폭시 반응성 희석제를 제조할 수 있다.According to the present invention, a high purity epoxy reactive diluent having an epoxy equivalent (g / eq) of 235-245eq, a hydrolyzable chlorine content of 400 ppm or less, and a total chlorine content of 900 ppm or less can be prepared.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 그러나 하기 실시예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only intended to help the understanding of the present invention, but the scope of the present invention in any sense is not limited to the examples.
실시예Example 1 One
(1) 교반장치, 온도계, 질소투입관, 분액환류관 및 콘덴서가 장착된 2리터 용량의 플라스크에, 384g의 네오데칸산 및 464g의 에피클로로히드린을 투입한 후 60±2℃로 승온하였다. 승온 완료 후 9.6g의 테트라메틸암모늄클로라이드 50% 수용액을 투입하고, 자연발열로 80 - 90℃로 승온한 후 2±0.5시간동안 유지시켰다.(1) Into a 2-liter flask equipped with a stirring device, a thermometer, a nitrogen inlet tube, a separation reflux tube, and a condenser, 384 g of neodecanoic acid and 464 g of epichlorohydrin were added thereto, and the temperature was raised to 60 ± 2 ° C. . After completion of the temperature increase, 9.6 g of tetramethylammonium chloride 50% aqueous solution was added thereto, and the temperature was raised to 80-90 ° C. by spontaneous heating and maintained for 2 ± 0.5 hours.
(2) 그 후, 반응기 온도를 63±2℃로 유지하고, 반응기 내부를 150±30torr로 감압한 상태에서, 178.4g의 가성소다 50% 수용액을 2±0.5시간동안 균일하게 투입하면서, 반응물 환류 하에 에폭시 폐환반응을 진행하였다. 반응 중 분액환류관으로 유출된 유출물은 상분리를 통해 수분과 에피클로로히드린으로 분리하고, 포집된 에피클로로히드린은 반응조로 재투입하였다.(2) After that, while maintaining the reactor temperature at 63 ± 2 ° C. and reducing the pressure inside the reactor to 150 ± 30 torr, 178.4 g of caustic soda 50% aqueous solution was uniformly added for 2 ± 0.5 hours, and the reaction was refluxed. Epoxy ring closure was performed under the following conditions. The effluent flowing into the separation reflux tube during the reaction was separated into water and epichlorohydrin through phase separation, and the collected epichlorohydrin was re-introduced into the reactor.
(3) 가성소다 50% 수용액의 투입이 끝난 후, 감압 유지하에 130±5℃로 승온하고, 130±5℃ 승온 완료 후 150torr에서 1±0.5시간, 100torr에서 1±0.5시간 잔류 에피클로로히드린을 제거하였다.(3) After the addition of a 50% aqueous solution of caustic soda, the temperature was raised to 130 ± 5 ° C. under reduced pressure, and after completion of the temperature increase of 130 ± 5 ° C., 1 ± 0.5 hours at 150torr and 1 ± 0.5 hours at 100torr. Was removed.
(4) 에피클로로히드린 제거 완료 후 결과물을 95±2℃로 냉각하고, 14.7g의 물과 9.8g의 50% 가성소다 수용액을 첨가한 후 80±20분 간 유지하였다. 그 후 460g의 물을 투입하고 70±5℃에서 30분간 교반하여 반응 중 발생한 염분을 용해시켰다. 그 후, 내용물을 분액깔때기로 옮겨 담고 30분간 유지시켜 상부 유기층과 하부 염수층으로 상분리하고, 하부 염수층을 제거하였다.(4) After epichlorohydrin was removed, the resultant was cooled to 95 ± 2 ° C., and then maintained for 80 ± 20 minutes after adding 14.7 g of water and 9.8 g of 50% aqueous solution of caustic soda. Thereafter, 460 g of water was added and stirred at 70 ± 5 ° C. for 30 minutes to dissolve salts generated during the reaction. Thereafter, the contents were transferred to a separatory funnel, held for 30 minutes, phase separated into an upper organic layer and a lower brine layer, and the lower brine layer was removed.
(5) 상부 유기층을 플라스크로 옮겨 담은 후, 270g의 물, 0.5g의 인산을 투입하고, 70±5℃에서 30분간 교반하며 유지한 후, 내용물을 분액깔때기로 옮겨 담고 30분간 유지시켰다. 앞에서와 동일한 방법으로 하부 수층을 제거한 후 분지형 모노카르복실산 변성 반응성 에폭시 희석제를 제조하였다.(5) After the upper organic layer was transferred to a flask, 270 g of water and 0.5 g of phosphoric acid were added thereto, stirred at 70 ± 5 ° C. for 30 minutes, and then the contents were transferred to a separatory funnel and held for 30 minutes. After removing the lower aqueous layer in the same manner as before, a branched monocarboxylic acid-modified reactive epoxy diluent was prepared.
이렇게 하여 제조된 분지형 모노카르복실산 변성 반응성 에폭시 희석제의 에폭시 당량(EEW)은 239g/eq이었고, 가수분해성 염소분 함량은 110ppm이었고, 전염소분 함량은 608ppm 이었다.The epoxy equivalent (EEW) of the branched monocarboxylic acid-modified reactive epoxy diluent thus prepared was 239 g / eq, the hydrolyzable chlorine content was 110 ppm, and the total chlorine content was 608 ppm.
실시예Example 2 2
상기 실시예 1의 (1)단계에서 392g의 에피클로로히드린을 투입하고 (4)단계에서 7.7g의 50% 가성소다 수용액을 첨가하는 것 이외에는 실시예 1과 동일한 공정을 수행하여 분지형 모노카르복실산 변성 반응성 에폭시 희석제를 제조하였다. 이렇게 하여 제조된 결과물의 에폭시 당량(EEW)은 240g/eq이었고, 가수분해성 염소분 함량은 210ppm이었고, 전염소분 함량은 705ppm 이었다.In the step (1) of Example 1, 392 g of epichlorohydrin was added, and in step (4), the same procedure as in Example 1 was carried out except that 7.7 g of 50% caustic soda solution was added. Acid-modified reactive epoxy diluents were prepared. The epoxy equivalent (EEW) of the resultant product was 240 g / eq, the hydrolyzable chlorine content was 210 ppm, and the total chlorine content was 705 ppm.
실시예Example 3 3
상기 실시예 1의 (1)단계에서 351g의 에피클로로히드린을 투입하고 (3)단계에서 130±5℃ 승온 완료 후 150torr에서 1±0.5시간, 105torr에서 1±0.5시간 잔류 에피클로로히드린을 제거하며 (4)단계에서 6.3g의 50% 가성소다 수용액을 첨가하는 것 이외에는 실시예 1과 동일한 공정을 수행하여 분지형 모노카르복실산 변성 반응성 에폭시 희석제를 제조하였다. 이렇게 하여 제조된 결과물의 에폭시 당량(EEW)은 241g/eq이었고, 가수분해성 염소분 함량은 310ppm이었고, 전염소분 함량은 810ppm 이었다.In step (1) of Example 1, 351 g of epichlorohydrin was added, and in step (3), after completion of temperature rise of 130 ± 5 ° C., 1 ± 0.5 hours at 150torr and 1 ± 0.5 hours at 105torr, A branched monocarboxylic acid-modified reactive epoxy diluent was prepared in the same manner as in Example 1 except that 6.3 g of 50% aqueous sodium hydroxide solution was added in step (4). Thus obtained epoxy equivalent (EEW) was 241g / eq, hydrolyzable chlorine content was 310ppm, total chlorine content was 810ppm.
실시예Example 4 4
상기 실시예 1의 (1)단계에서 310g의 에피클로로히드린을 투입하고 (3)단계에서 130±5℃ 승온 완료 후 150torr에서 1±0.5시간, 110torr에서 1±0.5시간 잔류 에피클로로히드린을 제거하며 (4)단계에서 4.2g의 50% 가성소다 수용액을 첨가하는 것 이외에는 실시예 1과 동일한 공정을 수행하여 분지형 모노카르복실산 변성 반응성 에폭시 희석제를 제조하였다. 이렇게 하여 제조된 결과물의 에폭시 당량(EEW)은 241g/eq이었고, 가수분해성 염소분 함량은 350ppm이었고, 전염소분 함량은 854ppm 이었다.In step (1) of Example 1, 310 g of epichlorohydrin was added, and in step (3), after completion of the temperature rise of 130 ± 5 ° C., 1 ± 0.5 hour at 150torr and 1 ± 0.5 hour at 110torr, A branched monocarboxylic acid-modified reactive epoxy diluent was prepared in the same manner as in Example 1, except that 4.2 g of 50% aqueous caustic soda solution was added in step (4). The resulting epoxy equivalent (EEW) was 241 g / eq, the hydrolyzable chlorine content was 350 ppm, and the total chlorine content was 854 ppm.
실시예Example 5 5
상기 실시예 1의 (1)단계에서 516g의 에피클로로히드린을 투입한하고 (3)단계에서 130±5℃ 승온 완료 후 150torr에서 1±0.5시간, 80torr에서 1±0.5시간 잔류 에피클로로히드린을 제거하며 (4)단계에서 12.9g의 50% 가성소다 수용액을 첨가하는 것 이외에는 실시예 1과 동일한 공정을 수행하여 분지형 모노카르복실산 변성 반응성 에폭시 희석제를 제조하였다. 이렇게 하여 제조된 결과물의 에폭시 당량(EEW)은 240g/eq이었고, 가수분해성 염소분 함량은 110ppm이었고, 전염소분 함량은 608ppm 이었다.In step (1) of Example 1, 516 g of epichlorohydrin was added, and in step (3), after completion of the temperature rise of 130 ± 5 ° C, 1 ± 0.5 hours at 150torr and 1 ± 0.5 hours at 80torr, the remaining epichlorohydrin The branched monocarboxylic acid-modified reactive epoxy diluent was prepared in the same manner as in Example 1, except that 12.9 g of 50% aqueous caustic soda solution was added in step (4). The epoxy equivalent (EEW) of the resultant product was 240 g / eq, the hydrolyzable chlorine content was 110 ppm, and the total chlorine content was 608 ppm.
비교예Comparative example 1 One
(1) 교반장치, 온도계, 질소투입관, 분액환류관 및 콘덴서가 장착된 2리터 용량의 플라스크에, 384g의 네오데칸산 및 618.8g의 에피클로로히드린을 투입한 후 60±2℃로 승온하였다. 승온 완료 후 9.6g의 테트라메틸암모늄클로라이드 50% 수용액을 투입하고, 자연발열로 80 - 90℃로 승온한 후 2±0.5시간동안 유지시켰다.(1) Into a 2-liter flask equipped with a stirrer, thermometer, nitrogen inlet tube, separation reflux tube, and condenser, 384 g of neodecanoic acid and 618.8 g of epichlorohydrin were added and the temperature was raised to 60 ± 2 ° C. It was. After completion of the temperature increase, 9.6 g of tetramethylammonium chloride 50% aqueous solution was added thereto, and the temperature was raised to 80-90 ° C. by spontaneous heating and maintained for 2 ± 0.5 hours.
(2) 그 후, 반응기 온도를 63±2℃로 유지하고, 반응기 내부를 150±30torr로 감압한 상태에서, 178.4g의 가성소다 50% 수용액을 2±0.5시간동안 균일하게 투입하면서, 반응물 환류 하에 에폭시 폐환반응을 진행하였다. 반응 중 분액환류관으로 유출된 유출물은 상분리를 통해 수분과 에피클로로히드린으로 분리하고, 포집된 에피클로로히드린은 반응조로 재투입하였다.(2) After that, while maintaining the reactor temperature at 63 ± 2 ° C. and reducing the pressure inside the reactor to 150 ± 30 torr, 178.4 g of caustic soda 50% aqueous solution was uniformly added for 2 ± 0.5 hours, and the reaction was refluxed. Epoxy ring closure was performed under the following conditions. The effluent flowing into the separation reflux tube during the reaction was separated into water and epichlorohydrin through phase separation, and the collected epichlorohydrin was re-introduced into the reactor.
(3) 가성소다 50% 수용액의 투입이 끝난 후, 감압 유지하에 125±5℃로 승온하고, 125±5℃ 승온 완료 후 감압도를 단계적으로 최종 10torr 미만으로 감압하여 잔류 에피클로로히드린을 제거하였다.(3) After the 50% aqueous solution of caustic soda was added, the temperature was raised to 125 ± 5 ° C. under reduced pressure, and after the completion of the temperature rising to 125 ± 5 ° C., the pressure was gradually reduced to less than 10 torr to remove residual epichlorohydrin It was.
(4) 에피클로로히드린 제거 완료 후 결과물을 90±5℃로 냉각하고, 14.7g의 물과 17.3g의 50% 가성소다 수용액을 첨가한 후 80±20분 간 유지하였다. 그 후 460g의 물을 투입하고 70±5℃에서 30분간 교반하여 반응 중 발생한 염분을 용해시켰다. 그 후, 내용물을 분액깔때기로 옮겨 담고 30분간 유지시켜 상부 유기층과 하부 염수층으로 상분리하고, 하부 염수층을 제거하였다.(4) After the completion of epichlorohydrin removal, the resultant was cooled to 90 ± 5 ° C., and then maintained for 80 ± 20 minutes after adding 14.7 g of water and 17.3 g of 50% caustic soda solution. Thereafter, 460 g of water was added and stirred at 70 ± 5 ° C. for 30 minutes to dissolve salts generated during the reaction. Thereafter, the contents were transferred to a separatory funnel, held for 30 minutes, phase separated into an upper organic layer and a lower brine layer, and the lower brine layer was removed.
(5) 상부 유기층을 플라스크로 옮겨 담은 후, 125g의 톨루엔과 270g의 물, 0.5g의 인산을 투입하고, 70±5℃에서 30분간 교반하며 유지한 후, 내용물을 분액깔때기로 옮겨 담고 30분간 유지시켰다. 앞에서와 동일한 방법으로 하부 수층을 제거한 후 상부 유기층을 플라스크로 옮겨 담고, 130℃로 승온하여 톨루엔을 일차 제거한 후, 100torr 미만으로 감압하여 추가적으로 톨루엔을 제거하여 분지형 모노카르복실산 변성 반응성 에폭시 희석제를 제조하였다.(5) After transferring the upper organic layer to the flask, 125 g of toluene, 270 g of water, 0.5 g of phosphoric acid was added thereto, and stirred at 70 ± 5 ° C. for 30 minutes, and then the contents were transferred to a separatory funnel for 30 minutes. Maintained. After removing the lower aqueous layer in the same manner as before, the upper organic layer was transferred to a flask, and heated to 130 ° C to remove toluene first, and then toluene was further removed by reducing the pressure to less than 100 torr to obtain a branched monocarboxylic acid-modified reactive epoxy diluent. Prepared.
이렇게 하여 제조된 분지형 모노카르복실산 변성 반응성 에폭시 희석제의 에폭시 당량(EEW)은 240.7 g/eq이었고, 가수분해성 염소분 함량은 112ppm이었고, 전염소분 함량은 811ppm 이었다.The epoxy equivalent (EEW) of the branched monocarboxylic acid-modified reactive epoxy diluent thus prepared was 240.7 g / eq, the hydrolyzable chlorine content was 112 ppm, and the total chlorine content was 811 ppm.
비교예Comparative example 2 2
상기 실시예 2의 (3)단계에서 130±5℃ 승온 완료 후 150torr에서 1±0.5시간, 70torr에서 1±0.5시간 잔류 에피클로로히드린을 제거하는 것 이외에는 실시예 2와 동일한 공정을 수행하여 분지형 모노카르복실산 변성 반응성 에폭시 희석제를 제조하였다. 이렇게 하여 제조된 결과물의 에폭시 당량(EEW)은 246g/eq이었고, 가수분해성 염소분 함량은 220ppm이었고, 전염소분 함량은 715ppm 이었다.In step (3) of Example 2, the reaction was performed in the same manner as in Example 2 except that 1 ± 0.5 hours at 150torr and 1 ± 0.5 hours at 70torr after completion of the temperature increase at 130 ± 5 ° C. Topographic monocarboxylic acid modified reactive epoxy diluents were prepared. Thus obtained epoxy equivalent (EEW) was 246g / eq, hydrolyzable chlorine content was 220ppm, total chlorine content was 715ppm.
비교예Comparative example 3 3
상기 실시예 2의 (3)단계에서 130±5℃ 승온 완료 후 150torr에서 1±0.5시간, 120torr에서 1±0.5시간 잔류 에피클로로히드린을 제거하는 것 이외에는 실시예 2와 동일한 공정을 수행하여 분지형 모노카르복실산 변성 반응성 에폭시 희석제를 제조하였다. 이렇게 하여 제조된 결과물의 에폭시 당량(EEW)은 244g/eq이었고, 가수분해성 염소분 함량은 1,256ppm이었고, 전염소분 함량은 1,843ppm 이었다.In step (3) of Example 2, the reaction was performed in the same manner as in Example 2 except that 1 ± 0.5 hours at 150torr and 1 ± 0.5 hours at 120torr after removal of the temperature of 130 ± 5 ° C. Topographic monocarboxylic acid modified reactive epoxy diluents were prepared. The resulting epoxy equivalent (EEW) was 244 g / eq, the hydrolyzable chlorine content was 1,256 ppm and the total chlorine content was 1,843 ppm.
비교예Comparative example 4 4
상기 실시예 2의 (4)단계에서 34.2g의 50% 가성소다 수용액을 첨가하는 것 이외에는 실시예 2와 동일한 공정을 수행하여 분지형 모노카르복실산 변성 반응성 에폭시 희석제를 제조하였다. 이렇게 하여 제조된 결과물의 에폭시 당량(EEW)은 247g/eq이었고, 가수분해성 염소분 함량은 250ppm이었고, 전염소분 함량은 873ppm 이었다.A branched monocarboxylic acid-modified reactive epoxy diluent was prepared in the same manner as in Example 2, except that 34.2 g of a 50% caustic soda solution was added in step (4) of Example 2. Thus obtained epoxy equivalent (EEW) was 247g / eq, the hydrolyzable chlorine content was 250ppm, the total chlorine content was 873ppm.
본 발명은 분지형 모노카르복실산 및 에피클로로히드린의 부가반응에서 제거되는 에피클로로히드린의 양 및 공정시간을 최소화하고, 중화 공정에서 별도의 비극성 용매를 사용하지 않음으로써, 생산성을 높이고, 품질문제를 개선할 수 있는 에폭시 반응성 희석제의 제조방법을 제공한다.The present invention minimizes the amount and process time of epichlorohydrin removed in the addition reaction of branched monocarboxylic acid and epichlorohydrin, and increases productivity by not using a separate nonpolar solvent in the neutralization process, Provided is a method for preparing an epoxy reactive diluent that can improve quality problems.

Claims (10)

  1. (1) 촉매 존재 하에 분지형 모노카르복실산과 에피클로로히드린을 부가 반응시키는 단계; (1) addition reaction of branched monocarboxylic acid and epichlorohydrin in the presence of a catalyst;
    (2) 금속 하이드록사이드의 존재 하 및 감압 조건 하에서, 수분과 에피클로로히드린을 공비시키고 에피클로로히드린을 환류시키면서 상기 (1) 단계의 부가 반응 결과물의 에폭시 폐환반응을 수행하는 단계; (2) performing an epoxy ring closure of the addition reaction product of step (1) while azeotropic epichlorohydrin with water and refluxing epichlorohydrin in the presence of metal hydroxide and under reduced pressure;
    (3) 상기 (2) 단계의 결과 혼합물로부터 미반응 에피클로로히드린을 제거하는 단계; (3) removing unreacted epichlorohydrin from the resultant mixture of step (2);
    (4) 상기 (3) 단계의 결과물에 금속 하이드록사이드를 첨가하고 교반한 후, 층분리하여 상부 유기층을 수거하는 단계; 및 (4) adding a metal hydroxide to the resultant of step (3), stirring, and then separating the layers to collect the upper organic layer; And
    (5) 상기 (4) 단계의 결과 수거된 유기층에 물을 투입하고 교반한 후, 층분리하여 상부 유기층을 수거하는 단계(5) adding water to the collected organic layer as a result of step (4) and stirring, and then separating the layers to collect the upper organic layer.
    를 포함하고,Including,
    상기 (1) 단계의 모노카르복실산과 에피클로히드린의 몰비가 1 : 1.5 내지 1 : 2.5이며,The molar ratio of the monocarboxylic acid and epichlorohydrin of step (1) is 1: 1.5 to 1: 2.5,
    상기 (5) 단계에서 별도의 비극성 유기용매를 투입하지 않는,In step (5), do not add a separate non-polar organic solvent,
    분지형 모노카르복실산 변성 에폭시 반응성 희석제의 제조방법.Process for preparing branched monocarboxylic acid-modified epoxy reactive diluents.
  2. 제1항에 있어서, 분지형 모노카르복실산이 탄소수 3 내지 20의 분지형 알카노익 모노카르복실산인, 분지형 모노카르복실산 변성 에폭시 반응성 희석제의 제조방법.The method for producing a branched monocarboxylic acid-modified epoxy reactive diluent according to claim 1, wherein the branched monocarboxylic acid is a branched alkanoic monocarboxylic acid having 3 to 20 carbon atoms.
  3. 제1항에 있어서, 금속 하이드록사이드가 가성소다인, 분지형 모노카르복실산 변성 에폭시 반응성 희석제의 제조방법.The process for producing a branched monocarboxylic acid modified epoxy reactive diluent according to claim 1, wherein the metal hydroxide is caustic soda.
  4. 제1항에 있어서, 상기 (2)단계의 반응이 100 - 200torr의 압력 하에 수행되는, 분지형 모노카르복실산 변성 에폭시 반응성 희석제의 제조방법.The method of claim 1, wherein the reaction of step (2) is carried out under a pressure of 100-200 torr.
  5. 제1항에 있어서, 상기 (2)단계의 반응이 50 - 70℃의 온도에서 수행되는, 분지형 모노카르복실산 변성 에폭시 반응성 희석제의 제조방법.The method of claim 1, wherein the reaction of step (2) is carried out at a temperature of 50-70 ℃.
  6. 제1항에 있어서, 상기 (4)단계에서 금속 하이드록사이드가, 분지형 모노카르복실산과 에피클로로히드린의 총합 100중량부에 대하여 0.1 - 2.0 중량부의 양으로 사용되는, 분지형 모노카르복실산 변성 에폭시 반응성 희석제의 제조방법.The branched monocarboxyl according to claim 1, wherein the metal hydroxide is used in the step (4) in an amount of 0.1 to 2.0 parts by weight based on 100 parts by weight of the total of the branched monocarboxylic acid and epichlorohydrin. Process for preparing acid-modified epoxy reactive diluent.
  7. 제1항에 있어서, 상기 (4)단계가 60 - 100℃의 온도에서 수행되는, 분지형 모노카르복실산 변성 에폭시 반응성 희석제의 제조방법.The method of claim 1, wherein step (4) is carried out at a temperature of 60-100 ℃.
  8. 제1항에 있어서, 상기 (5)단계에서 물이, 분지형 모노카르복실산과 에피클로로히드린의 총합 100중량부에 대하여 15-30중량부의 양으로 투입되는, 분지형 모노카르복실산 변성 에폭시 반응성 희석제의 제조방법.The branched monocarboxylic acid-modified epoxy according to claim 1, wherein water is added in an amount of 15-30 parts by weight based on 100 parts by weight of the total amount of the branched monocarboxylic acid and epichlorohydrin in step (5). Method for preparing a reactive diluent.
  9. 제1항에 있어서, 상기 (5) 단계에서 산이 추가로 투입되는, 분지형 모노카르복실산 변성 에폭시 반응성 희석제의 제조방법.The method according to claim 1, wherein an acid is further added in step (5).
  10. 제9항에 있어서, 상기 산이 초산, 인산 및 이들의 조합 중에서 선택되는 것인, 분지형 모노카르복실산 변성 에폭시 반응성 희석제의 제조방법. 10. The method of claim 9, wherein the acid is selected from acetic acid, phosphoric acid and combinations thereof.
PCT/KR2017/007913 2016-08-24 2017-07-21 Method for manufacturing epoxy reactive diluent WO2018038404A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0107504 2016-08-24
KR1020160107504A KR20180022284A (en) 2016-08-24 2016-08-24 Method for preparing epoxy reactive diluent

Publications (1)

Publication Number Publication Date
WO2018038404A1 true WO2018038404A1 (en) 2018-03-01

Family

ID=61245007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007913 WO2018038404A1 (en) 2016-08-24 2017-07-21 Method for manufacturing epoxy reactive diluent

Country Status (2)

Country Link
KR (1) KR20180022284A (en)
WO (1) WO2018038404A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110683996A (en) * 2019-11-01 2020-01-14 于翔 Preparation method of tertiary carbonic acid glycidyl ester

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017179A1 (en) * 1998-09-23 2000-03-30 Resolution Research Nederland B.V. Process for the preparation of glycidylesters of branched carboxylic acids
WO2000044836A1 (en) * 1999-01-18 2000-08-03 Dynea Chemicals Oy Paint compositions
US20100180802A1 (en) * 2007-06-28 2010-07-22 Basf Se C10 alkanoic acid glycidyl esters and use thereof
CN103183652A (en) * 2011-12-28 2013-07-03 天津市四友精细化学品有限公司 Preparation method for tert-carbonic acid glycidyl ester
KR101590446B1 (en) * 2014-04-25 2016-02-02 주식회사 케이씨씨 Method for preparing highly pure epoxy reactive diluent modified with branched monocarboxylic acid
KR101669213B1 (en) * 2016-03-31 2016-10-25 대달산업주식회사 Method of preparing glycidyl esters of alpha-branched aliphatic monocarboxylic acids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017179A1 (en) * 1998-09-23 2000-03-30 Resolution Research Nederland B.V. Process for the preparation of glycidylesters of branched carboxylic acids
WO2000044836A1 (en) * 1999-01-18 2000-08-03 Dynea Chemicals Oy Paint compositions
US20100180802A1 (en) * 2007-06-28 2010-07-22 Basf Se C10 alkanoic acid glycidyl esters and use thereof
CN103183652A (en) * 2011-12-28 2013-07-03 天津市四友精细化学品有限公司 Preparation method for tert-carbonic acid glycidyl ester
KR101590446B1 (en) * 2014-04-25 2016-02-02 주식회사 케이씨씨 Method for preparing highly pure epoxy reactive diluent modified with branched monocarboxylic acid
KR101669213B1 (en) * 2016-03-31 2016-10-25 대달산업주식회사 Method of preparing glycidyl esters of alpha-branched aliphatic monocarboxylic acids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110683996A (en) * 2019-11-01 2020-01-14 于翔 Preparation method of tertiary carbonic acid glycidyl ester

Also Published As

Publication number Publication date
KR20180022284A (en) 2018-03-06

Similar Documents

Publication Publication Date Title
WO2012023652A1 (en) A method for preparing a polysilsesquioxane of a controlled structure and polysilsesquioxane prepared by the same
US4233220A (en) Imidyl-benzene-dicarboxylic and -tricarboxylic acid derivatives
CN111690139B (en) Neutralizing agent for synthesizing polyfluorosiloxane and preparation method and application thereof
WO2015012550A1 (en) Method for preparing methylol alkanal
WO2022154442A1 (en) Organo-siloxane binder-based photosensitive solder resist and method for manufacturing same
WO2018038404A1 (en) Method for manufacturing epoxy reactive diluent
KR101590446B1 (en) Method for preparing highly pure epoxy reactive diluent modified with branched monocarboxylic acid
WO2017023123A1 (en) Novel method for preparing chromanone derivative
EP0516108B1 (en) Hexenyl-containing silicone resin and method for its preparation
CA1121369A (en) Hydrocarbonoxy polysiloxanes prepared by continuous reflux process
WO1990015832A1 (en) Phenolic novolac resin, product of curing thereof, and method of production thereof
WO2022098075A1 (en) Method for preparing phenolic novolac resin
JPH05194549A (en) Method of purifying alkoxysilane
WO2014204279A1 (en) Method of separating aliphatic polycarbonate polymer and catalyst from preparing process of copolymer
CN115536813A (en) Preparation method of phenol-biphenylene epoxy resin with high epoxy value
CN110003266B (en) Environment-friendly production method of high-quality 3-octanoyl thio-1-propyltriethoxysilane
JPH05320179A (en) Hydrolysis of organochlorosilane
WO2021112407A1 (en) Method for producing laurolactam, device for synthesizing same, laurolactam composition produced thereby, and method for producing polylaurolactam using same
US20120203019A1 (en) Method For Producing Organo-Oligo Silsesquioxanes
EP0542617B1 (en) Method for the preparation of an oximesilane compound
US4140703A (en) Phthalic acid derivatives substituted by alkenylamino groups
JP4410874B2 (en) Preparation of di-ter-peroxides
US2574265A (en) Separation of organosilicon materials
US3939210A (en) Selective oxyalkylation of mercaptophenols
CN114620745B (en) Comprehensive recycling method for alkyl dichlorophosphine production byproducts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843824

Country of ref document: EP

Kind code of ref document: A1