WO2018038251A1 - Foreign matter inspecting device, foreign matter inspecting method, foreign matter contamination inspecting system, and foreign matter contamination inspecting method - Google Patents

Foreign matter inspecting device, foreign matter inspecting method, foreign matter contamination inspecting system, and foreign matter contamination inspecting method Download PDF

Info

Publication number
WO2018038251A1
WO2018038251A1 PCT/JP2017/030494 JP2017030494W WO2018038251A1 WO 2018038251 A1 WO2018038251 A1 WO 2018038251A1 JP 2017030494 W JP2017030494 W JP 2017030494W WO 2018038251 A1 WO2018038251 A1 WO 2018038251A1
Authority
WO
WIPO (PCT)
Prior art keywords
foreign matter
infrared
light emission
light
emission
Prior art date
Application number
PCT/JP2017/030494
Other languages
French (fr)
Japanese (ja)
Inventor
広志 早瀬
直人 櫻井
Original Assignee
三井金属計測機工株式会社
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属計測機工株式会社, Dic株式会社 filed Critical 三井金属計測機工株式会社
Priority to JP2018535781A priority Critical patent/JPWO2018038251A1/en
Publication of WO2018038251A1 publication Critical patent/WO2018038251A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Definitions

  • the present invention relates to a foreign matter inspection apparatus, a foreign matter inspection method, a foreign matter contamination inspection system, and a foreign matter contamination inspection method for inspecting the presence or absence of foreign matter in a manufacturing process of an article such as food.
  • a near-infrared foreign matter inspection apparatus is used to irradiate an inspected item with near-infrared light having a single wavelength or a plurality of wavelengths, and the inspected item is transmitted or reflected. We are inspecting using.
  • the detection accuracy of foreign matters is improved, and a resin member such as a cleaning brush, a cleaning duster, or a rubber glove worn by an operator is applied to an inspection object such as food. It is an object of the present invention to provide a foreign substance inspection device, a foreign substance inspection method, a foreign substance contamination inspection system, and a foreign substance contamination inspection method that can prevent the resulting foreign matter from being distributed.
  • a foreign matter inspection apparatus for performing foreign matter inspection of an inspected article, Illumination light irradiation means for irradiating illumination light of a predetermined wavelength; Luminescence detecting means for detecting near-infrared luminescence from the article to be inspected, and The illumination light irradiation means can irradiate the illumination light including at least an excitation wavelength of a near-infrared light-emitting dye contained in the foreign matter, The luminescence detecting means is capable of detecting near-infrared luminescence emitted by the near-infrared luminescent dye when excited.
  • a plurality of the illumination light irradiation means can be provided, and the plurality of illumination light irradiation means can be arranged so that the illumination light is irradiated from different directions with respect to the article to be inspected.
  • a plurality of the light emission detection means may be provided, and the plurality of light emission detection means may be arranged so as to detect the light emission of the article to be inspected from different directions.
  • the said light emission detection means can be equipped with the near-infrared light emission permeation
  • the emission detection means includes a near-infrared emission blocking filter that blocks a wavelength region including the near-infrared emission.
  • the near-infrared emission blocking filter and the near-infrared emission transmission filter can be switched and used.
  • the light emission detection means includes two light emission detection means that form a set
  • One luminescence detection means includes a near-infrared emission transmission filter that transmits a wavelength region including the near-infrared emission
  • the other light emission detecting means can include a near infrared light emission blocking filter for blocking the wavelength region including the near infrared light emission.
  • the light emission detecting means may include a two-wavelength infrared sensor. Further, the light emission detection means may include a two-dimensional spectrometer.
  • the foreign matter inspection apparatus of the present invention can further include an analysis unit that determines the presence or absence of foreign matter based on the light emission information based on the near-infrared light emission.
  • Such a foreign substance inspection apparatus further includes an analysis unit that determines the presence or absence of a foreign substance based on a comparison between the light emission information based on the near infrared light emission and illumination light information based on light other than the near infrared light emission. be able to.
  • the foreign matter inspection method of the present invention includes: A foreign matter inspection method for performing foreign matter inspection of an article to be inspected, While irradiating the inspected article with illumination light including at least the excitation wavelength of the near-infrared luminescent dye contained in the foreign matter, Emission information based on near-infrared emission emitted by the near-infrared emission dye is excited, The presence or absence of foreign matter is determined based on the light emission information.
  • the presence / absence of a foreign substance can be determined based on a comparison between the light emission information based on the near-infrared light emission and illumination light information based on light other than the near-infrared light emission.
  • the foreign matter contamination inspection system of the present invention A foreign matter contamination inspection system for inspecting foreign matter contamination in an article manufacturing process,
  • the resin member used in the manufacturing process contains a near-infrared luminescent dye,
  • the resin member is obtained by processing a resin composition having an attenuation rate of absorbance of 50% or less at a maximum absorption wavelength by irradiation with radiation of 25 kGy.
  • a foreign matter contamination inspection method for inspecting foreign matter contamination in a manufacturing process of an article is a resin member containing a near-infrared luminescent dye, By inspecting the article using the foreign matter inspection method described above, it is characterized by inspecting whether or not the resin foreign matter is mixed due to the resin member.
  • the resin member is obtained by processing a resin composition having an attenuation rate of absorbance of 50% or less at a maximum absorption wavelength by irradiation with radiation of 25 kGy.
  • the resin composition of the present invention comprises: A resin composition that is a material of the resin member used in the foreign matter contamination inspection method described above, It contains a resin and a near-infrared fluorescent dye.
  • the resin member of the present invention is formed by molding the above-described resin composition.
  • near-infrared light emitted by a foreign object itself is detected, and the presence or absence of the foreign object is determined based on light emission information based on the near-infrared light emission. Therefore, it is possible to detect foreign matter with high accuracy without being subjected to this.
  • a resin member such as a cleaning brush, a cleaning duster, or a rubber glove used in the manufacturing process of an article such as a food product may contain a near-infrared light emitting pigment in advance, thereby adding a resin member to the resin member. It is possible to accurately inspect whether or not the resulting resin foreign matter is mixed.
  • FIG. 1 is a schematic configuration diagram for explaining the configuration of the foreign matter inspection apparatus in the present embodiment.
  • FIG. 2 is a schematic configuration diagram for explaining a configuration of a modified example of the foreign matter inspection apparatus.
  • FIG. 3 is a schematic configuration diagram for explaining a configuration of another modified example of the foreign matter inspection apparatus.
  • FIG. 4 is a schematic configuration diagram for explaining a configuration of still another modified example of the foreign matter inspection apparatus.
  • FIG. 5 is a schematic configuration diagram for explaining the configuration of still another modified example of the foreign matter inspection apparatus.
  • FIG. 6 is a schematic configuration diagram for explaining the configuration of still another modified example of the foreign matter inspection apparatus.
  • FIG. 7 is an example when a bacon block is imaged as the inspected article 30, FIG. 7A is a captured image by visible light, and FIG.
  • FIGS. 7B is a light-emitting image by near-infrared light emission.
  • FIGS. 8A and 8B show an example in which a bacon block is imaged as the article to be inspected 30.
  • FIG. 8A is a captured image by visible light
  • FIG. 8B is a light-emitting image by near infrared emission.
  • FIG. 9 is an example when a bacon block is imaged as the article to be inspected 30.
  • FIG. 9A is a captured image by visible light
  • FIG. 9B is a light-emitting image by near-infrared light emission.
  • FIG. 10 is an example when a bacon block is imaged as the article to be inspected 30.
  • FIG. 10A is a captured image by visible light
  • FIG. 10A is a captured image by visible light
  • FIG. 10A is a captured image by visible light
  • FIG. 10B is a light-emitting image by near-infrared light emission.
  • FIG. 11 is an example of a case where chocolate is imaged as the article to be inspected 30.
  • FIG. 11A is a captured image of the chocolate surface by visible light
  • FIG. 11B is an captured image of the chocolate back surface by visible light.
  • FIG. 12 is an example of a case where chocolate is imaged as the article 30 to be inspected.
  • FIG. 12A is a light emission image of the chocolate surface by near-infrared light emission
  • FIG. It is a luminescent image.
  • FIG. 13 is a light emission image when the foreign matter inspection is performed on the chocolate shown in FIGS. 11 and 12 using the foreign matter inspection apparatus 10 shown in FIG. FIG.
  • FIG. 14 is a schematic configuration diagram for explaining the configuration of a foreign matter inspection apparatus that captures an image of an article to be inspected 30 with illumination light irradiated from both front and back sides.
  • FIG. 15 is the light emission image imaged in the state which irradiated the illumination light about the chocolate shown to FIG.
  • FIG. 1 is a schematic configuration diagram for explaining the configuration of the foreign matter inspection apparatus in the present embodiment.
  • the foreign matter inspection apparatus 10 includes an illumination light irradiation unit 12 that irradiates illumination light having a predetermined wavelength, and a light emission detection unit 14 that detects near-infrared light emission from the article 30 to be inspected. And analyzing means 16 for determining the presence or absence of the foreign matter 32 based on the light emission information detected by the light emission detecting means 14.
  • the illumination light irradiating means 12 is not particularly limited as long as it can irradiate illumination light including a wavelength that can excite a near-infrared luminescent dye contained in a foreign substance 32 to be described later. (Light Emitting Diode), a halogen lamp or the like can be used, and a wavelength variable light source may be used.
  • LED when using LED as the illumination light irradiation means 12, it is the same consumption as constant current lighting by making an LED light-pulse using an oscillation circuit or a pulse generator, and improving the electric current value applied during lighting time of LED. Illuminance can be improved even with electric power.
  • the wavelength of the illumination light may be any wavelength that can excite a near-infrared light-emitting dye contained in the foreign substance 32 described later, and generally 700 nm to 2500 nm called near-infrared light is preferable. Further, it is more preferably 700 nm to 1100 nm, which can use a Si-based detection element that has high transparency in near infrared light, has detection sensitivity in the near infrared region, and can be obtained at low cost.
  • the illumination light is irradiated onto the inspected article 30 by one illumination light irradiation means 12 from below in the vertical direction of the inspected article 30.
  • the inspected article 30 is thick.
  • a plurality of illumination light irradiation means 12 may be arranged so that illumination light is irradiated from different directions onto the inspected article 30. Good.
  • ring illumination or line illumination is used as the illumination light irradiation means 12. It can also be used.
  • the wavelength of the illumination light which each illumination light irradiation means 12 irradiates may be the same, and may differ.
  • the illumination light emitted from the side surface of the inspected article 30 is more light than the illumination light emitted from below the inspected article 30. It is possible to change the conditions according to the shape and size of the article 30 to be inspected by increasing the size of the illumination light irradiating means 12 and appropriately changing the size of the illumination itself.
  • an image based on light of each wavelength is acquired by using a plurality of illumination light irradiation units 12 that respectively irradiate illumination lights having different wavelengths. be able to.
  • the inspected article 30 is a combination of different materials such as cookie sand and dorayaki, or has a plurality of laminated structures such as pudding, illumination with a wavelength suitable for each is provided.
  • a plurality of illumination light irradiating means 12 can be switched and used.
  • the luminescence detecting means 14 is capable of detecting near-infrared luminescence (hereinafter simply referred to as “near-infrared luminescence”) that is emitted when a near-infrared luminescent dye contained in a foreign substance 32 described later is excited.
  • an imaging device such as a digital camera using an imaging element such as a CCD (Charge-Coupled Device) or a CMOS (Complementary-MOS), a spectroscope, a photomultiplier tube, PbS detection Detectors such as detectors and photodiodes can be used.
  • the imaging device may be an area camera, but a line camera can also be used when performing a foreign object inspection using the transport unit 22 as will be described later.
  • the LED When the LED is turned on as the illumination light irradiating means 12, it is synchronized with the LED pulse using a lock-in amplifier, each detection signal at the time of turning on / off the LED is obtained, and the signal is subjected to differential processing. Noise components can be removed. Further, the signal can be amplified by an AD circuit board or the like.
  • near-infrared light emission means a phenomenon of emitting near-infrared light, and includes light emission by fluorescence, light emission by up-conversion, light emission by phosphorescence, and the like.
  • the “near infrared light emitting dye” means a dye that emits near infrared light when excited. Excitation is preferably carried out by light irradiation, but in addition to photoexcitation, any dye can be used as long as it is a dye that can be excited by a known and conventional method and emit near-infrared light.
  • the light emission detection means 14 can detect lights other than near-infrared light emission, it is preferable to provide the near-infrared light emission transmission filter 18 which transmits only near-infrared light emission.
  • the near-infrared emission transmission filter 18 it is possible to easily capture a luminescence image based on near-infrared emission.
  • the near-infrared emission transmission filter 18 sets the cut-on wavelength of the near-infrared emission transmission filter 18 so that only near-infrared emission is transmitted and illumination light is not detected by the emission detection means 14. It is preferable.
  • the cut-on wavelength is preferably 40 nm or more, preferably 100 nm or more away from the center wavelength of the illumination light.
  • a near-infrared emission blocking filter 20 that blocks only near-infrared emission can be further provided, and the near-infrared emission blocking filter 20 and the near-infrared emission transmission filter 18 can be switched and used. .
  • both the light emission information based on near-infrared light emission and the illumination light information based on light other than near-infrared light emission can be detected by a single light emission detection means 14.
  • the detected light emission information and the illumination light information as will be described later, the foreign matter 32 can be detected more clearly.
  • emission information refers to information obtained by the light emission detection means 14 receiving near-infrared light emission.
  • the light emission detection means 14 is an imaging device
  • near red This is image information based on external light emission (hereinafter referred to as “light emission image”).
  • illumination light information refers to information obtained by the light emission detection means 14 receiving light other than near-infrared light emission, and the light emission detection means 14 as described above is near red.
  • information obtained through the external light emission blocking filter 20 for example, information obtained in a state where the light to be inspected 30 is irradiated with "light having a wavelength that does not excite the near-infrared light-emitting dye" is included.
  • the “light emission information” is image information based on light other than near-infrared light emission (hereinafter referred to as “illumination light image”).
  • the light emission detection means 14 As shown in FIG. 3, as the light emission detection means 14, the light emission detection means 14 a provided with the near infrared light emission transmission filter 18 and the light emission detection means 14 b provided with the near infrared light emission cutoff filter 20 are arranged as one set. You can also
  • Such a configuration eliminates the need to perform switching work between the near-infrared emission transmission filter 18 and the near-infrared emission cutoff filter 20, thereby shortening the time required for foreign matter inspection of one inspection object 30. it can.
  • both light emission information based on near infrared light emission and illumination light information based on light other than near infrared light emission are detected. It can also be configured as follows.
  • the light emission detecting means 14 is configured to capture both light emission information based on near infrared light emission and illumination light information based on light other than near infrared light emission. You can also.
  • the inspected article 30 is detected for light emission from only one direction.
  • the inspected article 30 is a thick article, as shown in FIG.
  • a plurality of light emission detecting means 14 may be arranged to detect the light emission of the article 30 from different directions.
  • the analysis unit 16 is not particularly limited as long as it can determine the presence or absence of the foreign matter 32 based on the light emission information or based on the comparison between the light emission information and the illumination light information.
  • a personal computer in which analysis software is installed, hardware capable of realizing an image processing algorithm as described later for example, a microcomputer, a PLC (programmable controller), an FPGA (Field-Programmable Gate Array), or the like) can be used.
  • the light emission detecting means 14 when a detector other than an imaging device such as a photodiode is used as the light emission detecting means 14, an electric signal from the detector is amplified by a circuit board on which a signal amplifier such as a head amplifier is mounted. The presence or absence of light emission can be detected from the output value of the amplified electrical signal.
  • a signal amplifier such as a head amplifier
  • the inspected articles 30 can be individually inspected, the inspected articles 30 can be inspected continuously in-line by providing a conveying means 22 such as a belt conveyor as in this embodiment. .
  • the conveying means 22 may use a material that transmits the illumination light.
  • the illumination light irradiation means 12 and the light emission detection means 14 are arranged at positions facing the article to be inspected 30 as shown in FIGS. As described above, the illumination light irradiation means 12 and the light emission detection means 14 can be arranged at substantially the same position with respect to the article 30 to be inspected.
  • the foreign object inspection apparatus 10 can be reduced in size.
  • the foreign matter inspection of the inspected article 30 can be performed as follows.
  • the case where an imaging device is used as the light emission detecting means 14 will be described.
  • the illumination light is irradiated on the article 30 to be inspected by the illumination light irradiation means 12.
  • the near-infrared light-emitting pigment contained in the foreign object 32 is excited by the illumination light, and near-infrared light emission is emitted.
  • FIG. 7 is an example when a bacon block is imaged as the inspected article 30, FIG. 7A is a captured image by visible light, and FIG. 7B is a light-emitting image by near-infrared light emission.
  • the “captured image by visible light” is an image obtained by capturing with a general digital camera under ambient light, and represents the appearance of the article 30 to be inspected.
  • dye was cut into the size of about 25 mm x 5 mm, and it imaged in the state embedded in the position of 5 mm from the surface of a bacon block as a foreign material.
  • the analysis unit 16 can determine the presence or absence of foreign matter by performing image analysis on such a light emission image. Note that as the image analysis, for example, it may be determined whether there is a portion where the brightness or luminance is larger than a predetermined threshold, or whether there is a portion where the change in contrast of the entire image is large. You may make it discriminate
  • the analysis unit 16 calculates a difference or ratio between the light emission image and the illumination light image. As a result, it is possible to emphasize the luminance difference between the foreign matter and the other portions in the luminescent image.
  • the presence or absence of a foreign substance can be determined by the presence or absence of the detection of the near infrared light emission which a near-infrared light emission pigment
  • the foreign matter inspection apparatus 10 When foreign matter inspection of an article is performed using the foreign matter inspection apparatus 10 as described above, it is necessary that the foreign matter contains a near infrared light emitting dye. For this reason, when using the foreign material inspection apparatus 10 in the manufacturing process of articles
  • the resin member used in the manufacturing process is used for, for example, a cleaning brush, a cleaning duster, rubber gloves worn by an operator, an article mold, a tray for placing an article, a pipe, and the like. Packing, raw material, product packaging film, etc., but is not limited to this, it is applicable if it is a member made of resin in equipment, tools, jigs, safety protection equipment, etc. used in the manufacturing process It is.
  • the resin member is obtained by processing a resin composition having an absorbance attenuation rate of 50% or less at a maximum absorption wavelength by irradiation with radiation of 25 kGy.
  • a resin composition having an absorbance attenuation rate of 50% or less at a maximum absorption wavelength by irradiation with radiation of 25 kGy By using such a resin member, the amount of near-infrared light emitted by the foreign matter is increased, so that the foreign matter can be clearly identified in the emission image.
  • a resin member it can obtain by shape
  • the resin is not particularly limited, and for example, a thermoplastic resin, a thermosetting resin, rubber or the like can be used.
  • the thermoplastic resin is not particularly limited.
  • examples include methyl (PMMA), polyvinyl alcohol (PVOH), polyethylene terephthalate (PET), polystyrene (PS), polyethylene (PE) resin, and polypropylene (PP) resin.
  • thermosetting resin is not particularly limited.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, isocyanurate type epoxy resin, melamine type resin, urea resin, phenol type resin, unsaturated polyester Resin, silicone resin and the like.
  • the rubber examples include natural rubber and synthetic rubber. Although it does not specifically limit as natural rubber, For example, the thing derived from the latex (latex) collect
  • the synthetic rubber is not particularly limited.
  • isoprene rubber IR
  • butadiene rubber BR
  • styrene-butadiene rubber SBR
  • chloroprene rubber CR
  • nitrile rubber NBR
  • butyl rubber IIR
  • chlorosulfonated polyethylene rubber CSM
  • EPM ethylene / propylene rubber
  • acrylic rubber ACM
  • fluoro rubber FKM
  • U urethane rubber
  • Q polysulfide rubber
  • Synthetic rubber such as T).
  • the resins and rubbers described above may be used alone or in combination of two or more. Moreover, it does not specifically limit as a near-infrared fluorescent pigment
  • inorganic near-infrared fluorescent dyes and organic near-infrared fluorescent dyes can be mentioned.
  • the inorganic near-infrared fluorescent dye is not particularly limited, and examples thereof include a dye doped with a rare earth element.
  • the rare earth element is not particularly limited, but cerium (Ce), praseodymium (Pr), neodymium (Nd), europium (Eu), samarium (Sm), holmium (Ho), erbium (Er), thulium ( Tm), ytterbium (Yb) and the like.
  • the organic near-infrared fluorescent dye is not particularly limited.
  • organic near infrared fluorescent dyes are preferable.
  • luminous efficiency such as molar extinction coefficient and fluorescence quantum yield
  • xanthene dyes boron dipyrromethene (BODIPY)
  • BODIPY boron dipyrromethene
  • squalium dyes squalium dyes
  • perylene dyes are more preferable.
  • the near-infrared fluorescent dye described above may be used alone or in combination of two or more.
  • the content of the near infrared fluorescent dye is preferably 10% by mass or less, more preferably 1% by mass or less, and preferably 0.0001 to 0.9% by mass with respect to the mass of the resin. Is more preferable, and 0.001 to 0.5% by mass is particularly preferable. It is preferable that the content of the near-infrared fluorescent dye is 10% by mass or less because it is possible to suppress a decrease in emission intensity based on concentration quenching, reabsorption of emission, and the like.
  • the resin composition includes a resin, a near-infrared fluorescent dye, a solvent; an ultraviolet absorber, a heat stabilizer, a light stabilizer, an antioxidant, a flame retardant, a flame retardant, a crystallization accelerator, and a plasticizer. Further, an additive such as an antistatic agent, a colorant, a release agent, a light diffusing agent, a surfactant, and a wax agent may be further included.
  • the solvent for example, water or an organic solvent is used.
  • the organic solvent is not particularly limited, but examples thereof include alcohol solvents such as methanol, ethanol, isopropyl alcohol, and butanol; ether solvents such as tetrahydrofuran and 1,4-dioxane; acetone, cyclohexanone, methyl isobutyl ketone.
  • Ketone solvents such as acetonitrile; nitrile solvents such as acetonitrile; amide solvents such as dimethylformamide, dimethylacetamide and pyrrolidone; halogen solvents such as chloroform, dichloromethane and dichloroethane; aromatic hydrocarbon solvents such as benzene, toluene and xylene Aliphatic hydrocarbon solvents such as hexane and heptane; ester solvents such as ethyl acetate and butyl acetate; dimethyl sulfoxide; dioxirane and the like.
  • the above-mentioned solvents may be used alone or in combination of two or more.
  • the form of the resin composition is not particularly limited, and may be in the form of a solution, a liquid dispersion, or a gel.
  • a resin composition containing polyurethane as a resin, boron dipyrromethene (BODIPY) dye as a near infrared fluorescent dye, and water as a solvent can usually take the form of an aqueous dispersion.
  • the near-infrared fluorescent dye and resin to be used, and the types and contents of solvents and additives used as necessary, the molding method described later, and desired properties of the desired resin member It can be appropriately selected depending on the like.
  • the resin member is formed by molding the above resin composition.
  • the resin member can be molded by a known method such as injection molding, compression molding, extrusion molding, blow molding, or the like.
  • FIGS. 8A and 8B show an example in which a bacon block is imaged as the article to be inspected 30.
  • FIG. 8A is a captured image by visible light
  • FIG. 8B is a light-emitting image by near infrared emission.
  • a 70 ⁇ m-thick resin sheet containing a near-infrared light-emitting dye is cut into a size of about 25 mm ⁇ 5 mm and imaged in a state where it is placed on the surface of the bacon block as foreign matter.
  • the emission image confirms the emission of the foreign matter, and the presence or absence of the foreign matter can be clearly determined.
  • circles indicate locations where foreign matter exists.
  • FIG. 9 is an example when a bacon block is imaged as the article to be inspected 30.
  • FIG. 9A is a captured image by visible light
  • FIG. 9B is a light-emitting image by near-infrared light emission.
  • a 70 ⁇ m-thick resin sheet containing a near-infrared light-emitting dye is cut into a size of about 25 mm ⁇ 5 mm, and inserted as a foreign object into a cut provided in the red portion of the bacon block to close the cut. I'm shooting in the state.
  • FIG. 9 (a) it is difficult to detect the foreign matter in the visible image, but as shown in FIG. 9 (b), the emission image confirms the emission of the foreign matter and clearly shows the presence or absence of the foreign matter. Judgment is possible.
  • FIGS. 9A and 9B circles indicate the locations where foreign matter exists.
  • FIG. 10 is an example when a bacon block is imaged as the article to be inspected 30.
  • FIG. 10A is a captured image by visible light
  • FIG. 10B is a light-emitting image by near-infrared light emission.
  • a 70 ⁇ m-thick resin sheet containing a near-infrared luminescent dye is cut into a size of about 25 mm ⁇ 5 mm, and inserted as a foreign object into a cut provided in the fat portion of the bacon block, thereby closing the cut. I'm shooting in the state.
  • FIG. 10 (a) it is difficult to detect foreign matter in the visible image, but as shown in FIG. 10 (b), emission of foreign matter is confirmed in the luminescent image, and the presence or absence of foreign matter is clearly identified. Judgment is possible.
  • FIGS. 10A and 10B circles indicate the locations where foreign matter exists.
  • FIGS. 11 and 12 are examples of a case where chocolate is imaged as the article 30 to be inspected.
  • FIG. 11A is a captured image of the chocolate surface using visible light
  • FIG. 11B is a captured image of the chocolate back surface using visible light
  • FIG. 12A is a light emission image of the chocolate surface by near infrared light emission
  • FIG. 12B is a light emission image of the chocolate back surface by near infrared light emission.
  • FIGS. 11 and 12 a 70 ⁇ m-thick resin sheet containing a near-infrared light emitting pigment is cut into a size of 1 mm ⁇ 1 mm, and images are taken in a state where the resin sheet is disposed on the front and back surfaces of chocolate as a foreign substance. As shown in FIGS. 12 (a) and 12 (b), emission of foreign matter can be clearly confirmed in the luminescent image, and foreign matter can be reliably detected. In FIG. 12, a circle indicates a place where a foreign substance exists.
  • FIG. 13 is a light emission image when the foreign matter inspection is performed on the chocolate shown in FIGS. 11 and 12 using the foreign matter inspection apparatus 10 shown in FIG. That is, FIG. 13 is a light emission image obtained by irradiating the chocolate that is the article to be inspected 30 with illumination light from the back surface and capturing an image from the front surface.
  • circles indicate locations where foreign matter exists on the back surface
  • broken-line circles indicate locations where foreign matter exists on the front surface.
  • the foreign matter arranged on the back surface can be confirmed by the luminescent image, but the foreign matter arranged on the front surface cannot be confirmed by the luminescent image. This is because the illumination light irradiated from the back surface of the chocolate does not reach the foreign material disposed on the chocolate surface, and the near-infrared emission is not emitted from the foreign material disposed on the chocolate surface.
  • FIG. 14 is the light emission image imaged in the state which irradiated the illumination light about the chocolate shown to FIG.
  • the illumination light is irradiated not only on the foreign matter placed on the back side of the chocolate but also on the foreign matter placed on the front side, and placed on the front and back sides. All foreign matters can be confirmed from the luminescent image.
  • a plurality of illumination light irradiations are performed so that the entire inspected article 30 is irradiated with the illumination light. It is preferable to arrange the means 12.
  • the wavelength range of illumination light, illuminance, or the like can be changed as appropriate according to the article to be inspected 30.
  • the wavelength range of the illumination light suitable for the article to be inspected 30 can be appropriately selected by measuring the transmission spectrum in advance for the article to be inspected as a sample.
  • the preferable Example of this invention is not limited to this,
  • the said Example demonstrated as an example using foodstuffs, such as a bacon block and chocolate, for example, It is applicable to foods other than solids such as soft drinks, lotions, emulsions, etc., as long as it is an article in which resin members are used in the manufacturing process, and even if it is a substance other than resin, for example, It can be applied as long as it is a material capable of coating near-infrared light emitters such as printing paints of metal-based materials such as printing paints and packages such as aluminum films, fibers such as vinylon and rayon nylon, and hair. it can.
  • an article in which a near-infrared luminescent material is coated on a fiber is manufactured by bringing the resin composition described above into contact with the fiber by a method such as wet spinning, printing, or dipping, and molding the product by drying, curing, or the like.
  • a method such as wet spinning, printing, or dipping, and molding the product by drying, curing, or the like.
  • Such an article has a form in which the resin member to be molded is bonded to or adhered to the fiber surface and / or inside, and can be applied as clothing, woolen fabric, and the like.
  • the foreign substance inspection apparatus of the present invention can be variously used in a complementary manner by using each apparatus in combination with, for example, an X-ray image inspection apparatus, a metal detector, a near-infrared foreign substance detection apparatus, etc. used in the manufacturing process. It is also possible to cope with the foreign object detection, and various modifications can be made without departing from the object of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

[Problem] To provide a foreign matter inspecting device, a foreign matter inspecting method, a foreign matter contamination inspecting system, and a foreign matter contamination inspecting method, with which it is possible to improve the accuracy of detection of foreign matter, and to prevent an object to be inspected, such as a food product, being distributed in a state of contamination with foreign matter resulting from a resin member such as cleaning brush, a cleaning duster (cloth), or rubber gloves worn by an operator. [Solution] Illuminating light including at least a wavelength that excites near infrared emitting pigment contained in foreign matter is radiated onto an object to be inspected, light emission information based on near infrared emitted light that is emitted when the near infrared emitting pigment is excited is acquired, and the presence or absence of foreign matter is assessed on the basis of the light emission information.

Description

異物検査装置及び異物検査方法並びに異物混入検査システム及び異物混入検査方法Foreign matter inspection apparatus, foreign matter inspection method, foreign matter contamination inspection system, and foreign matter contamination inspection method
 本発明は、例えば食品など物品の製造工程において、異物の混入の有無を検査するための異物検査装置及び異物検査方法並びに異物混入検査システム及び異物混入検査方法に関する。 The present invention relates to a foreign matter inspection apparatus, a foreign matter inspection method, a foreign matter contamination inspection system, and a foreign matter contamination inspection method for inspecting the presence or absence of foreign matter in a manufacturing process of an article such as food.
 従来、食品の製造工場などにおいては、例えば、製造工程において用いられる清掃用ブラシや清掃用ダスター(ふきん)、作業者が装着するゴム手袋などの破片が、食品に混入した状態で流通することを防ぐため、様々な方法で異物混入検査が行われている。 2. Description of the Related Art Conventionally, in food manufacturing factories and the like, for example, a cleaning brush, a cleaning duster, and rubber gloves worn by an operator are circulated in a state of being mixed with food. In order to prevent this, foreign matter contamination inspection is performed by various methods.
 従来の異物混入検査としては、例えば、近赤外異物検査装置を用いて、単一波長や複数波長の近赤外光を被検査物品に対して照射し、被検査物品を透過光又は反射光を用いて検査している。 As a conventional foreign matter contamination inspection, for example, a near-infrared foreign matter inspection apparatus is used to irradiate an inspected item with near-infrared light having a single wavelength or a plurality of wavelengths, and the inspected item is transmitted or reflected. We are inspecting using.
特開2008-209211号公報JP 2008-209111 A 特開2006-177890号公報JP 2006-177890 A
 単一波長の近赤外異物検査装置の場合、透過光にせよ反射光にせよ、特定波長の輝度から異物の有無を検出しているため、感度が低く、異物の種類や食品の形状等によっては、異物の検出が困難な場合が多い。 In the case of a single-wavelength near-infrared foreign substance inspection device, whether it is transmitted light or reflected light, the presence or absence of a foreign substance is detected from the brightness of a specific wavelength, so the sensitivity is low, depending on the type of foreign substance, the shape of the food, etc. Are often difficult to detect foreign matter.
 また、複数波長の近赤外光を用いた異物混入検査の場合には、投光波長と同一の波長を用いて検査を行うと、被検査物品や異物の表面の正反射光や、同一波長の透過光により正確に異物を検出することができない場合がある。 In addition, in the case of foreign matter contamination inspection using near-infrared light of multiple wavelengths, if inspection is performed using the same wavelength as the projection wavelength, regular reflection light on the surface of the article to be inspected or foreign matter, or the same wavelength In some cases, the foreign matter cannot be accurately detected by the transmitted light.
 本発明では、このような現状に鑑み、異物の検出精度を向上させ、食品などの被検査物品に、清掃用ブラシや清掃用ダスター(ふきん)、作業者が装着するゴム手袋などの樹脂部材に起因する異物が混入した状態で流通することを防ぐことができる異物検査装置及び異物検査方法並びに異物混入検査システム及び異物混入検査方法を提供することを目的とする。 In the present invention, in view of such a current situation, the detection accuracy of foreign matters is improved, and a resin member such as a cleaning brush, a cleaning duster, or a rubber glove worn by an operator is applied to an inspection object such as food. It is an object of the present invention to provide a foreign substance inspection device, a foreign substance inspection method, a foreign substance contamination inspection system, and a foreign substance contamination inspection method that can prevent the resulting foreign matter from being distributed.
 本発明は、前述するような従来技術における課題を解決するために発明されたものであって、本発明の異物検査装置は、
 被検査物品の異物検査を行うための異物検査装置であって、
 所定波長の照明光を照射する照明光照射手段と、
 前記被検査物品からの近赤外発光を検出する発光検出手段と、を備え、
 前記照明光照射手段は、前記異物に含まれる近赤外発光色素の励起波長を少なくとも含む前記照明光を照射可能であり、
 前記発光検出手段は、前記近赤外発光色素が励起して発光する近赤外発光を検出可能であることを特徴とする。
The present invention was invented in order to solve the problems in the prior art as described above.
A foreign matter inspection apparatus for performing foreign matter inspection of an inspected article,
Illumination light irradiation means for irradiating illumination light of a predetermined wavelength;
Luminescence detecting means for detecting near-infrared luminescence from the article to be inspected, and
The illumination light irradiation means can irradiate the illumination light including at least an excitation wavelength of a near-infrared light-emitting dye contained in the foreign matter,
The luminescence detecting means is capable of detecting near-infrared luminescence emitted by the near-infrared luminescent dye when excited.
 このような異物検査装置では、前記照明光照射手段を複数備え、前記被検査物品に対して異なる方向から前記照明光を照射するように前記複数の照明光照射手段を配置することができる。 In such a foreign substance inspection apparatus, a plurality of the illumination light irradiation means can be provided, and the plurality of illumination light irradiation means can be arranged so that the illumination light is irradiated from different directions with respect to the article to be inspected.
 また、前記発光検出手段を複数備え、前記被検査物品を異なる方向から発光検出するように前記複数の発光検出手段が配置することもできる。
 また、前記発光検出手段が、前記近赤外発光を含む波長域を透過する近赤外発光透過フィルターを備えることができる。
A plurality of the light emission detection means may be provided, and the plurality of light emission detection means may be arranged so as to detect the light emission of the article to be inspected from different directions.
Moreover, the said light emission detection means can be equipped with the near-infrared light emission permeation | transmission filter which permeate | transmits the wavelength range containing the said near-infrared light emission.
 この場合、前記発光検出手段が、前記近赤外発光を含む波長域を遮断する近赤外発光遮断フィルターを備え、
 前記近赤外発光遮断フィルターと、前記近赤外発光透過フィルターとを切り替えて利用できるように構成することができる。
In this case, the emission detection means includes a near-infrared emission blocking filter that blocks a wavelength region including the near-infrared emission,
The near-infrared emission blocking filter and the near-infrared emission transmission filter can be switched and used.
 また、本発明の異物検査装置は、前記発光検出手段が、組となる2つの発光検出手段を含み、
 一方の発光検出手段が、前記近赤外発光を含む波長域を透過する近赤外発光透過フィルターを備え、
 他方の発光検出手段が、前記近赤外発光を含む波長域を遮断する近赤外発光遮断フィルターを備えることができる。
Further, in the foreign substance inspection apparatus of the present invention, the light emission detection means includes two light emission detection means that form a set,
One luminescence detection means includes a near-infrared emission transmission filter that transmits a wavelength region including the near-infrared emission,
The other light emission detecting means can include a near infrared light emission blocking filter for blocking the wavelength region including the near infrared light emission.
 また、前記発光検出手段が、2波長赤外線センサを含んでいてもよい。
 また、前記発光検出手段が、2次元分光器を含んでいてもよい。
 また、本発明の異物検査装置は、前記近赤外発光に基づく発光情報に基づき、異物の有無を判定する解析手段をさらに備えることができる。
The light emission detecting means may include a two-wavelength infrared sensor.
Further, the light emission detection means may include a two-dimensional spectrometer.
The foreign matter inspection apparatus of the present invention can further include an analysis unit that determines the presence or absence of foreign matter based on the light emission information based on the near-infrared light emission.
 このような異物検査装置では、前記近赤外発光に基づく前記発光情報と、前記近赤外発光以外の光に基づく照明光情報との比較に基づき、異物の有無を判定する解析手段をさらに備えることができる。 Such a foreign substance inspection apparatus further includes an analysis unit that determines the presence or absence of a foreign substance based on a comparison between the light emission information based on the near infrared light emission and illumination light information based on light other than the near infrared light emission. be able to.
 また、本発明の異物検査方法は、
 被検査物品の異物検査を行うための異物検査方法であって、
 前記被検査物品に対して、前記異物に含まれる近赤外発光色素の励起波長を少なくとも含む照明光を照射するとともに、
 前記近赤外発光色素が励起して発光する近赤外発光に基づく発光情報を取得し、
 前記発光情報に基づき、異物の有無を判定することを特徴とする。
Moreover, the foreign matter inspection method of the present invention includes:
A foreign matter inspection method for performing foreign matter inspection of an article to be inspected,
While irradiating the inspected article with illumination light including at least the excitation wavelength of the near-infrared luminescent dye contained in the foreign matter,
Emission information based on near-infrared emission emitted by the near-infrared emission dye is excited,
The presence or absence of foreign matter is determined based on the light emission information.
 この場合、前記近赤外発光に基づく前記発光情報と、前記近赤外発光以外の光に基づく照明光情報との比較に基づき、異物の有無を判定することもできる。 In this case, the presence / absence of a foreign substance can be determined based on a comparison between the light emission information based on the near-infrared light emission and illumination light information based on light other than the near-infrared light emission.
 また、本発明の異物混入検査システムは、
 物品の製造工程において、異物の混入を検査するための異物混入検査システムであって、
 前記製造工程において使用される樹脂部材が、近赤外発光色素を含有し、
 上述する異物検査装置を用いて、前記物品の検査を行うことにより、前記樹脂部材に起因する樹脂異物の混入の有無を検査することを特徴とする。
In addition, the foreign matter contamination inspection system of the present invention,
A foreign matter contamination inspection system for inspecting foreign matter contamination in an article manufacturing process,
The resin member used in the manufacturing process contains a near-infrared luminescent dye,
By inspecting the article using the foreign matter inspection apparatus described above, it is characterized by inspecting whether or not the resin foreign matter is mixed due to the resin member.
 この場合、前記樹脂部材が、25kGyの放射線照射による極大吸収波長における吸光度の減衰率が50%以下である樹脂組成物を加工して得られたものであることが好ましい。 In this case, it is preferable that the resin member is obtained by processing a resin composition having an attenuation rate of absorbance of 50% or less at a maximum absorption wavelength by irradiation with radiation of 25 kGy.
 また、本発明の異物混入検査方法は、
 物品の製造工程において、異物の混入を検査するための異物混入検査方法であって、
 前記製造工程において使用される樹脂部材を、近赤外発光色素を含有する樹脂部材とし、
 上述する異物検査方法を用いて、前記物品の検査を行うことにより、前記樹脂部材に起因する樹脂異物の混入の有無を検査することを特徴とする。
In addition, the foreign matter contamination inspection method of the present invention,
A foreign matter contamination inspection method for inspecting foreign matter contamination in a manufacturing process of an article,
The resin member used in the manufacturing process is a resin member containing a near-infrared luminescent dye,
By inspecting the article using the foreign matter inspection method described above, it is characterized by inspecting whether or not the resin foreign matter is mixed due to the resin member.
 この場合、前記樹脂部材が、25kGyの放射線照射による極大吸収波長における吸光度の減衰率が50%以下である樹脂組成物を加工して得られたものであることが好ましい。 In this case, it is preferable that the resin member is obtained by processing a resin composition having an attenuation rate of absorbance of 50% or less at a maximum absorption wavelength by irradiation with radiation of 25 kGy.
 また、本発明の樹脂組成物は、
 上述する異物混入検査方法において使用される前記樹脂部材の材料である樹脂組成物であって、
 樹脂及び近赤外蛍光色素を含有することを特徴とする。
Moreover, the resin composition of the present invention comprises:
A resin composition that is a material of the resin member used in the foreign matter contamination inspection method described above,
It contains a resin and a near-infrared fluorescent dye.
 また、本発明の樹脂部材は、上述する樹脂組成物を成形してなることを特徴とする。 Further, the resin member of the present invention is formed by molding the above-described resin composition.
 本発明によれば、異物自らが発する近赤外発光を検出し、近赤外発光に基づく発光情報によって異物の有無を判別することにより、照明光の正反射光や同一波長の透過光の影響を受けることなく、精度良く異物検出を行うことができる。 According to the present invention, near-infrared light emitted by a foreign object itself is detected, and the presence or absence of the foreign object is determined based on light emission information based on the near-infrared light emission. Therefore, it is possible to detect foreign matter with high accuracy without being subjected to this.
 また、食品などの物品の製造工程において使用される清掃用ブラシや清掃用ダスター(ふきん)、ゴム手袋などといった樹脂部材に、近赤外発光色素を事前に含有させておくことにより、樹脂部材に起因する樹脂異物の混入の有無を精度良く検査することができる。 In addition, a resin member such as a cleaning brush, a cleaning duster, or a rubber glove used in the manufacturing process of an article such as a food product may contain a near-infrared light emitting pigment in advance, thereby adding a resin member to the resin member. It is possible to accurately inspect whether or not the resulting resin foreign matter is mixed.
図1は、本実施例における異物検査装置の構成を説明するための概略構成図である。FIG. 1 is a schematic configuration diagram for explaining the configuration of the foreign matter inspection apparatus in the present embodiment. 図2は、異物検査装置の変形例の構成を説明するための概略構成図である。FIG. 2 is a schematic configuration diagram for explaining a configuration of a modified example of the foreign matter inspection apparatus. 図3は、異物検査装置の別の変形例の構成を説明するための概略構成図である。FIG. 3 is a schematic configuration diagram for explaining a configuration of another modified example of the foreign matter inspection apparatus. 図4は、異物検査装置のさらに別の変形例の構成を説明するための概略構成図である。FIG. 4 is a schematic configuration diagram for explaining a configuration of still another modified example of the foreign matter inspection apparatus. 図5は、異物検査装置のさらに別の変形例の構成を説明するための概略構成図である。FIG. 5 is a schematic configuration diagram for explaining the configuration of still another modified example of the foreign matter inspection apparatus. 図6は、異物検査装置のさらに別の変形例の構成を説明するための概略構成図である。FIG. 6 is a schematic configuration diagram for explaining the configuration of still another modified example of the foreign matter inspection apparatus. 図7は、被検査物品30としてベーコンブロックを撮像した場合の一例であり、図7(a)は可視光による撮像画像、図7(b)は近赤外発光による発光画像である。FIG. 7 is an example when a bacon block is imaged as the inspected article 30, FIG. 7A is a captured image by visible light, and FIG. 7B is a light-emitting image by near-infrared light emission. 図8は、被検査物品30としてベーコンブロックを撮像した場合の一例であり、図8(a)は可視光による撮像画像、図8(b)は近赤外発光による発光画像である。FIGS. 8A and 8B show an example in which a bacon block is imaged as the article to be inspected 30. FIG. 8A is a captured image by visible light, and FIG. 8B is a light-emitting image by near infrared emission. 図9は、被検査物品30としてベーコンブロックを撮像した場合の一例であり、図9(a)は可視光による撮像画像、図9(b)は近赤外発光による発光画像である。FIG. 9 is an example when a bacon block is imaged as the article to be inspected 30. FIG. 9A is a captured image by visible light, and FIG. 9B is a light-emitting image by near-infrared light emission. 図10は、被検査物品30としてベーコンブロックを撮像した場合の一例であり、図10(a)は可視光による撮像画像、図10(b)は近赤外発光による発光画像である。FIG. 10 is an example when a bacon block is imaged as the article to be inspected 30. FIG. 10A is a captured image by visible light, and FIG. 10B is a light-emitting image by near-infrared light emission. 図11は、被検査物品30としてチョコレートを撮像した場合の一例であり、図11(a)は可視光によるチョコレート表面の撮像画像、図11(b)は可視光によるチョコレート裏面の撮像画像である。FIG. 11 is an example of a case where chocolate is imaged as the article to be inspected 30. FIG. 11A is a captured image of the chocolate surface by visible light, and FIG. 11B is an captured image of the chocolate back surface by visible light. . 図12は、被検査物品30としてチョコレートを撮像した場合の一例であり、図12(a)は近赤外発光によるチョコレート表面の発光画像、図12(b)は近赤外発光によるチョコレート裏面の発光画像である。FIG. 12 is an example of a case where chocolate is imaged as the article 30 to be inspected. FIG. 12A is a light emission image of the chocolate surface by near-infrared light emission, and FIG. It is a luminescent image. 図13は、図11,12に示すチョコレートについて、図1に示す異物検査装置10を用いて異物検査を行った場合の発光画像である。FIG. 13 is a light emission image when the foreign matter inspection is performed on the chocolate shown in FIGS. 11 and 12 using the foreign matter inspection apparatus 10 shown in FIG. 図14は、被検査物品30に対して表裏両面側から照明光を照射した状態で撮像する異物検査装置の構成を説明するための概略構成図である。FIG. 14 is a schematic configuration diagram for explaining the configuration of a foreign matter inspection apparatus that captures an image of an article to be inspected 30 with illumination light irradiated from both front and back sides. 図15は、図11,12に示すチョコレートについて、チョコレートの表裏両面側から照明光を照射した状態で撮像した発光画像である。FIG. 15: is the light emission image imaged in the state which irradiated the illumination light about the chocolate shown to FIG.
 以下、本発明の実施の形態(実施例)を図面に基づいてより詳細に説明する。
 図1は、本実施例における異物検査装置の構成を説明するための概略構成図である。
Hereinafter, embodiments (examples) of the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram for explaining the configuration of the foreign matter inspection apparatus in the present embodiment.
 図1に示すように、本実施例の異物検査装置10は、所定波長の照明光を照射する照明光照射手段12と、被検査物品30からの近赤外発光を検出する発光検出手段14と、発光検出手段14により検出された発光情報に基づき異物32の有無を判定する解析手段16とを備えている。 As shown in FIG. 1, the foreign matter inspection apparatus 10 according to the present embodiment includes an illumination light irradiation unit 12 that irradiates illumination light having a predetermined wavelength, and a light emission detection unit 14 that detects near-infrared light emission from the article 30 to be inspected. And analyzing means 16 for determining the presence or absence of the foreign matter 32 based on the light emission information detected by the light emission detecting means 14.
 照明光照射手段12としては、後述する異物32に含まれる近赤外発光色素を励起可能な波長を含む照明光を照射可能なものであれば、特に限定されるものではないが、例えば、LED(Light Emitting Diode)やハロゲンランプなどを用いることができ、また、波長可変光源を用いてもよい。 The illumination light irradiating means 12 is not particularly limited as long as it can irradiate illumination light including a wavelength that can excite a near-infrared luminescent dye contained in a foreign substance 32 to be described later. (Light Emitting Diode), a halogen lamp or the like can be used, and a wavelength variable light source may be used.
 なお、照明光照射手段12としてLEDを用いる場合には、発振回路やパルスジェネレータを用いてLEDをパルス点灯させ、LEDの点灯時間に印加する電流値を向上させることにより、定電流点灯と同じ消費電力であっても照度を向上させることができる。 In addition, when using LED as the illumination light irradiation means 12, it is the same consumption as constant current lighting by making an LED light-pulse using an oscillation circuit or a pulse generator, and improving the electric current value applied during lighting time of LED. Illuminance can be improved even with electric power.
 照明光の波長としては、後述する異物32に含まれる近赤外発光色素を励起可能な波長であればよく、一般的には近赤外光と呼ばれる700nm~2500nmが好ましい。さらには、近赤外光の中でも透過性が高く、かつ、近赤外領域にも検出感度があり安価に入手可能なSi系検出素子を用いることができる700nm~1100nmとすることがより好ましい。 The wavelength of the illumination light may be any wavelength that can excite a near-infrared light-emitting dye contained in the foreign substance 32 described later, and generally 700 nm to 2500 nm called near-infrared light is preferable. Further, it is more preferably 700 nm to 1100 nm, which can use a Si-based detection element that has high transparency in near infrared light, has detection sensitivity in the near infrared region, and can be obtained at low cost.
 なお、図1では、被検査物品30の鉛直方向下方から1台の照明光照射手段12によって、被検査物品30に照明光を照射しているが、例えば、被検査物品30が厚みのある物品など大光量が必要な場合には、図2に示すように、被検査物品30に対して異なる方向から照明光を照射するように複数の照明光照射手段12を配置するように構成してもよい。なお、図2のように、被検査物品30に対して照明光照射手段12と発光検出手段14とを略同一位置に配置する場合には、照明光照射手段12として、リング照明やライン照明を用いることもできる。 In FIG. 1, the illumination light is irradiated onto the inspected article 30 by one illumination light irradiation means 12 from below in the vertical direction of the inspected article 30. For example, the inspected article 30 is thick. When a large amount of light is required, as shown in FIG. 2, a plurality of illumination light irradiation means 12 may be arranged so that illumination light is irradiated from different directions onto the inspected article 30. Good. As shown in FIG. 2, when the illumination light irradiation means 12 and the light emission detection means 14 are arranged at substantially the same position with respect to the article to be inspected 30, ring illumination or line illumination is used as the illumination light irradiation means 12. It can also be used.
 また、複数の照明光照射手段12を用いる場合、それぞれの照明光照射手段12が照射する照明光の波長は同じであってもよいし、異なっていても構わない。
 例えば、被検査物品30が搬送方向に垂直な幅方向に厚みのあるものの場合には、被検査物品30の側面から照射する照明光を、被検査物品30の下方から照射する照明光よりも光量を大きくしたり、照明光照射手段12の配置や照明自体のサイズを適宜変更することで、被検査物品30の形状や大きさに応じた条件変更が可能となる。
Moreover, when using the some illumination light irradiation means 12, the wavelength of the illumination light which each illumination light irradiation means 12 irradiates may be the same, and may differ.
For example, when the inspected article 30 has a thickness in the width direction perpendicular to the transport direction, the illumination light emitted from the side surface of the inspected article 30 is more light than the illumination light emitted from below the inspected article 30. It is possible to change the conditions according to the shape and size of the article 30 to be inspected by increasing the size of the illumination light irradiating means 12 and appropriately changing the size of the illumination itself.
 また、発光検出手段14として、例えば、2波長カメラを用いる場合には、異なる波長の照明光をそれぞれ照射する複数の照明光照射手段12を用いることで、各波長の光に基づく画像を取得することができる。 In addition, for example, when a two-wavelength camera is used as the light emission detection unit 14, an image based on light of each wavelength is acquired by using a plurality of illumination light irradiation units 12 that respectively irradiate illumination lights having different wavelengths. be able to.
 また、被検査物品30が、例えば、クッキーサンドやどら焼きなど異なる素材を組み合わせたものであったり、プリンなどのように複数の積層構造であったりする場合には、各々に適した波長の照明光を照射するため、複数の照明光照射手段12を切り替えて用いるようにすることもできる。 In addition, when the inspected article 30 is a combination of different materials such as cookie sand and dorayaki, or has a plurality of laminated structures such as pudding, illumination with a wavelength suitable for each is provided. In order to irradiate light, a plurality of illumination light irradiating means 12 can be switched and used.
 発光検出手段14としては、後述する異物32に含まれる近赤外発光色素が励起して発光する近赤外発光(以下、単に「近赤外発光」と言う。)検出することができるものであれば、特に限定されるものではないが、例えば、CCD(Charge Coupled Device)やCMOS(Complementary MOS)などの撮像素子を用いたデジタルカメラなどの撮像装置や分光器、光電子増倍管、PbS検出器、フォトダイオードなどの検出装置を用いることができる。なお、撮像装置としては、エリアカメラであってもよいが、後述するように搬送手段22を用いて異物検査を行う場合には、ラインカメラを用いることもできる。 The luminescence detecting means 14 is capable of detecting near-infrared luminescence (hereinafter simply referred to as “near-infrared luminescence”) that is emitted when a near-infrared luminescent dye contained in a foreign substance 32 described later is excited. If there is no particular limitation, for example, an imaging device such as a digital camera using an imaging element such as a CCD (Charge-Coupled Device) or a CMOS (Complementary-MOS), a spectroscope, a photomultiplier tube, PbS detection Detectors such as detectors and photodiodes can be used. The imaging device may be an area camera, but a line camera can also be used when performing a foreign object inspection using the transport unit 22 as will be described later.
 照明光照射手段12としてLEDをパルス点灯させた場合には、ロックインアンプを用いてLEDパルスと同期させ、LEDの点灯/消灯時の各検出信号を得て、その信号を差分処理することでノイズ成分を除去することができる。また、その信号をAD回路基板等で増幅させることもできる。 When the LED is turned on as the illumination light irradiating means 12, it is synchronized with the LED pulse using a lock-in amplifier, each detection signal at the time of turning on / off the LED is obtained, and the signal is subjected to differential processing. Noise components can be removed. Further, the signal can be amplified by an AD circuit board or the like.
 なお、本明細書において「近赤外発光」とは、近赤外光を発光する現象を意味し、蛍光による発光、アップコンバージョンによる発光や燐光による発光などが含まれる。また、「近赤外発光色素」は、励起されることにより近赤外光を発光する色素を意味する。なお、励起は光照射によるものが望ましいが、光励起以外にも公知慣用の方法で励起され、近赤外光を発光できる色素であれば、それらを用いることもできる。 In this specification, “near-infrared light emission” means a phenomenon of emitting near-infrared light, and includes light emission by fluorescence, light emission by up-conversion, light emission by phosphorescence, and the like. Further, the “near infrared light emitting dye” means a dye that emits near infrared light when excited. Excitation is preferably carried out by light irradiation, but in addition to photoexcitation, any dye can be used as long as it is a dye that can be excited by a known and conventional method and emit near-infrared light.
 なお、発光検出手段14が近赤外発光以外の光を検出できる場合には、近赤外発光のみを透過する近赤外発光透過フィルター18を備えることが好ましい。このように、近赤外発光透過フィルター18を設けることにより、近赤外発光に基づく発光画像を容易に撮像することができる。 In addition, when the light emission detection means 14 can detect lights other than near-infrared light emission, it is preferable to provide the near-infrared light emission transmission filter 18 which transmits only near-infrared light emission. Thus, by providing the near-infrared emission transmission filter 18, it is possible to easily capture a luminescence image based on near-infrared emission.
 なお、近赤外発光透過フィルター18としては、近赤外発光のみを透過し、かつ、発光検出手段14によって照明光が検出されないように、近赤外発光透過フィルター18のカットオン波長を設定することが好ましい。例えば、照明光照射手段12がLEDの場合には、カットオン波長が照明光の中心波長から40nm以上、望ましくは、100nm以上離れていることが好ましい。 Note that the near-infrared emission transmission filter 18 sets the cut-on wavelength of the near-infrared emission transmission filter 18 so that only near-infrared emission is transmitted and illumination light is not detected by the emission detection means 14. It is preferable. For example, when the illumination light irradiation means 12 is an LED, the cut-on wavelength is preferably 40 nm or more, preferably 100 nm or more away from the center wavelength of the illumination light.
 また、近赤外発光のみを遮断する近赤外発光遮断フィルター20をさらに備え、近赤外発光遮断フィルター20と、近赤外発光透過フィルター18とを切り替えて利用できるように構成することもできる。 In addition, a near-infrared emission blocking filter 20 that blocks only near-infrared emission can be further provided, and the near-infrared emission blocking filter 20 and the near-infrared emission transmission filter 18 can be switched and used. .
 このように構成することで、近赤外発光に基づく発光情報と、近赤外発光以外の光に基づく照明光情報の両方を、1台の発光検出手段14により検出することができる。検出された発光情報と照明光情報とを、後述するように比較することにより、異物32をより鮮明に検出することが可能となる。 With this configuration, both the light emission information based on near-infrared light emission and the illumination light information based on light other than near-infrared light emission can be detected by a single light emission detection means 14. By comparing the detected light emission information and the illumination light information as will be described later, the foreign matter 32 can be detected more clearly.
 なお、本明細書において「発光情報」とは、発光検出手段14が近赤外発光を受光することにより得られた情報を言い、例えば、発光検出手段14が撮像装置の場合には、近赤外発光に基づく画像情報(以下、「発光画像」と言う。)となる。 In the present specification, “emission information” refers to information obtained by the light emission detection means 14 receiving near-infrared light emission. For example, when the light emission detection means 14 is an imaging device, near red This is image information based on external light emission (hereinafter referred to as “light emission image”).
 また、本明細書において「照明光情報」とは、発光検出手段14が近赤外発光以外の光を受光することにより得られた情報を言い、上述するような、発光検出手段14が近赤外発光遮断フィルター20を介して得られた情報のみならず、例えば、「近赤外発光色素を励起させない波長の光」を被検査物品30に照射した状態で得られた情報なども含まれる。また、発光検出手段14が撮像装置の場合には、「発光情報」は、近赤外発光以外の光に基づく画像情報(以下、「照明光画像」と言う。)となる。 In this specification, “illumination light information” refers to information obtained by the light emission detection means 14 receiving light other than near-infrared light emission, and the light emission detection means 14 as described above is near red. In addition to information obtained through the external light emission blocking filter 20, for example, information obtained in a state where the light to be inspected 30 is irradiated with "light having a wavelength that does not excite the near-infrared light-emitting dye" is included. When the light emission detection unit 14 is an imaging device, the “light emission information” is image information based on light other than near-infrared light emission (hereinafter referred to as “illumination light image”).
 また、図3に示すように、発光検出手段14として、近赤外発光透過フィルター18を備える発光検出手段14aと、近赤外発光遮断フィルター20を備える発光検出手段14bを1つの組として配置することもできる。 As shown in FIG. 3, as the light emission detection means 14, the light emission detection means 14 a provided with the near infrared light emission transmission filter 18 and the light emission detection means 14 b provided with the near infrared light emission cutoff filter 20 are arranged as one set. You can also
 このように構成することにより、近赤外発光透過フィルター18と近赤外発光遮断フィルター20の切り替え作業を行う必要がなくなるため、1つの被検査物品30の異物検査に要する時間を短縮することができる。 Such a configuration eliminates the need to perform switching work between the near-infrared emission transmission filter 18 and the near-infrared emission cutoff filter 20, thereby shortening the time required for foreign matter inspection of one inspection object 30. it can.
 また、発光検出手段14として、2波長センサ(2波長カメラを含む)を含むことにより、近赤外発光に基づく発光情報と、近赤外発光以外の光に基づく照明光情報の両方を検出するように構成することもできる。 Further, by including a two-wavelength sensor (including a two-wavelength camera) as the light emission detecting means 14, both light emission information based on near infrared light emission and illumination light information based on light other than near infrared light emission are detected. It can also be configured as follows.
 また、発光検出手段14として、2次元分光器を含むことによっても、近赤外発光に基づく発光情報と、近赤外発光以外の光に基づく照明光情報の両方を撮像するように構成することもできる。 Further, by including a two-dimensional spectroscope as the light emission detecting means 14, it is configured to capture both light emission information based on near infrared light emission and illumination light information based on light other than near infrared light emission. You can also.
 なお、本実施例では、被検査物品30を1方向のみから発光検出をしているが、例えば、被検査物品30が厚みのある物品の場合などには、図4に示すように、被検査物品30を異なる方向から発光検出をするように複数の発光検出手段14を配置することもできる。 In the present embodiment, the inspected article 30 is detected for light emission from only one direction. For example, when the inspected article 30 is a thick article, as shown in FIG. A plurality of light emission detecting means 14 may be arranged to detect the light emission of the article 30 from different directions.
 解析手段16は、発光情報に基づき、もしくは、発光情報と照明光情報との比較に基づき、異物32の有無を判定することが可能であれば、特に限定されるものではないが、例えば、画像解析ソフトがインストールされたパーソナルコンピューターや後述するような画像処理アルゴリズムを実現可能なハードウェア(例えば、マイコン、PLC(プログラマブルコントローラ)、FPGA(Field-Programmable Gate Array)など)などを用いることができる。 The analysis unit 16 is not particularly limited as long as it can determine the presence or absence of the foreign matter 32 based on the light emission information or based on the comparison between the light emission information and the illumination light information. A personal computer in which analysis software is installed, hardware capable of realizing an image processing algorithm as described later (for example, a microcomputer, a PLC (programmable controller), an FPGA (Field-Programmable Gate Array), or the like) can be used.
 また、発光検出手段14として、例えば、フォトダイオードのような撮像装置以外の検出器を用いた場合には、検出器からの電気信号をヘッドアンプ等の信号増幅部を実装した回路基板で増幅させ、増幅後の電気信号の出力値により発光の有無を検出することができる。 Further, for example, when a detector other than an imaging device such as a photodiode is used as the light emission detecting means 14, an electric signal from the detector is amplified by a circuit board on which a signal amplifier such as a head amplifier is mounted. The presence or absence of light emission can be detected from the output value of the amplified electrical signal.
 被検査物品30は個別に検査することもできるが、本実施例のように、例えば、ベルトコンベアなどの搬送手段22を設けることにより、インラインで被検査物品30を連続的に検査することができる。 Although the inspected articles 30 can be individually inspected, the inspected articles 30 can be inspected continuously in-line by providing a conveying means 22 such as a belt conveyor as in this embodiment. .
 なお、図1に示すように、被検査物品30により鉛直方向下方から照明光を照射する場合には、搬送手段22は照明光を透過する素材を用いればよい。
 また、図1~図4に示す異物検査装置10では、照明光照射手段12と発光検出手段14とが被検査物品30に対して対向した位置に配置されているが、図5,6に示すように、照明光照射手段12と発光検出手段14を被検査物品30に対して略同一位置に配置することも可能である。
As shown in FIG. 1, when the illumination light is irradiated from below in the vertical direction by the article to be inspected 30, the conveying means 22 may use a material that transmits the illumination light.
In the foreign substance inspection apparatus 10 shown in FIGS. 1 to 4, the illumination light irradiation means 12 and the light emission detection means 14 are arranged at positions facing the article to be inspected 30 as shown in FIGS. As described above, the illumination light irradiation means 12 and the light emission detection means 14 can be arranged at substantially the same position with respect to the article 30 to be inspected.
 図5,6のように照明光照射手段12と発光検出手段14を配置することにより、異物検査装置10の小型化を図ることができる。 As shown in FIGS. 5 and 6, by arranging the illumination light irradiation means 12 and the light emission detection means 14, the foreign object inspection apparatus 10 can be reduced in size.
 以上のように構成される本実施例の異物検査装置10では、以下のようにして、被検査物品30の異物検査を行うことができる。なお、本実施例では発光検出手段14として撮像装置を用いた場合で説明する。
 まず、被検査物品30に対して照明光照射手段12によって照明光を照射する。被検査物品30に異物32が存在する場合には、照明光により、異物32に含まれている近赤外発光色素が励起され、近赤外発光が発光する。
In the foreign matter inspection apparatus 10 of the present embodiment configured as described above, the foreign matter inspection of the inspected article 30 can be performed as follows. In the present embodiment, the case where an imaging device is used as the light emission detecting means 14 will be described.
First, the illumination light is irradiated on the article 30 to be inspected by the illumination light irradiation means 12. When the foreign object 32 exists in the article to be inspected 30, the near-infrared light-emitting pigment contained in the foreign object 32 is excited by the illumination light, and near-infrared light emission is emitted.
 次いで、この状態で、発光検出手段14(撮像装置)によって被検査物品30の近赤外発光に基づく発光画像(発光情報)を撮像する。
 図7は、被検査物品30としてベーコンブロックを撮像した場合の一例であり、図7(a)は可視光による撮像画像、図7(b)は近赤外発光による発光画像である。
Next, in this state, a light emission image (light emission information) based on near-infrared light emission of the article to be inspected 30 is picked up by the light emission detecting means 14 (imaging device).
FIG. 7 is an example when a bacon block is imaged as the inspected article 30, FIG. 7A is a captured image by visible light, and FIG. 7B is a light-emitting image by near-infrared light emission.
 なお、本明細書において「可視光による撮像画像」とは、環境光下において、一般的なデジタルカメラで撮像して得られた画像であり、被検査物品30の外観を表している。 In the present specification, the “captured image by visible light” is an image obtained by capturing with a general digital camera under ambient light, and represents the appearance of the article 30 to be inspected.
 なお、図7は、近赤外発光色素を含有する樹脂シートをおよそ25mm×5mmのサイズにカットし、異物として、ベーコンブロックの表面から5mmの位置に埋入した状態で撮像している。 In addition, in FIG. 7, the resin sheet containing a near-infrared luminescent pigment | dye was cut into the size of about 25 mm x 5 mm, and it imaged in the state embedded in the position of 5 mm from the surface of a bacon block as a foreign material.
 図7(a)に示すように、可視光による撮像画像では、異物をほとんど確認することができないが、図7(b)に示すように、近赤外発光による発光画像では、被検査物品30に埋入された異物からの発光を確認することができる。 As shown in FIG. 7 (a), almost no foreign matter can be confirmed in the captured image with visible light, but as shown in FIG. It is possible to confirm the light emission from the foreign matter embedded in.
 解析手段16では、このような発光画像を画像解析することにより、異物の有無を判定することができる。
 なお、画像解析としては、例えば、明度や輝度が所定の閾値よりも大きい箇所があるか否かを判別するようにしてもよいし、画像全体のコントラストの変化が大きい箇所があるか否かを判別するようにしてもよい。
The analysis unit 16 can determine the presence or absence of foreign matter by performing image analysis on such a light emission image.
Note that as the image analysis, for example, it may be determined whether there is a portion where the brightness or luminance is larger than a predetermined threshold, or whether there is a portion where the change in contrast of the entire image is large. You may make it discriminate | determine.
 また、近赤外発光に基づく発光画像と、近赤外発光以外の光に基づく照明光画像とを撮像する場合には、解析手段16により、発光画像と照明光画像の差もしくは比を算出することにより、発光画像における異物とそれ以外の箇所の輝度差を強調することができる。 Further, in the case of capturing a light emission image based on near-infrared light emission and an illumination light image based on light other than near-infrared light emission, the analysis unit 16 calculates a difference or ratio between the light emission image and the illumination light image. As a result, it is possible to emphasize the luminance difference between the foreign matter and the other portions in the luminescent image.
 なお、発光検出手段14として、検出装置を用いる場合には、近赤外発光色素が励起して発光する近赤外発光の検出の有無により、異物の有無を判定することができる。 In addition, when using a detection apparatus as the light emission detection means 14, the presence or absence of a foreign substance can be determined by the presence or absence of the detection of the near infrared light emission which a near-infrared light emission pigment | dye excites and light-emits.
 上述するような異物検査装置10を用いて物品の異物検査を行う場合には、異物に近赤外発光色素が含まれていることが必要である。
 このため、異物検査装置10を、例えば、食品など物品の製造工程において使用する場合には、製造工程において使用される樹脂部材を、近赤外発光色素を含有する樹脂部材とすればよい。
When foreign matter inspection of an article is performed using the foreign matter inspection apparatus 10 as described above, it is necessary that the foreign matter contains a near infrared light emitting dye.
For this reason, when using the foreign material inspection apparatus 10 in the manufacturing process of articles | goods, such as foodstuff, the resin member used in a manufacturing process should just be made into the resin member containing a near-infrared luminescent pigment | dye.
 なお、製造工程において使用される樹脂部材とは、例えば、清掃用ブラシや清掃用ダスター(ふきん)、作業者が装着するゴム手袋、物品の型枠、物品を載置するトレイ、配管等に使用されるパッキン、原料や製品の包装フィルムなどが挙げられるが、これに限らず、製造工程において使用される装置、工具、治具、安全保護具などにおいて樹脂で形成される部材であれば適用可能である。 In addition, the resin member used in the manufacturing process is used for, for example, a cleaning brush, a cleaning duster, rubber gloves worn by an operator, an article mold, a tray for placing an article, a pipe, and the like. Packing, raw material, product packaging film, etc., but is not limited to this, it is applicable if it is a member made of resin in equipment, tools, jigs, safety protection equipment, etc. used in the manufacturing process It is.
 また、樹脂部材として、25kGyの放射線照射による極大吸収波長における吸光度の減衰率が50%以下である樹脂組成物を加工して得られたものとすることが好ましい。このような樹脂部材とすることにより、異物が発光する近赤外発光の光量が大きくなるため、発光画像において異物を明確に判別することができる。 Further, it is preferable that the resin member is obtained by processing a resin composition having an absorbance attenuation rate of 50% or less at a maximum absorption wavelength by irradiation with radiation of 25 kGy. By using such a resin member, the amount of near-infrared light emitted by the foreign matter is increased, so that the foreign matter can be clearly identified in the emission image.
 なお、樹脂部材については、樹脂及び近赤外蛍光色素を含有する、樹脂組成物を成形することで得ることができる。
 樹脂としては、特に限定されるものではなく、例えば、熱可塑性樹脂、熱硬化性樹脂、ゴムなどを用いることができる。
In addition, about a resin member, it can obtain by shape | molding the resin composition containing resin and a near-infrared fluorescent pigment | dye.
The resin is not particularly limited, and for example, a thermoplastic resin, a thermosetting resin, rubber or the like can be used.
 熱可塑性樹脂としては、特に限定されるものではないが、例えば、ポリウレタン(PU)、ポリカーボネート(PC)、ポリ塩化ビニル(PVC)、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル(PMMA)、ポリビニルアルコール(PVOH)、ポリエチレンテレフタレート(PET)、ポリスチレン(PS)、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂等が挙げられる。 The thermoplastic resin is not particularly limited. For example, polyurethane (PU), polycarbonate (PC), polyvinyl chloride (PVC), polyacrylic acid, polymethacrylic acid, polymethyl acrylate, polymethacrylic acid. Examples include methyl (PMMA), polyvinyl alcohol (PVOH), polyethylene terephthalate (PET), polystyrene (PS), polyethylene (PE) resin, and polypropylene (PP) resin.
 熱硬化性樹脂としては、特に限定されるものではないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、イソシアヌレート系エポキシ樹脂、メラミン系樹脂、ユリア樹脂、フェノール系樹脂、不飽和ポリエステル系樹脂、シリコーン樹脂等が挙げられる。 The thermosetting resin is not particularly limited. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, isocyanurate type epoxy resin, melamine type resin, urea resin, phenol type resin, unsaturated polyester Resin, silicone resin and the like.
 ゴムとしては、天然ゴムと合成ゴムが挙げられる。
 天然ゴムとしては、特に限定されるものではないが、例えば、パラゴムノキやチクルなどの樹皮から回収した乳液(ラテックス)由来のものが挙げられる。
Examples of the rubber include natural rubber and synthetic rubber.
Although it does not specifically limit as natural rubber, For example, the thing derived from the latex (latex) collect | recovered from bark, such as a para rubber tree and a chicle, is mentioned.
 合成ゴムとしては、特に限定されるものではないが、例えば、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン・ブタジエンゴム(SBR)、クロロプレンゴム(CR)、ニトリルゴム(NBR)、ブチルゴム(IIR)、クロロスルホン化ポリエチレンゴム(CSM)、エチレン・プロピレンゴム(EPM、EPDM)、アクリルゴム(ACM)、フッ素ゴム(FKM)、ウレタンゴム(U)、シリコーンゴム(Q)、多硫化ゴム(T)等の合成ゴムが挙げられる。 The synthetic rubber is not particularly limited. For example, isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), nitrile rubber (NBR), butyl rubber ( IIR), chlorosulfonated polyethylene rubber (CSM), ethylene / propylene rubber (EPM, EPDM), acrylic rubber (ACM), fluoro rubber (FKM), urethane rubber (U), silicone rubber (Q), polysulfide rubber ( Synthetic rubber such as T).
 なお、上述する樹脂やゴムは単独で用いても、2種以上を組み合わせて用いても構わない。
 また、近赤外蛍光色素としては、特に限定されるものではなく、公知のものを用いることができる。
The resins and rubbers described above may be used alone or in combination of two or more.
Moreover, it does not specifically limit as a near-infrared fluorescent pigment | dye, A well-known thing can be used.
 具体的には、無機系近赤外蛍光色素及び有機系近赤外蛍光色素が挙げられる。
 無機系近赤外蛍光色素としては、特に限定されるものではないが、例えば、希土類元素をドープした色素等が挙げられる。この際、希土類元素としては、特に制限されないが、セリウム(Ce)、プラセオジウム(Pr)、ネオジム(Nd)、ユウロピウム(Eu)、サマリウム(Sm)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)等が挙げられる。
Specifically, inorganic near-infrared fluorescent dyes and organic near-infrared fluorescent dyes can be mentioned.
The inorganic near-infrared fluorescent dye is not particularly limited, and examples thereof include a dye doped with a rare earth element. In this case, the rare earth element is not particularly limited, but cerium (Ce), praseodymium (Pr), neodymium (Nd), europium (Eu), samarium (Sm), holmium (Ho), erbium (Er), thulium ( Tm), ytterbium (Yb) and the like.
 有機系近赤外蛍光色素としては、特に限定されるものではないが、例えば、ポリメチン系色素、アントラキノン系色素、ジチオール金属塩系色素、シアニン系色素、フタロシアニン系色素、インドフェノール系色素、シアミン系色素、スチリル系色素、アルミニウム系色素、ジイモニウム系色素、アゾ系色素、アゾ-ホウ素系色素、ローダミンやフルオレセインに代表されるキサンテン系色素、国際公開第2007/126052号などに記載のボロンジピロメテン(BODIPY)系色素、スクアリウム系色素、ペリレン系色素等の化合物が挙げられる。 The organic near-infrared fluorescent dye is not particularly limited. For example, polymethine dyes, anthraquinone dyes, dithiol metal salt dyes, cyanine dyes, phthalocyanine dyes, indophenol dyes, and siamine dyes. Dyes, styryl dyes, aluminum dyes, diimonium dyes, azo dyes, azo-boron dyes, xanthene dyes represented by rhodamine and fluorescein, boron dipyrromethene described in International Publication No. 2007/126052 BODIPY) -based dyes, squalium-based dyes, perylene-based dyes, and the like.
 上述する近赤外蛍光色素のうち、有機系近赤外蛍光色素であることが好ましく、特に、モル吸光係数や蛍光量子収率等の発光効率を考慮すると、キサンテン系色素、ボロンジピロメテン(BODIPY)系色素、スクアリウム系色素、ペリレン系色素であることがより好ましい。 Of the above-mentioned near infrared fluorescent dyes, organic near infrared fluorescent dyes are preferable. In particular, in consideration of luminous efficiency such as molar extinction coefficient and fluorescence quantum yield, xanthene dyes, boron dipyrromethene (BODIPY) ) Dyes, squalium dyes, and perylene dyes are more preferable.
 なお、上述する近赤外蛍光色素は単独で用いても、2種以上を組み合わせて用いても構わない。 The near-infrared fluorescent dye described above may be used alone or in combination of two or more.
 近赤外蛍光色素の含有量は、樹脂の質量に対して、10質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.0001~0.9質量%であることがさらに好ましく、0.001~0.5質量%であることが特に好ましい。近赤外蛍光色素の含有量が10質量%以下であると、濃度消光や発光の再吸収等に基づく発光強度の低減を抑制できることから好ましい。 The content of the near infrared fluorescent dye is preferably 10% by mass or less, more preferably 1% by mass or less, and preferably 0.0001 to 0.9% by mass with respect to the mass of the resin. Is more preferable, and 0.001 to 0.5% by mass is particularly preferable. It is preferable that the content of the near-infrared fluorescent dye is 10% by mass or less because it is possible to suppress a decrease in emission intensity based on concentration quenching, reabsorption of emission, and the like.
 なお、樹脂組成物は、樹脂、近赤外蛍光色素の他、溶媒;紫外線吸収剤、熱安定剤、光安定剤、酸化防止剤、難燃剤、難燃助剤、結晶化促進剤、可塑剤、帯電防止剤、着色剤、離型剤、光拡散剤、界面活性剤、ワックス剤等の添加剤などをさらに含んでいてもよい。 The resin composition includes a resin, a near-infrared fluorescent dye, a solvent; an ultraviolet absorber, a heat stabilizer, a light stabilizer, an antioxidant, a flame retardant, a flame retardant, a crystallization accelerator, and a plasticizer. Further, an additive such as an antistatic agent, a colorant, a release agent, a light diffusing agent, a surfactant, and a wax agent may be further included.
 溶媒としては、例えば、水、有機溶媒が用いられる。
 有機溶媒としては、特に限定されるものではないが、例えば、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール系溶媒;テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒;アセトン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶媒;アセトニトリル等のニトリル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、ピロリドン等のアミド系溶媒;クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;ヘキサン、ヘプタン等の脂肪族炭化水素系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルスルホキシド;ジオキシラン等が挙げられる。
 上述する溶媒は、単独で用いても、2種以上を組み合わせて用いても構わない。
As the solvent, for example, water or an organic solvent is used.
The organic solvent is not particularly limited, but examples thereof include alcohol solvents such as methanol, ethanol, isopropyl alcohol, and butanol; ether solvents such as tetrahydrofuran and 1,4-dioxane; acetone, cyclohexanone, methyl isobutyl ketone. Ketone solvents such as acetonitrile; nitrile solvents such as acetonitrile; amide solvents such as dimethylformamide, dimethylacetamide and pyrrolidone; halogen solvents such as chloroform, dichloromethane and dichloroethane; aromatic hydrocarbon solvents such as benzene, toluene and xylene Aliphatic hydrocarbon solvents such as hexane and heptane; ester solvents such as ethyl acetate and butyl acetate; dimethyl sulfoxide; dioxirane and the like.
The above-mentioned solvents may be used alone or in combination of two or more.
 樹脂組成物の形態については、特に限定されるものではなく、溶液の形態であっても、分散液の液体であっても、ゲルの形態であってもよい。例えば、樹脂としてポリウレタン、近赤外蛍光色素としてボロンジピロメテン(BODIPY)系色素、溶媒として水を含む樹脂組成物は、通常、水分散液の形態をとりうる。これらの樹脂組成物の形態については、使用する近赤外蛍光色素及び樹脂、並びに必要に応じて用いられる溶媒及び添加剤の種類、含有量、後述する成形方法、目的とする樹脂部材の所望特性等に応じて適宜選択されうる。 The form of the resin composition is not particularly limited, and may be in the form of a solution, a liquid dispersion, or a gel. For example, a resin composition containing polyurethane as a resin, boron dipyrromethene (BODIPY) dye as a near infrared fluorescent dye, and water as a solvent can usually take the form of an aqueous dispersion. Regarding the form of these resin compositions, the near-infrared fluorescent dye and resin to be used, and the types and contents of solvents and additives used as necessary, the molding method described later, and desired properties of the desired resin member It can be appropriately selected depending on the like.
 樹脂部材は、上述の樹脂組成物が成形してなる。なお、樹脂部材は、公知の方法、例えば、射出成形、圧縮成形、押出成形、ブロー成形等により成形することができる。 The resin member is formed by molding the above resin composition. The resin member can be molded by a known method such as injection molding, compression molding, extrusion molding, blow molding, or the like.
 以下、本実施例の異物検査装置10を用いて撮像した発光画像を例示する。
 図8は、被検査物品30としてベーコンブロックを撮像した場合の一例であり、図8(a)は可視光による撮像画像、図8(b)は近赤外発光による発光画像である。
Hereinafter, the light emission image imaged using the foreign material inspection apparatus 10 of a present Example is illustrated.
FIGS. 8A and 8B show an example in which a bacon block is imaged as the article to be inspected 30. FIG. 8A is a captured image by visible light, and FIG. 8B is a light-emitting image by near infrared emission.
 なお、図8は、近赤外発光色素を含有する厚さ70μmの樹脂シートをおよそ25mm×5mmのサイズにカットし、異物として、ベーコンブロックの表面に載せた状態で撮像している。 In FIG. 8, a 70 μm-thick resin sheet containing a near-infrared light-emitting dye is cut into a size of about 25 mm × 5 mm and imaged in a state where it is placed on the surface of the bacon block as foreign matter.
 異物が被検査物品30の表面に露出している場合には、図8(b)に示すように、発光画像には異物の発光が確認され、異物の有無が明確に判断可能である。なお、図8(a),(b)において丸印は、異物が存在する箇所を示している。 When the foreign matter is exposed on the surface of the article 30 to be inspected, as shown in FIG. 8B, the emission image confirms the emission of the foreign matter, and the presence or absence of the foreign matter can be clearly determined. In FIGS. 8A and 8B, circles indicate locations where foreign matter exists.
 図9は、被検査物品30としてベーコンブロックを撮像した場合の一例であり、図9(a)は可視光による撮像画像、図9(b)は近赤外発光による発光画像である。
 なお、図9は、近赤外発光色素を含有する厚さ70μmの樹脂シートをおよそ25mm×5mmのサイズにカットし、異物として、ベーコンブロックの赤身部分に設けた切れ目に挿入し、切れ目を塞いだ状態で撮像している。
FIG. 9 is an example when a bacon block is imaged as the article to be inspected 30. FIG. 9A is a captured image by visible light, and FIG. 9B is a light-emitting image by near-infrared light emission.
In FIG. 9, a 70 μm-thick resin sheet containing a near-infrared light-emitting dye is cut into a size of about 25 mm × 5 mm, and inserted as a foreign object into a cut provided in the red portion of the bacon block to close the cut. I'm shooting in the state.
 図9(a)に示すように、可視画像では異物を検出することは困難であるが、図9(b)に示すように、発光画像では異物の発光が確認され、異物の有無が明確に判断可能である。なお、図9(a),(b)において丸印は、異物が存在する箇所を示している。 As shown in FIG. 9 (a), it is difficult to detect the foreign matter in the visible image, but as shown in FIG. 9 (b), the emission image confirms the emission of the foreign matter and clearly shows the presence or absence of the foreign matter. Judgment is possible. In FIGS. 9A and 9B, circles indicate the locations where foreign matter exists.
 図10は、被検査物品30としてベーコンブロックを撮像した場合の一例であり、図10(a)は可視光による撮像画像、図10(b)は近赤外発光による発光画像である。
 なお、図10は、近赤外発光色素を含有する厚さ70μmの樹脂シートをおよそ25mm×5mmのサイズにカットし、異物として、ベーコンブロックの脂肪部分に設けた切れ目に挿入し、切れ目を塞いだ状態で撮像している。
FIG. 10 is an example when a bacon block is imaged as the article to be inspected 30. FIG. 10A is a captured image by visible light, and FIG. 10B is a light-emitting image by near-infrared light emission.
In FIG. 10, a 70 μm-thick resin sheet containing a near-infrared luminescent dye is cut into a size of about 25 mm × 5 mm, and inserted as a foreign object into a cut provided in the fat portion of the bacon block, thereby closing the cut. I'm shooting in the state.
 図10(a)に示すように、可視画像では異物を検出することは困難であるが、図10(b)に示すように、発光画像では異物の発光が確認され、異物の有無が明確に判断可能である。なお、図10(a),(b)において丸印は、異物が存在する箇所を示している。 As shown in FIG. 10 (a), it is difficult to detect foreign matter in the visible image, but as shown in FIG. 10 (b), emission of foreign matter is confirmed in the luminescent image, and the presence or absence of foreign matter is clearly identified. Judgment is possible. In FIGS. 10A and 10B, circles indicate the locations where foreign matter exists.
 図11,12は、被検査物品30としてチョコレートを撮像した場合の一例であり、図11(a)は可視光によるチョコレート表面の撮像画像、図11(b)は可視光によるチョコレート裏面の撮像画像、図12(a)は近赤外発光によるチョコレート表面の発光画像、図12(b)は近赤外発光によるチョコレート裏面の発光画像である。 FIGS. 11 and 12 are examples of a case where chocolate is imaged as the article 30 to be inspected. FIG. 11A is a captured image of the chocolate surface using visible light, and FIG. 11B is a captured image of the chocolate back surface using visible light. FIG. 12A is a light emission image of the chocolate surface by near infrared light emission, and FIG. 12B is a light emission image of the chocolate back surface by near infrared light emission.
 なお、図11,12は、近赤外発光色素を含有する厚さ70μmの樹脂シートを1mm×1mmのサイズにカットし、異物として、チョコレートの表面及び裏面に配置した状態で撮像している。
 図12(a)、12(b)に示すように、発光画像では異物の発光が明確に確認することができ、異物を確実に検出することができる。なお、図12において丸印は、異物が存在する箇所を示している。
In FIGS. 11 and 12, a 70 μm-thick resin sheet containing a near-infrared light emitting pigment is cut into a size of 1 mm × 1 mm, and images are taken in a state where the resin sheet is disposed on the front and back surfaces of chocolate as a foreign substance.
As shown in FIGS. 12 (a) and 12 (b), emission of foreign matter can be clearly confirmed in the luminescent image, and foreign matter can be reliably detected. In FIG. 12, a circle indicates a place where a foreign substance exists.
 図13は、図11,12に示すチョコレートについて、図1に示す異物検査装置10を用いて異物検査を行った場合の発光画像である。
 すなわち、図13は、被検査物品30であるチョコレートに対して、裏面から照明光を照射し、表面から撮像した発光画像である。なお、図13において丸印は、裏面に異物が存在する箇所、破線丸印は、表面に異物が存在する箇所を示している。
FIG. 13 is a light emission image when the foreign matter inspection is performed on the chocolate shown in FIGS. 11 and 12 using the foreign matter inspection apparatus 10 shown in FIG.
That is, FIG. 13 is a light emission image obtained by irradiating the chocolate that is the article to be inspected 30 with illumination light from the back surface and capturing an image from the front surface. In FIG. 13, circles indicate locations where foreign matter exists on the back surface, and broken-line circles indicate locations where foreign matter exists on the front surface.
 図13に示すように、裏面に配置した異物については、発光画像で確認することができるが、表面に配置された異物については、発光画像で確認することができない。これは、チョコレートの裏面から照射した照明光がチョコレートの表面に配置された異物に届いておらず、チョコレートの表面に配置された異物から近赤外発光が発光していないためである。 As shown in FIG. 13, the foreign matter arranged on the back surface can be confirmed by the luminescent image, but the foreign matter arranged on the front surface cannot be confirmed by the luminescent image. This is because the illumination light irradiated from the back surface of the chocolate does not reach the foreign material disposed on the chocolate surface, and the near-infrared emission is not emitted from the foreign material disposed on the chocolate surface.
 このため、異物検査装置10として、図14に示すように、図1の構成に加えて、被検査物品30に対して発光検出手段14と略同一位置に照明光照射手段12を設けて再度検査を行った。
 図15は、図11,12に示すチョコレートについて、チョコレートの表裏両面側から照明光を照射した状態で撮像した発光画像である。
For this reason, as shown in FIG. 14, as the foreign object inspection apparatus 10, in addition to the configuration of FIG. 1, the illumination light irradiation means 12 is provided at substantially the same position as the light emission detection means 14 with respect to the article 30 to be inspected. Went.
FIG. 15: is the light emission image imaged in the state which irradiated the illumination light about the chocolate shown to FIG.
 図15に示すように、チョコレートの表裏両面側から照明光を照射したことにより、チョコレートの裏面に配置した異物だけでなく、表面に配置した異物にも照明光が照射され、表裏両面に配置した異物全てを発光画像により確認することができる。 As shown in FIG. 15, by irradiating the illumination light from both the front and back sides of the chocolate, the illumination light is irradiated not only on the foreign matter placed on the back side of the chocolate but also on the foreign matter placed on the front side, and placed on the front and back sides. All foreign matters can be confirmed from the luminescent image.
 このように、被検査物品30が照明光を透過しづらい場合や被検査物品30の厚みがある場合などには、被検査物品30全体に照明光が照射されるように、複数の照明光照射手段12を配置することが好ましい。 As described above, when the inspected article 30 is difficult to transmit the illumination light, or when the inspected article 30 has a thickness, a plurality of illumination light irradiations are performed so that the entire inspected article 30 is irradiated with the illumination light. It is preferable to arrange the means 12.
 なお、被検査物品30の種類等によって透過しづらい波長の光が存在するため、被検査物品30に応じて、照明光の波長域や照度などは適宜変更することができる。また、サンプルとして被検査物品30について事前に透過スペクトルを測定しておくことで、被検査物品30に適した照明光の波長域を適宜選択することができる。 In addition, since there is light having a wavelength that is difficult to transmit depending on the type of the article to be inspected 30 or the like, the wavelength range of illumination light, illuminance, or the like can be changed as appropriate according to the article to be inspected 30. Moreover, the wavelength range of the illumination light suitable for the article to be inspected 30 can be appropriately selected by measuring the transmission spectrum in advance for the article to be inspected as a sample.
 また、このように事前に被検査物品30の透過スペクトルを測定しておくことにより、樹脂部材に含めておく近赤外発光色素の吸収波長や発光波長が最適なものとなるように適宜選択可能となる。 In addition, by measuring the transmission spectrum of the inspected article 30 in advance as described above, it is possible to appropriately select the absorption wavelength and emission wavelength of the near-infrared light-emitting dye to be included in the resin member. It becomes.
 以上、本発明の好ましい実施例について説明したが、本発明はこれに限定されることはなく、例えば、上記実施例では物品として、ベーコンブロックやチョコレートなど食品を用いた例として説明したが、例えば、清涼飲料水など固形物以外の食品や、化粧水、乳液など、製造工程において樹脂部材が使用される物品であれば適用可能であり、また、樹脂以外の物質であってとしても、例えば、金属フィルムなどの被樹脂系物質の印刷塗料やアルミフィルムのような包装物、さらにはビニロン、レーヨンナイロン等の繊維、毛髪などの近赤外発光体をコーティング可能な物質であれば適用することができる。 As mentioned above, although the preferable Example of this invention was described, this invention is not limited to this, For example, although the said Example demonstrated as an example using foodstuffs, such as a bacon block and chocolate, for example, It is applicable to foods other than solids such as soft drinks, lotions, emulsions, etc., as long as it is an article in which resin members are used in the manufacturing process, and even if it is a substance other than resin, for example, It can be applied as long as it is a material capable of coating near-infrared light emitters such as printing paints of metal-based materials such as printing paints and packages such as aluminum films, fibers such as vinylon and rayon nylon, and hair. it can.
 例えば、繊維に近赤外発光体をコーティングした物品は、湿式紡糸、プリント、浸漬等の方法により上述した樹脂組成物を繊維に接触させ、これを乾燥、硬化等により成形することにより製造することができる。このような物品は、成形される樹脂部材が繊維表面及び/又は内部に結合、付着等をした形態を有することとなり、衣類、毛織物等として適用することができる。 For example, an article in which a near-infrared luminescent material is coated on a fiber is manufactured by bringing the resin composition described above into contact with the fiber by a method such as wet spinning, printing, or dipping, and molding the product by drying, curing, or the like. Can do. Such an article has a form in which the resin member to be molded is bonded to or adhered to the fiber surface and / or inside, and can be applied as clothing, woolen fabric, and the like.
 また、本発明の異物検査装置は、製造工程において使用される、例えば、X線画像検査装置や金属探知機、近赤外異物検出装置などと組み合わせて、各装置を相補的に用いることで種々の異物検出に対応することも可能であり、本発明の目的を逸脱しない範囲で種々の変更が可能である。 In addition, the foreign substance inspection apparatus of the present invention can be variously used in a complementary manner by using each apparatus in combination with, for example, an X-ray image inspection apparatus, a metal detector, a near-infrared foreign substance detection apparatus, etc. used in the manufacturing process. It is also possible to cope with the foreign object detection, and various modifications can be made without departing from the object of the present invention.
10   異物検査装置
12   照明光照射手段
14,14a,14b   発光検出手段
16   解析手段
18   近赤外発光透過フィルター
20   近赤外発光遮断フィルター
22   搬送手段
30   被検査物品
32   異物
DESCRIPTION OF SYMBOLS 10 Foreign substance inspection apparatus 12 Illumination light irradiation means 14, 14a, 14b Luminescence detection means 16 Analysis means 18 Near-infrared light transmission filter 20 Near-infrared light emission cutoff filter 22 Conveyance means 30 Inspected article 32 Foreign object

Claims (18)

  1.  被検査物品の異物検査を行うための異物検査装置であって、
     所定波長の照明光を照射する照明光照射手段と、
     前記被検査物品からの近赤外発光を検出する発光検出手段と、を備え、
     前記照明光照射手段は、前記異物に含まれる近赤外発光色素の励起波長を少なくとも含む前記照明光を照射可能であり、
     前記発光検出手段は、前記近赤外発光色素が励起して発光する近赤外発光を検出可能であることを特徴とする異物検査装置。
    A foreign matter inspection apparatus for performing foreign matter inspection of an inspected article,
    Illumination light irradiation means for irradiating illumination light of a predetermined wavelength;
    Luminescence detecting means for detecting near-infrared luminescence from the article to be inspected, and
    The illumination light irradiation means can irradiate the illumination light including at least an excitation wavelength of a near-infrared light-emitting dye contained in the foreign matter,
    The foreign substance inspection apparatus, wherein the luminescence detecting means is capable of detecting near-infrared luminescence emitted by the near-infrared luminescent dye.
  2.  前記照明光照射手段を複数備え、前記被検査物品に対して異なる方向から前記照明光を照射するように前記複数の照明光照射手段が配置されていることを特徴とする請求項1に記載の異物検査装置。 The said illumination light irradiation means is provided with two or more, The said several illumination light irradiation means is arrange | positioned so that the said illumination light may be irradiated from a different direction with respect to the said to-be-inspected goods. Foreign matter inspection device.
  3.  前記発光検出手段を複数備え、前記被検査物品を異なる方向から発光検出するように前記複数の発光検出手段が配置されていることを特徴とする請求項1または2に記載の異物検査装置。 The foreign matter inspection apparatus according to claim 1 or 2, wherein a plurality of the light emission detection means are provided, and the plurality of light emission detection means are arranged so as to detect light emission of the inspected article from different directions.
  4.  前記発光検出手段が、前記近赤外発光を含む波長域を透過する近赤外発光透過フィルターを備えることを特徴とする請求項1から3のいずれかに記載の異物検査装置。 4. The foreign substance inspection apparatus according to claim 1, wherein the light emission detecting means includes a near infrared light emission transmission filter that transmits a wavelength region including the near infrared light emission.
  5.  前記発光検出手段が、前記近赤外発光を含む波長域を遮断する近赤外発光遮断フィルターを備え、
     前記近赤外発光遮断フィルターと、前記近赤外発光透過フィルターとを切り替えて利用できるように構成されていることを特徴とする請求項4に記載の異物検査装置。
    The emission detection means includes a near infrared emission blocking filter that blocks a wavelength range including the near infrared emission,
    The foreign matter inspection apparatus according to claim 4, wherein the foreign-inspection apparatus is configured to be used by switching between the near-infrared emission blocking filter and the near-infrared emission transmission filter.
  6.  前記発光検出手段が、組となる2つの発光検出手段を含み、
     一方の発光検出手段が、前記近赤外発光を含む波長域を透過する近赤外発光透過フィルターを備え、
     他方の発光検出手段が、前記近赤外発光を含む波長域を遮断する近赤外発光遮断フィルターを備えることを特徴とする請求項1から3のいずれかに記載の異物検査装置。
    The light emission detection means includes two light emission detection means in a set,
    One luminescence detection means includes a near-infrared emission transmission filter that transmits a wavelength region including the near-infrared emission,
    The foreign matter inspection apparatus according to claim 1, wherein the other light emission detection means includes a near-infrared light emission blocking filter that blocks a wavelength range including the near-infrared light emission.
  7.  前記発光検出手段が、2波長赤外線センサを含むことを特徴とする請求項1から3のいずれかに記載の異物検査装置。 4. The foreign matter inspection apparatus according to claim 1, wherein the light emission detecting means includes a two-wavelength infrared sensor.
  8.  前記発光検出手段が、2次元分光器を含むことを特徴とする請求項1から3のいずれかに記載の異物検査装置。 4. The foreign substance inspection apparatus according to claim 1, wherein the light emission detection means includes a two-dimensional spectrometer.
  9.  前記近赤外発光に基づく発光情報に基づき、異物の有無を判定する解析手段をさらに備えることを特徴とする請求項1から8のいずれかに記載の異物検査装置。 9. The foreign matter inspection apparatus according to claim 1, further comprising an analysis unit that determines the presence or absence of foreign matter based on light emission information based on the near-infrared light emission.
  10.  前記近赤外発光に基づく発光情報と、前記近赤外発光以外の光に基づく照明光情報との比較に基づき、異物の有無を判定する解析手段をさらに備えることを特徴とする請求項5から8のいずれかに記載の異物検査装置。 6. The apparatus according to claim 5, further comprising analysis means for determining the presence or absence of a foreign substance based on a comparison between light emission information based on the near-infrared light emission and illumination light information based on light other than the near-infrared light emission. The foreign matter inspection apparatus according to any one of 8.
  11.  被検査物品の異物検査を行うための異物検査方法であって、
     前記被検査物品に対して、前記異物に含まれる近赤外発光色素の励起波長を少なくとも含む照明光を照射するとともに、
     前記近赤外発光色素が励起して発光する近赤外発光に基づく発光情報を取得し、
     前記発光情報に基づき、異物の有無を判定することを特徴とする異物検査方法。
    A foreign matter inspection method for performing foreign matter inspection of an article to be inspected,
    While irradiating the inspected article with illumination light including at least the excitation wavelength of the near-infrared luminescent dye contained in the foreign matter,
    Emission information based on near-infrared emission emitted by the near-infrared emission dye is excited,
    A foreign matter inspection method, wherein the presence or absence of foreign matter is determined based on the light emission information.
  12.  前記近赤外発光に基づく前記発光情報と、前記近赤外発光以外の光に基づく照明光情報との比較に基づき、異物の有無を判定することを特徴とする請求項11に記載の異物検査方法。 The foreign object inspection according to claim 11, wherein presence / absence of a foreign object is determined based on a comparison between the light emission information based on the near infrared light emission and illumination light information based on light other than the near infrared light emission. Method.
  13.  物品の製造工程において、異物の混入を検査するための異物混入検査システムであって、
     前記製造工程において使用される樹脂部材が、近赤外発光色素を含有し、
     請求項1から10のいずれかに記載の異物検査装置を用いて、前記物品の検査を行うことにより、前記樹脂部材に起因する樹脂異物の混入の有無を検査することを特徴とする異物混入検査システム。
    A foreign matter contamination inspection system for inspecting foreign matter contamination in an article manufacturing process,
    The resin member used in the manufacturing process contains a near-infrared luminescent dye,
    A foreign matter contamination inspection characterized by inspecting the presence or absence of resin foreign matter due to the resin member by inspecting the article using the foreign matter inspection device according to claim 1. system.
  14.  前記樹脂部材が、25kGyの放射線照射による極大吸収波長における吸光度の減衰率が50%以下である樹脂組成物を加工して得られたものであることを特徴とする請求項13に記載の異物混入検査システム。 14. The foreign material contamination according to claim 13, wherein the resin member is obtained by processing a resin composition having an attenuation rate of absorbance at a maximum absorption wavelength by irradiation of 25 kGy of 50% or less. Inspection system.
  15.  物品の製造工程において、異物の混入を検査するための異物混入検査方法であって、
     前記製造工程において使用される樹脂部材を、近赤外発光色素を含有する樹脂部材とし、
     請求項11または12に記載の異物検査方法を用いて、前記物品の検査を行うことにより、前記樹脂部材に起因する樹脂異物の混入の有無を検査することを特徴とする異物混入検査方法。
    A foreign matter contamination inspection method for inspecting foreign matter contamination in a manufacturing process of an article,
    The resin member used in the manufacturing process is a resin member containing a near-infrared luminescent dye,
    13. A foreign matter contamination inspection method comprising: inspecting the presence or absence of resin foreign matter due to the resin member by inspecting the article using the foreign matter inspection method according to claim 11 or 12.
  16.  前記樹脂部材が、25kGyの放射線照射による極大吸収波長における吸光度の減衰率が50%以下である樹脂組成物を加工して得られたものであることを特徴とする請求項15に記載の異物混入検査方法。 16. The foreign material contamination according to claim 15, wherein the resin member is obtained by processing a resin composition having an absorbance attenuation rate of 50% or less at a maximum absorption wavelength by irradiation with radiation of 25 kGy. Inspection method.
  17.  請求項15または16に記載の異物混入検査方法において使用される前記樹脂部材の材料である樹脂組成物であって、
     樹脂及び近赤外蛍光色素を含有することを特徴とする樹脂組成物。
    A resin composition that is a material of the resin member used in the foreign matter contamination inspection method according to claim 15 or 16,
    A resin composition comprising a resin and a near-infrared fluorescent dye.
  18.  請求項17に記載の樹脂組成物を成形してなる樹脂部材。 A resin member formed by molding the resin composition according to claim 17.
PCT/JP2017/030494 2016-08-26 2017-08-25 Foreign matter inspecting device, foreign matter inspecting method, foreign matter contamination inspecting system, and foreign matter contamination inspecting method WO2018038251A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018535781A JPWO2018038251A1 (en) 2016-08-26 2017-08-25 Foreign material inspection apparatus, foreign matter inspection method, foreign matter contamination inspection system, and foreign matter contamination inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-165872 2016-08-26
JP2016165872 2016-08-26

Publications (1)

Publication Number Publication Date
WO2018038251A1 true WO2018038251A1 (en) 2018-03-01

Family

ID=61244880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030494 WO2018038251A1 (en) 2016-08-26 2017-08-25 Foreign matter inspecting device, foreign matter inspecting method, foreign matter contamination inspecting system, and foreign matter contamination inspecting method

Country Status (2)

Country Link
JP (1) JPWO2018038251A1 (en)
WO (1) WO2018038251A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019631A (en) * 2018-08-01 2020-02-06 三井金属計測機工株式会社 Conveyance position adjustment mechanism and in-line inspection device comprising the same and production facility
KR20220144556A (en) * 2021-04-20 2022-10-27 제이 머티리얼즈(주) Apparatus of inspecting particles of surface of carrier

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296190A (en) * 2001-03-30 2002-10-09 Ishii Ind Co Ltd Method and device for detecting degenerated part of object
JP2003014650A (en) * 2001-06-29 2003-01-15 Nireco Corp Agricultural products inspection device and inspection method using the same
JP2004279273A (en) * 2003-03-17 2004-10-07 Food Safety Innovation Gijutsu Kenkyu Kumiai Admixed foreign substance inspection method and admixed foreign substance inspection apparatus used for the same
JP2005066434A (en) * 2003-08-22 2005-03-17 Anzai Sogo Kenkyusho:Kk Apparatus for sorting foreign matter in tea leaf
JP2005291869A (en) * 2004-03-31 2005-10-20 Satake Corp Residual rice bran measuring method of polished rice
US20130320237A1 (en) * 2012-05-29 2013-12-05 Altria Client Services Inc. Oil detection process
JP2014515487A (en) * 2011-05-26 2014-06-30 アルトリア クライアント サービシーズ インコーポレイテッド Oil detection method, apparatus and taggant therefor
JP2017072545A (en) * 2015-10-09 2017-04-13 Dic株式会社 Composition and compact produced using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296190A (en) * 2001-03-30 2002-10-09 Ishii Ind Co Ltd Method and device for detecting degenerated part of object
JP2003014650A (en) * 2001-06-29 2003-01-15 Nireco Corp Agricultural products inspection device and inspection method using the same
JP2004279273A (en) * 2003-03-17 2004-10-07 Food Safety Innovation Gijutsu Kenkyu Kumiai Admixed foreign substance inspection method and admixed foreign substance inspection apparatus used for the same
JP2005066434A (en) * 2003-08-22 2005-03-17 Anzai Sogo Kenkyusho:Kk Apparatus for sorting foreign matter in tea leaf
JP2005291869A (en) * 2004-03-31 2005-10-20 Satake Corp Residual rice bran measuring method of polished rice
JP2014515487A (en) * 2011-05-26 2014-06-30 アルトリア クライアント サービシーズ インコーポレイテッド Oil detection method, apparatus and taggant therefor
US20130320237A1 (en) * 2012-05-29 2013-12-05 Altria Client Services Inc. Oil detection process
JP2017072545A (en) * 2015-10-09 2017-04-13 Dic株式会社 Composition and compact produced using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019631A (en) * 2018-08-01 2020-02-06 三井金属計測機工株式会社 Conveyance position adjustment mechanism and in-line inspection device comprising the same and production facility
KR20220144556A (en) * 2021-04-20 2022-10-27 제이 머티리얼즈(주) Apparatus of inspecting particles of surface of carrier
KR102644345B1 (en) * 2021-04-20 2024-03-06 제이 머티리얼즈(주) Apparatus of inspecting particles of surface of carrier

Also Published As

Publication number Publication date
JPWO2018038251A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
AU2017201261B2 (en) Method and apparatus for optical detection of bio-contaminants
JP4793770B2 (en) Eggshell surface state detection method and eggshell surface state detection apparatus using this method
JP5681600B2 (en) Biological particle evaluation apparatus and biological particle evaluation method
WO2018038251A1 (en) Foreign matter inspecting device, foreign matter inspecting method, foreign matter contamination inspecting system, and foreign matter contamination inspecting method
JP7016408B2 (en) Inspection device with color light source
US20120074047A1 (en) Sorting method and apparatus
US6967716B1 (en) Apparatus and method for inspecting multi-layer plastic containers
JP2014515487A5 (en)
CN109690264B (en) Method and system for camera-based ambient light estimation
JP2017513186A5 (en)
RU2016140485A (en) LIGHTING SYSTEM FOR PRODUCT LIGHTING
US20170322018A1 (en) Systems and Methods for Optical Measurement of Container Wall Thickness
US8960028B2 (en) Method for automatically identifying a material or an object
JP2013514567A5 (en)
CN208177898U (en) For detecting the device of the object in material flow
CA2942863C (en) Inspection of containers
JP2020034549A (en) Compact automated inspection for foreign materials during manufacture of large composite
US20130044207A1 (en) Imaging apparatus
KR102110192B1 (en) Apparatus for detecting foreign substances
JP4630504B2 (en) Inspection method and inspection apparatus for heat-bonded portion of sealed package
JP2003014650A (en) Agricultural products inspection device and inspection method using the same
CN205518686U (en) Detection apparatus for a method for sorting bulk cargo
JP2005066434A (en) Apparatus for sorting foreign matter in tea leaf
JP2017072545A (en) Composition and compact produced using the same
JP6572648B2 (en) Granular resin inspection device and inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018535781

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843727

Country of ref document: EP

Kind code of ref document: A1