WO2018038215A1 - Binder, bound and formed food, and method for producing same - Google Patents

Binder, bound and formed food, and method for producing same Download PDF

Info

Publication number
WO2018038215A1
WO2018038215A1 PCT/JP2017/030362 JP2017030362W WO2018038215A1 WO 2018038215 A1 WO2018038215 A1 WO 2018038215A1 JP 2017030362 W JP2017030362 W JP 2017030362W WO 2018038215 A1 WO2018038215 A1 WO 2018038215A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
branched
food
mass
pullulan
Prior art date
Application number
PCT/JP2017/030362
Other languages
French (fr)
Japanese (ja)
Inventor
信二 藤田
光 渡邊
Original Assignee
株式会社林原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社林原 filed Critical 株式会社林原
Publication of WO2018038215A1 publication Critical patent/WO2018038215A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D13/00Finished or partly finished bakery products
    • A21D13/80Pastry not otherwise provided for elsewhere, e.g. cakes, biscuits or cookies
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • A23G3/50Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by shape, structure or physical form, e.g. products with supported structure
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00

Definitions

  • the present invention relates to a binder, a binder-molded food, and a method for producing the same, and more specifically, a binder excellent in binding power for binding small or granular food materials to each other, and the binder
  • the present invention relates to a binder-molded food obtained by using the above and a production method for producing the binder-molded food on an industrial scale with a high yield.
  • binder-molded foods such as granola bars have been attracting attention.
  • a binder is usually used to bind small pieces or granular food materials. Is used.
  • binder-shaped foods In binder-shaped foods, the binder used in the production of them is not only easy to produce, but also easy to manufacture, and the shape retention and storage stability of the resulting binder-shaped foods It plays an extremely important role by greatly affecting the yield and product life of binder-molded foods through handling and impact resistance.
  • binders mainly containing saccharides containing polysaccharides (eg, starch syrup, starch, dextrin, agar), gums, thickeners, alginic acid, proteins, etc. have been used.
  • Binders mainly composed of pullulan, which is a polysaccharide, are attracting attention because they are superior in binding properties and moldability compared to other binders.
  • Patent Document 1 proposes a binder containing a saccharide having an average degree of polymerization of 4 or less together with pullulan.
  • the content of the proposed saccharide is extremely large, because of the sweetness caused by the saccharide.
  • the binder disclosed in Patent Document 2 has problems such as affecting the taste of the final product, and its use is limited.
  • Patent Document 3 discloses a binder mainly composed of one or more selected from pullulan, dextrin, agar, gum, alginic acid, protein and the like, and a molded food using the same.
  • the binder used is a powdered binder, and in order to obtain a light food texture, the dried dry edible material piece is mixed with the powdered binder to form a powdery binder. Only a technique for moistening the agent and drawing out a desired binding force is disclosed.
  • the binding force of the pullulan-based binders proposed so far is not sufficient.
  • pullulan was the main binding force, and it was applied to the production of binder-molded foods. In this case, it is possible to bind and mold small or granular food materials with a high bulk density, and to produce a binder molded food with excellent shape retention, storage stability and impact resistance. No binder has yet been provided that can be produced on a scale with good yield.
  • JP-A 61-246239 JP-A-5-306350 Japanese Patent Laid-Open No. 1-91748
  • the present invention has been made in order to solve the above-mentioned drawbacks of the prior art, has excellent binding power, can bind small and / or granular food materials with high bulk density, and retains shape.
  • Another object of the present invention is to provide a binder-shaped food obtained by binder-molding granular food materials and a method for producing the same.
  • the binder mainly composed of pullulan is a water-soluble dietary fiber material for the pullulan, and will be described later.
  • a binding agent containing a branched ⁇ -glucan mixture having a specific characteristic in a specific ratio in a mass ratio in terms of anhydride is excellent in binding power and substantially changes the taste of the food material to be bound. It has been found that it has excellent characteristics.
  • the present inventors have shown that the binder is excellent in workability when filling a mold with a small piece and / or granular food material, and has a high bulk density and small pieces and / or granules.
  • the food material is filled into the mold, it is excellent in workability for taking out the compacted and / or granular food material from the mold, and the binder is used.
  • the binder is used.
  • it is relatively easy to obtain a binder molded food with excellent shape retention, storage stability, handleability, impact resistance, and long product life, and the binder exhibits excellent characteristics.
  • the present inventors have newly found that it is possible to produce the binder-formed foods provided on an industrial scale with good yield.
  • the inventors of the present invention used pullulan and a branched ⁇ -glucan mixture having the following characteristics (A) to (C) at a mass ratio [pullan / branched ⁇ -glucan mixture] in terms of anhydride.
  • the present invention solves the above problems by providing a binder contained in a range of 1.5 to about 4, a binder molded food obtained using the binder, and a method for producing the same.
  • ⁇ Characteristics of branched ⁇ -glucan mixture > (A) glucose as a constituent sugar, (B) Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an ⁇ -1,4 bond via a bond other than an ⁇ -1,4 bond. A branched structure having a glucose polymerization degree of 1 or more, (C) Isomaltose is produced by digestion with isomalt dextranase to produce 5% by mass or more of the solid content of the digest.
  • the present invention also solves the above problems by providing a binder-molded food manufactured using the binder of the present invention and a method for manufacturing the same.
  • the binder of the present invention small and / or granular food materials can be firmly bound with high bulk density, and shape retention / storage stability, handleability, and impact resistance can be improved.
  • the advantage is that it is possible to produce a binder-shaped food that is excellent and has a long product life.
  • the binder of the present invention when the food material is bound and formed using the mold, there is an advantage that the filling operation into the mold and the removing operation from the mold can be performed with good workability.
  • the binder-molded food produced using the binder has excellent characteristics such as shape retention / storage stability, handleability, excellent impact resistance, and long product life.
  • the advantage that the binder molded food which has the said outstanding characteristic can be easily provided with a sufficient yield on an industrial scale is acquired.
  • the binder according to the present invention is a binder containing pullulan and a branched ⁇ -glucan mixture having specific characteristics at a specific mass ratio.
  • the pullulan used in the present invention has a structure in which a plurality of maltotrioses are regularly arranged via ⁇ -1,6 bonds, is easily soluble in water, hardly dissolves in ethanol, and pullulanase (EC 3.2.1). .41) means a polysaccharide which mainly produces maltotriose when hydrolyzed.
  • Mw weight average molecular weight
  • the trade name “Food Additive Pullulan” (pullulan content of about 94% by mass, moisture content of about 2% by mass, manufactured by Hayashibara Co., Ltd.) is a pullulan marketed as a food additive, and its weight average molecular weight is about Since it is in the range of 150,000 to 500,000, it can be suitably used in the practice of the present invention.
  • the branched ⁇ -glucan mixture used in the present invention is, for example, a branched ⁇ -glucan mixture (hereinafter simply referred to as “branched ⁇ -glucan mixture”) disclosed by the same applicant as the present application in International Publication No. WO2008 / 136331.
  • the branched ⁇ -glucan mixture is obtained by using starch as a raw material and reacting with various enzymes, and is usually a mixture mainly composed of a plurality of types of branched ⁇ -glucan having various branched structures and glucose polymerization degrees. Is in form.
  • ⁇ -glucosyltransferase disclosed in the pamphlet of International Publication No.
  • WO2008 / 136331 is allowed to act on starch, or in addition to the ⁇ -glucosyltransferase, maltotetra Amylases such as ose-producing amylase (EC 3.2.1.60), starch debranching enzymes such as pullulanase (EC 3.2.1.41), isoamylase (EC 3.2.1.68), , Cyclomaltodextrin glucanotransferase (EC 2.4.1.19) (hereinafter referred to as “CGTase”), starch branching enzyme (EC 2.4.1.18), or JP-A-2014-054221 ⁇ -1,4 glucan having a degree of polymerization of 2 or more disclosed in publications and the like is transferred to a glucose residue in starch.
  • maltotetra Amylases such as ose-producing amylase (EC 3.2.1.60), starch debranching enzymes such as pullulanase (EC 3.2.1.41), isoamylase (EC
  • branched ⁇ -glucan mixture disclosed in the pamphlet of International Publication No. WO2008 / 136331, among others, derived from Bacillus circulans PP710 (FERM BP-10771) and / or Arthrobacter globiformis PP349.
  • a branched ⁇ -glucan mixture having a water-soluble dietary fiber content of about 75% by mass or more, preferably about 80% by mass or more per solid content in terms of anhydride is particularly preferably used. It is done.
  • the culture of Bacillus circulans PP710 contains ⁇ -glucosyltransferase and amylase, and the enzyme mixture has a maltose and / or glucose polymerization degree.
  • the enzyme mixture When it is acted on three or more ⁇ -1,4 glucans, it has a feature that the branched ⁇ -glucan mixture having a high water-soluble dietary fiber content is stably formed.
  • These above-mentioned branched ⁇ -glucan mixtures contain ⁇ -1,4 bonds derived from the raw starch and have a lot of various bonds other than ⁇ -1,4 bonds.
  • the branched ⁇ -glucan mixture used in the present invention is usually in the form of a mixture of a number of branched ⁇ -glucans having various branched structures and glucose polymerization degrees (molecular weights). It is technically impossible to isolate a branched ⁇ -glucan and determine or quantify the structure.
  • the branched ⁇ -glucan mixture is The entire mixture can be characterized by various properties required by various physical, chemical, or enzymatic methods commonly used in the art.
  • the branched ⁇ -glucan mixture used in the present invention is characterized by the characteristics (A) to (C) as a whole. That is, this branched ⁇ -glucan mixture is a glucan having glucose as a constituent sugar (characteristic (A)), and is connected to one end of a linear glucan having a glucose polymerization degree of 3 or more linked through ⁇ -1,4 bonds. It has a branched structure with a glucose polymerization degree of 1 or more linked to a non-reducing terminal glucose residue located through a bond other than an ⁇ -1,4 bond (characteristic (B)).
  • non-reducing terminal glucose residue in the characteristic (B) means a glucose residue located at the terminal that does not exhibit reducing property among the glucan chains linked through ⁇ -1,4 bonds.
  • the “bond other than ⁇ -1,4 bond” means a bond other than ⁇ -1,4 bond such as ⁇ -1,2 bond, ⁇ -1,3 bond, ⁇ -1,6 bond and the like.
  • the branched ⁇ -glucan mixture used in the present invention is characterized in that isomaltose is produced by digestion with isomalt-dextranase to produce 5% by mass or more of isomaltose per solid content of the digest (characteristic (C)).
  • the digestion with isomaltodextranase in the characteristic (C) means that isomaltdextranase is allowed to act on a branched ⁇ -glucan mixture to cause hydrolysis.
  • Isomalt dextranase is an enzyme that has been assigned the enzyme number (EC) 3.2.1.94 by the International Union of Biochemical and Molecular Biology, and is adjacent to the reducing end of the isomaltose structure in ⁇ -glucan.
  • isomalt dextranase derived from Arthrobacter globiformis eg, Sawai et al., “Agricultural and Biological Chemistry”, Vol. 52, No. 2). 495-501 (1988)).
  • the ratio of isomaltose per solid in the digest produced by isomalt-dextranase digestion is the isomaltose structure that can be hydrolyzed with isomalt-dextranase in the structure of the branched ⁇ -glucan constituting the branched ⁇ -glucan mixture
  • the structure of the branched ⁇ -glucan mixture used in the present invention can be characterized as an entire mixture by an enzymatic method.
  • isomaltose is digested with isomalt-dextranase to obtain 5% by mass or more, preferably 10% by mass or more, more preferably, per digested solid. 15% by mass or more, more preferably 20% by mass or more and 70% by mass or less, still more preferably 20% by mass or more and 60% by mass or less, and further preferably 20% by mass or more and 50% by mass or less.
  • the mixture has good compatibility with pullulan, and when combined with pullulan at a specific mass ratio, the binding property between food materials is effectively improved and the food materials are bound to each other as compared with pullulan alone. Since it exhibits excellent characteristics such as good workability, it is suitably used as an active ingredient of the binder of the present invention.
  • the characteristic (D) that the water-soluble dietary fiber content determined by high performance liquid chromatograph (enzyme-HPLC method) is 40% by mass or more. What has it is mentioned.
  • “High-performance liquid chromatographic method (enzyme-HPLC method)” (hereinafter simply referred to as “enzyme-HPLC method”) for determining the content of water-soluble dietary fiber is the name of Ministry of Health and Welfare Notification No. 146 dated May 20, 1996.
  • a sample for gel filtration chromatography is prepared by decomposing the sample by a series of enzyme treatments with heat-stable ⁇ -amylase, protease, and glucoamylase, and removing proteins, organic acids, and inorganic salts from the treatment solution with an ion exchange resin. Prepare the solution. Next, it is subjected to gel filtration chromatography, and the peak areas of undigested glucan and glucose in the chromatogram are obtained. The respective peak areas and glucose in the sample solution obtained separately by the glucose oxidase method by a conventional method are obtained. The amount is used to calculate the water soluble dietary fiber content of the sample.
  • water-soluble dietary fiber content means the water-soluble dietary fiber content determined by the “enzyme-HPLC method” unless otherwise specified.
  • the water-soluble dietary fiber content indicates the content of ⁇ -glucan that is not degraded by ⁇ -amylase and glucoamylase, and the characteristic (D) shows the structure of the branched ⁇ -glucan mixture as a whole by enzymatic methods. It is one of the characteristic indicators.
  • the water-soluble dietary fiber content is 40% by mass or more and less than 100% by mass, preferably 50% by mass or more and less than 95% by mass, and more preferably 60% by mass or more and 90% by mass.
  • the branched ⁇ -glucan mixture of less than 70% by mass and more preferably less than 85% by mass has good compatibility with pullulan and is more preferably used as an active ingredient of the binder according to the present invention.
  • a more preferable example of the branched ⁇ -glucan mixture used in the present invention includes a branched ⁇ -glucan mixture having the following characteristics (E) and (F).
  • the characteristics (E) and (F) can be confirmed by methylation analysis.
  • E) the ratio of ⁇ -1,4 linked glucose residues to ⁇ -1,6 linked glucose residues is in the range of 1: 0.6 to 1: 4;
  • methylation analysis is a generally used method for determining the binding mode of monosaccharides constituting polysaccharides or oligosaccharides (Ciucanu et al., “Carbohydride et al.”). Rate Research (Carbohydrate Research), Vol. 131, No. 2, pages 209 to 217 (1984)).
  • Rate Research Carbohydrate Research
  • methylation analysis is applied to analysis of glucose binding mode in glucan, first, all free hydroxyl groups in glucose residues constituting glucan are methylated, and then fully methylated glucan is hydrolyzed.
  • methylated glucose obtained by hydrolysis is reduced to form methylated glucitol from which the anomeric form has been eliminated, and further, a free hydroxyl group in this methylated glucitol is acetylated to give partially methylated glucitol acetate (note that , “Partially methylated glucitol acetate” is sometimes simply referred to as “partially methylated product”).
  • Partially methylated glucitol acetate is sometimes simply referred to as “partially methylated product”.
  • the abundance ratio of glucose residues having different binding modes in the glucan that is, the abundance ratio of each glucoside bond can be determined from the peak area%.
  • “Ratio” for partially methylated product means “ratio” of peak area in gas chromatogram of methylation analysis
  • “%” for partially methylated product means “area%” in gas chromatogram of methylated analysis.
  • the “ ⁇ -1,4-bonded glucose residue” in the above (E) and (F) means the glucose residue bonded to other glucose residues only through the hydroxyl groups bonded to the 1st and 4th carbon atoms. It is detected as 2,3,6-trimethyl-1,4,5-triacetylglucitol in methylation analysis.
  • the “ ⁇ -1,6-bonded glucose residue” in the above (E) and (F) is bonded to other glucose residues only through the hydroxyl groups bonded to the 1st and 6th carbon atoms. It is a glucose residue and is detected as 2,3,4-trimethyl-1,5,6-triacetylglucitol in methylation analysis.
  • Ratio of ⁇ -1,4-bonded glucose residue and ⁇ -1,6-bonded glucose residue obtained by methylation analysis, and ⁇ -1,4-bonded glucose residue and ⁇ -1,6 bond The ratio of the glucose residues to the total glucose residues can be used as one of the indicators for characterizing the structure of the branched ⁇ -glucan mixture used in the present invention as a whole by chemical methods.
  • the characteristic that the ratio of the ⁇ -1,4-bonded glucose residue to the ⁇ -1,6-bonded glucose residue is in the range of 1: 0.6 to 1: 4 in (E) above is 2,3,6-trimethyl-1,4,5-triacetylglucitol and 2,3,4-trimethyl-1, detected when the branched ⁇ -glucan mixture used in the invention is subjected to methylation analysis It means that the ratio of 5,6-triacetylglucitol is in the range of 1: 0.6 to 1: 4.
  • ⁇ - located at the non-reducing end not present in starch
  • a branched ⁇ -glucan mixture having a considerable amount of “1,6-linked glucose residues” is preferably used as the branched ⁇ -glucan mixture used in the present invention.
  • branched ⁇ -glucan mixture used in the present invention, a branched ⁇ -glucan mixture having the following properties (G) and (H) in addition to the above properties (A) to (F) can be mentioned. It is done. The characteristics (G) and (H) can also be confirmed by methylation analysis.
  • (G) ⁇ -1,3 linked glucose residues are 0.5% or more and less than 10% of all glucose residues; and (H) ⁇ -1,3,6 linked glucose residues are all glucose residues. 0.5% or more of the group.
  • the ⁇ -1,3-bonded glucose residue is 0.5% or more and less than 10% of all glucose residues
  • the hydroxyl group at the C-1 position and the hydroxyl group at the C-3 position This means that the glucose residues bound to other glucose via only the glucose are present in the range of 0.5% to less than 10% of the total glucose residues constituting the glucan.
  • the branched ⁇ -glucan mixture having the above characteristic (G) can be preferably used in the present invention, and among them, ⁇ -1,3-linked glucose residues are in the range of 1 to 3% of the total glucose residues.
  • a branched ⁇ -glucan mixture is more preferably used in practicing the present invention.
  • the ⁇ -1,3,6-bonded glucose residue is 0.5% or more of all glucose residues
  • the branched ⁇ -glucan mixture having the above property (H) can be preferably used in the present invention.
  • the ⁇ -1,3,6-linked glucose residue is one of all glucose residues constituting the glucan.
  • a branched ⁇ -glucan that is 10% to 10%, preferably a branched ⁇ -glucan in the range of 1 to 7% is more preferably used in the practice of the present invention.
  • the ⁇ -1,3-linked glucose residue can be analyzed based on “2,4,6-trimethyl-1,3,5-triacetylglucitol” detected in methylation analysis,
  • the fact that “ ⁇ -1,3-linked glucose residues are 0.5% or more and less than 10% of all glucose residues” defined by the characteristic (G) means that the branched ⁇ -glucan mixture used in the present invention is methylated
  • 2,4,6-trimethyl-1,3,5-triacetylglucitol is present at 0.5% to less than 10% of the partially methylated glucitol acetate. it can.
  • ⁇ -1,3,6-linked glucose residues can be analyzed based on “2,4-dimethyl-1,3,5,6-tetraacetylglucitol” detected in methylation analysis.
  • the above-mentioned property (H) defines that “the ⁇ -1,3,6-linked glucose residue is 0.5% or more of the total glucose residues” means that the branched ⁇ -glucan mixture used in the present invention is methylated.
  • 2,4-dimethyl-1,3,5,6-tetraacetylglucitol is present at 0.5% or more but less than 10% of partially methylated glucitol acetate when subjected to chemical analysis. Can do.
  • the branched ⁇ -glucan mixture used in the present invention can be characterized by the weight average molecular weight (Mw) and the value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn). it can.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) can be determined using, for example, size exclusion chromatography.
  • the average glucose polymerization degree of the branched ⁇ -glucan molecules constituting the branched ⁇ -glucan mixture can be calculated based on the weight average molecular weight (Mw)
  • the branched ⁇ -glucan mixture used in the present invention has an average glucose It can also be characterized by the degree of polymerization.
  • the average glucose polymerization degree can be obtained by subtracting 18 from the weight average molecular weight (Mw) and dividing the molecular weight by 162 which is the amount of glucose residue.
  • the branched ⁇ -glucan mixture used in the present invention preferably has an average glucose polymerization degree of usually 8 to 500, preferably 15 to 400, more preferably 20 to 300.
  • the branched ⁇ -glucan mixture used in the present invention exhibits the same properties as ordinary glucan in that the viscosity increases as the average glucose polymerization degree increases, and the viscosity decreases as the average glucose polymerization degree decreases. Therefore, when importance is attached to the viscosity, a branched ⁇ -glucan mixture having a desired average glucose polymerization degree may be appropriately selected and used.
  • Mw / Mn which is a value obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn), the closer to 1, the smaller the variation in the degree of glucose polymerization of the branched ⁇ -glucan molecules constituting the branched ⁇ -glucan mixture.
  • Mw / Mn the weight average molecular weight
  • Mn number average molecular weight
  • the branched ⁇ -glucan mixture used in the present invention may be produced by any method as long as it has the characteristics (A) to (C).
  • a branched ⁇ -glucan mixture obtained by allowing an enzyme having an action of introducing sucrose to act on starch can be suitably used in the practice of the present invention.
  • WO2008 / 136331 Pamphlet And a branched ⁇ -glucan mixture obtained by allowing ⁇ -glucosyltransferase disclosed in (1) to act on starch.
  • liquefied ⁇ -amylase EC 3.2.1.1
  • saccharified ⁇ -amylase EC 3.2.1.1
  • maltotetraose-producing amylase EC 3.2.1.60
  • amylase such as maltohexaose-producing amylase (EC 3.2.1.98)
  • isoamylase EC 3.2.1.68) and pullulanase (EC 3.2.1).
  • the molecular weight of the branched ⁇ -glucan mixture can be reduced, so that the molecular weight, the degree of glucose polymerization and the like can be adjusted to a desired range. Furthermore, the degree of polymerization disclosed in cyclomaltodextrin glucanotransferase (EC 2.4.1.19), starch branching enzyme (EC 2.4.1.18), and JP-A No. 2014-054221.
  • a branched ⁇ -glucan mixture used in the present invention is formed by using two or more ⁇ -1,4 glucans together with an enzyme having an activity of transferring ⁇ -1,6 to an internal glucose residue of starch.
  • -Glucan can be further branched to increase the water-soluble dietary fiber content of the branched ⁇ -glucan mixture. It is also optional to make a branched ⁇ -glucan mixture in which a saccharide hydrolase such as glucoamylase is further allowed to act on the branched ⁇ -glucan mixture thus obtained to further increase the water-soluble dietary fiber content. Furthermore, a trehalose structure is introduced into the reducing end of the branched ⁇ -glucan constituting the branched ⁇ -glucan mixture by allowing a glycosyl trehalose producing enzyme (EC 5.4.99.15) to act on such a branched ⁇ -glucan mixture.
  • a glycosyl trehalose producing enzyme EC 5.4.99.15
  • the reducing power of the branched ⁇ -glucan molecule may be reduced by reducing the reducing end of the branched ⁇ -glucan molecule by hydrogenation, etc., or by performing fractionation by size exclusion chromatography or the like. It is also optional to obtain a branched ⁇ -glucan mixture having a molecular weight distribution that falls within this range.
  • the branched ⁇ -glucan mixture used in the present invention is as described above, but the branched ⁇ -glucan mixture sold as isomaltextrin (trade name “Fiber Rixa”) by Hayashibara Co., Ltd. Can be used as an optimal branched ⁇ -glucan mixture.
  • the binding agent of the present invention comprises the pullulan and the branched ⁇ -glucan mixture in a mass ratio in terms of anhydride [pullulan / branched ⁇ -glucan mixture] of about 1.5 to about 4, preferably About 1.6 to about 3, more preferably about 1.7 to about 3, and even more preferably about 2 to about 3.
  • anhydride pulseulan / branched ⁇ -glucan mixture
  • the binder containing the pullulan and branched ⁇ -glucan mixture in the above mass ratio is not only pullulan alone but also a component other than pullulan, a water-soluble dietary fiber such as indigestible dextrin, polydextrose, inulin, or Compared with starch hydrolysates such as dextrin and starch syrup, it has excellent binding properties between food materials, and if the binder of the present invention is used, shape retention, storage stability, impact resistance, etc. Can be produced easily with good yield on an industrial scale.
  • the total of the pullulan and the branched ⁇ -glucan mixture having the above-mentioned characteristics in terms of anhydride is usually about 90% by mass or more, preferably about 90% by mass or more. Is about 95% by mass or more and 100% by mass or less, more preferably about 98% by mass or more and 100% by mass or less.
  • the expected effect of the binder of the present invention is obtained. This is not preferable because it may be significantly reduced or not exhibited.
  • the total of pullulan and the branched ⁇ -glucan mixture is generally about 10 to about 30% by mass, more preferably about 10 to about 20% by mass. %, More preferably from about 10 to about 15% by weight, and even more preferably from about 10 to about 13% by weight.
  • the total amount of pullulan and the branched ⁇ -glucan mixture in the aqueous solution is less than 10% by mass, the expected effect of the binding agent of the present invention is significantly reduced or cannot be exhibited. This is not preferable.
  • the total amount of pullulan and the branched ⁇ -glucan mixture in the aqueous solution exceeds 30% by mass, an effect corresponding to the blending amount cannot be expected, and the cost is not preferable.
  • the binder-molded food of the present invention is a binder-molded food in which small and / or granular food materials are binder-molded using the binder, and the food materials are bound to each other.
  • This is a binder-molded food that is binder-molded through an adhesive.
  • the amount of the binder contained in the binder-molded food of the present invention is usually about 0.1 to about 30% by mass, more preferably about 1 to about 30% by mass in terms of anhydride, based on the solid content of the food material. 20% by weight, more preferably about 2 to about 10% by weight.
  • the amount of the binder contained in the binder molded food is less than 0.1% by mass in terms of anhydride per solid content of the food material, the shape retention of the binder molded food of the present invention Properties, storage stability, handleability, impact resistance, and product life are significantly reduced or cannot be exhibited.
  • the amount of the binder contained in the binder-molded food exceeds 30% by mass in terms of anhydride, based on the solid content of the food material, it is difficult to expect an effect corresponding to the blending amount. It is not preferable in terms of cost.
  • the food material constituting the binder-molded food of the present invention is mainly food materials that can be eaten by humans, especially dry food materials (including materials such as freeze-dried food and dried baby food). means.
  • the binder-molded food of the present invention can be in a form applicable to animals other than humans.
  • a known feed material including pet food
  • feed material can be used instead of the food material.
  • food materials that can be eaten by humans will be mainly described as food materials constituting the binder-shaped food of the present invention.
  • puffed cereals puffed rice, rice crackers, carbonated rice crackers, gouffle, pon confectionery, corn flakes, popcorn, rice cakes (rice cakes, Chestnuts, lightning, rocks, etc.), oysters, chicks, etc.]
  • pregelatinized rice dried noodles (dried products such as udon, buckwheat, Chinese noodles, pasta), instant dried noodles, and their breaks and breaks Or crushed materials
  • snacks biscuits, dry bread, crackers, potato chips, pretzels, etc.
  • granola dried castella, dried sponge cake, and their broken, broken or crushed materials
  • dried seeds almonds, cashews) , Hazelnut, brazil nut, pecan nut, ginnan, chestnut, walnut, coconut, pistachio, -Nuts, pecans, rice, barley, wheat, millet (dried products such as strawberries, strawberries, buckwhe
  • the food material can be used as it is, but when the moisture content exceeds 10% by mass, the moisture content of the food material is usually less than 10% by mass, preferably by a known appropriate drying method. Is preferably adjusted to be less than 5% by mass, more preferably less than 3% by mass.
  • the binder-molded food of the present invention contains polysaccharides (carrageenan, pectin, gum arabic, xanthan gum, gellan gum, agar, tragacanth gum, tamarind seed as components other than the pullulan and branched ⁇ -glucan mixture used in the present invention.
  • sweeteners saccharin, stevioside, stevia extract, etc.
  • preservative coloring
  • coloring One or two or more appropriate amounts of agents, stabilizers, flavoring agents, fats and oils, and the like can be combined in an appropriate combination. What is necessary is just to set suitably as a compounding quantity of the said other component based on the kind and the kind, shape, size, etc. of the target binder-shaped food, and usually each component is bound in terms of anhydride.
  • the other components are added in a necessary amount at one or more steps until the binder-shaped food of the present invention is completed, or divided into appropriate amounts and divided into a plurality of times for the total amount. Can be added.
  • Each of the above components is a known process such as mixing, mixing, kneading, dipping, spraying, spraying, applying, pouring, etc., in one or more steps until the production of the binder-shaped food of the present invention is completed.
  • One or two or more methods can be added / mixed as appropriate.
  • preservative examples include amino acids such as glycine, alanine and polylysine; salt, acetate, citrate, calcium carbonate, potassium carbonate, sodium carbonate, calcium oxide, calcium hydroxide, disodium phosphate, phosphoric acid Salts such as tripotassium and potassium sorbate; acids such as sorbic acid, benzoic acid, paraoxybenzoic acid esters, propionic acid; and natural such as garlic juice, plum extract, salmon extract, propolis extract, fermented milk, egg white lysozyme Examples include mold preservatives.
  • colorant examples include red potato, crab shell powder, astaxanthin, vegetable pigment, red potato pigment, concentrated faffia pigment oil, gardenia yellow, brownish brown, cochineal pigment, gardenia yellow pigment, gardenia blue pigment, flavonoid pigment, caramel Pigments, ⁇ -carotene, carotenoid pigments, natural pigments such as charcoal; and Red No. 2, Red No. 3, Red No. 104, Red No. 105, Red No. 106, Yellow No. 4, Yellow No. 5, Blue No. 1, Dioxide
  • a synthetic colorant such as titanium can be exemplified.
  • stabilizer examples include cyclic tetrasaccharide, ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin and the like.
  • flavoring agent examples include reducing monosaccharides such as glucose, fructose, palatinose (isomaltulose), maltose, isomaltose, maltotriose, isomaltotriose, panose, maltotetraose, maltopentaose.
  • oligosaccharides sorbitol, maltitol, isomaltitol, trehalose ( ⁇ , ⁇ -trehalose, ⁇ , ⁇ -trehalose, or ⁇ , ⁇ -trehalose), lactitol, panitol, sucrose, raffinose, erulose, lactosucrose, ⁇ - Sugar alcohol and non-reducing oligosaccharides such as glycosyl trehalose, ⁇ -glycosyl- ⁇ -glycoside, ⁇ -glycosyl sucrose; sugar-bound starch syrup, maltose-rich syrup, trehalose-rich syrup, maltotetraose-rich syrup Mixed sugar-containing syrup such as panose-rich syrup, lactosucrose-rich syrup, maltitol-rich syrup; high-intensity sweeteners (saccharin, aspartame, acesulfame K, sucralose, neotame
  • oils examples include salad oil, cacao butter, rapeseed oil, soybean oil, sunflower seed oil, peanut oil, rice bran oil, corn oil, safflower oil, olive oil, grape seed oil, sesame oil, evening primrose oil, palm oil, shea Vegetable oils such as fat, monkey fat, cacao butter, coconut oil, palm kernel oil, margarine; animal fats such as milk fat, beef tallow, lard, fish oil, whale oil, butter; Or, two or more kinds of mixed oils; and processed fats and oils obtained by curing these oils and fats, fractionally distilling them, and performing transesterification and the like can be exemplified.
  • the amount of animal and vegetable oil and fat and the amount of sugar (anhydrous equivalent) when coating the food material are usually about 5% by mass or more, preferably about 10 to about 30 with respect to the food material. % By weight, more preferably from about 10 to about 20% by weight, and even more preferably from about 10 to about 15% by weight.
  • carbohydrate examples include reducing properties such as glucose, fructose, sucrose, palatinose (isomaltulose), maltose, isomaltose, panose, maltotriose, maltotetraose, maltopentaose, and powdered reduced maltose starch syrup.
  • Monosaccharides and oligosaccharides sorbitol, maltitol, isomaltitol, trehalose ( ⁇ , ⁇ -trehalose, ⁇ , ⁇ -trehalose, or ⁇ , ⁇ -trehalose), lactitol, panitol, sucrose, raffinose, defendingose, lactosucrose , ⁇ -glycosyl trehalose, ⁇ -glycosyl- ⁇ -glycoside, ⁇ -glycosyl sucrose and other sugar alcohols and non-reducing oligosaccharides; rare sugars (D-allose, D-psylose, D-tagatose, erythritol, xylitol, etc.) , Syrup, sugar-bound syrup, maltose-rich syrup, trehalose-rich syrup, maltotetraose-rich syrup, panose-rich syrup, lactosucrose-rich syrup, mixed sugar-
  • the shape, shape, and size of the binder-molded food of the present invention is usually spherical, hemispherical, cubic, rectangular, polygonal, and easily sized for human consumption.
  • examples include an ellipsoidal shape, a gourd shape, a columnar shape, a plate shape, a rod shape (a bar shape such as a serial bar and a granola bar), a conical shape, a triangular pyramid shape, and a quadrangular pyramid / pyramid shape.
  • the size that the human can easily ingest is usually a size of 5 cm or less, preferably 0.01 to 3 cm, more preferably 0.05 to 1 cm, and still more preferably 0.1 to 0.5 cm. Means.
  • Such a binder-molded food of the present invention is a binder-molded food with a high bulk density that is excellent in shape retention, storage stability, and impact resistance, and is being transported, stored, and distributed in stores. It has excellent characteristics such as excellent impact resistance and handling, and long product life.
  • the said manufacturing method is a manufacturing method of a binder-shaped foodstuff including the process of making the binder of this invention adhere to the surface of a small-piece-like and / or granular food material.
  • the food material having the shape, form and size described above is used as the above-mentioned small piece and / or granular food material.
  • a food material can be used as it is, but if necessary, for example, by blowing warm air or hot air at room temperature or above room temperature under normal pressure or reduced pressure to the food material, What adjusted the content to 10 mass% or less normally is used suitably.
  • drying of the said food material is not limited to 1 process, It is also optional to implement in 2 processes or more.
  • the food material after the moisture adjustment can be used as it is, but when the surface of the food material is porous or hygroscopic, the surface of the food material has animal and vegetable oils and / or carbohydrates.
  • the surface of the food material may be coated, adhered, sprayed, sprayed or applied so as to be 10 to about 15% by weight.
  • the amounts of animal and vegetable oils and saccharides (anhydride equivalent) used for coating are usually about 5% by mass or more, preferably about 10 to about 30% by mass, more preferably about It is 10 to about 20% by mass, more preferably about 10 to about 15% by mass.
  • the animal and vegetable oils and / or sugars may be simply adhered, spread, sprayed or applied to the surface, but preferably, the animal and vegetable oils and / or sugars are adhered to the surface, dispersed, sprayed,
  • the applied food material is usually 80 ° C. or higher, preferably 90 to 150 ° C., more preferably 100 to 130 ° C., 5 to 30 minutes, preferably 5 to 20 minutes, more preferably. Is heated for 10-20 minutes and then allowed to cool to room temperature to form a relatively homogeneous coating of animal and vegetable oils and / or sugars on the surface of the crushed and / or granular food material.
  • the binding agent On the surface of the food material without substantially penetrating the tissue Rate well retained advantage can be attached can be obtained.
  • the binding property and moldability of the food materials are enhanced, and a binder molded food product having a high bulk density can be obtained, and its shape retention / storage stability and impact resistance can be improved more effectively.
  • the step of attaching the binder to the surface of the small and / or granular food material in the method for producing a binder-shaped food according to the present invention means that the binder is added under the temperature condition at room temperature or higher. Means the process of bringing into contact with food materials and attaching the binding agent to part or all of its surface. Usually used in the production of binder-shaped foods, mixing, blending, kneading, spraying, spraying, application Or the means to immerse can be used individually or in combination of those suitably. Specifically, when the binder used in the present invention is in a powder form, the binder is adhered to the surface of the food material by appropriate means.
  • the binder in the form of an aqueous solution is mixed, mixed or kneaded with the food material, or the binder is sprayed on the surface of the food material, sprayed, Or it is preferable to apply
  • the amount of the binder to be attached is preferably about 0.1 to about 30% by mass, more preferably about 1 to about 20% by mass, and more preferably, in terms of anhydride, based on the solid content of the food material. Is preferably in the range of about 2 to about 10 weight percent.
  • the amount of the binder to be adhered is less than about 0.1% by mass, the intended action and effect as the binder may be significantly reduced or may not be exhibited, which is not preferable. Further, when the amount of the binder to be adhered exceeds about 30% by mass, it is not possible to expect an effect corresponding to the blending amount, and it is not preferable in terms of cost.
  • the method for producing a binder-shaped food according to the present invention may include a step of molding the small and / or granular food material having the binder attached on the surface thereof. That is, the method for producing a binder-molded food according to the present invention includes a step of attaching a binder to the surface of a small piece and / or granular food material. Shape, rectangular parallelepiped shape, gourd shape, ellipsoidal shape, columnar shape, plate shape, rod shape (bar shape such as cereal bar, granola bar), conical shape, triangular pyramid shape, quadrangular pyramid / pyramid shape, etc.
  • the food materials can include a step of binding and molding via a binder.
  • the binder-molded food of the present invention is produced on an industrial scale, it is disclosed in, for example, JP-A-5-328903, JP-A-6-303907, JP-A-6-327409, and the like.
  • An apparatus for producing a fatty oily confectionery food can be used as appropriate.
  • the binder-molded product is further dried and / or dried after the step of binding-molding the food material. It is also optional to provide a heating step.
  • a heating step As the drying and / or heating step, a known method usually used in this field can be applied.
  • the temperature in the drying step is usually room temperature or higher, preferably 50 ° C. or higher, more preferably 60 to 150 ° C., further preferably 70 to 120 ° C., and still more preferably 70 to 110.
  • a temperature of 80 ° C., more preferably 80 to 110 ° C. is employed.
  • the temperature in the heating step is usually 70 ° C.
  • the temperature is preferably 100 to 140 ° C, more preferably 100 to 130 ° C.
  • the time for drying or heating the food material is usually within 60 minutes, preferably 5 to 40 minutes, more preferably 5 to 30 minutes, and even more preferably 5 to 20 minutes. Desirable from the viewpoint of energy efficiency.
  • the said drying process can also be implemented under pressure reduction conditions.
  • the drying step is not limited to one step and is carried out in two or more steps, and the water content of the binder molded product as the final product is usually 10% by mass or less, preferably 3 to Adjust to a range of 7% by mass. If the moisture content of the binder molded product is less than 3% by mass, the binder molded product becomes too hard, which is not preferable. Conversely, if the moisture content exceeds 10% by mass, the binder molded product becomes soft. It is not preferable because it is too long or has poor storage stability.
  • the food materials can be uniformly formed as a whole, regardless of the type, shape, and size of the food materials, the appearance is good, the bulk density is high, and the High quality binder-molded foods with excellent formability, storage stability and impact resistance can be manufactured easily and stably with good yield and work efficiency.
  • the characteristics of the binder, the bound molded food, and the method for producing the bound molded food of the present invention described above are summarized as follows.
  • the binder-molded food of the present invention is formed by uniform binding of food materials as a whole, has a good appearance, has a high bulk density, is excellent in shape retention / storage stability, and impact resistance. Excellent in impact resistance and handling during transportation, storage, and distribution at stores, and has a relatively long product life.
  • the production method of the present invention can produce a binder-molded food having the excellent characteristics shown in (1) with high yield, efficiently and stably at low cost.
  • the binder of the present invention makes it possible to provide the binder molded food and the method for producing the same as shown in the above (1) and (2).
  • the said binder is by no means limited only to such a use.
  • Other uses of the binder include, for example, binding, bonding, and covering materials such as foods, chemicals, cosmetics, chemicals, pharmaceuticals, quasi drugs, feeds, feeds, and other raw materials. Can be illustrated.
  • the mold surface is leveled with a stainless steel spatula, and the dents are filled with the small pieces of gophers, and the gophers are bonded to each other (this series of operations is called “molding operation”).
  • the mold containing the small piece gouffle is inverted, and a vibration is applied, and a hemispherical gouffle mass is extracted from the opening of the mold (this series of operations is referred to as “demolding operation”). ), And heated at 100 ° C. for 20 minutes to obtain a binder molded food.
  • the control was prepared in the same manner as described above using an aqueous solution containing only pullulan.
  • the bulk density is “good (high)” and “equivalent” when “the number is small”, “the number is the same”, and “the number is large”, respectively. And “Inferior (Low)”.
  • the fact that the number of binder molded products obtained after the molding operation is smaller than that of the control means that the mass of the food material filled in each depression of the mold is large, that is, one binder molded product. This means that the bulk density per hit is high.
  • Each of the evaluation items (A) to (D) was evaluated by skilled craftsmen in the following three stages A to C.
  • the binder molded foods obtained using the test samples 2 to 18 were evaluated as “B” or “C” in the evaluation items (A) to (C), that is, as a control. It was evaluated that it was almost the same as the case of using the aqueous solution of 1, or inferior (low) compared to the case of using the aqueous solution of the control. On the other hand, in the case of the test sample 1, the evaluation items (a) to (c) were all evaluated as “A”, that is, all were higher than when the control aqueous solution was used.
  • test samples 2 to 18 were evaluated as “C”, that is, inferior (lower) compared to the case of using the control aqueous solution, whereas the test sample In the case of 1, it was evaluated as “A”, that is, higher than when the control aqueous solution was used. Specifically, in the case of the test sample 1, the bulk density was about 10% higher than the control. In addition, the bulk density was evaluated based on the number of hemispherical gouffle lumps obtained by the molding operation and the number of control gouffle lumps as shown in the evaluation item (d).
  • the bulk density was higher than that of the binder-molded foods obtained using the test samples 2 to 18 because the test sample 1 was adhered to the surface of the small piece goofle.
  • the goules have good binding properties, and each of the dents in the mold is more densely packed with the small pieces of gourds, whereas the small pieces of gourds with the test samples 2 to 18 attached to the surfaces thereof.
  • the binding property between the goofles was inferior, the amount of small piece-like gourds filled in each depression was small, and as a result, the bulk density of the obtained binder-molded food was inferior to that of the control. (Low) result.
  • test samples 2 to 18 have none of the evaluation items (A) to (D) evaluated as “A”, and conversely, the items evaluated as “C”. There was one or more.
  • the total solid content concentration (mass%) of the pullulan and branched ⁇ -glucan mixture is in the range of 5 to 19% by mass, and the anhydride of the pullulan and branched ⁇ -glucan mixture.
  • the mass ratio in terms of conversion was in the range of 1.9 to 2.0.
  • the binder-molded foods obtained using test samples 19 to 21 are all “A” in terms of the workability of the evaluation item (a), that is, better than when the control aqueous solution is used. (High).
  • the binder molded food prepared using the test sample 22 and the test sample 23 was “B”, that is, almost equivalent to the case where the control aqueous solution was used.
  • test samples 19, 20, 22, and 23 it was evaluated that the retention of the evaluation item (A) was “B”, that is, almost the same as when the control aqueous solution was used.
  • evaluation in the case of the test sample 21 was evaluated as “A”, that is, better (higher) than the case of using the control aqueous solution.
  • all of the binder-molded foods prepared using the test samples 20 to 23, excluding the test sample 19, have a texture of the evaluation item (c) of “A”, that is, compared to the case of using the control aqueous solution, It was evaluated as good (high).
  • all of the binder-shaped foods prepared using the test samples 20 to 23 except the test sample 19 have a bulk density of “A” as the evaluation item (d), that is, use a control aqueous solution. It was evaluated as good (high) compared to
  • the test samples 20 to 23 that is, the mass ratio in terms of anhydride of the pullulan and branched ⁇ -glucan mixture is 2.0, and the total solid content of the pullulan and branched ⁇ -glucan mixture In the aqueous solution having a concentration of 10% by mass or more, preferably 10 to 19% by mass, among the four items of the evaluation items (A) to (D), two or more items were evaluated as “A”. It can be evaluated that the test samples 20 to 23 are extremely excellent as a binder used in the production of a binder molded food.
  • the binder molded foods obtained using the test samples 24 to 29 all have a workability of the evaluation item (a) of “A”, that is, a control aqueous solution. It was evaluated as good (high) compared to the case.
  • all of the binder-shaped foods prepared using the test samples 30 to 32 were evaluated as “B”, that is, equivalent to the case where the control aqueous solution was used.
  • the shape retention of the evaluation item (A) is “B”, that is, when the control aqueous solution is used. Evaluated as equivalent.
  • the binder-molded food prepared using the test sample 28 was evaluated as being good (high) in comparison with the case where the shape-retaining property of the evaluation item (A) was “A”, that is, using the control aqueous solution.
  • the binder-molded food prepared using the test sample 24 and the test sample 25 is evaluated as having a texture of the evaluation item (c) of “C”, that is, inferior to the case of using the control aqueous solution.
  • the texture of the evaluation item (c) was evaluated as “B”, whereas when the test samples 27 to 29 were used, all “A”, That is, compared with the case where the control aqueous solution was used, it was evaluated as good (highly evaluated.
  • all of the binder-shaped foods prepared using the test samples 24 and 25 and the test samples 30 to 32 were evaluated items ( While the bulk density of D) was evaluated as “C”, all of the binder-molded foods prepared using the test samples 26 to 29 had a bulk density of “A” as the evaluation item (D). It was evaluated as good (high) compared to the case where the control aqueous solution was used.
  • the test sample 26 to 29 that is, the mass ratio [pullulan / branched ⁇ -glucan mixture] of pullulan and the branched ⁇ -glucan mixture in terms of anhydride is 1.5. It has been found that an aqueous solution in the range of 4.0 to 4.0 is excellent as a binder for producing a binder-molded food.
  • the test sample 27 to 29 that is, the mass ratio [pullulan / branched ⁇ -glucan mixture] of pullulan and the branched ⁇ -glucan mixture in terms of anhydride is 1.5 to 2
  • An aqueous solution in the range of .8 was found to be better as a binder for producing binder-shaped foods.
  • the mass ratio in terms of anhydride of the pullulan and branched ⁇ -glucan mixture is about 1.5 to about 4, and the total solid content concentration of the pullulan and branched ⁇ -glucan mixture
  • an aqueous solution of about 10 to about 20% by weight is useful as the binder of the present invention, and in particular, the weight ratio of pullulan and branched ⁇ -glucan mixture in terms of anhydride is from about 1.5 to about
  • the aqueous solution in the range of 3 was judged to be particularly useful as the binder of the present invention.
  • a binder for uniformly binding food materials a binder containing pullulan and a branched ⁇ -glucan mixture in a specific mass ratio in terms of anhydride.
  • (a) workability, (b) shape retention, (c) texture, and (d) bulk density of the binder-molded food are significantly improved or improved. It has been found that high-quality binder-molded foods can be easily manufactured with good yield on an industrial scale with good workability.
  • Glucose is used as a constituent sugar.
  • B Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an ⁇ -1,4 bond via a bond other than an ⁇ -1,4 bond. It has a branched structure with a glucose polymerization degree of 1 or more.
  • C Isomaltose is digested to produce about 40% by mass of isomaltose per solid content of the digest.
  • D The water-soluble dietary fiber content determined by high performance liquid chromatography (enzyme-HPLC method) is about 80% by mass.
  • a shard of gourd obtained by pulverizing a commercially available goofle (manufactured by Kobe Fugetsu Co., Ltd.) with a crusher so that one side of the shard is about 1 to about 2 mm.
  • 150 g of salad oil and 150 g of maltose are added in order, heated at 130 ° C.
  • the binder of the present invention is added to a small piece of gourd Disperse and adhere almost uniformly to the surface, fill a plastic mold with a plurality of hemispherical depressions with a diameter of about 3 cm, level the mold surface flatly with a stainless steel spatula, and bind the pieces of goofles together
  • the hemispherical gourd lump obtained was taken out of the mold, placed in an oven, and heated at 100 ° C. for 20 minutes to obtain the binder-molded food of the present invention.
  • This product retains its shape and flavor almost immediately after being stored for more than 6 months at room temperature, and has excellent texture, texture, shape retention / storage stability, and impact resistance. It is a binder molded food product having a bulk density.
  • Glucose is used as a constituent sugar.
  • B Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an ⁇ -1,4 bond via a bond other than an ⁇ -1,4 bond. It has a branched structure with a glucose polymerization degree of 1 or more.
  • C Isomaltose is digested to produce about 35% by mass of isomaltose based on the solid content of the digest.
  • D The water-soluble dietary fiber content determined by high performance liquid chromatography (enzyme-HPLC method) is about 76% by mass.
  • (E) The ratio of ⁇ -1,4-bonded glucose residues to ⁇ -1,6-bonded glucose residues is about 1: 1.3.
  • (F) The sum of ⁇ -1,4-bonded glucose residues and ⁇ -1,6-bonded glucose residues occupies about 70% of all glucose residues.
  • (G) The ⁇ -1,3-linked glucose residues are 3.0% of the total glucose residues.
  • (H) ⁇ -1,3,6-linked glucose residues are 4.8% of all glucose residues.
  • the weight average molecular weight (Mw) by molecular weight distribution analysis based on the gel filtration high performance liquid chromatogram is about 6,200 daltons.
  • This product retains its shape and flavor almost immediately after being stored for more than 6 months at room temperature, and has excellent texture, texture, shape retention / storage stability, and impact resistance. It is a binder molded food product having a bulk density.
  • Glucose is used as a constituent sugar.
  • B Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an ⁇ -1,4 bond via a bond other than an ⁇ -1,4 bond. It has a branched structure with a glucose polymerization degree of 1 or more.
  • C Isomaltose is produced by digestion with isomalt dextranase to produce about 45% by mass of isomaltose based on the solid content of the digest.
  • the water-soluble dietary fiber content determined by high performance liquid chromatography is about 85% by mass.
  • E The ratio of ⁇ -1,4-bonded glucose residues to ⁇ -1,6-bonded glucose residues is about 1: 2.
  • F The sum of ⁇ -1,4-bonded glucose residues and ⁇ -1,6-bonded glucose residues occupies about 80% of all glucose residues.
  • G ⁇ -1,3-linked glucose residues are 1.4% of all glucose residues.
  • the ⁇ -1,3,6-linked glucose residues are 1.7% of the total glucose residues.
  • G The weight average molecular weight (Mw) by molecular weight distribution analysis based on the gel filtration high performance liquid chromatogram is about 10,000 Daltons.
  • This product retains its shape and flavor almost immediately after being stored for more than 6 months at room temperature, and has excellent texture, texture, shape retention / storage stability, and impact resistance. It is a binder molded food product having a bulk density.
  • Glucose is used as a constituent sugar.
  • B Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an ⁇ -1,4 bond via a bond other than an ⁇ -1,4 bond. It has a branched structure with a glucose polymerization degree of 1 or more.
  • C Isomaltose is digested to produce about 47% by mass of isomaltose based on the solid content of the digest.
  • D The water-soluble dietary fiber content determined by high performance liquid chromatography (enzyme-HPLC method) is about 63% by mass.
  • the weight average molecular weight (Mw) by molecular weight distribution analysis based on gel filtration high performance liquid chromatogram is about 1,000 Daltons.
  • This product retains its shape and flavor almost immediately after being stored for more than 6 months at room temperature, and has excellent texture, texture, shape retention / storage stability, and impact resistance. It is a binder molded food product having a bulk density.
  • Glucose is used as a constituent sugar.
  • B Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an ⁇ -1,4 bond via a bond other than an ⁇ -1,4 bond. It has a branched structure with a glucose polymerization degree of 1 or more.
  • C Isomaltose is digested to produce about 28.4% by mass of isomaltose based on the solid content of the digest.
  • D The water-soluble dietary fiber content determined by high performance liquid chromatography (enzyme-HPLC method) is about 42.1% by mass.
  • 300 g of the binding agent of the present invention is almost uniformly attached to the surface of the mixture, and filled into a plastic mold having a plurality of semicylindrical depressions having a diameter of about 1 cm and a length of 10 cm.
  • the mold surface is leveled with a stainless steel spatula, the mixture is bound to each other, the bound hemispherical mixture lump is taken out of the mold, placed in an oven, heated at 100 ° C. for 20 minutes, and the present invention.
  • a binder molded food was obtained.
  • This product retains its shape and flavor almost immediately after storage for 6 months at room temperature, and has a high bulkiness with excellent texture, texture, shape retention / storage stability, and impact resistance. It is a binder molded food product having a density.
  • Glucose is used as a constituent sugar.
  • B Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an ⁇ -1,4 bond via a bond other than an ⁇ -1,4 bond. It has a branched structure with a glucose polymerization degree of 1 or more.
  • C Isomaltose is digested to produce about 28.4% by mass of isomaltose based on the solid content of the digest.
  • D The water-soluble dietary fiber content determined by high performance liquid chromatography (enzyme-HPLC method) is about 42.1% by mass.
  • a commercially available dried carrot (trade name “Dried (dried) shredded carrots”, Aszac Foods Co., Ltd.) was crushed with a side of about 3 to about 5 mm. It grind
  • 1 kg of the obtained small carrot is put into a container, 150 g of olive oil and 150 g of sucrose are sequentially added while stirring at the same temperature, heated at 130 ° C. for 10 minutes, allowed to cool to room temperature, and then the present invention.
  • 200 g of the binder was adhered almost uniformly to the surface of the crushed carrot, filled into a plastic mold having a plurality of hemispherical depressions with a diameter of about 2 cm, and the mold surface was leveled flat with a stainless steel spatula.
  • the piece-like carrots were bound together, and the bound hemispherical carrot lump was taken out of the mold, placed in an oven, and heated at 100 ° C. for 20 minutes to obtain the bound molded food of the present invention.
  • This product retains its shape and flavor almost immediately after being stored at room temperature for more than a year, and has a high bulkiness with excellent texture, texture, shape retention / storage stability, and impact resistance. It is a binder molded food product having a density.
  • binders were colorless, low-viscosity, easy to handle, and had excellent properties with a strong binding force to bind food materials together.
  • Any of the binders can be used as, for example, a “tether” that binds various foods and drinks, increases the water retention of various foods and drinks, maintains their shape, and improves the texture. Can be used to
  • binders were colorless, low-viscosity, easy to handle, and had excellent properties with a strong binding force to bind food materials together.
  • all of the binders are used as, for example, “tethers” for binding various foods and drinks, to increase the water retention of various foods and drinks, to maintain their shapes, and to improve the texture. Can be used.
  • the binding agent of the present invention small and / or granular food materials can be bound with a high bulk density, and shape retention / storage stability, handling properties, In addition, it is possible to easily provide a binder molded food having excellent impact resistance and a long product life. Further, according to the binder of the present invention, when the food material is bound and formed using the mold, there is an advantage that the filling operation into the mold and the taking-out operation from the mold can be performed well. In addition, according to the method for producing a binder molded food of the present invention, the binder molded food having the above-mentioned excellent characteristics can be produced on an industrial scale with a high yield. The influence of the present invention on the world is so great that its industrial significance is extremely great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Confectionery (AREA)
  • Preparation Of Fruits And Vegetables (AREA)
  • Grain Derivatives (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Storage Of Fruits Or Vegetables (AREA)

Abstract

The present invention addresses the problem of providing a binder, a bound and formed food, and a method for producing same, and solves this problem by providing: a binder that contains pullulan and a branched α-glucan mixture having the aforementioned characteristics (A) to (C) at quantities whereby the [pullulan / branched α-glucan mixture] mass ratio is within the range of 1.5-4 in terms of anhydride; a bound and formed food; and a method for producing same. (A) Glucose is used as a constituent sugar. (B) Included is a branched structure having a glucose polymerization degree of 1 or higher, the branched structure being linked, via a bond other than an α-1,4 bond, to a non-reducing terminal glucose residue positioned at one end of a linear glucan that is linked via an α-1,4 bond and has a glucose polymerization degree of 3 or higher. (C) Isomaltose is produced by isomaltodextranase digestion, the isomaltose being formed in an amount of 5 mass% or more relative to the solids of the product of digestion.

Description

結着剤、結着成形食品、及びその製造方法Binder, binder-molded food, and method for producing the same
 本発明は、結着剤、結着成形食品、及びその製造方法に関し、より詳細には、小片状又は粒状の食品材料同士を結着する結着力に優れた結着剤、当該結着剤を用いて得られる結着成形食品、及び当該結着成形食品を工業的規模で歩留まり良く製造する製造方法に関する。 The present invention relates to a binder, a binder-molded food, and a method for producing the same, and more specifically, a binder excellent in binding power for binding small or granular food materials to each other, and the binder The present invention relates to a binder-molded food obtained by using the above and a production method for producing the binder-molded food on an industrial scale with a high yield.
 近年、例えば、グラノーラバーなどの結着成形食品が注目を浴びつつあるが、結着成形食品の製造には、小片状又は粒状の食品材料同士を結着するために、通常、結着剤が使用されている。 In recent years, for example, binder-molded foods such as granola bars have been attracting attention. For the production of binder-molded foods, a binder is usually used to bind small pieces or granular food materials. Is used.
 結着成形食品において、その製造に用いられる結着剤は、食品材料同士の結着性はもとより、その製造のし易さ、さらには、得られる結着成形食品の保形性・保存安定性、取り扱い性、耐衝撃性などを介して、結着成形食品の歩留まりや商品寿命を大きく左右し、極めて重要な役割を担っている。結着剤としては、従来から、多糖類を含む糖類(水飴、澱粉、デキストリン、寒天など)、ガム質、増粘剤、アルギン酸、蛋白質などを主体とするものが使用されており、中でも、然多糖類であるプルランを主体とする結着剤は、他のものと比べ、結着性や成形性に優れていることから注目されている。しかし、これまで提案されているプルランを主体とする結着剤は、その適用対象によっては、結着力が不十分である場合があった。斯かる欠点を解消するために、プルランに粘性多糖類や可塑性付与物質などの他の成分を添加するか、凝集力向上剤や粘度調整物質などを添加することにより、プルランの結着力を高める提案がなされている(特許文献1参照)。しかし、特許文献2に述べられているとおり、特許文献1が提案するように、プルランと他の成分とを併用しても、プルランを主体とする結着剤の結着力が必ずしも増加するとは限らず、未だ改良の余地が残されている。一方、特許文献2には、プルランとともに、平均重合度が4以下の糖類を含む結着剤が提案されているが、提案されている糖類の含量は極めて多く、それら糖類に起因する甘味のために、特許文献2に開示されている結着剤は、最終製品の味に影響を及ぼすなどの不具合があり、その用途には制約がある。 In binder-shaped foods, the binder used in the production of them is not only easy to produce, but also easy to manufacture, and the shape retention and storage stability of the resulting binder-shaped foods It plays an extremely important role by greatly affecting the yield and product life of binder-molded foods through handling and impact resistance. Conventionally, binders mainly containing saccharides containing polysaccharides (eg, starch syrup, starch, dextrin, agar), gums, thickeners, alginic acid, proteins, etc. have been used. Binders mainly composed of pullulan, which is a polysaccharide, are attracting attention because they are superior in binding properties and moldability compared to other binders. However, the binding agents mainly composed of pullulan proposed so far have insufficient binding power depending on the application target. In order to eliminate such drawbacks, a proposal to increase the binding force of pullulan by adding other ingredients such as viscous polysaccharides and plasticizing substances to pullulan, or by adding a cohesion improver, viscosity adjusting substance, etc. (See Patent Document 1). However, as described in Patent Document 2, as proposed in Patent Document 1, even when pullulan and other components are used in combination, the binding force of the binder mainly composed of pullulan is not necessarily increased. There is still room for improvement. On the other hand, Patent Document 2 proposes a binder containing a saccharide having an average degree of polymerization of 4 or less together with pullulan. However, the content of the proposed saccharide is extremely large, because of the sweetness caused by the saccharide. In addition, the binder disclosed in Patent Document 2 has problems such as affecting the taste of the final product, and its use is limited.
 また、特許文献3には、プルラン、デキストリン、寒天、ガム質、アルギン酸、蛋白質などから選ばれる1種以上を主体とする結着剤と、これを用いる成形食品が開示されているが、開示されている結着剤は粉末状の結着剤であって、軽い食感の成形食品を得るために、加水した乾燥可食素材片と粉末状結着剤とを混合し、粉末状の結着剤を湿潤させ、所望の結着力を引き出す技術が開示されているに過ぎない。 Patent Document 3 discloses a binder mainly composed of one or more selected from pullulan, dextrin, agar, gum, alginic acid, protein and the like, and a molded food using the same. The binder used is a powdered binder, and in order to obtain a light food texture, the dried dry edible material piece is mixed with the powdered binder to form a powdery binder. Only a technique for moistening the agent and drawing out a desired binding force is disclosed.
 いずれにせよ、これまで提案されているプルランを主体とする結着剤の結着力は十分ではなく、本願出願前、プルランを主体とし、結着力に優れ、これを結着成形食品の製造に適用したときには、小片状又は粒状の食品材料同士を高い嵩密度で結着、成形することができ、しかも、優れた保形性・保存安定性、耐衝撃性を有する結着成形食品を工業的規模で歩留まり良く製造することができる結着剤は未だ提供されていない。 In any case, the binding force of the pullulan-based binders proposed so far is not sufficient. Prior to the filing of this application, pullulan was the main binding force, and it was applied to the production of binder-molded foods. In this case, it is possible to bind and mold small or granular food materials with a high bulk density, and to produce a binder molded food with excellent shape retention, storage stability and impact resistance. No binder has yet been provided that can be produced on a scale with good yield.
特開昭61-246239号公報JP-A 61-246239 特開平5-306350号公報JP-A-5-306350 特開平1-91748号公報Japanese Patent Laid-Open No. 1-91748
 本発明は、上記従来技術の欠点を解決するために為されたもので、結着力に優れ、小片状及び/又は粒状の食品材料同士を高い嵩密度で結着でき、しかも、保形性・保存安定性、取り扱い性、更には、耐衝撃性に優れ、商品寿命も長い結着成形食品を容易に提供できるプルランを主体とする結着剤、及び当該結着剤を用いて小片状及び/又は粒状の食品材料を結着成形して得られる結着成形食品並びにその製造方法を提供することを課題とする。 The present invention has been made in order to solve the above-mentioned drawbacks of the prior art, has excellent binding power, can bind small and / or granular food materials with high bulk density, and retains shape.・ Binding mainly composed of pullulan that can easily provide a molded food with excellent storage stability, handleability, impact resistance and long product life, and small pieces using the binder Another object of the present invention is to provide a binder-shaped food obtained by binder-molding granular food materials and a method for producing the same.
 本発明者等は、食品材料同士を強固に結着する結着剤について種々検討した結果、プルランを主体とする結着剤において、当該プルランに対し、水溶性食物繊維素材であり、かつ、後述する特定の特性を有する分岐α-グルカン混合物を無水物換算の質量比で特定の割合で含む結着剤が結着力に優れ、しかも、結着される食品材料の味を実質的に変えることのない優れた特性を有していることを新規に見出した。更に、本発明者等は、当該結着剤は小片状及び/又は粒状の食品材料を型(モールド)に充填するときの作業性に優れ、高い嵩密度で小片状及び/又は粒状の食品材料を型に充填することができるだけでなく、結着成形された小片状及び/又は粒状の食品材料を型から取り出す作業性においても優れていること、さらには、当該結着剤を用いれば、保形性・保存安定性、取り扱い性、更には、耐衝撃性に優れ、商品寿命も長い結着成形食品が比較的容易に得られ、当該結着剤によれば、優れた特性を備えた結着成形食品を工業的規模で歩留まり良く製造できることを新規に見出した。 As a result of various studies on binders that firmly bind food materials, the present inventors have found that the binder mainly composed of pullulan is a water-soluble dietary fiber material for the pullulan, and will be described later. A binding agent containing a branched α-glucan mixture having a specific characteristic in a specific ratio in a mass ratio in terms of anhydride is excellent in binding power and substantially changes the taste of the food material to be bound. It has been found that it has excellent characteristics. Furthermore, the present inventors have shown that the binder is excellent in workability when filling a mold with a small piece and / or granular food material, and has a high bulk density and small pieces and / or granules. Not only can the food material be filled into the mold, it is excellent in workability for taking out the compacted and / or granular food material from the mold, and the binder is used. For example, it is relatively easy to obtain a binder molded food with excellent shape retention, storage stability, handleability, impact resistance, and long product life, and the binder exhibits excellent characteristics. The present inventors have newly found that it is possible to produce the binder-formed foods provided on an industrial scale with good yield.
 すなわち、本発明者等は、プルランと、下記(A)乃至(C)の特性を有する分岐α-グルカン混合物とを、無水物換算での質量比[プルラン/分岐α-グルカン混合物]で、約1.5乃至約4の範囲で含む結着剤、これを用いて得られる結着成形食品、及びその製造方法を提供することによって上記課題を解決するものである。 That is, the inventors of the present invention used pullulan and a branched α-glucan mixture having the following characteristics (A) to (C) at a mass ratio [pullan / branched α-glucan mixture] in terms of anhydride. The present invention solves the above problems by providing a binder contained in a range of 1.5 to about 4, a binder molded food obtained using the binder, and a method for producing the same.
<分岐α-グルカン混合物の特性>
(A)グルコースを構成糖とし、
(B)α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、
(C)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形分当たり5質量%以上生成する。
<Characteristics of branched α-glucan mixture>
(A) glucose as a constituent sugar,
(B) Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an α-1,4 bond via a bond other than an α-1,4 bond. A branched structure having a glucose polymerization degree of 1 or more,
(C) Isomaltose is produced by digestion with isomalt dextranase to produce 5% by mass or more of the solid content of the digest.
 本発明は、また、上記本発明の結着剤を用いて製造される結着成形食品、及びその製造方法を提供することによって上記の課題を解決するものである。 The present invention also solves the above problems by providing a binder-molded food manufactured using the binder of the present invention and a method for manufacturing the same.
 本発明の結着剤によれば、小片状及び/又は粒状の食品材料同士を高い嵩密度で強固に結着でき、保形性・保存安定性、取り扱い性、更には、耐衝撃性に優れ、商品寿命も長い結着成形食品を製造することができるという利点が得られる。また、本発明の結着剤によれば、型を用いて食品材料を結着形成するに際し、型への充填作業及び型からの取り出し作業も作業性良く行えるという利点が得られる。また、当該結着剤を用いて製造される結着成形食品は、保形性・保存安定性、取り扱い性、更には、耐衝撃性に優れ、商品寿命も長いという優れた特徴を備えている。さらには、本発明の結着成形食品の製造方法によれば、前記優れた特徴を有する結着成形食品を工業的規模で歩留まり良く容易に提供できるという利点が得られる。 According to the binder of the present invention, small and / or granular food materials can be firmly bound with high bulk density, and shape retention / storage stability, handleability, and impact resistance can be improved. The advantage is that it is possible to produce a binder-shaped food that is excellent and has a long product life. In addition, according to the binder of the present invention, when the food material is bound and formed using the mold, there is an advantage that the filling operation into the mold and the removing operation from the mold can be performed with good workability. In addition, the binder-molded food produced using the binder has excellent characteristics such as shape retention / storage stability, handleability, excellent impact resistance, and long product life. . Furthermore, according to the manufacturing method of the binder molded food of this invention, the advantage that the binder molded food which has the said outstanding characteristic can be easily provided with a sufficient yield on an industrial scale is acquired.
 本発明に係る結着剤は、プルランと、特定の特性を有する分岐α-グルカン混合物とを特定の質量比で含む結着剤である。 The binder according to the present invention is a binder containing pullulan and a branched α-glucan mixture having specific characteristics at a specific mass ratio.
 本発明で用いるプルランとは、マルトトリオースが規則正しくα-1,6結合を介して複数連なった構造を有し、水に易溶性でエタノールには殆ど溶解せず、プルラナーゼ(EC3.2.1.41)を作用させて加水分解すると、主にマルトトリオースを生成する多糖類を意味する。本発明を実施するに際しては、結着力、接着力、粘度、取り扱い性などの観点から、重量平均分子量(Mw)が約5,000,000未満のものが、好適には約1,000,000未満、より好適には10,000乃至700,000、更に好適には約50,000乃至600,000、更により好適には約150,000乃至500,000のものが好適に用いられる。例えば、商品名『食品添加物プルラン』(プルラン含量約94質量%、水分含量約2質量%、株式会社林原製)は、食品添加物として市販されているプルランであり、その重量平均分子量は約150,000乃至500,000の範囲にあるので、本発明の実施において好適に用いることができる。 The pullulan used in the present invention has a structure in which a plurality of maltotrioses are regularly arranged via α-1,6 bonds, is easily soluble in water, hardly dissolves in ethanol, and pullulanase (EC 3.2.1). .41) means a polysaccharide which mainly produces maltotriose when hydrolyzed. In practicing the present invention, those having a weight average molecular weight (Mw) of less than about 5,000,000, preferably about 1,000,000 from the viewpoints of binding force, adhesive strength, viscosity, handleability and the like. Less than, more preferably from 10,000 to 700,000, even more preferably from about 50,000 to 600,000, even more preferably from about 150,000 to 500,000. For example, the trade name “Food Additive Pullulan” (pullulan content of about 94% by mass, moisture content of about 2% by mass, manufactured by Hayashibara Co., Ltd.) is a pullulan marketed as a food additive, and its weight average molecular weight is about Since it is in the range of 150,000 to 500,000, it can be suitably used in the practice of the present invention.
 本発明で用いる分岐α-グルカン混合物とは、例えば、本願と同じ出願人が、国際公開第WO2008/136331号パンフレットなどにおいて開示した分岐α-グルカン混合物(以下、単に「分岐α-グルカン混合物」と言う。)を意味する。当該分岐α-グルカン混合物は、澱粉を原料とし、これに種々の酵素を作用させて得られ、通常、様々な分岐構造とグルコース重合度を有する複数種の分岐α-グルカンを主体とする混合物の形態にある。当該分岐α-グルカン混合物の製造方法としては、前記国際公開第WO2008/136331号パンフレットに開示されているα-グルコシル転移酵素を澱粉質に作用させるか、前記α-グルコシル転移酵素に加え、マルトテトラオース生成アミラーゼ(EC 3.2.1.60)などのアミラーゼ、プルラナーゼ(EC 3.2.1.41)、イソアミラーゼ(EC 3.2.1.68)などの澱粉枝切り酵素、更には、シクロマルトデキストリングルカノトランスフェラーゼ(EC 2.4.1.19)(以下、「CGTase」と言う。)、澱粉枝作り酵素(EC 2.4.1.18)、或いは特開2014-054221号公報などに開示されている重合度2以上のα-1,4グルカンを澱粉質内部のグルコース残基にα-1,6転移する活性を有する酵素などの1又は複数を併用して澱粉質に作用させる方法を例示できる。本発明を実施するに際しては、前記国際公開第WO2008/136331号パンフレットに開示された分岐α-グルカン混合物、中でも、バチルス・サーキュランス PP710(FERM BP-10771)由来及び/又はアルスロバクター・グロビホルミス PP349(FERM BP-10770)由来のα-グルコシル転移酵素を単独、又は、プルラナーゼ、イソアミラーゼなどの澱粉枝切酵素、及び/又はCGTaseと組み合わせて、澱粉原料に作用させて得られる分岐α-グルカン混合物であって、その水溶性食物繊維含量が、無水物換算で、固形分当たり約75質量%以上、好適には約80質量%以上にまで達している分岐α-グルカン混合物が、とりわけ好適に用いられる。また、前記バチルス・サーキュランス PP710(FERM BP-10771)の培養物には、α-グルコシル転移酵素とアミラーゼとが含まれており、斯かる酵素混合物は、これをマルトース及び/又はグルコース重合度が3以上のα-1,4グルカンに作用させると、前記水溶性食物繊維含量の高い分岐α-グルカン混合物を安定して生成するという特徴を有している。これら上述した分岐α-グルカン混合物は、原料澱粉由来のα-1,4結合を基本構造としつつ、α-1,4結合以外の多様な結合を多く含んでいるので、プルランと分子レベルで複雑に絡み合い、その結果、プルラン単独の結着剤と比べ、例えば、乾燥食品同士を結着させる場合、結着力が高まって成形性がよくなり、保形性・保存安定性、耐衝撃性に優れた結着成形食品が得られるものと推測される。ところで、本発明で用いる分岐α-グルカン混合物は、通常、様々な分岐構造並びにグルコース重合度(分子量)を有する多数の分岐α-グルカンの混合物の形態にあることから、現行の技術では、個々の分岐α-グルカンを単離し、構造を決定したり定量したりすることは技術的に不可能である。しかし、前記個々の分岐α-グルカンの構造、つまり、それらの構成単位であるグルコース残基の結合様式及び結合順序は、今日の技術によっても決定しきれないとしても、分岐α-グルカン混合物は、斯界で一般に用いられている種々の物理的手法、化学的手法、又は酵素的手法により求められる種々の特性により、混合物全体として特徴付けることができる。 The branched α-glucan mixture used in the present invention is, for example, a branched α-glucan mixture (hereinafter simply referred to as “branched α-glucan mixture”) disclosed by the same applicant as the present application in International Publication No. WO2008 / 136331. Say.) The branched α-glucan mixture is obtained by using starch as a raw material and reacting with various enzymes, and is usually a mixture mainly composed of a plurality of types of branched α-glucan having various branched structures and glucose polymerization degrees. Is in form. As a method for producing the branched α-glucan mixture, α-glucosyltransferase disclosed in the pamphlet of International Publication No. WO2008 / 136331 is allowed to act on starch, or in addition to the α-glucosyltransferase, maltotetra Amylases such as ose-producing amylase (EC 3.2.1.60), starch debranching enzymes such as pullulanase (EC 3.2.1.41), isoamylase (EC 3.2.1.68), , Cyclomaltodextrin glucanotransferase (EC 2.4.1.19) (hereinafter referred to as “CGTase”), starch branching enzyme (EC 2.4.1.18), or JP-A-2014-054221 Α-1,4 glucan having a degree of polymerization of 2 or more disclosed in publications and the like is transferred to a glucose residue in starch. Examples thereof include a method in which one or a plurality of enzymes having an activity to act on starch is used in combination. In carrying out the present invention, the branched α-glucan mixture disclosed in the pamphlet of International Publication No. WO2008 / 136331, among others, derived from Bacillus circulans PP710 (FERM BP-10771) and / or Arthrobacter globiformis PP349. (FERM BP-10770) -derived α-glucosyltransferase alone or in combination with starch debranching enzymes such as pullulanase and isoamylase, and / or CGTase, and a branched α-glucan mixture obtained by acting on starch raw materials A branched α-glucan mixture having a water-soluble dietary fiber content of about 75% by mass or more, preferably about 80% by mass or more per solid content in terms of anhydride is particularly preferably used. It is done. The culture of Bacillus circulans PP710 (FERM BP-10771) contains α-glucosyltransferase and amylase, and the enzyme mixture has a maltose and / or glucose polymerization degree. When it is acted on three or more α-1,4 glucans, it has a feature that the branched α-glucan mixture having a high water-soluble dietary fiber content is stably formed. These above-mentioned branched α-glucan mixtures contain α-1,4 bonds derived from the raw starch and have a lot of various bonds other than α-1,4 bonds. As a result, for example, when binding dried foods together, the binding force is increased and the formability is improved, and the shape retention, storage stability, and impact resistance are superior. It is presumed that a binder-formed food is obtained. By the way, the branched α-glucan mixture used in the present invention is usually in the form of a mixture of a number of branched α-glucans having various branched structures and glucose polymerization degrees (molecular weights). It is technically impossible to isolate a branched α-glucan and determine or quantify the structure. However, even if the structure of the individual branched α-glucan, that is, the binding mode and order of binding of the constituent glucose residues cannot be determined by today's technology, the branched α-glucan mixture is The entire mixture can be characterized by various properties required by various physical, chemical, or enzymatic methods commonly used in the art.
 すなわち、本発明で用いる分岐α-グルカン混合物は、混合物全体として、上記(A)乃至(C)の特性によって特徴付けられる。すなわち、本分岐α-グルカン混合物は、グルコースを構成糖とするグルカン(特性(A))であり、α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有している(特性(B))。なお、特性(B)でいう「非還元末端グルコース残基」とは、α-1,4結合を介して連結したグルカン鎖のうち、還元性を示さない末端に位置するグルコース残基を意味し、「α-1,4結合以外の結合」とは、α-1,2結合、α-1,3結合、α-1,6結合等のα-1,4結合以外の結合を意味する。 That is, the branched α-glucan mixture used in the present invention is characterized by the characteristics (A) to (C) as a whole. That is, this branched α-glucan mixture is a glucan having glucose as a constituent sugar (characteristic (A)), and is connected to one end of a linear glucan having a glucose polymerization degree of 3 or more linked through α-1,4 bonds. It has a branched structure with a glucose polymerization degree of 1 or more linked to a non-reducing terminal glucose residue located through a bond other than an α-1,4 bond (characteristic (B)). The “non-reducing terminal glucose residue” in the characteristic (B) means a glucose residue located at the terminal that does not exhibit reducing property among the glucan chains linked through α-1,4 bonds. The “bond other than α-1,4 bond” means a bond other than α-1,4 bond such as α-1,2 bond, α-1,3 bond, α-1,6 bond and the like.
 さらに、本発明で用いる分岐α-グルカン混合物は、イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形分当たり5質量%以上生成することを特徴とする(特性(C))。特性(C)でいうイソマルトデキストラナーゼ消化とは、分岐α-グルカン混合物にイソマルトデキストラナーゼを作用させ、加水分解することを意味する。イソマルトデキストラナーゼは、国際生化学分子生物学連合により酵素番号(EC)3.2.1.94が付与されている酵素であり、α-グルカンにおけるイソマルトース構造の還元末端側に隣接するα-1,2、α-1,3、α-1,4、及びα-1,6結合のいずれの結合様式であっても加水分解する酵素である。好適には、アルスロバクター・グロビホルミス由来のイソマルトデキストラナーゼ(例えば、サワイ(Sawai)ら、『アグリカルチュラル・アンド・バイオロジカル・ケミストリー』(Agricultural and Biological Chemistry)、第52巻、第2号、495乃至501頁(1988年)参照)が用いられる。 Furthermore, the branched α-glucan mixture used in the present invention is characterized in that isomaltose is produced by digestion with isomalt-dextranase to produce 5% by mass or more of isomaltose per solid content of the digest (characteristic (C)). The digestion with isomaltodextranase in the characteristic (C) means that isomaltdextranase is allowed to act on a branched α-glucan mixture to cause hydrolysis. Isomalt dextranase is an enzyme that has been assigned the enzyme number (EC) 3.2.1.94 by the International Union of Biochemical and Molecular Biology, and is adjacent to the reducing end of the isomaltose structure in α-glucan. It is an enzyme that hydrolyzes regardless of the binding mode of α-1,2, α-1,3, α-1,4, and α-1,6 bonds. Preferably, isomalt dextranase derived from Arthrobacter globiformis (eg, Sawai et al., “Agricultural and Biological Chemistry”, Vol. 52, No. 2). 495-501 (1988)).
 イソマルトデキストラナーゼ消化により生成する消化物の固形物当たりのイソマルトースの割合は、分岐α-グルカン混合物を構成する分岐α-グルカンの構造におけるイソマルトデキストラナーゼで加水分解され得るイソマルトース構造の割合を示すものであり、特性(C)によって、本発明で用いる分岐α-グルカン混合物の構造を、混合物全体として、酵素的手法によって特徴付けることができる。 The ratio of isomaltose per solid in the digest produced by isomalt-dextranase digestion is the isomaltose structure that can be hydrolyzed with isomalt-dextranase in the structure of the branched α-glucan constituting the branched α-glucan mixture According to the characteristic (C), the structure of the branched α-glucan mixture used in the present invention can be characterized as an entire mixture by an enzymatic method.
 上記(A)及び(B)の特性を有するとともに、イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり、5質量%以上、好適には、10質量%以上、より好適には15質量%以上、更に好適には20質量以上70質量%以下、より更に好適には、20質量%以上60質量%以下、更に好適には20質量%以上50質量%以下生成する分岐α-グルカン混合物は、プルランとの相性が良く、プルランと特定の質量比で併用したとき、プルラン単独の場合と比べ、食品材料同士の結着性が効果的に向上するとともに、食品材料同士を結着させるときの作業性が良いなどの優れた特性を発揮するので、本発明の結着剤の有効成分として好適に用いられる。 While having the above-mentioned characteristics (A) and (B), isomaltose is digested with isomalt-dextranase to obtain 5% by mass or more, preferably 10% by mass or more, more preferably, per digested solid. 15% by mass or more, more preferably 20% by mass or more and 70% by mass or less, still more preferably 20% by mass or more and 60% by mass or less, and further preferably 20% by mass or more and 50% by mass or less. The mixture has good compatibility with pullulan, and when combined with pullulan at a specific mass ratio, the binding property between food materials is effectively improved and the food materials are bound to each other as compared with pullulan alone. Since it exhibits excellent characteristics such as good workability, it is suitably used as an active ingredient of the binder of the present invention.
 また、本発明で用いる分岐α-グルカン混合物のより好適な一例としては、高速液体クロマトグラフ(酵素-HPLC法)により求めた水溶性食物繊維含量が40質量%以上であるという特性(D)を有しているものが挙げられる。 Further, as a more preferable example of the branched α-glucan mixture used in the present invention, the characteristic (D) that the water-soluble dietary fiber content determined by high performance liquid chromatograph (enzyme-HPLC method) is 40% by mass or more. What has it is mentioned.
 水溶性食物繊維含量を求める「高速液体クロマトグラフ法(酵素-HPLC法)」(以下、単に「酵素-HPLC法」という。)とは、平成8年5月20日付の厚生省告示第146号の栄養表示基準、『栄養成分等の分析方法等(栄養表示基準別表第1の第3欄に掲げる方法)』における第8項の「食物繊維」に記載されている方法であり、その概略を説明すると以下のとおりである。すなわち、試料を熱安定α-アミラーゼ、プロテアーゼ及びグルコアミラーゼによる一連の酵素処理により分解処理し、イオン交換樹脂により処理液から蛋白質、有機酸、無機塩類を除去することによりゲル濾過クロマトグラフィー用の試料溶液を調製する。次いで、ゲル濾過クロマトグラフィーに供し、クロマトグラムにおける、未消化グルカンとグルコースのピーク面積を求め、それぞれのピーク面積と、別途、常法により、グルコース・オキシダーゼ法により求めておいた試料溶液中のグルコース量を用いて、試料の水溶性食物繊維含量を算出する。なお、本明細書を通じて「水溶性食物繊維含量」とは、特に説明がない限り、前記「酵素-HPLC法」で求めた水溶性食物繊維含量を意味する。 “High-performance liquid chromatographic method (enzyme-HPLC method)” (hereinafter simply referred to as “enzyme-HPLC method”) for determining the content of water-soluble dietary fiber is the name of Ministry of Health and Welfare Notification No. 146 dated May 20, 1996. Nutrition labeling standards and methods described in “Food fiber” in paragraph 8 in “Methods for analysis of nutritional components, etc. (methods listed in the third column of the first table in the separate table of nutrition labeling standards)” Then, it is as follows. Specifically, a sample for gel filtration chromatography is prepared by decomposing the sample by a series of enzyme treatments with heat-stable α-amylase, protease, and glucoamylase, and removing proteins, organic acids, and inorganic salts from the treatment solution with an ion exchange resin. Prepare the solution. Next, it is subjected to gel filtration chromatography, and the peak areas of undigested glucan and glucose in the chromatogram are obtained. The respective peak areas and glucose in the sample solution obtained separately by the glucose oxidase method by a conventional method are obtained. The amount is used to calculate the water soluble dietary fiber content of the sample. Throughout this specification, “water-soluble dietary fiber content” means the water-soluble dietary fiber content determined by the “enzyme-HPLC method” unless otherwise specified.
 水溶性食物繊維含量は、α-アミラーゼ及びグルコアミラーゼによって分解されないα-グルカンの含量を示すものであり特性(D)は、本分岐α-グルカン混合物の構造を、混合物全体として、酵素的手法により特徴付ける指標の一つである。 The water-soluble dietary fiber content indicates the content of α-glucan that is not degraded by α-amylase and glucoamylase, and the characteristic (D) shows the structure of the branched α-glucan mixture as a whole by enzymatic methods. It is one of the characteristic indicators.
 上記(A)~(C)の特性を有するとともに、水溶性食物繊維含量が40質量%以上100質量%未満、好ましくは50質量%以上95質量%未満、より好ましくは60質量%以上90質量%未満、さらに好ましくは70質量%以上85質量%未満である分岐α-グルカン混合物は、プルランとの相性がよく、本発明に係る結着剤の有効成分としてより好適に用いられる。 The water-soluble dietary fiber content is 40% by mass or more and less than 100% by mass, preferably 50% by mass or more and less than 95% by mass, and more preferably 60% by mass or more and 90% by mass. The branched α-glucan mixture of less than 70% by mass and more preferably less than 85% by mass has good compatibility with pullulan and is more preferably used as an active ingredient of the binder according to the present invention.
 さらに、本発明で用いる分岐α-グルカン混合物のより好適な一例としては、下記(E)及び(F)の特性を有する分岐α-グルカン混合物が挙げられる。当該特性(E)及び(F)はメチル化分析によって確認することができる。
(E)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基の比が1:0.6乃至1:4の範囲にあり、
(F)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基との合計が全グルコース残基の55%以上を占める。
Furthermore, a more preferable example of the branched α-glucan mixture used in the present invention includes a branched α-glucan mixture having the following characteristics (E) and (F). The characteristics (E) and (F) can be confirmed by methylation analysis.
(E) the ratio of α-1,4 linked glucose residues to α-1,6 linked glucose residues is in the range of 1: 0.6 to 1: 4;
(F) The sum of α-1,4-bonded glucose residues and α-1,6-bonded glucose residues accounts for 55% or more of all glucose residues.
 メチル化分析とは、周知のとおり、多糖又はオリゴ糖において、これを構成する単糖の結合様式を決定する方法として一般的に汎用されている方法である(シューカヌ(Ciucanu)ら、『カーボハイドレート・リサーチ』(Carbohydrate Research)、第131巻、第2号、209乃至217頁(1984年))。メチル化分析をグルカンにおけるグルコースの結合様式の分析に適用する場合、まず、グルカンを構成するグルコース残基における全ての遊離の水酸基をメチル化し、次いで、完全メチル化したグルカンを加水分解する。次いで、加水分解により得られたメチル化グルコースを還元してアノマー型を消去したメチル化グルシトールとし、更に、このメチル化グルシトールにおける遊離の水酸基をアセチル化することにより部分メチル化グルシトールアセテート(なお、「部分メチル化グルシトールアセテート」を単に「部分メチル化物」と総称する場合がある。)を得る。得られる部分メチル化物を、ガスクロマトグラフィーで分析することにより、グルカンにおいて結合様式がそれぞれ異なるグルコース残基に由来する各種部分メチル化物は、ガスクロマトグラムにおける全ての部分メチル化物のピーク面積に占めるピーク面積の百分率(%)で表すことができる。そして、このピーク面積%から当該グルカンにおける結合様式の異なるグルコース残基の存在比、すなわち、各グルコシド結合の存在比率を決定することができる。部分メチル化物についての「比」は、メチル化分析のガスクロマトグラムにおけるピーク面積の「比」を意味し、部分メチル化物についての「%」はメチル化分析のガスクロマトグラムにおける「面積%」を意味するものとする。 As is well known, methylation analysis is a generally used method for determining the binding mode of monosaccharides constituting polysaccharides or oligosaccharides (Ciucanu et al., “Carbohydride et al.”). Rate Research (Carbohydrate Research), Vol. 131, No. 2, pages 209 to 217 (1984)). When methylation analysis is applied to analysis of glucose binding mode in glucan, first, all free hydroxyl groups in glucose residues constituting glucan are methylated, and then fully methylated glucan is hydrolyzed. Next, methylated glucose obtained by hydrolysis is reduced to form methylated glucitol from which the anomeric form has been eliminated, and further, a free hydroxyl group in this methylated glucitol is acetylated to give partially methylated glucitol acetate (note that , “Partially methylated glucitol acetate” is sometimes simply referred to as “partially methylated product”). By analyzing the resulting partially methylated product by gas chromatography, various partially methylated products derived from glucose residues that have different binding modes in glucan have a peak area that occupies the peak area of all partially methylated products in the gas chromatogram. % (%). Then, the abundance ratio of glucose residues having different binding modes in the glucan, that is, the abundance ratio of each glucoside bond can be determined from the peak area%. “Ratio” for partially methylated product means “ratio” of peak area in gas chromatogram of methylation analysis, and “%” for partially methylated product means “area%” in gas chromatogram of methylated analysis. Shall.
 上記(E)及び(F)における「α-1,4結合したグルコース残基」とは、1位及び4位の炭素原子に結合した水酸基のみを介して他のグルコース残基に結合したグルコース残基であり、メチル化分析において、2,3,6-トリメチル-1,4,5-トリアセチルグルシトールとして検出される。また、上記(E)及び(F)における「α-1,6結合したグルコース残基」とは、1位及び6位の炭素原子に結合した水酸基のみを介して他のグルコース残基に結合したグルコース残基であり、メチル化分析において、2,3,4-トリメチル-1,5,6-トリアセチルグルシトールとして検出される。 The “α-1,4-bonded glucose residue” in the above (E) and (F) means the glucose residue bonded to other glucose residues only through the hydroxyl groups bonded to the 1st and 4th carbon atoms. It is detected as 2,3,6-trimethyl-1,4,5-triacetylglucitol in methylation analysis. The “α-1,6-bonded glucose residue” in the above (E) and (F) is bonded to other glucose residues only through the hydroxyl groups bonded to the 1st and 6th carbon atoms. It is a glucose residue and is detected as 2,3,4-trimethyl-1,5,6-triacetylglucitol in methylation analysis.
 メチル化分析により得られる、α-1,4結合したグルコース残基とα-1,6結合したグルコース残基の比率、及び、α-1,4結合したグルコース残基とα-1,6結合したグルコース残基の全グルコース残基に対する割合は、本発明で用いる分岐α-グルカン混合物の構造を、混合物全体として、化学的手法によって特徴付ける指標の一つとして用いることができる。 Ratio of α-1,4-bonded glucose residue and α-1,6-bonded glucose residue obtained by methylation analysis, and α-1,4-bonded glucose residue and α-1,6 bond The ratio of the glucose residues to the total glucose residues can be used as one of the indicators for characterizing the structure of the branched α-glucan mixture used in the present invention as a whole by chemical methods.
 上記(E)の「α-1,4結合したグルコース残基とα-1,6結合したグルコース残基の比が1:0.6乃至1:4の範囲にある」との特性は、本発明で用いる分岐α-グルカン混合物をメチル化分析に供したとき、検出される2,3,6-トリメチル-1,4,5-トリアセチルグルシトールと2,3,4-トリメチル-1,5,6-トリアセチルグルシトールの比が1:0.6乃至1:4の範囲にあることを意味する。また、上記(F)の「α-1,4結合したグルコース残基とα-1,6結合したグルコース残基との合計が全グルコース残基の55%以上を占める」との特性は、本発明で用いる分岐α-グルカン混合物が、メチル化分析において、2,3,6-トリメチル-1,4,5-トリアセチルグルシトールと2,3,4-トリメチル-1,5,6-トリアセチルグルシトールとの合計が部分メチル化グルシトールアセテートの55%以上を占めることを意味する。通常、澱粉は1位と6位でのみ結合したグルコース残基を有しておらず、かつα-1,4結合したグルコース残基が全グルコース残基中の大半を占めていることから、上記(E)及び(F)の要件は、本発明で用いる分岐α-グルカン混合物が澱粉とは全く異なる構造を有することを意味するものである。 The characteristic that the ratio of the α-1,4-bonded glucose residue to the α-1,6-bonded glucose residue is in the range of 1: 0.6 to 1: 4 in (E) above is 2,3,6-trimethyl-1,4,5-triacetylglucitol and 2,3,4-trimethyl-1, detected when the branched α-glucan mixture used in the invention is subjected to methylation analysis It means that the ratio of 5,6-triacetylglucitol is in the range of 1: 0.6 to 1: 4. In addition, the characteristic of (F) that “the total of α-1,4-bonded glucose residues and α-1,6-bonded glucose residues occupy 55% or more of all glucose residues” is In the methylation analysis, the branched α-glucan mixture used in the invention was subjected to 2,3,6-trimethyl-1,4,5-triacetylglucitol and 2,3,4-trimethyl-1,5,6-trimethyl. It means that the total with acetylglucitol accounts for 55% or more of partially methylated glucitol acetate. Usually, starch does not have glucose residues bonded only at the 1- and 6-positions, and α-1,4-bonded glucose residues occupy most of all glucose residues. The requirements of (E) and (F) mean that the branched α-glucan mixture used in the present invention has a completely different structure from starch.
 上記(E)及び(F)の特性を有し、澱粉に存在するα-1,4結合及びα-1,6結合に加えて、澱粉には存在しない、非還元末端に位置する「α-1,6結合したグルコース残基」を相当程度有する分岐α-グルカン混合物は、本発明で用いる分岐α-グルカン混合物として好適に用いられる。 In addition to the α-1,4 bond and α-1,6 bond present in starch having the above characteristics (E) and (F), “α-” located at the non-reducing end not present in starch A branched α-glucan mixture having a considerable amount of “1,6-linked glucose residues” is preferably used as the branched α-glucan mixture used in the present invention.
 更に、本発明で用いる分岐α-グルカン混合物のより好適な一例としては、前記特性(A)乃至(F)に加え、更に下記特性(G)及び(H)を有する分岐α-グルカン混合物が挙げられる。当該特性(G)及び(H)もメチル化分析によって確認することができる。 Furthermore, as a more preferable example of the branched α-glucan mixture used in the present invention, a branched α-glucan mixture having the following properties (G) and (H) in addition to the above properties (A) to (F) can be mentioned. It is done. The characteristics (G) and (H) can also be confirmed by methylation analysis.
(G)α-1,3結合したグルコース残基が全グルコース残基の0.5%以上10%未満である;及び
(H)α-1,3,6結合したグルコース残基が全グルコース残基の0.5%以上である。
(G) α-1,3 linked glucose residues are 0.5% or more and less than 10% of all glucose residues; and (H) α-1,3,6 linked glucose residues are all glucose residues. 0.5% or more of the group.
 上記(G)における、「α-1,3結合したグルコース残基が全グルコース残基の0.5%以上10%未満である」とは、C-1位の水酸基とC-3位の水酸基のみを介して他のグルコースと結合したグルコース残基が、グルカンを構成する全グルコース残基の0.5%以上10%未満存在することを意味する。上記(G)の特性を有する分岐α-グルカン混合物は本発明において好適に用いることができ、中でも、α-1,3結合したグルコース残基が全グルコース残基の1乃至3%の範囲にある分岐α-グルカン混合物は、本発明を実施する上でより好適に用いられる。 In the above (G), “the α-1,3-bonded glucose residue is 0.5% or more and less than 10% of all glucose residues” means that the hydroxyl group at the C-1 position and the hydroxyl group at the C-3 position This means that the glucose residues bound to other glucose via only the glucose are present in the range of 0.5% to less than 10% of the total glucose residues constituting the glucan. The branched α-glucan mixture having the above characteristic (G) can be preferably used in the present invention, and among them, α-1,3-linked glucose residues are in the range of 1 to 3% of the total glucose residues. A branched α-glucan mixture is more preferably used in practicing the present invention.
 さらに、上記(H)における、「α-1,3,6結合したグルコース残基が全グルコース残基の0.5%以上である」とは、C-1位の水酸基以外に、C-3位の水酸基とC-6位の水酸基を介して他のグルコースと結合したグルコース残基が、グルカンを構成する全グルコース残基の0.5%以上存在することを意味する。上記(H)の特性を有する分岐α-グルカン混合物は本発明において好適に用いることができ、中でも、α-1,3,6結合したグルコース残基が、グルカンを構成する全グルコース残基の1乃至10%である分岐α-グルカン、好適には、1乃至7%の範囲にある分岐α-グルカンは、本発明を実施する上でより好適に用いられる。 Further, in the above (H), “the α-1,3,6-bonded glucose residue is 0.5% or more of all glucose residues” means that in addition to the hydroxyl group at the C-1 position, C-3 This means that the glucose residues bonded to other glucose via the hydroxyl group at the C-position and the hydroxyl group at the C-6 position are present in 0.5% or more of the total glucose residues constituting the glucan. The branched α-glucan mixture having the above property (H) can be preferably used in the present invention. Among them, the α-1,3,6-linked glucose residue is one of all glucose residues constituting the glucan. A branched α-glucan that is 10% to 10%, preferably a branched α-glucan in the range of 1 to 7% is more preferably used in the practice of the present invention.
 なお、α-1,3結合したグルコース残基は、メチル化分析において検出される、「2,4,6-トリメチル-1,3,5-トリアセチルグルシトール」に基づいて解析でき、上記特性(G)が規定する「α-1,3結合したグルコース残基が全グルコース残基の0.5%以上10%未満である」ことは、本発明で用いる分岐α-グルカン混合物をメチル化分析に供したとき、2,4,6-トリメチル-1,3,5-トリアセチルグルシトールが部分メチル化グルシトールアセテートの0.5%以上10%未満存在することによって確認することができる。また、α-1,3,6結合したグルコース残基は、メチル化分析において検出される、「2,4-ジメチル-1,3,5,6-テトラアセチルグルシトール」に基づいて解析でき、上記特性(H)が規定する「α-1,3,6結合したグルコース残基が全グルコース残基の0.5%以上である」ことは、本発明で用いる分岐α-グルカン混合物をメチル化分析に供したとき、2,4-ジメチル-1,3,5,6-テトラアセチルグルシトールが部分メチル化グルシトールアセテートの0.5%以上10%未満存在することによって確認することができる。 The α-1,3-linked glucose residue can be analyzed based on “2,4,6-trimethyl-1,3,5-triacetylglucitol” detected in methylation analysis, The fact that “α-1,3-linked glucose residues are 0.5% or more and less than 10% of all glucose residues” defined by the characteristic (G) means that the branched α-glucan mixture used in the present invention is methylated When subjected to analysis, it can be confirmed that 2,4,6-trimethyl-1,3,5-triacetylglucitol is present at 0.5% to less than 10% of the partially methylated glucitol acetate. it can. In addition, α-1,3,6-linked glucose residues can be analyzed based on “2,4-dimethyl-1,3,5,6-tetraacetylglucitol” detected in methylation analysis. The above-mentioned property (H) defines that “the α-1,3,6-linked glucose residue is 0.5% or more of the total glucose residues” means that the branched α-glucan mixture used in the present invention is methylated. Confirm that 2,4-dimethyl-1,3,5,6-tetraacetylglucitol is present at 0.5% or more but less than 10% of partially methylated glucitol acetate when subjected to chemical analysis. Can do.
 更に、本発明で用いる分岐α-グルカン混合物は、重量平均分子量(Mw)、及び、重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)によっても特徴づけることができる。重量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、サイズ排除クロマトグラフィー等を用いて求めることができる。また、重量平均分子量(Mw)に基づいて、分岐α-グルカン混合物を構成する分岐α-グルカン分子の平均グルコース重合度を算出することができるため、本発明で用いる分岐α-グルカン混合物は平均グルコース重合度で特徴づけることもできる。ちなみに、平均グルコース重合度は、重量平均分子量(Mw)から18を減じ、その分子量をグルコース残基量である162で除して求めることができる。本発明で用いる分岐α-グルカン混合物は、その平均グルコース重合度が、通常、8乃至500、好ましくは15乃至400、より好ましくは20乃至300のものが好適である。なお、本発明で用いる分岐α-グルカン混合物は、平均グルコース重合度が大きいほど粘度が増し、平均グルコース重合度が小さいほど粘度が小さくなる点で、通常のグルカンと同様の性質を示す。したがって、粘度を重視する場合には、所望の平均グルコース重合度を有する分岐α-グルカン混合物を適宜選択して用いればよい。 Further, the branched α-glucan mixture used in the present invention can be characterized by the weight average molecular weight (Mw) and the value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn). it can. The weight average molecular weight (Mw) and the number average molecular weight (Mn) can be determined using, for example, size exclusion chromatography. Further, since the average glucose polymerization degree of the branched α-glucan molecules constituting the branched α-glucan mixture can be calculated based on the weight average molecular weight (Mw), the branched α-glucan mixture used in the present invention has an average glucose It can also be characterized by the degree of polymerization. Incidentally, the average glucose polymerization degree can be obtained by subtracting 18 from the weight average molecular weight (Mw) and dividing the molecular weight by 162 which is the amount of glucose residue. The branched α-glucan mixture used in the present invention preferably has an average glucose polymerization degree of usually 8 to 500, preferably 15 to 400, more preferably 20 to 300. The branched α-glucan mixture used in the present invention exhibits the same properties as ordinary glucan in that the viscosity increases as the average glucose polymerization degree increases, and the viscosity decreases as the average glucose polymerization degree decreases. Therefore, when importance is attached to the viscosity, a branched α-glucan mixture having a desired average glucose polymerization degree may be appropriately selected and used.
 重量平均分子量(Mw)を数平均分子量(Mn)で除した値であるMw/Mnは、1に近いものほど分岐α-グルカン混合物を構成する分岐α-グルカン分子のグルコース重合度のばらつきが小さいことを意味する。本発明で用いる分岐α-グルカン混合物は、そのMw/Mnが、通常、20以下のものが使用できるものの、好ましくは10以下、より好ましくは5以下のものがより好適に用いられる。なお、より均一なグルコース重合度の分岐α-グルカン混合物が求められる場合には、グルコース重合度のばらつきが小さいMw/Mnが1により近いものを選択して用いればよい。 Mw / Mn, which is a value obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn), the closer to 1, the smaller the variation in the degree of glucose polymerization of the branched α-glucan molecules constituting the branched α-glucan mixture. Means that. As the branched α-glucan mixture used in the present invention, those having an Mw / Mn of usually 20 or less can be used, but those having a Mw / Mn of preferably 10 or less, more preferably 5 or less are more suitably used. When a branched α-glucan mixture having a more uniform glucose polymerization degree is required, a mixture having a small variation in glucose polymerization degree and Mw / Mn closer to 1 may be selected and used.
 本発明で用いる分岐α-グルカン混合物は、上記(A)乃至(C)の特性を有する限り、如何なる方法で製造されたものであってもよい。例えば、α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの非還元末端グルコース残基にα-1,6結合を介して連結したグルコース重合度1以上の分岐構造を導入する作用を有する酵素を澱粉質に作用させて得られる分岐α-グルカン混合物は、本発明の実施において好適に利用することができ、より好適な一例として、国際公開第WO2008/136331号パンフレットに開示されているα-グルコシル転移酵素を澱粉質に作用させて得られる分岐α-グルカン混合物が挙げられる。また、前記α-グルコシル転移酵素に加え、液化型α-アミラーゼ(EC 3.2.1.1)や糖化型α-アミラーゼ(EC 3.2.1.1)、マルトテトラオース生成アミラーゼ(EC 3.2.1.60)、マルトヘキサオース生成アミラーゼ(EC 3.2.1.98)などのアミラーゼや、イソアミラーゼ(EC 3.2.1.68)やプルラナーゼ(EC 3.2.1.41)などの澱粉枝切り酵素を併用すれば、本分岐α-グルカン混合物を低分子化することができるので、分子量、グルコース重合度などを所望の範囲に調整することができる。さらには、シクロマルトデキストリングルカノトランスフェラーゼ(EC 2.4.1.19)や、澱粉枝作り酵素(EC 2.4.1.18)、特開2014-054221号公報に開示されている重合度2以上のα-1,4グルカンを澱粉質の内部のグルコース残基にα-1,6転移する活性を有する酵素を併用することにより、本発明で用いる分岐α-グルカン混合物を構成する分岐α-グルカンをさらに高度に分岐させ、当該分岐α-グルカン混合物の水溶性食物繊維含量を高めることもできる。かくして得られる分岐α-グルカン混合物に、さらにグルコアミラーゼ等の糖質加水分解酵素を作用させ、さらに水溶性食物繊維含量を高めた分岐α-グルカン混合物とすることも随意である。さらに、斯かる分岐α-グルカン混合物にグリコシルトレハロース生成酵素(EC 5.4.99.15)を作用させることにより分岐α-グルカン混合物を構成する分岐α-グルカンの還元末端にトレハロース構造を導入したり、水素添加により分岐α-グルカン分子の還元末端を還元するなどして分岐α-グルカン混合物の還元力を低下させてもよく、また、サイズ排除クロマトグラフィー等による分画を行なうことにより、所望の範囲に収まる分子量分布を有する分岐α-グルカン混合物を取得することも随意である。 The branched α-glucan mixture used in the present invention may be produced by any method as long as it has the characteristics (A) to (C). For example, a branched structure having a glucose polymerization degree of 1 or more linked to a non-reducing terminal glucose residue of a linear glucan having a glucose polymerization degree of 3 or more linked through an α-1,4 bond via an α-1,6 bond A branched α-glucan mixture obtained by allowing an enzyme having an action of introducing sucrose to act on starch can be suitably used in the practice of the present invention. As a more preferred example, International Publication No. WO2008 / 136331 Pamphlet And a branched α-glucan mixture obtained by allowing α-glucosyltransferase disclosed in (1) to act on starch. In addition to the α-glucosyltransferase, liquefied α-amylase (EC 3.2.1.1), saccharified α-amylase (EC 3.2.1.1), maltotetraose-producing amylase (EC 3.2.1.60), amylase such as maltohexaose-producing amylase (EC 3.2.1.98), isoamylase (EC 3.2.1.68) and pullulanase (EC 3.2.1). When the starch debranching enzyme such as .41) is used in combination, the molecular weight of the branched α-glucan mixture can be reduced, so that the molecular weight, the degree of glucose polymerization and the like can be adjusted to a desired range. Furthermore, the degree of polymerization disclosed in cyclomaltodextrin glucanotransferase (EC 2.4.1.19), starch branching enzyme (EC 2.4.1.18), and JP-A No. 2014-054221. A branched α-glucan mixture used in the present invention is formed by using two or more α-1,4 glucans together with an enzyme having an activity of transferring α-1,6 to an internal glucose residue of starch. -Glucan can be further branched to increase the water-soluble dietary fiber content of the branched α-glucan mixture. It is also optional to make a branched α-glucan mixture in which a saccharide hydrolase such as glucoamylase is further allowed to act on the branched α-glucan mixture thus obtained to further increase the water-soluble dietary fiber content. Furthermore, a trehalose structure is introduced into the reducing end of the branched α-glucan constituting the branched α-glucan mixture by allowing a glycosyl trehalose producing enzyme (EC 5.4.99.15) to act on such a branched α-glucan mixture. Alternatively, the reducing power of the branched α-glucan molecule may be reduced by reducing the reducing end of the branched α-glucan molecule by hydrogenation, etc., or by performing fractionation by size exclusion chromatography or the like. It is also optional to obtain a branched α-glucan mixture having a molecular weight distribution that falls within this range.
 本発明で用いる分岐α-グルカン混合物は、以上に述べたとおりのものであるが、株式会社林原からイソマルトデキストリン(商品名『ファイバリクサ』)として販売されている分岐α-グルカン混合物は、本発明を実施する上で、最適な分岐α-グルカン混合物として用いることができる。 The branched α-glucan mixture used in the present invention is as described above, but the branched α-glucan mixture sold as isomaltextrin (trade name “Fiber Rixa”) by Hayashibara Co., Ltd. Can be used as an optimal branched α-glucan mixture.
 本発明の結着剤は、前記プルランと、前記分岐α-グルカン混合物とを、無水物換算での質量比[プルラン/分岐α-グルカン混合物]で、約1.5乃至約4、好適には、約1.6乃至約3、より好適には約1.7乃至約3、更により好適には約2乃至約3の範囲で含む結着剤である。前記質量比の範囲の下限を下回る場合、又はその上限を超える場合には、本発明の結着剤が奏する所期の作用効果が著しく低下するか、発揮できなくなる場合があるので好ましくない。プルランと分岐α-グルカン混合物を前記質量比で含む結着剤は、プルラン単独のものはもとより、プルラン以外の成分である、難消化性デキストリン、ポリデキストロース、イヌリンなどの水溶性食物繊維、或いは、デキストリン、水飴などの澱粉加水分解物と併用した場合と比べ、食品材料同士の結着性に優れ、しかも、本発明の結着剤を用いれば、保形性・保存安定性、耐衝撃性などが顕著に向上した結着成形食品を工業的規模で歩留まり良く容易に製造することができる。 The binding agent of the present invention comprises the pullulan and the branched α-glucan mixture in a mass ratio in terms of anhydride [pullulan / branched α-glucan mixture] of about 1.5 to about 4, preferably About 1.6 to about 3, more preferably about 1.7 to about 3, and even more preferably about 2 to about 3. When the mass ratio is below the lower limit of the mass ratio or exceeds the upper limit, the intended effect achieved by the binder of the present invention may be remarkably reduced or may not be exhibited. The binder containing the pullulan and branched α-glucan mixture in the above mass ratio is not only pullulan alone but also a component other than pullulan, a water-soluble dietary fiber such as indigestible dextrin, polydextrose, inulin, or Compared with starch hydrolysates such as dextrin and starch syrup, it has excellent binding properties between food materials, and if the binder of the present invention is used, shape retention, storage stability, impact resistance, etc. Can be produced easily with good yield on an industrial scale.
 本発明の結着剤のより好適な実施態様としては、プルランと前記特性を有する分岐α-グルカン混合物とを無水物換算での合計で、固形分当たり、通常、約90質量%以上、好適には約95質量%以上100質量%以下、より好適には約98質量%以上100質量%以下であるものを例示できる。なお、プルランと前記特性を有する分岐α-グルカン混合物との合計量が、無水物換算で、固形分当たり90質量%を下回る場合には、本発明の結着剤が奏する所期の作用効果が著しく低下するか、発揮できなくなる場合があるので好ましくない。 As a more preferred embodiment of the binder of the present invention, the total of the pullulan and the branched α-glucan mixture having the above-mentioned characteristics in terms of anhydride is usually about 90% by mass or more, preferably about 90% by mass or more. Is about 95% by mass or more and 100% by mass or less, more preferably about 98% by mass or more and 100% by mass or less. In addition, when the total amount of pullulan and the branched α-glucan mixture having the above characteristics is less than 90% by mass in terms of anhydride, the expected effect of the binder of the present invention is obtained. This is not preferable because it may be significantly reduced or not exhibited.
 また、本発明の結着剤のより好適な実施態様としては、プルランと前記分岐α-グルカン混合物とを合計で、通常、約10乃至約30質量%、より好適には約10乃至約20質量%、更に好適には約10乃至約15質量%、より更に好適には約10乃至約13質量%含有する水溶液を例示できる。なお、水溶液中のプルランと前記分岐α-グルカン混合物との合計量が10質量%を下回る場合には、本発明の結着剤が奏する所期の作用効果が著しく低下するか、発揮できなくなる場合があるので好ましくない。また、水溶液中のプルランと前記分岐α-グルカン混合物との合計量が30質量%を超える場合には、配合量に見合った作用効果が期待できなくなるとともに、コスト面でも好ましくない。 In a more preferred embodiment of the binder of the present invention, the total of pullulan and the branched α-glucan mixture is generally about 10 to about 30% by mass, more preferably about 10 to about 20% by mass. %, More preferably from about 10 to about 15% by weight, and even more preferably from about 10 to about 13% by weight. When the total amount of pullulan and the branched α-glucan mixture in the aqueous solution is less than 10% by mass, the expected effect of the binding agent of the present invention is significantly reduced or cannot be exhibited. This is not preferable. In addition, when the total amount of pullulan and the branched α-glucan mixture in the aqueous solution exceeds 30% by mass, an effect corresponding to the blending amount cannot be expected, and the cost is not preferable.
 次に、本発明の結着成形食品について述べる。本発明の結着成形食品は、前記結着剤を用いて、小片状及び/又は粒状の食品材料同士が結着成形されてなる結着成形食品であって、前記食品材料同士が前記結着剤を介して結着成形されている結着成形食品である。本発明の結着成形食品に含まれる結着剤の量は、無水物換算で、当該食品材料の固形分当たり、通常、約0.1乃至約30質量%、より好適には約1乃至約20質量%、更に好適には約2乃至約10質量%である。なお、結着成形食品に含まれる結着剤の量が、無水物換算で、当該食品材料の固形分当たり、0.1質量%を下回る場合には、本発明の結着成形食品の保形性・保存安定性、取り扱い性、耐衝撃性、商品寿命が著しく低下するか、発揮できなくなる場合があるので好ましくない。また、結着成形食品に含まれる結着剤の量が、無水物換算で、当該食品材料の固形分当たり、30質量%を超えると、配合量に見合った作用効果が期待できくなる上、コスト面でも好ましくない。 Next, the binder molded food of the present invention will be described. The binder-molded food of the present invention is a binder-molded food in which small and / or granular food materials are binder-molded using the binder, and the food materials are bound to each other. This is a binder-molded food that is binder-molded through an adhesive. The amount of the binder contained in the binder-molded food of the present invention is usually about 0.1 to about 30% by mass, more preferably about 1 to about 30% by mass in terms of anhydride, based on the solid content of the food material. 20% by weight, more preferably about 2 to about 10% by weight. In addition, when the amount of the binder contained in the binder molded food is less than 0.1% by mass in terms of anhydride per solid content of the food material, the shape retention of the binder molded food of the present invention Properties, storage stability, handleability, impact resistance, and product life are significantly reduced or cannot be exhibited. In addition, when the amount of the binder contained in the binder-molded food exceeds 30% by mass in terms of anhydride, based on the solid content of the food material, it is difficult to expect an effect corresponding to the blending amount. It is not preferable in terms of cost.
 本発明の結着成形食品を構成する食品材料とは、主として、ヒトが食することのできる食品材料全般、殊に、乾燥食品材料(フリーズドライ食品、乾燥ベビーフードなどの材料を含む)全般を意味する。しかし、本発明の結着成形食品は、ヒト以外の動物に適用可能な形態とすることもできる。そのような場合には、前記食品材料に代えて、公知の飼料材料(ペットフードを含む)や餌料材料を用いることができる。以下、便宜上、本発明の結着成形食品を構成する食品材料として、ヒトが食することのできる食品材料を中心に説明する。 The food material constituting the binder-molded food of the present invention is mainly food materials that can be eaten by humans, especially dry food materials (including materials such as freeze-dried food and dried baby food). means. However, the binder-molded food of the present invention can be in a form applicable to animals other than humans. In such a case, a known feed material (including pet food) or feed material can be used instead of the food material. Hereinafter, for convenience, food materials that can be eaten by humans will be mainly described as food materials constituting the binder-shaped food of the present invention.
 本発明の結着成形食品を構成するヒトが食することのできる食品材料の具体例としては、膨化穀類[膨化米、煎餅、炭酸煎餅、ゴーフル、ポン菓子、コーンフレーク、ポップコーン、おこし(粟おこし、栗おこし、雷おこし、岩おこしなど)、おいり、雛あられなど]、アルファ化米、乾燥麺類(ウドン、ソバ、中華麺、パスタなどの乾燥品)、即席乾燥麺類、及びそれらの破断物、破損物、又は破砕物;スナック菓子(ビスケット、乾パン、クラッカー、ポテトチップス、プレッツェルなど)、グラノーラ、乾燥カステラ、乾燥スポンジケーキ、及びそれらの破断物、破損物、又は破砕物;乾燥種実類(アーモンド、カシューナッツ、ヘーゼルナッツ、ブラジルナッツ、ピーカンナッツ、ギンナン、栗、クルミ、ココナッツ、ピスタチオ、ピーナッツ、ペカン、米、大麦、小麦、雑穀(粟、稗、蕎麦の実などの乾燥品)、ゴマ、麻の実、ケシの実、山椒の実、ハスの実、ヒシの実、松の実、ヒマワリの種などの乾燥品)、及びそれらの破断物、破損物、又は破砕物;ブドウ、ウメ、グミ、モモ、リンゴ、ナシ、キウイ、カキ、イチジク、マンゴー、バナナ、ハパイヤ、パイナップル、プラム、ブルーベリー、イチゴ、柑橘類(温州ミカン、文旦、八朔、レモン、オレンジ、ネーブル、グレープフルーツなど)などの乾燥果肉(ドライフルーツ)、及びそれらの破断物、破損物、又は破砕物;乾燥野菜類(ジャガイモ、カボチャ、さつま芋、ニンジン、ダイコン、レンコン、蕪、キャベツ、レタス、白菜、チンゲン菜、ルッコラ、トウモロコシ、オカヒジキ、シソ、フキ、アスパラ、セリ、ナズナ、ゴギョウ、ハコベラ、ホトケノザ、茄子、葱、玉葱、大豆、小豆、空豆、ゴマ、エンドウ、ソバ、トマト、キュウリ、ゴーヤ、ハーブなどの乾燥品)、及びそれらの種子、及びそれらの破断物、破損物、又は破砕物;更には、乾燥全卵(全卵粉)、乾燥キノコ類、乾燥海藻類(アオサ、アオノリ、アカモク、アサクサノリ、コンブ、テングサ、ヒジキ、モズク、ワカメなどの乾燥品)、乾燥魚介類(剣先スルメ、桜エビ、乾ちりめん、いりこ、カラスミなど)、チョコレート(クランチチョコレートを含む)、乾燥肉(ビーフジャーキーなど)、及びそれらの破断物、破損物、又は破砕物などを例示できる。 Specific examples of food materials that can be eaten by humans constituting the binder-shaped food of the present invention include puffed cereals (puffed rice, rice crackers, carbonated rice crackers, gouffle, pon confectionery, corn flakes, popcorn, rice cakes (rice cakes, Chestnuts, lightning, rocks, etc.), oysters, chicks, etc.], pregelatinized rice, dried noodles (dried products such as udon, buckwheat, Chinese noodles, pasta), instant dried noodles, and their breaks and breaks Or crushed materials; snacks (biscuits, dry bread, crackers, potato chips, pretzels, etc.), granola, dried castella, dried sponge cake, and their broken, broken or crushed materials; dried seeds (almonds, cashews) , Hazelnut, brazil nut, pecan nut, ginnan, chestnut, walnut, coconut, pistachio, -Nuts, pecans, rice, barley, wheat, millet (dried products such as strawberries, strawberries, buckwheat seeds), sesame seeds, hemp seeds, poppy seeds, yam seeds, lotus seeds, castor seeds, pine nuts , Dried products such as sunflower seeds), and ruptured, broken or crushed products thereof; grapes, plums, gummy, peaches, apples, pears, kiwis, oysters, figs, mangoes, bananas, happies, pineapples, plums , Blueberries, strawberries, citrus fruits (dried mandarin oranges, bundan, hachiman, lemon, orange, navel, grapefruit, etc.) and other dried pulps, and their broken, broken or crushed pieces; dried vegetables (potatoes) , Pumpkin, sweet potato, carrot, radish, lotus root, persimmon, cabbage, lettuce, Chinese cabbage, tincture, arugula, corn, lobster, perilla, burdock, asparagus, Seri, Nazuna, Gokyo, Jacobella, Hotokenoza, Eggplant, Persimmon, Onion, Soybeans, Red Beans, Empty Beans, Sesame, Pea, Buckwheat, Tomato, Cucumber, Goya, Herbs, etc.), and Seeds, and Their Breaks In addition, dried products such as dried whole eggs (whole egg powder), dried mushrooms, dried seaweeds (Aosa, Aonori, Akamok, Asakusanori, Kombu, Proboscis, Hijiki, Mozuku, Wakame) ), Dried seafood (sword-tip swordfish, cherry shrimp, dried noodles, iriko, crows, etc.), chocolate (including crunch chocolate), dried meat (beef jerky, etc.), and their broken, broken, or crushed materials Can be illustrated.
 前記食品材料は、そのまま用いることもできるが、その水分含量が10質量%を超える場合には、公知の適宜の乾燥方法により、前記食品材料の水分含量を、通常、10質量%未満、好適には、5質量%未満、より好適には3質量%未満となるように調節して用いるのが良い。 The food material can be used as it is, but when the moisture content exceeds 10% by mass, the moisture content of the food material is usually less than 10% by mass, preferably by a known appropriate drying method. Is preferably adjusted to be less than 5% by mass, more preferably less than 3% by mass.
 また、本発明の結着成形食品には、本発明で用いるプルラン及び分岐α-グルカン混合物以外の他の成分として、多糖類(カラギーナン、ペクチン、アラビアガム、キサンタンガム、ジェランガム、寒天、トラガントガム、タマリンドシードガム、グァーガム、ローカストビーンガム、澱粉、キトサンなど)、高甘味度甘味料(サッカリン、アスパルテーム、アセスルファムK、スクラロース、ネオテーム、アドバンテーム、スクラロース、サッカリン、ステビオサイド、ステビア抽出物など)、保存剤、着色剤、安定剤、呈味剤、油脂、糖質などの1種又は2種以上の適量を適宜組み合わせて配合することができる。前記他の成分の配合量としては、その種類及び目的とする結着成形食品の種類、形状、大きさなどに基づいて適宜設定すればよく、通常、各成分につき、無水物換算で、結着成形食品の固形分当たりの質量に対し、0.0001質量%以上、好適には0.001乃至30質量%、より好適には0.01乃至20質量%、更に好適には0.01乃至10質量%の範囲から選ばれる量を例示できる。また、前記他の成分は、本発明の結着成形食品が完成するまでの1又は複数の工程でその必要量を一度に添加するか、適宜の量に小分けして複数回に分けてその全量を添加できるようにすればよい。なお、前記各成分のいずれも、本発明の結着成形食品の製造が完了するまでの1又は複数の工程で、例えば、混合、混和、混捏、浸漬、噴霧、散布、塗布、注入などの公知の1種又は2種以上の方法を適宜組み合わせて添加/配合することができる。 In addition, the binder-molded food of the present invention contains polysaccharides (carrageenan, pectin, gum arabic, xanthan gum, gellan gum, agar, tragacanth gum, tamarind seed as components other than the pullulan and branched α-glucan mixture used in the present invention. Gum, guar gum, locust bean gum, starch, chitosan, etc.), high-intensity sweeteners (saccharin, aspartame, acesulfame K, sucralose, neotame, adventame, sucralose, saccharin, stevioside, stevia extract, etc.), preservative, coloring One or two or more appropriate amounts of agents, stabilizers, flavoring agents, fats and oils, and the like can be combined in an appropriate combination. What is necessary is just to set suitably as a compounding quantity of the said other component based on the kind and the kind, shape, size, etc. of the target binder-shaped food, and usually each component is bound in terms of anhydride. 0.0001% by mass or more, preferably 0.001 to 30% by mass, more preferably 0.01 to 20% by mass, and still more preferably 0.01 to 10% by mass based on the mass per solid content of the molded food. The quantity chosen from the range of mass% can be illustrated. In addition, the other components are added in a necessary amount at one or more steps until the binder-shaped food of the present invention is completed, or divided into appropriate amounts and divided into a plurality of times for the total amount. Can be added. Each of the above components is a known process such as mixing, mixing, kneading, dipping, spraying, spraying, applying, pouring, etc., in one or more steps until the production of the binder-shaped food of the present invention is completed. One or two or more methods can be added / mixed as appropriate.
 前記保存剤としては、例えば、グリシン、アラニン、ポリリジンなどのアミノ酸類;食塩、酢酸塩、クエン酸塩、炭酸カルシウム、炭酸カリウム、炭酸ナトリウム、酸化カルシウム、水酸化カルシウム、リン酸二ナトリウム、リン酸三カリウム、ソルビン酸カリウムなどの塩類;ソルビン酸、安息香酸、パラオキシ安息香酸エステル類、プロピオン酸などの酸類;及びニンニク汁、梅肉エキス、笹エキス、プロポリスエキス、醗酵乳、卵白リゾチームなどの天然型保存剤などを例示できる。 Examples of the preservative include amino acids such as glycine, alanine and polylysine; salt, acetate, citrate, calcium carbonate, potassium carbonate, sodium carbonate, calcium oxide, calcium hydroxide, disodium phosphate, phosphoric acid Salts such as tripotassium and potassium sorbate; acids such as sorbic acid, benzoic acid, paraoxybenzoic acid esters, propionic acid; and natural such as garlic juice, plum extract, salmon extract, propolis extract, fermented milk, egg white lysozyme Examples include mold preservatives.
 前記着色剤としては、例えば、赤麹、カニ殻粉末、アスタキサンチン、野菜色素、紅麹色素、濃縮ファフィア色素油、クチナシエロー、抹茶色、コチニール色素、クチナシ黄色素、クチナシ青色素、フラボノイド色素、カラメル色素、β-カロテン、カロテノイド系色素、木炭などの天然色素;及び赤色2号、赤色3号、赤色104号、赤色105号、赤色106号、黄色4号、黄色5号、青色1号、二酸化チタンなどの合成着色料を例示できる。 Examples of the colorant include red potato, crab shell powder, astaxanthin, vegetable pigment, red potato pigment, concentrated faffia pigment oil, gardenia yellow, brownish brown, cochineal pigment, gardenia yellow pigment, gardenia blue pigment, flavonoid pigment, caramel Pigments, β-carotene, carotenoid pigments, natural pigments such as charcoal; and Red No. 2, Red No. 3, Red No. 104, Red No. 105, Red No. 106, Yellow No. 4, Yellow No. 5, Blue No. 1, Dioxide A synthetic colorant such as titanium can be exemplified.
 前記安定剤としては、例えば、環状四糖、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリンなどを例示できる。 Examples of the stabilizer include cyclic tetrasaccharide, α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin and the like.
 前記呈味剤としては、例えば、グルコース、フラクトース、パラチノース(イソマルツロース)、マルトース、イソマルトース、マルトトリオース、イソマルトトリオース、パノース、マルトテトラオース、マルトペンタオースなどの還元性の単糖類やオリゴ糖;ソルビトール、マルチトール、イソマルチトール、トレハロース(α,α-トレハロース、α,β-トレハロース、又はβ,β-トレハロース)、ラクチトール、パニトール、スクロース、ラフィノース、エルロース、ラクトスクロース、α-グリコシルトレハロース、α-グリコシル-α-グリコシド、α-グリコシルスクロースなどの糖アルコールや非還元性のオリゴ糖;砂糖結合水飴、マルトース高含有シラップ、トレハロース高含有シラップ、マルトテトラオース高含有シラップ、パノース高含有シラップ、ラクトスクロース高含有シラップ、マルチトール高含有シラップなどの混合糖質含有シラップ;高甘味度甘味料(サッカリン、アスパルテーム、アセスルファムK、スクラロース、ネオテーム、アドバンテーム、スクラロース、サッカリン、ステビオサイド、ステビア抽出物など);ペパーミント、スペアミント、バジルミント、パイナップルミント、レモンバーム、ローズマリー、セージ、オリーブなどのハーブ類を含む可食性植物又はそれらのエキス類;果実類;及び他の甘味、酸味、苦味、塩味、旨味、辛味、又は渋味を有する各種食品素材などを例示できる。本発明を実施するに際しては、前記呈味剤の1種又は2種以上の適量を適宜組み合わせて用いることができる。 Examples of the flavoring agent include reducing monosaccharides such as glucose, fructose, palatinose (isomaltulose), maltose, isomaltose, maltotriose, isomaltotriose, panose, maltotetraose, maltopentaose. Or oligosaccharides; sorbitol, maltitol, isomaltitol, trehalose (α, α-trehalose, α, β-trehalose, or β, β-trehalose), lactitol, panitol, sucrose, raffinose, erulose, lactosucrose, α- Sugar alcohol and non-reducing oligosaccharides such as glycosyl trehalose, α-glycosyl-α-glycoside, α-glycosyl sucrose; sugar-bound starch syrup, maltose-rich syrup, trehalose-rich syrup, maltotetraose-rich syrup Mixed sugar-containing syrup such as panose-rich syrup, lactosucrose-rich syrup, maltitol-rich syrup; high-intensity sweeteners (saccharin, aspartame, acesulfame K, sucralose, neotame, advantame, sucralose, saccharin, stevioside, Stevia extract, etc.); edible plants or their extracts including peppermint, spearmint, basil mint, pineapple mint, lemon balm, rosemary, sage, olive and other herbs; fruits; and other sweetness, sourness, bitterness Various food materials having salty taste, umami taste, pungent taste, or astringent taste can be exemplified. In practicing the present invention, one or more appropriate amounts of the above-mentioned flavoring agents can be used in appropriate combination.
 前記油脂としては、例えば、サラダ油、カカオ脂、ナタネ油、大豆油、ヒマワリ種子油、落花生油、米ぬか油、コーン油、サフラワー油、オリーブ油、グレープシード油、ゴマ油、月見草油、パーム油、シア脂、サル脂、カカオ脂、ヤシ油、パーム核油、マーガリン等の植物性油脂;乳脂、牛脂、ラード、魚油、鯨油、バター等の動物性油脂;前記植物性及び前記動物性油脂の1種又は2種以上の混合油;及びそれらの油脂を硬化させ、分別蒸留し、エステル交換等を施した加工油脂などを例示できる。前記食品材料を被覆する場合の動植物性油脂の量、及び糖質(無水物換算)の量はそれぞれ、前記食品材料に対し、通常、約5質量%以上、好適には、約10乃至約30質量%、より好適には約10乃至約20質量%、更に好適には約10乃至約15質量%である。 Examples of the fats and oils include salad oil, cacao butter, rapeseed oil, soybean oil, sunflower seed oil, peanut oil, rice bran oil, corn oil, safflower oil, olive oil, grape seed oil, sesame oil, evening primrose oil, palm oil, shea Vegetable oils such as fat, monkey fat, cacao butter, coconut oil, palm kernel oil, margarine; animal fats such as milk fat, beef tallow, lard, fish oil, whale oil, butter; Or, two or more kinds of mixed oils; and processed fats and oils obtained by curing these oils and fats, fractionally distilling them, and performing transesterification and the like can be exemplified. The amount of animal and vegetable oil and fat and the amount of sugar (anhydrous equivalent) when coating the food material are usually about 5% by mass or more, preferably about 10 to about 30 with respect to the food material. % By weight, more preferably from about 10 to about 20% by weight, and even more preferably from about 10 to about 15% by weight.
 また、前記糖質としては、例えば、グルコース、フラクトース、スクロース、パラチノース(イソマルツロース)、マルトース、イソマルトース、パノース、マルトトリオース、マルトテトラオース、マルトペンタオース、粉末還元麦芽糖水飴などの還元性の単糖類やオリゴ糖;ソルビトール、マルチトール、イソマルチトール、トレハロース(α,α-トレハロース、α,β-トレハロース、又はβ,β-トレハロース)、ラクチトール、パニトール、スクロース、ラフィノース、エルロース、ラクトスクロース、α-グリコシルトレハロース、α-グリコシル-α-グリコシド、α-グリコシルスクロースなどの糖アルコールや非還元性のオリゴ糖;希少糖(D-アロース、D-プシロース、D-タガトース、エリスリトール、キシリトールなど)、水飴、砂糖結合水飴、マルトース高含有シラップ、トレハロース高含有シラップ、マルトテトラオース高含有シラップ、パノース高含有シラップ、ラクトスクロース高含有シラップ、マルチトール高含有シラップなどの混合糖質含有シラップなどを例示できる。 Examples of the carbohydrate include reducing properties such as glucose, fructose, sucrose, palatinose (isomaltulose), maltose, isomaltose, panose, maltotriose, maltotetraose, maltopentaose, and powdered reduced maltose starch syrup. Monosaccharides and oligosaccharides: sorbitol, maltitol, isomaltitol, trehalose (α, α-trehalose, α, β-trehalose, or β, β-trehalose), lactitol, panitol, sucrose, raffinose, elulose, lactosucrose , Α-glycosyl trehalose, α-glycosyl-α-glycoside, α-glycosyl sucrose and other sugar alcohols and non-reducing oligosaccharides; rare sugars (D-allose, D-psylose, D-tagatose, erythritol, xylitol, etc.) , Syrup, sugar-bound syrup, maltose-rich syrup, trehalose-rich syrup, maltotetraose-rich syrup, panose-rich syrup, lactosucrose-rich syrup, mixed sugar-containing syrup, etc. it can.
 本発明の結着成形食品の形状・形態、大きさには、特段の制限はないけれども、通常、ヒトが経口摂取し易い大きさの球状、半球状、立方体状、直方体状、多角形体状、楕円体状、ひょうたん形状、柱状、板状、棒状(シリアルバー、グラノーラバーなどのバー状)、円錐状、三角錐状、四角錐/ピラミッド状のものを例示できる。前記ヒトが経口摂取し易い大きさとは、通常、長径が5cm以下、好適には0.01乃至3cm、より好適には0.05乃至1cm、更に好適には0.1乃至0.5cmのサイズを意味する。 Although there are no particular restrictions on the shape, shape, and size of the binder-molded food of the present invention, it is usually spherical, hemispherical, cubic, rectangular, polygonal, and easily sized for human consumption. Examples include an ellipsoidal shape, a gourd shape, a columnar shape, a plate shape, a rod shape (a bar shape such as a serial bar and a granola bar), a conical shape, a triangular pyramid shape, and a quadrangular pyramid / pyramid shape. The size that the human can easily ingest is usually a size of 5 cm or less, preferably 0.01 to 3 cm, more preferably 0.05 to 1 cm, and still more preferably 0.1 to 0.5 cm. Means.
 斯かる本発明の結着成形食品は、保形性・保存安定性、耐衝撃性に優れた嵩密度の高い結着成形食品であって、搬送中、保管中、及び店頭での配架中における耐衝撃性、取り扱い性に優れ、商品寿命も長いという優れた特徴を有している。 Such a binder-molded food of the present invention is a binder-molded food with a high bulk density that is excellent in shape retention, storage stability, and impact resistance, and is being transported, stored, and distributed in stores. It has excellent characteristics such as excellent impact resistance and handling, and long product life.
 次に、本発明の結着成形食品の製造方法について説明する。当該製造方法は、小片状及び/又は粒状の食品材料の表面に、本発明の結着剤を付着させる工程を含む、結着成形食品の製造方法である。 Next, the method for producing the binder molded food of the present invention will be described. The said manufacturing method is a manufacturing method of a binder-shaped foodstuff including the process of making the binder of this invention adhere to the surface of a small-piece-like and / or granular food material.
 上記小片状及び/又は粒状の食品材料としては、既述した形状・形態、大きさの食品材料が用いられる。斯かる食品材料は、そのまま用いることもできるが、必要に応じて、例えば、常圧又は減圧下、室温乃至は室温以上の温度の温風ないしは熱風を前記食品材料に送風することにより、その水分含量を、通常、10質量%以下に調整したものが好適に用いられる。なお、前記食品材料の乾燥は、1工程に限定されることなく、2工程以上に分けて実施することも随意である。また、前記水分調整後の食品材料は、そのまま用いることもできるが、当該食品材料の表面が多孔質性又は吸湿性である場合には、当該食品材料の表面に動植物性油脂及び/又は糖質を無水物換算で、当該食品材料固形物当たり、通常、約5質量%以上、好適には、約10乃至約30質量%、より好適には約10乃至約20質量%、更に好適には約10乃至約15質量%となるように、付着、散布、噴霧、又は塗布して食品材料の表面を被覆するのがよい。被覆に用いる動植物性油脂及び糖質(無水物換算)の量はそれぞれ、前記食品材料に対し、通常、約5質量%以上、好適には、約10乃至約30質量%、より好適には約10乃至約20質量%、更に好適には約10乃至約15質量%である。被覆に際しては、表面に動植物性油脂及び/又は糖質を付着、散布、噴霧、又は塗布するだけでも良いが、好適には、表面に動植物性油脂及び/又は糖質を付着、散布、噴霧、又は塗布した食品材料を、通常、80℃以上、好適には、90乃至150℃、より好適には、100乃至130℃で、5乃至30分間、好適には、5乃至20分間、より好適には10乃至20分間加熱し、その後、室温まで放冷して、当該小片状及び/又は粒状の食品材料の表面に動植物性油脂及び/又は糖質の比較的均質な被覆を形成するのが良く、小片状及び/又は粒状の食品材料が表面にこのような被覆を有している場合には、当該食品材料同士を結着剤を介して結着させる際、前記結着剤が当該食品材料の組織内部に実質的に浸透することなく、その表面に効率よく滞留し、付着させることができるという利点が得られる。これにより、前記食品材料同士の結着性、成形性が高まるとともに、高い嵩密度を有する結着成形食品が得られ、その保形性・保存安定性、耐衝撃性をより効果的に高めることができる。 The food material having the shape, form and size described above is used as the above-mentioned small piece and / or granular food material. Such a food material can be used as it is, but if necessary, for example, by blowing warm air or hot air at room temperature or above room temperature under normal pressure or reduced pressure to the food material, What adjusted the content to 10 mass% or less normally is used suitably. In addition, drying of the said food material is not limited to 1 process, It is also optional to implement in 2 processes or more. In addition, the food material after the moisture adjustment can be used as it is, but when the surface of the food material is porous or hygroscopic, the surface of the food material has animal and vegetable oils and / or carbohydrates. Is generally about 5% by weight or more, preferably about 10 to about 30% by weight, more preferably about 10 to about 20% by weight, and more preferably about The surface of the food material may be coated, adhered, sprayed, sprayed or applied so as to be 10 to about 15% by weight. The amounts of animal and vegetable oils and saccharides (anhydride equivalent) used for coating are usually about 5% by mass or more, preferably about 10 to about 30% by mass, more preferably about It is 10 to about 20% by mass, more preferably about 10 to about 15% by mass. In the coating, the animal and vegetable oils and / or sugars may be simply adhered, spread, sprayed or applied to the surface, but preferably, the animal and vegetable oils and / or sugars are adhered to the surface, dispersed, sprayed, Alternatively, the applied food material is usually 80 ° C. or higher, preferably 90 to 150 ° C., more preferably 100 to 130 ° C., 5 to 30 minutes, preferably 5 to 20 minutes, more preferably. Is heated for 10-20 minutes and then allowed to cool to room temperature to form a relatively homogeneous coating of animal and vegetable oils and / or sugars on the surface of the crushed and / or granular food material. Well, when the small and / or granular food material has such a coating on the surface, when the food material is bound to each other via the binder, the binding agent On the surface of the food material without substantially penetrating the tissue Rate well retained, advantage can be attached can be obtained. As a result, the binding property and moldability of the food materials are enhanced, and a binder molded food product having a high bulk density can be obtained, and its shape retention / storage stability and impact resistance can be improved more effectively. Can do.
 本発明の結着成形食品の製造方法における小片状及び/又は粒状の食品材料の表面に結着剤を付着させる工程とは、室温又はそれを上回る温度条件下で、当該結着剤を当該食品材料と接触させ、その表面の一部又は全体に当該結着剤を付着させる工程を意味し、通常、結着成形食品を製造する際に用いる、混合、混和、混捏、散布、噴霧、塗布、又は浸漬する手段を単独又はそれらの複数を適宜組み合わせて用いることができる。詳細には、本発明で用いる結着剤が粉末状の形態にある場合には、適宜の前記手段により、当該結着剤を食品材料の表面に付着させる。しかし、工業的規模で実施する場合には、通常、水溶液の形態にある結着剤を食品材料と混合、混和、又は混捏するか、当該結着剤を当該食品材料の表面に散布、噴霧、又は塗布するか、当該結着剤に当該食品材料を浸漬して付着させるのが好ましい。付着させる結着剤の量は、食品材料の固形分当たり、無水物換算で、通常、約0.1乃至約30質量%が好ましく、より好適には約1乃至約20質量%、更に好適には約2乃至約10質量%の範囲がよい。付着させる結着剤の量が約0.1質量%を下回る場合には、結着剤としての所期の作用効果が著しく低下するか、発揮できなくなる場合があるので好ましくない。また、付着させる結着剤の量が約30質量%を超える場合には、配合量に見合った作用効果が期待できなくなる上、コスト面でも好ましくない。 The step of attaching the binder to the surface of the small and / or granular food material in the method for producing a binder-shaped food according to the present invention means that the binder is added under the temperature condition at room temperature or higher. Means the process of bringing into contact with food materials and attaching the binding agent to part or all of its surface. Usually used in the production of binder-shaped foods, mixing, blending, kneading, spraying, spraying, application Or the means to immerse can be used individually or in combination of those suitably. Specifically, when the binder used in the present invention is in a powder form, the binder is adhered to the surface of the food material by appropriate means. However, when carried out on an industrial scale, usually the binder in the form of an aqueous solution is mixed, mixed or kneaded with the food material, or the binder is sprayed on the surface of the food material, sprayed, Or it is preferable to apply | coat or to immerse and attach the said food material to the said binder. The amount of the binder to be attached is preferably about 0.1 to about 30% by mass, more preferably about 1 to about 20% by mass, and more preferably, in terms of anhydride, based on the solid content of the food material. Is preferably in the range of about 2 to about 10 weight percent. When the amount of the binder to be adhered is less than about 0.1% by mass, the intended action and effect as the binder may be significantly reduced or may not be exhibited, which is not preferable. Further, when the amount of the binder to be adhered exceeds about 30% by mass, it is not possible to expect an effect corresponding to the blending amount, and it is not preferable in terms of cost.
 また、本発明の結着成形食品の製造方法には、表面に前記結着剤が付着した小片状及び/又は粒状の前記食品材料を成形する工程を含めることができる。すなわち、本発明の結着成形食品の製造方法は、小片状及び/又は粒状の食品材料の表面に結着剤を付着させる工程において、食品材料を、1個以上の球状、半球状、立方体状、直方体状、ひょうたん形状、楕円体状、柱状、板状、棒状(シリアルバー、グラノーラバーなどのバー状)、円錐状、三角錐状、四角錐/ピラミッド状などの各種形状の窪みを有する、適宜の形状、サイズ、材質[金属、シリコン、熱硬化性樹脂、熱可塑性樹脂、汎用プラスチック(ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、ポリテトラフルオロエチレン、ABS樹脂、AS樹脂、アクリル樹脂など)、エンジニアリング・プラスチック(エンプラ)、繊維強化プラスチック(ガラス繊維強化プラスチック、炭素繊維強化プラスチックなど)、木材、ガラス、陶器など]の型に載置又は充填し、通常、室温又は室温以上の温度条件下、内容物を減圧、常圧、加圧、押圧条件下で、食品材料同士は結着剤を介して結着、成形する工程を含むことができる。なお、本発明の結着成形食品を工業的規模で製造する場合には、例えば、特開平5-328903号公報、特開平6-303907号公報、及び特開平6-327409号公報などに開示された油脂性菓子食品の製造装置を適宜用いることができる。 Further, the method for producing a binder-shaped food according to the present invention may include a step of molding the small and / or granular food material having the binder attached on the surface thereof. That is, the method for producing a binder-molded food according to the present invention includes a step of attaching a binder to the surface of a small piece and / or granular food material. Shape, rectangular parallelepiped shape, gourd shape, ellipsoidal shape, columnar shape, plate shape, rod shape (bar shape such as cereal bar, granola bar), conical shape, triangular pyramid shape, quadrangular pyramid / pyramid shape, etc. , Appropriate shape, size, material [metal, silicon, thermosetting resin, thermoplastic resin, general-purpose plastic (polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, polyurethane, polytetrafluoroethylene, ABS resin, AS Resin, acrylic resin, etc.), engineering plastic (engineering plastic), fiber reinforced plastic (glass fiber reinforced plastic, Carbon fiber reinforced plastic, etc.), wood, glass, earthenware, etc.] mold or mold, usually at room temperature or above room temperature, contents under reduced pressure, normal pressure, pressurized, pressed condition, The food materials can include a step of binding and molding via a binder. In the case where the binder-molded food of the present invention is produced on an industrial scale, it is disclosed in, for example, JP-A-5-328903, JP-A-6-303907, JP-A-6-327409, and the like. An apparatus for producing a fatty oily confectionery food can be used as appropriate.
 また、本発明の結着成形食品の製造方法において、前記食品材料同士の結着性を更に高める目的で、前記食品材料を結着成形する工程の後に、結着成形物を更に乾燥及び/又は加熱する工程を設けることも随意である。前記乾燥及び/又は加熱する工程としては、通常、斯界において用いられている公知の方法を適用できる。乾燥工程における温度は、通常、室温以上の温度であって、好適には、50℃以上、より好適には60乃至150℃、更に好適には70乃至120℃、より更に好適には70乃至110℃、更に好適には80乃至110℃の温度が採用される。また、加熱工程における温度は、通常、70℃以上、好適には80℃以上、より好適には90℃以上、更に好適には100乃至200℃、より更に好適には100乃至150℃、更に好適には100乃至140℃、更に好適には100乃至130℃の温度が好ましい。前記食品材料を乾燥又は加熱する時間は、通常、60分間以内、好適には5乃至40分間、より好適には5乃至30分間、更に好適には5乃至20分間の範囲の時間が作業性、エネルギー効率の観点から望ましい。また、前記乾燥及び/又は加熱する工程は、前記温度の熱風を前記食品材料に送風することにより実施することも随意である。なお、前記乾燥工程は減圧条件下で実施することもできる。また、前記乾燥工程は、1工程に限定されることなく、2工程以上に分けて実施し、最終製品としての結着成形物の水分含量が、通常、10質量%以下、好適には3乃至7質量%の範囲となるように調整する。なお、結着成形物の水分含量が3質量%未満の場合、結着成形物が固くなり過ぎて好ましくないとともに、逆に、水分含量が10質量%超の場合、結着成形物が柔らかくなり過ぎたり、保存安定性に劣るなどの理由により好ましくない。 In the method for producing a binder-shaped food according to the present invention, for the purpose of further enhancing the binding property between the food materials, the binder-molded product is further dried and / or dried after the step of binding-molding the food material. It is also optional to provide a heating step. As the drying and / or heating step, a known method usually used in this field can be applied. The temperature in the drying step is usually room temperature or higher, preferably 50 ° C. or higher, more preferably 60 to 150 ° C., further preferably 70 to 120 ° C., and still more preferably 70 to 110. A temperature of 80 ° C., more preferably 80 to 110 ° C. is employed. The temperature in the heating step is usually 70 ° C. or higher, preferably 80 ° C. or higher, more preferably 90 ° C. or higher, more preferably 100 to 200 ° C., still more preferably 100 to 150 ° C., and further preferably. The temperature is preferably 100 to 140 ° C, more preferably 100 to 130 ° C. The time for drying or heating the food material is usually within 60 minutes, preferably 5 to 40 minutes, more preferably 5 to 30 minutes, and even more preferably 5 to 20 minutes. Desirable from the viewpoint of energy efficiency. Moreover, it is also optional to carry out the drying and / or heating step by blowing hot air at the temperature to the food material. In addition, the said drying process can also be implemented under pressure reduction conditions. Further, the drying step is not limited to one step and is carried out in two or more steps, and the water content of the binder molded product as the final product is usually 10% by mass or less, preferably 3 to Adjust to a range of 7% by mass. If the moisture content of the binder molded product is less than 3% by mass, the binder molded product becomes too hard, which is not preferable. Conversely, if the moisture content exceeds 10% by mass, the binder molded product becomes soft. It is not preferable because it is too long or has poor storage stability.
 本発明の製造方法によれば、食品材料の種類、形状、大きさに左右されることなく、食品材料同士が全体として均一に結着成形でき、外観仕上がりが良好で、嵩密度の高い、保形性・保存安定性、耐衝撃性に優れた高品質の結着成形食品を良好な歩留まり、作業効率で、容易かつ安定して製造することができる。 According to the production method of the present invention, the food materials can be uniformly formed as a whole, regardless of the type, shape, and size of the food materials, the appearance is good, the bulk density is high, and the High quality binder-molded foods with excellent formability, storage stability and impact resistance can be manufactured easily and stably with good yield and work efficiency.
 以上に述べた本発明の結着剤、結着成形食品、及び結着成形食品の製造方法が有する特徴を纏めると下記のとおりである。
(1)本発明の結着成形食品は、食品材料同士が全体として均一に結着成形された、外観仕上がりが良好で、嵩密度の高い、保形性・保存安定性、耐衝撃性に優れ、搬送中、保管中、及び店頭での配架中における耐衝撃性及び取り扱い性に優れ、商品寿命が相対的に長い。
(2)本発明の製造方法は、前記(1)に示す優れた特性を有する結着成形食品を歩留まり良く、効率的に容易かつ低コストで安定して製造できる。
(3)本発明の結着剤は、前記(1)及び(2)に示す結着成形食品とその製造方法の提供を可能にする。
The characteristics of the binder, the bound molded food, and the method for producing the bound molded food of the present invention described above are summarized as follows.
(1) The binder-molded food of the present invention is formed by uniform binding of food materials as a whole, has a good appearance, has a high bulk density, is excellent in shape retention / storage stability, and impact resistance. Excellent in impact resistance and handling during transportation, storage, and distribution at stores, and has a relatively long product life.
(2) The production method of the present invention can produce a binder-molded food having the excellent characteristics shown in (1) with high yield, efficiently and stably at low cost.
(3) The binder of the present invention makes it possible to provide the binder molded food and the method for producing the same as shown in the above (1) and (2).
 なお、本発明に係る結着剤の用途として、結着成形食品の製造方法に用いられる場合を中心に説明したが、当該結着剤は斯かる用途のみに決して限定されるものではない。当該結着剤の他の用途としては、例えば、食品、化学品、化粧品、化学品、医薬品、医薬部外品、飼料、餌料などの材料、原材料などを結着、接合、被覆するなどの用途を例示できる。 In addition, although it demonstrated centering on the case where it uses for the manufacturing method of a binder molded food as a use of the binder which concerns on this invention, the said binder is by no means limited only to such a use. Other uses of the binder include, for example, binding, bonding, and covering materials such as foods, chemicals, cosmetics, chemicals, pharmaceuticals, quasi drugs, feeds, feeds, and other raw materials. Can be illustrated.
 以下、実験に基づいて、本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail based on experiments.
<実験1:結着剤が結着成形食品の物性に及ぼす影響>
(1)概要
 結着成形食品を製造するに際し、食品材料同士を結着させるために、プルランを主体とする結着剤が繁用されている。しかし、斯かる結着剤は、加熱前に、これを用いて食品材料同士を均一に結着させるときの結着性、作業性、及び加熱前の結着成形食品を型から抜き出すときの作業性には改善すべき点があること、また、加熱して得られる結着成形食品の保形性、耐衝撃性、歯触り、及び歯への不快な付着性にも改善すべき点があることを本発明者等は独自に見出した。そこで、本発明者等は、これらの不都合を改善するために、プルランを主体とする結着剤において、プルランと他の成分との併用に着目し、種々検討した。
<Experiment 1: Effect of binder on physical properties of binder-molded food>
(1) Outline In producing a binder-molded food, a binder mainly composed of pullulan is frequently used to bind food materials together. However, such a binder is used to bind the food materials uniformly using the binder before heating, workability, and work to extract the binder molded food before heating from the mold. There is a point that should be improved, and there are also points that should be improved in the shape retention, impact resistance, touch, and unpleasant adhesion to the teeth of the binder-molded food obtained by heating. The inventors of the present invention independently found out. Therefore, the present inventors have made various studies focusing on the combined use of pullulan and other components in a binder mainly composed of pullulan in order to improve these disadvantages.
(2)実験方法
<結着剤の調製>
 プルラン(商品名『食品添加物プルラン』、プルラン含量約94質量%、水分含量約2質量%、株式会社林原製)と下記表1に示す水溶性食物繊維素材(4種類)と澱粉加水分解物(2種類)とを乾燥処理することなく、下記表2に示す配合割合で、室温下、精製水に溶解し、水溶液状の各種結着剤として、被験試料1乃至18を調製した。なお、対照は、プルランのみを含む水溶液とした。
(2) Experimental method <Preparation of binder>
Pullulan (trade name “Food Additive Pullulan”, pullulan content approximately 94% by weight, moisture content approximately 2% by weight, manufactured by Hayashibara Co., Ltd.) and water-soluble dietary fiber materials (4 types) and starch hydrolysates shown in Table 1 below (2 types) were dissolved in purified water at room temperature at the blending ratio shown in Table 2 below without drying treatment, and test samples 1 to 18 were prepared as various aqueous binders. The control was an aqueous solution containing only pullulan.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<結着成形食品の調製>
 20℃の温度条件下、食品材料として、市販のゴーフル(商品名『神戸風月堂ゴーフル15S』、株式会社東京風月堂製)を破砕機にて粉砕し、破片の一辺が約3乃至約4mmの小片状ゴーフルを得、その50gをボウルにとり、撹拌下、サラダ油7gを添加した後、マルトース7gを添加し、130℃で10分間加熱し、室温まで放冷した後、結着剤として前記被験試料1乃至18のいずれかを10g添加、混合し、各被験試料を小片状のゴーフル表面にほぼ均一に付着させた。なお、サラダ油とマルトースを用いたのは、小片状ゴーフルの表面が多孔性、吸湿性であることに鑑み、予め、その表面を油脂と糖質を用いて被覆しておくことにより、小片状ゴーフル表面への前記結着剤の付着効率を高めるためである。次いで、直径約3cmの半球状の窪みを複数個有するプラスチック製モールド(以下、「モールド」と言う。)の各窪みの上に、各窪みの体積をやや上回る程度の小片状ゴーフルを載置し、ステンレス製のヘラでモールド表面を平らに均し、各窪みに前記小片状ゴーフルを充填するとともに、ゴーフル同士を結着成形し(これら一連の作業を「モールディング(molding)作業」と言う。)、次いで、小片状ゴーフルを収容したモールドを反転させ、振動を加え、モールドの開口部から半球状のゴーフル塊を抜き出し(これら一連の作業を「デモールディング(demolding)作業」と言う。)、オーブンに入れ、100℃で20分間加熱し、結着成形食品を得た。なお、対照は、プルランのみを含む水溶液を用いて前記同様にして調製した。
<Preparation of Binder Molded Food>
Under a temperature condition of 20 ° C., as a food material, commercially available gouffle (trade name “Kobe Fugetsu-do Gofull 15S”, manufactured by Tokyo Fugetsu-do Co., Ltd.) is pulverized by a crusher, and one side of a piece is about 3 to about 4 mm. A small piece of goofle is obtained, and 50 g of it is taken into a bowl, 7 g of salad oil is added with stirring, 7 g of maltose is added, heated at 130 ° C. for 10 minutes, allowed to cool to room temperature, and then tested as a binder. 10 g of any of Samples 1 to 18 was added and mixed, and each test sample was made to adhere almost uniformly to the surface of the small piece of goofle. In addition, salad oil and maltose were used because the surface of the small piece goofle is porous and hygroscopic, so that the surface is coated in advance with oils and fats, This is to increase the adhesion efficiency of the binder to the surface of the goofle. Next, a small piece of goofles that slightly exceeds the volume of each recess is placed on each recess of a plastic mold (hereinafter referred to as “mold”) having a plurality of hemispherical recesses having a diameter of about 3 cm. Then, the mold surface is leveled with a stainless steel spatula, and the dents are filled with the small pieces of gophers, and the gophers are bonded to each other (this series of operations is called "molding operation"). Then, the mold containing the small piece gouffle is inverted, and a vibration is applied, and a hemispherical gouffle mass is extracted from the opening of the mold (this series of operations is referred to as “demolding operation”). ), And heated at 100 ° C. for 20 minutes to obtain a binder molded food. The control was prepared in the same manner as described above using an aqueous solution containing only pullulan.
<被験試料1乃至18を用いて結着成形食品を調製するときの作業性及び得られた結着成形食品の官能評価>
 被験試料1乃至18を用いて結着成形食品を調製するときの作業性及び得られた結着成形食品につき、下記評価項目(ア)乃至(エ)について、熟練職人が評価した。
<Workability when preparing a binder molded food using test samples 1 to 18 and sensory evaluation of the obtained binder molded food>
Skilled craftsmen evaluated the following evaluation items (a) to (d) for workability when preparing a binder molded food using test samples 1 to 18 and the obtained binder molded food.
(ア)作業性:モールディング/デモールディング作業時における結着剤が付着した小片状の食品材料のモールドへの充填のし易さ及びモールドからの抜き出し易さ;
(イ)保形性:デモールディング作業時における加熱前の結着成形食品の型崩れの程度、及び加熱後の結着成形食品を指先で軽く摘まんだときの型崩れの程度;
(ウ)食感:加熱後の結着成形食品を食したときの歯触りの良さと、歯への不快な付着性のなさ;及び
(エ)モールディング作業後に得られた結着成形物の嵩密度:各被験試料を用いて結着させた結着成形食品をそれぞれ同量用いてモールディング作業を行い、モールディング作業後に得られた結着成形物の個数をそれぞれ計数し、対照の結着成形物の個数を基準に、それよりも「個数が少ない場合」、「同数の場合」、及び「個数が多い場合」をそれぞれ、対照と比べ、嵩密度が「良好(高い)」、「同等である」、及び「劣る(低い)」と評価した。この評価において、モールディング作業後に得られた結着成形物の数が対照と比べ少ないということは、モールドの各窪み1個当たりに充填された食品材料の質量が多いこと、つまり、結着成形物1個当たりの嵩密度が高いことを意味する。
(A) Workability: Ease of filling and extracting from the mold small pieces of food material with a binder attached during molding / demolding work;
(I) Shape retention: the degree of deformation of the binder-shaped food before heating during demolding, and the degree of loss of shape when the binder-shaped food after heating is lightly picked with a fingertip;
(C) Texture: good texture when eating a binder-formed food after heating, and no unpleasant adhesion to the teeth; and (D) bulk of the binder-molded product obtained after molding. Density: Molding operation was performed using the same amount of binding-molded foods that were bound using each test sample, and the number of binding moldings obtained after molding was counted, and the control binding moldings were counted. Compared to the control, the bulk density is “good (high)” and “equivalent” when “the number is small”, “the number is the same”, and “the number is large”, respectively. And “Inferior (Low)”. In this evaluation, the fact that the number of binder molded products obtained after the molding operation is smaller than that of the control means that the mass of the food material filled in each depression of the mold is large, that is, one binder molded product. This means that the bulk density per hit is high.
 なお、前記評価項目(ア)乃至(エ)それぞれにつき、熟練職人が下記A乃至Cの3段階で評価した。
A:対照(プルランのみからなる水溶液)を用いた場合と比べ、良好(高い)。
B:対照(プルランのみからなる水溶液)を用いた場合とほぼ同等である。
C:対照(プルランのみからなる水溶液)を用いた場合と比べ、劣る(低い)。
 結果は表2に示す。
Each of the evaluation items (A) to (D) was evaluated by skilled craftsmen in the following three stages A to C.
A: Good (high) compared to the case of using a control (an aqueous solution consisting only of pullulan).
B: It is almost the same as the case of using the control (aqueous solution consisting only of pullulan).
C: It is inferior (low) compared with the case of using a control (an aqueous solution consisting only of pullulan).
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から明らかなとおり、被験試料2乃至18を用いて得られた結着成形食品は、評価項目(ア)乃至(ウ)の評価は「B」又は「C」、つまり、対照の水溶液を用いた場合とほぼ同等であるか、対照の水溶液を用いた場合と比べ、劣る(低い)、と評価された。これに対し、被験試料1の場合、評価項目(ア)乃至(ウ)の評価は全て「A」、つまり、対照の水溶液を用いた場合と比べ、いずれも高い、と評価された。また、評価項目(エ)に関し、被験試料2乃至18の場合はいずれも「C」、つまり、対照の水溶液を用いた場合と比べ、劣る(低い)、と評価されたのに対し、被験試料1の場合は、「A」、つまり、対照の水溶液を用いた場合と比べ、高い、と評価された。詳細には、被験試料1の場合、対照に対し、嵩密度は約1割高くなっていた。なお、嵩密度は、評価項目(エ)に示すとおり、モールディング作業により得られる半球状のゴーフル塊の数と対照のゴーフル塊の数に基づいて評価した。ここで、被験試料1の場合、被験試料2乃至18を用いて得られた結着成形食品と比べ嵩密度が高かったのは、被験試料1を小片状ゴーフルの表面に付着させたものは、ゴーフル同士の結着性がよく、モールド内の各窪みの中に小片状ゴーフルがより緻密に充填されたのに対し、被験試料2乃至18をその表面に付着させた小片状ゴーフルの場合、ゴーフル同士の結着性が劣っていたために、各窪みの中に充填される小片状ゴーフルの量が少なく、その結果、得られる結着成形食品の嵩密度が対照のそれと比べ、劣る(低い)結果となったと考えられる。 As is clear from the results shown in Table 2, the binder molded foods obtained using the test samples 2 to 18 were evaluated as “B” or “C” in the evaluation items (A) to (C), that is, as a control. It was evaluated that it was almost the same as the case of using the aqueous solution of 1, or inferior (low) compared to the case of using the aqueous solution of the control. On the other hand, in the case of the test sample 1, the evaluation items (a) to (c) were all evaluated as “A”, that is, all were higher than when the control aqueous solution was used. In addition, regarding the evaluation item (d), all of the test samples 2 to 18 were evaluated as “C”, that is, inferior (lower) compared to the case of using the control aqueous solution, whereas the test sample In the case of 1, it was evaluated as “A”, that is, higher than when the control aqueous solution was used. Specifically, in the case of the test sample 1, the bulk density was about 10% higher than the control. In addition, the bulk density was evaluated based on the number of hemispherical gouffle lumps obtained by the molding operation and the number of control gouffle lumps as shown in the evaluation item (d). Here, in the case of the test sample 1, the bulk density was higher than that of the binder-molded foods obtained using the test samples 2 to 18 because the test sample 1 was adhered to the surface of the small piece goofle. In addition, the goules have good binding properties, and each of the dents in the mold is more densely packed with the small pieces of gourds, whereas the small pieces of gourds with the test samples 2 to 18 attached to the surfaces thereof In this case, since the binding property between the goofles was inferior, the amount of small piece-like gourds filled in each depression was small, and as a result, the bulk density of the obtained binder-molded food was inferior to that of the control. (Low) result.
 以上述べた実験結果から、被験試料2乃至18は、評価項目(ア)乃至(エ)の内、「A」と評価されたものは1つもなく、逆に「C」と評価された項目が1つ以上あった。これに対し、プルランと、分岐α-グルカン混合物とを10:5で含む被験試料1は、無水物換算でのそれらの質量比[プルラン/分岐α-グルカン混合物]が2.0(=9.2/4.6)であり、評価項目(ア)乃至(エ)の全てが「A」と評価されたことから、被験試料1は最も優れた結着剤であると判定された。 From the experimental results described above, the test samples 2 to 18 have none of the evaluation items (A) to (D) evaluated as “A”, and conversely, the items evaluated as “C”. There was one or more. In contrast, the test sample 1 containing pullulan and the branched α-glucan mixture at a ratio of 10: 5 has a mass ratio [pullulan / branched α-glucan mixture] of 2.0 (= 9. Since all of the evaluation items (a) to (e) were evaluated as “A”, the test sample 1 was determined to be the most excellent binder.
<実験2:結着剤におけるプルランと分岐α-グルカン混合物の含有量の違いが食品材料の結着成形性に及ぼす影響>
(1)概要
 実験1において、プルランと、分岐α-グルカン混合物とを無水物換算で特定の質量比で含む結着剤は、プルランと他の水溶性食物繊維素材又は澱粉加水分解物とを含む他の結着剤と比べ、優れた結着特性を有する結着剤であることが判明した。また、実験1は、プルランと分岐α-グルカン混合物とを無水物換算での合計で約12質量%含む水溶液を用いて行われた実験であったことに鑑み、本実験においては、プルランと分岐α-グルカン混合物とを無水物換算での合計で約5乃至約20質量%含む水溶液の形態にある各種被験試料を調製し、各被験試料におけるプルランと分岐α-グルカン混合物の含有量の違いが食品材料の結着成形性に及ぼす影響について調べた。
<Experiment 2: Effect of difference in content of pullulan and branched α-glucan mixture in binder on binding moldability of food material>
(1) Outline In Experiment 1, the binder containing pullulan and the branched α-glucan mixture in a specific mass ratio in terms of anhydride contains pullulan and other water-soluble dietary fiber material or starch hydrolyzate. It has been found that the binder has excellent binding properties compared to other binders. In view of the fact that Experiment 1 was conducted using an aqueous solution containing about 12% by mass in total of pullulan and branched α-glucan mixture in terms of anhydride, in this experiment, pullulan and branched Various test samples are prepared in the form of an aqueous solution containing about 5 to about 20 mass% of the α-glucan mixture in terms of anhydride, and the difference in the content of pullulan and branched α-glucan mixture in each test sample The effects of food materials on the binding moldability were investigated.
(2)実験方法
<結着剤の調製>
 表3に示す配合量で、室温下、精製水に、プルランと、実施例1に示す分岐α-グルカン混合物(本発明で用いる分岐α-グルカン混合物の代表例)とを溶解し、水溶液状の結着剤としての各種被験試料(被験試料19乃至23)を調製した。
(2) Experimental method <Preparation of binder>
In the blending amounts shown in Table 3, pullulan and the branched α-glucan mixture shown in Example 1 (representative example of the branched α-glucan mixture used in the present invention) are dissolved in purified water at room temperature to form an aqueous solution. Various test samples (test samples 19 to 23) as binders were prepared.
<結着成形食品の調製>
 実験1で用いた被験試料1乃至18に代えて前記被験試料19乃至23を用いた以外は、実験1と同様にして各種結着成形食品を調製した。
<Preparation of Binder Molded Food>
Various binder-shaped foods were prepared in the same manner as in Experiment 1 except that Test Samples 19 to 23 were used instead of Test Samples 1 to 18 used in Experiment 1.
<被験試料及びこれを用いて得られる結着成形食品の評価>
 前記試料溶液19乃至23と、それらを用いて得られる結着成形食品を実験1の評価方法と同様にして評価した。結果は表3に示す。
<Evaluation of test sample and binder molded food obtained using the same>
The sample solutions 19 to 23 and the binder molded food obtained using them were evaluated in the same manner as in the evaluation method of Experiment 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すとおり、被験試料19乃至23は、プルランと分岐α-グルカン混合物の合計固形分濃度(質量%)が5乃至19質量%の範囲にあり、プルランと分岐α-グルカン混合物の無水物換算での質量比は1.9乃至2.0の範囲にあった。これら被験試料の内、被験試料19乃至21を用いて得られた結着成形食品は、評価項目(ア)の作業性が全て「A」、つまり、対照の水溶液を用いた場合と比べ、良好(高い)、と評価された。これに対し、被験試料22及び被験試料23を用いて調製した結着成形食品のそれは「B」、つまり、対照の水溶液を用いた場合とほぼ同等である、と評価された。 As shown in Table 3, in the test samples 19 to 23, the total solid content concentration (mass%) of the pullulan and branched α-glucan mixture is in the range of 5 to 19% by mass, and the anhydride of the pullulan and branched α-glucan mixture. The mass ratio in terms of conversion was in the range of 1.9 to 2.0. Of these test samples, the binder-molded foods obtained using test samples 19 to 21 are all “A” in terms of the workability of the evaluation item (a), that is, better than when the control aqueous solution is used. (High). In contrast, it was evaluated that the binder molded food prepared using the test sample 22 and the test sample 23 was “B”, that is, almost equivalent to the case where the control aqueous solution was used.
 また、被験試料19、20、22、及び23の場合、評価項目(イ)の保形成が「B」、つまり、対照の水溶液を用いた場合とほぼ同等である、と評価された。これに対し、被験試料21の場合の評価は「A」、つまり、対照の水溶液を用いた場合と比べ、良好(高い)、と評価された。 Further, in the case of the test samples 19, 20, 22, and 23, it was evaluated that the retention of the evaluation item (A) was “B”, that is, almost the same as when the control aqueous solution was used. On the other hand, the evaluation in the case of the test sample 21 was evaluated as “A”, that is, better (higher) than the case of using the control aqueous solution.
 更に、被験試料19を除く、被験試料20乃至23を用いて調製した結着成形食品は全て、評価項目(ウ)の食感が「A」、つまり、対照の水溶液を用いた場合と比べ、良好(高い)と評価された。 Furthermore, all of the binder-molded foods prepared using the test samples 20 to 23, excluding the test sample 19, have a texture of the evaluation item (c) of “A”, that is, compared to the case of using the control aqueous solution, It was evaluated as good (high).
 また、被験試料19を除く、被験試料20乃至23を用いて調製した結着成形食品は全て、評価項目(エ)の結着成形食品の嵩密度が「A」、つまり、対照の水溶液を用いた場合と比べ、良好(高い)と評価された。 In addition, all of the binder-shaped foods prepared using the test samples 20 to 23 except the test sample 19 have a bulk density of “A” as the evaluation item (d), that is, use a control aqueous solution. It was evaluated as good (high) compared to
 被験試料19乃至23の内、被験試料20乃至23、すなわち、プルランと分岐α-グルカン混合物の無水物換算での質量比が2.0であって、プルランと分岐α-グルカン混合物の合計固形分濃度が、10質量%以上、好適には10乃至19質量%である水溶液は、評価項目(ア)乃至(エ)の4項目の内、2項目以上が「A」と評価されたことから、被験試料20乃至23は、結着成形食品の製造において用いる結着剤として極めて優れていると評価できる。 Among the test samples 19 to 23, the test samples 20 to 23, that is, the mass ratio in terms of anhydride of the pullulan and branched α-glucan mixture is 2.0, and the total solid content of the pullulan and branched α-glucan mixture In the aqueous solution having a concentration of 10% by mass or more, preferably 10 to 19% by mass, among the four items of the evaluation items (A) to (D), two or more items were evaluated as “A”. It can be evaluated that the test samples 20 to 23 are extremely excellent as a binder used in the production of a binder molded food.
 これらの結果から、プルランと分岐α-グルカン混合物の無水物換算での質量比が2であって、プルランと分岐α-グルカン混合物の合計固形分濃度が約10乃至約20質量%である水溶液は、本発明の結着剤として有用であると判断された。 From these results, an aqueous solution in which the mass ratio in terms of anhydride of the pullulan and branched α-glucan mixture is 2 and the total solid concentration of the pullulan and branched α-glucan mixture is about 10 to about 20% by mass is obtained. Therefore, it was judged to be useful as the binder of the present invention.
<実験3:結着剤におけるプルランと分岐α-グルカン混合物の配合割合が食品材料の結着性に及ぼす影響>
(1)概要
 実験1、2の結果から、プルランと、分岐α-グルカン混合物との無水物換算での質量比[プルラン/分岐α-グルカン混合物]が2であって、プルランと分岐α-グルカン混合物の合計固形分濃度が約10乃至約20質量%である水溶液は、結着剤として優れていることが判明した。この結果を踏まえ、本実験においては、結着剤におけるプルランと分岐α-グルカン混合物との無水物換算での質量比が結着剤の特性に及ぼす影響について更に調べた。
<Experiment 3: Effect of Blending Ratio of Pullulan and Branched α-Glucan Mixture in Binder on Binding Property of Food Material>
(1) Outline Based on the results of Experiments 1 and 2, the weight ratio [pullulan / branched α-glucan mixture] of pullulan and branched α-glucan mixture in terms of anhydride was 2, and pullulan and branched α-glucan were It has been found that an aqueous solution having a total solid concentration of the mixture of about 10 to about 20% by mass is excellent as a binder. Based on this result, in this experiment, the influence of the mass ratio of pullulan and branched α-glucan mixture in terms of anhydride on the binder properties was further investigated.
(2)実験方法
<結着剤の調製>
 表4に示す配合組成となるように、室温下、精製水に、プルランと、実施例1に示す分岐α-グルカン混合物(本発明で用いる分岐α-グルカン混合物の代表例)とを溶解し、水溶液状の結着剤としての各種被験試料(被験試料24乃至32)を調製した。
(2) Experimental method <Preparation of binder>
In order to obtain the composition shown in Table 4, the pullulan and the branched α-glucan mixture shown in Example 1 (representative example of the branched α-glucan mixture used in the present invention) were dissolved in purified water at room temperature, Various test samples (test samples 24 to 32) as aqueous binders were prepared.
<結着成形食品の調製>
 実験1で用いた被験試料1乃至18に代えて前記被験試料24乃至32を用いた以外は、実験1と同様にして各種結着成形食品を得た。
<Preparation of Binder Molded Food>
Various binder-shaped foods were obtained in the same manner as in Experiment 1 except that the test samples 24 to 32 were used instead of the test samples 1 to 18 used in Experiment 1.
<被験試料及びこれを用いて得られる結着成形食品の評価>
 前記試料溶液24乃至32と、それらを用いて調製した結着成形食品につき、実験1の評価方法と同様にして評価した。結果は表4に示す。
<Evaluation of test sample and binder molded food obtained using the same>
The sample solutions 24 to 32 and the binder molded food prepared using them were evaluated in the same manner as the evaluation method in Experiment 1. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果から明らかなとおり、被験試料24乃至29を用いて得られた結着成形食品はいずれも、評価項目(ア)の作業性が「A」、すなわち、対照の水溶液を用いた場合と比べ、良好(高い)と評価された。一方、被験試料30乃至32を用いて調製した結着成形食品の場合は全て「B」、すなわち、対照の水溶液を用いた場合と同等である、と評価された。 As is clear from the results shown in Table 4, the binder molded foods obtained using the test samples 24 to 29 all have a workability of the evaluation item (a) of “A”, that is, a control aqueous solution. It was evaluated as good (high) compared to the case. On the other hand, all of the binder-shaped foods prepared using the test samples 30 to 32 were evaluated as “B”, that is, equivalent to the case where the control aqueous solution was used.
 また、被験試料24乃至27及び被験試料29乃至32を用いて調製した結着成形食品のいずれも、評価項目(イ)の保形性が「B」、すなわち、対照の水溶液を用いた場合と同等である、と評価された。一方、被験試料28を用いて調製した結着成形食品は、評価項目(イ)の保形性が「A」、つまり、対照の水溶液を用いた場合と比べ、良好(高い)と評価された。更に、被験試料24及び被験試料25を用いて調製した結着成形食品は、評価項目(ウ)の食感が「C」、つまり、対照の水溶液を用いた場合と比べ、劣る、と評価され、被験試料26及び被験試料30乃至32のいずれも、評価項目(ウ)の食感が「B」と評価されたのに対し、被験試料27乃至29を用いた場合は、全て「A」、つまり、対照の水溶液を用いた場合と比べ、良好(高いと評価された。更に、被験試料24、25、及び被験試料30乃至32を用いて調製した結着成形食品のいずれも、評価項目(エ)の嵩密度が「C」と評価されたのに対し、被験試料26乃至29を用いて調製した結着成形食品のいずれも、評価項目(エ)の嵩密度が「A」、つまり、対照の水溶液を用いた場合と比べ、良好(高い)と評価された。 In addition, in any of the binder-molded foods prepared using the test samples 24 to 27 and the test samples 29 to 32, the shape retention of the evaluation item (A) is “B”, that is, when the control aqueous solution is used. Evaluated as equivalent. On the other hand, the binder-molded food prepared using the test sample 28 was evaluated as being good (high) in comparison with the case where the shape-retaining property of the evaluation item (A) was “A”, that is, using the control aqueous solution. . Furthermore, the binder-molded food prepared using the test sample 24 and the test sample 25 is evaluated as having a texture of the evaluation item (c) of “C”, that is, inferior to the case of using the control aqueous solution. In addition, in all of the test sample 26 and the test samples 30 to 32, the texture of the evaluation item (c) was evaluated as “B”, whereas when the test samples 27 to 29 were used, all “A”, That is, compared with the case where the control aqueous solution was used, it was evaluated as good (highly evaluated. Further, all of the binder-shaped foods prepared using the test samples 24 and 25 and the test samples 30 to 32 were evaluated items ( While the bulk density of D) was evaluated as “C”, all of the binder-molded foods prepared using the test samples 26 to 29 had a bulk density of “A” as the evaluation item (D). It was evaluated as good (high) compared to the case where the control aqueous solution was used.
 以上のとおり、被験試料24乃至32の内、被験試料26乃至29、つまり、プルランと、分岐α-グルカン混合物との無水物換算での質量比[プルラン/分岐α-グルカン混合物]が1.5乃至4.0の範囲にある水溶液は、結着成形食品を製造するための結着剤として、優れていることが判明した。また、被験試料26乃至29の内、被験試料27乃至29、つまり、プルランと、分岐α-グルカン混合物との無水物換算での質量比[プルラン/分岐α-グルカン混合物]が1.5乃至2.8の範囲にある水溶液は、結着成形食品を製造するための結着剤としてより優れていることが判明した。 As described above, among the test samples 24 to 32, the test sample 26 to 29, that is, the mass ratio [pullulan / branched α-glucan mixture] of pullulan and the branched α-glucan mixture in terms of anhydride is 1.5. It has been found that an aqueous solution in the range of 4.0 to 4.0 is excellent as a binder for producing a binder-molded food. Further, among the test samples 26 to 29, the test sample 27 to 29, that is, the mass ratio [pullulan / branched α-glucan mixture] of pullulan and the branched α-glucan mixture in terms of anhydride is 1.5 to 2 An aqueous solution in the range of .8 was found to be better as a binder for producing binder-shaped foods.
 以上述べた実験1乃至3の結果から、プルランと分岐α-グルカン混合物の無水物換算での質量比が約1.5乃至約4であって、プルランと分岐α-グルカン混合物の合計固形分濃度が、約10乃至約20質量%である水溶液は、本発明の結着剤として有用であり、殊に、プルランと分岐α-グルカン混合物の無水物換算での質量比が約1.5乃至約3の範囲にある水溶液は、本発明の結着剤として特に有用であると判断された。 From the results of Experiments 1 to 3 described above, the mass ratio in terms of anhydride of the pullulan and branched α-glucan mixture is about 1.5 to about 4, and the total solid content concentration of the pullulan and branched α-glucan mixture However, an aqueous solution of about 10 to about 20% by weight is useful as the binder of the present invention, and in particular, the weight ratio of pullulan and branched α-glucan mixture in terms of anhydride is from about 1.5 to about The aqueous solution in the range of 3 was judged to be particularly useful as the binder of the present invention.
 また、本発明の結着成形食品の製造において、食品材料同士を均一に結着させるための結着剤として、プルランと分岐α-グルカン混合物とを無水物換算で特定の質量比で含む結着剤を用いると、プルラン単独の場合と比べ、(ア)作業性、(イ)保形性、(ウ)食感、(エ)結着成形食品の嵩密度が顕著に改善ないしは向上し、しかも、作業性良好にして、高品質の結着成形食品が工業的規模で歩留まりよく容易に製造できることが判明した。 Further, in the production of the binder-molded food of the present invention, as a binder for uniformly binding food materials, a binder containing pullulan and a branched α-glucan mixture in a specific mass ratio in terms of anhydride. Compared with pullulan alone, (a) workability, (b) shape retention, (c) texture, and (d) bulk density of the binder-molded food are significantly improved or improved. It has been found that high-quality binder-molded foods can be easily manufactured with good yield on an industrial scale with good workability.
 以下、実施例を用いて本発明をより詳細に説明するが、本発明はそれら実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.
<結着剤と結着成形食品>
 精製水100質量部に対し、乾燥固形物換算で、プルラン(商品名『食品添加物プルラン』、プルラン含量約94質量%、水分含量約2質量%、株式会社林原製)10質量部と、国際公開第WO2008/136331号パンフレットの実施例5に開示された方法に準じて得た、下記(ア)乃至(セ)の特性を有する分岐α-グルカン混合物5質量部とを添加し、溶解し、水溶液形態にある本発明の結着剤を得た。
<Binder and Binder Molded Food>
With respect to 100 parts by mass of purified water, 10 parts by mass of pullulan (trade name “Food Additive Pullulan”, pullulan content of about 94% by mass, moisture content of about 2% by mass, Hayashibara Co., Ltd.) 5 parts by weight of a branched α-glucan mixture having the following characteristics (a) to (c) obtained according to the method disclosed in Example 5 of the Publication No. WO2008 / 136331 pamphlet, dissolved, A binder of the present invention in the form of an aqueous solution was obtained.
<分岐α-グルカン混合物の特性>
(ア)グルコースを構成糖とする。
(イ)α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有する。
(ウ)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形分当たり約40質量%生成する。
(エ)高速液体クロマトグラフ法(酵素-HPLC法)により求めた水溶性食物繊維含量が約80質量%である。
(オ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基の比が約1:2.6である。
(カ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基との合計が全グルコース残基の約69%を占める。
(キ)α-1,3結合したグルコース残基が全グルコース残基の2.5%である。
(ク)α-1,3,6結合したグルコース残基が全グルコース残基の6.3%である。
(ケ)ゲル濾過高速液体クロマトグラムに基づく分子量分布分析による重量平均分子量(Mw)が約4,700ダルトンである。
(コ)重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)が2.1である。
(サ)固形分当たり、グルコース重合度(DP)9以上の分岐α-グルカン含量が約90質量%である。
(シ)DP1乃至8の単糖乃至オリゴ糖の合計含量が約10質量%である。
(ス)DEが約7である。
(セ)水分含量が約8%である。
<Characteristics of branched α-glucan mixture>
(A) Glucose is used as a constituent sugar.
(B) Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an α-1,4 bond via a bond other than an α-1,4 bond. It has a branched structure with a glucose polymerization degree of 1 or more.
(C) Isomaltose is digested to produce about 40% by mass of isomaltose per solid content of the digest.
(D) The water-soluble dietary fiber content determined by high performance liquid chromatography (enzyme-HPLC method) is about 80% by mass.
(E) The ratio of α-1,4-bonded glucose residues to α-1,6-bonded glucose residues is about 1: 2.6.
(F) The sum of α-1,4-bonded glucose residues and α-1,6-bonded glucose residues occupies about 69% of all glucose residues.
(G) α-1,3-linked glucose residues are 2.5% of the total glucose residues.
(H) The α-1,3,6-linked glucose residues are 6.3% of the total glucose residues.
(G) The weight average molecular weight (Mw) by molecular weight distribution analysis based on a gel filtration high performance liquid chromatogram is about 4,700 daltons.
(Ko) The value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn) is 2.1.
(Sa) The content of branched α-glucan having a degree of glucose polymerization (DP) of 9 or more per solid content is about 90% by mass.
(F) The total content of monosaccharides or oligosaccharides of DP1 to DP8 is about 10% by mass.
(S) DE is about 7.
(C) The water content is about 8%.
 次いで、25℃の室温下、食品材料として、市販のゴーフル(株式会社神戸風月堂製)を破砕機にて、破片の一辺が約1乃至約2mmとなるように粉砕した破片状のゴーフル1kgを容器にとり、同温度下で撹拌しながら、サラダ油150g及びマルトース150gを順次添加し、130℃で10分間加熱し、室温まで放冷し、次いで、前記本発明の結着剤200gを小片状ゴーフル表面にほぼ均一に散布し付着させ、直径約3cmの半球状の窪みを複数個有するプラスチック製モールドに充填し、ステンレス製のヘラでモールド表面を平らに均し、破片状のゴーフル同士を結着させ、得られた半球状ゴーフル塊をモールドから取り出し、オーブンに入れ、100℃で20分間加熱し、本発明の結着成形食品を得た。 Next, as a food material at a room temperature of 25 ° C., 1 kg of a shard of gourd obtained by pulverizing a commercially available goofle (manufactured by Kobe Fugetsu Co., Ltd.) with a crusher so that one side of the shard is about 1 to about 2 mm. In a container, while stirring at the same temperature, 150 g of salad oil and 150 g of maltose are added in order, heated at 130 ° C. for 10 minutes, allowed to cool to room temperature, and then 200 g of the binder of the present invention is added to a small piece of gourd Disperse and adhere almost uniformly to the surface, fill a plastic mold with a plurality of hemispherical depressions with a diameter of about 3 cm, level the mold surface flatly with a stainless steel spatula, and bind the pieces of goofles together The hemispherical gourd lump obtained was taken out of the mold, placed in an oven, and heated at 100 ° C. for 20 minutes to obtain the binder-molded food of the present invention.
 本品は、室温で6ヶ月間以上保管した後も、製造直後の形状、風味をほぼそのまま保っており、歯触り、食感、保形性・保存安定性、耐衝撃性に優れた、高い嵩密度を有する結着成形食品である。 This product retains its shape and flavor almost immediately after being stored for more than 6 months at room temperature, and has excellent texture, texture, shape retention / storage stability, and impact resistance. It is a binder molded food product having a bulk density.
<結着剤と結着成形食品>
 精製水100質量部に対し、乾燥固形物換算で、プルラン(商品名『食品添加物プルラン』、プルラン含量約94質量%、水分含量約2質量%、株式会社林原製)9質量部と、国際公開第WO2008/136331号パンフレットの実施例3に開示された方法に準じて得た、下記(ア)乃至(セ)の特性を有する分岐α-グルカン混合物5質量部とを添加し、溶解し、水溶液の形態にある本発明の結着剤を得た。
<Binder and Binder Molded Food>
For 100 parts by mass of purified water, 9 parts by mass of pullulan (trade name “Food Additive Pullulan”, pullulan content of about 94% by mass, moisture content of about 2% by mass, Hayashibara Co., Ltd.) 5 parts by weight of a branched α-glucan mixture having the following characteristics (a) to (c) obtained in accordance with the method disclosed in Example 3 of the Publication No. WO 2008/136331 pamphlet, dissolved, A binder according to the invention in the form of an aqueous solution was obtained.
<分岐α-グルカン混合物の特性>
(ア)グルコースを構成糖とする。
(イ)α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有する。
(ウ)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形分当たり約35質量%生成する。
(エ)高速液体クロマトグラフ法(酵素-HPLC法)により求めた水溶性食物繊維含量が約76質量%である。
(オ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基の比が約1:1.3である。
(カ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基との合計が全グルコース残基の約70%を占める。
(キ)α-1,3結合したグルコース残基が全グルコース残基の3.0%である。
(ク)α-1,3,6結合したグルコース残基が全グルコース残基の4.8%である。
(ケ)ゲル濾過高速液体クロマトグラムに基づく分子量分布分析による重量平均分子量(Mw)が約6,200ダルトンである。
(コ)重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)が2.2である。
(サ)固形分当たり、グルコース重合度(DP)9以上の分岐α-グルカン含量が約91質量%である。
(シ)DP1乃至8の単糖乃至オリゴ糖の合計含量が約9質量%である。
(ス)DEが約7.5である。
(セ)水分含量が約8%である。
<Characteristics of branched α-glucan mixture>
(A) Glucose is used as a constituent sugar.
(B) Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an α-1,4 bond via a bond other than an α-1,4 bond. It has a branched structure with a glucose polymerization degree of 1 or more.
(C) Isomaltose is digested to produce about 35% by mass of isomaltose based on the solid content of the digest.
(D) The water-soluble dietary fiber content determined by high performance liquid chromatography (enzyme-HPLC method) is about 76% by mass.
(E) The ratio of α-1,4-bonded glucose residues to α-1,6-bonded glucose residues is about 1: 1.3.
(F) The sum of α-1,4-bonded glucose residues and α-1,6-bonded glucose residues occupies about 70% of all glucose residues.
(G) The α-1,3-linked glucose residues are 3.0% of the total glucose residues.
(H) α-1,3,6-linked glucose residues are 4.8% of all glucose residues.
(G) The weight average molecular weight (Mw) by molecular weight distribution analysis based on the gel filtration high performance liquid chromatogram is about 6,200 daltons.
(Ko) The value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn) is 2.2.
(S) The content of branched α-glucan having a degree of glucose polymerization (DP) of 9 or more per solid is about 91% by mass.
(F) The total content of monosaccharides or oligosaccharides of DP1 to 8 is about 9% by mass.
(S) DE is about 7.5.
(C) The water content is about 8%.
 次いで、20℃の温度下、食品材料として、市販の小片状コーンフレークである『森永コーンフレーク3M 500g』(森永製菓株式会社製)を破砕機にて、破片の一辺が約3乃至約10mmの範囲となるように粉砕した。次いで、得られた小片状のコーンフレーク1kgを容器にとり、撹拌下、前記本発明の結着剤200gを小片状コーンフレークの表面にほぼ均一に付着させ、直径約2cmの半球状の窪みを複数個有するプラスチック製モールドに充填し、ステンレス製のヘラでモールド表面を平らに均し、コーンフレーク同士を結着させ、次いで結着させた半球状コーンフレーク塊をモールドから取り出し、市販のオーブンに入れ、100℃で20分間加熱し、本発明の結着成形食品を得た。 Next, as a food material at a temperature of 20 ° C., commercially available small corn flakes “Morinaga Corn Flakes 3M 500 g” (manufactured by Morinaga Seika Co., Ltd.) are used in a crusher, and each side of the fragments is in the range of about 3 to about 10 mm. It grind | pulverized so that it might become. Next, 1 kg of the obtained small piece of corn flakes is put in a container, and 200 g of the binding agent of the present invention is adhered almost uniformly to the surface of the small piece of corn flakes with stirring, and a plurality of hemispherical depressions having a diameter of about 2 cm are formed. Filled into a plastic mold having a single piece, leveled the mold surface flatly with a stainless steel spatula, bound cornflakes together, then removed the bound hemispherical cornflakes lump from the mold, put in a commercial oven, 100 It heated at 20 degreeC for 20 minute (s), and the binder molded food of this invention was obtained.
 本品は、室温で6ヶ月間以上保管した後も、製造直後の形状、風味をほぼそのまま保っており、歯触り、食感、保形性・保存安定性、耐衝撃性に優れた、高い嵩密度を有する結着成形食品である。 This product retains its shape and flavor almost immediately after being stored for more than 6 months at room temperature, and has excellent texture, texture, shape retention / storage stability, and impact resistance. It is a binder molded food product having a bulk density.
<結着剤とこれを用いて得られる結着成形食品>
 精製水100質量部に対し、乾燥固形物換算で、プルラン(商品名『食品添加物プルラン』、プルラン含量約94質量%、水分含量約2質量%、株式会社林原製)11質量部と、国際公開第WO2008/136331号パンフレットの実施例4に開示された方法に準じて得た下記(ア)乃至(セ)の特性を有する分岐α-グルカン混合物5質量部とを添加し、溶解し、水溶液の形態にある本発明の結着剤を得た。
<Binder and binder molded food obtained using the same>
With respect to 100 parts by mass of purified water, 11 parts by mass of pullulan (trade name “food additive pullulan”, pullulan content of about 94% by mass, moisture content of about 2% by mass, manufactured by Hayashibara Co., Ltd.) and international 5 parts by weight of a branched α-glucan mixture having the following characteristics (a) to (c) obtained according to the method disclosed in Example 4 of the published WO 2008/136331 pamphlet, dissolved, and dissolved in an aqueous solution The binder of this invention in the form of was obtained.
<分岐α-グルカン混合物の特性>
(ア)グルコースを構成糖とする。
(イ)α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有する。
(ウ)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり約45質量%生成する。
(エ)高速液体クロマトグラフ法(酵素-HPLC法)により求めた水溶性食物繊維含量が約85質量%である。
(オ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基の比が約1:2である。
(カ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基との合計が全グルコース残基の約80%を占める。
(キ)α-1,3結合したグルコース残基が全グルコース残基の1.4%である。
(ク)α-1,3,6結合したグルコース残基が全グルコース残基の1.7%である。
(ケ)ゲル濾過高速液体クロマトグラムに基づく分子量分布分析による重量平均分子量(Mw)が約10,000ダルトンである。
(コ)重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)が2.9である。
(サ)固形分当たり、グルコース重合度(DP)9以上の分岐α-グルカン含量が約92質量%である。
(シ)DP1乃至8の単糖乃至オリゴ糖の合計含量が約8質量%である。
(ス)DEが約6である。
(セ)水分含量が約7%である。
<Characteristics of branched α-glucan mixture>
(A) Glucose is used as a constituent sugar.
(B) Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an α-1,4 bond via a bond other than an α-1,4 bond. It has a branched structure with a glucose polymerization degree of 1 or more.
(C) Isomaltose is produced by digestion with isomalt dextranase to produce about 45% by mass of isomaltose based on the solid content of the digest.
(D) The water-soluble dietary fiber content determined by high performance liquid chromatography (enzyme-HPLC method) is about 85% by mass.
(E) The ratio of α-1,4-bonded glucose residues to α-1,6-bonded glucose residues is about 1: 2.
(F) The sum of α-1,4-bonded glucose residues and α-1,6-bonded glucose residues occupies about 80% of all glucose residues.
(G) α-1,3-linked glucose residues are 1.4% of all glucose residues.
(H) The α-1,3,6-linked glucose residues are 1.7% of the total glucose residues.
(G) The weight average molecular weight (Mw) by molecular weight distribution analysis based on the gel filtration high performance liquid chromatogram is about 10,000 Daltons.
(Ko) The value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn) is 2.9.
(S) The content of branched α-glucan having a degree of glucose polymerization (DP) of 9 or more per solid content is about 92% by mass.
(F) The total content of monosaccharides to oligosaccharides of DP1 to 8 is about 8% by mass.
(S) DE is about 6.
(C) The water content is about 7%.
 次いで、15℃の温度下、食品材料として、市販のポン菓子である『こめポン』(亀田製菓株式会社製)500gを容器にとり、同温度下で撹拌しながら、サラダ油60g及びα,α-トレハロース60gを順次添加し、130℃で10分間加熱し、放冷し、次いで、前記本発明の結着剤100gをポン菓子の表面にほぼ均一に付着させ、一辺が約3cmの立方体状の窪みを複数個有するプラスチック製モールドに充填し、ステンレス製のヘラでモールド表面を平らに均し、ポン菓子同士を結着させ、得られた立方体状ポン菓子塊をモールドから取り出し、オーブンに入れ、100℃で20分間加熱し、本発明の結着成形食品を得た。 Next, at a temperature of 15 ° C., as a food material, 500 g of “Komepon” (Kameda Seika Co., Ltd.), a commercially available pon confectionery, is placed in a container and stirred at the same temperature, 60 g of salad oil and α, α-trehalose. 60 g was sequentially added, heated at 130 ° C. for 10 minutes, allowed to cool, and then 100 g of the binding agent of the present invention was adhered almost uniformly on the surface of the confectionery, forming a cubical depression with a side of about 3 cm. Fill a plastic mold with multiple pieces, level the mold surface flatly with a stainless steel spatula, bind pon confectionery together, take out the resulting pon confectionery lump from the mold, put it in an oven, 100 ° C Was heated for 20 minutes to obtain a binder-molded food of the present invention.
 本品は、室温で6ヶ月間以上保管した後も、製造直後の形状、風味をほぼそのまま保っており、歯触り、食感、保形性・保存安定性、耐衝撃性に優れた、高い嵩密度を有する結着成形食品である。 This product retains its shape and flavor almost immediately after being stored for more than 6 months at room temperature, and has excellent texture, texture, shape retention / storage stability, and impact resistance. It is a binder molded food product having a bulk density.
<結着剤とこれを用いて得られる結着成形食品>
 精製水100質量部に対し、乾燥固形物換算で、プルラン(商品名『食品添加物プルラン』、プルラン含量約94質量%、水分含量約2質量%、株式会社林原製)10質量部と、国際公開第WO2008/136331号パンフレットの実施例5に開示された方法に準じて得た、下記(ア)乃至(セ)の特性を有する分岐α-グルカン混合物4質量部とを添加し、溶解し、水溶液の形態にある本発明の結着剤を得た。
<Binder and binder molded food obtained using the same>
With respect to 100 parts by mass of purified water, 10 parts by mass of pullulan (trade name “Food Additive Pullulan”, pullulan content of about 94% by mass, moisture content of about 2% by mass, Hayashibara Co., Ltd.) 4 parts by mass of a branched α-glucan mixture having the following characteristics (a) to (c) obtained according to the method disclosed in Example 5 of the Publication No. WO2008 / 136331 pamphlet, dissolved, A binder according to the invention in the form of an aqueous solution was obtained.
<分岐α-グルカン混合物の特性>
(ア)グルコースを構成糖とする。
(イ)α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有する。
(ウ)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形分当たり約47質量%生成する。
(エ)高速液体クロマトグラフ法(酵素-HPLC法)により求めた水溶性食物繊維含量が約63質量%である。
(オ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基の比が約1:2.4である。
(カ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基との合計が全グルコース残基の約60%を占める。
(キ)α-1,3結合したグルコース残基が全グルコース残基の2.3%である。
(ク)α-1,3,6結合したグルコース残基が全グルコース残基の2.1%である。
(ケ)ゲル濾過高速液体クロマトグラムに基づく分子量分布分析による重量平均分子量(Mw)が約1,000ダルトンである。
(コ)重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)が1.8である。
(サ)固形分当たり、グルコース重合度(DP)9以上の分岐α-グルカン含量が約90質量%である。
(シ)DP1乃至8の単糖乃至オリゴ糖の合計含量が約10質量%である。
(ス)DEが約7である。
(セ)水分含量が約8%である。
<Characteristics of branched α-glucan mixture>
(A) Glucose is used as a constituent sugar.
(B) Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an α-1,4 bond via a bond other than an α-1,4 bond. It has a branched structure with a glucose polymerization degree of 1 or more.
(C) Isomaltose is digested to produce about 47% by mass of isomaltose based on the solid content of the digest.
(D) The water-soluble dietary fiber content determined by high performance liquid chromatography (enzyme-HPLC method) is about 63% by mass.
(E) The ratio of α-1,4-bonded glucose residues to α-1,6-bonded glucose residues is about 1: 2.4.
(F) The sum of α-1,4-bonded glucose residues and α-1,6-bonded glucose residues occupies about 60% of all glucose residues.
(G) α-1,3-linked glucose residues are 2.3% of all glucose residues.
(H) The α-1,3,6-linked glucose residues are 2.1% of the total glucose residues.
(G) The weight average molecular weight (Mw) by molecular weight distribution analysis based on gel filtration high performance liquid chromatogram is about 1,000 Daltons.
(Ko) The value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn) is 1.8.
(Sa) The content of branched α-glucan having a degree of glucose polymerization (DP) of 9 or more per solid content is about 90% by mass.
(F) The total content of monosaccharides or oligosaccharides of DP1 to DP8 is about 10% by mass.
(S) DE is about 7.
(C) The water content is about 8%.
 次いで、25℃の室温下、食品材料として、市販のピーナッツ及びアーモンドの各1kgを粉砕機にて、粉砕物の一辺が約2乃至約5mmとなるように粉砕した。次いで、粉砕物の全量を容器に取り、同温度下で撹拌しながら、前記本発明の結着剤400gを粉砕物に噴霧し、その表面にほぼ均一に付着させた後、直径約2cmの半球状の窪みを複数個有するプラスチック製モールドに充填し、ステンレス製のヘラでモールド表面を平らに均し、小片状のピーナッツ・アーモンド同士を結着させ、得られた半球状ピーナッツ・アーモンド塊をモールドから取り出し、オーブンに入れ、100℃で30分間加熱し、本発明の結着成形食品を得た。 Next, 1 kg each of commercially available peanuts and almonds was pulverized as a food material at a room temperature of 25 ° C. with a pulverizer so that one side of the pulverized product was about 2 to about 5 mm. Next, the entire amount of the pulverized product is taken into a container, and while stirring at the same temperature, 400 g of the binding agent of the present invention is sprayed on the pulverized product and adhered almost uniformly to the surface, and then a hemisphere having a diameter of about 2 cm Fill a plastic mold with a plurality of dents, level the mold surface flatly with a stainless steel spatula, bind the peanuts and almonds together, and obtain the hemispherical peanuts and almond blocks. The product was taken out from the mold, placed in an oven, and heated at 100 ° C. for 30 minutes to obtain a binder-molded food of the present invention.
 本品は、室温で6ヶ月間以上保管した後も、製造直後の形状、風味をほぼそのまま保っており、歯触り、食感、保形性・保存安定性、耐衝撃性に優れた、高い嵩密度を有する結着成形食品である。 This product retains its shape and flavor almost immediately after being stored for more than 6 months at room temperature, and has excellent texture, texture, shape retention / storage stability, and impact resistance. It is a binder molded food product having a bulk density.
<結着剤とこれを用いて得られる結着成形食品>
 精製水100質量部に対し、乾燥固形物換算で、プルラン(商品名『食品添加物プルラン』、プルラン含量約94質量%、水分含量約2質量%、株式会社林原製)10質量部と、国際公開第WO2008/136331号パンフレットの実施例3に開示された方法に準じて得た、下記(ア)乃至(セ)の特性を有する分岐α-グルカン混合物4質量部とを添加し、溶解し、水溶液の形態にある本発明の結着剤を得た。
<Binder and binder molded food obtained using the same>
With respect to 100 parts by mass of purified water, 10 parts by mass of pullulan (trade name “Food Additive Pullulan”, pullulan content of about 94% by mass, moisture content of about 2% by mass, Hayashibara Co., Ltd.) 4 parts by mass of a branched α-glucan mixture obtained according to the method disclosed in Example 3 of the pamphlet of published WO 2008/136331 and having the following characteristics (a) to (c) and dissolved: A binder according to the invention in the form of an aqueous solution was obtained.
<分岐α-グルカン混合物の特性>
(ア)グルコースを構成糖とする。
(イ)α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有する。
(ウ)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形分当たり約28.4質量%生成する。
(エ)高速液体クロマトグラフ法(酵素-HPLC法)により求めた水溶性食物繊維含量が約42.1質量%である。
(オ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基の比が約1:0.62である。
(カ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基との合計が全グルコース残基の約83.7%を占める。
(キ)α-1,3結合したグルコース残基が全グルコース残基の1.1%である。
(ク)α-1,3,6結合したグルコース残基が全グルコース残基の0.8%である。
(ケ)ゲル濾過高速液体クロマトグラムに基づく分子量分布分析による重量平均分子量(Mw)が約59,000ダルトンである。
(コ)重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)が15.4である。
(サ)固形分当たり、グルコース重合度(DP)9以上の分岐α-グルカン含量が約92質量%である。
(シ)DP1乃至8の単糖乃至オリゴ糖の合計含量が約9質量%である。
(ス)DEが約6.5である。
(セ)水分含量が約7%である。
<Characteristics of branched α-glucan mixture>
(A) Glucose is used as a constituent sugar.
(B) Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an α-1,4 bond via a bond other than an α-1,4 bond. It has a branched structure with a glucose polymerization degree of 1 or more.
(C) Isomaltose is digested to produce about 28.4% by mass of isomaltose based on the solid content of the digest.
(D) The water-soluble dietary fiber content determined by high performance liquid chromatography (enzyme-HPLC method) is about 42.1% by mass.
(E) The ratio of α-1,4-bonded glucose residues to α-1,6-bonded glucose residues is about 1: 0.62.
(F) The sum of α-1,4-bonded glucose residues and α-1,6-bonded glucose residues occupies about 83.7% of all glucose residues.
(G) α-1,3-linked glucose residues are 1.1% of all glucose residues.
(H) The α-1,3,6-linked glucose residues are 0.8% of the total glucose residues.
(G) The weight average molecular weight (Mw) by molecular weight distribution analysis based on gel filtration high performance liquid chromatogram is about 59,000 daltons.
(Ko) The value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn) is 15.4.
(S) The content of branched α-glucan having a degree of glucose polymerization (DP) of 9 or more per solid content is about 92% by mass.
(F) The total content of monosaccharides or oligosaccharides of DP1 to 8 is about 9% by mass.
(S) DE is about 6.5.
(C) The water content is about 7%.
 次いで、20℃の温度下、食品材料として、市販の『ドライフルーツミックス』(小島屋製)を破砕機にて、破砕物の一辺が約2乃至約5mmとなるように粉砕した。次いで、得られた小片状ドライフルーツ200gと市販のオーツ麦800gとを容器にとり、同温度で撹拌しながら、ナタネ油120g及びグラニュー糖120gを順次添加し、130℃で10分間加熱し、室温まで放冷し、次いで、前記本発明の結着剤300gを前記混合物の表面にほぼ均一に付着させ、直径約1cm、長さ10cmの半円筒状の窪みを複数個有するプラスチック製モールドに充填し、ステンレス製のヘラでモールド表面を平らに均し、前記混合物同士を結着させ、結着させた半球状の混合物塊をモールドから取り出し、オーブンに入れ、100℃で20分間加熱し、本発明の結着成形食品を得た。 Next, commercially available “Dried Fruit Mix” (manufactured by Kojimaya) was pulverized as a food material at a temperature of 20 ° C. with a crusher so that one side of the crushed material was about 2 to about 5 mm. Next, 200 g of the obtained small dried fruit and 800 g of commercially available oats are put into a container, 120 g of rapeseed oil and 120 g of granulated sugar are sequentially added while stirring at the same temperature, and heated at 130 ° C. for 10 minutes, Next, 300 g of the binding agent of the present invention is almost uniformly attached to the surface of the mixture, and filled into a plastic mold having a plurality of semicylindrical depressions having a diameter of about 1 cm and a length of 10 cm. The mold surface is leveled with a stainless steel spatula, the mixture is bound to each other, the bound hemispherical mixture lump is taken out of the mold, placed in an oven, heated at 100 ° C. for 20 minutes, and the present invention. A binder molded food was obtained.
 本品は、室温で6カ月間保管した後も、製造直後の形状、風味をほぼそのまま保っており、歯触り、食感、保形性・保存安定性、耐衝撃性に優れた、高い嵩密度を有する結着成形食品である。 This product retains its shape and flavor almost immediately after storage for 6 months at room temperature, and has a high bulkiness with excellent texture, texture, shape retention / storage stability, and impact resistance. It is a binder molded food product having a density.
<結着剤とこれを用いて得られる結着成形食品>
 精製水100質量部に対し、乾燥固形物換算で、プルラン(商品名『食品添加物プルラン』、プルラン含量約94質量%、水分含量約2質量%、株式会社林原製)10質量部と、国際公開第WO2008/136331号パンフレットの実施例3に開示された方法に準じて得た、下記(ア)乃至(セ)の特性を有する分岐α-グルカン混合物4質量部とを添加し、溶解し、水溶液の形態にある本発明の結着剤を得た。
<Binder and binder molded food obtained using the same>
With respect to 100 parts by mass of purified water, 10 parts by mass of pullulan (trade name “Food Additive Pullulan”, pullulan content of about 94% by mass, moisture content of about 2% by mass, Hayashibara Co., Ltd.) 4 parts by mass of a branched α-glucan mixture obtained according to the method disclosed in Example 3 of the pamphlet of published WO 2008/136331 and having the following characteristics (a) to (c) and dissolved: A binder according to the invention in the form of an aqueous solution was obtained.
<分岐α-グルカン混合物の特性>
(ア)グルコースを構成糖とする。
(イ)α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有する。
(ウ)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形分当たり約28.4質量%生成する。
(エ)高速液体クロマトグラフ法(酵素-HPLC法)により求めた水溶性食物繊維含量が約42.1質量%である。
(オ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基の比が約1:0.62である。
(カ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基との合計が全グルコース残基の約83.7%を占める。
(キ)α-1,3結合したグルコース残基が全グルコース残基の1.1%である。
(ク)α-1,3,6結合したグルコース残基が全グルコース残基の0.8%である。
(ケ)ゲル濾過高速液体クロマトグラムに基づく分子量分布分析による重量平均分子量(Mw)が約59,000ダルトンである。
(コ)重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)が15.4である。
(サ)固形分当たり、グルコース重合度(DP)9以上の分岐α-グルカン含量が約92質量%である。
(シ)DP1乃至8の単糖乃至オリゴ糖の合計含量が約9質量%である。
(ス)DEが約6.5である。
(セ)水分含量が約7%である。
<Characteristics of branched α-glucan mixture>
(A) Glucose is used as a constituent sugar.
(B) Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an α-1,4 bond via a bond other than an α-1,4 bond. It has a branched structure with a glucose polymerization degree of 1 or more.
(C) Isomaltose is digested to produce about 28.4% by mass of isomaltose based on the solid content of the digest.
(D) The water-soluble dietary fiber content determined by high performance liquid chromatography (enzyme-HPLC method) is about 42.1% by mass.
(E) The ratio of α-1,4-bonded glucose residues to α-1,6-bonded glucose residues is about 1: 0.62.
(F) The sum of α-1,4-bonded glucose residues and α-1,6-bonded glucose residues occupies about 83.7% of all glucose residues.
(G) α-1,3-linked glucose residues are 1.1% of all glucose residues.
(H) The α-1,3,6-linked glucose residues are 0.8% of the total glucose residues.
(G) The weight average molecular weight (Mw) by molecular weight distribution analysis based on gel filtration high performance liquid chromatogram is about 59,000 daltons.
(Ko) The value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn) is 15.4.
(S) The content of branched α-glucan having a degree of glucose polymerization (DP) of 9 or more per solid content is about 92% by mass.
(F) The total content of monosaccharides or oligosaccharides of DP1 to 8 is about 9% by mass.
(S) DE is about 6.5.
(C) The water content is about 7%.
 次いで、25℃の温度下、食品材料として、市販の乾燥ニンジン(商品名『ドライ(乾燥)千切り人参』、アスザックフーズ株式会社)を破砕機にて、破砕物の一辺が約3乃至約5mmとなるように粉砕した。次いで、得られた小片状ニンジン1kgを容器にとり、同温度で撹拌しながら、オリーブ油150g及びスクロース150gを順次添加し、130℃で10分間加熱し、室温まで放冷し、次いで、前記本発明の結着剤200gを破砕ニンジンの表面にほぼ均一に付着させ、直径約2cmの半球状の窪みを複数個有するプラスチック製モールドに充填し、ステンレス製のヘラでモールド表面を平らに均し、小片状ニンジン同士を結着させ、結着させた半球状のニンジン塊をモールドから取り出し、オーブンに入れ、100℃で20分間加熱し、本発明の結着成形食品を得た。 Next, as a food material at a temperature of 25 ° C., a commercially available dried carrot (trade name “Dried (dried) shredded carrots”, Aszac Foods Co., Ltd.) was crushed with a side of about 3 to about 5 mm. It grind | pulverized so that it might become. Next, 1 kg of the obtained small carrot is put into a container, 150 g of olive oil and 150 g of sucrose are sequentially added while stirring at the same temperature, heated at 130 ° C. for 10 minutes, allowed to cool to room temperature, and then the present invention. 200 g of the binder was adhered almost uniformly to the surface of the crushed carrot, filled into a plastic mold having a plurality of hemispherical depressions with a diameter of about 2 cm, and the mold surface was leveled flat with a stainless steel spatula. The piece-like carrots were bound together, and the bound hemispherical carrot lump was taken out of the mold, placed in an oven, and heated at 100 ° C. for 20 minutes to obtain the bound molded food of the present invention.
 本品は、室温で1年以上保管した後も、製造直後の形状、風味をほぼそのまま保っており、歯触り、食感、保形性・保存安定性、耐衝撃性に優れた、高い嵩密度を有する結着成形食品である。 This product retains its shape and flavor almost immediately after being stored at room temperature for more than a year, and has a high bulkiness with excellent texture, texture, shape retention / storage stability, and impact resistance. It is a binder molded food product having a density.
<結着剤>
 精製水100質量部に対し、乾燥固形物換算で、プルラン(商品名『食品添加物プルラン』、プルラン含量約94質量%、水分含量約2質量%、株式会社林原製)10質量部、及び実施例1乃至5で用いた分岐α-グルカン混合物のいずれか5質量部を攪拌溶解し、これをスチール製容器に1kgずつ充填し、加熱殺菌し、冷却し、本発明に係る5種類の水溶液状の結着剤を得た。
<Binder>
100 parts by mass of purified water, 10 parts by mass of pullulan (trade name “food additive pullulan”, pullulan content of about 94% by mass, moisture content of about 2% by mass, manufactured by Hayashibara Co., Ltd.) 5 parts by mass of any of the branched α-glucan mixtures used in Examples 1 to 5 were stirred and dissolved, filled in 1 kg each in a steel container, sterilized by heating, cooled, and 5 types of aqueous solutions according to the present invention. A binder was obtained.
 前記結着剤のいずれも、無色、低粘性、取扱い容易で、食品材料同士を結着させる結着力が強い優れた特性を有していた。なお、前記結着剤のいずれも、例えば、各種飲食物同士を結着させる「つなぎ」として用いることができるとともに、各種飲食物の保水性を高め、それらの形状を保ったり、食感を良くするために用いることができる。 All of the above binders were colorless, low-viscosity, easy to handle, and had excellent properties with a strong binding force to bind food materials together. Any of the binders can be used as, for example, a “tether” that binds various foods and drinks, increases the water retention of various foods and drinks, maintains their shape, and improves the texture. Can be used to
<結着剤>
 精製水100質量部に対し、乾燥固形物換算で、プルラン(商品名『食品添加物プルラン』、プルラン含量約94質量%、水分含量約2質量%、株式会社林原製)12質量部、及び実施例1乃至5で用いた分岐α-グルカン混合物のいずれか5質量部を攪拌溶解し、これをスチール製容器に1kgずつ充填し、加熱殺菌し、冷却し、本発明に係る5種類の水溶液状の結着成形食品用の結着剤を得た。
<Binder>
100 parts by mass of purified water, 12 parts by mass of pullulan (trade name “food additive pullulan”, pullulan content of about 94% by mass, moisture content of about 2% by mass, Hayashibara Co., Ltd.) 5 parts by mass of any of the branched α-glucan mixtures used in Examples 1 to 5 were stirred and dissolved, filled in 1 kg each in a steel container, sterilized by heating, cooled, and 5 types of aqueous solutions according to the present invention. A binder for a binder molded food was obtained.
 前記結着剤のいずれも、無色、低粘性、取扱い容易で、食品材料同士を結着させる結着力が強い優れた特性を有していた。なお、前記結着剤のいずれも、例えば、各種飲食物同士を結着させる「つなぎ」として用いられるとともに、各種飲食物の保水性を高め、それらの形状を保ったり、食感を良くするために用いることができる。 All of the above binders were colorless, low-viscosity, easy to handle, and had excellent properties with a strong binding force to bind food materials together. In addition, all of the binders are used as, for example, “tethers” for binding various foods and drinks, to increase the water retention of various foods and drinks, to maintain their shapes, and to improve the texture. Can be used.
 以上述べたとおり、本発明の結着剤によれば、小片状及び/又は粒状の食品材料同士を高い嵩密度で結着でき、しかも、保形性・保存安定性、取り扱い性、更には、耐衝撃性に優れ、商品寿命も長い結着成形食品を容易に提供できる。また、本発明の結着剤によれば、型を用いて食品材料を結着形成する場合、型への充填作業及び型からの取り出し作業も良好に行えるという利点が得られる。また、本発明の結着成形食品の製造方法によれば、前記優れた特徴を有する結着成形食品を工業的規模で歩留まり良く製造できる。本発明が斯界に及ぼす影響は斯くも甚大であり、その工業的意義は極めて大きい。 As described above, according to the binding agent of the present invention, small and / or granular food materials can be bound with a high bulk density, and shape retention / storage stability, handling properties, In addition, it is possible to easily provide a binder molded food having excellent impact resistance and a long product life. Further, according to the binder of the present invention, when the food material is bound and formed using the mold, there is an advantage that the filling operation into the mold and the taking-out operation from the mold can be performed well. In addition, according to the method for producing a binder molded food of the present invention, the binder molded food having the above-mentioned excellent characteristics can be produced on an industrial scale with a high yield. The influence of the present invention on the world is so great that its industrial significance is extremely great.

Claims (11)

  1.  プルランと、下記(A)乃至(C)の特性を有する分岐α-グルカン混合物とを、無水物換算での質量比[プルラン/分岐α-グルカン混合物]で、1.5乃至4の範囲で含んでなる結着剤:
    (A)グルコースを構成糖とし、
    (B)α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、
    (C)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形分当たり5質量%以上生成する。
    Pullulan and a branched α-glucan mixture having the following characteristics (A) to (C) are contained in a mass ratio [pullulan / branched α-glucan mixture] in terms of anhydride in a range of 1.5 to 4. Binder consisting of:
    (A) glucose as a constituent sugar,
    (B) Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an α-1,4 bond via a bond other than an α-1,4 bond. A branched structure having a glucose polymerization degree of 1 or more,
    (C) Isomaltose is produced by digestion with isomalt dextranase to produce 5% by mass or more of the solid content of the digest.
  2.  固形分当たり、プルランと前記分岐α-グルカン混合物とを無水物換算で合計、90質量%以上含んでいることを特徴とする、請求項1記載の結着剤。 2. The binder according to claim 1, comprising a total of 90 mass% or more of pullulan and the branched α-glucan mixture in terms of anhydride per solid content.
  3.  プルランと前記分岐α-グルカン混合物を含む水溶液の形態にあり、当該水溶液の固形分濃度が10乃至30質量%であることを特徴とする、請求項1又は2記載の結着剤。 3. The binder according to claim 1, wherein the binder is in the form of an aqueous solution containing pullulan and the branched α-glucan mixture, and the solid content concentration of the aqueous solution is 10 to 30% by mass.
  4.  小片状及び/又は粒状の食品材料同士が結着成形されてなる結着成形食品であって、前記食品材料同士が請求項1又は2記載の結着剤を介して結合していることを特徴とする結着成形食品。 It is a binder-molded food formed by binding and molding small and / or granular food materials, and the food materials are bonded together via the binder according to claim 1 or 2. Characteristic binder-molded food.
  5.  小片状及び/又は粒状の前記食品材料が、動植物性油脂及び/又は糖質で被覆されていることを特徴とする、請求項4記載の結着成形食品。 5. The binder-molded food according to claim 4, wherein the small and / or granular food material is coated with animal and vegetable oils and / or sugars.
  6.  小片状及び/又は粒状の前記食品材料が、焼き菓子、フレーク菓子、スナック菓子、シリアル食品、ドライフルーツ、及び乾燥野菜から選ばれる1種又は2種以上であることを特徴とする、請求項4又は5に記載の結着成形食品。 5. The piece-like and / or granular food material is one or more selected from baked confectionery, flake confectionery, snack confectionery, cereal food, dried fruit, and dried vegetable. Or the binder molded food of 5.
  7.  小片状及び/又は粒状の食品材料の表面に請求項1乃至3のいずれかに記載の結着剤を付着させる工程を含むことを特徴とする、結着成形食品の製造方法。 A method for producing a binder-molded food, comprising a step of attaching the binder according to any one of claims 1 to 3 to the surface of a small and / or granular food material.
  8.  小片状及び/又は粒状の前記食品材料が、予め動植物性油脂及び/又は糖質で被覆されたものであることを特徴とする、請求項7記載の結着成形食品の製造方法。 The method for producing a binder-shaped food according to claim 7, wherein the food material in the form of small pieces and / or granules is previously coated with animal and vegetable oils and / or sugars.
  9.  更に、表面に前記結着剤が付着した小片状及び/又は粒状の前記食品材料を乾燥及び/又は加熱する工程を含むことを特徴とする、請求項7又は8記載の結着成形食品の製造方法。 Furthermore, the process of drying and / or heating the said piece-like and / or granular food material with the said binder adhering to the surface is carried out, The binder shaping | molding foodstuff of Claim 7 or 8 characterized by the above-mentioned. Production method.
  10.  小片状及び/又は粒状の前記食品材料が、焼き菓子、フレーク菓子、スナック菓子、シリアル食品、ドライフルーツ、及び乾燥野菜から選ばれる1種又は2種以上であることを特徴とする、請求項7乃至9のいずれかに記載の結着成形食品の製造方法。 8. The piece-like and / or granular food material is one or more selected from baked confectionery, flake confectionery, snack confectionery, cereal food, dried fruit, and dried vegetable. The manufacturing method of the binder molded food in any one of thru | or 9.
  11.  表面に結着剤を付着させる前の、小片状及び/又は粒状の前記食品材料の水分含量が10質量%未満であることを特徴とする、請求項7乃至10のいずれかに記載の結着成形食品の製造方法。 11. The binding according to claim 7, wherein the moisture content of the small and / or granular food material before adhering the binder to the surface is less than 10% by mass. A method for producing a molded food.
PCT/JP2017/030362 2016-08-26 2017-08-24 Binder, bound and formed food, and method for producing same WO2018038215A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016166348 2016-08-26
JP2016-166348 2016-08-26

Publications (1)

Publication Number Publication Date
WO2018038215A1 true WO2018038215A1 (en) 2018-03-01

Family

ID=61246086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030362 WO2018038215A1 (en) 2016-08-26 2017-08-24 Binder, bound and formed food, and method for producing same

Country Status (2)

Country Link
JP (1) JP6936659B2 (en)
WO (1) WO2018038215A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212118A1 (en) * 2017-05-15 2018-11-22 株式会社林原 Binder, bound and shaped food, and method for producing same
JP2019154253A (en) * 2018-03-08 2019-09-19 江崎グリコ株式会社 Molded food product and manufacturing method thereof, coating agent for preventing moisture fluctuation and coated food product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306350A (en) * 1992-03-04 1993-11-19 Hayashibara Biochem Lab Inc Binding agent and its use
WO2008136331A1 (en) * 2007-04-26 2008-11-13 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo BRANCHED α-GLUCAN, α-GLUCOSYLTRANSFERASE PRODUCING THE SAME, METHOD FOR PRODUCING THE SAME AND USE THEREOF

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246239A (en) * 1985-04-25 1986-11-01 Nichiban Co Ltd Self-adhesive composition
JP2016026477A (en) * 2014-07-03 2016-02-18 株式会社林原 Hardening accelerator for starch gelatinized dough

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306350A (en) * 1992-03-04 1993-11-19 Hayashibara Biochem Lab Inc Binding agent and its use
WO2008136331A1 (en) * 2007-04-26 2008-11-13 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo BRANCHED α-GLUCAN, α-GLUCOSYLTRANSFERASE PRODUCING THE SAME, METHOD FOR PRODUCING THE SAME AND USE THEREOF

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAKOTO SHIOSAKA: "Pullulan and Its Application", JOURNAL OF THE SOCIETY OF FIBER SCIENCE AND TECHNOLOGY, vol. 52, no. 1, 1996, pages 31 - 35 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212118A1 (en) * 2017-05-15 2018-11-22 株式会社林原 Binder, bound and shaped food, and method for producing same
JP2019154253A (en) * 2018-03-08 2019-09-19 江崎グリコ株式会社 Molded food product and manufacturing method thereof, coating agent for preventing moisture fluctuation and coated food product
JP7430976B2 (en) 2018-03-08 2024-02-14 江崎グリコ株式会社 Molded food and its manufacturing method, coating agent for preventing moisture fluctuation, and coated food

Also Published As

Publication number Publication date
JP2018033453A (en) 2018-03-08
JP6936659B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
Rioux et al. Seaweed carbohydrates
JP5978418B2 (en) Cellulose composition
ES2657562T3 (en) Sweetened food product and preparation methods
CA2631054C (en) Base material for producing food and fodder
AU2004224492B2 (en) Method of powdering nonsugar component and powdering base
JP6949954B2 (en) Binders, molded foods, and methods for manufacturing them
TW201902365A (en) Quality improver and its use
CN102387707A (en) Baked dough including a specific flour
JP6962674B2 (en) Branched α-glucan mixture syrup and its uses
EP2560500B1 (en) Lozenges from erythritol and isomalt
JP6936659B2 (en) Binders, molded foods, and methods for manufacturing them
JP6986448B2 (en) α-Glucan mixture and its manufacturing method and application
EP3128860B1 (en) Carbohydrate composition and process for making a carbohydrate composition
JP4937974B2 (en) Fruit dessert
JP6596548B1 (en) Method for using pyrogenic composition for improving metabolism, metabolic product and pyrogenic composition for improving metabolism
EP4185123A1 (en) Use of an activated carrot fiber for producing products
DE102020125835A1 (en) Use of an activated carrot fiber for the manufacture of articles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843691

Country of ref document: EP

Kind code of ref document: A1