WO2018038169A1 - Catalyst composition for producing c6-8 monocyclic aromatic hydrocarbon and method for producing c6-8 monocyclic aromatic hydrocarbon - Google Patents

Catalyst composition for producing c6-8 monocyclic aromatic hydrocarbon and method for producing c6-8 monocyclic aromatic hydrocarbon Download PDF

Info

Publication number
WO2018038169A1
WO2018038169A1 PCT/JP2017/030162 JP2017030162W WO2018038169A1 WO 2018038169 A1 WO2018038169 A1 WO 2018038169A1 JP 2017030162 W JP2017030162 W JP 2017030162W WO 2018038169 A1 WO2018038169 A1 WO 2018038169A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst composition
gallium
carbon atoms
monocyclic aromatic
crystalline aluminosilicate
Prior art date
Application number
PCT/JP2017/030162
Other languages
French (fr)
Japanese (ja)
Inventor
泰之 岩佐
小林 正英
賢 小倉
和 奥村
Original Assignee
Jxtgエネルギー株式会社
国立大学法人東京大学
学校法人工学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社, 国立大学法人東京大学, 学校法人工学院大学 filed Critical Jxtgエネルギー株式会社
Publication of WO2018038169A1 publication Critical patent/WO2018038169A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a catalyst composition for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms and a method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms.
  • catalytic reforming of straight run naphtha using a platinum / alumina catalyst has been widely used commercially as a method for obtaining gasoline and aromatic hydrocarbons having a high octane number.
  • a fraction having a boiling point of 70 to 180 ° C. is mainly used for the purpose of producing gasoline for automobiles.
  • aromatic fractions such as benzene, toluene and xylene, so-called BTX
  • BTX a fraction of 60 to 150 ° C. is used.
  • the carbon number of the raw material hydrocarbons decreases, the conversion ratio to aromatics decreases, and the octane number of the product also decreases.
  • Patent Documents 1 to 3 describe an aromatic hydrocarbon production method using a gallium-containing crystalline aluminosilicate catalyst composition and a hydrocarbon having 2 to 7 carbon atoms as a main raw material.
  • a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms with high added value can be produced in a high yield. Since the monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms with high yield and high added value is produced, the catalyst composition for producing monocyclic aromatic hydrocarbons as described in Patent Documents 1 to 3 has not been improved. There was room.
  • the present invention has been made in view of the above circumstances, and is a catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms that can produce monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms with high yield. The issue is to provide goods. It is another object of the present invention to provide a method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms using the catalyst composition for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms.
  • the present inventors have obtained high yields of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms by using crystalline aluminosilicates containing specific gallium atoms as catalyst compositions. We found that it can be obtained at a rate.
  • a first aspect of the present invention is a catalyst composition used for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms, comprising a crystalline aluminosilicate containing gallium, and the catalyst composition
  • the catalyst composition In the radial distribution function obtained from the wide-area X-ray absorption fine structure (EXAFS) spectrum at the K absorption edge of gallium, the ratio of the peak intensity I due to Ga—O to the peak intensity II due to Ga—Ga
  • a single carbon atom having 6 to 8 carbon atoms which is brought into contact with the catalyst composition for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms according to the first aspect of the present invention.
  • This is a method for producing a ring aromatic hydrocarbon.
  • a catalyst composition for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms that can produce a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms with a high yield.
  • a method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms using the catalyst composition for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms is possible to provide.
  • EXAFS extended X-ray absorption fine structure
  • the present invention is a catalyst composition used for the production of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms such as benzene, toluene, xylene and the like (hereinafter referred to as “BTX”).
  • the catalyst composition of the present invention is a catalyst composition containing a crystalline aluminosilicate containing gallium, and is determined from a broad X-ray absorption fine structure (EXAFS) spectrum of the K absorption edge of gallium for the catalyst composition.
  • EXAFS broad X-ray absorption fine structure
  • EXAFS means Extended X-ray Absorption Fine Structure, “extended X-ray absorption fine structure”.
  • X-ray energy is plotted on the horizontal axis and the X-ray absorption intensity is plotted on the vertical axis, a steep rise (characteristic absorption edge) appears at a specific energy, but EXAFS is the characteristic absorption edge.
  • EXAFS reflects a structure in the range of several tens of kilometers as viewed from the absorbing atoms (see Non-Patent Document: PETROTECH Vol. 30 No. 10 (2007)).
  • the catalyst composition of the present invention when performing EXAFS measurement on the catalyst composition of the present invention, when the catalyst composition of the present invention consists only of crystalline aluminosilicate containing gallium, the catalyst composition itself may be measured. In addition, when the catalyst composition of the present invention contains other components other than the crystalline aluminosilicate containing gallium, EXAFS is measured for the crystalline aluminosilicate containing gallium before being mixed with the other components. It is preferable.
  • FIG. 1 schematically shows a crystalline aluminosilicate or gallium oxide containing gallium.
  • X-ray 1 When this is irradiated with X-ray 1, if the energy of X-ray 1 exceeds the binding energy of electrons of gallium atom 3, X-ray absorption occurs, and the electrons are excited to become free electrons (photoelectrons). Since electrons have wave properties as well as particle properties, the emitted photoelectron electron wave (w1) is scattered by surrounding atoms, the scattered photoelectron waves (w2, w3, w4) and the original photoelectron wave (w1). ) causes interference.
  • the X-ray absorption intensity is slightly high, but when this interference weakens each other, the X-ray absorption intensity is low.
  • the way in which interference occurs depends on the number and distance of surrounding atoms (gallium atoms 5, oxygen atoms 2 and 4 existing around gallium atom 3 in FIG. 1). Surrounding information can be obtained. Specifically, the distance to the surrounding atoms (inter-atomic distance), the type of surrounding atoms, and the number of surrounding atoms (coordination number) are known. This is the principle of EXAFS.
  • oxygen atoms 2 and 4 and a gallium atom 5 exist around the gallium atom 3.
  • the electron wave (w1) of the emitted photoelectrons is scattered by the oxygen atoms 2 and 4 and the gallium atom 5, and the scattered photoelectron waves (w2, w3, w4).
  • the original photoelectron wave (w1) cause interference.
  • a peak corresponding to the interatomic distance between the gallium atom 3 and the oxygen atoms 2 and 4, and an atom between the gallium atom 3 and the gallium atom 5 Peaks according to the distance can be measured.
  • FIG. 2 shows a radial distribution obtained from EXAFS at the K absorption edge of a gallium atom for a catalyst composition containing a crystalline aluminosilicate containing gallium (Example 4 described later) and gallium oxide (Ga 2 O 3 ). Indicates a function.
  • the radial distribution function obtained from EXAFS at the K absorption edge of a gallium atom has a Ga—O peak at an interatomic distance of about 1.5 ⁇ and a Ga—Ga peak at an interatomic distance of about 2.8 ⁇ .
  • the catalyst composition of the present invention has a peak intensity I due to Ga—O (interatomic distance of about 1.5 mm shown in FIG. 2) and a peak intensity II attributable to Ga—Ga (interatomic distance 2 shown in FIG. 2).
  • the ratio (I / II) to the vicinity of .8 cm is greater than 0.25.
  • a small peak intensity II due to Ga—Ga means that the proportion of galliums close to each other is small, and a large peak intensity II means that a large proportion of galliums are close to each other.
  • the gallium present in the crystalline aluminosilicate containing gallium is considered the former, and the compound such as gallium oxide represented by Ga 2 O 3 is considered the latter. That is, the catalyst composition of the present invention means that the proportion of gallium present in the crystalline aluminosilicate is relatively high.
  • the ratio (I / II) between the peak intensity I and the peak intensity II is preferably 0.26 or more, and more preferably 0.28 or more. Moreover, although an upper limit is not specifically limited, For example, 2.0 or less is preferable and 1.0 is more preferable.
  • the present inventors paid attention to the principle of EXAFS, and used a catalyst composition comprising a crystalline aluminosilicate in which the intensity of a peak due to Ga—Ga is relatively small, in other words, a small proportion of gallium present in the vicinity of gallium. It has been found that monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms can be produced with a high yield when used in the above.
  • the gallium-containing crystalline aluminosilicate catalyst composition described in Patent Document 3 focuses on aluminum atoms in the gallium-containing crystalline aluminosilicate catalyst composition by MASNMR analysis.
  • the present application focuses on gallium atoms and is an invention based on a new idea different from Patent Document 3.
  • the structure of the crystalline aluminosilicate containing gallium (hereinafter referred to as "gallium-containing crystalline aluminosilicate") contained in the catalyst composition of the present invention is not particularly limited, but is a pentasil-type zeolite.
  • Zeolite having an MFI type and / or MEL type crystal structure is more preferable (a crystalline aluminosilicate having a three-dimensionally connected structure is called a zeolite).
  • MFI-type and MEL-type zeolites belong to a known zeolite structure type of the kind published by “The Structure Commission of the International Zeolite Association” (Atlas of Zeolite Structure. 1978) Distributed by Polycrystalline Book Service, Pittsburgh, PA, USA).
  • An example of an MFI type zeolite is ZSM-5, and an example of an MEL type zeolite is ZSM-11.
  • gallium-containing crystalline aluminosilicate contained in the catalyst composition of the present invention examples include those in which gallium is present in the crystalline aluminosilicate, and those in which gallium is supported on the crystalline aluminosilicate (hereinafter referred to as “gallium-supporting crystalline aluminosilicate”). Silicate ”) or a material containing both of them is used, but at least a crystalline aluminosilicate containing gallium is preferred. Further, it is more preferable that the crystalline aluminosilicate contains a gallium cation.
  • the gallium-containing crystalline aluminosilicate contained in the catalyst composition of the present invention is preferably produced by inserting gallium into the crystalline aluminosilicate by an ion exchange method.
  • an ion exchange method a method in which a gallium source is used as a solution and a crystalline aluminosilicate is immersed (in many cases, an aqueous solution), or a crystalline aluminosilicate and a gallium source are physically mixed in a solid state.
  • gallium salts such as gallium nitrate and gallium chloride, gallium oxide and the like can be preferably used.
  • a method of performing ion exchange by physically mixing crystalline aluminosilicate and a gallium source in a solid state is preferable.
  • a method of heating in an atmosphere of a reducing gas, an inert gas, or a mixed gas containing them is preferable.
  • the particle diameter of the gallium-containing crystalline aluminosilicate contained in the catalyst composition of the present invention is preferably 0.05 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m, particularly preferably 0.5 to 5 ⁇ m, and 1 to 3 ⁇ m. Highly preferred. Moreover, it is preferable that the content rate of the particle
  • the diffusion rate of the molecule tends to be slow in the crystalline aluminosilicate pore.
  • the particle diameter is 20 ⁇ m or less, the reactive molecule easily approaches the active site in the deep pores, and the active site is easily used effectively during the reaction.
  • factors affecting the size of the generated particles include the type of silica source, the amount of organic additives such as quaternary ammonium salts, and inorganic salts as mineralizers. And the amount of base, the amount of base in the gel, the pH of the gel, the heating rate during the crystallization operation, the temperature and the stirring rate, and the like. By appropriately adjusting these conditions, a crystalline aluminosilicate having the above-mentioned particle size range can be obtained.
  • the catalytic activity for the aromatization reaction of the gallium-containing crystalline aluminosilicate contained in the catalyst composition of the present invention is affected by the composition.
  • the gallium atom is preferably contained in an amount of 0.1 to 5.0% by mass, more preferably 0.1 to 3.0% by mass.
  • the molar ratio of gallium to aluminum is preferably from 0.1 to 2.0, more preferably from 0.2 to 1.9, and from 0.3 to 1 .8 or less is particularly preferable.
  • the content of gallium in the catalyst composition is preferably 0.02 parts by mass or more and 3.0 parts by mass or less.
  • the molar ratio of gallium to aluminum is preferably from 0.1 to 2.0, more preferably from 0.2 to 1.9, and from 0.3 to 1 .8 or less is particularly preferable.
  • the gallium-containing crystalline aluminosilicate contained in the catalyst composition of the present invention is various activation treatments that are generally performed when crystalline aluminosilicate is used as a catalyst component, as desired. Can be applied. That is, the gallium-containing crystalline aluminosilicate contained in the catalyst composition of the present invention includes not only those produced by the method such as hydrothermal synthesis but also those obtained by modification or activation treatment thereof. It is.
  • a metal ion other than alkali metal or alkaline earth metal is used.
  • a desired metal other than an alkali metal or an alkaline earth metal can be introduced by ion exchange in an aqueous solution containing or impregnating the aqueous solution.
  • the ammonium-type gallium-containing crystalline aluminosilicate is heated in an atmosphere of air, nitrogen or hydrogen at a temperature of 200 to 800 ° C., preferably 350 to 700 ° C. for 3 to 24 hours to remove ammonia, thereby removing the acid type.
  • the structure can be activated.
  • the acid catalyst may be treated with hydrogen or a mixed gas of hydrogen and nitrogen under the above conditions. Furthermore, you may give the ammonia modification
  • the catalyst composition of the present invention is preferably used after being subjected to the activation treatment before contacting with the hydrocarbon feedstock.
  • the active component of the catalyst composition of the present invention is the gallium-containing crystalline aluminosilicate, but for the purpose of facilitating molding or improving the mechanical strength of the catalyst, the catalyst composition is supported or molded.
  • An auxiliary agent or the like may be included.
  • the content of the gallium-containing crystalline aluminosilicate in the total mass of the catalyst composition is not particularly limited, but the gallium-containing crystalline aluminosilicate is based on the total mass of the catalyst composition. 40 to 95% by mass is preferable, 50 to 90% by mass is more preferable, and 60 to 80% by mass is further preferable.
  • compositions containing gallium-containing crystalline aluminosilicate are various molded products such as granules, spheres, plates, pellets, etc. by methods such as extrusion, spray drying, tableting, rolling granulation, and granulation in oil. It can be. In molding, it is desirable to use an organic compound lubricant to improve moldability.
  • composition of a gallium-containing crystalline aluminosilicate can be formed prior to the ion-exchange step of the gallium-containing crystalline aluminosilicate with ammonium ions or the like, or after the gallium-containing crystalline aluminosilicate is ion-exchanged. It can also be done.
  • the catalyst composition of the present invention may contain an additive in addition to the gallium-containing crystalline aluminosilicate described above.
  • the additive is not particularly limited, and examples thereof include inorganic oxides such as alumina boria, silica, silica alumina, and aluminum phosphate, clay minerals such as kaolin and montmorillonite, inorganic phosphorus compounds, and organic phosphorus compounds.
  • the addition amount is not particularly limited, but is added to the catalyst composition so as to be 50% by mass or less, more preferably 30% by mass or less, and further preferably 15% by mass or less.
  • the catalyst composition of the present invention can be used with a metal component supported as an auxiliary component.
  • the metal component as an auxiliary component may be supported on gallium-containing crystalline aluminosilicate, or may be supported on other additives, or both.
  • auxiliary metal components include metals having dehydrogenation ability and metals having an effect of suppressing carbon deposition.
  • Specific examples of the auxiliary metal component include those that improve catalytic activity, such as magnesium, calcium, strontium, barium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium.
  • Ytterbium lutetium, titanium, vanadium, chromium, molybdenum, tungsten, manganese, rhenium, iron, ruthenium, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver, zinc, aluminum, indium, germanium, tin, lead , Phosphorus, antimony, bismuth, selenium and the like.
  • These metals can be used alone or in combination of two or more, and the supported amount is 0.1 to 10% by mass in terms of metal.
  • known techniques such as an ion exchange method, an impregnation method, and physical mixing can be used.
  • an auxiliary component metal can be contained by adding the metal component as an auxiliary component during the synthesis of the pentasil-type zeolite.
  • an auxiliary metal component having an effect of suppressing the deposition of coke during the reaction magnesium, calcium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium,
  • One or more metals selected from ruthenium and iridium can be supported, and the supported amount is 0.01 to 5% by mass in terms of metal.
  • the above-described catalyst composition of the present invention is brought into contact with a raw material oil containing a hydrocarbon having 2 to 7 carbon atoms to produce an aromatic hydrocarbon.
  • the raw material used in the present invention contains a light hydrocarbon having 2 to 7 carbon atoms, and the content of the light hydrocarbon having 2 to 7 carbon atoms in the raw material is not particularly limited, but is preferably 20% by mass. Above, more preferably 40% by mass or more, particularly preferably 60 to 100% by mass.
  • the light hydrocarbon having 2 to 7 carbon atoms is not particularly limited, and may be linear, branched or cyclic, and may be paraffin or olefin. Furthermore, a mixture thereof may be used. Specific examples of such hydrocarbons include linear aliphatic saturated hydrocarbons having 2 to 7 carbon atoms (ethane, propane, normal butane, normal pentane, normal hexane, normal heptane), branched aliphatic saturated hydrocarbons.
  • cycloaliphatic saturated hydrocarbon cyclopropane, cyclobutane, cyclopentane, 1-methylcyclopentane, 1,1-dimethylcyclopentane 1,2-dimethylcyclopentane, 1,3-dimethylcyclopentane, cyclohexa , Methylcyclohexane, etc.
  • linear aliphatic unsaturated hydrocarbons ethylene, propylene, normal butene, normal pentene, normal hexene, normal heptene, etc.
  • branched aliphatic unsaturated hydrocarbons branched aliphatic unsaturated hydrocarbons
  • reaction process In this step, at least n reaction layers holding the above-described catalyst composition are arranged in series, and a heating furnace or the like is provided between the reaction layers as means for heating the effluent from the reaction layer.
  • a mixture of a light hydrocarbon as a raw material and a recycle gas which will be described later, is passed through a reaction layer to convert the mixture into an aromatic hydrocarbon.
  • Preferred reaction conditions in this step are a reaction layer inlet temperature of 350 to 650 ° C., a hydrogen partial pressure of 0.5 MPa or less, and a raw material gas space velocity of 100 to 2000 hr ⁇ 1 .
  • the reaction layer inlet temperature in the conversion reaction step according to the present invention is generally in the preferred range of 350 to 650 ° C., but 450 to 650 ° C. when the light hydrocarbon as the main component is normal paraffin.
  • isoparaffin is the main component
  • olefin is the main component
  • 350 to 550 ° C. are more preferable temperature ranges.
  • the reactor used in the conversion reaction step is not particularly limited, and examples thereof include a fixed bed reactor, a CCR reactor, and a fluidized bed reactor.
  • a fixed bed or a CCR type reactor at least n reaction layers holding the catalyst composition described above (n is an integer of 2 or more) are arranged in series, and further between the reaction layers or in the reaction layer, A heating device such as a heating furnace is preferably provided as means for heating the effluent from the previous reaction layer.
  • the catalyst amount in the first-stage reaction layer is 30% by volume or less, preferably 1-30% by volume, more preferably 2-30% by volume of the total catalyst amount. %, More preferably 2 to 28% by volume.
  • the amount of catalyst in the first-stage reaction layer is preferably 60 / n volume% or less of the total amount of catalyst.
  • the number n of the reaction layers is not particularly limited as long as it is 2 or more. However, if the number is too large, the effect is not changed and the economical efficiency is deteriorated. Accordingly, n is preferably 2 or more and 8 or less, more preferably 3 or more and 6 or less.
  • the conversion reaction step it is possible to operate at a constant reaction layer inlet temperature, and to increase the reaction layer inlet temperature continuously or stepwise so as to obtain a predetermined aromatic yield. You can also drive.
  • the reactor is switched to a reactor filled with new catalyst or a reactor filled with regenerated catalyst.
  • the regeneration of the catalyst can be performed by heat treatment at 200 to 800 ° C., preferably 350 to 700 in an air stream such as air, nitrogen, hydrogen, or a nitrogen / hydrogen mixed gas.
  • the method for producing aromatic hydrocarbons of the present invention is preferably carried out using two series of fixed bed reactors including a reaction layer holding the catalyst composition.
  • each series of reaction apparatuses is composed of a plurality of reaction layers arranged in series. While the raw material containing light hydrocarbons is introduced into one series of reactors and the reaction proceeds, the catalyst in the other series of reactors is subjected to a regeneration treatment. By performing the reaction / regeneration alternately at intervals of 1 to 10 days in these two series of reactors, for example, continuous operation for one year can be performed. Further, like the cyclic operation, it is possible to continuously perform the reaction by switching a part or all of the series of reactors used for the reaction to another series. It is preferable to keep the aromatic yield within a predetermined range of 40 to 75% by weight by continuously or stepwise increasing the reaction temperature for each cycle of the reaction for 1 to 10 days.
  • the aromatic yield R is represented by the following formula (1).
  • R A / B ⁇ 100 (%) (1)
  • a reaction involving dehydrogenation proceeds. Therefore, under the reaction conditions, a hydrogen partial pressure suitable for the reaction is set without adding hydrogen. Will have. Intentional addition of hydrogen has the advantage of suppressing coke deposition and reducing the frequency of regeneration, but the yield of aromatics is not necessarily advantageous because it decreases rapidly with increasing hydrogen partial pressure. Therefore, the hydrogen partial pressure is preferably suppressed to 0.5 MPa or less.
  • the total amount of light gas (recycle gas) circulated to the reaction system is desirably 0.1 to 10 parts by mass, preferably 0.5 to 3 parts by mass, per 1 part by mass of the hydrocarbon feedstock.
  • the effluent from the conversion reaction step is introduced into a gas-liquid separation zone composed of one or more gas-liquid separators, and gas-liquid separation is performed under relatively high pressure, and aromatic hydrocarbons are removed.
  • This is a step of separation into a liquid component (high pressure separation liquid) contained as a main component and a light gas (high pressure separation gas) such as hydrogen, methane, ethane, propane, or butane.
  • the temperature is usually 10 to 50 ° C., preferably 20 to 40 ° C.
  • the pressure is usually 0.5 to 8 MPa, preferably 1 to 3 MPa.
  • reaction bed effluent is cooled by indirect heat exchange with low-temperature raw hydrocarbons before being introduced into the gas-liquid separation process, and, if necessary, hydrogen from the gas-liquid separation process and light gas is separated. In order to reduce the process load, a part of the light gas can be separated.
  • This step is a step of selectively separating hydrogen from the high-pressure separation gas separated in the gas-liquid separation step to obtain a recycle gas containing methane and / or ethane.
  • a hydrogen separation method in this case, a conventionally known method such as a membrane separation method or a cryogenic separation method is used. From the viewpoint of selective hydrogen separation efficiency, it is preferable to use a membrane separation method.
  • unreacted propane is maximized compared to off gas from the membrane separation method. Therefore, there is an advantage that the aromatic hydrocarbon yield can be increased by 1 to 3% by mass. Which method to use is judged from an economic point of view.
  • the membrane separation device for example, a device using polyimide, polysulfone, a blend of polysulfone and polydimethylsiloxane as a separation membrane is commercially available. Part of the recycled gas obtained in this step is discharged out of the system in order to keep the total amount of circulating gas within a certain range.
  • a membrane separation device or a PSA absorption / desorption separation device
  • the selection of the latter device is determined from an economic point of view.
  • This step is a step of separating aromatic hydrocarbon and low boiling point hydrocarbon gas from the high-pressure separation liquid obtained in the gas-liquid separation step, and a stabilizer (distillation tower) is used as the apparatus.
  • the low-boiling point hydrocarbon gas separated as the top fraction is composed of C3 to C4 hydrocarbons and is used as a recycle gas.
  • the raw material light hydrocarbon is mixed with the recycle gas containing methane and / or ethane obtained in the hydrogen gas separation step and the low boiling point hydrocarbon gas separated in the aromatic hydrocarbon separation step. It is a process, and this mixing can be performed in a pipe. This mixture is introduced into the conversion reaction step.
  • the mixing ratio of the recycle gas and the low boiling point hydrocarbon gas per 1 part by mass of the raw light hydrocarbon is 0.1 to 10 parts by mass, preferably 0.5 to 3 parts by mass.
  • the aromatization reaction by dehydrocyclization is an endothermic reaction, and therefore the catalyst layer temperature is lowered, which is disadvantageous for the aromatization reaction.
  • Methane and / or ethane is considered an inert gas because it does not aromatize under the reaction conditions.
  • this acts as a heat supply medium, suppresses the temperature drop of the catalyst layer, favorably advances the aromatization reaction, and improves the aromatic hydrocarbon yield.
  • generated by the conversion reaction of a raw material can be reduced by recycling, and an aromatization reaction can be advanced advantageously, As a result, an aromatic hydrocarbon yield can be improved.
  • the gas velocity in the reaction layer is increased (GHSV is increased), the contact time between the reaction substrate and the catalyst active site is shortened, and the excessive reaction that gives the coke-like substance can be suppressed. As a result, it is possible to suppress the decrease in activity that occurs with the elapsed time of the reaction and maintain the aromatic hydrocarbon yield at a high level.
  • the recycle gas ratio must be determined from an economic point of view.
  • Tableting was performed by applying a pressure of 39.2 MPa (400 kgf), coarsely pulverized to a size of 20 to 28 mesh, and granulated to obtain crystalline aluminosilicate 1 containing gallium.
  • This crystalline aluminosilicate 1 was used as the catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms of Example 1.
  • Example 2 3. 0.12 g of gallium chloride and the above ZSM-5 (proton type) so that 1.0% by mass (value with the total mass of crystalline aluminosilicate being 100% by mass) is ion-exchanged (or impregnated).
  • a crystalline aluminosilicate 2 containing gallium was prepared in the same manner as in Example 1 except that the amount was 8 g. This crystalline aluminosilicate 2 was used as the catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms of Example 2.
  • This crystalline aluminosilicate 4 was used as the catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms of Example 4.
  • Example 5 3. 0.25 g of gallium chloride and ZSM-5 (proton type) so that 2.0% by mass (a value obtained when the total mass of crystalline aluminosilicate is 100% by mass) is ion-exchanged (or impregnated).
  • a crystalline aluminosilicate 5 containing gallium was prepared in the same manner as in Example 3 except that the amount was 8 g. This crystalline aluminosilicate 5 was used as the catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms of Example 5.
  • Tableting was performed by applying a pressure of 39.2 MPa (400 kgf), coarsely pulverized to a size of 20 to 28 mesh, and granulated to obtain crystalline aluminosilicate 8 containing gallium.
  • This crystalline aluminosilicate 8 was used as the catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms of Comparative Example 1.
  • X-ray source Continuous X-ray spectroscopic crystal: Si (111) Beam size: 1mm x 5mm Detector: Ionization chamber Measurement atmosphere: Atmospheric measurement time: 5 minutes Dwell time: 1 sec Measurement range: Ga K absorption edge (10000 to 10500 eV)
  • Examples 1 to 7 using the catalyst composition to which the present invention was applied had higher BTX yield than the case of using the catalyst composition of Comparative Example 1 to which the present invention was not applied. .

Abstract

A catalyst composition used for producing a C6-8 monocyclic aromatic hydrocarbon characterized in: comprising a gallium-containing crystalline aluminosilicate; and the ratio (I/II) of a peak intensity I due to Ga-O to a peak intensity II due to Ga-Ga in a radial distribution function determined from an extended X-ray absorption fine structure (EXAFS) spectrum of a Ga-K absorption edge of said composition being greater than 0.25.

Description

炭素数6~8の単環芳香族炭化水素製造用触媒組成物及び炭素数6~8の単環芳香族炭化水素の製造方法Catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms and method for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms
 本発明は炭素数6~8の単環芳香族炭化水素製造用触媒組成物及び炭素数6~8の単環芳香族炭化水素の製造方法に関する。
 本願は、2016年8月26日に日本に出願された、特願2016-165551号に基づき優先権主張し、その内容をここに援用する。
The present invention relates to a catalyst composition for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms and a method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms.
This application claims priority based on Japanese Patent Application No. 2016-165551 filed in Japan on August 26, 2016, the contents of which are incorporated herein by reference.
 従来、オクタン価の高いガソリンや芳香族炭化水素を得る方法として、白金/アルミナ系触媒による直留ナフサの接触改質が商業的に広く採用されている。この接触改質における原料ナフサとしては、自動車用ガソリン製造を目的とする場合には、主に沸点70~180℃の留分が用いられる。またベンゼン、トルエン、キシレン等の芳香族留分、いわゆるBTX製造の場合には、60~150℃の留分が用いられている。
 しかし、原料炭化水素の炭素数の減少とともに芳香族への転化割合が低くなり、生成物のオクタン価も減少してしまうため、炭素数が7以下の炭化水素を主成分とする軽質炭化水素を原料として、従来の接触改質法で、高オクタン価ガソリンや芳香族炭化水素を高収率で製造することは困難であった。このため、こうした軽質炭化水素の用途は石油化学原料や都市ガス製造用原料などに限られていた。
 このため、軽質炭化水素から芳香族炭化水素を製造する試みがなされている。例えば特許文献1~3には、ガリウム含有結晶性アルミノシリケート触媒組成物を用いた炭素数2~7の炭化水素を主原料とした芳香族炭化水素製造方法が記載されている。
Conventionally, catalytic reforming of straight run naphtha using a platinum / alumina catalyst has been widely used commercially as a method for obtaining gasoline and aromatic hydrocarbons having a high octane number. As the raw material naphtha in the catalytic reforming, a fraction having a boiling point of 70 to 180 ° C. is mainly used for the purpose of producing gasoline for automobiles. In the case of the production of aromatic fractions such as benzene, toluene and xylene, so-called BTX, a fraction of 60 to 150 ° C. is used.
However, as the carbon number of the raw material hydrocarbons decreases, the conversion ratio to aromatics decreases, and the octane number of the product also decreases. Therefore, light hydrocarbons mainly composed of hydrocarbons having 7 or less carbon atoms are used as raw materials. As described above, it has been difficult to produce high-octane gasoline and aromatic hydrocarbons in a high yield by the conventional catalytic reforming method. For this reason, the use of such light hydrocarbons has been limited to petrochemical raw materials and raw materials for city gas production.
For this reason, attempts have been made to produce aromatic hydrocarbons from light hydrocarbons. For example, Patent Documents 1 to 3 describe an aromatic hydrocarbon production method using a gallium-containing crystalline aluminosilicate catalyst composition and a hydrocarbon having 2 to 7 carbon atoms as a main raw material.
特開2008-37803号公報JP 2008-37803 A 特開2008-38032号公報JP 2008-38032 A 特開2009-233601号公報JP 2009-233601 A
 付加価値の高い炭素数6~8の単環芳香族炭化水素は高い収率で生産できることが好ましい。さらに高い収率で付加価値の高い炭素数6~8の単環芳香族炭化水素するため、特許文献1~3に記載のような単環芳香族炭化水素製造用触媒組成物には未だ改良の余地があった。
 本発明は上記事情に鑑みてなされたものであって、高い収率で炭素数6~8の単環芳香族炭化水素を製造できる炭素数6~8の単環芳香族炭化水素製造用触媒組成物を提供することを課題とする。併せて、該炭素数6~8の単環芳香族炭化水素製造用触媒組成物を用いた炭素数6~8の単環芳香族炭化水素の製造方法を提供することを課題とする。
It is preferable that a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms with high added value can be produced in a high yield. Since the monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms with high yield and high added value is produced, the catalyst composition for producing monocyclic aromatic hydrocarbons as described in Patent Documents 1 to 3 has not been improved. There was room.
The present invention has been made in view of the above circumstances, and is a catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms that can produce monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms with high yield. The issue is to provide goods. It is another object of the present invention to provide a method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms using the catalyst composition for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms.
 本発明者らは、前記課題を解決すべく鋭意研究の結果、特定のガリウム原子を含む結晶性アルミノシリケートを触媒組成物として用いることにより炭素数6~8の単環芳香族炭化水素が高い収率で得られることを見出した。
 本発明の第1の態様は、炭素数6~8の単環芳香族炭化水素製造の製造に用いられる触媒組成物であって、ガリウムを含む結晶性アルミノシリケートを含有し、前記触媒組成物についての、ガリウムのK吸収端の広域X線吸収微細構造(EXAFS)スペクトルから得られる動径分布関数において、Ga-Oに起因するピークの強度IとGa-Gaに起因するピーク強度IIとの比(I/II)が、0.25より大きいことを特徴とする、炭素数6~8の単環芳香族炭化水素製造用触媒組成物である。
 本発明の第2の態様は、前記本発明の第1の態様の炭素数6~8の単環芳香族炭化水素製造用触媒組成物に接触させることを特徴とする炭素数6~8の単環芳香族炭化水素の製造方法である。
As a result of intensive studies to solve the above problems, the present inventors have obtained high yields of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms by using crystalline aluminosilicates containing specific gallium atoms as catalyst compositions. We found that it can be obtained at a rate.
A first aspect of the present invention is a catalyst composition used for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms, comprising a crystalline aluminosilicate containing gallium, and the catalyst composition In the radial distribution function obtained from the wide-area X-ray absorption fine structure (EXAFS) spectrum at the K absorption edge of gallium, the ratio of the peak intensity I due to Ga—O to the peak intensity II due to Ga—Ga A catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms, wherein (I / II) is greater than 0.25.
According to a second aspect of the present invention, there is provided a single carbon atom having 6 to 8 carbon atoms, which is brought into contact with the catalyst composition for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms according to the first aspect of the present invention. This is a method for producing a ring aromatic hydrocarbon.
 本発明によれば、高い収率で炭素数6~8の単環芳香族炭化水素を製造できる炭素数6~8の単環芳香族炭化水素製造用触媒組成物を提供することができる。併せて、該炭素数6~8の単環芳香族炭化水素製造用触媒組成物を用いた炭素数6~8の単環芳香族炭化水素の製造方法を提供することができる。 According to the present invention, it is possible to provide a catalyst composition for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms that can produce a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms with a high yield. In addition, it is possible to provide a method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms using the catalyst composition for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms.
拡張X線吸収微細構造(EXAFS)の原理を説明する図である。It is a figure explaining the principle of an extended X-ray absorption fine structure (EXAFS). EXAFSのスペクトルから求めた動径分布関数を示す図である。It is a figure which shows the radial distribution function calculated | required from the spectrum of EXAFS.
<炭素数6~8の単環芳香族炭化水素製造用触媒組成物>
 本発明は、ベンゼン、トルエン、キシレン等(以下、「BTX」と記載する。)の炭素数6~8の単環芳香族炭化水素の製造に用いられる触媒組成物である。
 本発明の触媒組成物は、ガリウムを含む結晶性アルミノシリケートを含有する触媒組成物であって、前記触媒組成物についての、ガリウムのK吸収端の広域X線吸収微細構造(EXAFS)スペクトルから求めた動径分布関数において、Ga-Oに起因するピークの強度IとGa-Gaに起因するピーク強度IIとの比(I/II)が、0.25より大きいことを特徴とする。
<Catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms>
The present invention is a catalyst composition used for the production of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms such as benzene, toluene, xylene and the like (hereinafter referred to as “BTX”).
The catalyst composition of the present invention is a catalyst composition containing a crystalline aluminosilicate containing gallium, and is determined from a broad X-ray absorption fine structure (EXAFS) spectrum of the K absorption edge of gallium for the catalyst composition. In the radial distribution function, the ratio (I / II) of the peak intensity I attributed to Ga—O and the peak intensity II attributed to Ga—Ga is characterized by being larger than 0.25.
・EXAFS
 ここで、「EXAFS」は、Extended X-ray Absorption Fine Structure、「拡張X線吸収微細構造」を意味する。X線のエネルギーを横軸にし、X線の吸収強度を縦軸にしてX線スペクトルを表した場合、特定のエネルギーで急峻な立ち上がり(特性吸収端)が現れるが、EXAFSとは、特性吸収端から50eV以上高いエネルギー範囲に現れる微細なX線吸収の振動である。
 EXAFSは吸収原子から見た周囲数Åの範囲の構造を反映している(非特許文献:PETROTECH 第30巻第10号(2007)参照)。
・ EXAFS
Here, “EXAFS” means Extended X-ray Absorption Fine Structure, “extended X-ray absorption fine structure”. When the X-ray energy is plotted on the horizontal axis and the X-ray absorption intensity is plotted on the vertical axis, a steep rise (characteristic absorption edge) appears at a specific energy, but EXAFS is the characteristic absorption edge. Is a vibration of fine X-ray absorption that appears in an energy range higher than 50 eV.
EXAFS reflects a structure in the range of several tens of kilometers as viewed from the absorbing atoms (see Non-Patent Document: PETROTECH Vol. 30 No. 10 (2007)).
 本発明の触媒組成物について、EXAFS測定を行うにあたり、本発明の触媒組成物が前記ガリウムを含む結晶性アルミノシリケートのみからなる場合には、触媒組成物そのものを測定すればよい。また、本発明の触媒組成物が、前記ガリウムを含む結晶性アルミノシリケート以外の他の成分を含む場合には、他の成分と混合する前のガリウムを含む結晶性アルミノシリケートについて、EXAFSを測定することが好ましい。 When performing EXAFS measurement on the catalyst composition of the present invention, when the catalyst composition of the present invention consists only of crystalline aluminosilicate containing gallium, the catalyst composition itself may be measured. In addition, when the catalyst composition of the present invention contains other components other than the crystalline aluminosilicate containing gallium, EXAFS is measured for the crystalline aluminosilicate containing gallium before being mixed with the other components. It is preferable.
 EXAFSの原理について図1を参照して説明する。
 図1は、ガリウムを含有する結晶性アルミノシリケート又はガリウム酸化物を模式的に示している。これにX線1を照射した場合、X線1の有するエネルギーがガリウム原子3の電子の束縛エネルギーを上回ると、X線の吸収が起こり、電子が励起し自由電子(光電子)となる。電子は粒子の性質とともに波の性質も有するため、放出された光電子の電子波(w1)が周囲の原子によって散乱され、散乱された光電子波(w2、w3、w4)と元の光電子波(w1)とが干渉を起こす。この干渉が互いに強め合う場合はX線吸収強度がわずかであるが高くなり、この干渉が互いに弱め合う場合はX線吸収強度が低くなる。
 干渉の起き方は周囲の原子(図1においてはガリウム原子3の周囲に存在するガリウム原子5、酸素原子2及び4)の数や距離によって変わるため、これを解析することにより吸収する対象原子の周囲の情報を得ることができる。具体的には周囲の原子との距離(原子間距離)、周囲の原子の種類、周囲の原子の数(配位数)がわかる。これがEXAFSの原理である。
The principle of EXAFS will be described with reference to FIG.
FIG. 1 schematically shows a crystalline aluminosilicate or gallium oxide containing gallium. When this is irradiated with X-ray 1, if the energy of X-ray 1 exceeds the binding energy of electrons of gallium atom 3, X-ray absorption occurs, and the electrons are excited to become free electrons (photoelectrons). Since electrons have wave properties as well as particle properties, the emitted photoelectron electron wave (w1) is scattered by surrounding atoms, the scattered photoelectron waves (w2, w3, w4) and the original photoelectron wave (w1). ) Cause interference. When this interference reinforces each other, the X-ray absorption intensity is slightly high, but when this interference weakens each other, the X-ray absorption intensity is low.
The way in which interference occurs depends on the number and distance of surrounding atoms (gallium atoms 5, oxygen atoms 2 and 4 existing around gallium atom 3 in FIG. 1). Surrounding information can be obtained. Specifically, the distance to the surrounding atoms (inter-atomic distance), the type of surrounding atoms, and the number of surrounding atoms (coordination number) are known. This is the principle of EXAFS.
 図1に示す一例では、ガリウム原子3の周囲には、酸素原子2及び4とガリウム原子5が存在している。このため、ガリウム原子3にX線1を照射すると、放出された光電子の電子波(w1)が、酸素原子2及び4とガリウム原子5によって散乱し、散乱された光電子波(w2、w3、w4)と元の光電子波(w1)とが干渉を起こす。干渉により生じたEXAFSをフーリエ変換により解析して求めた動径分布関数において、ガリウム原子3と酸素原子2及び4との原子間距離に応じたピークと、ガリウム原子3とガリウム原子5との原子間距離に応じたピークを測定することができる。 In the example shown in FIG. 1, oxygen atoms 2 and 4 and a gallium atom 5 exist around the gallium atom 3. For this reason, when the gallium atom 3 is irradiated with the X-ray 1, the electron wave (w1) of the emitted photoelectrons is scattered by the oxygen atoms 2 and 4 and the gallium atom 5, and the scattered photoelectron waves (w2, w3, w4). ) And the original photoelectron wave (w1) cause interference. In a radial distribution function obtained by analyzing EXAFS generated by interference by Fourier transform, a peak corresponding to the interatomic distance between the gallium atom 3 and the oxygen atoms 2 and 4, and an atom between the gallium atom 3 and the gallium atom 5 Peaks according to the distance can be measured.
 図2に、ガリウムを含む結晶性アルミノシリケートを含有する触媒組成物(後述する実施例4)およびガリウム酸化物(Ga)について、ガリウム原子のK吸収端のEXAFSから得られる動径分布関数を示す。ガリウム原子のK吸収端のEXAFSから得られる動径分布関数は、原子間距離1.5Å付近のGa-Oのピークと原子間距離2.8Å付近のGa-Gaのピークを有している。 FIG. 2 shows a radial distribution obtained from EXAFS at the K absorption edge of a gallium atom for a catalyst composition containing a crystalline aluminosilicate containing gallium (Example 4 described later) and gallium oxide (Ga 2 O 3 ). Indicates a function. The radial distribution function obtained from EXAFS at the K absorption edge of a gallium atom has a Ga—O peak at an interatomic distance of about 1.5 と and a Ga—Ga peak at an interatomic distance of about 2.8 Å.
 本発明の触媒組成物は、Ga-Oに起因するピークの強度I(図2に示す原子間距離1.5Å付近)とGa-Gaに起因するピーク強度II(図2に示す原子間距離2.8Å付近)との比(I/II)が、0.25より大きいことを特徴とする。Ga-Gaに起因するピーク強度IIが小さいことはガリウム同士が近接している割合が少ないことを意味し、ピーク強度IIが大きいことはガリウム同士が近接している割合が多いことを意味する。図2に示すとおり、ガリウムを含む結晶性アルミノシリケート内に存在するガリウムは前者と考えられ、Gaで表される酸化ガリウムのような化合物は後者と考えられる。つまり、本発明の触媒組成物は、結晶性アルミノシリケート内に存在するガリウムの割合が相対的に多いことを意味する。 The catalyst composition of the present invention has a peak intensity I due to Ga—O (interatomic distance of about 1.5 mm shown in FIG. 2) and a peak intensity II attributable to Ga—Ga (interatomic distance 2 shown in FIG. 2). The ratio (I / II) to the vicinity of .8 cm is greater than 0.25. A small peak intensity II due to Ga—Ga means that the proportion of galliums close to each other is small, and a large peak intensity II means that a large proportion of galliums are close to each other. As shown in FIG. 2, the gallium present in the crystalline aluminosilicate containing gallium is considered the former, and the compound such as gallium oxide represented by Ga 2 O 3 is considered the latter. That is, the catalyst composition of the present invention means that the proportion of gallium present in the crystalline aluminosilicate is relatively high.
 ピークの強度Iとピーク強度IIとの比(I/II)は、0.26以上が好ましく、0.28以上がより好ましい。また、上限値は特に限定されないが、例えば2.0以下が好ましく、1.0がより好ましい。 The ratio (I / II) between the peak intensity I and the peak intensity II is preferably 0.26 or more, and more preferably 0.28 or more. Moreover, although an upper limit is not specifically limited, For example, 2.0 or less is preferable and 1.0 is more preferable.
 本発明者らは、EXAFSの原理に注目し、Ga-Gaに起因するピークの強度が相対的に小さい、換言すると、ガリウムの近傍にガリウムが存在する割合の小さい結晶性アルミノシリケートを触媒組成物に用いた場合に、高い収率で炭素数6~8の単環芳香族炭化水素を製造できることを見出した。
 特許文献3に記載のガリウム含有結晶性アルミノシリケート触媒組成物は、MASNMR分析により、ガリウム含有結晶性アルミノシリケート触媒組成物中のアルミニウム原子に着目したものである。本願は、ガリウム原子に着目したものであり、特許文献3とは異なる新規の発想に基づく発明である。
The present inventors paid attention to the principle of EXAFS, and used a catalyst composition comprising a crystalline aluminosilicate in which the intensity of a peak due to Ga—Ga is relatively small, in other words, a small proportion of gallium present in the vicinity of gallium. It has been found that monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms can be produced with a high yield when used in the above.
The gallium-containing crystalline aluminosilicate catalyst composition described in Patent Document 3 focuses on aluminum atoms in the gallium-containing crystalline aluminosilicate catalyst composition by MASNMR analysis. The present application focuses on gallium atoms and is an invention based on a new idea different from Patent Document 3.
・ガリウム含有結晶性アルミノシリケート
 本発明の触媒組成物に含有されるガリウムを含む結晶性アルミノシリケート(以下、「ガリウム含有結晶性アルミノシリケート」という。)の構造としては特に限定されないが、ペンタシル型ゼオライトが好ましく、中でもMFIタイプ及び/又はMELタイプの結晶構造体を有するゼオライトがより好ましい(結晶性アルミノシリケートの中で3次元的に連結した構造を持つものをゼオライトという)。MFIタイプ、MELタイプのゼオライトは、“The Structure Commission of the International Zeolite Association”により公表された種類の公知ゼオライト構造型に属する(Atlas of Zeolite Structure Types, W.M.Meiyer and D.H.Olson (1978). Distributed by Polycrystal Book Service, Pittsburgh, PA, USA)。MFIタイプのゼオライトの例はZSM-5であり、MELタイプのゼオライトの例はZSM-11である。
-Gallium-containing crystalline aluminosilicate The structure of the crystalline aluminosilicate containing gallium (hereinafter referred to as "gallium-containing crystalline aluminosilicate") contained in the catalyst composition of the present invention is not particularly limited, but is a pentasil-type zeolite. Zeolite having an MFI type and / or MEL type crystal structure is more preferable (a crystalline aluminosilicate having a three-dimensionally connected structure is called a zeolite). MFI-type and MEL-type zeolites belong to a known zeolite structure type of the kind published by “The Structure Commission of the International Zeolite Association” (Atlas of Zeolite Structure. 1978) Distributed by Polycrystalline Book Service, Pittsburgh, PA, USA). An example of an MFI type zeolite is ZSM-5, and an example of an MEL type zeolite is ZSM-11.
 本発明の触媒組成物が含有するガリウム含有結晶性アルミノシリケートとしては、結晶性アルミノシリケート内にガリウムが存在するものや、結晶性アルミノシリケートにガリウムを担持したもの(以下、「ガリウム担持結晶性アルミノシリケート」という。)や、その双方を含んだものが使用されるが、少なくとも結晶性アルミノシリケート内にガリウムを含むものが好ましい。また、結晶性アルミノシリケート内にガリウムカチオンを含むものがさらに好ましい。 Examples of the gallium-containing crystalline aluminosilicate contained in the catalyst composition of the present invention include those in which gallium is present in the crystalline aluminosilicate, and those in which gallium is supported on the crystalline aluminosilicate (hereinafter referred to as “gallium-supporting crystalline aluminosilicate”). Silicate ") or a material containing both of them is used, but at least a crystalline aluminosilicate containing gallium is preferred. Further, it is more preferable that the crystalline aluminosilicate contains a gallium cation.
 本発明の触媒組成物が含有するガリウム含有結晶性アルミノシリケートは、イオン交換法により結晶性アルミノシリケートにガリウムを挿入することにより製造することが好ましい。イオン交換法としては、ガリウム源を溶液とし結晶性アルミノシリケートを浸漬して行う方法(水溶液とする場合が多い)や、結晶性アルミノシリケートとガリウム源とを固体の状態で物理的に混合することによりイオン交換を行う方法が挙げられる。
 この場合、ガリウム源としては、硝酸ガリウム、塩化ガリウム等のガリウム塩や、酸化ガリウム等を好ましく用いることができる。塩化ガリウムのような禁水性物質や固体状の酸化ガリウムの場合は、結晶性アルミノシリケートとガリウム源とを固体の状態で物理的に混合することによりイオン交換を行う方法が好ましい。またイオン交換する際には、適宜、還元性ガス、不活性ガス、またはそれらを含む混合ガスの雰囲気下で加熱する方法が好ましい。
The gallium-containing crystalline aluminosilicate contained in the catalyst composition of the present invention is preferably produced by inserting gallium into the crystalline aluminosilicate by an ion exchange method. As an ion exchange method, a method in which a gallium source is used as a solution and a crystalline aluminosilicate is immersed (in many cases, an aqueous solution), or a crystalline aluminosilicate and a gallium source are physically mixed in a solid state. There is a method of performing ion exchange.
In this case, as the gallium source, gallium salts such as gallium nitrate and gallium chloride, gallium oxide and the like can be preferably used. In the case of a water-inhibiting substance such as gallium chloride or solid gallium oxide, a method of performing ion exchange by physically mixing crystalline aluminosilicate and a gallium source in a solid state is preferable. In addition, when ion exchange is performed, a method of heating in an atmosphere of a reducing gas, an inert gas, or a mixed gas containing them is preferable.
 本発明の触媒組成物が含有するガリウム含有結晶性アルミノシリケートの粒子径は、0.05~20μmが好ましく、0.1~10μmがより好ましく、0.5~5μmが特に好ましく、1~3μmが極めて好ましい。
 また上記の粒子径を有する粒子の含有率が、全粒子の質量を基準として80質量%以上であることが好ましい。
The particle diameter of the gallium-containing crystalline aluminosilicate contained in the catalyst composition of the present invention is preferably 0.05 to 20 μm, more preferably 0.1 to 10 μm, particularly preferably 0.5 to 5 μm, and 1 to 3 μm. Highly preferred.
Moreover, it is preferable that the content rate of the particle | grains which have said particle diameter is 80 mass% or more on the basis of the mass of all the particles.
 反応分子の大きさと結晶性アルミノシリケートの細孔の寸法がほぼ同じである場合、結晶性アルミノシリケート細孔中では、分子の拡散速度が遅くなる傾向にある。このため、粒子直径が20μm以下の粒子であると、細孔深部の活性点に反応分子が接近し易く、活性点が反応中に有効に使用されやすくなる。 When the size of the reaction molecule and the pore size of the crystalline aluminosilicate are almost the same, the diffusion rate of the molecule tends to be slow in the crystalline aluminosilicate pore. For this reason, when the particle diameter is 20 μm or less, the reactive molecule easily approaches the active site in the deep pores, and the active site is easily used effectively during the reaction.
 水熱合成によって結晶性アルミノシリケートを得る場合、生成粒子の大きさに影響を与える因子としては、シリカ源の種類、第4級アンモニウム塩等の有機添加物の量、鉱化剤としての無機塩の量・種類、ゲル中の塩基量、ゲルのpH及び結晶化操作時の昇温速度、温度や撹拌速度等が挙げられる。これらの条件を適当に調節することにより、上述した粒径範囲の結晶性アルミノシリケートを得ることができる。 When obtaining crystalline aluminosilicate by hydrothermal synthesis, factors affecting the size of the generated particles include the type of silica source, the amount of organic additives such as quaternary ammonium salts, and inorganic salts as mineralizers. And the amount of base, the amount of base in the gel, the pH of the gel, the heating rate during the crystallization operation, the temperature and the stirring rate, and the like. By appropriately adjusting these conditions, a crystalline aluminosilicate having the above-mentioned particle size range can be obtained.
 本発明の触媒組成物が含有するガリウム含有結晶性アルミノシリケートの芳香族化反応に対する触媒活性は、その組成によって影響される。高い反応活性を得るためには、該結晶性アルミノシリケートの質量を基準として、アルミニウム原子を0.1~2.5質量%含有することが好ましく、0.1~2.0質量%含有することがより好ましい。
 また、同基準にて、ガリウム原子を0.1~5.0質量%含有することが好ましく、0.1~3.0質量%含有することがより好ましい。
 また、ガリウムと、アルミニウムのモル比(原子比、Ga/Al)が、0.1以上2.0以下であることが好ましく、0.2以上1.9以下がより好ましく、0.3以上1.8以下が特に好ましい。
The catalytic activity for the aromatization reaction of the gallium-containing crystalline aluminosilicate contained in the catalyst composition of the present invention is affected by the composition. In order to obtain a high reaction activity, it is preferable to contain 0.1 to 2.5% by mass of aluminum atoms based on the mass of the crystalline aluminosilicate, and 0.1 to 2.0% by mass. Is more preferable.
Further, on the same basis, the gallium atom is preferably contained in an amount of 0.1 to 5.0% by mass, more preferably 0.1 to 3.0% by mass.
The molar ratio of gallium to aluminum (atomic ratio, Ga / Al) is preferably from 0.1 to 2.0, more preferably from 0.2 to 1.9, and from 0.3 to 1 .8 or less is particularly preferable.
 本発明において、触媒組成物中のガリウムの含有量が、0.02質量部以上3.0質量部以下であることが好ましい。
 また、ガリウムと、アルミニウムのモル比(原子比、Ga/Al)が、0.1以上2.0以下であることが好ましく、0.2以上1.9以下がより好ましく、0.3以上1.8以下が特に好ましい。
In the present invention, the content of gallium in the catalyst composition is preferably 0.02 parts by mass or more and 3.0 parts by mass or less.
The molar ratio of gallium to aluminum (atomic ratio, Ga / Al) is preferably from 0.1 to 2.0, more preferably from 0.2 to 1.9, and from 0.3 to 1 .8 or less is particularly preferable.
・・活性化処理
 また、本発明の触媒組成物が含有するガリウム含有結晶性アルミノシリケートは、所望に応じ、一般的に結晶性アルミノシリケートを触媒成分として用いる場合に施される種々の活性化処理を施すことができる。すなわち、本発明の触媒組成物が含有するガリウム含有結晶性アルミノシリケートは、前記水熱合成等の方法によって製造されたものの他、その変性化処理または活性化処理によって得られるものをも包含するものである。
.. Activation treatment In addition, the gallium-containing crystalline aluminosilicate contained in the catalyst composition of the present invention is various activation treatments that are generally performed when crystalline aluminosilicate is used as a catalyst component, as desired. Can be applied. That is, the gallium-containing crystalline aluminosilicate contained in the catalyst composition of the present invention includes not only those produced by the method such as hydrothermal synthesis but also those obtained by modification or activation treatment thereof. It is.
 例えば、結晶性アルミノシリケートを塩化アンモニウム、フッ化アンモニウム、硝酸アンモニウム、水酸化アンモニウム等のアンモニウム塩を含む水溶液中でイオン交換してアンモニウム型とした後に、アルカリ金属やアルカリ土類金属以外の金属イオンを含む水溶液中でイオン交換したり、あるいはその水溶液を含浸させてアルカリ金属やアルカリ土類金属以外の所望金属を導入することができる。
 また、前記アンモニウム型のガリウム含有結晶性アルミノシリケートを空気、窒素または水素雰囲気中で200~800℃、好ましくは350~700℃の温度で3~24時間加熱することによりアンモニアを除去して酸型の構造に活性化することができる。また、酸型触媒を水素または水素と窒素の混合ガスにて上記の条件で処理してもよい。さらに、酸型触媒を乾燥条件下にアンモニアと接触させるアンモニア変性を施してもよい。本発明の触媒組成物は、一般的には、炭化水素原料と接触する前に、前記の活性化処理を施して使用するのが好ましい。
For example, after a crystalline aluminosilicate is ion-exchanged in an aqueous solution containing ammonium salts such as ammonium chloride, ammonium fluoride, ammonium nitrate, and ammonium hydroxide to form an ammonium type, a metal ion other than alkali metal or alkaline earth metal is used. A desired metal other than an alkali metal or an alkaline earth metal can be introduced by ion exchange in an aqueous solution containing or impregnating the aqueous solution.
The ammonium-type gallium-containing crystalline aluminosilicate is heated in an atmosphere of air, nitrogen or hydrogen at a temperature of 200 to 800 ° C., preferably 350 to 700 ° C. for 3 to 24 hours to remove ammonia, thereby removing the acid type. The structure can be activated. The acid catalyst may be treated with hydrogen or a mixed gas of hydrogen and nitrogen under the above conditions. Furthermore, you may give the ammonia modification | denaturation which makes an acid type catalyst contact ammonia on dry conditions. In general, the catalyst composition of the present invention is preferably used after being subjected to the activation treatment before contacting with the hydrocarbon feedstock.
 本発明の触媒組成物の活性成分は前記ガリウム含有結晶性アルミノシリケートであるが、成形を容易にするため、あるいは触媒の機械的強度を向上させるため等の目的で、触媒組成物は担体あるいは成形助剤等を含んでいてもよい。
 担体あるいは成形助剤等を含む場合、触媒組成物の全質量に占める前記ガリウム含有結晶性アルミノシリケートの含有量は特に制限されないが、ガリウム含有結晶性アルミノシリケートは、触媒組成物の全質量に対し、40~95質量%が好ましく、50~90質量%がより好ましく、60~80質量%がさらに好ましい。
The active component of the catalyst composition of the present invention is the gallium-containing crystalline aluminosilicate, but for the purpose of facilitating molding or improving the mechanical strength of the catalyst, the catalyst composition is supported or molded. An auxiliary agent or the like may be included.
When the carrier or molding aid is included, the content of the gallium-containing crystalline aluminosilicate in the total mass of the catalyst composition is not particularly limited, but the gallium-containing crystalline aluminosilicate is based on the total mass of the catalyst composition. 40 to 95% by mass is preferable, 50 to 90% by mass is more preferable, and 60 to 80% by mass is further preferable.
 ガリウム含有結晶性アルミノシリケートを含有する組成物は、押出成形、スプレードライ、打錠成形、転動造粒、油中造粒等の方法で粒状、球状、板状、ペレット状等の各種成形体とすることができる。また、成形時には、成形性を良くするために有機化合物の滑剤を使用することが望ましい。 Compositions containing gallium-containing crystalline aluminosilicate are various molded products such as granules, spheres, plates, pellets, etc. by methods such as extrusion, spray drying, tableting, rolling granulation, and granulation in oil. It can be. In molding, it is desirable to use an organic compound lubricant to improve moldability.
 一般に、ガリウム含有結晶性アルミノシリケートの組成物の成形は、ガリウム含有結晶性アルミノシリケートのアンモニウムイオン等によるイオン交換工程に先立って行なうこともできるし、またガリウム含有結晶性アルミノシリケートをイオン交換した後に行うこともできる。 In general, the composition of a gallium-containing crystalline aluminosilicate can be formed prior to the ion-exchange step of the gallium-containing crystalline aluminosilicate with ammonium ions or the like, or after the gallium-containing crystalline aluminosilicate is ion-exchanged. It can also be done.
・添加剤
 また、本発明の触媒組成物には、前述したガリウム含有結晶性アルミノシリケートの他に、添加剤を含んでもよい。添加剤としては、特に限定されないが、アルミナボリア、シリカ、シリカアルミナ、リン酸アルミニウム等の無機酸化物、カオリンやモンモリロナイトなどの粘土鉱物、無機リン化合物や有機リン化合物などが挙げられる。その添加量は、特に制限されないが、触媒組成物中に50質量%以下、より好ましくは30質量%以下、さらに好ましくは15質量%以下となるよう加えられる。
Additive The catalyst composition of the present invention may contain an additive in addition to the gallium-containing crystalline aluminosilicate described above. The additive is not particularly limited, and examples thereof include inorganic oxides such as alumina boria, silica, silica alumina, and aluminum phosphate, clay minerals such as kaolin and montmorillonite, inorganic phosphorus compounds, and organic phosphorus compounds. The addition amount is not particularly limited, but is added to the catalyst composition so as to be 50% by mass or less, more preferably 30% by mass or less, and further preferably 15% by mass or less.
 また、本発明の触媒組成物には補助成分として金属成分を担持させて用いることができる。補助成分としての金属成分は、ガリウム含有結晶性アルミノシリケートに担持させたり、その他の添加剤に担持させたり、その両方でも構わない。
 このような補助金属成分としては、例えば、脱水素能を有する金属や炭素析出を抑制する効果のある金属が挙げられる。補助金属成分の具体例としては、触媒活性を向上させるものとして、例えば、マグネシウム、カルシウム、ストロンチウム、バリウム、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、チタン、バナジウム、クロム、モリブデン、タングステン、マンガン、レニウム、鉄、ルテニウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、銀、亜鉛、アルミニウム、インジウム、ゲルマニウム、スズ、鉛、リン、アンチモン、ビスマス、セレン等が挙げられる。これらの金属は、単独の他、2種以上を組合せて用いることもでき、その担持量は金属換算で0.1~10質量%である。金属担持方法としては、イオン交換法、含浸法、物理混合等の公知の技術をいることができる。また、ペンタシル型ゼオライトの合成時に、補助成分として前記金属成分を添加することで、補助成分金属を含有させることもできる。また、反応に際してのコークの堆積の抑制効果を持つ補助金属成分として、マグネシウム、カルシウム、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、ルテニウム、イリジウムの中から選ばれる1種以上の金属を担持させることができ、その担持量は、金属換算で0.01~5質量%である。
Further, the catalyst composition of the present invention can be used with a metal component supported as an auxiliary component. The metal component as an auxiliary component may be supported on gallium-containing crystalline aluminosilicate, or may be supported on other additives, or both.
Examples of such auxiliary metal components include metals having dehydrogenation ability and metals having an effect of suppressing carbon deposition. Specific examples of the auxiliary metal component include those that improve catalytic activity, such as magnesium, calcium, strontium, barium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium. , Ytterbium, lutetium, titanium, vanadium, chromium, molybdenum, tungsten, manganese, rhenium, iron, ruthenium, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver, zinc, aluminum, indium, germanium, tin, lead , Phosphorus, antimony, bismuth, selenium and the like. These metals can be used alone or in combination of two or more, and the supported amount is 0.1 to 10% by mass in terms of metal. As the metal loading method, known techniques such as an ion exchange method, an impregnation method, and physical mixing can be used. Moreover, an auxiliary component metal can be contained by adding the metal component as an auxiliary component during the synthesis of the pentasil-type zeolite. In addition, as an auxiliary metal component having an effect of suppressing the deposition of coke during the reaction, magnesium, calcium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, One or more metals selected from ruthenium and iridium can be supported, and the supported amount is 0.01 to 5% by mass in terms of metal.
<炭素数6~8の単環芳香族炭化水素の製造方法>
 本発明の芳香族炭化水素の製造方法においては、上述した本発明の触媒組成物と、炭素数2~7の炭化水素を含有する原料油と、を接触させて芳香族炭化水素を製造する。
 ここで、本発明で用いる原料は炭素数2~7の軽質炭化水素を含むものであり、原料中の炭素数2~7の軽質炭化水素の含有量は特に限定されないが、好ましくは20質量%以上、より好ましくは40質量%以上、特に好ましくは60~100質量%である。
<Method for producing monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms>
In the method for producing an aromatic hydrocarbon of the present invention, the above-described catalyst composition of the present invention is brought into contact with a raw material oil containing a hydrocarbon having 2 to 7 carbon atoms to produce an aromatic hydrocarbon.
Here, the raw material used in the present invention contains a light hydrocarbon having 2 to 7 carbon atoms, and the content of the light hydrocarbon having 2 to 7 carbon atoms in the raw material is not particularly limited, but is preferably 20% by mass. Above, more preferably 40% by mass or more, particularly preferably 60 to 100% by mass.
 また、炭素数2~7の軽質炭化水素としては特に限定されないが、直鎖状、分岐状、環状のいずれでもよく、また、パラフィン、オレフィンのいずれでも構わない。さらにはこれらの混合物でも構わない。このような炭化水素の具体例としては、炭素数2から7の直鎖状脂肪族飽和炭化水素(エタン、プロパン、ノルマルブタン、ノルマルペンタン、ノルマルヘキサン、ノルマルヘプタン)、分岐状脂肪族飽和炭化水素(イソブタン、2-メチルブタン、2,2-ジメチルブタン、2-メチルペンタン、3-メチルペンタン、2,3-ジメチルブタン、2-メチルヘキサン、3-メチルヘキサン、2,2-ジメチルペンタン、2,3-ジメチルペンタン、2,4-ジメチルペンタン、2,2,3-トリメチルブタン)、環状脂肪族飽和炭化水素(シクロプロパン、シクロブタン、シクロペンタン、1-メチルシクロペンタン、1,1-ジメチルシクロペンタン、1,2-ジメチルシクロペンタン、1,3-ジメチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン等)、直鎖状脂肪族不飽和炭化水素(エチレン、プロピレン、ノルマルブテン、ノルマルペンテン、ノルマルヘキセン、ノルマルヘプテン等)、分岐状脂肪族不飽和炭化水素(イソブテン、2-メチルブテン、2-メチルペンテン、3-メチルペンテン、2-メチルヘキセン、3-メチルヘキセン等)、環状脂肪族不飽和炭化水素(シクロペンテン、メチルシクロペンテン、シクロヘキセン、メチルシクロヘキセン等)、プロパンやブタンを主成分とする液化石油ガス、炭素数5~7のパラフィンを主成分とするナフサ留分中の沸点100℃以下の軽質留分(ライトナフサ)、流動接触分解装置(FCC)からのC4留分、エチレンクラッカーのラフィネート等が挙げられる。 The light hydrocarbon having 2 to 7 carbon atoms is not particularly limited, and may be linear, branched or cyclic, and may be paraffin or olefin. Furthermore, a mixture thereof may be used. Specific examples of such hydrocarbons include linear aliphatic saturated hydrocarbons having 2 to 7 carbon atoms (ethane, propane, normal butane, normal pentane, normal hexane, normal heptane), branched aliphatic saturated hydrocarbons. (Isobutane, 2-methylbutane, 2,2-dimethylbutane, 2-methylpentane, 3-methylpentane, 2,3-dimethylbutane, 2-methylhexane, 3-methylhexane, 2,2-dimethylpentane, 2, 3-dimethylpentane, 2,4-dimethylpentane, 2,2,3-trimethylbutane), cycloaliphatic saturated hydrocarbon (cyclopropane, cyclobutane, cyclopentane, 1-methylcyclopentane, 1,1-dimethylcyclopentane 1,2-dimethylcyclopentane, 1,3-dimethylcyclopentane, cyclohexa , Methylcyclohexane, etc.), linear aliphatic unsaturated hydrocarbons (ethylene, propylene, normal butene, normal pentene, normal hexene, normal heptene, etc.), branched aliphatic unsaturated hydrocarbons (isobutene, 2-methylbutene, 2- Liquefied petroleum mainly composed of methylpentene, 3-methylpentene, 2-methylhexene, 3-methylhexene, etc.), cycloaliphatic unsaturated hydrocarbons (cyclopentene, methylcyclopentene, cyclohexene, methylcyclohexene, etc.), propane and butane Gas, light fraction (light naphtha) with a boiling point of 100 ° C. or less in naphtha fraction mainly composed of paraffin having 5 to 7 carbon atoms, C4 fraction from fluid catalytic cracker (FCC), raffinate of ethylene cracker, etc. Is mentioned.
 次に、本発明の単環芳香族炭化水素の製造方法の工程は特に限定されないが、主に以下の5つの工程を有することが好ましい。
(a)転化反応工程
(b)反応層流出物の気液分離工程
(c)分離ガスからの水素分離工程
(d)分離液からの芳香族炭化水素の分離工程
(e)原料軽質族炭化水素とリサイクルガスとの混合工程
Next, although the process of the manufacturing method of the monocyclic aromatic hydrocarbon of this invention is not specifically limited, It is preferable to mainly have the following 5 processes.
(A) Conversion reaction step (b) Gas-liquid separation step of reaction bed effluent (c) Hydrogen separation step from separation gas (d) Aromatic hydrocarbon separation step from separation liquid (e) Raw material light hydrocarbon And mixing process of recycled gas
(転化反応工程)
 この工程には、少なくとも前述した触媒組成物を保持する反応層が直列にn個配列され、さらに当該反応層間に、反応層からの流出物の加熱手段として、加熱炉などが設けられている。原料の軽質炭化水素と、後述するリサイクルガスとの混合物を反応層に通過せしめて、その混合物を芳香族炭化水素へ転化させる工程である。この工程における好ましい反応条件は、反応層入口温度として350~650℃、水素分圧0.5MPa以下、原料のガス空間速度100~2000hr-1である。
(Conversion reaction process)
In this step, at least n reaction layers holding the above-described catalyst composition are arranged in series, and a heating furnace or the like is provided between the reaction layers as means for heating the effluent from the reaction layer. In this step, a mixture of a light hydrocarbon as a raw material and a recycle gas, which will be described later, is passed through a reaction layer to convert the mixture into an aromatic hydrocarbon. Preferred reaction conditions in this step are a reaction layer inlet temperature of 350 to 650 ° C., a hydrogen partial pressure of 0.5 MPa or less, and a raw material gas space velocity of 100 to 2000 hr −1 .
 本発明に係る転化反応工程における反応層入口温度は、一般的には350~650℃が好ましい範囲であるが、原料の軽質炭化水素がノルマルパラフィンを主成分とする場合には450~650℃、イソパラフィンを主成分とする場合には400~600℃、オレフィンを主成分とする場合には350~550℃がさらに好ましい温度範囲となる。 The reaction layer inlet temperature in the conversion reaction step according to the present invention is generally in the preferred range of 350 to 650 ° C., but 450 to 650 ° C. when the light hydrocarbon as the main component is normal paraffin. When isoparaffin is the main component, 400 to 600 ° C. and when olefin is the main component, 350 to 550 ° C. are more preferable temperature ranges.
 転化反応工程で用いられる反応器としては特に限定されないが、例えば、固定床型反応器、CCR型反応器、流動床型反応器などが挙げられる。固定床やCCR型反応器を用いる場合は、前述した触媒組成物を保持する反応層が少なくとも直列にn個(nは2以上の整数)配置され、さらに該反応層間に、または該反応層に、前段反応層からの流出物への加熱手段として、加熱炉などの加熱装置が設けることが好ましい。また、この直列に配置されたn個の反応層の内、1段目反応層の触媒量が全体の触媒量の30容量%以下、好ましくは1~30容量%、より好ましくは2~30容量%、さらに好ましくは2~28容量%になるように配置することが好ましい。直列に配置された反応層の数nが3以上の場合には、1段目反応層の触媒量が全体の触媒量の60/n容量%以下になるようにするのが好ましい。これにより、最終的に得られる芳香族収率が向上する。さらに反応層の数nは2以上であれば特に限定されないが、多過ぎても効果は変わらず、経済性が悪くなる。従って、nとしては2以上8以下が好ましく、より好ましくは3以上6以下が望ましい。 The reactor used in the conversion reaction step is not particularly limited, and examples thereof include a fixed bed reactor, a CCR reactor, and a fluidized bed reactor. When using a fixed bed or a CCR type reactor, at least n reaction layers holding the catalyst composition described above (n is an integer of 2 or more) are arranged in series, and further between the reaction layers or in the reaction layer, A heating device such as a heating furnace is preferably provided as means for heating the effluent from the previous reaction layer. Of the n reaction layers arranged in series, the catalyst amount in the first-stage reaction layer is 30% by volume or less, preferably 1-30% by volume, more preferably 2-30% by volume of the total catalyst amount. %, More preferably 2 to 28% by volume. When the number n of reaction layers arranged in series is 3 or more, the amount of catalyst in the first-stage reaction layer is preferably 60 / n volume% or less of the total amount of catalyst. Thereby, the aromatic yield finally obtained improves. Further, the number n of the reaction layers is not particularly limited as long as it is 2 or more. However, if the number is too large, the effect is not changed and the economical efficiency is deteriorated. Accordingly, n is preferably 2 or more and 8 or less, more preferably 3 or more and 6 or less.
 また、本発明に係る転化反応工程においては、一定の反応層入口温度で運転することもできるし、所定の芳香族収率が得られるように、反応層入口温度を連続的又は段階的に上昇させて運転することもできる。芳香族収率が所定範囲を下回ったり、反応層入口温度が所定温度範囲を超えるようになると、反応器を新しい触媒が充填された反応器又は再生された触媒が充填された反応器に切り替えて反応を継続する。触媒の再生は空気、窒素、水素又は窒素/水素混合ガス等の気流中で200~800℃好ましくは350~700で加熱処理することにより行うことができる。本発明の芳香族炭化水素の製造方法は、好ましくは、前記触媒組成物を保持した反応層を含む、2系列の固定床反応装置を用いて行われる。この場合、各系列の反応装置は直列に並んだ複数の反応層から成り立っている。軽質炭化水素を含有する原料を一方の系列の反応器に導入して反応を進めながら、他方の系列の反応器中の触媒を再生処理に付する。これらの2系列の反応器で交互に1~10日間隔で反応/再生を行うことにより、例えば1年間の連続運転を行うことができる。また、サイクリック運転のように、反応に使用されている系列の反応器の一部又は全部を他系列と切り替えて反応を継続して行なうことも可能である。そして各1~10日の反応の1サイクルごとに反応温度を5~20℃程度連続又は段階的に上昇させて芳香族収率を40~75%重量%の所定範囲に保持することが好ましい。 Further, in the conversion reaction step according to the present invention, it is possible to operate at a constant reaction layer inlet temperature, and to increase the reaction layer inlet temperature continuously or stepwise so as to obtain a predetermined aromatic yield. You can also drive. When the aromatic yield falls below the specified range, or when the reaction bed inlet temperature exceeds the specified temperature range, the reactor is switched to a reactor filled with new catalyst or a reactor filled with regenerated catalyst. Continue the reaction. The regeneration of the catalyst can be performed by heat treatment at 200 to 800 ° C., preferably 350 to 700 in an air stream such as air, nitrogen, hydrogen, or a nitrogen / hydrogen mixed gas. The method for producing aromatic hydrocarbons of the present invention is preferably carried out using two series of fixed bed reactors including a reaction layer holding the catalyst composition. In this case, each series of reaction apparatuses is composed of a plurality of reaction layers arranged in series. While the raw material containing light hydrocarbons is introduced into one series of reactors and the reaction proceeds, the catalyst in the other series of reactors is subjected to a regeneration treatment. By performing the reaction / regeneration alternately at intervals of 1 to 10 days in these two series of reactors, for example, continuous operation for one year can be performed. Further, like the cyclic operation, it is possible to continuously perform the reaction by switching a part or all of the series of reactors used for the reaction to another series. It is preferable to keep the aromatic yield within a predetermined range of 40 to 75% by weight by continuously or stepwise increasing the reaction temperature for each cycle of the reaction for 1 to 10 days.
 なお、前記芳香族収率Rは、次の式(1)で表わされる。
R=A/B×100(%)  (1)
A:転化反応生成物中の炭素数6~8の芳香族炭化水素の質量
B:転化した全反応生成物と未反応の炭化水素原料の質量
The aromatic yield R is represented by the following formula (1).
R = A / B × 100 (%) (1)
A: Mass of C6-C8 aromatic hydrocarbon in the conversion reaction product B: Mass of all converted reaction product and unreacted hydrocarbon raw material
 脂肪族及び/又は脂環族炭化水素が芳香族炭化水素へ転化する際には、脱水素を伴う反応が進行するので、反応条件下では水素を添加しなくても反応に見合う水素分圧を有することとなる。意図的な水素の添加は、コークの堆積を抑制し、再生頻度を減らす利点があるが、芳香族の収率は、水素分圧の増加により急激に低下するため必ずしも有利ではない。それ故、水素分圧は0.5MPa以下に抑えることが好ましい。
 本発明に係る転化反応工程には、後続の分離工程からリサイクルガスとして循環されるメタン及び/又はエタンを含む軽質ガスを存在させることが望ましい。このメタン及び/又はエタンを含む軽質ガスの存在下に転化反応を行うことで、触媒上へのコーク析出を抑制し、長時間にわたって芳香族収率を高く維持することができる。反応系へ循環される全軽質ガス(リサイクルガス)の循環量は、炭化水素供給原料1質量部当り、0.1~10質量部、好ましくは0.5~3質量部にすることが望ましい。
When aliphatic and / or alicyclic hydrocarbons are converted to aromatic hydrocarbons, a reaction involving dehydrogenation proceeds. Therefore, under the reaction conditions, a hydrogen partial pressure suitable for the reaction is set without adding hydrogen. Will have. Intentional addition of hydrogen has the advantage of suppressing coke deposition and reducing the frequency of regeneration, but the yield of aromatics is not necessarily advantageous because it decreases rapidly with increasing hydrogen partial pressure. Therefore, the hydrogen partial pressure is preferably suppressed to 0.5 MPa or less.
In the conversion reaction step according to the present invention, it is desirable to have a light gas containing methane and / or ethane circulated as a recycle gas from the subsequent separation step. By performing the conversion reaction in the presence of the light gas containing methane and / or ethane, coke deposition on the catalyst can be suppressed, and the aromatic yield can be kept high over a long period of time. The total amount of light gas (recycle gas) circulated to the reaction system is desirably 0.1 to 10 parts by mass, preferably 0.5 to 3 parts by mass, per 1 part by mass of the hydrocarbon feedstock.
(反応層流出物の気液分離工程)
 この工程は、前記転化反応工程からの流出物を、1個又は2個以上の気液分離器からなる気液分離帯域に導入し、比較的高圧下で気液分離し、芳香族炭化水素を主成分として含む液体成分(高圧分離液)と、水素、メタン、エタン、プロパン、ブタン等の軽質ガス(高圧分離ガス)とに分離する工程である。分離条件としては、温度は通常10~50℃、好ましくは20~40℃であり、圧力は通常0.5~8MPa、好ましくは1~3MPaである。反応層流出物は、この気液分離工程に導入される以前に、低温の原料炭化水素と間接熱交換させて冷却し、また必要に応じ、気液分離工程及び軽質ガスからの水素を分離する工程の負荷を軽減するために、軽質ガスの一部を分離することができる。
(Gas-liquid separation process of reaction bed effluent)
In this step, the effluent from the conversion reaction step is introduced into a gas-liquid separation zone composed of one or more gas-liquid separators, and gas-liquid separation is performed under relatively high pressure, and aromatic hydrocarbons are removed. This is a step of separation into a liquid component (high pressure separation liquid) contained as a main component and a light gas (high pressure separation gas) such as hydrogen, methane, ethane, propane, or butane. As separation conditions, the temperature is usually 10 to 50 ° C., preferably 20 to 40 ° C., and the pressure is usually 0.5 to 8 MPa, preferably 1 to 3 MPa. The reaction bed effluent is cooled by indirect heat exchange with low-temperature raw hydrocarbons before being introduced into the gas-liquid separation process, and, if necessary, hydrogen from the gas-liquid separation process and light gas is separated. In order to reduce the process load, a part of the light gas can be separated.
(分離ガスからの水素分離工程)
 この工程は、前記気液分離工程で分離された高圧分離ガスから水素を選択的に分離し、メタン及び/又はエタンを含むリサイクルガスを得る工程である。この場合の水素分離方法としては、従来公知の方法、例えば、膜分離方法や深冷分離方法等が用いられる。水素の選択的分離効率の点からは膜分離方法の使用が好ましいが、リサイクルガスとして深冷分離方法からのオフガスを利用する場合は、膜分離方法からのオフガスと比べて未反応プロパンを最大限に反応させることができるので、芳香族炭化水素収率で1~3質量%高くできる利点がある。どちらの方法を採用するかは、経済的見地から判断される。膜分離装置としては、例えば、分離膜として、ポリイミドや、ポリスルホン、ポリスルホンとポリジメチルシロキサンとのブレンド体を用いたもの等が市販されている。この工程で得られたリサイクルガスの一部は、全循環ガス量を一定範囲に保持するために、系外へ排出される。高純度の水素を回収するために、好ましくは回収系として膜分離装置又はPSA(吸・脱着分離装置)を膜分離装置の後段に設置する。後段の装置の選択は、経済的見地から決められる。
(Hydrogen separation process from separated gas)
This step is a step of selectively separating hydrogen from the high-pressure separation gas separated in the gas-liquid separation step to obtain a recycle gas containing methane and / or ethane. As a hydrogen separation method in this case, a conventionally known method such as a membrane separation method or a cryogenic separation method is used. From the viewpoint of selective hydrogen separation efficiency, it is preferable to use a membrane separation method. However, when off gas from a cryogenic separation method is used as a recycle gas, unreacted propane is maximized compared to off gas from the membrane separation method. Therefore, there is an advantage that the aromatic hydrocarbon yield can be increased by 1 to 3% by mass. Which method to use is judged from an economic point of view. As the membrane separation device, for example, a device using polyimide, polysulfone, a blend of polysulfone and polydimethylsiloxane as a separation membrane is commercially available. Part of the recycled gas obtained in this step is discharged out of the system in order to keep the total amount of circulating gas within a certain range. In order to recover high-purity hydrogen, a membrane separation device or a PSA (absorption / desorption separation device) is preferably installed as a recovery system in the subsequent stage of the membrane separation device. The selection of the latter device is determined from an economic point of view.
(分離液からの芳香族炭化水素の分離工程)
 この工程は、前記気液分離工程で得られた高圧分離液から芳香族炭化水素と低沸点炭化水素ガスとを分離する工程であり、その装置としてはスタビライザー(蒸留塔)が用いられる。塔頂留分として分離された低沸点炭化水素ガスは、C3~C4の炭化水素からなるもので、リサイクルガスとして用いられる。
(Separation process of aromatic hydrocarbons from the separation liquid)
This step is a step of separating aromatic hydrocarbon and low boiling point hydrocarbon gas from the high-pressure separation liquid obtained in the gas-liquid separation step, and a stabilizer (distillation tower) is used as the apparatus. The low-boiling point hydrocarbon gas separated as the top fraction is composed of C3 to C4 hydrocarbons and is used as a recycle gas.
(原料軽質炭化水素とリサイクルガスとの混合工程)
 この工程は、原料軽質炭化水素に対して、前記水素ガス分離工程で得られたメタン及び/又はエタンを含むリサイクルガスおよび前記芳香族炭化水素分離工程で分離された低沸点炭化水素ガスを混合する工程であり、この混合は配管内で行うことができる。この混合物は前記転化反応工程に導入される。原料軽質族炭化水素1質量部当りの前記リサイクルガスおよび低沸点炭化水素ガスの混合割合は、0.1~10質量部、好ましくは0.5~3質量部である。このように、メタン及び/又はエタンをリサイクルガスとして使用することにより、次のような効果が得られる。すなわち、脱水素環化による芳香族化反応は吸熱反応であり、その為に触媒層温度は低下し芳香族化反応に不利となる。メタン及び/又はエタンは、この反応条件下では芳香族化しないので不活性ガスと見なせる。メタン及び/又はエタンを加熱することにより、これが熱供給媒体として働き、触媒層の温度低下を抑制し、芳香族化反応を有利に進め、芳香族炭化水素収率を向上できる。また、リサイクリングにより原料の転化反応で生成する水素の分圧を低下させ、芳香族化反応を有利に進めることができ、その結果、芳香族炭化水素収率を向上できる。更に、反応層でのガス速度が増大するので(GHSVが大きくなる)、反応基質と触媒活性点との接触時間が短くなり、コーク状物質を与える過剰反応が抑制できる。その結果、反応経過時間と共に起こる活性低下を抑制でき、芳香族炭化水素収率を高い水準で維持できる。商業装置においては、リサイクルガス比は経済的見地から決められなければならない。
(Mixing process of raw light hydrocarbons and recycled gas)
In this step, the raw material light hydrocarbon is mixed with the recycle gas containing methane and / or ethane obtained in the hydrogen gas separation step and the low boiling point hydrocarbon gas separated in the aromatic hydrocarbon separation step. It is a process, and this mixing can be performed in a pipe. This mixture is introduced into the conversion reaction step. The mixing ratio of the recycle gas and the low boiling point hydrocarbon gas per 1 part by mass of the raw light hydrocarbon is 0.1 to 10 parts by mass, preferably 0.5 to 3 parts by mass. Thus, the following effects are acquired by using methane and / or ethane as recycle gas. That is, the aromatization reaction by dehydrocyclization is an endothermic reaction, and therefore the catalyst layer temperature is lowered, which is disadvantageous for the aromatization reaction. Methane and / or ethane is considered an inert gas because it does not aromatize under the reaction conditions. By heating methane and / or ethane, this acts as a heat supply medium, suppresses the temperature drop of the catalyst layer, favorably advances the aromatization reaction, and improves the aromatic hydrocarbon yield. Moreover, the partial pressure of the hydrogen produced | generated by the conversion reaction of a raw material can be reduced by recycling, and an aromatization reaction can be advanced advantageously, As a result, an aromatic hydrocarbon yield can be improved. Furthermore, since the gas velocity in the reaction layer is increased (GHSV is increased), the contact time between the reaction substrate and the catalyst active site is shortened, and the excessive reaction that gives the coke-like substance can be suppressed. As a result, it is possible to suppress the decrease in activity that occurs with the elapsed time of the reaction and maintain the aromatic hydrocarbon yield at a high level. In commercial equipment, the recycle gas ratio must be determined from an economic point of view.
 以下、実施例により本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to the following examples.
≪合成例≫
(実施例1)
 東ソー製のZSM-5(アンモニウム型、Si/Al=35 mol/mol)5gを用いて、空気流通下、500℃で5時間焼成して、ZSM-5(プロトン型)を得た。続いて、0.5質量%(ZSM-5の総質量を100質量%とした値)のガリウムがイオン交換(または含浸担持)されるように、乾燥窒素雰囲気下にて塩化ガリウム0.06gと前記ZSM-5(プロトン型)4.8gをめのう乳鉢で10分間混合し、その後、乾燥窒素雰囲気下にて150℃で12時間乾燥させ、さらに500℃で12時間熱処理を行うことでガリウム含有ZSM-5を得た。39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体とし、ガリウムを含む結晶性アルミノシリケート1を得た。この結晶性アルミノシリケート1を、実施例1の炭素数6~8の単環芳香族炭化水素製造用触媒組成物として用いた。
≪Synthesis example≫
(Example 1)
Using ZSM-5 (ammonium type, Si / Al = 35 mol / mol) 5 g made by Tosoh, it was calcined at 500 ° C. for 5 hours under air flow to obtain ZSM-5 (proton type). Subsequently, 0.06 g of gallium chloride was added in a dry nitrogen atmosphere so that 0.5% by mass (value in which the total mass of ZSM-5 was 100% by mass) was ion-exchanged (or impregnated). The gallium-containing ZSM is obtained by mixing 4.8 g of the ZSM-5 (proton type) in an agate mortar for 10 minutes, then drying at 150 ° C. for 12 hours in a dry nitrogen atmosphere, and further heat treating at 500 ° C. for 12 hours -5 was obtained. Tableting was performed by applying a pressure of 39.2 MPa (400 kgf), coarsely pulverized to a size of 20 to 28 mesh, and granulated to obtain crystalline aluminosilicate 1 containing gallium. This crystalline aluminosilicate 1 was used as the catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms of Example 1.
(実施例2)
 1.0質量%(結晶性アルミノシリケート総質量を100質量%とした値)のガリウムがイオン交換(または含浸担持)されるように塩化ガリウム0.12gと前記ZSM-5(プロトン型)4.8gとしたほかは実施例1と同様に調製し、ガリウムを含む結晶性アルミノシリケート2を得た。この結晶性アルミノシリケート2を、実施例2の炭素数6~8の単環芳香族炭化水素製造用触媒組成物として用いた。
(Example 2)
3. 0.12 g of gallium chloride and the above ZSM-5 (proton type) so that 1.0% by mass (value with the total mass of crystalline aluminosilicate being 100% by mass) is ion-exchanged (or impregnated). A crystalline aluminosilicate 2 containing gallium was prepared in the same manner as in Example 1 except that the amount was 8 g. This crystalline aluminosilicate 2 was used as the catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms of Example 2.
(実施例3)
 東ソー製のZSM-5(アンモニウム型、Si/Al=35 mol/mol)の代わりに東ソー製のアンモニウム型結晶性アルミノシリケート(Si/Al=100 mol/mol)を用いたほかは実施例1と同様に調製し、ガリウムを含む結晶性アルミノシリケート3を得た。この結晶性アルミノシリケート3を、実施例3の炭素数6~8の単環芳香族炭化水素製造用触媒組成物として用いた。
(Example 3)
Example 1 except that Tosoh ammonium type crystalline aluminosilicate (Si / Al = 100 mol / mol) was used instead of Tosoh ZSM-5 (ammonium type, Si / Al = 35 mol / mol). In the same manner, crystalline aluminosilicate 3 containing gallium was obtained. This crystalline aluminosilicate 3 was used as the catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms of Example 3.
(実施例4)
 東ソー製のZSM-5(アンモニウム型、Si/Al=35 mol/mol)の代わりに東ソー製のアンモニウム型結晶性アルミノシリケート(Si/Al=100 mol/mol)を用いたほかは実施例2と同様に調製し、ガリウムを含む結晶性アルミノシリケート4を得た。この結晶性アルミノシリケート4を、実施例4の炭素数6~8の単環芳香族炭化水素製造用触媒組成物として用いた。
Example 4
Example 2 was used except that Tosoh ammonium type crystalline aluminosilicate (Si / Al = 100 mol / mol) was used instead of Tosoh ZSM-5 (ammonium type, Si / Al = 35 mol / mol). In the same manner, crystalline aluminosilicate 4 containing gallium was obtained. This crystalline aluminosilicate 4 was used as the catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms of Example 4.
(実施例5)
 2.0質量%(結晶性アルミノシリケート総質量を100質量%とした値)のガリウムがイオン交換(または含浸担持)されるように塩化ガリウム0.25gと前記ZSM-5(プロトン型)4.8gとしたほかは実施例3と同様に調製し、ガリウムを含む結晶性アルミノシリケート5を得た。この結晶性アルミノシリケート5を、実施例5の炭素数6~8の単環芳香族炭化水素製造用触媒組成物として用いた。
(Example 5)
3. 0.25 g of gallium chloride and ZSM-5 (proton type) so that 2.0% by mass (a value obtained when the total mass of crystalline aluminosilicate is 100% by mass) is ion-exchanged (or impregnated). A crystalline aluminosilicate 5 containing gallium was prepared in the same manner as in Example 3 except that the amount was 8 g. This crystalline aluminosilicate 5 was used as the catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms of Example 5.
(実施例6)
 東ソー製のZSM-5(アンモニウム型、Si/Al=35 mol/mol)の代わりに東ソー製のアンモニウム型結晶性アルミノシリケート(Si/Al=200 mol/mol)を用いたほかは実施例1と同様に調製し、ガリウムを含む結晶性アルミノシリケート6を得た。この結晶性アルミノシリケート6を、実施例6の炭素数6~8の単環芳香族炭化水素製造用触媒組成物として用いた。
(Example 6)
Example 1 except that Tosoh ammonium type crystalline aluminosilicate (Si / Al = 200 mol / mol) was used instead of Tosoh ZSM-5 (ammonium type, Si / Al = 35 mol / mol). In the same manner, crystalline aluminosilicate 6 containing gallium was obtained. This crystalline aluminosilicate 6 was used as the catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms of Example 6.
(実施例7)
 東ソー製のZSM-5(アンモニウム型、Si/Al=35 mol/mol)の代わりに東ソー製のアンモニウム型結晶性アルミノシリケート(Si/Al=200 mol/mol)を用いたほかは実施例2と同様に調製し、ガリウムを含む結晶性アルミノシリケート7を得た。この結晶性アルミノシリケート7を、実施例7の炭素数6~8の単環芳香族炭化水素製造用触媒組成物として用いた。
(Example 7)
Example 2 except that Tosoh ammonium type crystalline aluminosilicate (Si / Al = 200 mol / mol) was used instead of Tosoh ZSM-5 (ammonium type, Si / Al = 35 mol / mol). In the same manner, crystalline aluminosilicate 7 containing gallium was obtained. This crystalline aluminosilicate 7 was used as the catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms of Example 7.
(比較例1)
 アンモニウム型結晶性アルミノシリケート(Si/Al=35 mol/mol)5gを、2.0質量%(結晶性アルミノシリケート総質量を100質量%とした値)のガリウムがイオン交換(または含浸担持)されるように、蒸留水70mlに硝酸ガリウム0.57gを溶解した水溶液中で懸濁し、80℃で24時間撹拌した。その後、空気流通下にて、500℃で3時間焼成を行うことでガリウム含有結晶性アルミノシリケートを得た。39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体とし、ガリウムを含む結晶性アルミノシリケート8を得た。
この結晶性アルミノシリケート8を、比較例1の炭素数6~8の単環芳香族炭化水素製造用触媒組成物として用いた。
(Comparative Example 1)
5 g of ammonium-type crystalline aluminosilicate (Si / Al = 35 mol / mol) was ion-exchanged (or impregnated) with 2.0% by mass (value in which the total mass of crystalline aluminosilicate was 100% by mass). As such, it was suspended in an aqueous solution in which 0.57 g of gallium nitrate was dissolved in 70 ml of distilled water and stirred at 80 ° C. for 24 hours. Then, gallium containing crystalline aluminosilicate was obtained by baking at 500 degreeC for 3 hours under air circulation. Tableting was performed by applying a pressure of 39.2 MPa (400 kgf), coarsely pulverized to a size of 20 to 28 mesh, and granulated to obtain crystalline aluminosilicate 8 containing gallium.
This crystalline aluminosilicate 8 was used as the catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms of Comparative Example 1.
≪EXAFS測定≫
 上記実施例1~7、比較例1のそれぞれの炭素数6~8の単環芳香族炭化水素製造用触媒組成物について、下記の測定条件でガリウムのK吸収端を測定した。
 得られたEXAFSスペクトルを下記のデータ解析(フーリエ変換)プログラムを用いてフーリエ変換し、動径分布関数を得た。
 実施例4、比較例1およびGaの動径分布関数を図2に示す。
 この動径分布関数より、Ga-O結合に帰属されるピーク(1.5±0.02Åの範囲にあるピーク)のピーク強度Iを求め、Ga-Ga結合に帰属されるピーク(2.8±0.02Åの範囲にあるピーク)のピーク強度IIを求めた。この結果を表2に示す。
≪EXAFS measurement≫
For the catalyst compositions for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms of Examples 1 to 7 and Comparative Example 1, the K absorption edge of gallium was measured under the following measurement conditions.
The obtained EXAFS spectrum was subjected to Fourier transform using the following data analysis (Fourier transform) program to obtain a radial distribution function.
The radial distribution function of Example 4, Comparative Example 1, and Ga 2 O 3 is shown in FIG.
From this radial distribution function, the peak intensity I of the peak attributed to the Ga—O bond (peak in the range of 1.5 ± 0.02Å) is obtained, and the peak attributed to the Ga—Ga bond (2.8). Peak intensity II of a peak in the range of ± 0.02 mm was determined. The results are shown in Table 2.
〔測定条件〕
X線源:連続X線
分光結晶:Si(111)
ビームサイズ:1mm×5mm
検出器:電離箱
測定雰囲気:大気
測定時間:5分
Dwell time:1sec
測定範囲:Ga K吸収端(10000~10500eV)
〔Measurement condition〕
X-ray source: Continuous X-ray spectroscopic crystal: Si (111)
Beam size: 1mm x 5mm
Detector: Ionization chamber Measurement atmosphere: Atmospheric measurement time: 5 minutes Dwell time: 1 sec
Measurement range: Ga K absorption edge (10000 to 10500 eV)
〔データ解析〕
データ解析(フーリエ変換)プログラム:REX2000(リガク製)
[Data analysis]
Data analysis (Fourier transform) program: REX2000 (manufactured by Rigaku)
≪BTX収率≫
 実施例1~7、比較例1の触媒組成物をそれぞれ5mL反応器に充填した流通式反応装置を用い、反応温度:550℃、反応圧力:0.1MPaGの条件で、下記表1の性状を有する原料油を触媒組成物と接触、反応させた。その際、原料油と触媒との接触時間が6.4秒となるように希釈剤として窒素を導入した。
  この条件にて30分間反応させて、炭素数6~8の単環芳香族炭化水素を製造し、反応装置に直結されたFIDガスクロマトグラフにより生成物の組成分析を行って、炭素数6~8の単環芳香族炭化水素の収率を測定した。測定結果を表2に示す。
≪BTX yield≫
Using the flow reactors in which the catalyst compositions of Examples 1 to 7 and Comparative Example 1 were filled in 5 mL reactors, the properties shown in Table 1 below were obtained under the conditions of reaction temperature: 550 ° C. and reaction pressure: 0.1 MPaG. The raw material oil was brought into contact with and reacted with the catalyst composition. At that time, nitrogen was introduced as a diluent so that the contact time between the raw material oil and the catalyst was 6.4 seconds.
The reaction is carried out for 30 minutes under these conditions to produce a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms, and the composition of the product is analyzed by an FID gas chromatograph directly connected to the reaction apparatus to obtain 6 to 8 carbon atoms. The yield of monocyclic aromatic hydrocarbons was measured. The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表2に示したとおり、本発明を適用した触媒組成物用いた実施例1~7は、本発明を適用しない比較例1の触媒組成物を用いた場合に比べてBTX収率が高かった。 As shown in Table 2 above, Examples 1 to 7 using the catalyst composition to which the present invention was applied had higher BTX yield than the case of using the catalyst composition of Comparative Example 1 to which the present invention was not applied. .

Claims (6)

  1.  炭素数6~8の単環芳香族炭化水素製造の製造に用いられる触媒組成物であって、
     ガリウムを含む結晶性アルミノシリケートを含有し、
     前記触媒組成物についての、ガリウムのK吸収端の広域X線吸収微細構造(EXAFS)スペクトルから得られる動径分布関数において、Ga-Oに起因するピークの強度IとGa-Gaに起因するピーク強度IIとの比(I/II)が、0.25より大きいことを特徴とする、炭素数6~8の単環芳香族炭化水素製造用触媒組成物。
    A catalyst composition used for the production of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms,
    Containing crystalline aluminosilicate containing gallium,
    In the radial distribution function obtained from the broad X-ray absorption fine structure (EXAFS) spectrum of the K absorption edge of gallium for the catalyst composition, the peak intensity I due to Ga—O and the peak due to Ga—Ga A catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms, wherein the ratio (I / II) to strength II is greater than 0.25.
  2.  前記結晶性アルミノシリケートが、ペンタシル型ゼオライトである、請求項1に記載の炭素数6~8の単環芳香族炭化水素製造用触媒組成物。 The catalyst composition for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms according to claim 1, wherein the crystalline aluminosilicate is pentasil-type zeolite.
  3.  前記結晶性アルミノシリケートが、MFI型ゼオライトである、請求項1又は2に記載の炭素数6~8の単環芳香族炭化水素製造用触媒組成物。 The catalyst composition for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms according to claim 1 or 2, wherein the crystalline aluminosilicate is MFI type zeolite.
  4.  触媒組成物中のガリウムの含有量が、0.02質量部以上3.0質量部以下である、請求項1~3のいずれか1項に記載の炭素数6~8の単環芳香族炭化水素製造用触媒組成物。 The monocyclic aromatic carbon atom having 6 to 8 carbon atoms according to any one of claims 1 to 3, wherein the content of gallium in the catalyst composition is 0.02 parts by mass or more and 3.0 parts by mass or less. Catalyst composition for hydrogen production.
  5.  ガリウムと、アルミニウムのモル比(原子比、Ga/Al)が、0.1以上2.0以下である請求項1~4のいずれか1項に記載の炭素数6~8の単環芳香族炭化水素製造用触媒組成物。 The monocyclic aromatic having 6 to 8 carbon atoms according to any one of claims 1 to 4, wherein a molar ratio of gallium to aluminum (atomic ratio, Ga / Al) is 0.1 or more and 2.0 or less. Catalyst composition for hydrocarbon production.
  6.  原料油を、請求項1~5のいずれか一項に記載の炭素数6~8の単環芳香族炭化水素製造用触媒組成物に接触させることを特徴とする炭素数6~8の単環芳香族炭化水素の製造方法。 A monocyclic ring having 6 to 8 carbon atoms, wherein the feedstock oil is brought into contact with the catalyst composition for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms according to any one of claims 1 to 5. A method for producing aromatic hydrocarbons.
PCT/JP2017/030162 2016-08-26 2017-08-23 Catalyst composition for producing c6-8 monocyclic aromatic hydrocarbon and method for producing c6-8 monocyclic aromatic hydrocarbon WO2018038169A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-165551 2016-08-26
JP2016165551A JP2018030112A (en) 2016-08-26 2016-08-26 Catalyst composition for producing monocyclic aromatic hydrocarbon having 6-8 carbon atoms and method for producing monocyclic aromatic hydrocarbon having 6-8 carbon atoms

Publications (1)

Publication Number Publication Date
WO2018038169A1 true WO2018038169A1 (en) 2018-03-01

Family

ID=61244980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030162 WO2018038169A1 (en) 2016-08-26 2017-08-23 Catalyst composition for producing c6-8 monocyclic aromatic hydrocarbon and method for producing c6-8 monocyclic aromatic hydrocarbon

Country Status (2)

Country Link
JP (1) JP2018030112A (en)
WO (1) WO2018038169A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037521A (en) * 2018-09-03 2020-03-12 Jxtgエネルギー株式会社 Method for producing c6-8 monocyclic aromatic hydrocarbon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210053894A (en) 2018-09-03 2021-05-12 에네오스 가부시키가이샤 Method for producing xylene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062305A (en) * 1999-06-24 2001-03-13 Eni Spa Catalyst composition for aromatization of hydrocarbon
JP2009233601A (en) * 2008-03-27 2009-10-15 Nippon Oil Corp Catalyst composition and method of manufacturing aromatic hydrocarbon
WO2014129585A1 (en) * 2013-02-21 2014-08-28 Jx日鉱日石エネルギー株式会社 Method for producing single-ring aromatic hydrocarbons

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062305A (en) * 1999-06-24 2001-03-13 Eni Spa Catalyst composition for aromatization of hydrocarbon
JP2009233601A (en) * 2008-03-27 2009-10-15 Nippon Oil Corp Catalyst composition and method of manufacturing aromatic hydrocarbon
WO2014129585A1 (en) * 2013-02-21 2014-08-28 Jx日鉱日石エネルギー株式会社 Method for producing single-ring aromatic hydrocarbons

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G L PRICE ET AL.: "On the Mechanism of Propane Dehydrocyclization over Cation-Containing, Proton-Poor MFI Zeolite", JOURNAL OF CATALYSIS, vol. 173, no. 1, 1 January 1998 (1998-01-01), pages 17 - 27, XP004465441 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037521A (en) * 2018-09-03 2020-03-12 Jxtgエネルギー株式会社 Method for producing c6-8 monocyclic aromatic hydrocarbon
WO2020050199A1 (en) * 2018-09-03 2020-03-12 Jxtgエネルギー株式会社 Method for producing monocyclic aromatic hydrocarbon having 6-8 carbon atoms
US11420913B2 (en) 2018-09-03 2022-08-23 Eneos Corporation Method for producing monocyclic aromatic hydrocarbon having 6-8 carbon atoms
JP7239100B2 (en) 2018-09-03 2023-03-14 Eneos株式会社 Method for producing monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms

Also Published As

Publication number Publication date
JP2018030112A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
US9144790B2 (en) Process for the conversion of ethane to aromatic hydrocarbons
US8946107B2 (en) Process for the conversion of ethane to aromatic hydrocarbons
EP2073930B1 (en) Bimetallic alkylation catalysts
US20080255398A1 (en) Aromatization of alkanes using a germanium-zeolite catalyst
US8049051B2 (en) Process for production of aromatic hydrocarbons
JPH0558919A (en) Production of aromatic hydrocarbon
WO2018038169A1 (en) Catalyst composition for producing c6-8 monocyclic aromatic hydrocarbon and method for producing c6-8 monocyclic aromatic hydrocarbon
WO2004076596A1 (en) Process of catalytic cracking of hydrocarbon
JP7362368B2 (en) How to produce xylene
CN108602732A (en) Cyclic annular C5The production of compound
JP2008038032A (en) Method for producing aromatic hydrocarbon
JP5046583B2 (en) Process for producing aromatic hydrocarbons
JP5222602B2 (en) Catalyst composition and method for producing aromatic hydrocarbon
JP7239100B2 (en) Method for producing monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms
JP5340620B2 (en) Catalyst composition and method for producing aromatic hydrocarbon
CN112694912B (en) Naphtha modification method
EP4355483A1 (en) Catalyst and process for conversion of c2-c5 alkanes to gasoline blending components
JPH06299166A (en) Method for converting light hydrocarbon
JPH06192136A (en) Method for catalytic cracking of light hydrocarbon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843647

Country of ref document: EP

Kind code of ref document: A1