WO2018038093A1 - Liquid crystal polyester composition and resin molded article using same - Google Patents

Liquid crystal polyester composition and resin molded article using same Download PDF

Info

Publication number
WO2018038093A1
WO2018038093A1 PCT/JP2017/029903 JP2017029903W WO2018038093A1 WO 2018038093 A1 WO2018038093 A1 WO 2018038093A1 JP 2017029903 W JP2017029903 W JP 2017029903W WO 2018038093 A1 WO2018038093 A1 WO 2018038093A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polyester
polyester composition
filler
mass
Prior art date
Application number
PCT/JP2017/029903
Other languages
French (fr)
Japanese (ja)
Inventor
泰之 藤田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201780050725.3A priority Critical patent/CN109661433B/en
Publication of WO2018038093A1 publication Critical patent/WO2018038093A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a liquid crystal polyester composition and a resin molded body using the same.
  • a CPU socket is known as an electronic component connector.
  • the CPU socket refers to a connector for mounting a CPU (Central Processing Unit) on the electronic circuit board in a detachable form.
  • the CPU socket can be formed of, for example, a resin excellent in fluidity and heat resistance. It is known that liquid crystal polyester is adopted as such a resin. However, when molding using these resins, cracks are likely to occur, and the occurrence of such cracks may be a problem.
  • the CPU socket has a large number of pin insertion holes corresponding to each connection pin of the CPU, and forms a lattice.
  • a CPU having about 1000 to 2000 connection pins is known as a desktop product, and a CPU having more than 3000 connection pins is also known as a server product.
  • the CPU connection pins are arranged in a matrix, for example, on the bottom surface of the CPU.
  • the pitch of these connection pins tends to decrease as the number of connection pins increases.
  • the pitch of the pin insertion holes also decreases, and the width of the wall separating the pin insertion holes becomes narrower. For this reason, in a CPU socket, as the number of pin insertion holes increases, cracks are likely to occur around the pin insertion holes after reflow heating, and the occurrence of such cracks may be a problem.
  • CPU sockets tend to be larger in order to increase the number of connection pins.
  • a large-sized CPU socket for example, a CPU socket for a server having a piece length exceeding 70 mm is known.
  • warping after reflow heating due to residual stress may be a problem.
  • warping of a large CPU socket may be a problem when molding using the above-described resin.
  • Patent Document 1 A composition capable of reducing the occurrence of cracks and warpage in a CPU socket is known (for example, Patent Document 1).
  • Patent Document 1 as a connector forming material, a liquid crystalline polymer, a plate-like inorganic filler, and a fibrous filler having a weight average fiber length of 250 to 600 ⁇ m (hereinafter referred to as “long fiber filler”). It is disclosed to use a composite resin composition containing the same. It has been shown that by adding a long fiber filler, a planar connector excellent in performance such as moldability, flatness (flatness), warpage deformation, and heat resistance can be obtained.
  • This invention is made in view of such a situation, Comprising: It aims at providing the liquid crystal polyester composition which can shape
  • the present inventors have studied the composition of the connector forming material and have completed the present invention.
  • One embodiment of the present invention provides a liquid crystal polyester composition
  • a liquid crystal polyester composition comprising a hollow filler and a fibrous filler having a number average fiber length of 20 ⁇ m or more and less than 190 ⁇ m.
  • the hollow filler preferably has a number average particle diameter of 5 ⁇ m or more and 100 ⁇ m or less.
  • the fibrous filler preferably has a number average fiber diameter of 5 ⁇ m to 20 ⁇ m.
  • the liquid crystal polyester preferably contains the following structural units in an amount of 30 mol% or more based on the total repeating units of the liquid crystal polyester.
  • the volume specific heat at 100 ° C. is preferably at most 1.0 J / cm 3 K or more 3.0J / cm 3 K.
  • One aspect of the present invention provides a resin molded body formed of the above liquid crystal polyester composition.
  • the resin molded body is preferably a connector.
  • a liquid crystal polyester composition comprising a liquid crystal polyester, a hollow filler, and a fibrous filler having a number average fiber length of 20 ⁇ m or more and less than 190 ⁇ m.
  • liquid crystal polyester composition capable of forming a resin molded article excellent in crack resistance and warpage resistance, and a resin molded article using the same, particularly a connector.
  • FIG. 1A It is a top view which shows the structure of the connector which concerns on embodiment of this invention. It is sectional drawing in the AA of FIG. 1A. It is the elements on larger scale of FIG. 1A.
  • the resin molding of this embodiment is formed from the liquid crystal polyester composition mentioned later.
  • Examples of the resin molded body of this embodiment include electrical / electronic parts such as connectors, sockets, relays, coil bobbins, optical pickups, oscillators, computer-related parts, semiconductor manufacturing process-related parts such as IC trays, VTRs, televisions, Home appliance parts such as irons, air conditioners, stereos, vacuum cleaners, refrigerators, rice cookers, lighting fixtures; acoustic product parts such as compact discs, laser discs (registered trademark), speakers, etc .; communications such as telephones, facsimiles, and modems Equipment parts; heater holders and other copiers and printer-related parts; impellers, fan gears, gears, bearings, motor parts and cases, and other mechanical parts; microwave cooking pans, heat-resistant dishes, and other cooking utensils; Heat insulation such as flooring and wall materials, soundproofing materials, supporting materials such as beams and columns, roofing materials, etc.
  • a connector is particularly preferable. This is because the connector has a molded portion having a very small thickness (see the minimum thickness portion 201 in FIG. 2 described later), and thus the effect of improving warpage and cracks is noticeable.
  • a connector according to an embodiment of the present invention includes an opening, an outer frame, an inner frame, a pin insertion hole, and a minimum thickness as one side surface.
  • FIG. 1A and 1B are diagrams showing the structure of the connector according to this embodiment, FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along the line AA in FIG. 1A.
  • FIG. 2 is an enlarged view of a portion indicated by a region B in FIG. 1A.
  • the connector 100 of the present embodiment has a square plate shape and has a square opening 101 in the center.
  • the outer peripheral portion and the inner peripheral portion of the connector 100 are formed with an outer frame portion 102 and an inner frame portion 103 with the back surface formed in a convex shape.
  • 2544 pin insertion holes 104 are provided in a matrix in the region surrounded by the outer frame portion 102 and the inner frame portion 103 in the region surrounded by the outer frame portion 102 and the inner frame portion 103.
  • 2544 pin insertion holes 104 are provided in a matrix.
  • the pin insertion hole 104 is formed so that the horizontal cross section is a square.
  • the portion separating the pin insertion holes 104 that is, the shape of the minimum thickness portion 201 is a lattice shape as a whole.
  • the external dimensions of the connector 100 can be arbitrarily set according to the purpose.
  • the external dimensions of the connector 100 are 72 mm ⁇ 72 mm, and the dimensions of the opening 101 are, for example, 28 mm ⁇ 28 mm.
  • the thickness of the connector 100 is 5 mm for the outer frame portion 102 and the inner frame portion 103, and the region surrounded by the outer frame portion 102 and the inner frame portion 103 (that is, the minimum thickness portion 201 in the enlarged view of FIG. 2). Thickness) is 3 mm.
  • the cross-sectional dimension of the pin insertion hole 104 is 0.6 mm ⁇ 0.6 mm, and the pitch (that is, the sum of the width in the cross section of the pin insertion hole 104 and the shortest distance between adjacent pin insertion holes 104) is 1 mm.
  • the width of the minimum thickness portion 201 (that is, the shortest distance between adjacent pin insertion holes 104) is 0.33 mm.
  • the dimension shown here is an example and the number of the pin insertion holes 104 can be arbitrarily set according to the purpose.
  • the connector may have an outer dimension of (30 mm to 75 mm) ⁇ (40 mm to 85 mm) as one side surface, and the size of the opening may be (8 mm to 30 mm) ⁇ (8 mm to 30 mm).
  • the thickness of the connector may be 3 to 5 mm for the outer frame portion and the inner frame portion, and the region sandwiched between them (that is, the thickness at the minimum thickness portion) may be 1 to 4 mm.
  • the cross-sectional dimension of the pin insertion hole in the connector may be 0.5 to 1.5 mm, the pitch may be 0.5 to 1.5 mm, and the width of the minimum thickness portion is 0.1 to 1.mm. It may be 0 mm.
  • the connector of the present embodiment is one of the resin molded bodies described above, and is formed from a liquid crystal polyester composition described later by an injection molding method.
  • the liquid crystal polyester composition according to the present embodiment will be described in detail.
  • the liquid crystal polyester composition of this embodiment contains liquid crystal polyester.
  • the liquid crystal polyester according to the present embodiment is one of thermotropic liquid crystal polymers.
  • the thermotropic liquid crystal polymer forms an anisotropic melt at a temperature of 270 ° C. or higher and 400 ° C. or lower.
  • the liquid crystal polyester is preferably obtained by polymerizing an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid and an aromatic diol.
  • ester-forming derivatives include the following.
  • ester-forming derivatives include compounds having a carboxyl group in the molecule, such as aromatic hydroxycarboxylic acid and aromatic dicarboxylic acid.
  • ester-forming derivatives include those obtained by converting a carboxyl group into a highly reactive acid halogen group or acid anhydride group, or an ester that generates a polyester by transesterification. There are things.
  • ester-forming derivative examples include those having a phenolic hydroxyl group such as aromatic hydroxycarboxylic acid and aromatic diol.
  • ester-forming derivatives examples include those in which a phenolic hydroxyl group is converted to an ester to produce a polyester by a transesterification reaction.
  • Examples of the structural unit derived from the aromatic hydroxycarboxylic acid include the following. As will be described later, in the present embodiment, a case where the structural units (A 1 ) and (A 2 ) are used will be described.
  • “derived” means that the chemical structure changes from the raw material monomer in order to polymerize.
  • a part of hydrogen atoms in the aromatic ring may be substituted with at least one substituent selected from a halogen atom, an alkyl group and an aryl group.
  • the following structural units are derived from aromatic dicarboxylic acids. As will be described later, in the present embodiment, a case where the structural units (B 1 ), (B 2 ), and (B 3 ) are used will be described.
  • a part of hydrogen atoms in the aromatic ring may be substituted with at least one substituent selected from a halogen atom, an alkyl group and an aryl group.
  • the following structural units are derived from aromatic diols. As will be described later, in the present embodiment, a case where the structural units (C 1 ) and (C 3 ) are used will be described.
  • a part of hydrogen atoms in the aromatic ring may be substituted with at least one substituent selected from a halogen atom, an alkyl group and an aryl group.
  • examples of the halogen atom as a substituent include a fluorine atom, a chlorine atom, and a bromine atom.
  • examples of the alkyl group as a substituent include lower alkyl groups having about 1 to 4 carbon atoms such as a methyl group, an ethyl group, and a butyl group.
  • examples of the aryl group as a substituent include a phenyl group.
  • the combination [a] is a structural unit derived from parahydroxybenzoic acid (corresponding to the above structural unit (A 1 )), and 4,4′-dihydroxy.
  • the molar ratio of the structural units (A 1) and the structural unit (C 1) (C 1) / (A 1) preferably 0.2 to 1.0, and also ⁇ (B 1 ) + (B 2 ) ⁇ / (C 1 ), which is the molar ratio of the structural unit (C 1 ) to the total of the structural unit (B 1 ) and the structural unit (B 2 ), is 0.9 or more and 1 .1 or less is preferable.
  • a structural unit (B 1) and the molar ratio (B 2) of the structural units (B 2) / (B 1 ) a greater than 0 1 or less, more, 0 greater than zero. More preferably, it is 3 or less.
  • the liquid crystal polyester according to this embodiment preferably contains the above structural unit (A 1 ) in an amount of 30 mol% to 80 mol% with respect to the total number of moles of all repeating units constituting the liquid crystal polyester.
  • the flow start temperature of the liquid crystal polyester according to this embodiment is preferably 270 ° C. to 400 ° C., and more preferably 280 ° C. to 380 ° C.
  • the liquid crystal polyester composition has good fluidity and heat resistance (solder resistance when the molded body is an electronic component such as a socket). It is.
  • thermal degradation is less likely to occur when melt molding is performed to obtain a molded body from liquid crystal polyester.
  • the flow start temperature is “a capillary rheometer equipped with a nozzle having an inner diameter of 1 mm and a length of 10 mm and a heating rate of 4 ° C./min under a load of 9.8 MPa (100 Kg / cm 2 ).
  • the temperature at which the melt viscosity shows 4800 Pa ⁇ sec (ie, 48000 poise) when the heated melt of liquid crystalline polyester is extruded from this nozzle is defined as Such a definition is well known to those skilled in the art as a measure of the molecular weight of a liquid crystal polyester (for example, Naoyuki Koide, “Liquid Crystal Polymer—Synthesis / Molding / Application—”, pages 95-105, CMC, 1987). (See June 5 issue).
  • the liquid crystalline polyester according to the present embodiment has a rigid site introduced in the polymer chain, and since there is little entanglement between the polymers, the viscosity is low and the fluidity during molding is excellent. For this reason, it can be applied to a molded product having a thin-walled structure or a fine structure that is difficult to process with conventional resins.
  • liquid crystal polyester according to the present embodiment is excellent in chemical resistance and flame retardancy, and in particular, regarding flame retardancy, UL94 V-0 can be achieved even without a flame retardant.
  • the content of the liquid crystal polyester is preferably 55 to 75% by mass with respect to the total mass of the liquid crystal polyester composition of the present embodiment.
  • the volume specific heat at 100 ° C. is, 1.0 J / cm 3 is preferably K or 3.0 J / cm 3 K or less, 1.50J / cm 3 K or 2. It may be 0 J / cm 3 K or less, or 1.62 J / cm 3 K or more and 1.95 J / cm 3 K or less.
  • the “volume specific heat of the liquid crystal polyester composition” is based on the following formula from the specific heat capacity (unit: J / gK) measured according to JIS K7123: 2012 for the liquid crystal polyester composition and the density. This is a calculated value.
  • Volume specific heat (J / cm 3 K) specific heat capacity (J / g K) ⁇ density (g / cm 3 )
  • the value measured by the differential scanning calorimeter “DSC-50” manufactured by Shimadzu Corporation can be adopted as the “specific heat capacity of the liquid crystal polyester composition”.
  • the density of the liquid crystal polyester composition a value measured by a solid specific gravity meter “ASG-320K” manufactured by Kanto Major Co., Ltd. can be adopted.
  • volume specific heat of the liquid crystal polyester composition means a heat capacity per unit volume serving as an index of a cooling rate.
  • the liquid crystal polyester composition of the present embodiment includes a hollow filler and a fibrous filler.
  • the material of the hollow filler used in the present embodiment is not particularly limited, and examples thereof include inorganic materials such as glass, silica, and alumina; and organic materials such as urea resin and phenol resin.
  • the hollow filler may be two or more kinds of mixed materials or two or more kinds of lightweight functional fillers as necessary.
  • the “light weight functional filler” is a filler having a space inside for the purpose of weight reduction.
  • lightweight functional fillers include porous ceramic particles, expandable particles, and hollow particles.
  • the material of the hollow filler is preferably glass from the viewpoint of heat resistance and strength. That is, hollow particles called glass balloons are preferably used as the hollow filler.
  • the volume specific heat of the liquid crystal polyester composition can be reduced by adding the hollow filler.
  • a part that is easily cooled and a part that is difficult to be cooled may be formed due to the structure of the mold used for injection molding. Thereby, the part solidified previously may be destroyed (a crack generate
  • the liquid crystal polyester composition of the present embodiment has a smaller volumetric specific heat than the conventional liquid crystal polyester composition, the liquid crystal polyester composition can be efficiently cooled during injection molding. Therefore, since the whole liquid crystal polyester composition is cooled uniformly, generation
  • the number average particle diameter of the hollow filler used in the present embodiment is preferably 5 ⁇ m or more and 100 ⁇ m or less, and more preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the number average particle diameter of the hollow filler is less than 5 ⁇ m, not only the orientation of the liquid crystal polymer (liquid crystal polyester) cannot be sufficiently suppressed, but also the porosity of the resin molded body is lowered and the hollow filler The effect of lowering the volume specific heat is not sufficiently exhibited. Therefore, the deformation amount of the warp of the resin molded body may become large.
  • the number average particle diameter of the hollow filler is larger than 100 ⁇ m, not only the hollow filler is not uniformly dispersed in the liquid crystal polyester composition, but also the crushing rate is reduced because the pressure resistance of the hollow filler is lowered. May grow. If the distribution of the hollow filler is biased or the crushing rate is increased, the effect of lowering the volume specific heat of the hollow filler is not sufficiently exhibited, so that the occurrence of cracks may not be sufficiently suppressed. That is, when the number average particle diameter of the hollow filler is within the above range, the orientation of the liquid crystal polymer (liquid crystal polyester) can be sufficiently suppressed, and the porosity of the resin molded body does not decrease.
  • the “number average particle diameter” is an arithmetic average based on the number, and can be obtained by particle size distribution measurement by a laser diffraction method.
  • the thickness of the hollow filler should be a value corresponding to the number average particle diameter of the hollow filler so that the porosity calculated from the density of the hollow filler is about 5/6 to 3/4. That's fine.
  • the porosity of the hollow filler is about 3/4, the volume specific heat of the liquid crystal polyester composition can be sufficiently reduced while maintaining the pressure strength.
  • the density of the hollow filler can be measured by the sampling method of ASTM D2841.
  • the extrudability and moldability of the liquid crystal polyester composition at the time of injection molding deteriorate.
  • the amount of the hollow filler added is too large, the fluidity of the liquid crystal polyester composition is deteriorated, so that a defective filling to the mold is likely to occur.
  • the volume specific heat of the liquid crystal polyester composition may not be sufficiently reduced, and sufficient resistance to warpage and cracks may not be obtained.
  • the amount of the hollow filler added is preferably 5 parts by mass or more and 80 parts by mass or less, and preferably 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the liquid crystalline polyester. Is more preferable. Moreover, it may exceed 30 mass parts and may be more than 30 mass parts and 50 mass parts or less. As another aspect, the addition amount of the hollow filler is preferably 10 to 30% by mass and may be 19 to 26% by mass with respect to the total mass of the liquid crystal polyester composition.
  • Fibrous filler The material of the fibrous filler used in the present embodiment is not particularly limited, and examples thereof include glass fiber, silica alumina fiber, alumina fiber, and carbon fiber.
  • the number average fiber diameter of the fibrous filler used in the present embodiment is preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the number average fiber diameter of the fibrous filler is 5 ⁇ m or more, sufficient strength can be imparted to the resin molded body.
  • the larger the number average fiber diameter of the fibrous filler the smaller the number of fibrous fillers at the same mass.
  • the contact surface area with respect to the liquid crystal polyester decreases.
  • the number average fiber diameter of the fibrous filler is 20 ⁇ m or less, the contact surface area with respect to the liquid crystal polyester when compared with the same mass is sufficient, and sufficient strength can be imparted to the resin molded body.
  • the number average fiber length of the fibrous filler is preferably 20 ⁇ m or more and less than 190 ⁇ m.
  • the crushing rate of the hollow filler may increase. This is because the longer the number average fiber length of the fibrous filler, the greater the friction during melt kneading and the higher the shear pressure. If this shear pressure exceeds the pressure resistance of the hollow filler, it is presumed that the hollow filler is easily crushed and the crushing rate of the hollow filler is increased. This not only strengthens the orientation of the liquid crystal polyester composition, but also increases the volume specific heat.
  • the resin molded body described later is a molded body having a lattice-like structure like a CPU socket
  • the longer the fiber length the more locations where the molten resin becomes laminar in the mold during molding. is there.
  • the resin and the fibrous filler are easily oriented in the flow direction. Therefore, the anisotropy and non-uniformity of the shrinkage rate of the resin molded body increases. Therefore, the warpage of the resin molded body may not be sufficiently reduced. That is, when the number average fiber length of the fibrous filler is within the above range, the hollow filler is difficult to be crushed, so that the orientation of the liquid crystal polyester composition can be prevented from becoming too strong, and the volume specific heat becomes too high.
  • the resin molded body is a molded body having a lattice structure
  • the resin and the fibrous filler are less likely to be oriented in the flow direction in the portion where the molten resin becomes a laminar flow in the mold at the time of molding.
  • An increase in anisotropy and nonuniformity of the shrinkage rate of the molded body can be prevented, and the warpage of the resin molded body can be sufficiently reduced.
  • the number average fiber length of the fibrous filler is preferably 20 ⁇ m or more and less than 190 ⁇ m, more preferably 20 ⁇ m or more and 140 ⁇ m or less, further preferably 20 ⁇ m or more and 130 ⁇ m or less, and further preferably 20 ⁇ m or more and 80 ⁇ m or less. preferable.
  • number average fiber length means, for example, a residue obtained by ashing a liquid crystal polyester composition is dispersed in water, and this is dispersed into a dynamic image analysis method / particle analyzer PITA-3 (stock) It can be obtained by measuring using Seisin Corporation.
  • the dynamic image analysis method is a method for obtaining a particle size distribution and a shape distribution by continuously capturing and analyzing particles dispersed in a fluid.
  • the “number average fiber diameter” can be obtained by, for example, a dynamic image analysis method.
  • the crushing rate of the hollow filler is a value calculated as follows. Using the density of the liquid crystal polyester, each filler (including hollow filler and fibrous filler) or the density of additives added as necessary, the theoretical density of the resin molding (from the blending ratio of the liquid crystal polyester composition ( The density when the crushing rate is zero can be calculated. And the crushing rate can be calculated by measuring the density (actual density) of the actual resin molded body and determining the difference between the actual density and the theoretical density.
  • (alpha) represents the compounding quantity (mass part with respect to 100 mass parts of liquid crystalline polyester) of a hollow filler.
  • represents the blending amount of the fibrous filler (parts by mass relative to 100 parts by mass of the liquid crystalline polyester).
  • ⁇ 0 represents the true density of the liquid crystal polyester.
  • [rho 1 represents the true density of the hollow filler.
  • [rho 2 represents the material density of the hollow filler.
  • ⁇ 3 represents the true density of the fibrous filler.
  • represents the actual density of an ASTM No. 4 dumbbell test piece obtained by injection molding the liquid crystal polyester composition.
  • the theoretical density of the resin molded body is represented by (100 / ⁇ 0 ) + ( ⁇ / ⁇ 1 ) + ( ⁇ / ⁇ 3 ).
  • the actual density of the resin molded body is represented by (100 + ⁇ + ⁇ ) / ⁇ .
  • the actual density of the resin molded body can be measured by the ISO 1183 test method.
  • the addition amount of the fibrous filler is preferably 5 parts by mass or more and 80 parts by mass or less, and more preferably 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester.
  • the sum total of the addition amount of a hollow filler and a fibrous filler shall be 10 to 100 mass parts with respect to 100 mass parts of liquid crystalline polyester, and shall be 30 to 100 mass parts. More preferably, it is more than 50 mass parts and 95 mass parts or less.
  • the addition amount of the fibrous filler is preferably 5 to 25% by mass and may be 14 to 20% by mass with respect to the total mass of the liquid crystal polyester composition.
  • the total addition amount of the hollow filler and the fibrous filler is preferably 25 to 45% by mass and may be 39 to 41% by mass with respect to the total mass of the liquid crystal polyester composition.
  • a plate-like filler in addition to the hollow filler and the fibrous filler, a plate-like filler can also be added to the liquid crystal polyester composition of the present embodiment.
  • the material of the plate-like filler used in the present embodiment is not particularly limited, and examples thereof include talc, mica, and graphite. Of these, talc and mica are preferred.
  • the warpage of the molded product can be further reduced as the amount of the plate-like filler added is increased, the extrudability and moldability of the liquid crystal polyester composition are deteriorated.
  • the addition amount of the plate-like filler is too large, the fluidity of the liquid crystal polyester composition is deteriorated, so that filling failure tends to occur.
  • the mechanical strength of a resin molding will fall when there is too much addition amount of a plate-shaped filler, it has a bad influence also on crack resistance.
  • the connector of this embodiment has a molded part with a very small thickness of the molded product, cracks may be noticeable.
  • the addition amount of the plate-like filler is preferably 5 parts by mass or more and 50 parts by mass or less, and more preferably 5 parts by mass or more and less than 30 parts by mass with respect to 100 parts by mass of the liquid crystalline polyester.
  • the addition amount of the plate-like filler is preferably 5 to 25% by mass with respect to the total mass of the liquid crystal polyester composition.
  • a release improver such as a fluororesin and a metal soap
  • a colorant such as a dye and a pigment
  • an antioxidant additives commonly used in injection molded products such as stabilizers, ultraviolet absorbers, antistatic agents, and surfactants may be added.
  • those having an external lubricant effect such as higher fatty acid, higher fatty acid ester, higher fatty acid metal salt, and fluorocarbon surfactant may be added.
  • thermoplastic resins other than those mentioned above such as polyamide, polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyphenylene ether and modified products thereof, polysulfone, polyether sulfone, polyetherimide, etc., thermosetting resins such as A small amount of phenol resin, epoxy resin, polyimide resin or the like may be added.
  • the liquid crystal polyester composition of the present embodiment is a group consisting of the liquid crystal polyester, a hollow filler, a fibrous filler, and optionally a plate-like filler and the other additives. At least one selected from.
  • the liquid crystal polyester of this embodiment is preferably produced by the following acylation step and polymerization step.
  • acylation step Acylation of a phenolic hydroxyl group of an aromatic diol and an aromatic hydroxycarboxylic acid with a fatty acid anhydride (for example, acetic anhydride, etc.), ie, an acyl diol acylated product and an aromatic hydroxy Carboxylic acid acylate) is obtained.
  • a fatty acid anhydride for example, acetic anhydride, etc.
  • Polymerization step By transesterifying the acyl group of the acylated product obtained in the acylation step with the carboxyl group of the acylated product of aromatic dicarboxylic acid and aromatic hydroxycarboxylic acid, the liquid crystalline polyester is polymerized. obtain.
  • the acylation step and the polymerization step may be performed in the presence of a heterocyclic organic base compound as shown below.
  • R 1 to R 4 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxymethyl group, a cyano group, or a cyanoalkyl group having 1 to 4 carbon atoms in the alkyl group, Cyanoalkoxy group having 1 to 4 carbon atoms, carboxyl group, amino group, aminoalkyl group having 1 to 4 carbon atoms, aminoalkoxy group having 1 to 4 carbon atoms, phenyl group, benzyl group, phenylpropyl group Or represents a formyl group.
  • heterocyclic organic base compounds of the above formula 1-methylimidazole or 1-ethylimidazole or both are particularly preferable from the viewpoint of availability.
  • the amount of the heterocyclic organic base compound used is 0.005 to when the total amount of raw material monomers for liquid crystal polyester (that is, aromatic dicarboxylic acid, aromatic diol and aromatic hydroxycarboxylic acid) is 100 parts by mass. It is preferable to be 1 part by mass. Further, from the viewpoint of improving the color tone and productivity of the molded body (resin molded body in this embodiment), it is more preferably 0.05 to 0.5 parts by mass with respect to 100 parts by mass of the total amount of raw material monomers. preferable.
  • Such a heterocyclic organic base compound may be present at one time during the acylation reaction and the transesterification reaction, and the addition time may be immediately before the start of the acylation reaction or during the acylation reaction. It may be between the acylation reaction and the transesterification reaction.
  • the liquid crystal polyester thus obtained has an advantage that the melt fluidity is very high.
  • the amount of fatty acid anhydride (for example, acetic anhydride, etc.) used is determined in consideration of the amount of aromatic diol and / or aromatic hydroxycarboxylic acid that are raw material monomers. Specifically, it is preferably 1.0 to 1.2 times equivalent, more preferably 1.0 to 1.15 times equivalent to the total of phenolic hydroxyl groups contained in these raw material monomers. 1.03 to 1.12 times equivalent, more preferably 1.05 to 1.1 times equivalent.
  • the acylation reaction in the acylation step described above is preferably performed at a temperature range of 130 ° C. to 180 ° C. for 30 minutes to 20 hours, more preferably at 140 ° C. to 160 ° C. for 1 to 5 hours.
  • the aromatic dicarboxylic acid used in the above polymerization step may be present in the reaction system during the acylation step. That is, in the acylation step, the aromatic diol, the aromatic hydroxycarboxylic acid and the aromatic dicarboxylic acid may be present in the same reaction system. This is because both the carboxyl group in the aromatic dicarboxylic acid and the optionally substituted substituent are not affected by the fatty acid anhydride. Therefore, after the aromatic diol, the aromatic hydroxycarboxylic acid and the aromatic dicarboxylic acid are charged to the reactor, the acylation step and the polymerization step may be sequentially performed, or the aromatic diol and the aromatic dicarboxylic acid are used in the reactor. A method may be employed in which the aromatic dicarboxylic acid is further charged into the reactor after the acylation step and the polymerization step is performed. From the viewpoint of simplifying the production process, the former method is preferred.
  • the transesterification reaction in the polymerization step described above is preferably performed while raising the temperature from 130 ° C. to 400 ° C. at a temperature rising rate of 0.1 to 50 ° C./min, and 150 ° C. at a temperature rising rate of 0.3 to 5 ° C./min. More preferably, the temperature is raised from 350C to 350C.
  • acylation reaction in the acylation step and the transesterification reaction in the polymerization step a batch apparatus or a continuous apparatus may be used as the reactor. Any reaction apparatus can be used to obtain a liquid crystal polyester that can be used in the present embodiment.
  • a step for increasing the molecular weight of the liquid crystal polyester obtained in this polymerization step may be performed.
  • the liquid crystalline polyester obtained in the polymerization step can be cooled and then pulverized to produce a powdered liquid crystalline polyester, and the powder can be heated to increase the molecular weight of the liquid crystalline polyester. .
  • pelletized liquid crystal polyester is produced by granulating powdered liquid crystal polyester obtained by cooling and pulverization, and then the pelletized liquid crystal polyester is heated to increase the molecular weight of liquid crystal polyester. May be. High molecular weight using these methods is referred to as solid phase polymerization in the technical field. Solid phase polymerization is particularly effective as a method for increasing the molecular weight of liquid crystal polyester. By increasing the molecular weight of the liquid crystal polyester, it is possible to obtain the liquid crystal polyester having the above-described suitable flow start temperature.
  • the heat treatment in the solid phase polymerization is preferably performed in an inert gas (for example, nitrogen) atmosphere or under reduced pressure.
  • the heating time in the solid phase polymerization is preferably 1 to 20 hours.
  • the heating temperature is preferably 130 to 400 ° C.
  • examples of the apparatus used for this heat treatment include known dryers, reactors, inert ovens, mixers, and electric furnaces.
  • the method for blending the raw material components of the liquid crystal polyester composition according to the present embodiment is not particularly limited.
  • the liquid crystalline polyester produced by the above-described method, a hollow filler, a fibrous filler, and a plate-like filler or the additive as necessary May be supplied separately to the melt mixer.
  • these raw material components may be premixed using a mortar, Henschel mixer, ball mill, ribbon blender or the like and then supplied to the melt mixer.
  • the pellets prepared by melt-mixing the liquid crystalline polyester and the fibrous filler and the pellets prepared by melt-mixing the liquid crystalline polyester and the hollow filler are mixed at a desired blending ratio. Also good.
  • a CPU socket that is a resin molded body as shown in FIG. 1 is produced from the liquid crystal polyester composition obtained by such a blending method.
  • an injection molding method can be used for this production.
  • the injection molding in the present embodiment is performed by melting a liquid crystal polyester composition using a known injection molding machine, heating the melted liquid crystal polyester composition to an appropriate temperature, and injecting it into a mold. be able to.
  • the temperature at which the liquid crystal polyester composition is heated and melted for injection is preferably [Tp + 10] ° C. or more and [Tp + 50] ° C. or less based on the flow start temperature Tp ° C. of the liquid crystal polyester composition to be used.
  • the temperature of the mold is preferably selected from the range of room temperature (for example, 23 ° C.) to 180 ° C. from the viewpoint of the cooling rate and productivity of the liquid crystal polyester composition.
  • a liquid crystal polyester composition capable of molding a resin molded article excellent in crack resistance and warpage resistance. Further, by using such a liquid crystal polyester composition, a resin molded body excellent in crack resistance and warpage resistance, particularly a connector is provided.
  • the liquid crystal polyester composition of the present invention is: Including at least one selected from the group consisting of a liquid crystalline polyester, a hollow filler, a fibrous filler, and optionally a plate-like filler and other additives;
  • the liquid crystal polyester is Including a structural unit (A 1 ), a structural unit (B 1 ), a structural unit (B 2 ), and a structural unit (C 1 ),
  • the molar ratio of the structural units (C 1) and structural units (A 1) (C 1) / (A 1) is 0.2 to 1.0,
  • the molar ratio ⁇ (B 1 ) + (B 2 ) ⁇ / (C 1 ) of the structural unit (C 1 ) to the sum of the structural unit (B 1 ) and the structural unit (B 2 ) is more than 0 and 1 or less,
  • the molar ratio (B 2 ) / (B 1 ) of the structural unit (B 1 ) to the structural unit (B 2 ) is more than 0 and 0.3 or less
  • the fibrous filler is at least one selected from the group consisting of glass fiber, silica alumina fiber, alumina fiber, and carbon fiber, preferably glass fiber,
  • the number average fiber length is 20 ⁇ m or more and less than 190 ⁇ m, preferably 20 ⁇ m or more and 140 ⁇ m or less, more preferably 20 ⁇ m or more and 130 ⁇ m or less, and further preferably 20 ⁇ m or more and 80 ⁇ m or less,
  • the number average fiber diameter is 5 ⁇ m or more and 20 ⁇ m or less
  • the content of the fibrous filler is 5 parts by mass or more and 80 parts by mass or less, preferably 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester, or the total mass of the liquid crystal polyester composition.
  • the total content of the hollow filler and the fibrous filler is 10 to 100 parts by mass, preferably 30 to 100 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the liquid crystalline polyester. It may be more than 50 parts by weight and not more than 95 parts by weight, or 39 to 41% by weight based on the total weight of the liquid crystal polyester composition. It is a liquid crystal polyester composition. Yet another aspect of the present invention is a connector formed by injection molding from the above liquid crystalline polyester.
  • Liquid crystal polyester was produced using the following method.
  • the molar ratio (C 1 ) / (A 1 ) is about 0.3
  • the molar ratio ⁇ (B 1 ) + (B 2 ) ⁇ / (C 1 ) is 1.0
  • the molar ratio (B 2 ) / (B 1 ) is about 0.3.
  • the solid content (contents) thus obtained was cooled to room temperature and pulverized with a coarse pulverizer.
  • a coarse pulverizer By raising the solid content after pulverization from room temperature to 250 ° C. over 1 hour in a nitrogen atmosphere, further raising the temperature from 250 ° C. to 295 ° C. over 5 hours, and holding at 295 ° C. for 3 hours. Then, solid state polymerization was performed.
  • Hollow filler Glass balloon S60HS (manufactured by Sumitomo 3M Limited), number average particle diameter 20 ⁇ m
  • Fiber filler Milled glass fiber EFH75-01 (manufactured by Central Glass Fiber Co., Ltd.), number average fiber length 75 ⁇ m, number average fiber diameter 11 ⁇ m : EFH150-01 (manufactured by Central Glass Fiber Co., Ltd.), number average fiber length 150 ⁇ m, number average fiber diameter 11 ⁇ m
  • Granular filler Glass beads EGB731 (manufactured by Potters Barotini Co., Ltd.), number average particle diameter 20 ⁇ m
  • Molding machine “ROBOSHOT S-2000i 30B” manufactured by FANUC Cylinder temperature: 360 ° C Mold temperature: 100 ° C Injection speed: 250mm / sec
  • Warpage amount evaluation of warpage resistance
  • the obtained CPU socket was set
  • the least square plane of the CPU socket was calculated by the least square method using the heights of the 92 points. A distance from the least square plane to the highest point among the heights of the 92 points when the height of the least squares plane is translated so as to include the lowest point among the heights of the 92 points. The amount of warpage was calculated.
  • the CPU socket was heated from room temperature to 160 ° C. at a temperature rising rate of 2 ° C./second, held at 160 ° C. for 1 minute, and further heated to 250 ° C. at a temperature rising rate of 2 ° C./second.
  • a heat treatment was performed in which the temperature was maintained at 1 ° C. for 1 minute and then gradually cooled to 50 ° C.
  • Filter conditions that have an aspect ratio of less than 2, circumscribed rectangular short diameter (fiber diameter) of less than 5 ⁇ m and greater than 20 ⁇ m, and thinned pixels (fiber length) of less than 20 ⁇ m are not fibrous fillers All excluded.
  • Example 1 As shown in Table 1, in Example 1, with respect to 100 parts by mass of the resin component (liquid crystal polyester), 33.3 parts by mass of a fibrous filler having a measured number average fiber length of 70 ⁇ m, and a hollow filler A liquid crystal polyester composition containing 33.3 parts by mass was used. The volume specific heat of this liquid crystal polyester composition was 1.95 (J / cm 3 K).
  • Comparative Example 2 33.3 parts by mass of a fibrous filler having an actual measured value of the number average fiber length of less than 190 ⁇ m (actually measured value: 70 ⁇ m) with respect to 100 parts by mass of the liquid crystalline polyester, and a granular filler 33.3.
  • a liquid crystal polyester composition containing parts by mass was used.
  • the CPU socket of Comparative Example 2 had a large amount of warpage after heating and a larger number of cracks than the CPU socket of Example 1. This is considered due to the fact that the volume specific heat of the liquid crystal polyester composition of Comparative Example 2 is higher than the volume specific heat of the liquid crystal polyester composition of Example 1. From the results of Example 1 and Comparative Example 2, it was shown that the volume specific heat of the CPU socket can be reduced by adding the hollow filler.
  • Comparative Example 1 a liquid crystal polyester composition containing 66.7 parts by mass of a fibrous filler having an actual measured value of the number average fiber length of less than 190 ⁇ m (actual value: 70 ⁇ m) with respect to 100 parts by mass of the liquid crystal polyester is used. It was. Also from the results of Example 1 and Comparative Example 1, it was shown that the amount of warpage after heating of the CPU socket and the number of cracks generated can be reduced by the addition of the hollow filler.
  • a liquid crystal polyester composition capable of forming a resin molded article excellent in crack resistance and warpage resistance and a resin molded article using the composition, particularly a connector, can be provided, which is extremely useful industrially.

Abstract

Provided is a liquid crystal polyester composition comprising a liquid crystal polyester, hollow filler, and fibrous filler having a number-average fiber length of at least 20 µm but less than 190 µm.

Description

液晶ポリエステル組成物およびこれを用いた樹脂成形体Liquid crystal polyester composition and resin molded body using the same
 本発明は、液晶ポリエステル組成物およびこれを用いた樹脂成形体に関するものである。
 本願は、2016年8月24日に、日本に出願された特願2016-164026号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a liquid crystal polyester composition and a resin molded body using the same.
This application claims priority based on Japanese Patent Application No. 2016-164026 filed in Japan on August 24, 2016, the contents of which are incorporated herein by reference.
 電子部品用コネクタとしては、例えばCPUソケットが知られている。CPUソケットとは、CPU(Central Processing Unit、中央処理装置)を電子回路基板に脱着可能な形態で実装するためのコネクタを指す。CPUソケットは、例えば、流動性、耐熱性などに優れた樹脂で形成することができる。このような樹脂として、液晶ポリエステルが採用されることが知られている。しかしながら、これらの樹脂を用いて成形する際に、クラックが発生し易く、このクラックの発生が問題となることがある。 For example, a CPU socket is known as an electronic component connector. The CPU socket refers to a connector for mounting a CPU (Central Processing Unit) on the electronic circuit board in a detachable form. The CPU socket can be formed of, for example, a resin excellent in fluidity and heat resistance. It is known that liquid crystal polyester is adopted as such a resin. However, when molding using these resins, cracks are likely to occur, and the occurrence of such cracks may be a problem.
 CPUソケットは、CPUの各接続ピンに対応させて多数のピン挿入穴を有しており、格子を形成している。例えば、デスクトップ向けの製品として1000~2000本程度の接続ピンを有するCPUが知られており、また、サーバー向け製品として、3000本を超える接続ピンを有するCPUも知られている。 The CPU socket has a large number of pin insertion holes corresponding to each connection pin of the CPU, and forms a lattice. For example, a CPU having about 1000 to 2000 connection pins is known as a desktop product, and a CPU having more than 3000 connection pins is also known as a server product.
 CPUの接続ピンは、そのCPUの底面に、例えば行列状に配置される。これら接続ピンのピッチは、接続ピンの数が多いほど小さくなる傾向にある。接続ピンのピッチが小さくなるほど、ピン挿入穴のピッチも減少することになり、ピン挿入穴同士を区切る壁の幅は狭くなる。このため、CPUソケットでは、ピン挿入穴が多いほどリフロー加熱後にピン挿入穴の周辺にクラックが発生し易く、このクラックの発生が問題となることがある。 The CPU connection pins are arranged in a matrix, for example, on the bottom surface of the CPU. The pitch of these connection pins tends to decrease as the number of connection pins increases. As the pitch of the connection pins becomes smaller, the pitch of the pin insertion holes also decreases, and the width of the wall separating the pin insertion holes becomes narrower. For this reason, in a CPU socket, as the number of pin insertion holes increases, cracks are likely to occur around the pin insertion holes after reflow heating, and the occurrence of such cracks may be a problem.
 また、接続ピンの数を増やすためにCPUソケットは大型化する傾向がある。大型のCPUソケットとしては、例えば一片の長さが70mmを超えるサーバー向けのCPUソケットなどが知られている。大型化したCPUソケットにおいては残留応力(内部応力)に起因したリフロー加熱後の反りが問題となることがある。また大型のCPUソケットの反りは、上述した樹脂を用いて成形する際にも問題となることがある。 Also, CPU sockets tend to be larger in order to increase the number of connection pins. As a large-sized CPU socket, for example, a CPU socket for a server having a piece length exceeding 70 mm is known. In a large-sized CPU socket, warping after reflow heating due to residual stress (internal stress) may be a problem. Also, warping of a large CPU socket may be a problem when molding using the above-described resin.
 CPUソケットにおけるクラックや反りの発生を低減することができる組成物が知られている(例えば、特許文献1)。特許文献1には、コネクタの形成材料として、液晶性ポリマー、板状の無機充填剤および重量平均繊維長が250~600μmの繊維状充填剤(以下、「長繊維充填材」と称する。)を含む複合樹脂組成物を用いることが開示されている。長繊維充填材の添加により、成形性、平面度(平坦度)、そり変形、耐熱性などの性能に優れた平面状コネクタが得られることが示されている。 A composition capable of reducing the occurrence of cracks and warpage in a CPU socket is known (for example, Patent Document 1). In Patent Document 1, as a connector forming material, a liquid crystalline polymer, a plate-like inorganic filler, and a fibrous filler having a weight average fiber length of 250 to 600 μm (hereinafter referred to as “long fiber filler”). It is disclosed to use a composite resin composition containing the same. It has been shown that by adding a long fiber filler, a planar connector excellent in performance such as moldability, flatness (flatness), warpage deformation, and heat resistance can be obtained.
特開2010-003661号公報JP 2010-003661 A
 しかしながら、特許文献1に記載の複合樹脂組成物を用いても、クラックや反りの発生の低減は十分でない。また、上述したコネクタの他、肉厚が小さい部分を有する成形体や大型成形体などにおいても、コネクタと同様にクラックや反りの発生が問題となることがある。 However, even if the composite resin composition described in Patent Document 1 is used, the occurrence of cracks and warpage is not sufficiently reduced. In addition to the connectors described above, cracks and warping may be a problem in molded bodies having a small thickness or large molded bodies as in the case of connectors.
 本発明はこのような事情に鑑みてなされたものであって、耐クラック性および反り耐性に優れたコネクタを成形可能な液晶ポリエステル組成物およびこれを用いた樹脂成形体を提供することを目的とする。 This invention is made in view of such a situation, Comprising: It aims at providing the liquid crystal polyester composition which can shape | mold the connector excellent in crack resistance and curvature resistance, and a resin molding using the same. To do.
 かかる目的を達成するために、本発明者らは、コネクタの形成材料の組成について検討し、本発明を完成するに至った。 In order to achieve this object, the present inventors have studied the composition of the connector forming material and have completed the present invention.
本発明の一態様は、中空状充填材と、数平均繊維長が20μm以上190μm未満である繊維状充填材とを含む液晶ポリエステル組成物を提供する。 One embodiment of the present invention provides a liquid crystal polyester composition comprising a hollow filler and a fibrous filler having a number average fiber length of 20 μm or more and less than 190 μm.
 本発明の一態様においては、中空状充填材は、数平均粒径が5μm以上100μm以下であることが好ましい。 In one embodiment of the present invention, the hollow filler preferably has a number average particle diameter of 5 μm or more and 100 μm or less.
 本発明の一態様においては、繊維状充填材は、数平均繊維径が5μm以上20μm以下であることが好ましい。 In one embodiment of the present invention, the fibrous filler preferably has a number average fiber diameter of 5 μm to 20 μm.
 本発明の一態様においては、液晶ポリエステルが、下記構造単位を、液晶ポリエステルの全繰返し単位に対して30モル%以上含むことが好ましい。 In one embodiment of the present invention, the liquid crystal polyester preferably contains the following structural units in an amount of 30 mol% or more based on the total repeating units of the liquid crystal polyester.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本発明の一態様においては、100℃での容積比熱が、1.0J/cmK以上3.0J/cmK以下であることが好ましい。 In one aspect of the present invention, the volume specific heat at 100 ° C. is preferably at most 1.0 J / cm 3 K or more 3.0J / cm 3 K.
 本発明の一態様は、上記の液晶ポリエステル組成物で形成された樹脂成形体を提供する。 One aspect of the present invention provides a resin molded body formed of the above liquid crystal polyester composition.
 本発明の一態様においては、上記樹脂成形体はコネクタであることが好ましい。 In one aspect of the present invention, the resin molded body is preferably a connector.
 すなわち、本発明は以下の態様を含む。
[1]液晶ポリエステルと、中空状充填材と、数平均繊維長が20μm以上190μm未満である繊維状充填材とを含む液晶ポリエステル組成物。
[2]前記中空状充填材は、数平均粒径が5μm以上100μm以下である[1]に記載の液晶ポリエステル組成物。
[3]前記繊維状充填材は、数平均繊維径が5μm以上20μm以下である[1]または[2]に記載の液晶ポリエステル組成物。
[4]前記液晶ポリエステルが、下記構造単位を、前記液晶ポリエステルの全繰返し単位の合計モル数に対して30モル%以上含む[1]~[3]のいずれか1つに記載の液晶ポリエステル組成物。
Figure JPOXMLDOC01-appb-C000003
[5]100℃での容積比熱が、1.0J/cmK以上3.0J/cmK以下である[1]~[4]のいずれか1つに記載の液晶ポリエステル組成物。
[6][1]~[5]のいずれか1つに記載の液晶ポリエステル組成物で形成された樹脂成形体。
[7]コネクタである[6]に記載の樹脂成形体。
That is, the present invention includes the following aspects.
[1] A liquid crystal polyester composition comprising a liquid crystal polyester, a hollow filler, and a fibrous filler having a number average fiber length of 20 μm or more and less than 190 μm.
[2] The liquid crystal polyester composition according to [1], wherein the hollow filler has a number average particle diameter of 5 μm or more and 100 μm or less.
[3] The liquid crystalline polyester composition according to [1] or [2], wherein the fibrous filler has a number average fiber diameter of 5 μm to 20 μm.
[4] The liquid crystal polyester composition according to any one of [1] to [3], wherein the liquid crystal polyester includes the following structural unit in an amount of 30 mol% or more based on the total number of moles of all the repeating units of the liquid crystal polyester. object.
Figure JPOXMLDOC01-appb-C000003
[5] the volume specific heat at 100 ° C. is, 1.0J / cm 3 K above 3.0 J / cm at 3 K below [1] to the liquid crystal polyester composition according to any one of [4].
[6] A resin molded body formed of the liquid crystal polyester composition according to any one of [1] to [5].
[7] The resin molded product according to [6], which is a connector.
 本発明の一態様によれば、耐クラック性および反り耐性に優れた樹脂成形体を成形可能な液晶ポリエステル組成物およびこれを用いた樹脂成形体、特にコネクタが提供される。 According to one aspect of the present invention, there are provided a liquid crystal polyester composition capable of forming a resin molded article excellent in crack resistance and warpage resistance, and a resin molded article using the same, particularly a connector.
本発明の実施の形態に係るコネクタの構造を示す平面図である。It is a top view which shows the structure of the connector which concerns on embodiment of this invention. 図1AのA-A線における断面図である。It is sectional drawing in the AA of FIG. 1A. 図1Aの部分拡大図である。It is the elements on larger scale of FIG. 1A.
<樹脂成形体>
 本実施形態の樹脂成形体は、後述する液晶ポリエステル組成物から形成されている。本実施形態の樹脂成形体としては、例えばコネクタ、ソケット、リレー、コイルボビン、光ピックアップ、発振子、コンピュータ関連部品、などの電気・電子部品;ICトレーなどの半導体製造プロセス関連部品;VTR、テレビ、アイロン、エアコン、ステレオ、掃除機、冷蔵庫、炊飯器、照明器具、などの家庭電気製品部品;コンパクトディスク、レーザーディスク(登録商標)、スピーカー、などの音響製品部品;電話機、ファクシミリ、モデムなどの通信機器部品;ヒータホルダー、などの複写機、印刷機関連部品;インペラー、ファン歯車、ギヤ、軸受け、モーター部品およびケース、などの機械部品;マイクロ波調理用鍋、耐熱食器、などの調理用器具;床材、壁材などの断熱、防音用材料、梁、柱などの支持材料、屋根材などの建築資材、または土木建築用材料;航空機部品、宇宙機器用部品;原子炉などの放射線施設部材、海洋施設部材、洗浄用治具、パイプ類、ノズル類、センサー類部品、スポーツ用品、レジャー用品などが挙げられる。液晶ポリエステル組成物で形成された樹脂成形体としては、なかでもコネクタが好適である。これは、コネクタには肉厚が非常に小さい成形部分(後述する図2の最小肉厚部201参照)が存在するので、反りやクラックの改善効果が顕著に見られるためである。
<Resin molding>
The resin molding of this embodiment is formed from the liquid crystal polyester composition mentioned later. Examples of the resin molded body of this embodiment include electrical / electronic parts such as connectors, sockets, relays, coil bobbins, optical pickups, oscillators, computer-related parts, semiconductor manufacturing process-related parts such as IC trays, VTRs, televisions, Home appliance parts such as irons, air conditioners, stereos, vacuum cleaners, refrigerators, rice cookers, lighting fixtures; acoustic product parts such as compact discs, laser discs (registered trademark), speakers, etc .; communications such as telephones, facsimiles, and modems Equipment parts; heater holders and other copiers and printer-related parts; impellers, fan gears, gears, bearings, motor parts and cases, and other mechanical parts; microwave cooking pans, heat-resistant dishes, and other cooking utensils; Heat insulation such as flooring and wall materials, soundproofing materials, supporting materials such as beams and columns, roofing materials, etc. Building materials or civil engineering building materials; aircraft parts, space equipment parts; radiation facility members such as nuclear reactors, marine facility members, cleaning jigs, pipes, nozzles, sensor parts, sports equipment, leisure goods, etc. Is mentioned. As the resin molded body formed of the liquid crystal polyester composition, a connector is particularly preferable. This is because the connector has a molded portion having a very small thickness (see the minimum thickness portion 201 in FIG. 2 described later), and thus the effect of improving warpage and cracks is noticeable.
<コネクタ>
 以下、本発明の一実施形態について、コネクタがCPUソケットである場合を例に採り、図1A、図1Bおよび図2を参照して説明する。
 例えば、本発明の一実施形態であるコネクタは、1つの側面として、開口部と、外枠部と、内枠部と、ピン挿入穴と、最少肉厚部とを含む。
<Connector>
Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1A, FIG. 1B, and FIG. 2, taking the case where the connector is a CPU socket as an example.
For example, a connector according to an embodiment of the present invention includes an opening, an outer frame, an inner frame, a pin insertion hole, and a minimum thickness as one side surface.
  図1Aおよび図1Bは、本実施形態に係るコネクタの構造を示す図であり、図1Aは平面図、図1Bは図1AのA-A線における断面図である。また、図2は、図1Aにおける領域Bで示した部分の拡大図である。 1A and 1B are diagrams showing the structure of the connector according to this embodiment, FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along the line AA in FIG. 1A. FIG. 2 is an enlarged view of a portion indicated by a region B in FIG. 1A.
 図1A、図1Bおよび図2に示したように、本実施形態のコネクタ100は、平面が正方形の板状を呈し、中央に正方形の開口部101を有している。コネクタ100の外周部分および内周部分は、裏面が凸状に形成されて、外枠部102および内枠部103を構成している。また、外枠部102および内枠部103に囲まれた領域には、ピン挿入穴104が、行列状に、2544個設けられている。ピン挿入穴104は、水平断面が正方形となるように形成される。この結果、ピン挿入穴104同士を区切る部分、すなわち最小肉厚部201の形状は、全体として格子状となる。 As shown in FIG. 1A, FIG. 1B, and FIG. 2, the connector 100 of the present embodiment has a square plate shape and has a square opening 101 in the center. The outer peripheral portion and the inner peripheral portion of the connector 100 are formed with an outer frame portion 102 and an inner frame portion 103 with the back surface formed in a convex shape. In addition, in the region surrounded by the outer frame portion 102 and the inner frame portion 103, 2544 pin insertion holes 104 are provided in a matrix. The pin insertion hole 104 is formed so that the horizontal cross section is a square. As a result, the portion separating the pin insertion holes 104, that is, the shape of the minimum thickness portion 201 is a lattice shape as a whole.
 コネクタ100の外形寸法は、目的に応じて任意に設定できるが、例えば、72mm×72mmであり、開口部101の寸法は、例えば28mm×28mmである。コネクタ100の厚さは、外枠部102および内枠部103では5mmであり、外枠部102と,内枠部103に囲まれた領域(すなわち、図2の拡大図における最小肉厚部201における厚さ)では3mmである。ピン挿入穴104の断面寸法は0.6mm×0.6mm、ピッチ(すなわち、ピン挿入穴104の断面における幅と、隣接するピン挿入穴104どうしの最短距離と、の和)は1mmである。また、最小肉厚部201の幅(すなわち、隣接するピン挿入穴104どうしの最短距離)は、0.33mmである。
なお、ここに示す寸法は一例であり、ピン挿入穴104の数も目的に応じて任意に設定できる。
 例えば、コネクタは、1つの側面として、外形寸法が(30mm~75mm)×(40mm~85mm)であってもよく、開口部の寸法が(8mm~30mm)×(8mm~30mm)であってもよい。コネクタの厚さは、外枠部及び内枠部が3~5mmであってもよく、これらに挟まれた領域(すなわち、最小肉厚部における厚さ)が1~4mmであってもよい。コネクタにおけるピン挿入穴の断面寸法は0.5~1.5mmであってもよく、ピッチが0.5~1.5mmであってもよく、最小肉厚部の幅が0.1~1.0mmであってもよい。
The external dimensions of the connector 100 can be arbitrarily set according to the purpose. For example, the external dimensions of the connector 100 are 72 mm × 72 mm, and the dimensions of the opening 101 are, for example, 28 mm × 28 mm. The thickness of the connector 100 is 5 mm for the outer frame portion 102 and the inner frame portion 103, and the region surrounded by the outer frame portion 102 and the inner frame portion 103 (that is, the minimum thickness portion 201 in the enlarged view of FIG. 2). Thickness) is 3 mm. The cross-sectional dimension of the pin insertion hole 104 is 0.6 mm × 0.6 mm, and the pitch (that is, the sum of the width in the cross section of the pin insertion hole 104 and the shortest distance between adjacent pin insertion holes 104) is 1 mm. The width of the minimum thickness portion 201 (that is, the shortest distance between adjacent pin insertion holes 104) is 0.33 mm.
In addition, the dimension shown here is an example and the number of the pin insertion holes 104 can be arbitrarily set according to the purpose.
For example, the connector may have an outer dimension of (30 mm to 75 mm) × (40 mm to 85 mm) as one side surface, and the size of the opening may be (8 mm to 30 mm) × (8 mm to 30 mm). Good. The thickness of the connector may be 3 to 5 mm for the outer frame portion and the inner frame portion, and the region sandwiched between them (that is, the thickness at the minimum thickness portion) may be 1 to 4 mm. The cross-sectional dimension of the pin insertion hole in the connector may be 0.5 to 1.5 mm, the pitch may be 0.5 to 1.5 mm, and the width of the minimum thickness portion is 0.1 to 1.mm. It may be 0 mm.
 本実施形態のコネクタは、上述した樹脂成形体の一つであって、後述する液晶ポリエステル組成物から射出成形法により形成される。以下、本実施形態に係る液晶ポリエステル組成物について、詳細に説明する。 The connector of the present embodiment is one of the resin molded bodies described above, and is formed from a liquid crystal polyester composition described later by an injection molding method. Hereinafter, the liquid crystal polyester composition according to the present embodiment will be described in detail.
<液晶ポリエステル組成物>
[液晶ポリエステル]
 本実施形態の液晶ポリエステル組成物は、液晶ポリエステルを含む。
本実施形態に係る液晶ポリエステルは、サーモトロピック液晶ポリマーの一つである。サーモトロピック液晶ポリマーは、270℃以上400℃以下の温度で異方性溶融体を形成する。液晶ポリエステルは、好適には芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸および芳香族ジオールを重合することによって得られる。
<Liquid crystal polyester composition>
[Liquid crystal polyester]
The liquid crystal polyester composition of this embodiment contains liquid crystal polyester.
The liquid crystal polyester according to the present embodiment is one of thermotropic liquid crystal polymers. The thermotropic liquid crystal polymer forms an anisotropic melt at a temperature of 270 ° C. or higher and 400 ° C. or lower. The liquid crystal polyester is preferably obtained by polymerizing an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid and an aromatic diol.
 なお、より容易に液晶ポリエステルを製造するために、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸および芳香族ジオールなどの原料モノマーの一部を、エステル形成性誘導体にしたあとで、重合することもできる。 In order to more easily produce a liquid crystal polyester, it is also possible to polymerize after forming a part of raw material monomers such as aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid and aromatic diol into ester-forming derivatives. .
 エステル形成性誘導体としては、例えば、以下のようなものを挙げることができる。 Examples of ester-forming derivatives include the following.
 エステル形成性誘導体としては、芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸のように、分子内にカルボキシル基を有する化合物を挙げることができる。このようなエステル形成性誘導体としては、カルボキシル基を高反応性の酸ハロゲン基や酸無水物などの基に転化したものや、カルボキシル基をエステル交換反応によってポリエステルを生成するようなエステルに転化したものなどがある。 Examples of ester-forming derivatives include compounds having a carboxyl group in the molecule, such as aromatic hydroxycarboxylic acid and aromatic dicarboxylic acid. Examples of such ester-forming derivatives include those obtained by converting a carboxyl group into a highly reactive acid halogen group or acid anhydride group, or an ester that generates a polyester by transesterification. There are things.
 さらに、エステル形成性誘導体として、芳香族ヒドロキシカルボン酸および芳香族ジオールのように、フェノール性水酸基を有するものを挙げることができる。このようなエステル形成性誘導体としては、フェノール性水酸基をエステルに転化することによって、エステル交換反応によるポリエステルの生成を行うようにしたものなどがある。 Furthermore, examples of the ester-forming derivative include those having a phenolic hydroxyl group such as aromatic hydroxycarboxylic acid and aromatic diol. Examples of such ester-forming derivatives include those in which a phenolic hydroxyl group is converted to an ester to produce a polyester by a transesterification reaction.
 このようなエステル形成性誘導体から液晶ポリエステルを製造する方法については、後述する。 A method for producing a liquid crystal polyester from such an ester-forming derivative will be described later.
 以下、本実施形態に係る液晶ポリエステルの構造単位について、具体例を説明する。 Hereinafter, specific examples of the structural unit of the liquid crystal polyester according to the present embodiment will be described.
 芳香族ヒドロキシカルボン酸に由来する構造単位としては、次のようなものがある。後述するように、本実施形態では、構造単位(A)および(A)を使用する場合について説明する。
 ここで、「由来する」とは重合するために、原料モノマーから化学構造が変化することを意味する。
Examples of the structural unit derived from the aromatic hydroxycarboxylic acid include the following. As will be described later, in the present embodiment, a case where the structural units (A 1 ) and (A 2 ) are used will be described.
Here, “derived” means that the chemical structure changes from the raw material monomer in order to polymerize.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 これらの構造単位は、芳香環にある水素原子の一部がハロゲン原子、アルキル基およびアリール基から選ばれる少なくとも1つの置換基で置換されていてもよい。 In these structural units, a part of hydrogen atoms in the aromatic ring may be substituted with at least one substituent selected from a halogen atom, an alkyl group and an aryl group.
 芳香族ジカルボン酸に由来する構造単位としては、次のようなものがある。後述するように、本実施形態では、構造単位(B)、(B)および(B)を使用する場合について説明する。 The following structural units are derived from aromatic dicarboxylic acids. As will be described later, in the present embodiment, a case where the structural units (B 1 ), (B 2 ), and (B 3 ) are used will be described.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 これらの構造単位は、芳香環にある水素原子の一部がハロゲン原子、アルキル基およびアリール基から選ばれる少なくとも1つの置換基で置換されていてもよい。 In these structural units, a part of hydrogen atoms in the aromatic ring may be substituted with at least one substituent selected from a halogen atom, an alkyl group and an aryl group.
 芳香族ジオールに由来する構造単位としては、次のようなものがある。後述するように、本実施形態では、構造単位(C)および(C)を使用する場合について説明する。 The following structural units are derived from aromatic diols. As will be described later, in the present embodiment, a case where the structural units (C 1 ) and (C 3 ) are used will be described.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 これらの構造単位は、芳香環にある水素原子の一部がハロゲン原子、アルキル基およびアリール基から選ばれる少なくとも1つの置換基で置換されていてもよい。 In these structural units, a part of hydrogen atoms in the aromatic ring may be substituted with at least one substituent selected from a halogen atom, an alkyl group and an aryl group.
 なお、これらの構造単位において、置換基としてのハロゲン原子は、フッ素原子、塩素原子または臭素原子が挙げられる。また、置換基としてのアルキル基は、メチル基、エチル基、ブチル基など、炭素数1~4程度の低級アルキル基が挙げられる。また、置換基としてのアリール基は、フェニル基などが挙げられる。 In these structural units, examples of the halogen atom as a substituent include a fluorine atom, a chlorine atom, and a bromine atom. Examples of the alkyl group as a substituent include lower alkyl groups having about 1 to 4 carbon atoms such as a methyl group, an ethyl group, and a butyl group. Examples of the aryl group as a substituent include a phenyl group.
 次に、上述した構造単位の好適な組み合わせについて説明する。 Next, a suitable combination of the above structural units will be described.
 本実施形態では、上述した液晶ポリエステルの構造単位を、下記[a]~[f]のいずれかに示した組み合わせで使用することが好ましい。
[a]:(A)と、(B)または(B)もしくは(B)と(B)の両方と、(C)との組み合わせ。
[b]:(A)と(A)との組み合わせ。
[c]:上記[a]の組み合わせにおいて、(A)の一部を(A)で置き換えたもの。
[d]:上記[a]の組み合わせにおいて、(B)の一部を(B)で置き換えたもの。
[e]:上記[a]の組み合わせにおいて、(C)の一部を(C)で置き換えたもの。
[f]:上記[b]の組み合わせに(B)および(C)を加えたもの。
In the present embodiment, it is preferable to use the above-described structural units of the liquid crystal polyester in combinations shown in any one of the following [a] to [f].
[A]: A combination of (A 1 ) and (B 1 ) or (B 2 ) or both (B 1 ) and (B 2 ) and (C 1 ).
[B]: A combination of (A 1 ) and (A 2 ).
[C]: In the combination of [a] above, (A 1 ) is partially replaced with (A 2 ).
[D]: the combination of the above [a], are replaced by a part of (B 1) (B 3) .
[E]: In the combination of [a] above, (C 1 ) is partially replaced with (C 3 ).
[F]: the [b] combination (B 1) of and (C 1) a plus.
 これらの組み合わせ[a]~[f]の中でも、組み合わせ[a]である、パラヒドロキシ安息香酸から誘導される構造単位(上述の構造単位(A)に対応)と、4,4’-ジヒドロキシビフェニルから誘導される構造単位(上述の構造単位(C)に対応)と、テレフタル酸から誘導される構造単位、イソフタル酸から誘導される構造単位、またはテレフタル酸から誘導される構造単位とイソフタル酸から誘導される構造単位(上述の構造単位(B)、上述の構造単位(B)、または上述の構造単位(B)と(B)に対応)との組み合わせからなる液晶ポリエステルが、特に好ましい。さらに、この組み合わせにおいては、構造単位(A)と構造単位(C)のモル比率である(C)/(A)を0.2以上1.0以下とすることが好ましく、また、構造単位(B)と構造単位(B)の合計に対する構造単位(C)のモル比率である{(B)+(B)}/(C)を0.9以上1.1以下とすることが好ましい。加えて、構造単位(B)と構造単位(B)のモル比率(B)/(B)を0よりも大きく1以下とすることが好ましく、さらには、0よりも大きく0.3以下とすることがいっそう好ましい。 Among these combinations [a] to [f], the combination [a] is a structural unit derived from parahydroxybenzoic acid (corresponding to the above structural unit (A 1 )), and 4,4′-dihydroxy. A structural unit derived from biphenyl (corresponding to the structural unit (C 1 ) described above) and a structural unit derived from terephthalic acid, a structural unit derived from isophthalic acid, or a structural unit derived from terephthalic acid and isophthalic acid liquid crystal polyester composed of a combination of structural units derived from an acid and (above structural units (B 1), the aforementioned structural unit (B 2), or the above-mentioned structural units and (B 1) (corresponding to B 2)) Is particularly preferred. Further, in this combination, the molar ratio of the structural units (A 1) and the structural unit (C 1) (C 1) / (A 1) preferably 0.2 to 1.0, and also {(B 1 ) + (B 2 )} / (C 1 ), which is the molar ratio of the structural unit (C 1 ) to the total of the structural unit (B 1 ) and the structural unit (B 2 ), is 0.9 or more and 1 .1 or less is preferable. In addition, it is preferable that a structural unit (B 1) and the molar ratio (B 2) of the structural units (B 2) / (B 1 ) a greater than 0 1 or less, more, 0 greater than zero. More preferably, it is 3 or less.
 本実施形態に係る液晶ポリエステルは、上記構造単位(A)を、液晶ポリエステルを構成する全繰返し単位の合計モル数に対して30モル%以上80モル%以下含むことが好ましい。 The liquid crystal polyester according to this embodiment preferably contains the above structural unit (A 1 ) in an amount of 30 mol% to 80 mol% with respect to the total number of moles of all repeating units constituting the liquid crystal polyester.
 本実施形態に係る液晶ポリエステルの流動開始温度は、270℃~400℃であることが好ましく、280℃~380℃であることがさらに好ましい。流動開始温度がこのような範囲にある場合、液晶ポリエステル組成物の流動性が良好になるとともに、耐熱性(成形体がソケットなどの電子部品である場合は、耐ハンダ性)が良好となるからである。さらには、流動開始温度が上述の範囲である場合、液晶ポリエステルから成形体を得るための溶融成形を行う際に、熱劣化が生じ難くなる。 The flow start temperature of the liquid crystal polyester according to this embodiment is preferably 270 ° C. to 400 ° C., and more preferably 280 ° C. to 380 ° C. When the flow start temperature is in such a range, the liquid crystal polyester composition has good fluidity and heat resistance (solder resistance when the molded body is an electronic component such as a socket). It is. Furthermore, when the flow start temperature is in the above range, thermal degradation is less likely to occur when melt molding is performed to obtain a molded body from liquid crystal polyester.
 なお、本実施形態では、流動開始温度を、「内径が1mmで長さが10mmのノズルを備える毛細管レオメータを用い、9.8MPa(100Kg/cm)の荷重下において昇温速度4℃/分で液晶ポリエステルの加熱溶融体をこのノズルから押し出すときに、溶融粘度が4800Pa・秒(すなわち、48000ポアズ)を示す温度」と定義する。このような定義は、液晶ポリエステルの分子量の目安として、当業者に周知である(例えば、小出直之編、「液晶ポリマー-合成・成形・応用-」、95-105頁、シーエムシー、1987年6月5日発行を参照)。 In this embodiment, the flow start temperature is “a capillary rheometer equipped with a nozzle having an inner diameter of 1 mm and a length of 10 mm and a heating rate of 4 ° C./min under a load of 9.8 MPa (100 Kg / cm 2 ). The temperature at which the melt viscosity shows 4800 Pa · sec (ie, 48000 poise) when the heated melt of liquid crystalline polyester is extruded from this nozzle is defined as Such a definition is well known to those skilled in the art as a measure of the molecular weight of a liquid crystal polyester (for example, Naoyuki Koide, “Liquid Crystal Polymer—Synthesis / Molding / Application—”, pages 95-105, CMC, 1987). (See June 5 issue).
本実施形態に係る液晶ポリエステルは、高分子鎖に剛直な部位が導入されており、高分子同士の絡み合いが少ないため粘度が低く、成形加工時の流動性に優れている。このため、従来の樹脂では加工が困難な薄肉構造や微細構造を持つ成形品にも適用可能である。 The liquid crystalline polyester according to the present embodiment has a rigid site introduced in the polymer chain, and since there is little entanglement between the polymers, the viscosity is low and the fluidity during molding is excellent. For this reason, it can be applied to a molded product having a thin-walled structure or a fine structure that is difficult to process with conventional resins.
また、本実施形態に係る液晶ポリエステルは、耐薬品性、難燃性にも優れ、特に難燃性については、難燃剤なしでもUL94 V-0を達成可能である。 Further, the liquid crystal polyester according to the present embodiment is excellent in chemical resistance and flame retardancy, and in particular, regarding flame retardancy, UL94 V-0 can be achieved even without a flame retardant.
 上記液晶ポリエステルの含有量は、本実施形態の液晶ポリエステル組成物の総質量に対して、55~75質量%であることが好ましい。 The content of the liquid crystal polyester is preferably 55 to 75% by mass with respect to the total mass of the liquid crystal polyester composition of the present embodiment.
 本実施形態の液晶ポリエステル組成物は、100℃での容積比熱が、1.0J/cmK以上3.0J/cmK以下であることが好ましく、1.50J/cmK以上2.0J/cmK以下であってもよく、1.62J/cmK以上1.95J/cmK以下であってもよい。
本明細書において、「液晶ポリエステル組成物の容積比熱」は、液晶ポリエステル組成物についてJIS K7123:2012に準じて測定される比熱容量(単位:J/gK)と、密度とから下式に基づいて算出される値である。
 容積比熱(J/cmK)=比熱容量(J/gK)×密度(g/cm
The liquid crystal polyester composition of the present embodiment, the volume specific heat at 100 ° C. is, 1.0 J / cm 3 is preferably K or 3.0 J / cm 3 K or less, 1.50J / cm 3 K or 2. It may be 0 J / cm 3 K or less, or 1.62 J / cm 3 K or more and 1.95 J / cm 3 K or less.
In the present specification, the “volume specific heat of the liquid crystal polyester composition” is based on the following formula from the specific heat capacity (unit: J / gK) measured according to JIS K7123: 2012 for the liquid crystal polyester composition and the density. This is a calculated value.
Volume specific heat (J / cm 3 K) = specific heat capacity (J / g K) × density (g / cm 3 )
 なお、本明細書において、「液晶ポリエステル組成物の比熱容量」は、株式会社島津製作所製の示差走査熱量測定装置「DSC-50」により測定した値を採用することができる。一方、液晶ポリエステル組成物の密度は、関東メジャー株式会社製の固体比重計「ASG-320K」により測定した値を採用することができる。 In addition, in this specification, the value measured by the differential scanning calorimeter “DSC-50” manufactured by Shimadzu Corporation can be adopted as the “specific heat capacity of the liquid crystal polyester composition”. On the other hand, as the density of the liquid crystal polyester composition, a value measured by a solid specific gravity meter “ASG-320K” manufactured by Kanto Major Co., Ltd. can be adopted.
 本実施形態において、「液晶ポリエステル組成物の容積比熱」は、冷却速度の指標となる単位体積あたりの熱容量を意味する。後述する液晶ポリエステル組成物の容積比熱と、その液晶ポリエステル組成物から形成される樹脂成形体の容積比熱とは相関があり、液晶ポリエステル組成物の容積比熱が小さいほど、成形時に効率的に冷却することができる。液晶ポリエステル組成物の容積比熱を小さくすることについては後述する。 In the present embodiment, “volumetric specific heat of the liquid crystal polyester composition” means a heat capacity per unit volume serving as an index of a cooling rate. There is a correlation between the volume specific heat of the liquid crystal polyester composition described later and the volume specific heat of the resin molded body formed from the liquid crystal polyester composition, and the smaller the volume specific heat of the liquid crystal polyester composition, the more efficiently it is cooled during molding. be able to. Reducing the volume specific heat of the liquid crystal polyester composition will be described later.
[中空状充填材]
 本実施形態の液晶ポリエステル組成物は、中空状充填材と、繊維状充填材とを含む。
[Hollow filler]
The liquid crystal polyester composition of the present embodiment includes a hollow filler and a fibrous filler.
 本実施形態で使用する中空状充填材の材質は特に限定されないが、例えばガラス、シリカ、アルミナなどの無機材料;尿素樹脂、フェノール樹脂などの有機材料が挙げられる。 The material of the hollow filler used in the present embodiment is not particularly limited, and examples thereof include inorganic materials such as glass, silica, and alumina; and organic materials such as urea resin and phenol resin.
 中空状充填材は、必要に応じて、2種類以上の混合材料であってもよく、2種類以上の軽量機能性フィラーであってもよい。「軽量機能性フィラー」とは軽量化を目的とした内部に空間を有するフィラーのことである。軽量機能性フィラーとしては、例えば多孔質セラミック粒子、発泡性粒子、中空粒子などが挙げられる。
これらの中でも、耐熱性や強度の観点から中空状充填材の材質は、ガラスが好ましい。つまり、中空状充填材として、いわゆるガラスバルーンと呼ばれる中空粒子が好適に用いられる。
The hollow filler may be two or more kinds of mixed materials or two or more kinds of lightweight functional fillers as necessary. The “light weight functional filler” is a filler having a space inside for the purpose of weight reduction. Examples of lightweight functional fillers include porous ceramic particles, expandable particles, and hollow particles.
Among these, the material of the hollow filler is preferably glass from the viewpoint of heat resistance and strength. That is, hollow particles called glass balloons are preferably used as the hollow filler.
 中空状充填材の添加により、液晶ポリエステル組成物の容積比熱を小さくすることができる。従来の液晶ポリエステル組成物では、射出成形に用いる金型の構造上の理由から、冷却されやすい部分と冷却されにくい部分とができてしまうことがある。これにより、先に固化した部分が後から固化した部分の収縮により破壊される(クラックが発生する)ことがある。 The volume specific heat of the liquid crystal polyester composition can be reduced by adding the hollow filler. In the conventional liquid crystal polyester composition, a part that is easily cooled and a part that is difficult to be cooled may be formed due to the structure of the mold used for injection molding. Thereby, the part solidified previously may be destroyed (a crack generate | occur | produces) by shrinkage | contraction of the part solidified later.
 これに対し、本実施形態の液晶ポリエステル組成物は、従来の液晶ポリエステル組成物よりも容積比熱が小さいので、射出成形時に液晶ポリエステル組成物を効率的に冷却することができる。したがって、液晶ポリエステル組成物全体が均一に冷却されるので、液晶ポリエステル組成物の固化に伴う収縮に起因するクラック発生を低減することができる。 On the other hand, since the liquid crystal polyester composition of the present embodiment has a smaller volumetric specific heat than the conventional liquid crystal polyester composition, the liquid crystal polyester composition can be efficiently cooled during injection molding. Therefore, since the whole liquid crystal polyester composition is cooled uniformly, generation | occurrence | production of the crack resulting from the shrinkage | contraction accompanying solidification of a liquid crystal polyester composition can be reduced.
 本実施形態で使用する中空状充填材の数平均粒径は、5μm以上100μm以下であることが好ましく、10μm以上100μm以下であることがより好ましい。中空状充填材の数平均粒径が5μm未満の場合、液晶ポリマー(液晶ポリエステル)の配向を十分に抑制することができなくなるだけでなく、樹脂成形体の空隙率が下がって中空状充填材の容積比熱を下げる効果が十分発揮されない。そのため、樹脂成形体の反りの変形量が大きくなってしまうことがある。 The number average particle diameter of the hollow filler used in the present embodiment is preferably 5 μm or more and 100 μm or less, and more preferably 10 μm or more and 100 μm or less. When the number average particle diameter of the hollow filler is less than 5 μm, not only the orientation of the liquid crystal polymer (liquid crystal polyester) cannot be sufficiently suppressed, but also the porosity of the resin molded body is lowered and the hollow filler The effect of lowering the volume specific heat is not sufficiently exhibited. Therefore, the deformation amount of the warp of the resin molded body may become large.
 また、中空状充填材の数平均粒径が100μmより大きいと、液晶ポリエステル組成物中で中空状充填材が均一に分散されないだけでなく、中空状充填材の耐圧強度が低くなるため破砕率が大きくなることがある。中空状充填材の分布に偏りが生じたり、破砕率が大きくなったりすると、中空状充填材の容積比熱を下げる効果が十分発揮されないため、クラックの発生を十分に抑制できないことがある。
 すなわち、中空状充填材の数平均粒径が上記範囲内であると、液晶ポリマー(液晶ポリエステル)の配向を十分に抑制することができ、樹脂成形体の空隙率は下がらないので、中空状充填材の容積比熱を下げる効果は十分に発揮され、樹脂成形体の反りの変形量を抑制することができる。また、液晶ポリエステル組成物中で中空状充填材が均一に分散され、中空状充填材の耐圧強度は低くならないので、破砕率は大きくならない。そのため、中空状充填材の容積比熱を下げる効果が十分発揮され、クラックの発生を十分に抑制できる。
 本明細書において、「数平均粒径」とは、個数基準の算術平均であり、レーザー回折法による粒度分布測定により得ることができる。
Further, when the number average particle diameter of the hollow filler is larger than 100 μm, not only the hollow filler is not uniformly dispersed in the liquid crystal polyester composition, but also the crushing rate is reduced because the pressure resistance of the hollow filler is lowered. May grow. If the distribution of the hollow filler is biased or the crushing rate is increased, the effect of lowering the volume specific heat of the hollow filler is not sufficiently exhibited, so that the occurrence of cracks may not be sufficiently suppressed.
That is, when the number average particle diameter of the hollow filler is within the above range, the orientation of the liquid crystal polymer (liquid crystal polyester) can be sufficiently suppressed, and the porosity of the resin molded body does not decrease. The effect of lowering the volume specific heat of the material is sufficiently exerted, and the amount of warpage deformation of the resin molded body can be suppressed. Further, since the hollow filler is uniformly dispersed in the liquid crystal polyester composition and the pressure resistance of the hollow filler does not decrease, the crushing rate does not increase. Therefore, the effect of reducing the volume specific heat of the hollow filler is sufficiently exhibited, and the occurrence of cracks can be sufficiently suppressed.
In the present specification, the “number average particle diameter” is an arithmetic average based on the number, and can be obtained by particle size distribution measurement by a laser diffraction method.
 中空状充填材の厚さは、中空状充填材の密度から換算される空隙率が5/6~3/4程度になるように、中空状充填材の数平均粒径に応じた値となればよい。中空状充填材の空隙率が3/4程度であると、耐圧強度を維持しながら、液晶ポリエステル組成物の容積比熱を十分小さくすることができる。
中空状充填材の密度はASTM D2841のサンプリング法により測定することができる。
The thickness of the hollow filler should be a value corresponding to the number average particle diameter of the hollow filler so that the porosity calculated from the density of the hollow filler is about 5/6 to 3/4. That's fine. When the porosity of the hollow filler is about 3/4, the volume specific heat of the liquid crystal polyester composition can be sufficiently reduced while maintaining the pressure strength.
The density of the hollow filler can be measured by the sampling method of ASTM D2841.
 中空状充填材の添加量が多いほど、成形品(樹脂成形体)の反りを低減することができるが、その反面、射出成形時における液晶ポリエステル組成物の押し出し性や成形性が悪化する。特に、中空状充填材の添加量が多すぎると、液晶ポリエステル組成物の流動性が悪化するために金型への充填不良が生じ易くなる。 The more the amount of the hollow filler added, the more the warpage of the molded product (resin molded body) can be reduced. On the other hand, the extrudability and moldability of the liquid crystal polyester composition at the time of injection molding deteriorate. In particular, when the amount of the hollow filler added is too large, the fluidity of the liquid crystal polyester composition is deteriorated, so that a defective filling to the mold is likely to occur.
 一方、中空状球充填材の添加量が少なすぎると、液晶ポリエステル組成物の容積比熱が十分低下せず、反りやクラックに対する十分な耐性を得ることができないことがある。 On the other hand, if the amount of the hollow sphere filler added is too small, the volume specific heat of the liquid crystal polyester composition may not be sufficiently reduced, and sufficient resistance to warpage and cracks may not be obtained.
 したがって、本実施形態においては、中空状充填材の添加量は、液晶ポリエステル100質量部に対して5質量部以上80質量部以下とすることが好ましく、10質量部以上50質量部以下とすることがより好ましい。また、30質量部を超えてもよく、30質量部を超え50質量部以下であってもよい。
 別の側面として、中空状充填材の添加量は、液晶ポリエステル組成物の総質量に対して、10~30質量%が好ましく、19~26質量%であってもよい。
Therefore, in this embodiment, the amount of the hollow filler added is preferably 5 parts by mass or more and 80 parts by mass or less, and preferably 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the liquid crystalline polyester. Is more preferable. Moreover, it may exceed 30 mass parts and may be more than 30 mass parts and 50 mass parts or less.
As another aspect, the addition amount of the hollow filler is preferably 10 to 30% by mass and may be 19 to 26% by mass with respect to the total mass of the liquid crystal polyester composition.
[繊維状充填材]
 本実施形態で使用する繊維状充填材の材質は特に限定されないが、例えばガラス繊維、シリカアルミナ繊維、アルミナ繊維、炭素繊維などが挙げられる。
[Fibrous filler]
The material of the fibrous filler used in the present embodiment is not particularly limited, and examples thereof include glass fiber, silica alumina fiber, alumina fiber, and carbon fiber.
 本実施形態で使用する繊維状充填材の数平均繊維径は、5μm以上20μm以下であることが好ましい。繊維状充填材の数平均繊維径が5μm以上であると、樹脂成形体に十分な強度を付与することができる。一方、繊維状充填材の数平均繊維径が大きくなればなるほど、同じ質量であるときの繊維状充填材の本数が少なくなる。繊維状充填材の本数が少なくなると、液晶ポリエステルに対する接触表面積が小さくなる。繊維状充填材の数平均繊維径が20μm以下であると、同じ質量で比較したときの液晶ポリエステルに対する接触表面積が十分であり、樹脂成形体に十分な強度を付与することができる。 The number average fiber diameter of the fibrous filler used in the present embodiment is preferably 5 μm or more and 20 μm or less. When the number average fiber diameter of the fibrous filler is 5 μm or more, sufficient strength can be imparted to the resin molded body. On the other hand, the larger the number average fiber diameter of the fibrous filler, the smaller the number of fibrous fillers at the same mass. When the number of fibrous fillers decreases, the contact surface area with respect to the liquid crystal polyester decreases. When the number average fiber diameter of the fibrous filler is 20 μm or less, the contact surface area with respect to the liquid crystal polyester when compared with the same mass is sufficient, and sufficient strength can be imparted to the resin molded body.
 繊維状充填材の数平均繊維長は、20μm以上190μm未満であることが好ましい。
繊維状充填材の数平均繊維長が190μm以上の場合、中空フィラー(中空状充填材)の破砕率が上昇することがある。これは、繊維状充填材の数平均繊維長が長くなるほど、溶融混練の際に摩擦が大きくなり、せん断圧力が高くなるためである。このせん断圧力が、中空状充填材の耐圧強度を超えると、中空状充填材が破砕しやすくなり、中空状充填材の破砕率が上昇すると推測される。これにより、液晶ポリエステル組成物の配向が強くなるだけでなく、容積比熱も高くなる。また、後述する樹脂成形体がCPUソケットのように格子状の構造を有する成形体である場合、繊維長が長いほど成形時の金型内において溶融樹脂が層流となる箇所が多くなることがある。層流の部分では流れ方向に樹脂および繊維状充填材が配向しやすい。そのため、樹脂成形体の収縮率の異方性・不均一性が増大する。よって、樹脂成形体の反りを十分に低減することができないことがある。
すなわち、繊維状充填材の数平均繊維長が上記範囲内であると、中空フィラーは破砕しにくいため、液晶ポリエステル組成物の配向が強くなりすぎることを防ぐことができ、容積比熱が高くなりすぎることも防ぐことができる。また、樹脂成形体が格子状の構造を有する成形体である場合、成形時の金型内で溶融樹脂が層流となる部分において、流れ方向に樹脂および繊維状充填材が配向しにくく、樹脂成形体の収縮率の異方性・不均一性の増大を防ぐことができ、樹脂成形体の反りを十分に低減することができる。
The number average fiber length of the fibrous filler is preferably 20 μm or more and less than 190 μm.
When the number average fiber length of the fibrous filler is 190 μm or more, the crushing rate of the hollow filler (hollow filler) may increase. This is because the longer the number average fiber length of the fibrous filler, the greater the friction during melt kneading and the higher the shear pressure. If this shear pressure exceeds the pressure resistance of the hollow filler, it is presumed that the hollow filler is easily crushed and the crushing rate of the hollow filler is increased. This not only strengthens the orientation of the liquid crystal polyester composition, but also increases the volume specific heat. In addition, when the resin molded body described later is a molded body having a lattice-like structure like a CPU socket, the longer the fiber length, the more locations where the molten resin becomes laminar in the mold during molding. is there. In the laminar flow portion, the resin and the fibrous filler are easily oriented in the flow direction. Therefore, the anisotropy and non-uniformity of the shrinkage rate of the resin molded body increases. Therefore, the warpage of the resin molded body may not be sufficiently reduced.
That is, when the number average fiber length of the fibrous filler is within the above range, the hollow filler is difficult to be crushed, so that the orientation of the liquid crystal polyester composition can be prevented from becoming too strong, and the volume specific heat becomes too high. Can also be prevented. Further, when the resin molded body is a molded body having a lattice structure, the resin and the fibrous filler are less likely to be oriented in the flow direction in the portion where the molten resin becomes a laminar flow in the mold at the time of molding. An increase in anisotropy and nonuniformity of the shrinkage rate of the molded body can be prevented, and the warpage of the resin molded body can be sufficiently reduced.
 なかでも、本実施形態のコネクタは、成形品の肉厚が非常に小さい成形部分(図2の最小肉厚部201参照)を有しているので、反りが顕著に見られることがある。そのため、繊維状充填材の数平均繊維長は20μm以上190μm未満が好ましく、20μm以上140μm以下であることがより好ましく、20μm以上130μm以下であることがさらに好ましく、20μm以上80μm以下であることがさらに好ましい。
本明細書において、「数平均繊維長」は、例えば、液晶ポリエステル組成物を灰化させて得られた残渣を水に分散させ、これを動的画像解析法/粒子分析計PITA-3(株式会社セイシン企業製)を用いて測定することにより得ることができる。動的画像解析法とは流体に分散させた粒子等を連続撮影し、解析を行うことで、粒度分布や形状分布を求める方法である。
「数平均繊維径」は、例えば、動的画像解析法により得ることができる。
Especially, since the connector of this embodiment has a molding part (refer to the minimum thickness part 201 in FIG. 2) where the thickness of the molded product is very small, warping may be noticeable. Therefore, the number average fiber length of the fibrous filler is preferably 20 μm or more and less than 190 μm, more preferably 20 μm or more and 140 μm or less, further preferably 20 μm or more and 130 μm or less, and further preferably 20 μm or more and 80 μm or less. preferable.
In this specification, “number average fiber length” means, for example, a residue obtained by ashing a liquid crystal polyester composition is dispersed in water, and this is dispersed into a dynamic image analysis method / particle analyzer PITA-3 (stock) It can be obtained by measuring using Seisin Corporation. The dynamic image analysis method is a method for obtaining a particle size distribution and a shape distribution by continuously capturing and analyzing particles dispersed in a fluid.
The “number average fiber diameter” can be obtained by, for example, a dynamic image analysis method.
 なお、中空状充填材の破砕率は以下のようにして算出される値である。
 液晶ポリエステル、各充填材(中空状充填材および繊維状充填材を含む)または必要に応じて添加される添加剤の密度を用いて、液晶ポリエステル組成物の配合比率から樹脂成形体の理論密度(破砕率がゼロの場合の密度)が計算できる。そして、実際の樹脂成形体の密度(実密度)を測定し、実密度と理論密度との差を求めることで、破砕率を算定することができる。
The crushing rate of the hollow filler is a value calculated as follows.
Using the density of the liquid crystal polyester, each filler (including hollow filler and fibrous filler) or the density of additives added as necessary, the theoretical density of the resin molding (from the blending ratio of the liquid crystal polyester composition ( The density when the crushing rate is zero can be calculated. And the crushing rate can be calculated by measuring the density (actual density) of the actual resin molded body and determining the difference between the actual density and the theoretical density.
Figure JPOXMLDOC01-appb-M000007
 [式中、αは中空状充填材の配合量(液晶ポリエステル100質量部に対する質量部)を表す。βは繊維状充填材の配合量(液晶ポリエステル100質量部に対する質量部)を表す。ρは液晶ポリエステルの真密度を表す。ρは中空状充填材の真密度を表す。ρは中空状充填材の材料密度を表す。ρは繊維状充填材の真密度を表す。ρは前記液晶ポリエステル組成物を射出成形して得られるASTM4号ダンベル試験片の実密度を表す。]
Figure JPOXMLDOC01-appb-M000007
[In formula, (alpha) represents the compounding quantity (mass part with respect to 100 mass parts of liquid crystalline polyester) of a hollow filler. β represents the blending amount of the fibrous filler (parts by mass relative to 100 parts by mass of the liquid crystalline polyester). ρ 0 represents the true density of the liquid crystal polyester. [rho 1 represents the true density of the hollow filler. [rho 2 represents the material density of the hollow filler. ρ 3 represents the true density of the fibrous filler. ρ represents the actual density of an ASTM No. 4 dumbbell test piece obtained by injection molding the liquid crystal polyester composition. ]
 上記式において、樹脂成形体の理論密度は、(100/ρ)+(α/ρ)+(β/ρ)で表される。また、樹脂成形体の実密度は、(100+α+β)/ρで表される。
 なお樹脂成形体の実密度はISO 1183試験方法により測定することができる。
In the above formula, the theoretical density of the resin molded body is represented by (100 / ρ 0 ) + (α / ρ 1 ) + (β / ρ 3 ). The actual density of the resin molded body is represented by (100 + α + β) / ρ.
The actual density of the resin molded body can be measured by the ISO 1183 test method.
 また、繊維状充填材の添加量は、液晶ポリエステル100質量部に対して5質量部以上80質量部以下とすることが好ましく、10質量部以上50質量部以下とすることがより好ましい。 Further, the addition amount of the fibrous filler is preferably 5 parts by mass or more and 80 parts by mass or less, and more preferably 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester.
 また、中空状充填剤と繊維状充填材の添加量の合計は、液晶ポリエステル100質量部に対して10質量部以上100質量部以下とすることが好ましく、30質量部以上100質量部以下とすることがより好ましく、50質量部を超え95質量部以下とすることがさらに好ましい。
 別の側面として、繊維状充填材の添加量は、液晶ポリエステル組成物の総質量に対して、5~25質量%が好ましく、14~20質量%であってもよい。
中空状充填剤と繊維状充填材の添加量の合計は、液晶ポリエステル組成物の総質量に対して、25~45質量%が好ましく、39~41質量%であってもよい。
Moreover, it is preferable that the sum total of the addition amount of a hollow filler and a fibrous filler shall be 10 to 100 mass parts with respect to 100 mass parts of liquid crystalline polyester, and shall be 30 to 100 mass parts. More preferably, it is more than 50 mass parts and 95 mass parts or less.
As another aspect, the addition amount of the fibrous filler is preferably 5 to 25% by mass and may be 14 to 20% by mass with respect to the total mass of the liquid crystal polyester composition.
The total addition amount of the hollow filler and the fibrous filler is preferably 25 to 45% by mass and may be 39 to 41% by mass with respect to the total mass of the liquid crystal polyester composition.
[板状充填材]
 本実施形態の液晶ポリエステル組成物には、中空状充填材および繊維状充填材に加えて、さらに板状充填材を添加することも出来る。本実施形態で使用する板状充填材の材質は特に限定されないが、例えばタルク、マイカ、グラファイトなどが挙げられる。これらの中で、タルク、マイカが好ましい。
[Plate-like filler]
In addition to the hollow filler and the fibrous filler, a plate-like filler can also be added to the liquid crystal polyester composition of the present embodiment. The material of the plate-like filler used in the present embodiment is not particularly limited, and examples thereof include talc, mica, and graphite. Of these, talc and mica are preferred.
 板状充填材の添加量が多いほど、成形品(樹脂成形体)の反りをさらに低減することができるが、その反面、液晶ポリエステル組成物の押し出し性や成形性が悪化する。特に、板状充填材の添加量が多すぎると、液晶ポリエステル組成物の流動性が悪化するために充填不良が生じ易くなる。また、板状充填材の添加量が多すぎると、樹脂成形体の機械的強度が低下するため、耐クラック性にも悪影響を及ぼす。なかでも、本実施形態のコネクタは、成形品の肉厚が非常に小さい成形部分を有しているので、クラックが顕著に見られることがある。そのため、板状充填材の添加量は、液晶ポリエステル100質量部に対して5質量部以上50質量部以下とすることが好ましく、5質量部以上30質量部未満とすることがより好ましい。
別の側面として、板状充填材の添加量は、液晶ポリエステル組成物の総質量に対して、5~25質量%が好ましい。
Although the warpage of the molded product (resin molded product) can be further reduced as the amount of the plate-like filler added is increased, the extrudability and moldability of the liquid crystal polyester composition are deteriorated. In particular, if the addition amount of the plate-like filler is too large, the fluidity of the liquid crystal polyester composition is deteriorated, so that filling failure tends to occur. Moreover, since the mechanical strength of a resin molding will fall when there is too much addition amount of a plate-shaped filler, it has a bad influence also on crack resistance. Especially, since the connector of this embodiment has a molded part with a very small thickness of the molded product, cracks may be noticeable. Therefore, the addition amount of the plate-like filler is preferably 5 parts by mass or more and 50 parts by mass or less, and more preferably 5 parts by mass or more and less than 30 parts by mass with respect to 100 parts by mass of the liquid crystalline polyester.
As another aspect, the addition amount of the plate-like filler is preferably 5 to 25% by mass with respect to the total mass of the liquid crystal polyester composition.
[その他の添加剤]
 本実施形態の液晶ポリエステル組成物には、本発明の効果を損なわない範囲で、フッ素樹脂、金属石鹸類などの離型改良剤や、染料、顔料などの着色剤や、酸化防止剤や、熱安定剤や、紫外線吸収剤や、帯電防止剤や、界面活性剤などの、射出成形品に一般的に使用される添加剤を添加してもよい。
[Other additives]
In the liquid crystal polyester composition of the present embodiment, a release improver such as a fluororesin and a metal soap, a colorant such as a dye and a pigment, an antioxidant, Additives commonly used in injection molded products such as stabilizers, ultraviolet absorbers, antistatic agents, and surfactants may be added.
 また、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸金属塩、フルオロカーボン系界面活性剤などの外部滑剤効果を有するものを添加してもよい。 Further, those having an external lubricant effect such as higher fatty acid, higher fatty acid ester, higher fatty acid metal salt, and fluorocarbon surfactant may be added.
 さらに、上述した以外の熱可塑性樹脂、例えばポリアミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリフェニレンエーテルおよびその変性物、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルイミドなどや、熱硬化性樹脂、例えばフェノール樹脂、エポキシ樹脂、ポリイミド樹脂などを少量添加してもよい。
 すなわち、1つの側面として、本実施形態の液晶ポリエステル組成物は、上記液晶ポリエステルと、中空状充填材と、繊維状充填材と、所望により、板状充填材及び上記その他の添加剤からなる群から選択される少なくとも1つを含む。
Furthermore, thermoplastic resins other than those mentioned above, such as polyamide, polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyphenylene ether and modified products thereof, polysulfone, polyether sulfone, polyetherimide, etc., thermosetting resins such as A small amount of phenol resin, epoxy resin, polyimide resin or the like may be added.
That is, as one aspect, the liquid crystal polyester composition of the present embodiment is a group consisting of the liquid crystal polyester, a hollow filler, a fibrous filler, and optionally a plate-like filler and the other additives. At least one selected from.
<樹脂成形体の製造方法>
 次に、本実施形態の液晶ポリエステル組成物を用いた樹脂成形体の製造方法について説明する。以下では、樹脂成形体の例としてコネクタの一つであるCPUソケットを挙げて、その製造方法について説明するが、本実施形態はこれに限定されない。
<Production method of resin molding>
Next, the manufacturing method of the resin molding using the liquid crystal polyester composition of this embodiment is demonstrated. Hereinafter, a CPU socket that is one of connectors will be described as an example of a resin molded body, and a manufacturing method thereof will be described. However, the present embodiment is not limited to this.
[液晶ポリエステルの製造方法]
 以下、本実施形態に係る液晶ポリエステルの製造方法の一例について説明する。
[Production method of liquid crystalline polyester]
Hereinafter, an example of a method for producing the liquid crystal polyester according to the present embodiment will be described.
 本実施形態の液晶ポリエステルは、以下のアシル化工程および重合工程によって製造することが好ましい。
[アシル化工程]:芳香族ジオールおよび芳香族ヒドロキシカルボン酸のフェノール性水酸基を脂肪酸無水物(例えば無水酢酸など)によってアシル化することにより、アシル化物(すなわち、芳香族ジオールアシル化物および芳香族ヒドロキシカルボン酸アシル化物)を得る。
[重合工程]:アシル化工程で得られたアシル化物のアシル基と、芳香族ジカルボン酸および芳香族ヒドロキシカルボン酸のアシル化物のカルボキシル基とを、エステル交換させて重合することにより、液晶ポリエステルを得る。
The liquid crystal polyester of this embodiment is preferably produced by the following acylation step and polymerization step.
[Acylation step]: Acylation of a phenolic hydroxyl group of an aromatic diol and an aromatic hydroxycarboxylic acid with a fatty acid anhydride (for example, acetic anhydride, etc.), ie, an acyl diol acylated product and an aromatic hydroxy Carboxylic acid acylate) is obtained.
[Polymerization step]: By transesterifying the acyl group of the acylated product obtained in the acylation step with the carboxyl group of the acylated product of aromatic dicarboxylic acid and aromatic hydroxycarboxylic acid, the liquid crystalline polyester is polymerized. obtain.
 アシル化工程および重合工程は、下記に表されたような複素環状有機塩基化合物の存在下で行ってもよい。 The acylation step and the polymerization step may be performed in the presence of a heterocyclic organic base compound as shown below.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記構造式において、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、ヒドロキシメチル基、シアノ基、アルキル基の炭素数が1~4であるシアノアルキル基、アルコキシ基の炭素数が1~4であるシアノアルコキシ基、カルボキシル基、アミノ基、炭素数1~4のアミノアルキル基、炭素数1~4のアミノアルコキシ基、フェニル基、ベンジル基、フェニルプロピル基またはフォルミル基を表している。 In the above structural formula, R 1 to R 4 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxymethyl group, a cyano group, or a cyanoalkyl group having 1 to 4 carbon atoms in the alkyl group, Cyanoalkoxy group having 1 to 4 carbon atoms, carboxyl group, amino group, aminoalkyl group having 1 to 4 carbon atoms, aminoalkoxy group having 1 to 4 carbon atoms, phenyl group, benzyl group, phenylpropyl group Or represents a formyl group.
 上式の複素環状有機塩基化合物の中でも、入手の容易性からすれば、1-メチルイミダゾールもしくは1-エチルイミダゾールまたはその両方が、特に好ましい。 Among the heterocyclic organic base compounds of the above formula, 1-methylimidazole or 1-ethylimidazole or both are particularly preferable from the viewpoint of availability.
 また、複素環状有機塩基化合物の使用量は、液晶ポリエステルの原料モノマー(すなわち、芳香族ジカルボン酸、芳香族ジオールおよび芳香族ヒドロキシカルボン酸)の総量を100質量部としたときに、0.005~1質量部となるようにすることが好ましい。また、成形体(この実施形態では樹脂成形体)の色調や生産性を向上させる観点からは、原料モノマーの総量100質量部に対して0.05~0.5質量部とすることが、より好ましい。 The amount of the heterocyclic organic base compound used is 0.005 to when the total amount of raw material monomers for liquid crystal polyester (that is, aromatic dicarboxylic acid, aromatic diol and aromatic hydroxycarboxylic acid) is 100 parts by mass. It is preferable to be 1 part by mass. Further, from the viewpoint of improving the color tone and productivity of the molded body (resin molded body in this embodiment), it is more preferably 0.05 to 0.5 parts by mass with respect to 100 parts by mass of the total amount of raw material monomers. preferable.
 かかる複素環状有機塩基化合物は、アシル化反応およびエステル交換反応の際の一時期に存在していればよく、その添加時期は、アシル化反応開始の直前であってもよいし、アシル化反応の途中であってもよいし、アシル化反応とエステル交換反応の間であってもよい。このようにして得られる液晶ポリエステルは、溶融流動性が非常に高いという利点を有する。 Such a heterocyclic organic base compound may be present at one time during the acylation reaction and the transesterification reaction, and the addition time may be immediately before the start of the acylation reaction or during the acylation reaction. It may be between the acylation reaction and the transesterification reaction. The liquid crystal polyester thus obtained has an advantage that the melt fluidity is very high.
 脂肪酸無水物(例えば無水酢酸など)の使用量は、原料モノマーである芳香族ジオールもしくは芳香族ヒドロキシカルボン酸またはその両方の使用量を考慮して決定する。具体的には、これら原料モノマーに含まれるフェノール性水酸基の合計に対して、1.0~1.2倍当量とすることが好ましく、1.0~1.15倍当量とすることがより好ましく、1.03~1.12倍当量とすることがさらに好ましく、1.05~1.1倍当量とすることがとりわけ好ましい。 The amount of fatty acid anhydride (for example, acetic anhydride, etc.) used is determined in consideration of the amount of aromatic diol and / or aromatic hydroxycarboxylic acid that are raw material monomers. Specifically, it is preferably 1.0 to 1.2 times equivalent, more preferably 1.0 to 1.15 times equivalent to the total of phenolic hydroxyl groups contained in these raw material monomers. 1.03 to 1.12 times equivalent, more preferably 1.05 to 1.1 times equivalent.
 上述のアシル化工程におけるアシル化反応は、130℃~180℃の温度範囲で30分間~20時間行うことが好ましく、140℃~160℃で1~5時間行うことがより好ましい。 The acylation reaction in the acylation step described above is preferably performed at a temperature range of 130 ° C. to 180 ° C. for 30 minutes to 20 hours, more preferably at 140 ° C. to 160 ° C. for 1 to 5 hours.
 上述の重合工程で使用する芳香族ジカルボン酸は、アシル化工程の際に反応系中に存在させておいてもよい。すなわち、アシル化工程において、芳香族ジオール、芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸を、同一の反応系中に存在させておいてもよい。
これは、芳香族ジカルボン酸にあるカルボキシル基および任意に置換されてもよい置換基は、いずれも、脂肪酸無水物によって何ら影響を受けないからである。したがって、芳香族ジオール、芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸を反応器に仕込んだ後でアシル化工程および重合工程を順次行う方法でもよいし、芳香族ジオールおよび芳香族ジカルボン酸を反応器に仕込んでアシル化工程を行った後で芳香族ジカルボン酸をさらに反応器に仕込んで重合工程を行う方法でもよい。製造工程を簡便化するという観点からは、前者の方法が好ましい。
The aromatic dicarboxylic acid used in the above polymerization step may be present in the reaction system during the acylation step. That is, in the acylation step, the aromatic diol, the aromatic hydroxycarboxylic acid and the aromatic dicarboxylic acid may be present in the same reaction system.
This is because both the carboxyl group in the aromatic dicarboxylic acid and the optionally substituted substituent are not affected by the fatty acid anhydride. Therefore, after the aromatic diol, the aromatic hydroxycarboxylic acid and the aromatic dicarboxylic acid are charged to the reactor, the acylation step and the polymerization step may be sequentially performed, or the aromatic diol and the aromatic dicarboxylic acid are used in the reactor. A method may be employed in which the aromatic dicarboxylic acid is further charged into the reactor after the acylation step and the polymerization step is performed. From the viewpoint of simplifying the production process, the former method is preferred.
 上述の重合工程におけるエステル交換反応は、昇温速度0.1~50℃/分で130℃から400℃まで昇温しながら行うことが好ましく、昇温速度0.3~5℃/分で150℃から350℃まで昇温しながら行うことがさらに好ましい。 The transesterification reaction in the polymerization step described above is preferably performed while raising the temperature from 130 ° C. to 400 ° C. at a temperature rising rate of 0.1 to 50 ° C./min, and 150 ° C. at a temperature rising rate of 0.3 to 5 ° C./min. More preferably, the temperature is raised from 350C to 350C.
 また、重合工程のエステル交換反応を行う際には、平衡をずらすために、副生する脂肪酸(例えば酢酸など)および未反応の脂肪酸無水物(例えば無水酢酸など)を、蒸発させて系外に留去させることが好ましい。このとき、留出する脂肪酸の一部を還流させて反応器に戻すことにより、脂肪酸と同伴して蒸発または昇華する原料モノマーなどを凝縮または逆昇華させて反応器に戻すこともできる。 In addition, when performing the transesterification reaction in the polymerization step, in order to shift the equilibrium, by-product fatty acids (such as acetic acid) and unreacted fatty acid anhydrides (such as acetic anhydride) are evaporated to the outside of the system. It is preferable to distill off. At this time, a part of the distilled fatty acid is refluxed and returned to the reactor, whereby the raw material monomer that evaporates or sublimates with the fatty acid can be condensed or reversely sublimated and returned to the reactor.
 アシル化工程のアシル化反応および重合工程のエステル交換反応では、反応器として、回分装置を用いてもよいし、連続装置を用いてもよい。いずれの反応装置を用いても、本実施形態に使用することが可能な液晶ポリエステルを得られる。 In the acylation reaction in the acylation step and the transesterification reaction in the polymerization step, a batch apparatus or a continuous apparatus may be used as the reactor. Any reaction apparatus can be used to obtain a liquid crystal polyester that can be used in the present embodiment.
 上述した重合工程の後に、この重合工程で得られた液晶ポリエステルを高分子量化するための工程を行ってもよい。例えば、重合工程で得られた液晶ポリエステルを冷却した後で粉砕することによって粉体状の液晶ポリエステルを作製し、さらに、この粉体を加熱することで、液晶ポリエステルを高分子量化することができる。 After the polymerization step described above, a step for increasing the molecular weight of the liquid crystal polyester obtained in this polymerization step may be performed. For example, the liquid crystalline polyester obtained in the polymerization step can be cooled and then pulverized to produce a powdered liquid crystalline polyester, and the powder can be heated to increase the molecular weight of the liquid crystalline polyester. .
 また、冷却および粉砕で得た粉体状の液晶ポリエステルを造粒することによってペレット状の液晶ポリエステルを作製し、その後でこのペレット状液晶ポリエステルを加熱することにより、液晶ポリエステルの高分子量化を行ってもよい。これらの方法を用いた高分子量化は、前記技術分野では、固相重合と称されている。固相重合は、液晶ポリエステルを高分子量化する方法としては、特に有効である。液晶ポリエステルを高分子量化することにより、上述した好適な流動開始温度を有する液晶ポリエステルを得ることができる。 Also, pelletized liquid crystal polyester is produced by granulating powdered liquid crystal polyester obtained by cooling and pulverization, and then the pelletized liquid crystal polyester is heated to increase the molecular weight of liquid crystal polyester. May be. High molecular weight using these methods is referred to as solid phase polymerization in the technical field. Solid phase polymerization is particularly effective as a method for increasing the molecular weight of liquid crystal polyester. By increasing the molecular weight of the liquid crystal polyester, it is possible to obtain the liquid crystal polyester having the above-described suitable flow start temperature.
 固相重合の際の加熱処理は不活性気体(例えば窒素など)雰囲気下または減圧下で行うことが好ましい。また、固相重合の際の加熱時間は1~20時間とすることが好ましい。加熱温度は130~400℃が好ましい。
さらに、この加熱処理に使用する装置としては、既知の乾燥機、反応機、イナートオーブン、混合機、電気炉などが挙げられる。
The heat treatment in the solid phase polymerization is preferably performed in an inert gas (for example, nitrogen) atmosphere or under reduced pressure. The heating time in the solid phase polymerization is preferably 1 to 20 hours. The heating temperature is preferably 130 to 400 ° C.
Furthermore, examples of the apparatus used for this heat treatment include known dryers, reactors, inert ovens, mixers, and electric furnaces.
[液晶ポリエステル組成物の配合方法]
 本実施形態に係る液晶ポリエステル組成物の原料成分を配合する方法は、特に限定されない。例えば、上述の方法で製造した液晶ポリエステルと、中空状充填材と、繊維状充填材と、必要に応じて板状充填材または上記添加剤(すなわち、上述した離型材料剤、熱安定剤など)とを、各々別々に溶融混合機に供給してもよい。また、これらの原料成分を乳鉢、ヘンシェルミキサー、ボールミル、リボンブレンダーなどを用いて予備混合してから、溶融混合機に供給してもよい。さらには、液晶ポリエステルと繊維状充填材とを溶融混合することによって作製したペレットと、液晶ポリエステルと中空状充填材とを溶融混合することによって作製したペレットとを、所望の配合比で混合してもよい。
[Method of blending liquid crystal polyester composition]
The method for blending the raw material components of the liquid crystal polyester composition according to the present embodiment is not particularly limited. For example, the liquid crystalline polyester produced by the above-described method, a hollow filler, a fibrous filler, and a plate-like filler or the additive as necessary (that is, the above-described release material agent, heat stabilizer, etc. ) May be supplied separately to the melt mixer. Further, these raw material components may be premixed using a mortar, Henschel mixer, ball mill, ribbon blender or the like and then supplied to the melt mixer. Furthermore, the pellets prepared by melt-mixing the liquid crystalline polyester and the fibrous filler and the pellets prepared by melt-mixing the liquid crystalline polyester and the hollow filler are mixed at a desired blending ratio. Also good.
[樹脂成形体の製造方法]
 本実施形態では、このような配合方法によって得られた液晶ポリエステル組成物から、図1に示したような樹脂成形体であるCPUソケットを作製する。この作製には、例えば射出成形法が使用できる。
[Method for producing resin molded body]
In the present embodiment, a CPU socket that is a resin molded body as shown in FIG. 1 is produced from the liquid crystal polyester composition obtained by such a blending method. For this production, for example, an injection molding method can be used.
 本実施形態における射出成形は、公知の射出成形機を用いて、液晶ポリエステル組成物を溶融させ、溶融した液晶ポリエステル組成物を、適切な温度に加熱して、金型内に射出することにより行うことができる。 The injection molding in the present embodiment is performed by melting a liquid crystal polyester composition using a known injection molding machine, heating the melted liquid crystal polyester composition to an appropriate temperature, and injecting it into a mold. be able to.
 射出するために液晶ポリエステル組成物を加熱溶融させる温度は、使用する液晶ポリエステル組成物の流動開始温度Tp℃を基点として、[Tp+10]℃以上、[Tp+50]℃以下とすることが好ましい。 The temperature at which the liquid crystal polyester composition is heated and melted for injection is preferably [Tp + 10] ° C. or more and [Tp + 50] ° C. or less based on the flow start temperature Tp ° C. of the liquid crystal polyester composition to be used.
 また、金型の温度は、液晶ポリエステル組成物の冷却速度と生産性の点から、室温(例えば、23℃)~180℃の範囲から選択することが好ましい。 The temperature of the mold is preferably selected from the range of room temperature (for example, 23 ° C.) to 180 ° C. from the viewpoint of the cooling rate and productivity of the liquid crystal polyester composition.
 本実施形態によれば、耐クラック性および反り耐性に優れた樹脂成形体を成形可能な液晶ポリエステル組成物が提供される。また、このような液晶ポリエステル組成物を用いることで、耐クラック性および反り耐性に優れた樹脂成形体、特にコネクタが提供される。 According to the present embodiment, there is provided a liquid crystal polyester composition capable of molding a resin molded article excellent in crack resistance and warpage resistance. Further, by using such a liquid crystal polyester composition, a resin molded body excellent in crack resistance and warpage resistance, particularly a connector is provided.
本発明の液晶ポリエステル組成物の別の側面は、
 液晶ポリエステルと、中空状充填材と、繊維状充填材と、所望により板状充填材とその他の添加剤からなる群から選択される少なくとも1つと、を含み;
 前記液晶ポリエステルは、
構造単位(A)と、構造単位(B)と、構造単位(B)と、構造単位(C)とを含み、
構造単位(C)と構造単位(A)のモル比率(C)/(A)が0.2以上1.0以下であり、
構造単位(B)と構造単位(B)の合計に対する構造単位(C)のモル比率{(B)+(B)}/(C)が0超1以下であり、
構造単位(B)と構造単位(B)のモル比率(B)/(B)が0超0.3以下であり;
前記中空状充填材は、ガラス、シリカ、アルミナ、尿素樹脂およびフェノール樹脂からなる群から選択される少なくとも1つであり、好ましくはガラスバルーンであり、
数平均粒径は、5μm以上100μm以下、好ましくは10μm以上100μm以下であり、
前記中空状充填材の含有量は、前記液晶ポリエステル100質量部に対して5質量部以上80質量部以下、好ましくは10質量部以上50質量部以下であり、または前記液晶ポリエステル組成物の総質量に対して、19~26質量%であってもよく;
前記繊維状充填材は、ガラス繊維、シリカアルミナ繊維、アルミナ繊維、炭素繊維からなる群から選択される少なくとも1つであり、好ましくはガラス繊維であり、
数平均繊維長は、20μm以上190μm未満、好ましくは20μm以上140μm以下、より好ましくは20μm以上130μm以下、さらに好ましくは20μm以上80μm以下であり、
 数平均繊維径は、5μm以上20μm以下であり、
 前記繊維状充填材の含有量は、前記液晶ポリエステル100質量部に対して5質量部以上80質量部以下、好ましくは10質量部以上50質量部以下であり、または前記液晶ポリエステル組成物の総質量に対して、14~20質量%であってもよく、
 前記中空状充填剤と前記繊維状充填材の含有量の合計は、前記液晶ポリエステル100質量部に対して10質量部以上100質量部以下、好ましくは30質量部以上100質量部以下、より好ましくは50質量部超95質量部以下であり、または前記液晶ポリエステル組成物の総質量に対して、39~41質量%であってもよい、
液晶ポリエステル組成物である。 
また本発明の更に別の側面は、上記液晶ポリエステルから射出成形により形成されたコネクタである。
Another aspect of the liquid crystal polyester composition of the present invention is:
Including at least one selected from the group consisting of a liquid crystalline polyester, a hollow filler, a fibrous filler, and optionally a plate-like filler and other additives;
The liquid crystal polyester is
Including a structural unit (A 1 ), a structural unit (B 1 ), a structural unit (B 2 ), and a structural unit (C 1 ),
The molar ratio of the structural units (C 1) and structural units (A 1) (C 1) / (A 1) is 0.2 to 1.0,
The molar ratio {(B 1 ) + (B 2 )} / (C 1 ) of the structural unit (C 1 ) to the sum of the structural unit (B 1 ) and the structural unit (B 2 ) is more than 0 and 1 or less,
The molar ratio (B 2 ) / (B 1 ) of the structural unit (B 1 ) to the structural unit (B 2 ) is more than 0 and 0.3 or less;
The hollow filler is at least one selected from the group consisting of glass, silica, alumina, urea resin, and phenol resin, preferably a glass balloon,
The number average particle diameter is 5 μm or more and 100 μm or less, preferably 10 μm or more and 100 μm or less,
The content of the hollow filler is 5 parts by mass or more and 80 parts by mass or less, preferably 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester, or the total mass of the liquid crystal polyester composition. 19 to 26% by weight, based on
The fibrous filler is at least one selected from the group consisting of glass fiber, silica alumina fiber, alumina fiber, and carbon fiber, preferably glass fiber,
The number average fiber length is 20 μm or more and less than 190 μm, preferably 20 μm or more and 140 μm or less, more preferably 20 μm or more and 130 μm or less, and further preferably 20 μm or more and 80 μm or less,
The number average fiber diameter is 5 μm or more and 20 μm or less,
The content of the fibrous filler is 5 parts by mass or more and 80 parts by mass or less, preferably 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester, or the total mass of the liquid crystal polyester composition. May be 14 to 20% by mass,
The total content of the hollow filler and the fibrous filler is 10 to 100 parts by mass, preferably 30 to 100 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the liquid crystalline polyester. It may be more than 50 parts by weight and not more than 95 parts by weight, or 39 to 41% by weight based on the total weight of the liquid crystal polyester composition.
It is a liquid crystal polyester composition.
Yet another aspect of the present invention is a connector formed by injection molding from the above liquid crystalline polyester.
 以下、本発明の一実施例について説明するが、本発明が本実施例に限定されるものではない。液晶ポリエステルの物性は、以下の方法で測定した。 Hereinafter, one embodiment of the present invention will be described, but the present invention is not limited to this embodiment. The physical properties of the liquid crystal polyester were measured by the following methods.
<液晶ポリエステルの流動開始温度の測定>
 フローテスター(島津製作所社製、CFT-500型)を用いて、液晶ポリエステル約2gを、内径1mmおよび長さ10mmのノズルを有するダイを取り付けたシリンダーに充填し、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、ノズルから押し出し、4800Pa・s(48000ポイズ)の粘度を示す温度を測定した。
<Measurement of flow start temperature of liquid crystal polyester>
Using a flow tester (manufactured by Shimadzu Corporation, CFT-500 type), about 2 g of liquid crystal polyester was filled into a cylinder equipped with a die having a nozzle having an inner diameter of 1 mm and a length of 10 mm, and 9.8 MPa (100 kg / cm 2). The liquid crystal polyester was melted while being heated at a rate of 4 ° C./min under a load of 4), extruded from a nozzle, and a temperature showing a viscosity of 4800 Pa · s (48000 poise) was measured.
<製造例(液晶ポリエステルの製造)>
 以下の方法を用いて、液晶ポリエステルを製造した。
<Production example (Production of liquid crystalline polyester)>
Liquid crystal polyester was produced using the following method.
 まず、攪拌装置、トルクメータ、窒素ガス導入管、温度計および還流冷却器を備えた反応器に、構造単位(A)を与えるパラヒドロキシ安息香酸994.5g(7.2モル)、構造単位(C)を与える4,4’-ジヒドロキシビフェニル446.9g(2.4モル)、構造単位(B)を与えるテレフタル酸299.0g(1.8モル)、構造単位(B)を与えるイソフタル酸99.7g(0.6モル)および無水酢酸1347.6g(13.2モル)を仕込んだ。このとき、モル比率(C)/(A)は約0.3、モル比率{(B)+(B)}/(C)は1.0、モル比率(B)/(B)は約0.3である。 First, 994.5 g (7.2 mol) of parahydroxybenzoic acid which gives a structural unit (A 1 ) to a reactor equipped with a stirrer, a torque meter, a nitrogen gas introduction pipe, a thermometer and a reflux condenser, 446.9 g (2.4 mol) of 4,4′-dihydroxybiphenyl which gives (C 1 ), 299.0 g (1.8 mol) of terephthalic acid which gives the structural unit (B 1 ), and structural unit (B 2 ) 99.7 g (0.6 mol) of isophthalic acid to be provided and 1347.6 g (13.2 mol) of acetic anhydride were charged. At this time, the molar ratio (C 1 ) / (A 1 ) is about 0.3, the molar ratio {(B 1 ) + (B 2 )} / (C 1 ) is 1.0, and the molar ratio (B 2 ) / (B 1 ) is about 0.3.
 次に、反応器内を窒素ガスで十分に置換した後、1-メチルイミダゾールを0.18g添加し、窒素ガス気流下で30分かけて室温から150℃まで昇温し、この温度を保持して30分間還流させた。さらに、1-メチルイミダゾールを2.4g添加した後、留出する副生酢酸や未反応の無水酢酸を留去しながら2時間50分かけて150℃から320℃まで昇温した。その後、トルクの上昇が認められる時点を反応終了とみなして、内容物を取り出した。 Next, after sufficiently replacing the inside of the reactor with nitrogen gas, 0.18 g of 1-methylimidazole was added, and the temperature was raised from room temperature to 150 ° C. over 30 minutes under a nitrogen gas stream, and this temperature was maintained. And refluxed for 30 minutes. Further, 2.4 g of 1-methylimidazole was added, and the temperature was raised from 150 ° C. to 320 ° C. over 2 hours and 50 minutes while distilling off by-product acetic acid and unreacted acetic anhydride. Thereafter, the time point at which an increase in torque was recognized was regarded as the end of the reaction, and the contents were taken out.
 続いて、このようにして得られた固形分(内容物)を室温まで冷却し、粗粉砕機で粉砕した。粉砕後の固形分を、窒素雰囲気下で、室温から250℃まで1時間かけて昇温し、さらに250℃から295℃まで5時間かけて昇温し、さらに295℃で3時間保持することにより、固相重合を行った。 Subsequently, the solid content (contents) thus obtained was cooled to room temperature and pulverized with a coarse pulverizer. By raising the solid content after pulverization from room temperature to 250 ° C. over 1 hour in a nitrogen atmosphere, further raising the temperature from 250 ° C. to 295 ° C. over 5 hours, and holding at 295 ° C. for 3 hours. Then, solid state polymerization was performed.
 最後に、固相重合後の生成物を冷却することにより、液晶ポリエステルを得た。得られた液晶ポリエステルの流動開始温度は、327℃であった。 Finally, the product after solid-phase polymerization was cooled to obtain a liquid crystal polyester. The flow starting temperature of the obtained liquid crystal polyester was 327 ° C.
<実施例1~3、比較例1~2(液晶ポリエステル組成物の配合および成形)>
 製造例で得られた液晶ポリエステルを用い、以下のようにして、実施例1~3および比較例1~2のCPUソケットを3個ずつ作製した。
<Examples 1 to 3, Comparative Examples 1 to 2 (Formulation and molding of liquid crystal polyester composition)>
Using the liquid crystal polyester obtained in the production example, three CPU sockets of Examples 1 to 3 and Comparative Examples 1 to 2 were produced as follows.
 表1に示した質量組成比で、液晶ポリエステルと、各種充填材とを配合し、2軸押出機(池貝鉄工株式会社製、「PCM-30」)を用い、シリンダー温度340℃で造粒を行うことにより、ペレット状の液晶ポリエステル組成物(実施例1~3および比較例1~4)を得た。
 その後、得られたペレット状の液晶ポリエステル組成物を、下記成形条件にて成形することにより、実施例1~3および比較例1~2のコネクタ(図1(A)、図1(B)および図2に示した2544ピン対応のモデルCPUソケット、以下、「CPUソケット」と称する。)を作製した。なお、本実施例で使用した各種充填材は下記のとおりである。各種充填材の数平均繊維長、数平均繊維径、数平均粒径はカタログ値である。
In the mass composition ratio shown in Table 1, liquid crystal polyester and various fillers were blended, and granulated at a cylinder temperature of 340 ° C. using a twin screw extruder (Ikegai Iron Works Co., Ltd., “PCM-30”). As a result, pellet-shaped liquid crystal polyester compositions (Examples 1 to 3 and Comparative Examples 1 to 4) were obtained.
Thereafter, the obtained pellet-like liquid crystal polyester composition was molded under the following molding conditions, so that the connectors of Examples 1 to 3 and Comparative Examples 1 and 2 (FIG. 1 (A), FIG. 1 (B) and A model CPU socket corresponding to 2544 pins shown in FIG. 2 (hereinafter referred to as “CPU socket”) was produced. The various fillers used in this example are as follows. The number average fiber length, number average fiber diameter, and number average particle diameter of various fillers are catalog values.
[充填材]
(1)中空状充填材
 ガラスバルーン:S60HS(住友スリーエム株式会社製)、数平均粒径20μm
(2)繊維充填材
 ミルドガラス繊維:EFH75-01(セントラルグラスファイバー株式会社製)、数平均繊維長75μm、数平均繊維径11μm
         :EFH150-01(セントラルグラスファイバー株式会社製)、数平均繊維長150μm、数平均繊維径11μm
(3)粒状充填材
 ガラスビーズ:EGB731(ポッターズ・バロティーニ株式会社製)、数平均粒径20μm
[Filler]
(1) Hollow filler Glass balloon: S60HS (manufactured by Sumitomo 3M Limited), number average particle diameter 20 μm
(2) Fiber filler Milled glass fiber: EFH75-01 (manufactured by Central Glass Fiber Co., Ltd.), number average fiber length 75 μm, number average fiber diameter 11 μm
: EFH150-01 (manufactured by Central Glass Fiber Co., Ltd.), number average fiber length 150 μm, number average fiber diameter 11 μm
(3) Granular filler Glass beads: EGB731 (manufactured by Potters Barotini Co., Ltd.), number average particle diameter 20 μm
[成形条件]
成形機:FANUC社製、「ROBOSHOT S-2000i 30B」
シリンダー温度:360℃
金型温度:100℃
射出速度:250mm/秒
[Molding condition]
Molding machine: “ROBOSHOT S-2000i 30B” manufactured by FANUC
Cylinder temperature: 360 ° C
Mold temperature: 100 ° C
Injection speed: 250mm / sec
<CPUソケットの評価>
 実施例1~3および比較例1~2で得られた7種類のCPUソケットについて、以下のような評価を行った。
<Evaluation of CPU socket>
The seven types of CPU sockets obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were evaluated as follows.
(1)反り量(反り耐性の評価)
 得られたCPUソケットをガラス平面上に置き、株式会社コアーズ製の平坦度測定モジュール「9030c」を用いて、前記CPUソケットにおける任意の92点について前記ガラス平面からの高さを求めた。そして、前記92点の高さを用いて、最小二乗法により前記CPUソケットの最小二乗平面を算出した。前記92点の高さのうち最も低い点を含むように前記最小二乗平面の高さを平行移動したときの、前記最小二乗平面から、前記92点の高さのうち最も高い点までの距離を反り量として算出した。
(1) Warpage amount (evaluation of warpage resistance)
The obtained CPU socket was set | placed on the glass plane, and the height from the said glass plane was calculated | required about arbitrary 92 points | pieces in the said CPU socket using the flatness measurement module "9030c" made from a cores. Then, the least square plane of the CPU socket was calculated by the least square method using the heights of the 92 points. A distance from the least square plane to the highest point among the heights of the 92 points when the height of the least squares plane is translated so as to include the lowest point among the heights of the 92 points. The amount of warpage was calculated.
 次に、このCPUソケットについて、室温から160℃まで昇温速度2℃/秒で昇温し、160℃で1分間保持し、さらに250℃まで昇温速度2℃/秒で昇温し、250℃で1分間保持し、その後で50℃まで徐冷するという熱処理を実施した。 Next, the CPU socket was heated from room temperature to 160 ° C. at a temperature rising rate of 2 ° C./second, held at 160 ° C. for 1 minute, and further heated to 250 ° C. at a temperature rising rate of 2 ° C./second. A heat treatment was performed in which the temperature was maintained at 1 ° C. for 1 minute and then gradually cooled to 50 ° C.
 そして、この熱処理後のCPUソケットを室温まで冷却した後、上記と同様に反り量を測定した。上記の操作を、実施例1~3および比較例1~2でそれぞれ作製した3つの異なる試験片(CPUソケット)に対して行い、その平均値を「加熱後反り量」とした。結果を表1に示す。 And after cooling the CPU socket after this heat treatment to room temperature, the amount of warpage was measured in the same manner as described above. The above operation was performed on three different test pieces (CPU sockets) produced in Examples 1 to 3 and Comparative Examples 1 and 2, respectively, and the average value was defined as “warping amount after heating”. The results are shown in Table 1.
(2)クラック(耐クラック性の評価)
 熱処理後のCPUソケットを室温まで冷却した後、デジタルマイクロスコープ(株式会社キーエンス製「VHX-1000」、使用レンズ「VH-Z25」)を用いて、熱処理後のCPUソケットを観察した。そして、CPUソケットに生じたクラックの個数を計測した。同様の計測を、3個のCPUソケットについて行い、3個の計測値の平均値をクラック発生数とした。表1に、実施例1~3および比較例1~2のCPUソケットにおけるクラック発生数を示す。
(2) Crack (Evaluation of crack resistance)
The CPU socket after the heat treatment was cooled to room temperature, and then the CPU socket after the heat treatment was observed using a digital microscope (“VHX-1000” manufactured by Keyence Corporation, lens “VH-Z25” used). Then, the number of cracks generated in the CPU socket was measured. The same measurement was performed for three CPU sockets, and the average value of the three measured values was defined as the number of cracks. Table 1 shows the number of cracks generated in the CPU sockets of Examples 1 to 3 and Comparative Examples 1 and 2.
(3)容積比熱
 まず、JIS K7123:2012に記載されている方法を用い、実施例1~3および比較例1~2に用いた液晶ポリエステル組成物の比熱容量(単位:J/gK)を測定した。具体的には、実施例1~3および比較例1~2に用いた液晶ポリエステル組成物から作成した試験片(ASTM4号ダンベル試験片)について、示差走査熱量測定装置(株式会社島津製作所製、「DSC-50」)を用いて、100℃での比熱容量(J/gK)を測定した。
(3) Volume specific heat First, the specific heat capacity (unit: J / gK) of the liquid crystal polyester compositions used in Examples 1 to 3 and Comparative Examples 1 and 2 was measured using the method described in JIS K7123: 2012. did. Specifically, a differential scanning calorimeter (manufactured by Shimadzu Corporation, “Test No. 4 dumbbell test piece”) prepared from the liquid crystal polyester compositions used in Examples 1 to 3 and Comparative Examples 1 and 2 was used. DSC-50 ") was used to measure the specific heat capacity (J / gK) at 100 ° C.
 次に、実施例1~3および比較例1~2に用いた液晶ポリエステル組成物から作成した試験片(ASTM4号ダンベル試験片)について、固体比重計(関東メジャー株式会社製、「ASG-320K」)を用いて密度(g/cm)を測定した。測定された、比熱容量と密度とを用いて、次式から容積比熱を算出した。表1に、実施例1~3および比較例1~2に用いた液晶ポリエステル組成物における容積比熱を示す。
  容積比熱(J/cmK)=比熱容量(J/gK)×密度(g/cm
Next, for the test pieces (ASTM No. 4 dumbbell test pieces) prepared from the liquid crystal polyester compositions used in Examples 1 to 3 and Comparative Examples 1 and 2, a solid specific gravity meter (“ASG-320K” manufactured by Kanto Major Co., Ltd.) was used. ) was measured density (g / cm 3) using. Using the measured specific heat capacity and density, the volume specific heat was calculated from the following equation. Table 1 shows the volume specific heat in the liquid crystal polyester compositions used in Examples 1 to 3 and Comparative Examples 1 and 2.
Volume specific heat (J / cm 3 K) = specific heat capacity (J / g K) × density (g / cm 3 )
 (4)数平均繊維長(ペレット成形加工後)
 2軸押出機でペレット状に成形した、実施例1~3および比較例1~2の液晶ポリエステル組成物を、2gるつぼに採取した。これを、電気炉内にて600℃で4時間処理して灰化させ、残渣を得た。この残渣を水に分散させ、動的画像解析法/粒子分析計PITA-3(株式会社セイシン企業製)を用いて、繊維状充填材の数平均繊維長を測定した。フィルタ条件(解析条件)として、アスペクト比2未満、外接矩形短径(繊維径)5μm未満および20μmを超えるもの、細線化画素(繊維長)20μm未満であるものは繊維状充填材ではないものとしてすべて除外した。
(4) Number average fiber length (after pellet molding)
The liquid crystal polyester compositions of Examples 1 to 3 and Comparative Examples 1 to 2 which were formed into pellets with a twin screw extruder were collected in a 2 g crucible. This was treated and ashed at 600 ° C. for 4 hours in an electric furnace to obtain a residue. The residue was dispersed in water, and the number average fiber length of the fibrous filler was measured using a dynamic image analysis method / particle analyzer PITA-3 (manufactured by Seishin Enterprise Co., Ltd.). Filter conditions (analysis conditions) that have an aspect ratio of less than 2, circumscribed rectangular short diameter (fiber diameter) of less than 5 μm and greater than 20 μm, and thinned pixels (fiber length) of less than 20 μm are not fibrous fillers All excluded.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1に示すように、実施例1では、樹脂成分(液晶ポリエステル)100質量部に対し、数平均繊維長の実測値が70μmである繊維状充填材33.3質量部と、中空状充填材33.3質量部とを含む液晶ポリエステル組成物を用いた。この液晶ポリエステル組成物の容積比熱は1.95(J/cmK)であった。 As shown in Table 1, in Example 1, with respect to 100 parts by mass of the resin component (liquid crystal polyester), 33.3 parts by mass of a fibrous filler having a measured number average fiber length of 70 μm, and a hollow filler A liquid crystal polyester composition containing 33.3 parts by mass was used. The volume specific heat of this liquid crystal polyester composition was 1.95 (J / cm 3 K).
 一方、比較例2では、液晶ポリエステル100質量部に対し、数平均繊維長の実測値が190μm未満(実測値:70μm)である繊維状充填材33.3質量部と、粒状充填材33.3質量部とを含む液晶ポリエステル組成物を用いた。比較例2のCPUソケットは、実施例1のCPUソケットと比べて加熱後反り量が大きく、クラック発生数も多かった。これは、比較例2の液晶ポリエステル組成物の容積比熱が、実施例1の液晶ポリエステル組成物の容積比熱に比べて、高いことに起因していると考えられる。実施例1および比較例2の結果から、中空状充填材の添加により、CPUソケットの容積比熱を低下させることができることが示された。 On the other hand, in Comparative Example 2, 33.3 parts by mass of a fibrous filler having an actual measured value of the number average fiber length of less than 190 μm (actually measured value: 70 μm) with respect to 100 parts by mass of the liquid crystalline polyester, and a granular filler 33.3. A liquid crystal polyester composition containing parts by mass was used. The CPU socket of Comparative Example 2 had a large amount of warpage after heating and a larger number of cracks than the CPU socket of Example 1. This is considered due to the fact that the volume specific heat of the liquid crystal polyester composition of Comparative Example 2 is higher than the volume specific heat of the liquid crystal polyester composition of Example 1. From the results of Example 1 and Comparative Example 2, it was shown that the volume specific heat of the CPU socket can be reduced by adding the hollow filler.
 また、比較例1では、液晶ポリエステル100質量部に対し、数平均繊維長の実測値が190μm未満(実測値:70μm)である繊維状充填材66.7質量部を含む液晶ポリエステル組成物を用いた。実施例1および比較例1の結果からも、中空状充填材の添加によりCPUソケットの加熱後反り量、および、クラック発生数を低下させることができることが示された。 In Comparative Example 1, a liquid crystal polyester composition containing 66.7 parts by mass of a fibrous filler having an actual measured value of the number average fiber length of less than 190 μm (actual value: 70 μm) with respect to 100 parts by mass of the liquid crystal polyester is used. It was. Also from the results of Example 1 and Comparative Example 1, it was shown that the amount of warpage after heating of the CPU socket and the number of cracks generated can be reduced by the addition of the hollow filler.
 このように、本実施例によれば、クラックの発生を抑制しつつ、反り量が少ないコネクタを提供することができることが示された。 Thus, according to this example, it was shown that it is possible to provide a connector with a small amount of warpage while suppressing the occurrence of cracks.
本発明によれば、耐クラック性および反り耐性に優れた樹脂成形体を成形可能な液晶ポリエステル組成物およびこれを用いた樹脂成形体、特にコネクタを提供できるので、産業上極めて有用である。 According to the present invention, a liquid crystal polyester composition capable of forming a resin molded article excellent in crack resistance and warpage resistance and a resin molded article using the composition, particularly a connector, can be provided, which is extremely useful industrially.
 100 コネクタ(CPUソケット)
 101 開口部
 102 外枠部
 103 内枠部
 104 ピン挿入穴
 201 最小肉厚部
100 connector (CPU socket)
101 Opening portion 102 Outer frame portion 103 Inner frame portion 104 Pin insertion hole 201 Minimum thickness portion

Claims (7)

  1.  液晶ポリエステルと、中空状充填材と、数平均繊維長が20μm以上190μm未満である繊維状充填材とを含む液晶ポリエステル組成物。 A liquid crystal polyester composition comprising a liquid crystal polyester, a hollow filler, and a fibrous filler having a number average fiber length of 20 μm or more and less than 190 μm.
  2.  前記中空状充填材は、数平均粒径が5μm以上100μm以下である請求項1に記載の液晶ポリエステル組成物。 The liquid crystal polyester composition according to claim 1, wherein the hollow filler has a number average particle diameter of 5 µm to 100 µm.
  3.  前記繊維状充填材は、数平均繊維径が5μm以上20μm以下である請求項1または2に記載の液晶ポリエステル組成物。 The liquid crystalline polyester composition according to claim 1 or 2, wherein the fibrous filler has a number average fiber diameter of 5 µm to 20 µm.
  4.  前記液晶ポリエステルが、下記構造単位を、前記液晶ポリエステルの全繰返し単位の合計に対して30モル%以上含む請求項1~3のいずれか1項に記載の液晶ポリエステル組成物。
    Figure JPOXMLDOC01-appb-C000001
    The liquid crystal polyester composition according to any one of claims 1 to 3, wherein the liquid crystal polyester contains at least 30 mol% of the following structural units based on the total of all repeating units of the liquid crystal polyester.
    Figure JPOXMLDOC01-appb-C000001
  5.  100℃での容積比熱が、1.0J/cmK以上3.0J/cmK以下である請求項1~4のいずれか1項に記載の液晶ポリエステル組成物。 Volume specific heat at 100 ° C. is a liquid crystal polyester composition according to any one of claims 1 to 4 or less 1.0 J / cm 3 K or more 3.0J / cm 3 K.
  6.  請求項1~5のいずれか1項に記載の液晶ポリエステル組成物で形成された樹脂成形体。 A resin molded body formed of the liquid crystal polyester composition according to any one of claims 1 to 5.
  7.  コネクタである請求項6に記載の樹脂成形体。 The resin molded body according to claim 6, which is a connector.
PCT/JP2017/029903 2016-08-24 2017-08-22 Liquid crystal polyester composition and resin molded article using same WO2018038093A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780050725.3A CN109661433B (en) 2016-08-24 2017-08-22 Liquid crystal polyester composition and resin molded article using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-164026 2016-08-24
JP2016164026A JP6824663B2 (en) 2016-08-24 2016-08-24 Liquid crystal polyester composition and resin molded product using it

Publications (1)

Publication Number Publication Date
WO2018038093A1 true WO2018038093A1 (en) 2018-03-01

Family

ID=61245046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029903 WO2018038093A1 (en) 2016-08-24 2017-08-22 Liquid crystal polyester composition and resin molded article using same

Country Status (4)

Country Link
JP (1) JP6824663B2 (en)
CN (1) CN109661433B (en)
TW (1) TWI755421B (en)
WO (1) WO2018038093A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7393589B1 (en) 2022-01-26 2023-12-06 ポリプラスチックス株式会社 Liquid crystalline resin composition for planar connectors and planar connectors using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149773A (en) * 1989-11-02 1991-06-26 Toray Ind Inc Resin connector
JP2001031848A (en) * 1999-07-23 2001-02-06 Nippon Petrochem Co Ltd Thermotropic liquid crystal copolyester resin composition and heater-supporter by using the same
JP2004027021A (en) * 2002-06-25 2004-01-29 Nippon Petrochemicals Co Ltd Wholly aromatic liquid crystalline polyester resin molded product
JP2006152120A (en) * 2004-11-29 2006-06-15 Polyplastics Co Resin molded part for signal readout device and method for molding the same
JP2010007067A (en) * 2008-05-29 2010-01-14 Sumitomo Chemical Co Ltd Liquid crystal polymer composition containing nano-structured hollow carbon material, and molded article thereof
JP2011122148A (en) * 2009-11-16 2011-06-23 Sumitomo Chemical Co Ltd Liquid crystal polyester composition for connector and connector using the same
JP2013072070A (en) * 2011-09-29 2013-04-22 Sumitomo Chemical Co Ltd Liquid crystal polyester composition and connector
JP2013108008A (en) * 2011-11-22 2013-06-06 Sumitomo Chemical Co Ltd Liquid crystalline polyester composition, molded article, and optical pick-up lens holder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172479A (en) * 1999-12-16 2001-06-26 Sumitomo Chem Co Ltd Liquid crystal polyester resin composition and its molded product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149773A (en) * 1989-11-02 1991-06-26 Toray Ind Inc Resin connector
JP2001031848A (en) * 1999-07-23 2001-02-06 Nippon Petrochem Co Ltd Thermotropic liquid crystal copolyester resin composition and heater-supporter by using the same
JP2004027021A (en) * 2002-06-25 2004-01-29 Nippon Petrochemicals Co Ltd Wholly aromatic liquid crystalline polyester resin molded product
JP2006152120A (en) * 2004-11-29 2006-06-15 Polyplastics Co Resin molded part for signal readout device and method for molding the same
JP2010007067A (en) * 2008-05-29 2010-01-14 Sumitomo Chemical Co Ltd Liquid crystal polymer composition containing nano-structured hollow carbon material, and molded article thereof
JP2011122148A (en) * 2009-11-16 2011-06-23 Sumitomo Chemical Co Ltd Liquid crystal polyester composition for connector and connector using the same
JP2013072070A (en) * 2011-09-29 2013-04-22 Sumitomo Chemical Co Ltd Liquid crystal polyester composition and connector
JP2013108008A (en) * 2011-11-22 2013-06-06 Sumitomo Chemical Co Ltd Liquid crystalline polyester composition, molded article, and optical pick-up lens holder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11705641B2 (en) 2019-08-21 2023-07-18 Ticoan Llc Antenna system including a polymer composition having a low dissipation factor
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor

Also Published As

Publication number Publication date
CN109661433A (en) 2019-04-19
CN109661433B (en) 2022-05-10
JP2018030948A (en) 2018-03-01
TWI755421B (en) 2022-02-21
TW201821530A (en) 2018-06-16
JP6824663B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
WO2018038093A1 (en) Liquid crystal polyester composition and resin molded article using same
US8231805B2 (en) Liquid crystalline polyester composition for connector and connector using the same
JP5806063B2 (en) Liquid crystal polyester composition and connector
JP6851979B2 (en) Liquid crystal polyester composition and molded article
TWI762742B (en) Liquid crystal polyester resin composition and molded article
TWI773853B (en) Liquid crystal polyester resin composition and molded article
US6702956B2 (en) Liquid crystal polyester resin mixture
JP6898163B2 (en) Liquid crystal polyester resin composition and molded article
JP6779906B2 (en) Liquid crystal polyester composition and molded article
WO2019098228A1 (en) Liquid crystal polyester composition and resin molded body
JP5197553B2 (en) Liquid crystalline resin composition and molded product thereof
JP2011190461A (en) Liquid crystal polyester resin composition
JP5407988B2 (en) Liquid crystalline resin composition and molded product thereof
JP2007308619A (en) Liquid crystalline polyester resin mixture and molded product obtained using the same
TW202409201A (en) Aromatic polyurethane composition, molded article, and method for manufacturing the molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843573

Country of ref document: EP

Kind code of ref document: A1