WO2018037946A1 - Correcting device - Google Patents

Correcting device Download PDF

Info

Publication number
WO2018037946A1
WO2018037946A1 PCT/JP2017/029190 JP2017029190W WO2018037946A1 WO 2018037946 A1 WO2018037946 A1 WO 2018037946A1 JP 2017029190 W JP2017029190 W JP 2017029190W WO 2018037946 A1 WO2018037946 A1 WO 2018037946A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
component
unit
operational amplifier
input
Prior art date
Application number
PCT/JP2017/029190
Other languages
French (fr)
Japanese (ja)
Inventor
真吾 原田
秀高 加藤
篤親 丹羽
裕隆 村上
セン ユー
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2018037946A1 publication Critical patent/WO2018037946A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/04Shaping pulses by increasing duration; by decreasing duration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Definitions

  • the present technology relates to a correction device, for example, a correction device that corrects the duty ratio of a clock signal.
  • CMOS Complementary Metal Oxide Semiconductor
  • DDR Double Data Rate
  • the DDR counter exchanges data at both rising and falling timings of the input clock signal, and here, count processing is performed at both rising and falling timings of the clock signal CLK1.
  • the counter includes two latches, and the first latch latches data triggered by the rising edge of the clock signal CLK1. The second latch latches data triggered by the falling edge of the clock signal CLK1.
  • the trigger by which the second latch latches data is desirably a half cycle of the clock signal CLK1, in other words, the duty ratio of the clock signal CLK1 is desirably 50%.
  • the clock supplied to the counter The duty ratio of the signal CLK1 does not always maintain 50%.
  • Patent Document 1 proposes that a duty correction circuit is provided to correct duty collapse due to a clock transmission path.
  • Patent Document 1 proposes to acquire a clock waveform through a smoothing filter for a duty correction amount. According to Patent Document 1, a time corresponding to the time constant of the smoothing filter is required to obtain the duty correction amount. In order to correctly obtain the duty correction amount, it is necessary to increase the time constant of the smoothing filter. Thus, the accuracy of the correction amount and the time constant are in a trade-off relationship.
  • duty correction is performed using a negative feedback loop, and the correction amount is based on the premise that an input clock is continuously input. If the input clock is input discontinuously and there is a period in which the clock stops, the duty correction amount cannot be maintained, and the negative feedback loop may fall into an unintended state.
  • the present technology has been made in view of such a situation, and is capable of maintaining a state where duty correction can be performed accurately even when there is a period in which the clock is stopped.
  • a first correction device includes a conversion unit that converts an input clock to a predetermined slew rate, a DC component removal unit that removes a DC component from an output from the conversion unit, and the DC component.
  • a DC component adding unit that adds a DC component to the output from the removing unit; and a DC component extracting unit that extracts a DC component from the output from the DC component adding unit.
  • the second switch is provided between the DC component adding unit and the DC component removing unit, and the clocks of the first switch and the second switch are stopped. When turned off.
  • a second correction device includes a conversion unit that converts an input clock into a predetermined slew rate, a DC component extraction unit that extracts a DC component from an output from the DC component addition unit, A control unit that controls the conversion unit, the conversion unit includes an inverter capable of voltage-controlling each drive capability of the PMOS side and the NMOS side, the control unit controls the drive capability of the inverter,
  • the DC component extraction unit includes a first switch therein, and a second switch is provided between a control input side of the drive capability of the inverter and an output side of the control unit, and the first switch And the second switch is turned off when the clock is stopped.
  • the input clock is converted into a predetermined slew rate, the DC component is removed, the DC component is added, and the DC component is extracted.
  • a first switch and a second switch are also provided, and the first switch and the second switch are turned off when the clock is stopped. With such a configuration and operation, the duty ratio of the input clock can be corrected.
  • an input clock is converted into a predetermined slew rate, a DC component is extracted, and the slew rate is controlled.
  • the conversion unit for converting the slew rate includes an inverter capable of controlling the drive capacities of the PMOS side and the NMOS side, and the control unit for controlling the conversion unit controls the drive capability of the inverter.
  • a first switch and a second switch are also provided, and the first switch and the second switch are turned off when the clock is stopped.
  • FIG. 1 is a diagram illustrating a configuration of an embodiment of an image sensor to which the present technology is applied.
  • 1 includes a pixel array unit 102 in which pixels 113 are arranged in a matrix of m columns and n rows, a row scanning circuit 103, a column scanning circuit 104, and a clock generation unit 105.
  • the image sensor 101 is provided with ADC (Analog Digital Converter) 108-0 to ADC 108-m and ADC 108-0 to ADC 108-m provided for each column of the pixel array unit 102 for A / D conversion reference.
  • a reference signal generation unit 109 for supplying a voltage RAMP.
  • Each of the ADC 108-0 to ADC 108-m includes a comparator (REF) 110-0 to a comparator 110-m, and a latch unit 111-0 to a latch unit 111-m.
  • FIG. 1 only one row of the latch unit 111-0 to the latch unit 111-m is illustrated, but in actuality, it is assumed that these are arranged side by side in the output bit sorting direction. Therefore, a plurality of sense amplifiers 112 are also arranged corresponding to these.
  • ADCs 108 when it is not necessary to individually distinguish the ADCs 108-0 to 108-m, they are simply referred to as ADCs 108, and it is not necessary to individually distinguish the comparators 110-0 to 110-m. The case is referred to as a comparator 110. Furthermore, when it is not necessary to individually distinguish the latch units 111-0 to 111-m, they are referred to as latch units 111.
  • the clock generation unit 105 generates a clock signal CLK having a predetermined duty ratio.
  • the duty ratio is a ratio of a high width (hereinafter referred to as “H width”) period in one cycle of the clock signal, and is calculated by (H width / cycle of clock signal CLK) ⁇ 100.
  • the low width of the clock signal is referred to as L width.
  • the timing control circuit 106 generates an internal clock based on the clock signal CLK input from the clock generation unit 105, and generates a row scanning circuit 103, a column scanning circuit 104, ADCs 108-0 to ADC 108 -m, and a reference signal generation unit 109. , Output to the counter 107 or the like.
  • the timing control circuit adjusts the duty ratio of the clock signal CLK input from the clock generation unit 105 based on the clock signal output to the counter 107 via each block constituting the timing control circuit 106.
  • the clock signal output from the timing control circuit 106 to the counter 107 is referred to as a clock signal CLKD.
  • the counter 107 is a DDR (Double Data Rate), and exchanges data at both rising and falling timings of the input clock signal CLKD.
  • the counter 107 performs count processing at both rising and falling timings of the clock signal CLKD, and supplies the count outputs CK1, CK2,..., CKn together with the clock signal CLKD to each latch unit 111 of the ADC 108. It is.
  • Each pixel 113 in the pixel array unit 102 is connected to a row selection line Hi and a column signal line Vj (i and j are both natural numbers).
  • the row scanning circuit 103 selects a row selection line Hi from which pixel values are to be read out of the row selection lines H0 to Hn.
  • the column scanning circuit 104 selects a column signal line Vj from which a pixel value is to be read in the row selection line Hi selected by the row scanning circuit 103.
  • the ADC 108 includes a comparator 110 and a latch unit 111, and has an n-bit AD conversion function.
  • the comparator 110 of the ADC 108 compares the reference voltage RAMP input from the reference signal generation unit 109 with the output value of the pixel 113 transmitted through the column signal line Vj, and compares the reference voltage RAMP with the output value of the pixel 113. When the magnitudes match, the phase of the output signal is inverted and output.
  • the latch unit 111 of the ADC 108 has an n-bit first latch and a second latch as independent storage areas.
  • the latch unit 111 of the ADC 108 uses the output from the counter 107 to continuously count the number of clocks until the output of the comparator 110 changes.
  • the latch unit 111 enters the comparison period.
  • the corresponding digital count value is held in the first latch or the second latch.
  • the count value held in the latch unit 111 is scanned by the column scanning circuit 104, and is sequentially drawn out to the two-phase bus lines B1 and B2 to be a differential voltage.
  • the sense amplifier 112 amplifies and outputs the differential voltage input through the bus line B1 and the bus B2.
  • the duty ratio of the clock signal input to the counter 107 included in the image sensor 101 can be adjusted to an appropriate value. Thereby, for example, an operation margin of a circuit operating in DDR represented by the counter 107 can be secured.
  • FIG. 2 illustrates a configuration that can adjust the duty ratio to an appropriate value.
  • FIG. 2 is a diagram illustrating a partial configuration in the image sensor 101 including a duty correction circuit that adjusts the duty ratio to an appropriate value.
  • the configuration shown in FIG. 2 shows a configuration in which the clock signal CLK output from the clock generation unit 105 is used as the clock of the counter 107 after passing through a repeater on the way.
  • the counter 107 employs a double data rate type (DDR) that counts using both rising and falling edges of the clock. Has been.
  • DDR double data rate type
  • the duty ratio of the clock signal is preferably 50%. If the duty ratio deviates from 50%, the counter 107 may cause an erroneous count. However, when the in-chip wiring distance from the clock generation unit 105 to the counter 107 is long, an inverter is configured by inserting a repeater by a CMOS inverter (inverters 202-1 to 202-3 in FIG. 2) in the middle. There is a possibility that the duty ratio may be lost as the clock is transmitted due to a difference in capability due to manufacturing variations between PMOS and NMOS.
  • the duty correction circuit 201 is a circuit that corrects a clock with a correct duty ratio when such a duty ratio is lost.
  • FIG. 3 shows the configuration of the duty correction circuit 201.
  • the duty correction circuit 201 shown in FIG. 3 is a first duty correction circuit and is described as a duty correction circuit 201a.
  • a duty correction circuit 201a shown in FIG. 3 includes an inverter 301, an HPF (High Pass Filter) 302, an LPF (Low Pass Filter) 303, an operational amplifier 304, a reference voltage source 305, inverters 306 to 308, and a phase compensation capacitor 309. .
  • the HPF 302, the LPF 303, and the operational amplifier 304 form a negative feedback loop.
  • the HPF 302 includes a capacitor 321 and a resistor 322, and the LPF 303 includes a capacitor 331 and a resistor 332. Note that the HPF 302 and the LPF 303 may have a configuration other than a configuration including a capacitor and a resistor.
  • the duty correction circuit 201a receives the clock signal CLK generated by the clock generation unit 105.
  • the duty ratio of the clock signal CLK input to the duty correction circuit 201a may be lost.
  • the duty correction circuit 201a causes the inverter 301 to slow down the slew rate of the input clock signal CLK.
  • the inverter 301 is an inverter capable of appropriately controlling the output slew rate.
  • the output from the inverter 301 is supplied to the HPF 302, and the DC component is removed.
  • the HPF 302 is supplied with a DC component from the operational amplifier 304 such that the duty ratio of the finally output clock is 50%.
  • the HPF 302 performs processing for removing a DC component from the clock supplied from the inverter 301 and giving a DC value such that the duty ratio is 50% with the logical threshold value of the inverter 306.
  • the negative side (-terminal) of the operational amplifier 304 is supplied with a component with a broken duty ratio extracted by the LPF 303 from the clock signal via the inverter 306 and the inverter 307.
  • the positive side (+ terminal) of the operational amplifier 304 is connected to the reference voltage source 305 and supplied with a voltage that is 1 ⁇ 2 of the voltage VDD.
  • the output terminal of the operational amplifier 304 is connected to the phase compensation capacitor 309 and the HPF 302.
  • the output power from the operational amplifier 304 is a duty correction amount. As described above, the output from the operational amplifier 304, that is, the duty correction amount is supplied to the HPF 302.
  • the clock signal with the corrected duty ratio is output to the counter 107 (FIG. 2) via an inverter 308 provided as a final clock output buffer.
  • FIG. 4 shows the clock signal input to the inverter 306 (clock signal output from the HPF 302) in the third stage of FIG. 4, and the output from the inverter 306 in the fourth stage of FIG.
  • the output from the inverter 301 is a clock signal with a sufficiently slow slew rate, as shown in the second stage of FIG.
  • Such a signal is input to the HPF 302.
  • the HPF 302 removes the DC component from the input clock signal and adds the duty correction amount supplied from the operational amplifier 304, so that the signal as shown in the third part of FIG. 4 is output from the HPF 302 and supplied to the inverter 306. Is done. That is, in this case, a signal whose voltage is lowered by the duty correction amount is supplied to the inverter 306.
  • the inverter 306 sets the logical threshold value to a value (corresponding to VDD / 2) at which the duty ratio becomes 50%, and performs output that is inverted when the logical threshold value is equal to or lower than the logical threshold value.
  • the clock signal shown in the stage is output.
  • the duty correction circuit 201a corrects the duty ratio of the input clock signal and outputs it.
  • the duty correction circuit 201a smoothes the output waveform of the inverter 307 with the LPF 303, and if the duty ratio is 50%, the operational amplifier 304 uses the fact that the voltage after smoothing becomes VDD / 2. Compared with the reference voltage source 305, the deviation amount of the duty ratio is obtained.
  • ⁇ CDS operation> By the way, in the image sensor 101 shown in FIG. 1, a signal read from the pixel 113 is subjected to processing by a CDS (Correlated Double Sampling) method.
  • CDS Correlated Double Sampling
  • the first stage of FIG. 5 shows an enable signal indicating the timing at which the reference signal generator 109 supplies the reference signal to the comparator 110 (FIG. 1), and the reference signal generated by the reference signal generator 109 in the second stage. (Ramp signal).
  • the third stage of FIG. 5 shows the waveform of the counter clock in the counter 107.
  • the sweep of the reference signal is started and the count operation of the counter 107 is started.
  • the output signal of the comparator 110 is inverted from the high level to the low level.
  • the counting operation of the counter 107 is stopped at this falling edge.
  • the count value has a one-to-one relationship with the voltage width obtained by sweeping the voltage of the reference signal, and this count value is a result of analog-to-digital (AD) conversion of the input voltage.
  • AD analog-to-digital
  • Such a counting operation is performed twice in the P-phase period and the D-phase period in reading from one pixel. Since it is not necessary to operate the counter 107 during the period between the P-phase period and the D-phase period, generation of the clock signal in the clock generation unit 105 can be stopped. By stopping the generation of the clock signal in the clock generation unit 105, power consumption can be reduced.
  • the duty correction circuit 201 is based on the premise that the clock signal input to the inverter 301 (FIG. 3) is continuously input.
  • the circuit is configured so that the duty ratio can be corrected correctly by continuously inputting clock signals.
  • the duty ratio can be corrected to a signal with a correct duty ratio as described above.
  • the operation of the duty correction circuit 201a may become unstable.
  • the output from the inverter 307 and the output from the LPF 303 may become indefinite, and the duty correction amount information may be lost.
  • the power consumption is reduced so that the duty correction amount can be maintained and the duty ratio can be corrected accurately even if the generation of the clock signal is stopped.
  • the duty correction circuit 201 that can be reduced will be described below.
  • FIG. 6 shows another configuration of the duty correction circuit 201.
  • the duty correction circuit 201 illustrated in FIG. 6 is a second duty correction circuit and is described as a duty correction circuit 201b. Parts having the same functions in the duty correction circuit 201b shown in FIG. 6 and the duty correction circuit 201a shown in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the duty correction circuit 201b shown in FIG. 6 includes an inverter 301, an HPF 302, an LPF 303, an operational amplifier 304, a reference voltage source 305, inverters 306 to 308, and a phase compensation capacitor 309. .
  • the HPF 302 includes a capacitor 321 and a resistor 322
  • the LPF 303 includes a capacitor 331 and a resistor 332.
  • the 6 further includes a switch 401 and a switch 402.
  • the switch 401 is provided in the LPF 303 and is provided between the capacitor 331 and the resistor 332 (between the resistor 332 and the negative side of the operational amplifier 304).
  • the switch 402 is provided on the output side of the operational amplifier 304, is between the operational amplifier 304 and the HPF 302, and is provided between the operational amplifier 304 and the phase compensation capacitor 309.
  • the switch 401 may be provided between the inverter 307 and the LPF 303 as shown in FIG. Also in the duty correction circuit 201b, the HPF 302, the LPF 303, and the operational amplifier 304 form a negative feedback loop.
  • the switch 401 and the switch 402 are turned on or off (opened / closed) at the same timing.
  • the switch 401 and the switch 402 are turned on (closed) during the P-phase period and the D-phase period, and are turned off (opened) during the period between the P-phase period and the D-phase period.
  • the switch 401 and the switch 402 are closed while the clock signal is generated (while the clock signal is being input), and while the generation of the clock signal is stopped (when the clock signal is stopped being input). Open).
  • the operational amplifier 304 can hold the duty correction amount while the clock is stopped.
  • the duty ratio can be corrected using the retained duty correction amount after the clock is stopped.
  • the accuracy of duty ratio correction in the circuit 201b can be maintained.
  • the opening / closing control of the switch 401 and the switch 402 can be performed by a control signal from an upper layer.
  • the duty correction circuit 201b including the switch 401 and the switch 402 is included in the timing control circuit 106 (FIG. 1), but a signal for controlling opening and closing of the switch 401 and the switch 402 is generated in the timing control circuit 106. Alternatively, it may be supplied from a control unit (not shown).
  • the function of holding the duty correction amount can be realized by using the phase compensation capacitor 309 for maintaining stability in the negative feedback loop and by adding the switch 402 to the output side of the operational amplifier 304. it can.
  • the output of the operational amplifier 304 has a parasitic capacitance.
  • the clock signal is restarted after the clock signal is stopped and the switch 402 is returned to the ON state, if the output voltage value of the operational amplifier 304 is greatly deviated, the phase compensation capacitor 309 and the operational amplifier 304 There is a possibility that charge sharing will occur with the output parasitic capacitance.
  • the inverter 306 and the inverter 307 are provided between the HPF 302 and the LPF 303.
  • a configuration in which only the inverter 306 is provided is also possible. good.
  • the negative side of the operational amplifier 304 is connected to the reference voltage source 305, and the positive side of the operational amplifier 304 is connected to the LPF 303.
  • FIG. 8 shows still another configuration of the duty correction circuit 201.
  • the duty correction circuit 201 shown in FIG. 8 is a third duty correction circuit and is described as a duty correction circuit 201c. Portions having the same function in the duty correction circuit 201c shown in FIG. 8 and the duty correction circuit 201a shown in FIG. 3 or the duty correction circuit 201b shown in FIG. Omitted.
  • the duty correction circuit 201c illustrated in FIG. 8 includes the inverter 301, the HPF 302, the LPF 303, the operational amplifier 304, the reference voltage source 305, the inverters 306 to 308, the switch 401, and the switch 402, similarly to the duty correction circuit 201b illustrated in FIG. Prepare.
  • the HPF 302 is composed of a capacitor 321 and a resistor 322.
  • the LPF 303 includes a capacitor 501 and a resistor 332.
  • the capacitor 501 is provided between the negative input of the operational amplifier 304 and the output of the operational amplifier 304.
  • the duty correction circuit 201c in the third embodiment is configured by deleting the phase compensation capacitor 309 from the duty correction circuit 201b in the second embodiment.
  • the phase compensation capacitor 309 is shared with the capacitor 501 constituting the LPF 303, and the duty correction circuit 201c is provided.
  • the switch 401 is provided between the resistor 332 and the operational amplifier 304 (the negative side thereof), similarly to the duty correction circuit 201b shown in FIG.
  • a configuration provided between the inverter 307 and the LPF 303 may be employed as in the duty correction circuit 201b illustrated in FIG.
  • the switch 402 is provided on the output side of the operational amplifier 304, and is provided between the operational amplifier 304 and the HPF 302.
  • the duty correction circuit 201c converts the two capacitors, the phase compensation capacitor 309 of the duty correction circuit 201b according to the second embodiment and the capacitor 331 constituting the LPF 303, into one capacitor 501.
  • the configuration is summarized.
  • the area of the duty correction circuit 201c can be reduced only by using two capacitors as one capacitor. it can. That is, according to the configuration of the duty correction circuit 201c in the third embodiment, it is possible to reduce the area.
  • the negative feedback loop can be kept stable, and the LPF 303 can also serve as a capacitor.
  • the duty correction circuit 201c in the third embodiment includes a switch 502.
  • the switch 502 is provided at a position where the negative input and the positive input of the operational amplifier 304 are connected.
  • the duty correction circuit 201c in the third embodiment is configured to include three switches, a switch 401, a switch 402, and a switch 502.
  • the switch 401 and the switch 402 are opened / closed (on / off) at the same timing.
  • the switch 502 is opened and closed (on / off) at a timing different from that of the switches 401 and 402.
  • the switch 401 and the switch 402 are in a closed state (on state), and the switch 502 is in an open state (off state).
  • the switch 401 and the switch 402 are opened (off state), and the switch 502 is closed (on state).
  • the duty correction amount holding period that is, the period in which the switch 401 and the switch 402 are turned off, both ends of the capacitor 501 are in the Hi-Z state (high impedance state), and the leakage current is very small. Even in such a case, the voltage value may fluctuate greatly in a short time. Therefore, during the duty correction amount holding period, the switch 502 is turned on to short-circuit the reference voltage source 305 having a voltage of VDD / 2.
  • FIG. 9 shows still another configuration of the duty correction circuit 201.
  • the duty correction circuit 201 shown in FIG. 9 is a fourth duty correction circuit and is described as a duty correction circuit 201d. Portions having the same function in the duty correction circuit 201d shown in FIG. 9 and the duty correction circuit 201c shown in FIG. 8 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the duty correction circuit 201c illustrated in FIG. 9 is similar to the duty correction circuit 201c illustrated in FIG. 8, an LPF (Low Pass Filter) 303, an operational amplifier 304, a reference voltage source 305, inverters 307 and 308, a switch 401, and a switch 402. Is provided.
  • LPF Low Pass Filter
  • the HPF 302 is composed of a capacitor 321 and a resistor 322.
  • the LPF 303 includes a capacitor 501 and a resistor 332.
  • the capacitor 501 is provided between the negative input of the operational amplifier 304 and the output of the operational amplifier 304.
  • the duty correction circuit 201d in the fourth embodiment has a configuration in which the HPF 102 is deleted from the duty correction circuit 201c in the third embodiment and is replaced with a slew rate adjustment unit 601 that can adjust the drive capability of the inverter 621. Has been. Also in the duty correction circuit 201d, the slew rate adjustment unit 601, the LPF 303, and the operational amplifier 304 form a negative feedback loop.
  • the slew rate adjusting unit 601 includes a P-channel transistor 611, an N-channel transistor 612, and an inverter 621.
  • the inverter 621 is an inverter corresponding to the inverter 306 included in the duty correction circuit 201c in the third embodiment, for example.
  • the inverter 621 corresponding to the inverter 306 has a function of adjusting the slew rate of the input signal. Further, since the slew rate is adjusted by the inverter 621, unlike the inverter 301 in the first to third embodiments, the slew rate is configured by an inverter 301 'that does not adjust the slew rate.
  • the output (duty correction amount) from the operational amplifier 304 is input to each gate of the P-channel transistor 611 and the N-channel transistor 612 of the slew rate adjusting unit 601.
  • the source of the P-channel transistor 611 is connected to the power supply, and the drain of the N-channel transistor 612 is grounded.
  • the slew rate adjustment unit 601 includes a P-channel transistor 611 and an N-channel transistor 612 for adjusting drive capability.
  • the P-channel transistor 611 is provided between the inverter 621 and the power supply, and the N-channel transistor 612 includes: It is provided between the inverter 621 and the ground (GND).
  • the clock signal from the clock generation unit 105 is input to the inverter 621 via the inverter 301 '.
  • the clock signal before the duty ratio is corrected is input to the inverter 621, and the duty correction amount from the operational amplifier 304 is supplied to the gates of the P-channel transistor 611 and the N-channel transistor 612, respectively. It is said that.
  • the gate voltage of the P-channel transistor 611 and the gate voltage of the N-channel transistor 612 are controlled by the operational amplifier 304.
  • the slew rate adjustment unit 601 is configured to be able to adjust the slew rate of the clock signal input to the inverter 621 and correct the duty ratio deviation.
  • the P-channel transistor 611 is turned on when the duty correction amount from the operational amplifier 304 input to the gate of the P-channel transistor 611 is a correction amount that widens the L width of the clock signal input from the clock generation unit 105. Become. Then, the slew rate of the clock signal input to the inverter 621 is adjusted so as to reduce the duty ratio of the clock signal.
  • the N-channel transistor 612 is turned on when the duty correction amount from the operational amplifier 304 input to the gate of the N-channel transistor 612 is a correction amount that widens the clock signal H width input from the clock generation unit 105. . Then, the slew rate of the clock signal input to the inverter 621 is adjusted so as to increase the duty ratio of the clock signal.
  • the slew rate adjustment unit 601 reduces the drive capability of the N-channel transistor 612. Correct the duty ratio.
  • the slew rate adjustment unit 601 reduces the drive capability of the P-channel transistor 611. The duty ratio is corrected.
  • a configuration in which the HPF 302 (such as FIG. 8) is deleted can be obtained.
  • a configuration in which the HPF 302 is deleted a configuration in which the capacitor 302 and the resistor 322 that configure the HPF 302 are deleted can be achieved, so that the mounting area can be reduced.
  • the duty correction circuit 201 in the first to third embodiments has a configuration for adjusting the DC value after the HPF 302 as the duty correction.
  • the waveform of the clock signal supplied to the HPF 302 is sufficiently dull (the waveform of the clock signal is sufficiently dulled by the inverter 301).
  • PVT fluctuations the influence on the slew rate becomes large (hereinafter, these fluctuations will be referred to as PVT fluctuations).
  • the duty correction circuit 201d according to the fourth embodiment has a configuration in which the capacity of the inverter 621 can be directly adjusted, so that the influence on the slew rate due to the PVT fluctuation can be reduced.
  • FIG. 10 shows the clock signal input to the inverter 301
  • the second stage of FIG. 10 shows the clock signal output from the inverter 301
  • the third stage in FIG. 10 shows the clock signal output from the inverter 621
  • the fourth stage in FIG. 10 shows the output from the inverter 307.
  • the clock signal input to the inverter 301 shown in the uppermost stage in FIG. 10 has a duty ratio of 40%, for example, and is a clock signal in a state where the duty ratio has collapsed.
  • the output from the inverter 301 is output as a signal whose polarity is inverted without changing the duty ratio, as shown in the second stage of FIG.
  • Such a signal is input to the inverter 621 of the slew rate adjusting unit 601.
  • the slew rate adjusting unit 601 adjusts the slew rate for increasing the duty ratio from 40% to 50%.
  • the duty ratio is corrected (the slew rate is adjusted) by reducing the drive capability of the N-channel transistor 612.
  • a signal as shown in the third stage of FIG. 10 is generated from the slew rate adjustment unit 601 (internal inverter 621) and output to the inverter 307.
  • the signal shown in the third stage of FIG. 10 is a signal in which the slew rate on the falling side of the input signal has become slow.
  • the duty ratio is corrected (the slew rate is adjusted) by lowering the drive capability of the P-channel transistor 611.
  • a signal in which the slew rate on the rising side of the signal input to the slew rate adjustment unit 601 becomes dull is generated and output to the inverter 307.
  • the inverter 307 sets the logic threshold value to a value (corresponding to VDD / 2) at which the duty ratio becomes 50%, and performs an output in which the value is inverted when the logic threshold value is equal to or less than or equal to 4 in FIG.
  • the clock signal shown in the stage is output.
  • the duty correction circuit 201d can correct the duty ratio of the input clock signal and output it.
  • duty correction circuit 201 in the above-described embodiment, duty correction with reduced power consumption can be performed as described above. In addition, the effects described below can also be obtained.
  • a switch 401 may be provided between the inverter 307 and the LPF 303, as in the duty correction circuit 201b illustrated in FIG.
  • the configuration including the capacitor 501 is the same as the duty correction circuit 201c (FIG. 8) in the third embodiment.
  • the duty correction circuit 201d shown in FIG. Similar to the correction circuit 201b (FIG. 6), a configuration including a capacitor 331 and a phase compensation capacitor 309 may be used as in the duty correction circuit 201e shown in FIG.
  • the gate voltage when turning off the switch is a negative voltage that is lower than the GND level for NMOS, and a high voltage that exceeds the power supply for PMOS. It was necessary to take special measures such as preparing them separately.
  • the time may be approximately between the P-phase period and the D-phase period in the CDS system of the image sensor 101, and it is not necessary to hold for a long time.
  • a switch used in the image sensor 101 to which the present technology is applied (the duty correction circuit 201 included in the image sensor 101) can be configured by a very simple and sufficiently small transistor.
  • the duty correction circuit by applying the duty correction circuit to the CDS system counter clock, even when a long distance transmission is performed between the clock generator 105 (FIG. 1) and the counter 107 on the chip, the duty ratio is increased. Can be corrected more appropriately.
  • the duty ratio can be corrected without indefinite operation when the clock is restarted.
  • the clock since the clock can be stopped, the power consumption can be reduced according to the present technology.
  • the present technology can be applied to the image sensor 101 as described above, but the scope of application of the present technology is not limited to the image sensor 101. According to the present technology, since the duty ratio can be corrected, it can be applied to a device that generates and outputs a waveform maintaining the duty ratio.
  • system represents the entire apparatus composed of a plurality of apparatuses.
  • this technique can also take the following structures.
  • a converter that converts the input clock to a predetermined slew rate; and A DC component removal unit for removing a DC component from the output from the conversion unit; A DC component adding unit for adding a DC component to the output from the DC component removing unit; A DC component extraction unit that extracts a DC component from an output from the DC component addition unit,
  • the DC component extraction unit includes a first switch inside, A second switch is provided between the DC component adding unit and the DC component removing unit, The correction device, wherein the first switch and the second switch are turned off when the clock is stopped.
  • the DC component extraction unit has a capacity and a resistance, The correction device according to (1) or (2), wherein the first switch is provided between the capacitor and the resistor.
  • the DC component extraction unit has a capacity and a resistance, The correction device according to (1) or (2), wherein the first switch is provided between the resistor and the DC component removing unit.
  • the DC component adding unit is composed of an operational amplifier, The negative input of the operational amplifier is connected to one end of the first switch, the positive input is connected to a voltage source having a voltage half the reference voltage, and the output side of the operational amplifier is connected via the second switch.
  • the correction device according to any one of (1) to (4), connected to the DC component removal unit.
  • the correction device according to (5), wherein an output side of the operational amplifier is also connected to a phase compensation capacitor via the second switch.
  • the DC component extraction unit has a capacity and a resistance
  • the DC component adding unit is composed of an operational amplifier, One end of the first switch is connected to the resistor, and the other end is connected to a negative input of the operational amplifier.
  • the correction device according to any one of (1) to (4), wherein the capacitor is provided between a negative input and an output side of the operational amplifier.
  • a third switch is further provided between the negative side input and the positive side input of the operational amplifier, The correction device according to (7), wherein the third switch is turned on when the clock is stopped.
  • a converter that converts the input clock to a predetermined slew rate; and A DC component extraction unit that extracts a DC component from an output from the DC component addition unit;
  • a control unit for controlling the conversion unit The conversion unit includes an inverter capable of voltage control of each drive capability on the PMOS side and the NMOS side, The control unit controls the drive capability of the inverter;
  • the DC component extraction unit includes a first switch inside, Between the control input side of the drive capability of the inverter and the output side of the control unit, a second switch is provided, The correction device, wherein the first switch and the second switch are turned off when the clock is stopped.
  • the DC component extraction unit has a capacity and a resistance, The correction device according to any one of (9) to (11), wherein the first switch is provided between the capacitor and the resistor.
  • the DC component extraction unit has a capacity and a resistance, The correction device according to any one of (9) to (11), wherein the first switch is provided between the resistor and the conversion unit.
  • the control unit is composed of an operational amplifier, The negative input of the operational amplifier is connected to one end of the second switch, the positive input is connected to a voltage source having a voltage half the reference voltage, and the output side of the operational amplifier is connected to the second switch.
  • the correction device according to any one of (9) to (13), connected to an input side of the inverter, a gate of the PMOS, and a gate of the NMOS.
  • the DC component extraction unit has a capacity and a resistance
  • the DC component adding unit is composed of an operational amplifier, One end of the first switch is connected to the resistor, and the other end is connected to a negative input of the operational amplifier.
  • the correction device according to any one of (9) to (14), wherein the capacitor is provided between a negative side input and an output side of the operational amplifier.
  • a third switch is further provided between the negative side input and the positive side input of the operational amplifier, The correction device according to (16), wherein the third switch is turned on when the clock is stopped.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Pulse Circuits (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

This technology relates to a correcting device which makes it possible to carry out duty correction with reduced power consumption. This correcting device is provided with: a converting portion which converts an input clock into a prescribed slew rate; a DC component removing portion which removes a DC component from an output from the converting portion; a DC component adding portion which adds a DC component to an output from the DC component removing portion; and a DC component extracting portion which extracts a DC component from an output from the DC component adding portion. The DC component extracting portion is internally provided with a first switch. A second switch is provided between the DC component adding portion and the DC component removing portion. The first switch and the second switch turn off when the clock stops. This technology is applicable, for example, to correcting devices which are included in image capturing elements to correct a clock signal.

Description

補正装置Correction device
 本技術は補正装置に関し、例えば、クロック信号のデューティ比を補正する補正装置に関する。 The present technology relates to a correction device, for example, a correction device that corrects the duty ratio of a clock signal.
 映像信号を生成する撮像素子として、CMOS(Complementary Metal Oxide Semiconductor)型のイメージセンサが知られている。近年では、高精細かつ高フレームレートの映像信号を生成するために、撮像素子のカウンタにDDR(Double Data Rate)が用いられている。 A CMOS (Complementary Metal Oxide Semiconductor) type image sensor is known as an image sensor for generating a video signal. In recent years, in order to generate a high-definition and high-frame-rate video signal, DDR (Double Data Rate) is used for the counter of the image sensor.
 DDRのカウンタは、入力されるクロック信号の立ち上がり/立ち下がりの両タイミングでデータのやりとりを行うものであり、ここでは、クロック信号CLK1の立ち上がり/立ち下がりの両タイミングで、カウント処理を行う。カウンタは、2つのラッチを備え、第1のラッチは、クロック信号CLK1の立ち上がりをトリガーにデータをラッチする。第2のラッチは、クロック信号CLK1の立ち下がりをトリガーにデータをラッチする。 The DDR counter exchanges data at both rising and falling timings of the input clock signal, and here, count processing is performed at both rising and falling timings of the clock signal CLK1. The counter includes two latches, and the first latch latches data triggered by the rising edge of the clock signal CLK1. The second latch latches data triggered by the falling edge of the clock signal CLK1.
 第2のラッチがデータをラッチするトリガーは、クロック信号CLK1の半周期であることが望ましく、換言するとクロック信号CLK1のデューティ比が50%であることが望ましい。 The trigger by which the second latch latches data is desirably a half cycle of the clock signal CLK1, in other words, the duty ratio of the clock signal CLK1 is desirably 50%.
 しかしながら、撮像素子において、当該撮像素子を構成するトランジスタの品質、あるいは当該撮像素子を動作させるための動作電圧により、クロック信号CLK0のデューティ比が50%であったとしても、カウンタに供給されるクロック信号CLK1のデューティ比は、常に50%を保っているとは限らない。 However, in the image pickup device, even if the duty ratio of the clock signal CLK0 is 50% due to the quality of the transistors constituting the image pickup device or the operating voltage for operating the image pickup device, the clock supplied to the counter The duty ratio of the signal CLK1 does not always maintain 50%.
 特許文献1では、デューティ補正回路を設け、クロック伝送経路によるデューティ崩れを補正することが提案されている。 Patent Document 1 proposes that a duty correction circuit is provided to correct duty collapse due to a clock transmission path.
特開2010-28396号公報JP 2010-28396 A
 上記したように、トランジスタの品質や動作電圧により、カウンタに供給されるクロック信号CLK1のデューティ比は、常に所望の値を保っていることは保証されていないため、例えば、特許文献1に記載の技術を適用し、デューティ比を補正することが提案されている。 As described above, it is not guaranteed that the duty ratio of the clock signal CLK1 supplied to the counter always maintains a desired value due to the quality of the transistor and the operating voltage. It has been proposed to correct the duty ratio by applying technology.
 特許文献1では、デューティ補正量を、平滑化フィルタを通してクロック波形を取得することが提案されている。特許文献1によると、デューティ補正量を得るまでに平滑化フィルタの時定数分の時間が必要となる。デューティ補正量を正しく得るためには、平滑化フィルタの時定数を大きくする必要がある。このように、補正量の精度と時定数はトレードオフの関係にある。 Patent Document 1 proposes to acquire a clock waveform through a smoothing filter for a duty correction amount. According to Patent Document 1, a time corresponding to the time constant of the smoothing filter is required to obtain the duty correction amount. In order to correctly obtain the duty correction amount, it is necessary to increase the time constant of the smoothing filter. Thus, the accuracy of the correction amount and the time constant are in a trade-off relationship.
 また、デューティ補正は、負帰還ループを用いて行われ、その補正量は、入力クロックが連続的に入力されることが前提となっている。仮に入力クロックが不連続に入力され、クロックが止まる期間が存在すると、デューティ補正量を維持することができず、意図しない状態へと負帰還ループが陥ってしまう可能性がある。 Also, duty correction is performed using a negative feedback loop, and the correction amount is based on the premise that an input clock is continuously input. If the input clock is input discontinuously and there is a period in which the clock stops, the duty correction amount cannot be maintained, and the negative feedback loop may fall into an unintended state.
 本技術は、このような状況に鑑みてなされたものであり、クロックが停止される期間がある場合でも、デューティ補正が精度良く行える状態を維持することができるようにするものである。 The present technology has been made in view of such a situation, and is capable of maintaining a state where duty correction can be performed accurately even when there is a period in which the clock is stopped.
 本技術の一側面の第1の補正装置は、入力されたクロックを所定のスルーレートに変換する変換部と、前記変換部からの出力からDC成分を除去するDC成分除去部と、前記DC成分除去部からの出力にDC成分を付加するDC成分付加部と、前記DC成分付加部からの出力からDC成分を抽出するDC成分抽出部とを備え、前記DC成分抽出部は、内部に第1のスイッチを備え、前記DC成分付加部と前記DC成分除去部との間には、第2のスイッチが備えられ、前記第1のスイッチと前記第2のスイッチは、前記クロックが停止されているときにオフにされる。 A first correction device according to an aspect of the present technology includes a conversion unit that converts an input clock to a predetermined slew rate, a DC component removal unit that removes a DC component from an output from the conversion unit, and the DC component. A DC component adding unit that adds a DC component to the output from the removing unit; and a DC component extracting unit that extracts a DC component from the output from the DC component adding unit. The second switch is provided between the DC component adding unit and the DC component removing unit, and the clocks of the first switch and the second switch are stopped. When turned off.
 本技術の一側面の第2の補正装置は、入力されたクロックを所定のスルーレートに変換する変換部と、前記DC成分付加部からの出力からDC成分を抽出するDC成分抽出部と、前記変換部を制御する制御部とを備え、前記変換部は、PMOS側とNMOS側の各ドライブ能力を電圧制御可能なインバータを備え、前記制御部は、前記インバータの前記ドライブ能力を制御し、前記DC成分抽出部は、内部に第1のスイッチを備え、前記インバータのドライブ能力の制御入力側と前記制御部の出力側との間には、第2のスイッチが備えられ、前記第1のスイッチと前記第2のスイッチは、前記クロックが停止されているときにオフにされる。 A second correction device according to an aspect of the present technology includes a conversion unit that converts an input clock into a predetermined slew rate, a DC component extraction unit that extracts a DC component from an output from the DC component addition unit, A control unit that controls the conversion unit, the conversion unit includes an inverter capable of voltage-controlling each drive capability of the PMOS side and the NMOS side, the control unit controls the drive capability of the inverter, The DC component extraction unit includes a first switch therein, and a second switch is provided between a control input side of the drive capability of the inverter and an output side of the control unit, and the first switch And the second switch is turned off when the clock is stopped.
 本技術の一側面の第1の補正装置においては、入力されたクロックが所定のスルーレートに変換され、DC成分が除去され、DC成分が付加され、DC成分が抽出される。また第1のスイッチと第2のスイッチが備えられ、第1のスイッチと第2のスイッチは、クロックが停止されているときにオフにされる。このような構成および動作が行われることで、入力されたクロックのディーティ比を補正することができる。 In the first correction device according to one aspect of the present technology, the input clock is converted into a predetermined slew rate, the DC component is removed, the DC component is added, and the DC component is extracted. A first switch and a second switch are also provided, and the first switch and the second switch are turned off when the clock is stopped. With such a configuration and operation, the duty ratio of the input clock can be corrected.
 本技術の一側面の第2の補正装置は、入力されたクロックが所定のスルーレートに変換され、DC成分が抽出され、前記スルーレートが制御される。スルーレートを変換する変換部は、PMOS側とNMOS側の各ドライブ能力を電圧制御可能なインバータを備え、前記変換部を制御する制御部は、インバータのドライブ能力を制御する。また第1のスイッチと第2のスイッチが備えられ、第1のスイッチと第2のスイッチは、クロックが停止されているときにオフにされる。このような構成および動作が行われることで、入力されたクロックのディーティ比を補正することができる。 In the second correction device according to one aspect of the present technology, an input clock is converted into a predetermined slew rate, a DC component is extracted, and the slew rate is controlled. The conversion unit for converting the slew rate includes an inverter capable of controlling the drive capacities of the PMOS side and the NMOS side, and the control unit for controlling the conversion unit controls the drive capability of the inverter. A first switch and a second switch are also provided, and the first switch and the second switch are turned off when the clock is stopped. With such a configuration and operation, the duty ratio of the input clock can be corrected.
 本技術の一側面によれば、クロックが停止される期間がある場合でも、デューティ補正が精度良く行える状態を維持することができる。 According to one aspect of the present technology, it is possible to maintain a state where duty correction can be performed with high accuracy even when there is a period in which the clock is stopped.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 It should be noted that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術を適用した撮像素子の一実施の形態の構成を示す図である。It is a figure showing composition of one embodiment of an image sensor to which this art is applied. デューティ補正回路を含む構成例を示す図である。It is a figure which shows the structural example containing a duty correction circuit. デューティ補正回路の第1の構成を示す図である。It is a figure which shows the 1st structure of a duty correction circuit. デューティ補正回路の動作について説明するための図である。It is a figure for demonstrating operation | movement of a duty correction circuit. CDSの動作について説明するための図である。It is a figure for demonstrating operation | movement of CDS. デューティ補正回路の第2の構成を示す図である。It is a figure which shows the 2nd structure of a duty correction circuit. デューティ補正回路の他の第2の構成を示す図である。It is a figure which shows the other 2nd structure of a duty correction circuit. デューティ補正回路の第3の構成を示す図である。It is a figure which shows the 3rd structure of a duty correction circuit. デューティ補正回路の第4の構成を示す図である。It is a figure which shows the 4th structure of a duty correction circuit. デューティ補正回路の動作について説明するための図である。It is a figure for demonstrating operation | movement of a duty correction circuit. デューティ補正回路の他の第4の構成を示す図である。It is a figure which shows the other 4th structure of a duty correction circuit.
 以下に、本技術を実施するための形態(以下、実施の形態という)について説明する。 Hereinafter, modes for carrying out the present technology (hereinafter referred to as embodiments) will be described.
 <撮像素子の構成>
 図1は、本技術を適用した撮像素子の一実施の形態の構成を示す図である。図1に示した撮像素子101は、画素113が縦m列横n行のマトリクス状に配置されてなる画素アレイ部102と、行走査回路103と、列走査回路104と、クロック生成部105と、タイミング制御回路106と、カウンタ107とを有する。
<Configuration of image sensor>
FIG. 1 is a diagram illustrating a configuration of an embodiment of an image sensor to which the present technology is applied. 1 includes a pixel array unit 102 in which pixels 113 are arranged in a matrix of m columns and n rows, a row scanning circuit 103, a column scanning circuit 104, and a clock generation unit 105. A timing control circuit 106 and a counter 107.
 また撮像素子101は、画素アレイ部102の各列に対応して設けられたADC(Analog Digital Converter)108-0乃至ADC108-mと、ADC108-0乃至ADC108-mにA/D変換用の参照電圧RAMPを供給する参照信号生成部109とを備える。ADC108-0乃至ADC108-mのそれぞれは、比較器(REF)110-0乃至比較器110-mと、ラッチ部111-0乃至ラッチ部111-mとを備える。 In addition, the image sensor 101 is provided with ADC (Analog Digital Converter) 108-0 to ADC 108-m and ADC 108-0 to ADC 108-m provided for each column of the pixel array unit 102 for A / D conversion reference. A reference signal generation unit 109 for supplying a voltage RAMP. Each of the ADC 108-0 to ADC 108-m includes a comparator (REF) 110-0 to a comparator 110-m, and a latch unit 111-0 to a latch unit 111-m.
 図1においては、ラッチ部111-0乃至ラッチ部111-mを1行のみ図示してあるが、実際にはこれらが出力ビット分列方向に並んで配置されているものとする。従って、センスアンプ112も、これらに対応して複数配置されている。 In FIG. 1, only one row of the latch unit 111-0 to the latch unit 111-m is illustrated, but in actuality, it is assumed that these are arranged side by side in the output bit sorting direction. Therefore, a plurality of sense amplifiers 112 are also arranged corresponding to these.
 なお、以下の説明において、ADC108-0乃至ADC108-mをそれぞれ個別に区別する必要がない場合は、単にADC108と称し、比較器110-0乃至比較器110-mを個別に区別する必要がない場合は比較器110と称す。さらに、ラッチ部111-0乃至ラッチ部111-mを個別に区別する必要がない場合は、ラッチ部111と称する。 In the following description, when it is not necessary to individually distinguish the ADCs 108-0 to 108-m, they are simply referred to as ADCs 108, and it is not necessary to individually distinguish the comparators 110-0 to 110-m. The case is referred to as a comparator 110. Furthermore, when it is not necessary to individually distinguish the latch units 111-0 to 111-m, they are referred to as latch units 111.
 クロック生成部105は、所定のデューティ比のクロック信号CLKを生成するものである。デューティ比とは、クロック信号の1周期に占めるハイ幅(以下「H幅」という)期間の割合のことで、(H幅/クロック信号CLKの周期)×100で計算される。以下、クロック信号のロー幅は、L幅と記載する。 The clock generation unit 105 generates a clock signal CLK having a predetermined duty ratio. The duty ratio is a ratio of a high width (hereinafter referred to as “H width”) period in one cycle of the clock signal, and is calculated by (H width / cycle of clock signal CLK) × 100. Hereinafter, the low width of the clock signal is referred to as L width.
 タイミング制御回路106は、クロック生成部105から入力されたクロック信号CLKを基に内部クロックを生成して、行走査回路103、列走査回路104、ADC108-0乃至ADC108-m、参照信号生成部109、カウンタ107などに出力する。 The timing control circuit 106 generates an internal clock based on the clock signal CLK input from the clock generation unit 105, and generates a row scanning circuit 103, a column scanning circuit 104, ADCs 108-0 to ADC 108 -m, and a reference signal generation unit 109. , Output to the counter 107 or the like.
 さらに、タイミング制御回路は、当該タイミング制御回路106を構成する各ブロックを介してカウンタ107に出力されるクロック信号に基づいて、クロック生成部105から入力されるクロック信号CLKのデューティ比を調整する。なお、このタイミング制御回路106からカウンタ107へ出力されるクロック信号を以下では、クロック信号CLKDと呼ぶ。 Further, the timing control circuit adjusts the duty ratio of the clock signal CLK input from the clock generation unit 105 based on the clock signal output to the counter 107 via each block constituting the timing control circuit 106. Hereinafter, the clock signal output from the timing control circuit 106 to the counter 107 is referred to as a clock signal CLKD.
 カウンタ107は、DDR(Double Data Rate)であり、入力されるクロック信号CLKDの立ち上がり/立ち下がりの両タイミングでデータのやりとりを行うものである。ここでは、カウンタ107は、クロック信号CLKDの立ち上がり/立ち下がりの両タイミングで、カウント処理を行い、カウント出力CK1,CK2,…,CKnを、クロック信号CLKDとともにADC108の各ラッチ部111に供給するものである。 The counter 107 is a DDR (Double Data Rate), and exchanges data at both rising and falling timings of the input clock signal CLKD. Here, the counter 107 performs count processing at both rising and falling timings of the clock signal CLKD, and supplies the count outputs CK1, CK2,..., CKn together with the clock signal CLKD to each latch unit 111 of the ADC 108. It is.
 画素アレイ部102内の各画素113は、行選択線Hiと列信号線Vj(i,jはともに自然数)とに接続されている。行走査回路103は、行選択線H0乃至Hnの中から画素値の読み出しを行いたい行選択線Hiを選択する。列走査回路104は、行走査回路103によって選択された行選択線Hiにおける、画素値を読み出したい列信号線Vjを選択する。 Each pixel 113 in the pixel array unit 102 is connected to a row selection line Hi and a column signal line Vj (i and j are both natural numbers). The row scanning circuit 103 selects a row selection line Hi from which pixel values are to be read out of the row selection lines H0 to Hn. The column scanning circuit 104 selects a column signal line Vj from which a pixel value is to be read in the row selection line Hi selected by the row scanning circuit 103.
 ADC108は、比較器110とラッチ部111から構成され、nビットAD変換機能を有している。ADC108の比較器110は、参照信号生成部109から入力される参照電圧RAMPと、列信号線Vjを通して伝送される画素113の出力値とを比較し、参照電圧RAMPと画素113の出力値との大きさが一致した時点で、出力信号の位相を反転させて出力する。 The ADC 108 includes a comparator 110 and a latch unit 111, and has an n-bit AD conversion function. The comparator 110 of the ADC 108 compares the reference voltage RAMP input from the reference signal generation unit 109 with the output value of the pixel 113 transmitted through the column signal line Vj, and compares the reference voltage RAMP with the output value of the pixel 113. When the magnitudes match, the phase of the output signal is inverted and output.
 ADC108のラッチ部111は、内部に独立した記憶領域として、それぞれnビットの第1のラッチと第2のラッチとを有している。ADC108のラッチ部111はカウンタ107からの出力を利用して、比較器110の出力が変化するまでの間継続してクロック数をカウントし、比較器110の出力が変化した時点で、比較期間に応じたデジタルのカウント値を第1のラッチまたは第2のラッチに保持する。ラッチ部111で保持されたカウント値は、列走査回路104により走査され、2相のバス線B1およびB2に順次引き出されて差電圧とされる。 The latch unit 111 of the ADC 108 has an n-bit first latch and a second latch as independent storage areas. The latch unit 111 of the ADC 108 uses the output from the counter 107 to continuously count the number of clocks until the output of the comparator 110 changes. When the output of the comparator 110 changes, the latch unit 111 enters the comparison period. The corresponding digital count value is held in the first latch or the second latch. The count value held in the latch unit 111 is scanned by the column scanning circuit 104, and is sequentially drawn out to the two-phase bus lines B1 and B2 to be a differential voltage.
 センスアンプ112は、バス線B1とバスB2を通して入力された差電圧を増幅して出力するものである。 The sense amplifier 112 amplifies and outputs the differential voltage input through the bus line B1 and the bus B2.
 <デューティ補正回路を含む回路構成>
 本技術によれば、撮像素子101が備えるカウンタ107に入力されるクロック信号のデューティ比を適切な値に調整できる。これにより、例えば、カウンタ107を代表とするDDRで動作する回路の動作マージンが確保できるようになる。
<Circuit configuration including duty correction circuit>
According to the present technology, the duty ratio of the clock signal input to the counter 107 included in the image sensor 101 can be adjusted to an appropriate value. Thereby, for example, an operation margin of a circuit operating in DDR represented by the counter 107 can be secured.
 従って、外的要因(温度、電圧変化等)、経年劣化等によって撮像素子101の特性が変化した場合にも撮像素子101に最適な駆動条件を得ることが可能になる。図2に、デューティ比を適切な値に調整できる構成について説明する。 Therefore, it is possible to obtain an optimum driving condition for the image sensor 101 even when the characteristics of the image sensor 101 change due to external factors (temperature, voltage change, etc.), deterioration over time, and the like. FIG. 2 illustrates a configuration that can adjust the duty ratio to an appropriate value.
 図2は、デューティ比を適切な値に調整するデューティ補正回路を含む撮像素子101内の一部の構成を示す図である。図2に示した構成は、クロック生成部105から出力されたクロック信号CLKが、途中でリピータを経た後にカウンタ107のクロックとして用いられる構成を示している。 FIG. 2 is a diagram illustrating a partial configuration in the image sensor 101 including a duty correction circuit that adjusts the duty ratio to an appropriate value. The configuration shown in FIG. 2 shows a configuration in which the clock signal CLK output from the clock generation unit 105 is used as the clock of the counter 107 after passing through a repeater on the way.
 クロック生成部105からカウンタ107までの伝送は、クロック周波数を極力下げて伝送するために、カウンタ107は、クロックの立ち上がりと立ち下がりの両エッジを使ってカウントするダブルデータレートタイプ(DDR)が採用されている。 Transmission from the clock generation unit 105 to the counter 107 is performed by lowering the clock frequency as much as possible. Therefore, the counter 107 employs a double data rate type (DDR) that counts using both rising and falling edges of the clock. Has been.
 クロック信号のデューティ比は、50%となっていることが好ましく、デューティ比が50%から外れると、カウンタ107における誤カウントの原因となってしまう。しかしながらクロック生成部105からカウンタ107までのチップ内配線距離が長い場合など、途中にCMOSインバータ(図2では、インバータ202-1乃至202-3)によるリピータを挟むなどすることで、インバータを構成するPMOSとNMOSの製造ばらつきによる能力差などによってクロックを伝送するに従いデューティ比が崩れてしまう可能性があった。 The duty ratio of the clock signal is preferably 50%. If the duty ratio deviates from 50%, the counter 107 may cause an erroneous count. However, when the in-chip wiring distance from the clock generation unit 105 to the counter 107 is long, an inverter is configured by inserting a repeater by a CMOS inverter (inverters 202-1 to 202-3 in FIG. 2) in the middle. There is a possibility that the duty ratio may be lost as the clock is transmitted due to a difference in capability due to manufacturing variations between PMOS and NMOS.
 デューティ補正回路201は、そのようなデューティ比が崩れた場合にデューティ比が正しいクロックに補正する回路である。 The duty correction circuit 201 is a circuit that corrects a clock with a correct duty ratio when such a duty ratio is lost.
 <第1のデューティ補正回路の構成>
 図3に、デューティ補正回路201の構成を示す。図3に示したデューティ補正回路201は、第1のデューティ補正回路とし、デューティ補正回路201aと記述する。
<Configuration of first duty correction circuit>
FIG. 3 shows the configuration of the duty correction circuit 201. The duty correction circuit 201 shown in FIG. 3 is a first duty correction circuit and is described as a duty correction circuit 201a.
 図3に示したデューティ補正回路201aは、インバータ301、HPF(High Pass Filter)302、LPF(Low Pass Filter)303、オペアンプ304、基準電圧源305、インバータ306乃至308、および位相補償容量309を備える。デューティ補正回路201aにおいては、HPF302、LPF303、およびオペアンプ304で負帰還ループが構成されている。 A duty correction circuit 201a shown in FIG. 3 includes an inverter 301, an HPF (High Pass Filter) 302, an LPF (Low Pass Filter) 303, an operational amplifier 304, a reference voltage source 305, inverters 306 to 308, and a phase compensation capacitor 309. . In the duty correction circuit 201a, the HPF 302, the LPF 303, and the operational amplifier 304 form a negative feedback loop.
 HPF302は、容量321と抵抗322から構成され、LPF303は、容量331と抵抗332から構成される。なお、HPF302とLPF303は、容量と抵抗とから構成される以外の構成を有していても良い。 The HPF 302 includes a capacitor 321 and a resistor 322, and the LPF 303 includes a capacitor 331 and a resistor 332. Note that the HPF 302 and the LPF 303 may have a configuration other than a configuration including a capacitor and a resistor.
 デューティ補正回路201aは、クロック生成部105により生成されたクロック信号CLKを入力する。デューティ補正回路201aに入力されるクロック信号CLKは、デューティ比が崩れている可能性がある。まず、デューティ補正回路201aは、インバータ301により、入力されたクロック信号CLKのスルーレートを鈍らせる。インバータ301は、出力スルーレートを適切に制御可能なインバータとされている。 The duty correction circuit 201a receives the clock signal CLK generated by the clock generation unit 105. The duty ratio of the clock signal CLK input to the duty correction circuit 201a may be lost. First, the duty correction circuit 201a causes the inverter 301 to slow down the slew rate of the input clock signal CLK. The inverter 301 is an inverter capable of appropriately controlling the output slew rate.
 インバータ301からの出力は、HPF302に供給され、DC成分が除去される。HPF302には、オペアンプ304から、最終的に出力されるクロックのデューティ比が50%となるようなDC成分が与えられる。HPF302は、インバータ301から供給されるクロックから、DC成分を取り除いた上で、あらたにインバータ306の論理閾値にて、デューティ比が50%になるようなDC値を与える処理を行う。 The output from the inverter 301 is supplied to the HPF 302, and the DC component is removed. The HPF 302 is supplied with a DC component from the operational amplifier 304 such that the duty ratio of the finally output clock is 50%. The HPF 302 performs processing for removing a DC component from the clock supplied from the inverter 301 and giving a DC value such that the duty ratio is 50% with the logical threshold value of the inverter 306.
 オペアンプ304の負側(-端子)には、インバータ306とインバータ307を介したクロック信号から、LPF303により抽出されたデューティ比の崩れた成分が供給される。オペアンプ304の正側(+端子)は、基準電圧源305と接続され、電圧VDDの1/2の電圧が供給される。オペアンプ304の出力端は、位相補償容量309とHPF302に接続されている。 The negative side (-terminal) of the operational amplifier 304 is supplied with a component with a broken duty ratio extracted by the LPF 303 from the clock signal via the inverter 306 and the inverter 307. The positive side (+ terminal) of the operational amplifier 304 is connected to the reference voltage source 305 and supplied with a voltage that is ½ of the voltage VDD. The output terminal of the operational amplifier 304 is connected to the phase compensation capacitor 309 and the HPF 302.
 オペアンプ304からの出力電力は、デューティ補正量である。上記したように、HPF302には、オペアンプ304からの出力、すなわちデューティ補正量が供給される。デューティ比が補正されたクロック信号は、最終的なクロック出力バッファとして設けられているインバータ308を介して、カウンタ107(図2)に出力される。 The output power from the operational amplifier 304 is a duty correction amount. As described above, the output from the operational amplifier 304, that is, the duty correction amount is supplied to the HPF 302. The clock signal with the corrected duty ratio is output to the counter 107 (FIG. 2) via an inverter 308 provided as a final clock output buffer.
 図4を参照して、再度、図3に示したデューティ補正回路201aの動作について説明する。図4の一番上の段に、インバータ301に入力されるクロック信号を示し、図4の2番目の段に、インバータ301から出力されるクロック信号を示す。 Referring to FIG. 4, the operation of duty correction circuit 201a shown in FIG. 3 will be described again. 4 shows the clock signal input to the inverter 301, and the second stage of FIG. 4 shows the clock signal output from the inverter 301.
 図4の3番目の段に、インバータ306に入力されるクロック信号(HPF302から出力されるクロック信号)を示し、図4の4番目の段に、インバータ306からの出力を示す。 4 shows the clock signal input to the inverter 306 (clock signal output from the HPF 302) in the third stage of FIG. 4, and the output from the inverter 306 in the fourth stage of FIG.
 図4の一番上の段に示したインバータ301に入力されたクロック信号は、デューティ比が40%であり、デューティ比が崩れた状態のクロック信号である。このようなクロック信号が入力された場合、インバータ301からの出力は、図4の2番目の段に示したように、スルーレートが十分に鈍らせられたクロック信号となる。 4 is a clock signal having a duty ratio of 40% and a duty ratio collapsed. When such a clock signal is input, the output from the inverter 301 is a clock signal with a sufficiently slow slew rate, as shown in the second stage of FIG.
 このような信号が、HPF302に入力される。HPF302は、入力されたクロック信号からDC成分を除去するとともに、オペアンプ304から供給されるディーティ補正量を加えるため、図4の3番目に示したような信号がHPF302から出力され、インバータ306に供給される。すなわちこの場合、デューティ補正量分だけ、電圧が下げられた信号が、インバータ306に供給される。 Such a signal is input to the HPF 302. The HPF 302 removes the DC component from the input clock signal and adds the duty correction amount supplied from the operational amplifier 304, so that the signal as shown in the third part of FIG. 4 is output from the HPF 302 and supplied to the inverter 306. Is done. That is, in this case, a signal whose voltage is lowered by the duty correction amount is supplied to the inverter 306.
 インバータ306は、論理閾値を、デューティ比が50%になる値(VDD/2に相当)とし、論理閾値以下、または以上になった時点で値を反転した出力を行うことで、図4の4段目に示したクロック信号を出力する。 The inverter 306 sets the logical threshold value to a value (corresponding to VDD / 2) at which the duty ratio becomes 50%, and performs output that is inverted when the logical threshold value is equal to or lower than the logical threshold value. The clock signal shown in the stage is output.
 このように、デューティ補正回路201aは、入力されたクロック信号のデューティ比を補正し、出力する。 In this way, the duty correction circuit 201a corrects the duty ratio of the input clock signal and outputs it.
 デューティ補正回路201aは、インバータ307の出力波形をLPF303で平滑化し、デューティ比が50%であれば、平滑後の電圧がちょうどVDD/2となることを利用し、オペアンプ304にて、VDD/2の基準電圧源305と比較することでデューティ比のずれ量を取得する構成とされている。 The duty correction circuit 201a smoothes the output waveform of the inverter 307 with the LPF 303, and if the duty ratio is 50%, the operational amplifier 304 uses the fact that the voltage after smoothing becomes VDD / 2. Compared with the reference voltage source 305, the deviation amount of the duty ratio is obtained.
 <CDS動作について>
 ところで、図1に示した撮像素子101においては、CDS(Correlated Double Sampling;相関二重サンプリング)方式による処理を画素113から読み出される信号に対して施す。CDS方式においては、図5に示すように、1画素の読み出しにおいて、P相期間とD相期間という2回のカウント期間が設けられている。
<CDS operation>
By the way, in the image sensor 101 shown in FIG. 1, a signal read from the pixel 113 is subjected to processing by a CDS (Correlated Double Sampling) method. In the CDS method, as shown in FIG. 5, two count periods, a P-phase period and a D-phase period, are provided for reading one pixel.
 図5の1段目に、参照信号生成部109で参照信号を比較器110(図1)に供給するタイミングを示すイネーブル信号を示し、2段目に参照信号生成部109で生成される参照信号(ランプ信号)を示す。図5の3段目に、カウンタ107でのカウンタクロックの波形を示す。 The first stage of FIG. 5 shows an enable signal indicating the timing at which the reference signal generator 109 supplies the reference signal to the comparator 110 (FIG. 1), and the reference signal generated by the reference signal generator 109 in the second stage. (Ramp signal). The third stage of FIG. 5 shows the waveform of the counter clock in the counter 107.
 イネーブル信号がオンにされると、参照信号のスイープが開始され、カウンタ107のカウント動作が開始される。参照信号の電圧が入力信号の電圧を下回った際に、比較器110の出力信号がハイレベルからローレベルに反転される。この立ち下がりエッジでカウンタ107のカウント動作が停止される。カウント値は、参照信号の電圧がスイープした電圧幅と1対1の関係であり、このカウント値が入力電圧をアナログデジタル(AD)変換した結果となる。 When the enable signal is turned on, the sweep of the reference signal is started and the count operation of the counter 107 is started. When the voltage of the reference signal falls below the voltage of the input signal, the output signal of the comparator 110 is inverted from the high level to the low level. The counting operation of the counter 107 is stopped at this falling edge. The count value has a one-to-one relationship with the voltage width obtained by sweeping the voltage of the reference signal, and this count value is a result of analog-to-digital (AD) conversion of the input voltage.
 このようなカウント動作が、1画素からの読み出しにおいて、P相期間とD相期間の2回行われる。P相期間とD相期間の間の期間は、カウンタ107を動作させる必要が無いため、クロック生成部105でのクロック信号の生成を止めることができる。クロック生成部105でのクロック信号の生成を止めることで、消費電力を低減させることができる。 Such a counting operation is performed twice in the P-phase period and the D-phase period in reading from one pixel. Since it is not necessary to operate the counter 107 during the period between the P-phase period and the D-phase period, generation of the clock signal in the clock generation unit 105 can be stopped. By stopping the generation of the clock signal in the clock generation unit 105, power consumption can be reduced.
 デューティ補正回路201は、図4を参照して説明したように、インバータ301(図3)に入力されるクロック信号が、連続的に入力されることを前提としている。そして、連続してクロック信号が入力されることで、正しくデューティ比を補正できる回路とされている。 As described with reference to FIG. 4, the duty correction circuit 201 is based on the premise that the clock signal input to the inverter 301 (FIG. 3) is continuously input. The circuit is configured so that the duty ratio can be corrected correctly by continuously inputting clock signals.
 一方で、図5を参照して説明したように、P相期間とD相期間の間の期間では、クロック信号の生成を停止することができ、消費電力を低減させることができる。 On the other hand, as described with reference to FIG. 5, in the period between the P-phase period and the D-phase period, the generation of the clock signal can be stopped and the power consumption can be reduced.
 図3に示したデューティ補正回路201aによれば、上記したようにデューティ比を正しいデューティ比の信号に補正することができる。しかしながら、クロック信号を停止する期間を設けると、換言すれば、デューティ補正回路201aにクロック信号が入力されない期間があると、デューティ補正回路201aの動作が不安定になってしまう可能性がある。 According to the duty correction circuit 201a shown in FIG. 3, the duty ratio can be corrected to a signal with a correct duty ratio as described above. However, if a period for stopping the clock signal is provided, in other words, if there is a period during which the clock signal is not input to the duty correction circuit 201a, the operation of the duty correction circuit 201a may become unstable.
 例えば、クロック信号がLowの状態で停止され、入力が固定されてしまうと、インバータ307からの出力や、LPF303からの出力が不定となり、デューティ補正量の情報が失われてしまう可能性がある。 For example, if the clock signal is stopped in a low state and the input is fixed, the output from the inverter 307 and the output from the LPF 303 may become indefinite, and the duty correction amount information may be lost.
 このようなことから、デューティ補正回路201aにおいて、デューティ補正量を維持し続けるためにはクロック信号を止めずに生成し続ける必要があった。よって、P相期間とD相期間の間の期間では、クロック信号の生成を停止することができず、この点で消費電力を低減することは困難であった。 For this reason, in order to keep the duty correction amount in the duty correction circuit 201a, it is necessary to continue to generate without stopping the clock signal. Therefore, in the period between the P-phase period and the D-phase period, the generation of the clock signal cannot be stopped, and it is difficult to reduce power consumption in this respect.
 また、クロック信号が入力されてから正しいデューティ補正されたクロック信号を得るまでに、内部時定数だけ待つ必要がある。よって実際のカウント開始の手前からクロック信号を、デューティ補正回路201aに与えておく必要があり、その分電力が消費されてしまう。 Also, it is necessary to wait for the internal time constant from the input of the clock signal until the correct duty-corrected clock signal is obtained. Therefore, it is necessary to supply the clock signal to the duty correction circuit 201a before the actual count starts, and power is consumed accordingly.
 このようなことから、P相期間とD相期間の間の期間では、クロック信号の生成を停止しても、デューティ補正量を保持し、デューティ比の補正を精度良く行えるように、消費電力を低減することができるデューティ補正回路201について、以下に説明する。 For this reason, during the period between the P-phase period and the D-phase period, the power consumption is reduced so that the duty correction amount can be maintained and the duty ratio can be corrected accurately even if the generation of the clock signal is stopped. The duty correction circuit 201 that can be reduced will be described below.
 <第2のデューティ補正回路の構成>
 図6に、デューティ補正回路201の他の構成を示す。図6に示したデューティ補正回路201は、第2のデューティ補正回路とし、デューティ補正回路201bと記述する。図6に示したデューティ補正回路201bと、図3に示したデューティ補正回路201aにおいて同一の機能を有する部分には同一の記号を付し、適宜その説明は省略する。
<Configuration of Second Duty Correction Circuit>
FIG. 6 shows another configuration of the duty correction circuit 201. The duty correction circuit 201 illustrated in FIG. 6 is a second duty correction circuit and is described as a duty correction circuit 201b. Parts having the same functions in the duty correction circuit 201b shown in FIG. 6 and the duty correction circuit 201a shown in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 図6に示したデューティ補正回路201bは、図3に示したデューティ補正回路201aと同じく、インバータ301、HPF302、LPF303、オペアンプ304、基準電圧源305、インバータ306乃至308、および位相補償容量309を備える。またHPF302は、容量321と抵抗322から構成され、LPF303は、容量331と抵抗332から構成される。 Similar to the duty correction circuit 201a shown in FIG. 3, the duty correction circuit 201b shown in FIG. 6 includes an inverter 301, an HPF 302, an LPF 303, an operational amplifier 304, a reference voltage source 305, inverters 306 to 308, and a phase compensation capacitor 309. . The HPF 302 includes a capacitor 321 and a resistor 322, and the LPF 303 includes a capacitor 331 and a resistor 332.
 さらに図6に示したデューティ補正回路201bは、スイッチ401とスイッチ402を備える。スイッチ401は、LPF303内に設けられ、容量331と抵抗332との間(抵抗332とオペアンプ304の負側との間)に設けられている。スイッチ402は、オペアンプ304の出力側に設けられ、オペアンプ304とHPF302との間であり、オペアンプ304と位相補償容量309との間に設けられている。 6 further includes a switch 401 and a switch 402. The duty correction circuit 201b shown in FIG. The switch 401 is provided in the LPF 303 and is provided between the capacitor 331 and the resistor 332 (between the resistor 332 and the negative side of the operational amplifier 304). The switch 402 is provided on the output side of the operational amplifier 304, is between the operational amplifier 304 and the HPF 302, and is provided between the operational amplifier 304 and the phase compensation capacitor 309.
 なお、スイッチ401は、図7に示すように、インバータ307とLPF303との間に設けられている構成としても良い。また、デューティ補正回路201bにおいても、HPF302、LPF303、およびオペアンプ304で負帰還ループが構成されている。 The switch 401 may be provided between the inverter 307 and the LPF 303 as shown in FIG. Also in the duty correction circuit 201b, the HPF 302, the LPF 303, and the operational amplifier 304 form a negative feedback loop.
 スイッチ401とスイッチ402は、同じタイミングでオン、またはオフにされる(開閉される)。スイッチ401とスイッチ402は、P相期間とD相期間ではオンにされ(閉じられ)、P相期間とD相期間の間の期間ではオフにされる(開かれる)。 The switch 401 and the switch 402 are turned on or off (opened / closed) at the same timing. The switch 401 and the switch 402 are turned on (closed) during the P-phase period and the D-phase period, and are turned off (opened) during the period between the P-phase period and the D-phase period.
 換言すれば、スイッチ401とスイッチ402は、クロック信号が生成されている間(クロック信号が入力されている間)で閉じられ、クロック信号の生成が停止されている間(クロック信号が入力が停止されている間)で開かれる。 In other words, the switch 401 and the switch 402 are closed while the clock signal is generated (while the clock signal is being input), and while the generation of the clock signal is stopped (when the clock signal is stopped being input). Open).
 このように、スイッチ401,402を設け、クロック停止中にスイッチ401,402をオフにすることで、クロック停止中に、オペアンプ304でデューティ補正量を保持する構成とすることができる。 Thus, by providing the switches 401 and 402 and turning off the switches 401 and 402 while the clock is stopped, the operational amplifier 304 can hold the duty correction amount while the clock is stopped.
 クロック停止中に、デューティ補正量が保持されることで、クロック停止後に、保持されているデューティ補正量を用いて、デューティ比の補正を行うことができるため、クロックを停止しても、デューティ補正回路201bにおけるデューティ比の補正の精度を保つことができる。 Since the duty correction amount is retained while the clock is stopped, the duty ratio can be corrected using the retained duty correction amount after the clock is stopped. The accuracy of duty ratio correction in the circuit 201b can be maintained.
 スイッチ401、スイッチ402の開閉の制御は、上位層からの制御信号により行われる構成とすることができる。スイッチ401、スイッチ402を含むデューティ補正回路201bは、タイミング制御回路106(図1)に含まれているが、スイッチ401、スイッチ402の開閉を制御する信号は、タイミング制御回路106内で生成されるようにしても良いし、図示していない制御部から供給されるようにしても良い。 The opening / closing control of the switch 401 and the switch 402 can be performed by a control signal from an upper layer. The duty correction circuit 201b including the switch 401 and the switch 402 is included in the timing control circuit 106 (FIG. 1), but a signal for controlling opening and closing of the switch 401 and the switch 402 is generated in the timing control circuit 106. Alternatively, it may be supplied from a control unit (not shown).
 このように、デューティ補正量を保持する機能は、負帰還ループにおける安定性を保つための位相補償容量309を用いることで、またオペアンプ304の出力側にスイッチ402を追加することで実現することができる。 As described above, the function of holding the duty correction amount can be realized by using the phase compensation capacitor 309 for maintaining stability in the negative feedback loop and by adding the switch 402 to the output side of the operational amplifier 304. it can.
 図6、図7では、スイッチ402だけでなく、スイッチ401も設ける構成としてあるが、以下の点から、スイッチ401を設けた方が、より確実にデューティ補正量を保持し、デューティ補正が行われるようにすることができる。 6 and 7, not only the switch 402 but also the switch 401 is provided. However, the provision of the switch 401 more reliably holds the duty correction amount and the duty correction is performed from the following points. Can be.
 オペアンプ304の出力には、寄生容量が付いている。クロック信号が停止された後にクロック信号が再開され、スイッチ402がオンの状態に戻されたときに、オペアンプ304の出力電圧値が大きく外れた値になっていると、位相補償容量309とオペアンプ304の出力寄生容量との間でチャージシェアが生じる可能性がある。 The output of the operational amplifier 304 has a parasitic capacitance. When the clock signal is restarted after the clock signal is stopped and the switch 402 is returned to the ON state, if the output voltage value of the operational amplifier 304 is greatly deviated, the phase compensation capacitor 309 and the operational amplifier 304 There is a possibility that charge sharing will occur with the output parasitic capacitance.
 チャージシェアが生じることで、もともとの保持電圧(デューティ補正量)からずれてしまうことを防ぐため、オペアンプ304の入力側にも、スイッチ401を設けた構成とするのが良い。 In order to prevent deviation from the original holding voltage (duty correction amount) due to charge sharing, it is preferable to provide a switch 401 on the input side of the operational amplifier 304.
 図6または図7に示したデューティ補正回路201bにおいては、インバータ306とインバータ307をHPF302とLPF303との間に設ける構成としたが、インバータ306だけを設ける構成(インバータ307を削除した構成)としても良い。 In the duty correction circuit 201b shown in FIG. 6 or 7, the inverter 306 and the inverter 307 are provided between the HPF 302 and the LPF 303. However, a configuration in which only the inverter 306 is provided (a configuration in which the inverter 307 is omitted) is also possible. good.
 HPF302とLPF303との間にインバータ306のみを設けた構成とした場合、オペアンプ304の負側は、基準電圧源305に接続され、オペアンプ304の正側は、LPF303に接続される。 When only the inverter 306 is provided between the HPF 302 and the LPF 303, the negative side of the operational amplifier 304 is connected to the reference voltage source 305, and the positive side of the operational amplifier 304 is connected to the LPF 303.
 <第3のデューティ補正回路の構成>
 図8に、デューティ補正回路201のさらに他の構成を示す。図8に示したデューティ補正回路201は、第3のデューティ補正回路とし、デューティ補正回路201cと記述する。図8に示したデューティ補正回路201cと、図3に示したデューティ補正回路201aまたは図6に示したデューティ補正回路201bにおいて同一の機能を有する部分には同一の記号を付し、適宜その説明は省略する。
<Configuration of Third Duty Correction Circuit>
FIG. 8 shows still another configuration of the duty correction circuit 201. The duty correction circuit 201 shown in FIG. 8 is a third duty correction circuit and is described as a duty correction circuit 201c. Portions having the same function in the duty correction circuit 201c shown in FIG. 8 and the duty correction circuit 201a shown in FIG. 3 or the duty correction circuit 201b shown in FIG. Omitted.
 図8に示したデューティ補正回路201cは、図6に示したデューティ補正回路201bと同じく、インバータ301、HPF302、LPF303、オペアンプ304、基準電圧源305、インバータ306乃至308、スイッチ401、およびスイッチ402を備える。 The duty correction circuit 201c illustrated in FIG. 8 includes the inverter 301, the HPF 302, the LPF 303, the operational amplifier 304, the reference voltage source 305, the inverters 306 to 308, the switch 401, and the switch 402, similarly to the duty correction circuit 201b illustrated in FIG. Prepare.
 またHPF302は、容量321と抵抗322から構成されている。LPF303は、容量501と抵抗332から構成される。容量501は、オペアンプ304の負側の入力と、オペアンプ304の出力との間に設けられている。 The HPF 302 is composed of a capacitor 321 and a resistor 322. The LPF 303 includes a capacitor 501 and a resistor 332. The capacitor 501 is provided between the negative input of the operational amplifier 304 and the output of the operational amplifier 304.
 第3の実施の形態におけるデューティ補正回路201cは、第2の実施の形態におけるデューティ補正回路201bから、位相補償容量309を削除した構成とされている。位相補償容量309は、LPF303を構成する容量501と共用された構成に、デューティ補正回路201cはされている。 The duty correction circuit 201c in the third embodiment is configured by deleting the phase compensation capacitor 309 from the duty correction circuit 201b in the second embodiment. The phase compensation capacitor 309 is shared with the capacitor 501 constituting the LPF 303, and the duty correction circuit 201c is provided.
 スイッチ401は、図6に示したデューティ補正回路201bと同じく、抵抗332とオペアンプ304(の負側)との間に設けられている。または、図示はしないが、図7に示したデューティ補正回路201bと同じく、インバータ307とLPF303との間に設けられている構成としても良い。 The switch 401 is provided between the resistor 332 and the operational amplifier 304 (the negative side thereof), similarly to the duty correction circuit 201b shown in FIG. Alternatively, although not illustrated, a configuration provided between the inverter 307 and the LPF 303 may be employed as in the duty correction circuit 201b illustrated in FIG.
 スイッチ402は、オペアンプ304の出力側に設けられ、オペアンプ304とHPF302との間に設けられている。 The switch 402 is provided on the output side of the operational amplifier 304, and is provided between the operational amplifier 304 and the HPF 302.
 このように、第3の実施の形態におけるデューティ補正回路201cは、第2の実施の形態におけるデューティ補正回路201bの位相補償容量309とLPF303を構成する容量331という2つの容量を1つの容量501にまとめた構成とされている。 As described above, the duty correction circuit 201c according to the third embodiment converts the two capacitors, the phase compensation capacitor 309 of the duty correction circuit 201b according to the second embodiment and the capacitor 331 constituting the LPF 303, into one capacitor 501. The configuration is summarized.
 位相補償容量309や容量331は、実装面積が他の素子、例えばインバータ306などの素子に比べて大きいため、2つの容量を1つの容量にするだけでもデューティ補正回路201cの面積を小さくすることができる。すなわち、第3の実施の形態におけるデューティ補正回路201cの構成によれば、小面積化を実現できる。 Since the mounting area of the phase compensation capacitor 309 and the capacitor 331 is larger than that of other elements, for example, an element such as the inverter 306, the area of the duty correction circuit 201c can be reduced only by using two capacitors as one capacitor. it can. That is, according to the configuration of the duty correction circuit 201c in the third embodiment, it is possible to reduce the area.
 また、オペアンプ304の負側の入力と、オペアンプ304の出力との間に容量501を接続することで、負帰還ループの安定を保つことができ、かつLPF303の容量も兼ねる構成とすることができる。 Further, by connecting the capacitor 501 between the negative input of the operational amplifier 304 and the output of the operational amplifier 304, the negative feedback loop can be kept stable, and the LPF 303 can also serve as a capacitor. .
 さらに、第3の実施の形態におけるデューティ補正回路201cは、スイッチ502を備える。スイッチ502は、オペアンプ304の負側の入力と正側の入力とを接続する位置に設けられている。第3の実施の形態におけるデューティ補正回路201cは、スイッチ401、スイッチ402、およびスイッチ502の3つのスイッチを有する構成とされている。 Furthermore, the duty correction circuit 201c in the third embodiment includes a switch 502. The switch 502 is provided at a position where the negative input and the positive input of the operational amplifier 304 are connected. The duty correction circuit 201c in the third embodiment is configured to include three switches, a switch 401, a switch 402, and a switch 502.
 スイッチ401とスイッチ402は、上記したように、同一のタイミングで開閉(オンオフ)される。スイッチ502は、スイッチ401,402とは異なるタイミングで開閉(オンオフ)される。 As described above, the switch 401 and the switch 402 are opened / closed (on / off) at the same timing. The switch 502 is opened and closed (on / off) at a timing different from that of the switches 401 and 402.
 すなわち、クロック信号が停止されていない状態のとき、スイッチ401とスイッチ402は、閉じられた状態(オンの状態)にされ、スイッチ502は、開かれた状態(オフの状態)にされる。またクロック信号が停止されている状態のとき、スイッチ401とスイッチ402は、開かれた状態(オフの状態)にされ、スイッチ502は、閉じられた状態(オンの状態)にされる。 That is, when the clock signal is not stopped, the switch 401 and the switch 402 are in a closed state (on state), and the switch 502 is in an open state (off state). When the clock signal is stopped, the switch 401 and the switch 402 are opened (off state), and the switch 502 is closed (on state).
 デューティ補正量の保持期間、すなわちスイッチ401とスイッチ402がオフにされている期間においては、容量501の両端とも、Hi-Z状態(ハイインピーダンスの状態)となってしまい非常にわずかなリーク電流であっても短時間で電圧値が大きく変動してしまう可能性がある。そこでデューティ補正量の保持期間において、スイッチ502をオンにし、VDD/2の電圧を有する基準電圧源305と短絡させる。 During the duty correction amount holding period, that is, the period in which the switch 401 and the switch 402 are turned off, both ends of the capacitor 501 are in the Hi-Z state (high impedance state), and the leakage current is very small. Even in such a case, the voltage value may fluctuate greatly in a short time. Therefore, during the duty correction amount holding period, the switch 502 is turned on to short-circuit the reference voltage source 305 having a voltage of VDD / 2.
 これは、オペアンプ304のゲインが十分高ければ、オペアンプ304の2入力間は、バーチャルショート状態となり、略同電位となる。すなわち、デューティ補正を十分行った後は、オペアンプ304の負側入力電圧も十分にVDD/2近辺に落ち着いているはずであり、そのためデューティ補正量の保持時に、この2入力間を短絡してもデューティ補正電圧(インバータ306への入力のDC電圧)にはほとんど影響を与えないためである。 This means that if the gain of the operational amplifier 304 is sufficiently high, the two inputs of the operational amplifier 304 are in a virtual short state and become substantially the same potential. That is, after the duty correction is sufficiently performed, the negative side input voltage of the operational amplifier 304 should be sufficiently settled in the vicinity of VDD / 2. Therefore, even if the two inputs are short-circuited when the duty correction amount is maintained. This is because the duty correction voltage (the DC voltage input to the inverter 306) is hardly affected.
 スイッチ502を設け、デューティ補正量を保持している期間に、スイッチ502を閉じることで、短時間で電圧値が大きく変動してしまうようなことを防ぐことができる。これにより、より安定した状態で、デューティ比の補正を行うことができる。 It is possible to prevent the voltage value from fluctuating greatly in a short time by providing the switch 502 and closing the switch 502 while the duty correction amount is maintained. As a result, the duty ratio can be corrected in a more stable state.
 <第4のデューティ補正回路の構成>
 図9に、デューティ補正回路201のさらに他の構成を示す。図9に示したデューティ補正回路201は、第4のデューティ補正回路とし、デューティ補正回路201dと記述する。図9に示したデューティ補正回路201dと、図8に示したデューティ補正回路201cにおいて同一の機能を有する部分には同一の記号を付し、適宜その説明は省略する。
<Configuration of Fourth Duty Correction Circuit>
FIG. 9 shows still another configuration of the duty correction circuit 201. The duty correction circuit 201 shown in FIG. 9 is a fourth duty correction circuit and is described as a duty correction circuit 201d. Portions having the same function in the duty correction circuit 201d shown in FIG. 9 and the duty correction circuit 201c shown in FIG. 8 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 図9に示したデューティ補正回路201cは、図8に示したデューティ補正回路201cと同じく、LPF(Low Pass Filter)303、オペアンプ304、基準電圧源305、インバータ307,308、スイッチ401、およびスイッチ402を備える。 The duty correction circuit 201c illustrated in FIG. 9 is similar to the duty correction circuit 201c illustrated in FIG. 8, an LPF (Low Pass Filter) 303, an operational amplifier 304, a reference voltage source 305, inverters 307 and 308, a switch 401, and a switch 402. Is provided.
 またHPF302は、容量321と抵抗322から構成されている。LPF303は、容量501と抵抗332から構成される。容量501は、オペアンプ304の負側の入力と、オペアンプ304の出力との間に設けられている。 The HPF 302 is composed of a capacitor 321 and a resistor 322. The LPF 303 includes a capacitor 501 and a resistor 332. The capacitor 501 is provided between the negative input of the operational amplifier 304 and the output of the operational amplifier 304.
 第4の実施の形態におけるデューティ補正回路201dは、第3の実施の形態におけるデューティ補正回路201cから、HPF102を削除し、インバータ621のドライブ能力を調整できるスルーレート調整部601に置換された構成とされている。また、デューティ補正回路201dにおいても、スルーレート調整部601、LPF303、オペアンプ304で負帰還ループが構成されている。 The duty correction circuit 201d in the fourth embodiment has a configuration in which the HPF 102 is deleted from the duty correction circuit 201c in the third embodiment and is replaced with a slew rate adjustment unit 601 that can adjust the drive capability of the inverter 621. Has been. Also in the duty correction circuit 201d, the slew rate adjustment unit 601, the LPF 303, and the operational amplifier 304 form a negative feedback loop.
 スルーレート調整部601は、Pチャンネル型トランジスタ611、Nチャンネル型トランジスタ612、およびインバータ621を備える構成とされている。インバータ621は、例えば、第3の実施の形態におけるデューティ補正回路201cに含まれるインバータ306に相当するインバータである。 The slew rate adjusting unit 601 includes a P-channel transistor 611, an N-channel transistor 612, and an inverter 621. The inverter 621 is an inverter corresponding to the inverter 306 included in the duty correction circuit 201c in the third embodiment, for example.
 第4の実施の形態におけるデューティ補正回路201dにおいては、インバータ306に相当するインバータ621は、入力された信号のスルーレートを調整する機能を有する。またインバータ621でスルーレートが調整されるため、第1乃至3の実施の形態におけるインバータ301と異なり、スルーレートを調整しないインバータ301’で構成されている。 In the duty correction circuit 201d in the fourth embodiment, the inverter 621 corresponding to the inverter 306 has a function of adjusting the slew rate of the input signal. Further, since the slew rate is adjusted by the inverter 621, unlike the inverter 301 in the first to third embodiments, the slew rate is configured by an inverter 301 'that does not adjust the slew rate.
 スルーレート調整部601のPチャンネル型トランジスタ611とNチャンネル型トランジスタ612の各ゲートには、オペアンプ304からの出力(デューティ補正量)が入力される。Pチャンネル型トランジスタ611のソースは電源に接続されており、Nチャンネル型トランジスタ612のドレインは、接地されている。 The output (duty correction amount) from the operational amplifier 304 is input to each gate of the P-channel transistor 611 and the N-channel transistor 612 of the slew rate adjusting unit 601. The source of the P-channel transistor 611 is connected to the power supply, and the drain of the N-channel transistor 612 is grounded.
 スルーレート調整部601は、ドライブ能力調整用のPチャンネル型トランジスタ611とNチャンネル型トランジスタ612を備え、Pチャンネル型トランジスタ611は、インバータ621と電源の間に設けられ、Nチャンネル型トランジスタ612は、インバータ621とグランド(GND)の間に設けられている。 The slew rate adjustment unit 601 includes a P-channel transistor 611 and an N-channel transistor 612 for adjusting drive capability. The P-channel transistor 611 is provided between the inverter 621 and the power supply, and the N-channel transistor 612 includes: It is provided between the inverter 621 and the ground (GND).
 インバータ621には、インバータ301’を介してクロック生成部105からのクロック信号が入力される。 The clock signal from the clock generation unit 105 is input to the inverter 621 via the inverter 301 '.
 このように、インバータ621には、デューティ比が補正前のクロック信号が入力され、Pチャンネル型トランジスタ611とNチャンネル型トランジスタ612のゲートには、それぞれオペアンプ304からのデューティ補正量が供給される構成とされている。この構成では、Pチャンネル型トランジスタ611のゲート電圧とNチャンネル型トランジスタ612のゲート電圧は、オペアンプ304で制御される構成とされている。 As described above, the clock signal before the duty ratio is corrected is input to the inverter 621, and the duty correction amount from the operational amplifier 304 is supplied to the gates of the P-channel transistor 611 and the N-channel transistor 612, respectively. It is said that. In this configuration, the gate voltage of the P-channel transistor 611 and the gate voltage of the N-channel transistor 612 are controlled by the operational amplifier 304.
 また、スルーレート調整部601は、インバータ621に入力されるクロック信号のスルーレートを調整し、デューティ比のずれを補正することができる構成とされている。 Further, the slew rate adjustment unit 601 is configured to be able to adjust the slew rate of the clock signal input to the inverter 621 and correct the duty ratio deviation.
 Pチャンネル型トランジスタ611は、Pチャンネル型トランジスタ611のゲートに入力されるオペアンプ304からのデューティ補正量が、クロック生成部105から入力されるクロック信号のL幅を広げる補正量である場合にオンになる。そして、当該クロック信号のデューティ比を下げるように、インバータ621に入力されるクロック信号のスルーレートが調整される。 The P-channel transistor 611 is turned on when the duty correction amount from the operational amplifier 304 input to the gate of the P-channel transistor 611 is a correction amount that widens the L width of the clock signal input from the clock generation unit 105. Become. Then, the slew rate of the clock signal input to the inverter 621 is adjusted so as to reduce the duty ratio of the clock signal.
 Nチャンネル型トランジスタ612は、Nチャンネル型トランジスタ612のゲートに入力されるオペアンプ304からのデューティ補正量が、クロック生成部105から入力されるクロック信号H幅を広げる補正量である場合にオンになる。そして、当該クロック信号のデューティ比を上げるように、インバータ621に入力されるクロック信号のスルーレートが調整される。 The N-channel transistor 612 is turned on when the duty correction amount from the operational amplifier 304 input to the gate of the N-channel transistor 612 is a correction amount that widens the clock signal H width input from the clock generation unit 105. . Then, the slew rate of the clock signal input to the inverter 621 is adjusted so as to increase the duty ratio of the clock signal.
 スルーレート調整部601は、オペアンプ304からのデューティ補正量が、デューティ比を上げる補正を行うことを指示する量(制御信号)であった場合、Nチャンネル型トランジスタ612のドライブ能力を下げることで、デューティ比の補正を行う。 When the duty correction amount from the operational amplifier 304 is an amount (control signal) for instructing correction to increase the duty ratio, the slew rate adjustment unit 601 reduces the drive capability of the N-channel transistor 612. Correct the duty ratio.
 またスルーレート調整部601は、オペアンプ304からのデューティ補正量が、デューティ比を下げる補正を行うことを指示する量(制御信号)であった場合、Pチャンネル型トランジスタ611のドライブ能力を下げることで、デューティ比の補正を行う。 Further, when the duty correction amount from the operational amplifier 304 is an amount (control signal) for instructing correction to reduce the duty ratio, the slew rate adjustment unit 601 reduces the drive capability of the P-channel transistor 611. The duty ratio is corrected.
 このような構成とすることで、HPF302(図8など)を削除した構成とすることができる。HPF302を削除した構成とすることで、HPF302を構成する容量302と抵抗322を削除する構成とすることができるため、実装面積を省面積化することができる。 By adopting such a configuration, a configuration in which the HPF 302 (such as FIG. 8) is deleted can be obtained. By adopting a configuration in which the HPF 302 is deleted, a configuration in which the capacitor 302 and the resistor 322 that configure the HPF 302 are deleted can be achieved, so that the mounting area can be reduced.
 また、第1乃至第3の実施の形態におけるデューティ補正回路201は、デューティ補正として、HPF302後のDC値を調整する構成であった。このような構成の場合、HPF302に供給されるクロック信号の波形が十分に鈍っている(インバータ301でクロック信号の波形を十分に鈍らせる)ことが前提となっており、プロセス変動、電源電圧変動、温度変動(以下、これらの変動をPVT変動と記述する)スルーレートへの影響が大きくなってしまう可能性がある。 Further, the duty correction circuit 201 in the first to third embodiments has a configuration for adjusting the DC value after the HPF 302 as the duty correction. In such a configuration, it is assumed that the waveform of the clock signal supplied to the HPF 302 is sufficiently dull (the waveform of the clock signal is sufficiently dulled by the inverter 301). There is a possibility that the influence on the slew rate becomes large (hereinafter, these fluctuations will be referred to as PVT fluctuations).
 これに対して、第4の実施の形態におけるデューティ補正回路201dにおいては、直接インバータ621の能力を調整することができる構成であるため、PVT変動によるスルーレートへの影響を軽減することができる。 On the other hand, the duty correction circuit 201d according to the fourth embodiment has a configuration in which the capacity of the inverter 621 can be directly adjusted, so that the influence on the slew rate due to the PVT fluctuation can be reduced.
 図9に示したデューティ補正回路201dの動作について、図10を参照して説明する。図10を参照した説明では、デューティ比が50%未満のクロック信号を、デューティ比が50%のクロック信号に補正する場合を例に挙げて説明する。 The operation of the duty correction circuit 201d shown in FIG. 9 will be described with reference to FIG. In the description with reference to FIG. 10, a case where a clock signal having a duty ratio of less than 50% is corrected to a clock signal having a duty ratio of 50% will be described as an example.
 図10の一番上の段に、インバータ301に入力されるクロック信号を示し、図10の2番目の段に、インバータ301から出力されるクロック信号を示す。図10の3番目の段に、インバータ621から出力されるクロック信号を示し、図10の4番目の段に、インバータ307からの出力を示す。 10 shows the clock signal input to the inverter 301, and the second stage of FIG. 10 shows the clock signal output from the inverter 301. The third stage in FIG. 10 shows the clock signal output from the inverter 621, and the fourth stage in FIG. 10 shows the output from the inverter 307.
 図10の一番上の段に示したインバータ301に入力されたクロック信号は、デューティ比が例えば、40%であり、デューティ比が崩れた状態のクロック信号である。このようなクロック信号が入力された場合、インバータ301からの出力は、図10の2番目の段に示したように、デューティ比はそのままで極性が反転された信号にされて出力される。 The clock signal input to the inverter 301 shown in the uppermost stage in FIG. 10 has a duty ratio of 40%, for example, and is a clock signal in a state where the duty ratio has collapsed. When such a clock signal is input, the output from the inverter 301 is output as a signal whose polarity is inverted without changing the duty ratio, as shown in the second stage of FIG.
 このような信号が、スルーレート調整部601のインバータ621に入力される。スルーレート調整部601は、この場合、デューティ比を40%から50%に上げるためのスルーレートを調整する。この場合、Nチャンネル型トランジスタ612のドライブ能力を下げることで、デューティ比が補正(スルーレートが調整)される。 Such a signal is input to the inverter 621 of the slew rate adjusting unit 601. In this case, the slew rate adjusting unit 601 adjusts the slew rate for increasing the duty ratio from 40% to 50%. In this case, the duty ratio is corrected (the slew rate is adjusted) by reducing the drive capability of the N-channel transistor 612.
 スルーレート調整部601(内のインバータ621)からは、図10の3段目に示したような信号が生成され、インバータ307に出力される。図10の3段目に示した信号は、入力された信号の立ち下がり側のスルーレートが鈍くなった信号とされている。 A signal as shown in the third stage of FIG. 10 is generated from the slew rate adjustment unit 601 (internal inverter 621) and output to the inverter 307. The signal shown in the third stage of FIG. 10 is a signal in which the slew rate on the falling side of the input signal has become slow.
 図示はしないが、デューティ比を下げるためのスルーレートの調整が行われる場合、Pチャンネル型トランジスタ611のドライブ能力を下げることで、デューティ比が補正(スルーレートが調整)される。またこのような調整が行われた場合、スルーレート調整部601に入力された信号の立ち上がり側のスルーレートが鈍くなった信号が生成され、インバータ307に出力される。 Although not shown, when the slew rate is adjusted to lower the duty ratio, the duty ratio is corrected (the slew rate is adjusted) by lowering the drive capability of the P-channel transistor 611. In addition, when such adjustment is performed, a signal in which the slew rate on the rising side of the signal input to the slew rate adjustment unit 601 becomes dull is generated and output to the inverter 307.
 インバータ307は、論理閾値を、デューティ比が50%になる値(VDD/2に相当)とし、論理閾値以下、または以上になった時点で値を反転した出力を行うことで、図10の4段目に示したクロック信号を出力する。 The inverter 307 sets the logic threshold value to a value (corresponding to VDD / 2) at which the duty ratio becomes 50%, and performs an output in which the value is inverted when the logic threshold value is equal to or less than or equal to 4 in FIG. The clock signal shown in the stage is output.
 このように、デューティ補正回路201dは、入力されたクロック信号のデューティ比を補正し、出力することができる。 Thus, the duty correction circuit 201d can correct the duty ratio of the input clock signal and output it.
 上記した実施の形態におけるデューティ補正回路201によれば、上記したように、消費電力を低下させたデューティ補正を行うことができる。また、以下に説明するような効果も得られる。 According to the duty correction circuit 201 in the above-described embodiment, duty correction with reduced power consumption can be performed as described above. In addition, the effects described below can also be obtained.
 図9に示したデューティ補正回路201dの構成において、図示はしないが、図7に示したデューティ補正回路201bと同じく、インバータ307とLPF303との間にスイッチ401が設けられている構成としても良い。 Although not shown in the configuration of the duty correction circuit 201d illustrated in FIG. 9, a switch 401 may be provided between the inverter 307 and the LPF 303, as in the duty correction circuit 201b illustrated in FIG.
 また、図9に示したデューティ補正回路201dの構成では、第3の実施の形態におけるデューティ補正回路201c(図8)と同じく、容量501を備える構成としたが、第2の実施の形態におけるデューティ補正回路201b(図6)と同じく、図11に示したデューティ補正回路201eのように、容量331と位相補償容量309を備える構成としても良い。 Further, in the configuration of the duty correction circuit 201d shown in FIG. 9, the configuration including the capacitor 501 is the same as the duty correction circuit 201c (FIG. 8) in the third embodiment. However, the duty correction circuit 201d shown in FIG. Similar to the correction circuit 201b (FIG. 6), a configuration including a capacitor 331 and a phase compensation capacitor 309 may be used as in the duty correction circuit 201e shown in FIG.
 なお、アナログ電圧値を保持するためにはスイッチ(例えば、スイッチ401など)に流れるリーク電流を極力小さく抑える必要がある。しかしながら、通常CMOSスイッチだと、特に高温時に非常に多くのリーク電流が流れてしまい、長時間保持することができない。 In order to maintain the analog voltage value, it is necessary to suppress the leakage current flowing through the switch (for example, the switch 401) as small as possible. However, with a normal CMOS switch, a very large amount of leakage current flows especially at high temperatures, and cannot be held for a long time.
 そのため、大きなL長を持つトランジスタを採用する、スイッチをオフさせる際のゲート電圧をNMOSに対してはGNDレベルを下回るような負電圧を、またPMOSに対しては電源を超えるような高電圧を別途用意する、といった特殊な対策を行う必要があった。 Therefore, a transistor with a large L length is used, the gate voltage when turning off the switch is a negative voltage that is lower than the GND level for NMOS, and a high voltage that exceeds the power supply for PMOS. It was necessary to take special measures such as preparing them separately.
 本技術によれば、撮像素子101のCDS方式におけるP相期間とD相期間の間程度の時間で良く、長時間保持する必要がない。本技術を適用した撮像素子101(に含まれるデューティ補正回路201)に用いるスイッチは、非常に簡単かつ十分小さいサイズのトランジスタで構成することができる。 According to the present technology, the time may be approximately between the P-phase period and the D-phase period in the CDS system of the image sensor 101, and it is not necessary to hold for a long time. A switch used in the image sensor 101 to which the present technology is applied (the duty correction circuit 201 included in the image sensor 101) can be configured by a very simple and sufficiently small transistor.
 本技術によれば、デューティ補正回路をCDS方式カウンタクロックに適用することで、クロック生成部105(図1)からカウンタ107間が、チップ上で長距離伝送となった場合にも、そのデューティ比をより適切に補正できる。 According to the present technology, by applying the duty correction circuit to the CDS system counter clock, even when a long distance transmission is performed between the clock generator 105 (FIG. 1) and the counter 107 on the chip, the duty ratio is increased. Can be corrected more appropriately.
 また、デューティ補正量を保持できる機構を有するため、クロックが停止される期間を設けても、クロックが再開されたときに、不定な動作にならずに、デューティ比の補正を行うことができる。またクロックを停止することができるため、本技術によれば、消費電力を低減させることも可能となる。 In addition, since it has a mechanism capable of holding the duty correction amount, even if a period in which the clock is stopped is provided, the duty ratio can be corrected without indefinite operation when the clock is restarted. In addition, since the clock can be stopped, the power consumption can be reduced according to the present technology.
 なお、本技術は、上記したように、撮像素子101に対して適用できるが、本技術の適用範囲が、撮像素子101に限定される記載ではない。本技術によれば、ディーティ比を補正できるため、ディーティ比を維持した波形を生成し、出力する装置に適用できる。 Note that the present technology can be applied to the image sensor 101 as described above, but the scope of application of the present technology is not limited to the image sensor 101. According to the present technology, since the duty ratio can be corrected, it can be applied to a device that generates and outputs a waveform maintaining the duty ratio.
 本明細書において、システムとは、複数の装置により構成される装置全体を表すものである。 In this specification, the system represents the entire apparatus composed of a plurality of apparatuses.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 It should be noted that the effects described in this specification are merely examples and are not limited, and other effects may be obtained.
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Note that the embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
 なお、本技術は以下のような構成も取ることができる。
(1)
 入力されたクロックを所定のスルーレートに変換する変換部と、
 前記変換部からの出力からDC成分を除去するDC成分除去部と、
 前記DC成分除去部からの出力にDC成分を付加するDC成分付加部と、
 前記DC成分付加部からの出力からDC成分を抽出するDC成分抽出部と
 を備え、
 前記DC成分抽出部は、内部に第1のスイッチを備え、
 前記DC成分付加部と前記DC成分除去部との間には、第2のスイッチが備えられ、
 前記第1のスイッチと前記第2のスイッチは、前記クロックが停止されているときにオフにされる
 補正装置。
(2)
 前記DC成分除去部、前記DC成分付加部、および前記DC成分抽出部で、負帰還ループが構成されている
 前記(1)に記載の補正装置。
(3)
 前記DC成分抽出部は、容量と抵抗を有し、
 前記第1のスイッチは、前記容量と前記抵抗との間に設けられている
 前記(1)または(2)に記載の補正装置。
(4)
 前記DC成分抽出部は、容量と抵抗を有し、
 前記第1のスイッチは、前記抵抗と前記DC成分除去部との間に設けられている
 前記(1)または(2)に記載の補正装置。
(5)
 前記DC成分付加部は、オペアンプで構成され、
 前記オペアンプの負側入力は、前記第1のスイッチの一端に接続され、正側入力は、基準電圧の半分の電圧の電圧源に接続され
 前記オペアンプの出力側は、前記第2のスイッチを介して前記DC成分除去部に接続されている
 前記(1)乃至(4)のいずれかに記載の補正装置。
(6)
 前記オペアンプの出力側は、前記第2のスイッチを介して位相補償容量にも接続されている
 前記(5)に記載の補正装置。
(7)
 前記DC成分抽出部は、容量と抵抗を有し、
 前記DC成分付加部は、オペアンプで構成され、
 前記第1のスイッチの一端は、前記抵抗に接続され、他端は、前記オペアンプの負側入力に接続され、
 前記オペアンプの負側入力と出力側との間に、前記容量が設けられている
 前記(1)乃至(4)のいずれかに記載の補正装置。
(8)
 前記オペアンプの負側入力と正側入力との間に、第3のスイッチをさらに備え、
 前記第3のスイッチは、前記クロックが停止されているときにオンにされる
 前記(7)に記載の補正装置。
(9)
 入力されたクロックを所定のスルーレートに変換する変換部と、
 前記DC成分付加部からの出力からDC成分を抽出するDC成分抽出部と、
 前記変換部を制御する制御部と
 を備え、
 前記変換部は、PMOS側とNMOS側の各ドライブ能力を電圧制御可能なインバータを備え、
 前記制御部は、前記インバータの前記ドライブ能力を制御し、
 前記DC成分抽出部は、内部に第1のスイッチを備え、
 前記インバータのドライブ能力の制御入力側と前記制御部の出力側との間には、第2のスイッチが備えられ、
 前記第1のスイッチと前記第2のスイッチは、前記クロックが停止されているときにオフにされる
 補正装置。
(10)
 前記制御部は、所定のディーティ比となるように、前記インバータのドライブ能力を電圧制御する
 前記(9)に記載の補正装置。
(11)
 前記変換部、前記DC成分抽出部、および前記制御部で、負帰還ループが構成されている
 前記(9)または(10)に記載の補正装置。
(12)
 前記DC成分抽出部は、容量と抵抗を有し、
 前記第1のスイッチは、前記容量と前記抵抗との間に設けられている
 前記(9)乃至(11)のいずれかに記載の補正装置。
(13)
 前記DC成分抽出部は、容量と抵抗を有し、
 前記第1のスイッチは、前記抵抗と前記変換部との間に設けられている
 前記(9)乃至(11)のいずれかに記載の補正装置。
(14)
 前記制御部は、オペアンプで構成され、
 前記オペアンプの負側入力は、前記第2のスイッチの一端に接続され、正側入力は、基準電圧の半分の電圧の電圧源に接続され
 前記オペアンプの出力側は、前記第2のスイッチを介して前記インバータの入力側、前記PMOSのゲート、および前記NMOSのゲートに接続されている
 前記(9)乃至(13)のいずれかに記載の補正装置。
(15)
 前記オペアンプの出力側は、前記第2のスイッチを介して位相補償容量にも接続されている
 前記(14)に記載の補正装置。
(16)
 前記DC成分抽出部は、容量と抵抗を有し、
 前記DC成分付加部は、オペアンプで構成され、
 前記第1のスイッチの一端は、前記抵抗に接続され、他端は、前記オペアンプの負側入力に接続され、
 前記オペアンプの負側入力と出力側との間に、前記容量が設けられている
 前記(9)乃至(14)に記載の補正装置。
(17)
 前記オペアンプの負側入力と正側入力との間に、第3のスイッチをさらに備え、
 前記第3のスイッチは、前記クロックが停止されているときにオンにされる
 前記(16)に記載の補正装置。
In addition, this technique can also take the following structures.
(1)
A converter that converts the input clock to a predetermined slew rate; and
A DC component removal unit for removing a DC component from the output from the conversion unit;
A DC component adding unit for adding a DC component to the output from the DC component removing unit;
A DC component extraction unit that extracts a DC component from an output from the DC component addition unit,
The DC component extraction unit includes a first switch inside,
A second switch is provided between the DC component adding unit and the DC component removing unit,
The correction device, wherein the first switch and the second switch are turned off when the clock is stopped.
(2)
The correction device according to (1), wherein the DC component removal unit, the DC component addition unit, and the DC component extraction unit form a negative feedback loop.
(3)
The DC component extraction unit has a capacity and a resistance,
The correction device according to (1) or (2), wherein the first switch is provided between the capacitor and the resistor.
(4)
The DC component extraction unit has a capacity and a resistance,
The correction device according to (1) or (2), wherein the first switch is provided between the resistor and the DC component removing unit.
(5)
The DC component adding unit is composed of an operational amplifier,
The negative input of the operational amplifier is connected to one end of the first switch, the positive input is connected to a voltage source having a voltage half the reference voltage, and the output side of the operational amplifier is connected via the second switch. The correction device according to any one of (1) to (4), connected to the DC component removal unit.
(6)
The correction device according to (5), wherein an output side of the operational amplifier is also connected to a phase compensation capacitor via the second switch.
(7)
The DC component extraction unit has a capacity and a resistance,
The DC component adding unit is composed of an operational amplifier,
One end of the first switch is connected to the resistor, and the other end is connected to a negative input of the operational amplifier.
The correction device according to any one of (1) to (4), wherein the capacitor is provided between a negative input and an output side of the operational amplifier.
(8)
A third switch is further provided between the negative side input and the positive side input of the operational amplifier,
The correction device according to (7), wherein the third switch is turned on when the clock is stopped.
(9)
A converter that converts the input clock to a predetermined slew rate; and
A DC component extraction unit that extracts a DC component from an output from the DC component addition unit;
A control unit for controlling the conversion unit,
The conversion unit includes an inverter capable of voltage control of each drive capability on the PMOS side and the NMOS side,
The control unit controls the drive capability of the inverter;
The DC component extraction unit includes a first switch inside,
Between the control input side of the drive capability of the inverter and the output side of the control unit, a second switch is provided,
The correction device, wherein the first switch and the second switch are turned off when the clock is stopped.
(10)
The correction device according to (9), wherein the control unit voltage-controls the drive capability of the inverter so that a predetermined duty ratio is obtained.
(11)
The correction device according to (9) or (10), wherein the conversion unit, the DC component extraction unit, and the control unit form a negative feedback loop.
(12)
The DC component extraction unit has a capacity and a resistance,
The correction device according to any one of (9) to (11), wherein the first switch is provided between the capacitor and the resistor.
(13)
The DC component extraction unit has a capacity and a resistance,
The correction device according to any one of (9) to (11), wherein the first switch is provided between the resistor and the conversion unit.
(14)
The control unit is composed of an operational amplifier,
The negative input of the operational amplifier is connected to one end of the second switch, the positive input is connected to a voltage source having a voltage half the reference voltage, and the output side of the operational amplifier is connected to the second switch. The correction device according to any one of (9) to (13), connected to an input side of the inverter, a gate of the PMOS, and a gate of the NMOS.
(15)
The correction device according to (14), wherein an output side of the operational amplifier is also connected to a phase compensation capacitor via the second switch.
(16)
The DC component extraction unit has a capacity and a resistance,
The DC component adding unit is composed of an operational amplifier,
One end of the first switch is connected to the resistor, and the other end is connected to a negative input of the operational amplifier.
The correction device according to any one of (9) to (14), wherein the capacitor is provided between a negative side input and an output side of the operational amplifier.
(17)
A third switch is further provided between the negative side input and the positive side input of the operational amplifier,
The correction device according to (16), wherein the third switch is turned on when the clock is stopped.
 101 撮像素子, 105 クロック生成部, 106 タイミング制御回路, 107 カウンタ, 201 デューティ補正回路, 301 インバータ, 302 HPF, 303 LPF, 304 オペアンプ, 305 基準電圧源, 306乃至308 インバータ, 309 位相補償容量, 321 容量, 322 抵抗, 331 容量, 332 抵抗, 401,402 スイッチ, 501 容量, 502 スイッチ, 601 スルーレート調整部, 611 Pチャンネル型トランジスタ, 612 Nチャンネル型トランジスタ, 621 インバータ 101 image sensor, 105 clock generator, 106 timing control circuit, 107 counter, 201 duty correction circuit, 301 inverter, 302 HPF, 303 LPF, 304 operational amplifier, 305 reference voltage source, 306 to 308 inverter, 309 phase compensation capacity, 321 Capacity, 322 resistance, 331 capacity, 332 resistance, 401, 402 switch, 501 capacity, 502 switch, 601 slew rate adjustment unit, 611 P-channel transistor, 612 N-channel transistor, 621 inverter

Claims (17)

  1.  入力されたクロックを所定のスルーレートに変換する変換部と、
     前記変換部からの出力からDC成分を除去するDC成分除去部と、
     前記DC成分除去部からの出力にDC成分を付加するDC成分付加部と、
     前記DC成分付加部からの出力からDC成分を抽出するDC成分抽出部と
     を備え、
     前記DC成分抽出部は、内部に第1のスイッチを備え、
     前記DC成分付加部と前記DC成分除去部との間には、第2のスイッチが備えられ、
     前記第1のスイッチと前記第2のスイッチは、前記クロックが停止されているときにオフにされる
     補正装置。
    A converter that converts the input clock to a predetermined slew rate; and
    A DC component removal unit for removing a DC component from the output from the conversion unit;
    A DC component adding unit for adding a DC component to the output from the DC component removing unit;
    A DC component extraction unit that extracts a DC component from an output from the DC component addition unit,
    The DC component extraction unit includes a first switch inside,
    A second switch is provided between the DC component adding unit and the DC component removing unit,
    The correction device, wherein the first switch and the second switch are turned off when the clock is stopped.
  2.  前記DC成分除去部、前記DC成分付加部、および前記DC成分抽出部で、負帰還ループが構成されている
     請求項1に記載の補正装置。
    The correction apparatus according to claim 1, wherein the DC component removal unit, the DC component addition unit, and the DC component extraction unit form a negative feedback loop.
  3.  前記DC成分抽出部は、容量と抵抗を有し、
     前記第1のスイッチは、前記容量と前記抵抗との間に設けられている
     請求項1に記載の補正装置。
    The DC component extraction unit has a capacity and a resistance,
    The correction device according to claim 1, wherein the first switch is provided between the capacitor and the resistor.
  4.  前記DC成分抽出部は、容量と抵抗を有し、
     前記第1のスイッチは、前記抵抗と前記DC成分除去部との間に設けられている
     請求項1に記載の補正装置。
    The DC component extraction unit has a capacity and a resistance,
    The correction device according to claim 1, wherein the first switch is provided between the resistor and the DC component removing unit.
  5.  前記DC成分付加部は、オペアンプで構成され、
     前記オペアンプの負側入力は、前記第1のスイッチの一端に接続され、正側入力は、基準電圧の半分の電圧の電圧源に接続され
     前記オペアンプの出力側は、前記第2のスイッチを介して前記DC成分除去部に接続されている
     請求項1に記載の補正装置。
    The DC component adding unit is composed of an operational amplifier,
    The negative input of the operational amplifier is connected to one end of the first switch, the positive input is connected to a voltage source having a voltage half the reference voltage, and the output side of the operational amplifier is connected via the second switch. The correction device according to claim 1, wherein the correction device is connected to the DC component removal unit.
  6.  前記オペアンプの出力側は、前記第2のスイッチを介して位相補償容量にも接続されている
     請求項5に記載の補正装置。
    The correction device according to claim 5, wherein an output side of the operational amplifier is also connected to a phase compensation capacitor via the second switch.
  7.  前記DC成分抽出部は、容量と抵抗を有し、
     前記DC成分付加部は、オペアンプで構成され、
     前記第1のスイッチの一端は、前記抵抗に接続され、他端は、前記オペアンプの負側入力に接続され、
     前記オペアンプの負側入力と出力側との間に、前記容量が設けられている
     請求項1に記載の補正装置。
    The DC component extraction unit has a capacity and a resistance,
    The DC component adding unit is composed of an operational amplifier,
    One end of the first switch is connected to the resistor, and the other end is connected to a negative input of the operational amplifier.
    The correction device according to claim 1, wherein the capacitor is provided between a negative side input and an output side of the operational amplifier.
  8.  前記オペアンプの負側入力と正側入力との間に、第3のスイッチをさらに備え、
     前記第3のスイッチは、前記クロックが停止されているときにオンにされる
     請求項7に記載の補正装置。
    A third switch is further provided between the negative side input and the positive side input of the operational amplifier,
    The correction device according to claim 7, wherein the third switch is turned on when the clock is stopped.
  9.  入力されたクロックを所定のスルーレートに変換する変換部と、
     前記DC成分付加部からの出力からDC成分を抽出するDC成分抽出部と、
     前記変換部を制御する制御部と
     を備え、
     前記変換部は、PMOS側とNMOS側の各ドライブ能力を電圧制御可能なインバータを備え、
     前記制御部は、前記インバータの前記ドライブ能力を制御し、
     前記DC成分抽出部は、内部に第1のスイッチを備え、
     前記インバータのドライブ能力の制御入力側と前記制御部の出力側との間には、第2のスイッチが備えられ、
     前記第1のスイッチと前記第2のスイッチは、前記クロックが停止されているときにオフにされる
     補正装置。
    A converter that converts the input clock to a predetermined slew rate; and
    A DC component extraction unit that extracts a DC component from an output from the DC component addition unit;
    A control unit for controlling the conversion unit,
    The conversion unit includes an inverter capable of voltage control of each drive capability on the PMOS side and the NMOS side,
    The control unit controls the drive capability of the inverter;
    The DC component extraction unit includes a first switch inside,
    Between the control input side of the drive capability of the inverter and the output side of the control unit, a second switch is provided,
    The correction device, wherein the first switch and the second switch are turned off when the clock is stopped.
  10.  前記制御部は、所定のディーティ比となるように、前記インバータのドライブ能力を電圧制御する
     請求項9に記載の補正装置。
    The correction device according to claim 9, wherein the control unit voltage-controls the drive capability of the inverter so that a predetermined duty ratio is obtained.
  11.  前記変換部、前記DC成分抽出部、および前記制御部で、負帰還ループが構成されている
     請求項9に記載の補正装置。
    The correction device according to claim 9, wherein the conversion unit, the DC component extraction unit, and the control unit form a negative feedback loop.
  12.  前記DC成分抽出部は、容量と抵抗を有し、
     前記第1のスイッチは、前記容量と前記抵抗との間に設けられている
     請求項9に記載の補正装置。
    The DC component extraction unit has a capacity and a resistance,
    The correction device according to claim 9, wherein the first switch is provided between the capacitor and the resistor.
  13.  前記DC成分抽出部は、容量と抵抗を有し、
     前記第1のスイッチは、前記抵抗と前記変換部との間に設けられている
     請求項9に記載の補正装置。
    The DC component extraction unit has a capacity and a resistance,
    The correction device according to claim 9, wherein the first switch is provided between the resistor and the conversion unit.
  14.  前記制御部は、オペアンプで構成され、
     前記オペアンプの負側入力は、前記第2のスイッチの一端に接続され、正側入力は、基準電圧の半分の電圧の電圧源に接続され
     前記オペアンプの出力側は、前記第2のスイッチを介して前記インバータの入力側、前記PMOSのゲート、および前記NMOSのゲートに接続されている
     請求項9に記載の補正装置。
    The control unit is composed of an operational amplifier,
    The negative input of the operational amplifier is connected to one end of the second switch, the positive input is connected to a voltage source having a voltage half the reference voltage, and the output side of the operational amplifier is connected to the second switch. The correction device according to claim 9, wherein the correction device is connected to an input side of the inverter, a gate of the PMOS, and a gate of the NMOS.
  15.  前記オペアンプの出力側は、前記第2のスイッチを介して位相補償容量にも接続されている
     請求項14に記載の補正装置。
    The correction device according to claim 14, wherein an output side of the operational amplifier is also connected to a phase compensation capacitor via the second switch.
  16.  前記DC成分抽出部は、容量と抵抗を有し、
     前記DC成分付加部は、オペアンプで構成され、
     前記第1のスイッチの一端は、前記抵抗に接続され、他端は、前記オペアンプの負側入力に接続され、
     前記オペアンプの負側入力と出力側との間に、前記容量が設けられている
     請求項9に記載の補正装置。
    The DC component extraction unit has a capacity and a resistance,
    The DC component adding unit is composed of an operational amplifier,
    One end of the first switch is connected to the resistor, and the other end is connected to a negative input of the operational amplifier.
    The correction device according to claim 9, wherein the capacitor is provided between a negative side input and an output side of the operational amplifier.
  17.  前記オペアンプの負側入力と正側入力との間に、第3のスイッチをさらに備え、
     前記第3のスイッチは、前記クロックが停止されているときにオンにされる
     請求項16に記載の補正装置。
    A third switch is further provided between the negative side input and the positive side input of the operational amplifier,
    The correction device according to claim 16, wherein the third switch is turned on when the clock is stopped.
PCT/JP2017/029190 2016-08-23 2017-08-10 Correcting device WO2018037946A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016162899A JP2018032942A (en) 2016-08-23 2016-08-23 Correction device
JP2016-162899 2016-08-23

Publications (1)

Publication Number Publication Date
WO2018037946A1 true WO2018037946A1 (en) 2018-03-01

Family

ID=61245814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029190 WO2018037946A1 (en) 2016-08-23 2017-08-10 Correcting device

Country Status (2)

Country Link
JP (1) JP2018032942A (en)
WO (1) WO2018037946A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044664A1 (en) * 2018-08-28 2020-03-05 ソニーセミコンダクタソリューションズ株式会社 Duty cycle correction circuit and signal generation circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159020A (en) * 1982-03-17 1983-09-21 Hitachi Ltd Pulse duty ratio stabilizing circuit
JPH11243327A (en) * 1998-02-25 1999-09-07 Hitachi Ltd Pulse duty correction circuit
JP2012178670A (en) * 2011-02-25 2012-09-13 Asahi Kasei Electronics Co Ltd Buffer circuit
JP2015002406A (en) * 2013-06-14 2015-01-05 株式会社Jvcケンウッド Clock signal adjustment circuit for liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159020A (en) * 1982-03-17 1983-09-21 Hitachi Ltd Pulse duty ratio stabilizing circuit
JPH11243327A (en) * 1998-02-25 1999-09-07 Hitachi Ltd Pulse duty correction circuit
JP2012178670A (en) * 2011-02-25 2012-09-13 Asahi Kasei Electronics Co Ltd Buffer circuit
JP2015002406A (en) * 2013-06-14 2015-01-05 株式会社Jvcケンウッド Clock signal adjustment circuit for liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044664A1 (en) * 2018-08-28 2020-03-05 ソニーセミコンダクタソリューションズ株式会社 Duty cycle correction circuit and signal generation circuit
JPWO2020044664A1 (en) * 2018-08-28 2021-08-12 ソニーセミコンダクタソリューションズ株式会社 Duty ratio correction circuit and signal generation circuit
US11336267B2 (en) 2018-08-28 2022-05-17 Sony Semiconductor Solutions Corporation Duty ratio correction circuit and signal generation circuit
JP7277469B2 (en) 2018-08-28 2023-05-19 ソニーセミコンダクタソリューションズ株式会社 Duty ratio correction circuit and signal generation circuit

Also Published As

Publication number Publication date
JP2018032942A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
US7659777B2 (en) Offset adjustment device, semiconductor device, display device, offset adjustment method, noise detection device, and noise detection method
WO2010050515A1 (en) Comparator and analog/digital converter
US20150237285A1 (en) Comparator, solid-state imaging device, electronic apparatus, and driving method
US10284802B2 (en) Column comparator system and method for comparing a ramping signal and an input signal
US8319522B2 (en) Data transfer circuit, solid-state imaging device and camera system
US7518415B2 (en) Voltage buffer and source driver thereof
US8823575B2 (en) Ad conversion circuit and solid-state image pickup device
US9344652B2 (en) Photoelectric conversion apparatus and image pickup system including an ad conversion unit to convert a signal into a digital signal
US20110298955A1 (en) Clock multiplying circuit, solid-state imaging device, and phase-shift circuit
CN109040625B (en) Signal transmission circuit, image sensor including the same, and signal transmission method
WO2018037946A1 (en) Correcting device
US9160948B2 (en) Replica noise generator using pixel modeling and ramp signal generator including the same
US9667238B2 (en) Duty cycle correction circuit and image sensing device including the same
US7898337B2 (en) High slew rate amplifier, analog-to-digital converter using same, CMOS imager using the analog-to-digital converter and related methods
US9831862B2 (en) Duty cycle correction circuit and image sensing device including the same
JP5070945B2 (en) Solid-state imaging device, imaging device
CN115083460A (en) Memory interface device
JP5340838B2 (en) Time AD converter and solid-state imaging device
US20240107193A1 (en) Image sensor
JP4462810B2 (en) comparator
JP4645642B2 (en) Solid-state imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843430

Country of ref document: EP

Kind code of ref document: A1