WO2018037897A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2018037897A1
WO2018037897A1 PCT/JP2017/028660 JP2017028660W WO2018037897A1 WO 2018037897 A1 WO2018037897 A1 WO 2018037897A1 JP 2017028660 W JP2017028660 W JP 2017028660W WO 2018037897 A1 WO2018037897 A1 WO 2018037897A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
section
water suction
temperature side
suction pipe
Prior art date
Application number
PCT/JP2017/028660
Other languages
French (fr)
Japanese (ja)
Inventor
真樹 原田
位司 安田
ヴァスコ ブルゲーテ
Original Assignee
株式会社デンソー
ホアン ジ デウス エ フィリョス ソシエダッド アノニマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, ホアン ジ デウス エ フィリョス ソシエダッド アノニマ filed Critical 株式会社デンソー
Priority to DE112017004227.5T priority Critical patent/DE112017004227B4/en
Publication of WO2018037897A1 publication Critical patent/WO2018037897A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0462Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0475Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly the intake air cooler being combined with another device, e.g. heater, valve, compressor, filter or EGR cooler, or being assembled on a special engine location
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a cooling device that cools supercharged air with air.
  • Patent Document 1 an intake air cooling device in which a reservoir for temporarily storing condensed water is provided in the lower part of the low temperature side tank, and a water suction pipe extending from the bottom of the reservoir to a position opening in the outlet pipe is provided. Is disclosed.
  • the interior of the low temperature side tank in Patent Document 1 is divided into an upper chamber and a lower chamber constituting a reservoir by an intermediate partition plate into which the supercharged air after cooling at the core portion flows. According to this configuration, since the inner surface area of one low temperature side tank having a bottom portion is increased, the area receiving pressure is increased, and a low temperature side tank having high pressure resistance is required.
  • an object of the present disclosure is to provide a cooling device that reduces the pressure receiving area of the tank and improves the assemblability.
  • the cooling device includes a high temperature side tank, a core portion, a low temperature side tank, and a water suction pipe.
  • the high-pressure side tank has an inflow portion into which supercharged air flows.
  • the core portion cools the supercharged air by exchanging heat between the supercharged air flowing out of the high-temperature side tank and circulating inside and the outside air.
  • the low temperature side tank has an outflow part through which the supercharged air cooled in the core part flows out toward the external device.
  • the water suction pipe is provided so as to extend from the bottom of the low temperature side tank to the inside of the outflow part.
  • the low temperature side tank has a first tank portion and a second tank portion made of resin.
  • the first tank portion has a bottom plate portion partially provided with a through hole, an upper end portion connected to the core portion, and an upper chamber formed inside.
  • the second tank portion forms a lower chamber positioned below the upper chamber in a state where the upper peripheral edge portion is connected to the first tank portion.
  • the first tank part and the second tank part form a joint part welded to each other.
  • the low temperature side tank is formed by welding the first tank part forming the upper chamber and the second tank part forming the lower chamber capable of storing water. For this reason, since the length dimension of the vertical direction can be made small about each tank part, the internal surface area which receives the pressure of supercharging air in one tank part can be made small. Thereby, the pressure
  • this cooling device since the upper chamber and the lower chamber in the low temperature side tank can be partitioned by the bottom plate portion of the first tank portion, there is no need to attach the partition plate to the low temperature side tank as in the prior art. Can be. As described above, it is possible to provide a cooling device that reduces the pressure receiving area of the tank and improves the assemblability.
  • the cooling device 100 is a heat exchanger that is installed in a passage through which supercharged air flows in an internal combustion engine including a supercharger and cools air that has risen in temperature due to compression of the supercharger.
  • the cooling device 100 contributes to improving fuel efficiency and output.
  • the cooling device 100 includes a core that cools the supercharged air by exchanging heat between the high temperature side tank 1 into which the supercharged air flows and the supercharged air that has flowed out of the high temperature side tank 1 and the external air.
  • Part 2 low temperature side tank 3 into which supercharged air cooled by core part 2 flows, and water suction pipe 44.
  • the high temperature side tank 1, the core part 2, and the low temperature side tank 3 are provided in this order from the upstream side to the downstream side of the supercharged air flow.
  • the high temperature side tank 1 has an inflow portion 10 that forms an inflow port through which supercharged air flows.
  • a duct or hose that forms an intake path of the internal combustion engine is connected to the inflow portion 10. This duct or hose is connected, for example, to the discharge part of the supercharger.
  • the core part 2 is a downflow type core in which supercharged air flows downward as shown in FIG.
  • the core portion 2 includes a plurality of passages through which supercharged air flows, and air flows around the tubes constituting the passages.
  • the plurality of tubes in the core portion 2 are fixed to the core plates at both ends by inserting each of both ends into the holes of the core plate.
  • the core plate that supports the plurality of tubes on the high temperature side tank 1 side is caulked so as to cover the outer surface of the high temperature side tank 1, and the core plate that supports the plurality of tubes on the low temperature side tank 3 side is the low temperature side tank 3. It is caulked so as to cover the outer surface. Thereby, the core part 2 is caulked and fixed to each of the high temperature side tank 1 and the low temperature side tank 3.
  • the supercharged air that has flowed out of the high temperature side tank 1 is distributed to a plurality of passages in the core portion 2 and then merges inside the low temperature side tank 3.
  • the external air exchanges heat with the supercharged air flowing in the tube by directly contacting the tube or indirectly through the fins. Since the heat of the supercharged air moves to the air flowing outside through the tubes and fins, the supercharged air can be cooled.
  • the low temperature side tank 3 includes an outflow portion 43 that forms an outflow port through which the supercharged air cooled in the core portion 2 flows out toward an external device.
  • This external device is, for example, a throttle valve or an internal combustion engine.
  • the outflow portion 43 is connected to a duct or hose that forms an intake path of the internal combustion engine. This duct or hose is connected to, for example, an intake portion of the internal combustion engine.
  • the high temperature side tank 1 and the low temperature side tank 3 are each connected to a vehicle side member via a bracket or the like.
  • the low temperature side tank 3 is formed by combining a first tank part 4 and a second tank part 5.
  • the 1st tank part 4 and the 2nd tank part 5 form the coupling
  • the lower end peripheral portion 40 of the first tank portion 4 and the upper end peripheral portion 50 of the second tank portion 5 have the same shape.
  • one joint surface is formed, and the outer periphery of the joint part becomes a joint part welded.
  • the outer periphery of the joint is welded over the entire periphery by, for example, vibration welding, hot plate welding, or laser welding, thereby forming a seal portion that blocks the inside and outside of the tank portion.
  • the first tank portion 4 is a resin container having an opening at the upper end and a bottom plate portion 42 serving as a bottom at the lower portion.
  • the bottom plate part 42 is located above the lower end peripheral part 40.
  • the second tank unit 5 is a resin container that includes an upper end peripheral portion 50 that is located at the upper end and forms an opening, and that forms a lower chamber 51 that is positioned below the upper chamber 41 in the first tank unit 4. is there.
  • the lower chamber 51 functions as a reservoir tank that temporarily accumulates condensed water.
  • the first tank portion 4 and the second tank portion 5 can be formed of a resin having high hardness such as 6,6-nylon or glass-containing resin.
  • the first tank portion 4 is formed between an upper end portion 45 having an opening and connected to the core portion 2, a bottom plate portion 42 facing the upper end portion 45, and the upper end portion 45 and the bottom plate portion 42. And an upper chamber 41.
  • the upper chamber 41 is a chamber into which the supercharged air that has flowed out of the core portion 2 flows first in the low temperature side tank 3.
  • the bottom plate portion 42 is provided with a plurality of through holes 420 at arbitrary locations.
  • the upper chamber 41 and the lower chamber 51 are partitioned by the bottom plate portion 42 but communicated by the through hole 420.
  • the bottom plate portion 42 preferably has a shape in which an end portion closer to the outflow portion 43 is positioned below the opposite side.
  • the through hole 420 is provided at least in a portion of the bottom plate portion 42 that is located below the outflow portion 43. Since the supercharged air that has flowed into the first tank portion 4 flows toward the outflow portion 43, the side close to the outflow portion 43 in the bottom plate portion 42 is a downstream portion and the opposite side is an upstream portion. Accordingly, the bottom plate portion 42 has a shape that descends from the upstream portion to the downstream portion. With this configuration, the water that has dropped onto the bottom plate portion 42 flows to the lower side of the bottom plate portion 42, passes through the through hole 420, and falls to the second tank portion 5.
  • the outflow part 43 is provided in the first tank part 4.
  • the outflow part 43 extends so that the tip is positioned higher than the base side near the side wall of the first tank part 4.
  • the water suction pipe 44 is provided so that both ends thereof are open and extend from the bottom portion 52 of the low temperature side tank 3 to the inside of the outflow portion 43.
  • the water suction pipe 44 in the bottom portion 52 of the low temperature side tank 3 is preferably provided so that the opening end portion thereof is positioned at the lowermost portion of the bottom surface of the second tank portion 5.
  • the water suction pipe 44 is provided integrally with the first tank portion 4 in a state of being integrally formed with the bottom plate portion 42. Therefore, the water suction pipe 44 extends from the inside of the first tank part 4 to the bottom surface of the second tank part 5 so as to penetrate the bottom plate part 42.
  • the water suction pipe 44 can be formed of the same resin material as that of the first tank portion 4, for example, a resin having high hardness such as 6,6-nylon or glass-containing resin.
  • the passage sectional area in the outflow portion 43 is smaller than the passage sectional area in the low temperature side tank 3.
  • the flow rate of the supercharged air in the outflow portion 43 is larger than the flow rate of the supercharged air in the low temperature side tank 3. That is, since the supercharged air that has flowed into the low temperature side tank 3 increases in speed when passing through the outflow portion 43, the static pressure in the tank changes to the dynamic pressure in the outflow portion 43, and the inside of the outflow portion 43 The static pressure in the tank will be lower than the static pressure in the tank. Due to this pressure difference, the water accumulated in the lower chamber 51 is sucked into the outflow portion 43 from the bottom portion 52 of the second tank portion 5 through the water suction pipe 44.
  • the cooling device 100 includes a high temperature side tank 1, a core portion 2 that cools the supercharged air that has flowed out of the high temperature side tank 1 by heat exchange with external air, and supercharged air that has been cooled in the core portion 2 flows out.
  • a low temperature side tank 3 and a water suction pipe 44 that sucks up water in the low temperature side tank 3 are provided.
  • the low temperature side tank 3 is below the upper chamber 41 formed inside the first tank portion 4 in a state where the first tank portion 4 made of resin and the upper peripheral edge 50 are connected to the first tank portion 4.
  • the first tank portion 4 and the second tank portion 5 form a coupling portion in which the lower end peripheral portion 40 and the upper end peripheral portion 50 are welded to each other, and constitute the low temperature side tank 3.
  • the low temperature side tank 3 is formed by welding the first tank part 4 forming the upper chamber 41 and the second tank part 5 forming the lower chamber 51 capable of storing water to each other.
  • the inner surface area that receives the pressure of the supercharged air in one tank portion can be reduced.
  • the length in the vertical direction can be reduced for each tank part, it contributes to increasing the rigidity of the tank part.
  • the pressure resistance capability that one container should have can be greatly reduced.
  • the cooling device 100 since the upper chamber 41 and the lower chamber 51 in the low temperature side tank 3 can be partitioned by the bottom plate portion 42 of the first tank portion 4, the partition plate can be placed on the low temperature side as in the prior art. It does not require a process to attach to the tank.
  • the cooling device 100 can reduce the pressure receiving area of the tank and improve the assemblability.
  • the water suction pipe 44 is made of the same resin material as that of the first tank part 4 and is integrally formed with the first tank part 4. According to this, the water suction pipe 44 and the 1st tank part 4 can be manufactured by one metal mold
  • the second embodiment is different from the first embodiment in the coupling state of the water suction pipe 144 and the first tank portion 4.
  • the configuration, operation, and effects not particularly described in the second embodiment are the same as those in the first embodiment, and only differences from the above-described embodiment will be described below.
  • the water suction pipe 144 is made of a material different from that of the first tank portion 4, for example, a metal material.
  • the water suction pipe 144 is made of aluminum or an aluminum alloy.
  • the metal water suction pipe 144 is formed integrally with the first tank portion 4 by integrally molding different materials using a mold.
  • a water suction pipe 144 which is a metal molded product, is installed at a predetermined position in the mold, a resin is injected around the water suction pipe 144, and the water suction pipe 144 is wrapped with a molten resin and solidified.
  • the water suction pipe 144 and the first tank portion 4 of the metal product can be formed with one component.
  • the water suction pipe 144 made of a metal material may be fixed to the first tank portion 4 in a state where the water suction tube 144 is press-fitted into a hole 142 a formed in the bottom plate portion 142 of the first tank portion 4.
  • the metal water suction pipe 144 and the resin first tank portion 4 are formed. Can be manufactured in one molded part by a mold. For this reason, the number of parts assembling steps can be reduced, and the product cost can be suppressed. Further, since the water sucking pipe 144 can be formed of metal, the shape of the water sucking pipe 144 that does not need to be considered for die cutting can be adopted, so that the water sucking pipe 144 giving priority to the sucking performance can be manufactured.
  • the water suction pipe 144 made of a metal material is fixed to the first tank portion 4 while being press-fitted into the hole 142 a of the first tank portion 4, it is not necessary to consider die cutting. Therefore, the degree of freedom regarding the shape of the water suction pipe 144 is high. As a result, the water suction pipe 144 can be formed in a shape that prioritizes the suction performance.
  • the water suction pipe 244 is a resin molded product formed of a resin material.
  • the water suction pipe 244 may be formed of the same material as the first tank portion 4 or may be made of a different material.
  • the bottom plate portion 142 and the water suction tube 244 are welded together in a state where the water suction tube 244 that is a resin molded product is inserted into the hole formed in the bottom plate portion 142. Therefore, the water suction pipe 244 and the first tank part 4 are integrally fixed by forming a welded part 142b welded to each other.
  • the water suction pipe 244 is formed of a resin material and is integrally welded to the first tank portion 4. Compared to the case where the first tank portion 4 and the water suction pipe 244 are integrally formed, it is not necessary to consider die cutting. Thereby, the water suction pipe 244 can be formed in a shape giving priority to the suction performance.
  • the first tank portion 4 and the second tank portion 5 may be formed of a resin material that can be welded to each other. Therefore, it is not limited that the resin material of both tank parts is the same material.
  • the method of welding the first tank portion 4 and the second tank portion 5 to each other is not limited to any of vibration welding, hot plate welding, and laser welding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This cooling device is provided with a high-temperature-side tank (1), a core section (2), a low-temperature-side tank (3), and a water suction pipe (44, 144, 244). The high-pressure-side tank has an inflow section (10) into which supercharged air flows. The core section cools supercharged air by heat exchange between outside air and supercharged air flowing out of the high-temperature-side tank and flowing through the inside of the core section. The low-temperature-side tank has an outflow section (43) out of which supercharged air cooled by the core section flows toward external equipment. The water suction pipe is provided so as to extend from the bottom section (52) of the low-temperature-side tank to the inside of the outflow section. The low-temperature-side tank has a first tank section (4) and a second tank section (5), which are formed from a resin. The first tank section has: a bottom plate section (42, 142) having a through-hole (420) partially formed therein; an upper end section (45) connected to the core section; and an upper chamber (41) formed within the first tank section. In a state in which the upper end peripheral edge (50) of the second tank section is connected to the first tank section, the second tank section forms a lower chamber (51) located below the upper chamber. The first tank section and the second tank section form joints (40, 50) where the first and second tank sections are welded together.

Description

冷却装置Cooling system 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2016年8月24日に出願された日本特許出願2016-164003号を基にしている。 This application is based on Japanese Patent Application No. 2016-164003 filed on Aug. 24, 2016, the disclosure of which is incorporated herein by reference.
 本開示は、過給気を空気によって冷却する冷却装置に関する。 The present disclosure relates to a cooling device that cools supercharged air with air.
 例えば、過給気が下方に流れるダウンフロータイプのインタークーラの場合、吸気が凝縮してタンク内に凝縮水が溜まり、タンク内に溜まった水が加速時に一気に流出してエンジンに流入することがある。そこで、特許文献1には、低温側タンクの下部に凝縮水を一時的に蓄えるリザーバが設けられ、リザーバの底部からアウトレットパイプ内に開口する位置まで延びる水吸い出しパイプが設けられている吸気冷却装置が開示されている。 For example, in the case of a downflow type intercooler in which supercharged air flows downward, the intake air condenses and condensate accumulates in the tank, and the water accumulated in the tank flows out into the engine all at once during acceleration. is there. Therefore, in Patent Document 1, an intake air cooling device in which a reservoir for temporarily storing condensed water is provided in the lower part of the low temperature side tank, and a water suction pipe extending from the bottom of the reservoir to a position opening in the outlet pipe is provided. Is disclosed.
特開2015-63913号公報Japanese Patent Laying-Open No. 2015-63913
 特許文献1における低温側タンクの内部は、中仕切り板によって、コア部で冷却された後の過給気が流れ込む上室とリザーバを構成する下室とに上下に区画されている。この構成によれば、底部を有する一つの低温側タンクの内表面積が大きくなるため、圧力を受ける面積が大きくなり、高い耐圧強度をもつ低温側タンクが必要になる。 The interior of the low temperature side tank in Patent Document 1 is divided into an upper chamber and a lower chamber constituting a reservoir by an intermediate partition plate into which the supercharged air after cooling at the core portion flows. According to this configuration, since the inner surface area of one low temperature side tank having a bottom portion is increased, the area receiving pressure is increased, and a low temperature side tank having high pressure resistance is required.
 また、特許文献1の装置では、リザーバを形成するために、別部品である中仕切り板を低温側タンクにボルト等で固定している。このため、組立工数を要し、組立コストに改善の余地がある。 Further, in the apparatus of Patent Document 1, in order to form a reservoir, a separate partition plate, which is a separate part, is fixed to the low temperature side tank with a bolt or the like. For this reason, assembly man-hours are required and there is room for improvement in assembly costs.
 上記点に鑑み、本開示の目的は、タンクの受圧面積を低減するとともに組立性向上を図る冷却装置を提供することである。 In view of the above points, an object of the present disclosure is to provide a cooling device that reduces the pressure receiving area of the tank and improves the assemblability.
 本開示の一態様に係る冷却装置は、高温側タンク、コア部、低温側タンク、および水吸い上げ管を備える。高圧側タンクは、過給気が流入する流入部を有する。コア部は、高温側タンクを流出して内部を流通する過給気と外部の空気との熱交換によって過給気を冷却する。低温側タンクは、コア部において冷却された過給気が外部機器へ向けて流出する流出部を有する。水吸い上げ管は、低温側タンクの底部から流出部の内部まで延びるように設けられる。低温側タンクは、樹脂製の第1タンク部と第2タンク部を有する。第1タンク部は、部分的に貫通穴が設けられた底板部と、コア部に連結されている上端部と、内部に形成される上室と、を有する。第2タンク部は、上端周縁部が第1タンク部に連結された状態で、上室よりも下方に位置する下室を形成する。第1タンク部と第2タンク部は、互いに溶着されている結合部を形成する。 The cooling device according to one aspect of the present disclosure includes a high temperature side tank, a core portion, a low temperature side tank, and a water suction pipe. The high-pressure side tank has an inflow portion into which supercharged air flows. The core portion cools the supercharged air by exchanging heat between the supercharged air flowing out of the high-temperature side tank and circulating inside and the outside air. The low temperature side tank has an outflow part through which the supercharged air cooled in the core part flows out toward the external device. The water suction pipe is provided so as to extend from the bottom of the low temperature side tank to the inside of the outflow part. The low temperature side tank has a first tank portion and a second tank portion made of resin. The first tank portion has a bottom plate portion partially provided with a through hole, an upper end portion connected to the core portion, and an upper chamber formed inside. The second tank portion forms a lower chamber positioned below the upper chamber in a state where the upper peripheral edge portion is connected to the first tank portion. The first tank part and the second tank part form a joint part welded to each other.
 この冷却装置によれば、低温側タンクは上室を形成する第1タンク部と貯水可能な下室を形成する第2タンク部とを互いに溶着して形成されている。このため、各タンク部について縦方向の長さ寸法を小さくできるので、一つのタンク部において過給気の圧力を受ける内表面積を小さくすることができる。これにより、一つの容器が備えるべき耐圧能力を、従来技術のような一つの低温側タンクの場合に比べて大きく低下させることができる。このため、第1タンク部および第2タンク部のそれぞれに必要な耐圧能力を抑制できるので、第1タンク部および第2タンク部を金属でなく樹脂材料で形成することが可能になり、製品コストの低減に貢献できる。 According to this cooling device, the low temperature side tank is formed by welding the first tank part forming the upper chamber and the second tank part forming the lower chamber capable of storing water. For this reason, since the length dimension of the vertical direction can be made small about each tank part, the internal surface area which receives the pressure of supercharging air in one tank part can be made small. Thereby, the pressure | voltage resistant capability which one container should be equipped with can be reduced significantly compared with the case of one low temperature side tank like a prior art. For this reason, since the pressure | voltage resistant capability required for each of a 1st tank part and a 2nd tank part can be suppressed, it becomes possible to form a 1st tank part and a 2nd tank part with a resin material instead of a metal, and product cost Can contribute to the reduction of
 さらに、この冷却装置によれば、第1タンク部の底板部によって低温側タンク内の上室と下室とを区画できるので、従来技術のように中仕切り板を低温側タンクに取り付ける工程を不要にできる。以上より、タンクの受圧面積を低減するとともに組立性向上を図る冷却装置を提供することができる。 Furthermore, according to this cooling device, since the upper chamber and the lower chamber in the low temperature side tank can be partitioned by the bottom plate portion of the first tank portion, there is no need to attach the partition plate to the low temperature side tank as in the prior art. Can be. As described above, it is possible to provide a cooling device that reduces the pressure receiving area of the tank and improves the assemblability.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
第1実施形態の冷却装置の概要を示した斜視図である。 低温側タンクを構成する第1タンク部および第2タンク部の概要を示した斜視図である。 低温側タンクの内部構成を示した部分断面図である。 第2実施形態において水吸い上げ管と第1タンク部との結合状態を示した部分断面図である。 第3実施形態において水吸い上げ管と第1タンク部との結合状態を示した部分断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
It is the perspective view which showed the outline | summary of the cooling device of 1st Embodiment. It is the perspective view which showed the outline | summary of the 1st tank part and 2nd tank part which comprise a low temperature side tank. It is the fragmentary sectional view which showed the internal structure of the low temperature side tank. It is the fragmentary sectional view which showed the combined state of the water suction pipe and the 1st tank part in 2nd Embodiment. It is the fragmentary sectional view which showed the combined state of the water suction pipe and the 1st tank part in 3rd Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly indicate that the combination is possible in each embodiment, but also a combination of the embodiments even if they are not clearly specified unless there is a problem with the combination. It is also possible.
 (第1実施形態)
 第1実施形態に係る冷却装置100について図1、図2、および図3を用いて説明する。冷却装置100は、過給機を備える内燃機関において、過給気が流れる通路に設置されて、過給機の圧縮により温度上昇した空気を冷却する熱交換器である。冷却装置100は、燃費効率と出力向上に寄与する。
(First embodiment)
A cooling device 100 according to the first embodiment will be described with reference to FIGS. 1, 2, and 3. The cooling device 100 is a heat exchanger that is installed in a passage through which supercharged air flows in an internal combustion engine including a supercharger and cools air that has risen in temperature due to compression of the supercharger. The cooling device 100 contributes to improving fuel efficiency and output.
 図1に示すように冷却装置100は、過給気が流入する高温側タンク1と、高温側タンク1を流出した過給気と外部の空気とを熱交換して過給気を冷却するコア部2と、コア部2で冷却された過給気が流入する低温側タンク3と、水吸い上げ管44と、を備える。高温側タンク1、コア部2、低温側タンク3は、過給気の流れの上流側から下流側へこの順に設けられている。 As shown in FIG. 1, the cooling device 100 includes a core that cools the supercharged air by exchanging heat between the high temperature side tank 1 into which the supercharged air flows and the supercharged air that has flowed out of the high temperature side tank 1 and the external air. Part 2, low temperature side tank 3 into which supercharged air cooled by core part 2 flows, and water suction pipe 44. The high temperature side tank 1, the core part 2, and the low temperature side tank 3 are provided in this order from the upstream side to the downstream side of the supercharged air flow.
 高温側タンク1は過給気が流入する流入口を形成する流入部10を有する。流入部10には、内燃機関の吸気経路を形成するダクトまたはホースが接続されている。このダクトまたはホースは、例えば、過給機の吐出部につながっている。 The high temperature side tank 1 has an inflow portion 10 that forms an inflow port through which supercharged air flows. A duct or hose that forms an intake path of the internal combustion engine is connected to the inflow portion 10. This duct or hose is connected, for example, to the discharge part of the supercharger.
 コア部2は、図1に図示するように、過給気が下方に流れるダウンフロータイプのコアである。コア部2は内部に過給気が流通する複数の通路を備え、この通路を構成するチューブの周囲を空気が流れる。コア部2における複数のチューブは、その両端部のそれぞれがコアプレートの穴部に挿通されることで両端部のコアプレートに固定されている。高温側タンク1側で複数のチューブを支持するコアプレートは、高温側タンク1の外側面を覆うようにかしめられ、低温側タンク3側で複数のチューブを支持するコアプレートは、低温側タンク3の外側面を覆うようにかしめられる。これにより、コア部2は、高温側タンク1、低温側タンク3のそれぞれにかしめ固定されている。 The core part 2 is a downflow type core in which supercharged air flows downward as shown in FIG. The core portion 2 includes a plurality of passages through which supercharged air flows, and air flows around the tubes constituting the passages. The plurality of tubes in the core portion 2 are fixed to the core plates at both ends by inserting each of both ends into the holes of the core plate. The core plate that supports the plurality of tubes on the high temperature side tank 1 side is caulked so as to cover the outer surface of the high temperature side tank 1, and the core plate that supports the plurality of tubes on the low temperature side tank 3 side is the low temperature side tank 3. It is caulked so as to cover the outer surface. Thereby, the core part 2 is caulked and fixed to each of the high temperature side tank 1 and the low temperature side tank 3.
 高温側タンク1から流出した過給気は、コア部2において複数の通路に分配されたのち、低温側タンク3の内部で合流する。外部の空気は、チューブに直接またはフィンを介して間接的に接触することで、チューブ内を流れる過給気と熱交換する。過給気の熱はチューブやフィンを介して外部を流れる空気に移動するため、過給気を冷却することができる。 The supercharged air that has flowed out of the high temperature side tank 1 is distributed to a plurality of passages in the core portion 2 and then merges inside the low temperature side tank 3. The external air exchanges heat with the supercharged air flowing in the tube by directly contacting the tube or indirectly through the fins. Since the heat of the supercharged air moves to the air flowing outside through the tubes and fins, the supercharged air can be cooled.
 低温側タンク3は、コア部2において冷却された過給気が外部機器へ向けて流出する流出口を形成する流出部43を備える。この外部機器は、例えば、スロットル弁や内燃機関である。流出部43には内燃機関の吸気経路を形成するダクトまたはホースが接続されている。このダクトまたはホースは、例えば、内燃機関の吸気部につながっている。高温側タンク1、低温側タンク3は、それぞれブラケット等を介して車両側部材に連結されている。 The low temperature side tank 3 includes an outflow portion 43 that forms an outflow port through which the supercharged air cooled in the core portion 2 flows out toward an external device. This external device is, for example, a throttle valve or an internal combustion engine. The outflow portion 43 is connected to a duct or hose that forms an intake path of the internal combustion engine. This duct or hose is connected to, for example, an intake portion of the internal combustion engine. The high temperature side tank 1 and the low temperature side tank 3 are each connected to a vehicle side member via a bracket or the like.
 図3に図示するように、低温側タンク3は、第1タンク部4と第2タンク部5とが結合されて形成されている。第1タンク部4と第2タンク部5は、互いに溶着されている結合部を形成する。第1タンク部4の下端周縁部40と第2タンク部5の上端周縁部50は、同様の形状である。下端周縁部40と上端周縁部50は接合することで、一つの接合面を形成し、接合部の外周が溶着された結合部になる。この接合部の外周が、例えば、振動溶着、熱板溶着、レーザー溶着のいずれかによって全周にわたって溶着されることでタンク部の内外を遮断するシール部を形成する。 As shown in FIG. 3, the low temperature side tank 3 is formed by combining a first tank part 4 and a second tank part 5. The 1st tank part 4 and the 2nd tank part 5 form the coupling | bond part welded mutually. The lower end peripheral portion 40 of the first tank portion 4 and the upper end peripheral portion 50 of the second tank portion 5 have the same shape. By joining the lower end peripheral part 40 and the upper end peripheral part 50, one joint surface is formed, and the outer periphery of the joint part becomes a joint part welded. The outer periphery of the joint is welded over the entire periphery by, for example, vibration welding, hot plate welding, or laser welding, thereby forming a seal portion that blocks the inside and outside of the tank portion.
 第1タンク部4は、上端に開口部を有し、下部に底部となる底板部42を有する樹脂製の容器である。底板部42は、下端周縁部40よりも上方に位置する。第2タンク部5は、上端に位置して開口を形成する上端周縁部50を備え、第1タンク部4内の上室41よりも下方に位置する下室51を形成する樹脂製の容器である。下室51は、凝縮水を一時的にためるリザーバタンクとして機能する。第1タンク部4、第2タンク部5は、例えば、6,6-ナイロン、ガラスを含有した樹脂等、硬度の高い樹脂によって形成することができる。 The first tank portion 4 is a resin container having an opening at the upper end and a bottom plate portion 42 serving as a bottom at the lower portion. The bottom plate part 42 is located above the lower end peripheral part 40. The second tank unit 5 is a resin container that includes an upper end peripheral portion 50 that is located at the upper end and forms an opening, and that forms a lower chamber 51 that is positioned below the upper chamber 41 in the first tank unit 4. is there. The lower chamber 51 functions as a reservoir tank that temporarily accumulates condensed water. The first tank portion 4 and the second tank portion 5 can be formed of a resin having high hardness such as 6,6-nylon or glass-containing resin.
 第1タンク部4は、開口部を有するとともにコア部2に連結されている上端部45と、上端部45と対向する底板部42と、上端部45と底板部42とのの間に形成された上室41と、を有している。上室41は、コア部2を流出した過給気が低温側タンク3において最初に流入する室である。底板部42には、任意の場所に複数の貫通穴420が設けられている。上室41と下室51は、底板部42によって区画されているが貫通穴420によって連通している。 The first tank portion 4 is formed between an upper end portion 45 having an opening and connected to the core portion 2, a bottom plate portion 42 facing the upper end portion 45, and the upper end portion 45 and the bottom plate portion 42. And an upper chamber 41. The upper chamber 41 is a chamber into which the supercharged air that has flowed out of the core portion 2 flows first in the low temperature side tank 3. The bottom plate portion 42 is provided with a plurality of through holes 420 at arbitrary locations. The upper chamber 41 and the lower chamber 51 are partitioned by the bottom plate portion 42 but communicated by the through hole 420.
 底板部42は、図2および図3に示すように、流出部43に近い側の端部の方が反対側よりも下方に位置する形状であることが好ましい。この場合、貫通穴420は、底板部42のうち、流出部43に近い側の下方に位置する部位に少なくとも設けられている。第1タンク部4内に流入した過給気は、流出部43に向かって流れるため、底板部42において流出部43に近い側は下流側部位であり反対側は上流側部位である。したがって、底板部42は、上流側部位から下流側部位にかけて下降する形状である。この構成により、底板部42に落下した水は、底板部42において下方に位置する側に流れて貫通穴420を通過して第2タンク部5に落ちる。 As shown in FIGS. 2 and 3, the bottom plate portion 42 preferably has a shape in which an end portion closer to the outflow portion 43 is positioned below the opposite side. In this case, the through hole 420 is provided at least in a portion of the bottom plate portion 42 that is located below the outflow portion 43. Since the supercharged air that has flowed into the first tank portion 4 flows toward the outflow portion 43, the side close to the outflow portion 43 in the bottom plate portion 42 is a downstream portion and the opposite side is an upstream portion. Accordingly, the bottom plate portion 42 has a shape that descends from the upstream portion to the downstream portion. With this configuration, the water that has dropped onto the bottom plate portion 42 flows to the lower side of the bottom plate portion 42, passes through the through hole 420, and falls to the second tank portion 5.
 第1タンク部4には流出部43が設けられている。流出部43は、第1タンク部4の側壁に近い根元側よりも先端の方が上方に位置するように延びている。この構成により、低温側タンク3の内部に侵入した凝縮水等が流出部43の内部に溢れ出たとしても、重力により低温側タンク3の内部に戻るようになる。 The outflow part 43 is provided in the first tank part 4. The outflow part 43 extends so that the tip is positioned higher than the base side near the side wall of the first tank part 4. With this configuration, even if condensed water or the like that has entered the inside of the low temperature side tank 3 overflows into the outflow portion 43, it returns to the inside of the low temperature side tank 3 due to gravity.
 水吸い上げ管44は、その両端が開口し、低温側タンク3の底部52から流出部43の内部まで延びるように設けられている。低温側タンク3の底部52における水吸い上げ管44は、その開口端部が第2タンク部5の底面の最下部に位置するように設けられていることが好ましい。水吸い上げ管44は、底板部42に一体に成形された状態で第1タンク部4に一体に設けられている。したがって、水吸い上げ管44は、底板部42を貫通するように第1タンク部4の内部から、第2タンク部5の底面まで延びている。水吸い上げ管44は、第1タンク部4と同じ樹脂材料、例えば、6,6-ナイロン、ガラスを含有した樹脂等、硬度の高い樹脂によって形成することができる。 The water suction pipe 44 is provided so that both ends thereof are open and extend from the bottom portion 52 of the low temperature side tank 3 to the inside of the outflow portion 43. The water suction pipe 44 in the bottom portion 52 of the low temperature side tank 3 is preferably provided so that the opening end portion thereof is positioned at the lowermost portion of the bottom surface of the second tank portion 5. The water suction pipe 44 is provided integrally with the first tank portion 4 in a state of being integrally formed with the bottom plate portion 42. Therefore, the water suction pipe 44 extends from the inside of the first tank part 4 to the bottom surface of the second tank part 5 so as to penetrate the bottom plate part 42. The water suction pipe 44 can be formed of the same resin material as that of the first tank portion 4, for example, a resin having high hardness such as 6,6-nylon or glass-containing resin.
 流出部43内の通路断面積は、低温側タンク3内の通路断面積よりも小さい。この構成により、流出部43内における過給気の流速は、低温側タンク3内における過給気の流速よりも大きくなる。つまり、低温側タンク3内に流入した過給気は、流出部43内を通過する際に増速するため、タンク内の静圧が流出部43内の動圧に変化し、流出部43内の静圧はタンク内の静圧よりも低下することになる。この圧力差により、下室51にたまった水は、水吸い上げ管44を通じて第2タンク部5の底部52から流出部43内に吸い上げられることになる。 The passage sectional area in the outflow portion 43 is smaller than the passage sectional area in the low temperature side tank 3. With this configuration, the flow rate of the supercharged air in the outflow portion 43 is larger than the flow rate of the supercharged air in the low temperature side tank 3. That is, since the supercharged air that has flowed into the low temperature side tank 3 increases in speed when passing through the outflow portion 43, the static pressure in the tank changes to the dynamic pressure in the outflow portion 43, and the inside of the outflow portion 43 The static pressure in the tank will be lower than the static pressure in the tank. Due to this pressure difference, the water accumulated in the lower chamber 51 is sucked into the outflow portion 43 from the bottom portion 52 of the second tank portion 5 through the water suction pipe 44.
 以下に、第1実施形態の冷却装置100がもたらす効果を述べる。冷却装置100は、高温側タンク1と、高温側タンク1を流出した過給気を外部の空気との熱交換によって冷却するコア部2と、コア部2において冷却された過給気が流出する低温側タンク3と、低温側タンク3の水を吸い上げる水吸い上げ管44と、を備える。低温側タンク3は、樹脂製の第1タンク部4と、上端周縁部50が第1タンク部4に連結された状態で第1タンク部4の内部に形成される上室41よりも下方に下室51を形成する樹脂製の第2タンク部5と、を有して形成されている。第1タンク部4と第2タンク部5は、下端周縁部40と上端周縁部50とが互いに溶着されている結合部を形成して、低温側タンク3を構成する。 Hereinafter, effects brought about by the cooling device 100 of the first embodiment will be described. The cooling device 100 includes a high temperature side tank 1, a core portion 2 that cools the supercharged air that has flowed out of the high temperature side tank 1 by heat exchange with external air, and supercharged air that has been cooled in the core portion 2 flows out. A low temperature side tank 3 and a water suction pipe 44 that sucks up water in the low temperature side tank 3 are provided. The low temperature side tank 3 is below the upper chamber 41 formed inside the first tank portion 4 in a state where the first tank portion 4 made of resin and the upper peripheral edge 50 are connected to the first tank portion 4. And a second tank portion 5 made of resin that forms the lower chamber 51. The first tank portion 4 and the second tank portion 5 form a coupling portion in which the lower end peripheral portion 40 and the upper end peripheral portion 50 are welded to each other, and constitute the low temperature side tank 3.
 この冷却装置100によれば、低温側タンク3は上室41を形成する第1タンク部4と貯水可能な下室51を形成する第2タンク部5とを互いに溶着して形成されているため、一つのタンク部において過給気の圧力を受ける内表面積を小さくすることができる。特に各タンク部について、縦方向の長さ寸法を小さくできるので、タンク部が持つ剛性を高めることに寄与する。これにより、上室と水溜め室とを一つの低温側タンクの場合に比べて、一つの容器が備えるべき耐圧能力を大きく低下させることができる。 According to this cooling device 100, the low temperature side tank 3 is formed by welding the first tank part 4 forming the upper chamber 41 and the second tank part 5 forming the lower chamber 51 capable of storing water to each other. The inner surface area that receives the pressure of the supercharged air in one tank portion can be reduced. In particular, since the length in the vertical direction can be reduced for each tank part, it contributes to increasing the rigidity of the tank part. Thereby, compared with the case of one low temperature side tank for the upper chamber and the water reservoir chamber, the pressure resistance capability that one container should have can be greatly reduced.
 このため、第1タンク部4および第2タンク部5のそれぞれに必要な耐圧能力を抑えることができる。したがって、第1タンク部4および第2タンク部5を金属でなく樹脂材料で形成することが可能になり、製品コストの低減に貢献できる。アルミ材料の低温側タンクを樹脂材料で形成することにより、重量の軽量化およびタンクコストの低減が図れる。さらに、この冷却装置100によれば、第1タンク部4の底板部42によって低温側タンク3内の上室41と下室51とを区画できるので、従来技術のように中仕切り板を低温側タンクに取り付ける工程を必要としない。冷却装置100は、タンクの受圧面積の低減と組立性向上とが図れる。 For this reason, it is possible to suppress the pressure resistance required for each of the first tank portion 4 and the second tank portion 5. Therefore, it becomes possible to form the 1st tank part 4 and the 2nd tank part 5 with a resin material instead of a metal, and it can contribute to reduction of product cost. By forming the low temperature side tank of the aluminum material with a resin material, the weight can be reduced and the tank cost can be reduced. Furthermore, according to this cooling device 100, since the upper chamber 41 and the lower chamber 51 in the low temperature side tank 3 can be partitioned by the bottom plate portion 42 of the first tank portion 4, the partition plate can be placed on the low temperature side as in the prior art. It does not require a process to attach to the tank. The cooling device 100 can reduce the pressure receiving area of the tank and improve the assemblability.
 また、水吸い上げ管44は、第1タンク部4と同じ樹脂材料で構成されて第1タンク部4に一体成形されている。これによれば、水吸い上げ管44と第1タンク部4とを金型によって一つの成形部品で製造することができる。このため、部品管理工数、部品組立工数を削減でき、製品コストを抑えることができる。 Further, the water suction pipe 44 is made of the same resin material as that of the first tank part 4 and is integrally formed with the first tank part 4. According to this, the water suction pipe 44 and the 1st tank part 4 can be manufactured by one metal mold | die with a metal mold | die. For this reason, parts management man-hours and parts assembly man-hours can be reduced, and product costs can be reduced.
 (第2実施形態)
 第2実施形態は、水吸い上げ管144と第1タンク部4との結合状態が第1実施形態に対して相違する。第2実施形態で特に説明しない構成、作用、効果については、第1実施形態と同様であり、以下、前述の実施形態と異なる点についてのみ説明する。
(Second Embodiment)
The second embodiment is different from the first embodiment in the coupling state of the water suction pipe 144 and the first tank portion 4. The configuration, operation, and effects not particularly described in the second embodiment are the same as those in the first embodiment, and only differences from the above-described embodiment will be described below.
 図4に示すように、水吸い上げ管144は第1タンク部4とは異なる材料、例えば、金属材料で形成されている。例えば、水吸い上げ管144はアルミニウム、またはアルミニウム合金で形成されている。 As shown in FIG. 4, the water suction pipe 144 is made of a material different from that of the first tank portion 4, for example, a metal material. For example, the water suction pipe 144 is made of aluminum or an aluminum alloy.
 金属製の水吸い上げ管144は、金型を用いた異種材料一体成形によって、第1タンク部4と一体に形成されている。例えば、金属成形品である水吸い上げ管144を金型内の所定の位置に設置し、水吸い上げ管144の周りに樹脂を注入し、水吸い上げ管144を溶融樹脂で包み込み固化させる。このように金属品と樹脂を一体化することにより、金属製品の水吸い上げ管144と第1タンク部4とを一つの部品で成形することができる。また、金属材料で構成される水吸い上げ管144を第1タンク部4の底板部142に形成された穴部142aに圧入した状態で第1タンク部4に固定してもよい。 The metal water suction pipe 144 is formed integrally with the first tank portion 4 by integrally molding different materials using a mold. For example, a water suction pipe 144, which is a metal molded product, is installed at a predetermined position in the mold, a resin is injected around the water suction pipe 144, and the water suction pipe 144 is wrapped with a molten resin and solidified. By integrating the metal product and the resin in this way, the water suction pipe 144 and the first tank portion 4 of the metal product can be formed with one component. Further, the water suction pipe 144 made of a metal material may be fixed to the first tank portion 4 in a state where the water suction tube 144 is press-fitted into a hole 142 a formed in the bottom plate portion 142 of the first tank portion 4.
 第2実施形態によれば、金属材料で構成された水吸い上げ管144が第1タンク部4に一体成形されている場合には、金属製の水吸い上げ管144と樹脂製の第1タンク部4とを金型によって一つの成形部品で製造することができる。このため、部品組立工数を削減でき、製品コストを抑えることができる。また水吸い上げ管144を金属で形成できるため、型抜きを考慮する必要がない水吸い上げ管144の形状を採用できるので、吸い上げ性能を優先した水吸い上げ管144を製造可能である。 According to the second embodiment, when the water suction pipe 144 made of a metal material is integrally formed with the first tank portion 4, the metal water suction pipe 144 and the resin first tank portion 4 are formed. Can be manufactured in one molded part by a mold. For this reason, the number of parts assembling steps can be reduced, and the product cost can be suppressed. Further, since the water sucking pipe 144 can be formed of metal, the shape of the water sucking pipe 144 that does not need to be considered for die cutting can be adopted, so that the water sucking pipe 144 giving priority to the sucking performance can be manufactured.
 また、金属材料で構成された水吸い上げ管144が第1タンク部4の穴部142aに圧入された状態で第1タンク部4に固定されている場合には、型抜きを考慮する必要がないため、水吸い上げ管144の形状に関して自由度が高い。これにより、吸い上げ性能を優先した形状に水吸い上げ管144を形成することができる。 Further, when the water suction pipe 144 made of a metal material is fixed to the first tank portion 4 while being press-fitted into the hole 142 a of the first tank portion 4, it is not necessary to consider die cutting. Therefore, the degree of freedom regarding the shape of the water suction pipe 144 is high. As a result, the water suction pipe 144 can be formed in a shape that prioritizes the suction performance.
 (第3実施形態)
 第3実施形態は、水吸い上げ管244と第1タンク部4との結合状態が第1実施形態に対して相違する。第3実施形態で特に説明しない構成、作用、効果については、第1実施形態と同様であり、以下、前述の実施形態と異なる点についてのみ説明する。
(Third embodiment)
3rd Embodiment differs in the coupling | bonding state of the water suction pipe 244 and the 1st tank part 4 with respect to 1st Embodiment. The configuration, operation, and effects not particularly described in the third embodiment are the same as those in the first embodiment, and only differences from the above-described embodiment will be described below.
 図5に示すように、水吸い上げ管244は樹脂材料で形成された樹脂成形品である。水吸い上げ管244は第1タンク部4と同じ材料で形成されてもよいし、異なる材料でもよい。樹脂成形品である水吸い上げ管244を底板部142に形成された穴部に挿通した状態で底板部142と水吸い上げ管244を一体に溶着する。したがって、水吸い上げ管244と第1タンク部4とは、互いに溶着された溶着部142bを形成することで一体に固定されている。 As shown in FIG. 5, the water suction pipe 244 is a resin molded product formed of a resin material. The water suction pipe 244 may be formed of the same material as the first tank portion 4 or may be made of a different material. The bottom plate portion 142 and the water suction tube 244 are welded together in a state where the water suction tube 244 that is a resin molded product is inserted into the hole formed in the bottom plate portion 142. Therefore, the water suction pipe 244 and the first tank part 4 are integrally fixed by forming a welded part 142b welded to each other.
 第3実施形態によれば、水吸い上げ管244は樹脂材料で形成されており、第1タンク部4に一体に溶着されている。第1タンク部4と水吸い上げ管244とを一体成形する場合に比べて型抜きを考慮する必要がないため、水吸い上げ管244の形状に関して自由度が高い。これにより、吸い上げ性能を優先した形状に水吸い上げ管244を形成することができる。 According to the third embodiment, the water suction pipe 244 is formed of a resin material and is integrally welded to the first tank portion 4. Compared to the case where the first tank portion 4 and the water suction pipe 244 are integrally formed, it is not necessary to consider die cutting. Thereby, the water suction pipe 244 can be formed in a shape giving priority to the suction performance.
 (他の実施形態)
 なお、本開示は上記した実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。
(Other embodiments)
Note that the present disclosure is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present disclosure. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In addition, elements constituting each of the above embodiments are not necessarily essential except when clearly indicated as essential and when considered to be clearly essential in principle.
 上記各実施形態において、構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その構成要素の数値は特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等は、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、上述した具体例に限定されるものではない。 In each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the components are mentioned, particularly when it is clearly indicated that it is essential, and when it is clearly limited to a specific number in principle. Except for this, the numerical values of the constituent elements are not limited to a specific number. Further, in each of the above embodiments, the material, shape, positional relationship, etc. of the constituent elements are the above-described specific items unless otherwise specified and in principle limited to a specific material, shape, positional relationship, etc. It is not limited to examples.
 前述の実施形態において、第1タンク部4と第2タンク部5とは、互いに溶着可能な樹脂材料で形成されていればよい。したがって、両タンク部の樹脂材料が同じ材料であることに限定されない。 In the above-described embodiment, the first tank portion 4 and the second tank portion 5 may be formed of a resin material that can be welded to each other. Therefore, it is not limited that the resin material of both tank parts is the same material.
 前述の実施形態において、第1タンク部4と第2タンク部5を互いに溶着する方法は、振動溶着、熱板溶着、レーザー溶着のいずれかに限定するものではない。 In the above-described embodiment, the method of welding the first tank portion 4 and the second tank portion 5 to each other is not limited to any of vibration welding, hot plate welding, and laser welding.

Claims (5)

  1.  過給気が流入する流入部(10)を有する高温側タンク(1)と、
     前記高温側タンクを流出して内部を流通する過給気と外部の空気との熱交換によって前記過給気を冷却するコア部(2)と、
     前記コア部において冷却された過給気が外部機器へ向けて流出する流出部(43)を有する低温側タンク(3)と、
     前記低温側タンクの底部(52)から前記流出部の内部まで延びるように設けられる水吸い上げ管(44、144、244)と、を備え、
     前記低温側タンクは、
      部分的に貫通穴(420)が設けられた底板部(42、142)と、前記コア部に連結されている上端部(45)と、内部に形成される上室(41)と、を有する樹脂製の第1タンク部(4)と、
      上端周縁部(50)が前記第1タンク部に連結された状態で、前記上室よりも下方に位置する下室(51)を形成する樹脂製の第2タンク部(5)と、を有し、
     前記第1タンク部と前記第2タンク部は、互いに溶着されている結合部(40,50)を形成する冷却装置。
    A high temperature side tank (1) having an inflow part (10) into which supercharged air flows;
    A core portion (2) that cools the supercharged air by heat exchange between the supercharged air that flows out of the high temperature side tank and circulates inside, and external air;
    A low temperature side tank (3) having an outflow part (43) through which the supercharged air cooled in the core part flows out toward an external device;
    Water suction pipes (44, 144, 244) provided so as to extend from the bottom (52) of the low temperature side tank to the inside of the outflow part,
    The low temperature side tank is
    A bottom plate part (42, 142) partially provided with a through hole (420), an upper end part (45) connected to the core part, and an upper chamber (41) formed inside. A first tank part (4) made of resin;
    A second tank portion (5) made of resin that forms a lower chamber (51) positioned below the upper chamber in a state where the upper peripheral edge portion (50) is connected to the first tank portion. And
    The cooling device in which the first tank part and the second tank part form a joint part (40, 50) welded to each other.
  2.  前記水吸い上げ管(44)は、前記第1タンク部と同じ樹脂材料で前記第1タンク部に一体成形されている請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the water suction pipe (44) is integrally formed with the first tank portion using the same resin material as the first tank portion.
  3.  前記水吸い上げ管(144)は、金属材料で形成されており、前記第1タンク部に一体成形されている請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the water suction pipe (144) is formed of a metal material and is integrally formed with the first tank portion.
  4.  前記水吸い上げ管(144)は金属材料で形成されており、
     前記水吸い上げ管は前記第1タンク部に形成された穴部(142a)に圧入された状態で前記第1タンク部に固定されている請求項1に記載の冷却装置。
    The water suction pipe (144) is made of a metal material,
    2. The cooling device according to claim 1, wherein the water suction pipe is fixed to the first tank portion while being press-fitted into a hole portion (142 a) formed in the first tank portion.
  5.  前記水吸い上げ管(244)は、樹脂材料で形成されており、前記第1タンク部に一体に溶着されている請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the water suction pipe (244) is formed of a resin material and is integrally welded to the first tank portion.
PCT/JP2017/028660 2016-08-24 2017-08-08 Cooling device WO2018037897A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017004227.5T DE112017004227B4 (en) 2016-08-24 2017-08-08 Cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-164003 2016-08-24
JP2016164003A JP6662241B2 (en) 2016-08-24 2016-08-24 Cooling system

Publications (1)

Publication Number Publication Date
WO2018037897A1 true WO2018037897A1 (en) 2018-03-01

Family

ID=61245704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028660 WO2018037897A1 (en) 2016-08-24 2017-08-08 Cooling device

Country Status (3)

Country Link
JP (1) JP6662241B2 (en)
DE (1) DE112017004227B4 (en)
WO (1) WO2018037897A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113464269A (en) * 2021-08-20 2021-10-01 浙江吉利控股集团有限公司 Intercooler with condensate water self-discharging function

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3601391A1 (en) * 1986-01-18 1987-02-26 Daimler Benz Ag Device for the suction removal of oil condensate dripping off into the air collecting box of a charge air cooler
JPH04300497A (en) * 1991-03-27 1992-10-23 Kinugawa Rubber Ind Co Ltd Drain valve mounting structure of air duct for vehicle
JPH0660764U (en) * 1993-01-29 1994-08-23 株式会社土屋製作所 Resonance silencer
FR2880387A1 (en) * 2005-01-03 2006-07-07 Peugeot Citroen Automobiles Sa Oil particle receiving and evacuating device for heat exchanger, has tank with reservoir to receive oil particles carried by air flow in turbocompressor and line mounted between reservoir and outlet tubing to draw particles in reservoir
FR2930631A1 (en) * 2008-04-24 2009-10-30 Valeo Systemes Thermiques Condensate i.e. acidic condensate, discharging device for e.g. charger air cooler of motor vehicle, has vibration actuator vibrating storage case for pulverizing condensate into droplets and discharging condensate in gas cooling line
JP2015063913A (en) * 2013-09-24 2015-04-09 トヨタ自動車株式会社 Intake gas cooling device for turbocharged internal combustion engine
US9103269B2 (en) * 2012-02-27 2015-08-11 Ford Global Technologies, Llc Charge air cooler duct system and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012211857A1 (en) 2012-07-06 2014-01-09 Behr Gmbh & Co. Kg Heat exchanger
JP2016164003A (en) 2016-05-12 2016-09-08 セイコーエプソン株式会社 Printing material storage container

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3601391A1 (en) * 1986-01-18 1987-02-26 Daimler Benz Ag Device for the suction removal of oil condensate dripping off into the air collecting box of a charge air cooler
JPH04300497A (en) * 1991-03-27 1992-10-23 Kinugawa Rubber Ind Co Ltd Drain valve mounting structure of air duct for vehicle
JPH0660764U (en) * 1993-01-29 1994-08-23 株式会社土屋製作所 Resonance silencer
FR2880387A1 (en) * 2005-01-03 2006-07-07 Peugeot Citroen Automobiles Sa Oil particle receiving and evacuating device for heat exchanger, has tank with reservoir to receive oil particles carried by air flow in turbocompressor and line mounted between reservoir and outlet tubing to draw particles in reservoir
FR2930631A1 (en) * 2008-04-24 2009-10-30 Valeo Systemes Thermiques Condensate i.e. acidic condensate, discharging device for e.g. charger air cooler of motor vehicle, has vibration actuator vibrating storage case for pulverizing condensate into droplets and discharging condensate in gas cooling line
US9103269B2 (en) * 2012-02-27 2015-08-11 Ford Global Technologies, Llc Charge air cooler duct system and method
JP2015063913A (en) * 2013-09-24 2015-04-09 トヨタ自動車株式会社 Intake gas cooling device for turbocharged internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113464269A (en) * 2021-08-20 2021-10-01 浙江吉利控股集团有限公司 Intercooler with condensate water self-discharging function

Also Published As

Publication number Publication date
JP2018031297A (en) 2018-03-01
JP6662241B2 (en) 2020-03-11
DE112017004227B4 (en) 2021-09-02
DE112017004227T5 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
US8695574B2 (en) Intake manifold having an integrated charge air cooler
US7640966B2 (en) Heat exchanger and cooling module having the same
CN100565069C (en) Refrigerating module
JP6011519B2 (en) Vehicle heat exchanger
CN106917667B (en) Indirect intercooler
US20130206364A1 (en) Heat exchanger arrangement
JP6635022B2 (en) Intercooler and method of manufacturing the intercooler
US10422307B2 (en) Air intake manifold
US7500514B2 (en) Coolant radiator for a motor vehicle
CA2546272A1 (en) Heat exchanger package with split charge air cooler
KR20140116419A (en) Stacked-plate heat exchanger including a collector
JP2017106668A (en) Heat exchanger
WO2018037897A1 (en) Cooling device
JP4892020B2 (en) Cooling water passage device in an internal combustion engine
US20040108097A1 (en) Heat exchanger unit
US10247088B2 (en) Saddle-ridden type vehicle and intake device for engine having supercharger
JP2016070655A (en) Heat exchanger
JP2012092674A (en) Intercooler
JP5019646B2 (en) Cooling water passage device in an internal combustion engine
US20130068435A1 (en) In-line heat exchanger assembly and method of using
US11156406B2 (en) Heat exchanger
KR101830475B1 (en) Integrated thermostatic valve and charge air cooler cover assembly
CN106194488A (en) Multi-functional cooler head
JP4560448B2 (en) Cooling water channel structure
JP2007240104A (en) Intercooler structure and manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843382

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17843382

Country of ref document: EP

Kind code of ref document: A1