WO2018037878A1 - Polishing apparatus and wafer polishing method - Google Patents

Polishing apparatus and wafer polishing method Download PDF

Info

Publication number
WO2018037878A1
WO2018037878A1 PCT/JP2017/028331 JP2017028331W WO2018037878A1 WO 2018037878 A1 WO2018037878 A1 WO 2018037878A1 JP 2017028331 W JP2017028331 W JP 2017028331W WO 2018037878 A1 WO2018037878 A1 WO 2018037878A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
wafer
heads
head
load
Prior art date
Application number
PCT/JP2017/028331
Other languages
French (fr)
Japanese (ja)
Inventor
上野 淳一
薫 石井
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to CN201780043825.3A priority Critical patent/CN109478506B/en
Priority to KR1020197003565A priority patent/KR102382807B1/en
Publication of WO2018037878A1 publication Critical patent/WO2018037878A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/30Work carriers for single side lapping of plane surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment

Definitions

  • the present invention relates to a polishing apparatus and a wafer polishing method.
  • polishing cloth 103 affixed on a rotatable surface plate 102 and two or more polishing surfaces positioned above one surface plate.
  • a polishing apparatus 101 having a head 130 a and 130 b and an abrasive supply mechanism 104 capable of supplying polishing slurry to the polishing cloth 103 is used.
  • a template assembly in which a backing pad 131 and a retainer guide 132 made of a resin such as a glass epoxy material are integrally attached is attached to each of the polishing heads 130a and 130b. With the backing pad 131 and the retainer guide 132, respectively.
  • the back and side surfaces of the wafer W can be held (see Patent Documents 1 and 2).
  • the polishing heads 130a and 130b are rotatable, and the held wafer can be pressed against the polishing cloth 103 for polishing.
  • the polishing head can control the polishing load.
  • the pressure A external pressure
  • the contact pressure between the retainer guide 132 and the polishing pad 103 can be controlled, and the contact pressure between the wafer W and the polishing pad 103 can be controlled by controlling the pressure B (internal pressure) inside the second space 134. it can.
  • the shape of the wafer W after polishing is controlled by controlling the polishing load applied to the wafer W and the peripheral speed of the wafer W. 12, the pressure A (external pressure) for controlling the contact pressure between the retainer guide 132 (template guide portion) and the polishing cloth 103, and the pressure B (internal pressure) for controlling the contact pressure between the wafer W and the polishing cloth 103 are used. ) And the pressure difference between these pressures A and B can be adjusted to control the shape of the wafer W after polishing. Further, the peripheral speed of the wafer W can be controlled by the rotational speed of the polishing heads 130a and 130b.
  • polishing is performed using a polishing load and a peripheral speed condition (rotational speed) common to all polishing heads. All polishing heads have the same polishing load and rotational speed. Even when two or more polishing heads are used, load control of all polishing heads is controlled by a common pressure control mechanism, and peripheral speed control ( This is also because the rotation speed is controlled by a common rotation control mechanism for all polishing heads.
  • the polishing load of the polishing heads 130a and 130b that is, the control of the external pressure and the internal pressure is performed by a common controller and electropneumatic regulator, respectively. .
  • the rotational speeds of the polishing heads 130a and 130b are controlled by the same controller and motor.
  • a difference in the machining allowance shape of the wafer (such as a machining allowance distribution and a machining allowance amount) occurs between the polishing heads.
  • polishing is performed using a polishing load that is common to all polishing heads so that the difference in the machining allowance shape between the polishing heads becomes smaller.
  • the external pressure and internal pressure common to all polishing heads are set to appropriate values, and the difference between the external pressure and the internal pressure is optimized so that the difference in the machining allowance shape between the polishing heads becomes smaller. It is common practice to control sagging.
  • the shape of the wafer can be controlled by controlling the ratio between the rotational speed of the polishing head and the rotational speed of the surface plate, all the polishing heads have a common rotational speed so that the difference in the machining allowance shape becomes smaller. In general, it is used to polish.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a polishing apparatus and a wafer polishing method capable of suppressing a variation in machining allowance distribution between polishing heads and a variation in machining allowance. To do.
  • the present invention provides a surface plate to which a polishing cloth for polishing a wafer is affixed, and can be rotated while holding the wafer, and a polishing load is applied to the wafer while applying a polishing load to the wafer.
  • a polishing apparatus comprising: a plurality of polishing heads that can be pressed, and polishing the wafer held by the polishing head against the polishing cloth while rotating the polishing head.
  • a polishing apparatus, wherein the polishing head has a pressure control mechanism for controlling a polishing load of the polishing head and a rotation control mechanism for controlling the rotation speed of the polishing head individually for each polishing head. I will provide a.
  • the polishing load and the rotation speed can be set to arbitrary values for each polishing head, and in particular, the difference in the wafer allowance distribution and the difference in the allowance between the polishing heads are suppressed to a small value.
  • the polishing load and the rotation speed can be set for each polishing head.
  • the polishing head has a back pad that holds the back surface of the wafer, and an annular retainer guide that holds the side surface of the wafer, and the pressure control mechanism uses the polishing load as the polishing load. It is preferable to control the contact pressure between the wafer held by the polishing head and the polishing cloth, and the contact pressure between the retainer guide and the polishing cloth.
  • the polishing device can control the contact pressure between the wafer and polishing cloth held by the polishing head and the contact pressure between the retainer guide and the polishing cloth, the difference between these contact pressures can be adjusted more accurately.
  • the wafer allowance distribution can be controlled.
  • the present invention provides a method for polishing a wafer using the above polishing apparatus, wherein the plurality of pressure control mechanisms and rotation control mechanisms provided for each polishing head are used. There is provided a method for polishing a wafer, wherein the polishing load and the rotation speed of the polishing head are individually controlled for each polishing head to polish the wafer.
  • the machining allowance distribution difference and the machining allowance difference between the polishing heads are controlled, and in particular, by reducing these differences, it is possible to suppress the variation in the wafer shape between the polishing heads.
  • the polishing apparatus and the wafer polishing method of the present invention it is possible to reduce the allowance distribution between the polishing heads and the dispersion of the allowance.
  • a wafer having a uniform shape in which the polishing load and the rotation speed can be controlled for each polishing head so as to suppress the difference in the wafer removal allowance distribution and the difference in the removal allowance generated between a plurality of polishing heads. Can be obtained.
  • the polishing apparatus 1 of the present invention is capable of rotating while holding the wafer W with a surface plate 2 to which a polishing cloth 3 for polishing the wafer W is attached, and applying a polishing load to the wafer W.
  • a plurality of polishing heads 30 that can be pressed against the polishing pad 3 while being added are provided.
  • FIG. 1 illustrates the case where two polishing heads (the polishing head 30 a and the polishing head 30 b in FIG. 1) are provided on one surface plate 2.
  • the number of the plurality of polishing heads 30 is not limited to this, and the polishing apparatus of the present invention may include three or more polishing heads on one surface plate 2.
  • an abrasive supply mechanism 4 for supplying an abrasive onto the polishing cloth 3 may be provided.
  • each of the plurality of polishing heads has a pressure control mechanism for controlling the polishing load of the polishing head and a rotation control mechanism for controlling the rotation speed of the polishing head.
  • the polishing head 30a has the pressure control mechanism 10a and the rotation control mechanism 20a
  • the polishing head 30b has the pressure control mechanism 10b and the rotation control mechanism 20b
  • the polishing head 30a and the polishing head 30b are configured such that the polishing load and the rotation speed can be controlled independently of each other.
  • the wafer W held by the polishing heads 30 a and 30 b can be pressed against the polishing cloth 3 and polished while rotating the polishing heads 30 a and 30 b.
  • the polishing load and the rotational speed can be controlled to arbitrary values for each polishing head, and the wafer shape can be controlled for each polishing head.
  • the polishing load and the rotation speed can be set for each polishing head so as to suppress the difference in the wafer allowance distribution between the polishing heads and the difference in the allowance. That is, it is possible to obtain wafers of the same shape with almost no difference in wafer allowance distribution and difference in allowance for all polishing heads. Further, since polishing can be performed with different polishing loads and rotation speeds for each polishing head, it is possible to manufacture wafers having different standard shapes and obtain a wide variety of wafers by one polishing.
  • the polishing apparatus 1 of the present invention as described above can be configured as follows. That is, more specifically, it is preferable that the polishing head has a back pad that holds the back surface of the wafer and an annular retainer guide that holds the side surface of the wafer. As described above, the contact pressure between the wafer held by the polishing head and the polishing cloth and the contact pressure between the retainer guide and the polishing cloth can be controlled.
  • the polishing head 30a and the polishing head 30b have back pads 31a and 31b and retainer guides 32a and 32b, respectively, and can hold the side surface and the back surface of the wafer W.
  • the polishing heads 30a and 30b may be rubber chuck type polishing heads, and the retainer guides 32a and 32b are controlled by controlling the pressure A (external pressure) inside the first space portions 33a and 33b, respectively.
  • the contact pressure with the polishing pad 3 can be controlled, and the contact pressure between the wafer W and the polishing pad 3 can be controlled by controlling the pressure B (internal pressure) inside the second spaces 34a and 34b. It has become.
  • the pressures A and B can be controlled by the pressure control mechanism 10a and the pressure control mechanism 10b, which are individually provided in the polishing head 30a and the polishing head 30b, respectively. it can. More specifically, as shown in FIG. 1, the pressure control mechanisms 10 a and 10 b include the first electropneumatic regulators 11 a and 11 b that control the pressure A (external pressure) inside the first spaces 33 a and 33 b and the first electropneumatic regulators 11 a and 11 b.
  • the pressures A and B can be individually controlled for each polishing head.
  • the rotation control mechanisms 20a and 20b rotate the polishing heads 30a and 30b, respectively, and motors 21a and 21b, and a controller 22a that sends a control signal to these motors to control the rotation speed. , 22b.
  • the rotational speed can be controlled for each polishing head as shown in FIG.
  • the polishing load and the rotation speed of the plurality of polishing heads 30 are individually set for each polishing head by the pressure control mechanisms 10a and 10b and the rotation control mechanisms 20a and 20b provided for each polishing head.
  • the wafer W is polished under control.
  • the polishing load for each polishing head by controlling the polishing load for each polishing head, the machining allowance distribution difference of the wafer W between the plurality of polishing heads 30 is controlled, and by controlling the rotation speed for each polishing head, a plurality of polishing heads are controlled.
  • the removal allowance of the wafer W between the polishing heads 30 can be controlled.
  • polishing load and the rotation speed of each polishing head can be individually adjusted in the adjustment process as shown in FIG.
  • the pressure A (external pressure), the pressure B (internal pressure), and the rotation speed are set to the same numerical value in all the polishing heads ((B) in FIG. 3).
  • the wafer is polished with the entire polishing head ((C) of FIG. 3).
  • the pressure A and the pressure B, that is, the polishing load is the same in all the polishing heads.
  • the machining allowance distribution of the polished wafer is calculated ((D) in FIG. 3).
  • the machining allowance distribution can be calculated by measuring the flatness of the wafer surface before and after polishing with a flatness measuring machine or the like.
  • the external pressure and internal pressure of each polishing head are adjusted based on the machining allowance distribution ((E) in FIG. 3). More specifically, the machining allowance profile of the wafer polished by each polishing head is calculated, and the external pressure and the machining allowance profile are determined according to the amount the machining allowance profile is away from the machining allowance displacement zero line (reference line). The difference in internal pressure is changed for each polishing head.
  • the zero line of the machining allowance displacement amount for example, the machining allowance amount at the center of the wafer can be used as the zero line (reference line).
  • the wafer is polished with the entire polishing head after adjusting the external pressure and the internal pressure ((F) in FIG. 3).
  • the machining allowance distribution of each polished wafer is calculated, and when the machining allowance displacement approaches zero, the adjustment of the internal pressure and the external pressure in each polishing head is completed ((G) in FIG. 3).
  • the machining allowance displacement amount is large, the internal pressure and the external pressure are adjusted as described above until the machining allowance displacement amount becomes sufficiently small.
  • the polishing load at which the machining allowance displacement amount approaches zero is selected in each polishing head.
  • the machining allowance at the selected polishing load is confirmed with each polishing head, and if there is a difference in machining allowance between the polishing heads, the rotational speed of the polishing head is adjusted ((H) in FIG. 3). For example, it is only necessary to set the rotational speed of the polishing head having a small machining allowance to be larger, to make the machining allowance larger and to make the machining allowance smaller.
  • the wafer is polished with the entire polishing head after adjusting the rotation speed ((I) in FIG. 3).
  • Example 2 A silicon wafer was polished using a polishing apparatus 1 having two polishing heads 30a and 30b as shown in FIG. 1 and having a pressure control mechanism and a rotation control mechanism individually for each polishing head.
  • a pressure control mechanism and a rotation control mechanism are mounted on each polishing head of a single-side polishing machine manufactured by Fujikoshi Machinery Co., Ltd.
  • the polishing of the silicon wafer was performed as follows. First, according to the adjustment process shown in FIG. 3, the polishing load and the rotational speed of the two polishing heads 30a and 30b are set to values such that the difference in wafer allowance distribution and the allowance difference between the polishing heads 30a and 30b become small. Set. As a result, the pressure difference between the internal pressure and the external pressure of the polishing head 30a was adjusted to 7.5 kPa, and the rotation speed was adjusted to 33 rpm. Further, the pressure difference between the internal pressure and the external pressure of the polishing head 30b was adjusted to 5.2 kPa, and the rotation speed was adjusted to 38 rpm.
  • FIG. 4 shows the machining allowance distribution of each polishing head before adjustment of the polishing load (that is, the polishing load (the pressure difference between the internal pressure and the external pressure is 15 kPa) and the rotational speed (30 rpm) is the same for all polishing heads).
  • FIG. 5 shows the machining allowance distribution of each polishing head after completion of adjustment, which is finally measured in the adjustment process. 4 and 5 and the following “FIG. 7” represent the amount of displacement from the reference line when the amount of machining at the center of the wafer is the zero line (reference line). As can be seen from FIG. 5, the difference in the machining allowance distribution between the polishing heads could be made almost zero.
  • FIG. 6 shows the polishing rate in each polishing head before and after adjusting the polishing load and the rotation speed.
  • the polishing rate became substantially the same for each polishing head, and the difference in the machining allowance between the polishing heads could be eliminated.
  • polishing was performed after adjusting the polishing load and the rotation speed.
  • the polishing conditions for the main polishing are as follows. [Polishing conditions] Processed wafer: 300mm diameter P - product ⁇ 100> Polishing cloth: Secondary polishing cloth Non-woven cloth Abrasive: KOH-based colloidal silica Number of polishing heads: 2 Number of polished wafers: 10 heads per head
  • ⁇ SFQR (max), ⁇ ESFQR (max), and machining allowance of the silicon wafer after the main polishing were measured.
  • a flatness measuring device WaferSight 2 manufactured by KLA-Tencor was used as a measuring device.
  • each of the two polishing heads has a pressure difference of 5 kPa between the internal pressure and the external pressure so that the difference in the wafer removal distribution and the machining allowance between the two polishing heads 130a and 130b are reduced. Adjusted. In this case, the rotation speed of the polishing head was set to 30 rpm common to all polishing heads.
  • the stock removal distribution of each polishing head at this time is shown in FIG. 7, and the stock removal is shown in FIG.
  • the machining allowance distribution difference cannot be reduced as much as in the example, and as can be seen from FIG. 8, the machining allowance difference is larger than in the example.
  • ⁇ SFQR (max), ⁇ ESFQR (max), and variation in machining allowance are small compared to the comparative example. From this, by controlling the polishing load and the rotation speed for each polishing head, It was confirmed that the machining allowance distribution difference and the machining allowance difference of each wafer can be reduced.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Abstract

The present invention is a polishing apparatus comprising: a surface plate to which a polishing cloth for polishing a wafer is attached; and a plurality of polishing heads that are rotatable while holding the wafer and are capable of pressing the wafer to the polishing cloth while applying a polishing load to the wafer, wherein, while the polishing heads are rotated, the wafer held by the polishing heads is pressed to the polishing cloth so as to be polished. This polishing apparatus is characterized in that each of the plurality of polishing heads individually has: a pressure control mechanism that controls the polishing load of the polishing head; and a rotation control mechanism that controls the rotation speed of the polishing head. Accordingly, provided are a wafer polishing method and a polishing apparatus capable of reducing variation in machining allowance and machining allowance distribution among the polishing heads.

Description

研磨装置及びウェーハの研磨方法Polishing apparatus and wafer polishing method
 本発明は、研磨装置及びウェーハの研磨方法に関する。 The present invention relates to a polishing apparatus and a wafer polishing method.
 シリコン単結晶ウェーハなどの半導体ウェーハの研磨方法では、図12のような、回転可能な定盤102上に貼り付けられた研磨布103と、1つの定盤の上方に位置する二個以上の研磨ヘッド130a、130bと、研磨スラリを研磨布103に供給できる研磨剤供給機構104を具備した研磨装置101を用いる。 In the method for polishing a semiconductor wafer such as a silicon single crystal wafer, as shown in FIG. 12, polishing cloth 103 affixed on a rotatable surface plate 102 and two or more polishing surfaces positioned above one surface plate. A polishing apparatus 101 having a head 130 a and 130 b and an abrasive supply mechanism 104 capable of supplying polishing slurry to the polishing cloth 103 is used.
 各研磨ヘッド130a、130bには、バッキングパッド131とガラスエポキシ材等の樹脂からなるリテーナガイド132などが一体と成ったテンプレートアセンブリが貼り付けられており、バッキングパッド131とリテーナガイド132によって、それぞれ、ウェーハWの裏面と側面を保持できる(特許文献1、2参照)。また、研磨ヘッド130a、130bは回転可能であり、保持したウェーハを研磨布103に押し当てて研磨することができる。また、研磨ヘッドは、研磨荷重を制御することができ、例えば、図12に示すような研磨ヘッド130a、130bの場合、第一の空間部133の内部の圧力A(外圧)を制御することによって、リテーナガイド132と研磨布103との接触圧を制御でき、また、第二の空間部134の内部の圧力B(内圧)を制御することによって、ウェーハWと研磨布103との接触圧を制御できる。 A template assembly in which a backing pad 131 and a retainer guide 132 made of a resin such as a glass epoxy material are integrally attached is attached to each of the polishing heads 130a and 130b. With the backing pad 131 and the retainer guide 132, respectively. The back and side surfaces of the wafer W can be held (see Patent Documents 1 and 2). Further, the polishing heads 130a and 130b are rotatable, and the held wafer can be pressed against the polishing cloth 103 for polishing. The polishing head can control the polishing load. For example, in the case of the polishing heads 130a and 130b as shown in FIG. 12, the pressure A (external pressure) inside the first space 133 is controlled. The contact pressure between the retainer guide 132 and the polishing pad 103 can be controlled, and the contact pressure between the wafer W and the polishing pad 103 can be controlled by controlling the pressure B (internal pressure) inside the second space 134. it can.
 また、一般的な研磨装置では、ウェーハWにかかる研磨荷重とウェーハWの周速を制御することで、研磨後のウェーハWの形状をコントロールする。図12の研磨装置101では、リテーナガイド132(テンプレートのガイド部)と研磨布103の接触圧を制御する圧力A(外圧)と、ウェーハWと研磨布103の接触圧を制御する圧力B(内圧)とを制御し、これら圧力A、Bの圧力差を調整することで研磨後のウェーハWの形状をコントロールできる。また、ウェーハWの周速は、研磨ヘッド130a、130bの回転速度によって制御できる。 In a general polishing apparatus, the shape of the wafer W after polishing is controlled by controlling the polishing load applied to the wafer W and the peripheral speed of the wafer W. 12, the pressure A (external pressure) for controlling the contact pressure between the retainer guide 132 (template guide portion) and the polishing cloth 103, and the pressure B (internal pressure) for controlling the contact pressure between the wafer W and the polishing cloth 103 are used. ) And the pressure difference between these pressures A and B can be adjusted to control the shape of the wafer W after polishing. Further, the peripheral speed of the wafer W can be controlled by the rotational speed of the polishing heads 130a and 130b.
特許第4833355号Japanese Patent No. 4833355 特開2012-35393号公報JP 2012-35393 A
 一般的に、図12のような複数の研磨ヘッド130a、130bを有する研磨装置101では、全ての研磨ヘッドで共通の研磨荷重と周速条件(回転速度)を用いて研磨加工を行っている。全ての研磨ヘッドで同じ研磨荷重と回転速度となるのは、二個以上の研磨ヘッドを有する場合にも、全研磨ヘッドの荷重制御が共通の圧力制御機構でコントロールされ、さらに、周速制御(回転速度の制御)も全研磨ヘッドが共通の回転制御機構でコントロールされる装置構成であるためである。研磨装置101の場合、図12、13のように、研磨ヘッド130a、130bの研磨荷重の制御、即ち、上記の外圧と内圧の制御が、それぞれ、共通のコントローラ及び電空レギュレータで行われている。同様に、図12、13のように、研磨ヘッド130a、130bの回転速度が、同じコントローラ及びモータで制御されている。 Generally, in a polishing apparatus 101 having a plurality of polishing heads 130a and 130b as shown in FIG. 12, polishing is performed using a polishing load and a peripheral speed condition (rotational speed) common to all polishing heads. All polishing heads have the same polishing load and rotational speed. Even when two or more polishing heads are used, load control of all polishing heads is controlled by a common pressure control mechanism, and peripheral speed control ( This is also because the rotation speed is controlled by a common rotation control mechanism for all polishing heads. In the case of the polishing apparatus 101, as shown in FIGS. 12 and 13, the polishing load of the polishing heads 130a and 130b, that is, the control of the external pressure and the internal pressure is performed by a common controller and electropneumatic regulator, respectively. . Similarly, as shown in FIGS. 12 and 13, the rotational speeds of the polishing heads 130a and 130b are controlled by the same controller and motor.
 研磨装置が複数の研磨ヘッドを有する場合、研磨ヘッド間でウェーハの取り代形状(取り代分布及び取り代の量など)の差が発生する。従来から、この差を小さくするために、研磨ヘッド間の取り代形状の差がより小さくなるような研磨荷重を、全ての研磨ヘッドで共通して用いて研磨を行っている。例えば、全研磨ヘッドで共通の外圧と内圧を適切な値に設定して、外圧と内圧の差を研磨ヘッド間の取り代形状の差がより小さくなるように最適化し、ウェーハ外周部の跳ねとダレを制御することが一般的に行われている。また、研磨ヘッドの回転速度と定盤の回転速度との比率の制御によってもウェーハの形状を制御することができるため、取り代形状の差がより小さくなるような共通の回転速度を全研磨ヘッドで用いて研磨を行うことが一般的に行われている。 When the polishing apparatus has a plurality of polishing heads, a difference in the machining allowance shape of the wafer (such as a machining allowance distribution and a machining allowance amount) occurs between the polishing heads. Conventionally, in order to reduce this difference, polishing is performed using a polishing load that is common to all polishing heads so that the difference in the machining allowance shape between the polishing heads becomes smaller. For example, the external pressure and internal pressure common to all polishing heads are set to appropriate values, and the difference between the external pressure and the internal pressure is optimized so that the difference in the machining allowance shape between the polishing heads becomes smaller. It is common practice to control sagging. Also, since the shape of the wafer can be controlled by controlling the ratio between the rotational speed of the polishing head and the rotational speed of the surface plate, all the polishing heads have a common rotational speed so that the difference in the machining allowance shape becomes smaller. In general, it is used to polish.
 しかしながら、全ての研磨ヘッドで共通の研磨荷重及び回転速度を用いる従来の研磨装置では、研磨ヘッド固有の取り代分布ばらつきを研磨ヘッド毎に個別に調整できず、また、複数の研磨ヘッドの全てで、研磨ヘッド間の取り代形状の差がより小さくなるように研磨荷重を設定するため、実際には研磨ヘッド間の取り代形状の差を限りなくゼロに近づけることができなかった。さらに、取り代分布を合わせるために研磨荷重の調整を行うと、研磨ヘッド間の取り代(取り代の量)のばらつきが大きくなり、研磨ヘッド間の取り代を合わせることができないという問題もあった。 However, in a conventional polishing apparatus that uses a polishing load and a rotation speed that are common to all polishing heads, it is not possible to individually adjust the dispersion distribution of the polishing head specific to each polishing head. Since the polishing load is set so that the difference in the machining allowance shape between the polishing heads becomes smaller, in practice, the difference in the machining allowance shape between the polishing heads cannot be made as close to zero as possible. Furthermore, if the polishing load is adjusted to match the machining allowance distribution, there is a problem that the machining allowance (amount of machining allowance) between the polishing heads increases, and the machining allowance between the polishing heads cannot be adjusted. It was.
 本発明は前述のような問題に鑑みてなされたもので、研磨ヘッド間の取り代分布及び取り代のばらつきを小さく抑制することが可能な研磨装置及びウェーハの研磨方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a polishing apparatus and a wafer polishing method capable of suppressing a variation in machining allowance distribution between polishing heads and a variation in machining allowance. To do.
 上記目的を達成するために、本発明は、ウェーハを研磨する研磨布が貼り付けられた定盤と、前記ウェーハを保持しながら回転可能であり、前記ウェーハに研磨荷重を加えながら前記研磨布に押し当てることが可能な複数の研磨ヘッドとを具備し、前記研磨ヘッドを回転させながら、前記研磨ヘッドで保持されたウェーハを前記研磨布に押し当てて研磨する研磨装置であって、前記複数の研磨ヘッドが、研磨ヘッド毎にそれぞれ個別に、前記研磨ヘッドの研磨荷重を制御する圧力制御機構と前記研磨ヘッドの回転速度を制御する回転制御機構とを有するものであることを特徴とする研磨装置を提供する。 In order to achieve the above object, the present invention provides a surface plate to which a polishing cloth for polishing a wafer is affixed, and can be rotated while holding the wafer, and a polishing load is applied to the wafer while applying a polishing load to the wafer. A polishing apparatus comprising: a plurality of polishing heads that can be pressed, and polishing the wafer held by the polishing head against the polishing cloth while rotating the polishing head. A polishing apparatus, wherein the polishing head has a pressure control mechanism for controlling a polishing load of the polishing head and a rotation control mechanism for controlling the rotation speed of the polishing head individually for each polishing head. I will provide a.
 このようなものであれば、研磨ヘッド毎に個別に研磨荷重及び回転速度を任意の値に設定でき、特に、研磨ヘッド間でのウェーハの取り代分布の差及び取り代の差を小さく抑制するように、研磨ヘッド毎に研磨荷重及び回転速度を設定できる。 If this is the case, the polishing load and the rotation speed can be set to arbitrary values for each polishing head, and in particular, the difference in the wafer allowance distribution and the difference in the allowance between the polishing heads are suppressed to a small value. As described above, the polishing load and the rotation speed can be set for each polishing head.
 このとき、前記研磨ヘッドが、前記ウェーハの裏面を保持するバックパッド、及び、前記ウェーハの側面を保持する円環状のリテーナガイドを有するものであり、前記圧力制御機構が、前記研磨荷重として、前記研磨ヘッドに保持された前記ウェーハと前記研磨布との接触圧と、前記リテーナガイドと前記研磨布との接触圧とを制御するものであることが好ましい。 At this time, the polishing head has a back pad that holds the back surface of the wafer, and an annular retainer guide that holds the side surface of the wafer, and the pressure control mechanism uses the polishing load as the polishing load. It is preferable to control the contact pressure between the wafer held by the polishing head and the polishing cloth, and the contact pressure between the retainer guide and the polishing cloth.
 研磨ヘッドに保持されたウェーハと研磨布との接触圧と、リテーナガイドと研磨布との接触圧とを制御可能な研磨装置であれば、これらの接触圧の差を調整することでより精度よくウェーハの取り代分布を制御することができる。 If the polishing device can control the contact pressure between the wafer and polishing cloth held by the polishing head and the contact pressure between the retainer guide and the polishing cloth, the difference between these contact pressures can be adjusted more accurately. The wafer allowance distribution can be controlled.
 また、上記目的を達成するために、本発明は、上記の研磨装置を用いたウェーハの研磨方法であって、研磨ヘッド毎に設けられた前記圧力制御機構及び前記回転制御機構によって、前記複数の研磨ヘッドの前記研磨荷重及び前記回転速度を、研磨ヘッド毎にそれぞれ個別に制御して前記ウェーハの研磨を行うことを特徴とするウェーハの研磨方法を提供する。 In order to achieve the above object, the present invention provides a method for polishing a wafer using the above polishing apparatus, wherein the plurality of pressure control mechanisms and rotation control mechanisms provided for each polishing head are used. There is provided a method for polishing a wafer, wherein the polishing load and the rotation speed of the polishing head are individually controlled for each polishing head to polish the wafer.
 研磨ヘッド毎に個別に研磨荷重及び回転速度を制御することで、各研磨ヘッドで研磨されるウェーハの取り代分布及び取り代をウェーハ毎に設定できる。特に、研磨ヘッド間でのウェーハの取り代分布の差及び取り代の差を小さく抑制することができる。 By controlling the polishing load and the rotation speed individually for each polishing head, it is possible to set the allowance distribution and allowance for the wafer polished by each polishing head for each wafer. In particular, the difference in the wafer allowance distribution between the polishing heads and the difference in the allowance can be reduced.
 また、前記研磨ヘッド毎に前記研磨荷重を制御することにより、前記複数の研磨ヘッド間の前記ウェーハの取り代分布差を制御し、前記研磨ヘッド毎に前記回転速度を制御することにより、前記複数の研磨ヘッド間の前記ウェーハの取り代差を制御することができる。 In addition, by controlling the polishing load for each of the polishing heads, a difference in the machining allowance distribution of the wafer between the plurality of polishing heads is controlled, and by controlling the rotation speed for each of the polishing heads, The wafer removal allowance between the polishing heads can be controlled.
 このようにして、研磨ヘッド間の取り代分布差及び取り代差を制御し、特に、これらの差を小さくすることで、研磨ヘッド間のウェーハの形状のばらつきを小さく抑制することができる。 In this way, the machining allowance distribution difference and the machining allowance difference between the polishing heads are controlled, and in particular, by reducing these differences, it is possible to suppress the variation in the wafer shape between the polishing heads.
 本発明の研磨装置及びウェーハの研磨方法であれば、研磨ヘッド間の取り代分布及び取り代のばらつきを小さく抑制することが可能である。特に、複数の研磨ヘッド間に生じるウェーハの取り代分布の差及び取り代の差を小さく抑制するように、研磨ヘッド毎に研磨荷重及び回転速度を制御することができ、均一な形状を持つウェーハを得ることができる。 With the polishing apparatus and the wafer polishing method of the present invention, it is possible to reduce the allowance distribution between the polishing heads and the dispersion of the allowance. In particular, a wafer having a uniform shape in which the polishing load and the rotation speed can be controlled for each polishing head so as to suppress the difference in the wafer removal allowance distribution and the difference in the removal allowance generated between a plurality of polishing heads. Can be obtained.
本発明の研磨装置の一例を示した概略図である。It is the schematic which showed an example of the grinding | polishing apparatus of this invention. 本発明の研磨装置の研磨荷重及び回転速度の制御方法を示す概略図である。It is the schematic which shows the control method of the grinding | polishing load and rotational speed of the grinding | polishing apparatus of this invention. 本発明のウェーハの研磨方法における調整工程のフロー図である。It is a flowchart of the adjustment process in the grinding | polishing method of the wafer of this invention. 実施例の研磨荷重調整前の各研磨ヘッドにおける取り代分布である。It is a machining allowance distribution in each polishing head before adjusting the polishing load of the embodiment. 実施例の研磨荷重調整後の各研磨ヘッドにおける取り代分布である。It is the allowance distribution in each polishing head after adjusting the polishing load of the embodiment. 実施例の研磨荷重及び回転速度調整前後の各研磨ヘッドにおける取り代である。It is the machining allowance in each polishing head before and after adjusting the polishing load and the rotational speed of the example. 比較例の研磨荷重調整後の各研磨ヘッドにおける取り代分布である。It is a stock removal distribution in each polishing head after adjusting the polishing load of the comparative example. 比較例の研磨荷重調整後の各研磨ヘッドにおける取り代である。It is a machining allowance in each polishing head after adjusting the polishing load of the comparative example. 実施例、比較例の本研磨後のシリコンウェーハのΔSFQR(max)の測定結果である。It is a measurement result of (DELTA) SFQR (max) of the silicon wafer after this grinding | polishing of an Example and a comparative example. 実施例、比較例の本研磨後のシリコンウェーハのΔESFQR(max)の測定結果である。It is a measurement result of (DELTA) ESFQR (max) of the silicon wafer after this grinding | polishing of an Example and a comparative example. 実施例、比較例の本研磨後のシリコンウェーハの取り代の測定結果である。It is a measurement result of the machining allowance of the silicon wafer after this grinding | polishing of an Example and a comparative example. 従来の研磨装置の一例を示した概略図である。It is the schematic which showed an example of the conventional grinding | polishing apparatus. 従来の研磨装置の研磨荷重及び回転速度の制御方法を示す概略図である。It is the schematic which shows the control method of the grinding | polishing load and rotational speed of the conventional grinding | polishing apparatus.
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.
 まず、本発明の研磨装置について、図1、2を参照して説明する。図1に示すように、本発明の研磨装置1は、ウェーハWを研磨する研磨布3が貼り付けられた定盤2と、ウェーハWを保持しながら回転可能であり、ウェーハWに研磨荷重を加えながら研磨布3に押し当てることが可能な複数の研磨ヘッド30とを具備する。図1には、一つの定盤2の上に二つの研磨ヘッド(図1中の研磨ヘッド30a及び研磨ヘッド30b)を具備する場合を例示した。しかしながら、複数の研磨ヘッド30の個数はこれに限定されることはなく、本発明の研磨装置は、一つの定盤2の上に三つ以上の研磨ヘッドを具備していてもよい。また、さらに、研磨布3上に研磨剤を供給する研磨剤供給機構4を具備していてもよい。 First, the polishing apparatus of the present invention will be described with reference to FIGS. As shown in FIG. 1, the polishing apparatus 1 of the present invention is capable of rotating while holding the wafer W with a surface plate 2 to which a polishing cloth 3 for polishing the wafer W is attached, and applying a polishing load to the wafer W. A plurality of polishing heads 30 that can be pressed against the polishing pad 3 while being added are provided. FIG. 1 illustrates the case where two polishing heads (the polishing head 30 a and the polishing head 30 b in FIG. 1) are provided on one surface plate 2. However, the number of the plurality of polishing heads 30 is not limited to this, and the polishing apparatus of the present invention may include three or more polishing heads on one surface plate 2. Further, an abrasive supply mechanism 4 for supplying an abrasive onto the polishing cloth 3 may be provided.
 本発明の研磨装置では、複数の研磨ヘッドが、研磨ヘッド毎にそれぞれ個別に、研磨ヘッドの研磨荷重を制御する圧力制御機構と研磨ヘッドの回転速度を制御する回転制御機構とを有する。図1の研磨装置1の場合、研磨ヘッド30aが圧力制御機構10aと回転制御機構20aを、研磨ヘッド30bが圧力制御機構10bと回転制御機構20bを有しており、研磨ヘッド30aと研磨ヘッド30bは、互いに独立して研磨荷重及び回転速度を制御できる構成となっている。このような研磨装置1では、研磨ヘッド30a、30bを回転させながら、研磨ヘッド30a、30bで保持されたウェーハWを研磨布3に押し当てて研磨することができる。 In the polishing apparatus of the present invention, each of the plurality of polishing heads has a pressure control mechanism for controlling the polishing load of the polishing head and a rotation control mechanism for controlling the rotation speed of the polishing head. In the case of the polishing apparatus 1 of FIG. 1, the polishing head 30a has the pressure control mechanism 10a and the rotation control mechanism 20a, the polishing head 30b has the pressure control mechanism 10b and the rotation control mechanism 20b, and the polishing head 30a and the polishing head 30b. Are configured such that the polishing load and the rotation speed can be controlled independently of each other. In such a polishing apparatus 1, the wafer W held by the polishing heads 30 a and 30 b can be pressed against the polishing cloth 3 and polished while rotating the polishing heads 30 a and 30 b.
 このようなものであれば、研磨ヘッド毎に個別に研磨荷重及び回転速度を任意の値に制御でき、研磨ヘッド毎にウェーハ形状を制御できる。これによって、特に、研磨ヘッド間でのウェーハの取り代分布の差及び取り代の差を小さく抑制するように、研磨ヘッド毎に研磨荷重及び回転速度を設定できる。即ち、全ての研磨ヘッドで、ウェーハの取り代分布の差及び取り代の差がほとんどない同一形状のウェーハを得ることができる。また、研磨ヘッド毎に異なる研磨荷重及び回転速度で研磨を実施できるため、一度の研磨で、異なる規格の形状を有するウェーハを製造し、多品種のウェーハを得ることも可能である。 If this is the case, the polishing load and the rotational speed can be controlled to arbitrary values for each polishing head, and the wafer shape can be controlled for each polishing head. Thereby, in particular, the polishing load and the rotation speed can be set for each polishing head so as to suppress the difference in the wafer allowance distribution between the polishing heads and the difference in the allowance. That is, it is possible to obtain wafers of the same shape with almost no difference in wafer allowance distribution and difference in allowance for all polishing heads. Further, since polishing can be performed with different polishing loads and rotation speeds for each polishing head, it is possible to manufacture wafers having different standard shapes and obtain a wide variety of wafers by one polishing.
 また、上記のような本発明の研磨装置1は以下のような構成のものとすることができる。即ち、より具体的には、研磨ヘッドが、ウェーハの裏面を保持するバックパッド、及び、ウェーハの側面を保持する円環状のリテーナガイドを有するものであることが好ましく、圧力制御機構が、研磨荷重として、研磨ヘッドに保持されたウェーハと研磨布との接触圧と、リテーナガイドと研磨布との接触圧とを制御するものとすることができる。 Further, the polishing apparatus 1 of the present invention as described above can be configured as follows. That is, more specifically, it is preferable that the polishing head has a back pad that holds the back surface of the wafer and an annular retainer guide that holds the side surface of the wafer. As described above, the contact pressure between the wafer held by the polishing head and the polishing cloth and the contact pressure between the retainer guide and the polishing cloth can be controlled.
 図1の研磨装置1の場合、研磨ヘッド30a、研磨ヘッド30bが、それぞれ、バックパッド31a、31b及びリテーナガイド32a、32bを有するものであり、ウェーハWの側面と裏面を保持できる。 In the case of the polishing apparatus 1 in FIG. 1, the polishing head 30a and the polishing head 30b have back pads 31a and 31b and retainer guides 32a and 32b, respectively, and can hold the side surface and the back surface of the wafer W.
 また、研磨ヘッド30a、30bはラバーチャック方式の研磨ヘッドとすることができ、それぞれ、第一の空間部33a、33bの内部の圧力A(外圧)を制御することによって、リテーナガイド32a、32bと研磨布3との接触圧を制御でき、また、第二の空間部34a、34bの内部の圧力B(内圧)を制御することによって、ウェーハWと研磨布3との接触圧を制御できるものとなっている。 The polishing heads 30a and 30b may be rubber chuck type polishing heads, and the retainer guides 32a and 32b are controlled by controlling the pressure A (external pressure) inside the first space portions 33a and 33b, respectively. The contact pressure with the polishing pad 3 can be controlled, and the contact pressure between the wafer W and the polishing pad 3 can be controlled by controlling the pressure B (internal pressure) inside the second spaces 34a and 34b. It has become.
 また、本発明の研磨装置1の場合、研磨ヘッド30a、研磨ヘッド30bのそれぞれに個別に備え付けられた、圧力制御機構10aと圧力制御機構10bによって、上記の圧力A、Bをそれぞれ制御することができる。より具体的には、図1のように、圧力制御機構10a、10bは、第一の空間部33a、33bの内部の圧力A(外圧)を制御する第一の電空レギュレータ11a、11bと第二の空間部34a、34bの内部の圧力B(内圧)を制御する第二の電空レギュレータ12a、12bと、これらの電空レギュレータに制御信号を送り、出力を制御するコントローラ13a、13bとからなるものとすることができる。これによって、図2のように、本発明では、研磨ヘッド毎に圧力A及びBを研磨ヘッド毎に個別に制御することができる。 In the case of the polishing apparatus 1 of the present invention, the pressures A and B can be controlled by the pressure control mechanism 10a and the pressure control mechanism 10b, which are individually provided in the polishing head 30a and the polishing head 30b, respectively. it can. More specifically, as shown in FIG. 1, the pressure control mechanisms 10 a and 10 b include the first electropneumatic regulators 11 a and 11 b that control the pressure A (external pressure) inside the first spaces 33 a and 33 b and the first electropneumatic regulators 11 a and 11 b. From the second electropneumatic regulators 12a and 12b that control the pressure B (internal pressure) inside the second space portions 34a and 34b, and the controllers 13a and 13b that send control signals to these electropneumatic regulators and control the outputs. Can be. As a result, as shown in FIG. 2, in the present invention, the pressures A and B can be individually controlled for each polishing head.
 また、回転制御機構20a、20bは、図1、2のように、研磨ヘッド30a、30bをそれぞれ自転させる、モータ21a、21bと、これらのモータに制御信号を送り、回転速度を制御するコントローラ22a、22bとからなるものとすることができる。これによって、図2のように、研磨ヘッド毎に回転速度を制御することができる。 As shown in FIGS. 1 and 2, the rotation control mechanisms 20a and 20b rotate the polishing heads 30a and 30b, respectively, and motors 21a and 21b, and a controller 22a that sends a control signal to these motors to control the rotation speed. , 22b. As a result, the rotational speed can be controlled for each polishing head as shown in FIG.
 次に、本発明の研磨装置1を用いたウェーハの研磨方法について説明する。本発明のウェーハの研磨方法では、研磨ヘッド毎に設けられた圧力制御機構10a、10b及び回転制御機構20a、20bによって、複数の研磨ヘッド30の研磨荷重及び回転速度を、研磨ヘッド毎にそれぞれ個別に制御してウェーハWの研磨を行う。 Next, a wafer polishing method using the polishing apparatus 1 of the present invention will be described. In the wafer polishing method of the present invention, the polishing load and the rotation speed of the plurality of polishing heads 30 are individually set for each polishing head by the pressure control mechanisms 10a and 10b and the rotation control mechanisms 20a and 20b provided for each polishing head. The wafer W is polished under control.
 この際に、特に、研磨ヘッド毎に研磨荷重を制御することにより、複数の研磨ヘッド30間のウェーハWの取り代分布差を制御し、研磨ヘッド毎に回転速度を制御することにより、複数の研磨ヘッド30間のウェーハWの取り代差を制御することができる。 At this time, in particular, by controlling the polishing load for each polishing head, the machining allowance distribution difference of the wafer W between the plurality of polishing heads 30 is controlled, and by controlling the rotation speed for each polishing head, a plurality of polishing heads are controlled. The removal allowance of the wafer W between the polishing heads 30 can be controlled.
 この際、図3のような調整工程で、研磨ヘッド毎の取り代分布差及び取り代差が小さくなるように、各研磨ヘッドの研磨荷重及び回転速度を個別に調整することができる。 At this time, the polishing load and the rotation speed of each polishing head can be individually adjusted in the adjustment process as shown in FIG.
 まず、複数の研磨ヘッドを組み上げる(図3の(A))。 First, a plurality of polishing heads are assembled ((A) in FIG. 3).
 次に、全研磨ヘッドで上記圧力A(外圧)、圧力B(内圧)、及び回転速度を同じ数値に設定する(図3の(B))。 Next, the pressure A (external pressure), the pressure B (internal pressure), and the rotation speed are set to the same numerical value in all the polishing heads ((B) in FIG. 3).
 次に、全研磨ヘッドでウェーハを研磨する(図3の(C))。この際、上記のように、全ての研磨ヘッドで圧力A及び圧力B、即ち、研磨荷重は同じとなっている。 Next, the wafer is polished with the entire polishing head ((C) of FIG. 3). At this time, as described above, the pressure A and the pressure B, that is, the polishing load is the same in all the polishing heads.
 次に、研磨したウェーハの取り代分布を算出する(図3の(D))。取り代分布は、研磨加工前後のウェーハの表面の平坦度を平坦度測定機などで測定することで算出できる。 Next, the machining allowance distribution of the polished wafer is calculated ((D) in FIG. 3). The machining allowance distribution can be calculated by measuring the flatness of the wafer surface before and after polishing with a flatness measuring machine or the like.
 次に、取り代分布に基づき各研磨ヘッドの外圧と内圧を調整する(図3の(E))。より具体的には、各研磨ヘッドにおいて研磨されたウェーハの取り代のプロファイルをそれぞれ計算し、取り代プロファイルが取り代変位量のゼロ線(基準線)から離れていた量に応じて、外圧と内圧の差を各研磨ヘッドで変更する。取り代変位量のゼロ線としては、例えば、ウェーハの中心部の取り代量をゼロ線(基準線)として用いることができる。 Next, the external pressure and internal pressure of each polishing head are adjusted based on the machining allowance distribution ((E) in FIG. 3). More specifically, the machining allowance profile of the wafer polished by each polishing head is calculated, and the external pressure and the machining allowance profile are determined according to the amount the machining allowance profile is away from the machining allowance displacement zero line (reference line). The difference in internal pressure is changed for each polishing head. As the zero line of the machining allowance displacement amount, for example, the machining allowance amount at the center of the wafer can be used as the zero line (reference line).
 次に、外圧と内圧の調整後の全研磨ヘッドでウェーハを研磨する(図3の(F))。 Next, the wafer is polished with the entire polishing head after adjusting the external pressure and the internal pressure ((F) in FIG. 3).
 次に、各研磨したウェーハの取り代分布を算出し、取り代変位量がゼロに近づいたら各研磨ヘッドにおける内圧と外圧の調整を終了する(図3の(G))。取り代変位量が大きい場合には、取り代変位量が十分に小さくなるまで、上記のように内圧と外圧の調整を行う。以上のようにして、取り代変位量がゼロに近づく研磨荷重を各研磨ヘッドにおいて選別する。 Next, the machining allowance distribution of each polished wafer is calculated, and when the machining allowance displacement approaches zero, the adjustment of the internal pressure and the external pressure in each polishing head is completed ((G) in FIG. 3). When the machining allowance displacement amount is large, the internal pressure and the external pressure are adjusted as described above until the machining allowance displacement amount becomes sufficiently small. As described above, the polishing load at which the machining allowance displacement amount approaches zero is selected in each polishing head.
 次に、選別した研磨荷重における取り代を各研磨ヘッドで確認し、研磨ヘッド間で取り代の差があれば、研磨ヘッドの回転速度を調整する(図3の(H))。例えば、取り代が少ない研磨ヘッドの回転速度をより大きく設定して取り代をより大きくして、取り代差をより小さくすればよい。 Next, the machining allowance at the selected polishing load is confirmed with each polishing head, and if there is a difference in machining allowance between the polishing heads, the rotational speed of the polishing head is adjusted ((H) in FIG. 3). For example, it is only necessary to set the rotational speed of the polishing head having a small machining allowance to be larger, to make the machining allowance larger and to make the machining allowance smaller.
 次に、回転速度の調整後の全研磨ヘッドでウェーハを研磨する(図3の(I))。 Next, the wafer is polished with the entire polishing head after adjusting the rotation speed ((I) in FIG. 3).
 次に、研磨後のウェーハの取り代分布差と取り代差とを計算し、これらがともに十分小さくなったら、各研磨ヘッドの研磨荷重及び回転速度の調整を終了する(図3の(J))。 Next, the machining allowance distribution difference and the machining allowance difference of the polished wafer are calculated, and when both become sufficiently small, the adjustment of the polishing load and the rotation speed of each polishing head is finished ((J) in FIG. 3). ).
 以上のようにして、各研磨ヘッドの研磨荷重及び回転速度を調整した後に、本研磨を実施することで、取り代分布差及び取り代差を小さくすることができる。 As described above, after adjusting the polishing load and the rotational speed of each polishing head, by performing the main polishing, it is possible to reduce the machining allowance distribution difference and machining allowance difference.
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention, but the present invention is not limited to these examples.
(実施例)
 図1に示すような、二つの研磨ヘッド30a、30bを有し、研磨ヘッド毎に個別に圧力制御機構と回転制御機構とを有する研磨装置1を用いてシリコンウェーハの研磨を行った。このような研磨装置は、不二越機械工業株式会社製の片面研磨機の各研磨ヘッドに圧力制御機構と回転制御機構とを装着したものとした。
(Example)
A silicon wafer was polished using a polishing apparatus 1 having two polishing heads 30a and 30b as shown in FIG. 1 and having a pressure control mechanism and a rotation control mechanism individually for each polishing head. In such a polishing apparatus, a pressure control mechanism and a rotation control mechanism are mounted on each polishing head of a single-side polishing machine manufactured by Fujikoshi Machinery Co., Ltd.
 シリコンウェーハの研磨は以下のように行った。まず、図3に示す調整工程に従って、二つの研磨ヘッド30a、30bの研磨荷重及び回転速度を、研磨ヘッド30a、30b間のウェーハの取り代分布差と取り代差とが小さくなるような値に設定した。その結果、研磨ヘッド30aの内圧と外圧の圧力差を7.5kPa、回転速度を33rpmに調整した。また、研磨ヘッド30bの内圧と外圧の圧力差を5.2kPa、回転速度を38rpmに調整した。 The polishing of the silicon wafer was performed as follows. First, according to the adjustment process shown in FIG. 3, the polishing load and the rotational speed of the two polishing heads 30a and 30b are set to values such that the difference in wafer allowance distribution and the allowance difference between the polishing heads 30a and 30b become small. Set. As a result, the pressure difference between the internal pressure and the external pressure of the polishing head 30a was adjusted to 7.5 kPa, and the rotation speed was adjusted to 33 rpm. Further, the pressure difference between the internal pressure and the external pressure of the polishing head 30b was adjusted to 5.2 kPa, and the rotation speed was adjusted to 38 rpm.
 研磨荷重の調整前(即ち、全ての研磨ヘッドで研磨荷重(内圧と外圧の圧力差が15kPa)及び回転速度(30rpm)が同じ値)の各研磨ヘッドの取り代分布を図4に示す。また、調整工程において最終的に測定した調整終了後の各研磨ヘッドの取り代分布を図5に示す。なお、図4、5及び下記の図7の「取代変位量」とは、ウェーハの中心の取り代量をゼロ線(基準線)とした場合の、該基準線からの変位量を表す。図5から分かるように、研磨ヘッド間の取り代分布の差をほとんどゼロにすることができた。 FIG. 4 shows the machining allowance distribution of each polishing head before adjustment of the polishing load (that is, the polishing load (the pressure difference between the internal pressure and the external pressure is 15 kPa) and the rotational speed (30 rpm) is the same for all polishing heads). In addition, FIG. 5 shows the machining allowance distribution of each polishing head after completion of adjustment, which is finally measured in the adjustment process. 4 and 5 and the following “FIG. 7” represent the amount of displacement from the reference line when the amount of machining at the center of the wafer is the zero line (reference line). As can be seen from FIG. 5, the difference in the machining allowance distribution between the polishing heads could be made almost zero.
 また、研磨荷重及び回転速度の調整前後の各研磨ヘッドにおける研磨レートを図6に示す。実施例では研磨荷重及び回転速度の調整後、研磨レートが各研磨ヘッドでほぼ同じとなり、研磨ヘッド間で取り代差を無くすことができた。 Also, FIG. 6 shows the polishing rate in each polishing head before and after adjusting the polishing load and the rotation speed. In the example, after adjusting the polishing load and the rotation speed, the polishing rate became substantially the same for each polishing head, and the difference in the machining allowance between the polishing heads could be eliminated.
 研磨荷重及び回転速度の調整後、本研磨を行った。本研磨の研磨加工条件は下記の通りである。
[研磨加工条件]
 加工ウェーハ: 直径300mm P品<100>
 研磨布: 二次研磨クロス  不織布
 研磨剤: KOHベースコロイダルシリカ
 研磨ヘッド数: 2
 研磨ウェーハ枚数: 各ヘッド10枚加工
This polishing was performed after adjusting the polishing load and the rotation speed. The polishing conditions for the main polishing are as follows.
[Polishing conditions]
Processed wafer: 300mm diameter P - product <100>
Polishing cloth: Secondary polishing cloth Non-woven cloth Abrasive: KOH-based colloidal silica Number of polishing heads: 2
Number of polished wafers: 10 heads per head
 また、本研磨後のシリコンウェーハのΔSFQR(max)、ΔESFQR(max)、及び取り代を測定した。なお、測定装置としては、KLA-Tencor社製フラットネス測定機 WaferSight2を用いた。 Further, ΔSFQR (max), ΔESFQR (max), and machining allowance of the silicon wafer after the main polishing were measured. As a measuring device, a flatness measuring device WaferSight 2 manufactured by KLA-Tencor was used.
(比較例)
 図12のような、研磨ヘッド毎に個別に圧力制御機構と回転制御機構とを有しておらず、全研磨ヘッドを共通の研磨荷重及び回転速度として研磨を行う従来の研磨装置を用いて、実施例と同様にシリコンウェーハの研磨を行った。
(Comparative example)
Using a conventional polishing apparatus that does not have a pressure control mechanism and a rotation control mechanism individually for each polishing head as shown in FIG. 12, and polishes all polishing heads with a common polishing load and rotation speed, The silicon wafer was polished in the same manner as in the example.
 比較例においては、2個の研磨ヘッド130a、130b間のウェーハの取り代分布差と取り代差とが小さくなるように、2個の研磨ヘッドで、いずれも、内圧と外圧の圧力差を5kPaに調整した。なお、この際の研磨ヘッドの回転速度はいずれの研磨ヘッドでも共通の30rpmとした。このときの各研磨ヘッドの取り代分布を図7に、取り代を図8に示す。図7から分かるように、実施例ほど取り代分布差を小さくすることができず、また、図8からわかるように、取り代差は実施例よりも大きくなった。 In the comparative example, each of the two polishing heads has a pressure difference of 5 kPa between the internal pressure and the external pressure so that the difference in the wafer removal distribution and the machining allowance between the two polishing heads 130a and 130b are reduced. Adjusted. In this case, the rotation speed of the polishing head was set to 30 rpm common to all polishing heads. The stock removal distribution of each polishing head at this time is shown in FIG. 7, and the stock removal is shown in FIG. As can be seen from FIG. 7, the machining allowance distribution difference cannot be reduced as much as in the example, and as can be seen from FIG. 8, the machining allowance difference is larger than in the example.
 次に、実施例と同様にシリコンウェーハの本研磨、及び本研磨後のシリコンウェーハのΔSFQR(max)、ΔESFQR(max)、及び取り代の測定を行った。比較例の本研磨では、2個の研磨ヘッドのいずれも、内圧と外圧の圧力差を5kPa、回転速度を30rpmとした。 Next, in the same manner as in the example, main polishing of the silicon wafer, and ΔSFQR (max), ΔESFQR (max), and machining allowance of the silicon wafer after the main polishing were measured. In the main polishing of the comparative example, in both of the two polishing heads, the pressure difference between the internal pressure and the external pressure was 5 kPa, and the rotation speed was 30 rpm.
 上記実施例、比較例のΔSFQR(max)、ΔESFQR(max)、及び取り代の測定結果を、それぞれ、図9、10、11に示す。 The measurement results of ΔSFQR (max), ΔESFQR (max), and machining allowance in the above-mentioned examples and comparative examples are shown in FIGS.
 実施例では、比較例に比べて、ΔSFQR(max)、ΔESFQR(max)、及び取り代のばらつきが小さく、このことから、研磨ヘッド毎に研磨荷重及び回転速度を制御することで、研磨ヘッド間のウェーハの取り代分布差及び取り代差を小さくできることが確認できた。 In the example, ΔSFQR (max), ΔESFQR (max), and variation in machining allowance are small compared to the comparative example. From this, by controlling the polishing load and the rotation speed for each polishing head, It was confirmed that the machining allowance distribution difference and the machining allowance difference of each wafer can be reduced.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (4)

  1.  ウェーハを研磨する研磨布が貼り付けられた定盤と、前記ウェーハを保持しながら回転可能であり、前記ウェーハに研磨荷重を加えながら前記研磨布に押し当てることが可能な複数の研磨ヘッドとを具備し、前記研磨ヘッドを回転させながら、前記研磨ヘッドで保持されたウェーハを前記研磨布に押し当てて研磨する研磨装置であって、
     前記複数の研磨ヘッドが、研磨ヘッド毎にそれぞれ個別に、前記研磨ヘッドの研磨荷重を制御する圧力制御機構と前記研磨ヘッドの回転速度を制御する回転制御機構とを有するものであることを特徴とする研磨装置。
    A surface plate to which a polishing cloth for polishing a wafer is attached, and a plurality of polishing heads that can rotate while holding the wafer and can be pressed against the polishing cloth while applying a polishing load to the wafer. A polishing apparatus for polishing by pressing the wafer held by the polishing head against the polishing cloth while rotating the polishing head,
    The plurality of polishing heads each have a pressure control mechanism for controlling a polishing load of the polishing head and a rotation control mechanism for controlling a rotation speed of the polishing head individually for each polishing head. Polishing equipment.
  2.  前記研磨ヘッドが、前記ウェーハの裏面を保持するバックパッド、及び、前記ウェーハの側面を保持する円環状のリテーナガイドを有するものであり、
     前記圧力制御機構が、前記研磨荷重として、前記研磨ヘッドに保持された前記ウェーハと前記研磨布との接触圧と、前記リテーナガイドと前記研磨布との接触圧とを制御するものであることを特徴とする請求項1に記載の研磨装置。
    The polishing head has a back pad that holds the back surface of the wafer, and an annular retainer guide that holds the side surface of the wafer.
    The pressure control mechanism controls, as the polishing load, a contact pressure between the wafer held by the polishing head and the polishing cloth and a contact pressure between the retainer guide and the polishing cloth. The polishing apparatus according to claim 1, wherein the polishing apparatus is characterized.
  3.  請求項1又は請求項2に記載の研磨装置を用いたウェーハの研磨方法であって、
     研磨ヘッド毎に設けられた前記圧力制御機構及び前記回転制御機構によって、前記複数の研磨ヘッドの前記研磨荷重及び前記回転速度を、研磨ヘッド毎にそれぞれ個別に制御して前記ウェーハの研磨を行うことを特徴とするウェーハの研磨方法。
    A method for polishing a wafer using the polishing apparatus according to claim 1 or 2,
    The wafer is polished by individually controlling the polishing load and the rotation speed of the plurality of polishing heads for each polishing head by the pressure control mechanism and the rotation control mechanism provided for each polishing head. A method for polishing a wafer.
  4.  前記研磨ヘッド毎に前記研磨荷重を制御することにより、前記複数の研磨ヘッド間の前記ウェーハの取り代分布差を制御し、前記研磨ヘッド毎に前記回転速度を制御することにより、前記複数の研磨ヘッド間の前記ウェーハの取り代差を制御することを特徴とする請求項3に記載のウェーハの研磨方法。 By controlling the polishing load for each of the polishing heads, the difference in wafer allowance distribution between the plurality of polishing heads is controlled, and by controlling the rotational speed for each of the polishing heads, the plurality of polishings are controlled. 4. The method for polishing a wafer according to claim 3, wherein a difference in the machining allowance of the wafer between the heads is controlled.
PCT/JP2017/028331 2016-08-24 2017-08-04 Polishing apparatus and wafer polishing method WO2018037878A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780043825.3A CN109478506B (en) 2016-08-24 2017-08-04 Polishing apparatus and wafer polishing method
KR1020197003565A KR102382807B1 (en) 2016-08-24 2017-08-04 Polishing device and wafer polishing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016163541A JP6575463B2 (en) 2016-08-24 2016-08-24 Wafer polishing method
JP2016-163541 2016-08-24

Publications (1)

Publication Number Publication Date
WO2018037878A1 true WO2018037878A1 (en) 2018-03-01

Family

ID=61245792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028331 WO2018037878A1 (en) 2016-08-24 2017-08-04 Polishing apparatus and wafer polishing method

Country Status (5)

Country Link
JP (1) JP6575463B2 (en)
KR (1) KR102382807B1 (en)
CN (1) CN109478506B (en)
TW (1) TWI673138B (en)
WO (1) WO2018037878A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111975469A (en) * 2020-08-28 2020-11-24 上海华力微电子有限公司 Chemical mechanical polishing method and polishing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019007165T5 (en) * 2019-04-05 2021-12-16 Sumco Corporation POLISHING HEAD, POLISHING DEVICE AND METHOD FOR MANUFACTURING A SEMICONDUCTOR WAFER

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097983A (en) * 1995-06-20 1997-01-10 Sony Corp Polishing apparatus and polishing method using it
JPH11285968A (en) * 1998-04-01 1999-10-19 Nikon Corp Polishing device and method
JP2012228745A (en) * 2011-04-26 2012-11-22 Sumco Corp Polishing apparatus and polishing method
JP2013077770A (en) * 2011-09-30 2013-04-25 Globalwafers Japan Co Ltd Manufacturing method of bonded wafer
JP2013529386A (en) * 2010-05-17 2013-07-18 アプライド マテリアルズ インコーポレイテッド Feedback for polishing speed correction in chemical mechanical polishing
JP2016072372A (en) * 2014-09-29 2016-05-09 株式会社荏原製作所 Polishing device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833355B1 (en) 1968-03-07 1973-10-13
KR20010032054A (en) * 1998-10-30 2001-04-16 와다 다다시 Apparatus and method for polishing wafer
US6132295A (en) * 1999-08-12 2000-10-17 Applied Materials, Inc. Apparatus and method for grinding a semiconductor wafer surface
TW495416B (en) * 2000-10-24 2002-07-21 Ebara Corp Polishing apparatus
JP4096286B2 (en) 2001-03-30 2008-06-04 株式会社Sumco Semiconductor wafer polishing method
KR100437456B1 (en) * 2001-05-31 2004-06-23 삼성전자주식회사 Polishing head of a chemical mechanical polishing machine and polishing method using the polishing head
AU2003221014A1 (en) 2003-03-31 2004-10-25 Fujitsu Limited Machining method and machining device
JP2005268330A (en) * 2004-03-16 2005-09-29 Toshiba Ceramics Co Ltd Polishing method of semiconductor wafer
TWI386989B (en) * 2005-02-25 2013-02-21 Ebara Corp Polishing apparatus and polishing method
JP4538805B2 (en) * 2005-06-17 2010-09-08 株式会社ニコン Polishing apparatus, semiconductor device manufacturing method using the same, and semiconductor device manufactured by the method
JP5397084B2 (en) * 2009-08-19 2014-01-22 株式会社大真空 Polishing equipment
JP2012035393A (en) 2010-08-11 2012-02-23 Fujikoshi Mach Corp Polishing device
JP5896884B2 (en) * 2012-11-13 2016-03-30 信越半導体株式会社 Double-side polishing method
JP5983422B2 (en) 2013-01-21 2016-08-31 旭硝子株式会社 Glass substrate polishing method and manufacturing method
JP6197752B2 (en) * 2014-06-12 2017-09-20 信越半導体株式会社 Wafer polishing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097983A (en) * 1995-06-20 1997-01-10 Sony Corp Polishing apparatus and polishing method using it
JPH11285968A (en) * 1998-04-01 1999-10-19 Nikon Corp Polishing device and method
JP2013529386A (en) * 2010-05-17 2013-07-18 アプライド マテリアルズ インコーポレイテッド Feedback for polishing speed correction in chemical mechanical polishing
JP2012228745A (en) * 2011-04-26 2012-11-22 Sumco Corp Polishing apparatus and polishing method
JP2013077770A (en) * 2011-09-30 2013-04-25 Globalwafers Japan Co Ltd Manufacturing method of bonded wafer
JP2016072372A (en) * 2014-09-29 2016-05-09 株式会社荏原製作所 Polishing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111975469A (en) * 2020-08-28 2020-11-24 上海华力微电子有限公司 Chemical mechanical polishing method and polishing system

Also Published As

Publication number Publication date
KR102382807B1 (en) 2022-04-05
TWI673138B (en) 2019-10-01
KR20190040963A (en) 2019-04-19
CN109478506B (en) 2023-05-12
JP6575463B2 (en) 2019-09-18
CN109478506A (en) 2019-03-15
TW201806701A (en) 2018-03-01
JP2018032714A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
US11075085B2 (en) Wafer polishing method
US9033764B2 (en) Method of polishing object to be polished
JP5303491B2 (en) Polishing head and polishing apparatus
KR101844377B1 (en) Method for adjusting position of polishing head in heightwise direction, and method for polishing workpiece
EP2762272B1 (en) Wafer polishing apparatus and method
US20070042567A1 (en) Process for producing silicon wafer
WO2001062436A1 (en) Method and apparatus for polishing outer peripheral chamfered part of wafer
US9908213B2 (en) Method of CMP pad conditioning
KR102041240B1 (en) Method and apparatus of polishing single-side of single semiconductor wafer
KR20030040204A (en) Mirror chamfered wafer, mirror chamfering polishing cloth, and mirror chamfering polishing machine and method
US9669513B2 (en) Double-disc grinding apparatus and workpiece double-disc grinding method
CN113439008B (en) Wafer manufacturing method and wafer
KR20180075669A (en) Wafer polishing method and polishing apparatus
CN110394711A (en) A kind of grinding device, chamfer processing method and device and processing method
WO2018037878A1 (en) Polishing apparatus and wafer polishing method
US6546306B1 (en) Method for adjusting incoming film thickness uniformity such that variations across the film after polishing minimized
KR20160008550A (en) Workpiece polishing device
JP7341223B2 (en) Pad - Semiconductor substrate polishing method that adjusts for pad variation
JPWO2015050218A1 (en) Manufacturing method of polished object
JP2010253579A (en) Method and device for polishing wafer
US20100210192A1 (en) Polishing head and polishing apparatus
US20030201067A1 (en) Method and apparatus for aligning and setting the axis of rotation of spindles of a multi-body system
TW201902618A (en) Grinding method and grinding device
US20220281062A1 (en) Roller for location-specific wafer polishing
KR101596621B1 (en) Wafer Grinding Pad

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843364

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197003565

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843364

Country of ref document: EP

Kind code of ref document: A1