WO2018037809A1 - Solid fuel production method - Google Patents

Solid fuel production method Download PDF

Info

Publication number
WO2018037809A1
WO2018037809A1 PCT/JP2017/026685 JP2017026685W WO2018037809A1 WO 2018037809 A1 WO2018037809 A1 WO 2018037809A1 JP 2017026685 W JP2017026685 W JP 2017026685W WO 2018037809 A1 WO2018037809 A1 WO 2018037809A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
solid fuel
fuel
ratio
compression molding
Prior art date
Application number
PCT/JP2017/026685
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 洋一
知和 中川
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2018037809A1 publication Critical patent/WO2018037809A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/08Methods of shaping, e.g. pelletizing or briquetting without the aid of extraneous binders

Definitions

  • the present invention relates to a method for producing a solid fuel.
  • Powdered fuel has a relatively small bulk density and is likely to disappear due to scattering, so that the handling cost is likely to increase and there is a risk of causing dust pollution. For this reason, powdered fuel is compressed and molded into granular (briquette) for easy handling.
  • reformed coal obtained by heating and dehydrating low-grade coal such as lignite in oil is usually in the form of powder, so it is desired to granulate by compression molding.
  • low-grade coal such as lignite in oil
  • compression molding it is necessary to perform compression molding at a considerably high pressure, which not only increases the manufacturing cost but also causes insufficient pressure to convey There is a risk of causing powdery troubles along the way.
  • an object of the present invention is to provide a method for producing a solid fuel from which a solid fuel having a relatively high strength can be obtained.
  • the invention made in order to solve the above-mentioned problems is a method for producing a solid fuel by compression-molding a coal-based powdered fuel, and is bound to the coal-based powdered fuel with a higher binding property than the coal-based powdered fuel.
  • a step of mixing the pulverized coal a step of supplying the mixture obtained in the mixing step to the compression molding machine using a supply hopper having a supply screw, and a step of compression molding the mixture by the compression molding machine.
  • the ratio of the loose bulk density to the hard bulk density of the mixture is 0.8 or less, and the space corresponding to the lower part of the execution part of the supply screw with respect to the spatial volume of the upper part of the supply part of the supply screw of the supply hopper.
  • the method for producing the solid fuel has a ratio of the loose bulk density to the solid bulk density of the mixture within the above range, and an execution part of the supply screw with respect to a space volume corresponding to one upper end of the execution part of the supply screw of the supply hopper.
  • the ratio of the space volume of one lower end of the execution part of the supply screw to the space volume of the upper end of the supply part of the supply screw of the supply hopper is 0.
  • the ratio of the loose bulk density to the solid bulk density of the mixture 6 times or more and 0.9 times or less are preferable.
  • the ratio of the space volume of the lower part of the execution part of the supply screw to the space volume of the upper part of the execution part of the supply screw of the supply hopper is within the above range, thereby compressing the mixture of raw materials.
  • the amount supplied to the molding machine can be made more appropriate, and the strength of the obtained solid fuel can be increased.
  • the mixing step it is preferable to further mix a part of the solid fuel obtained in the compression molding step.
  • the mixing step by further mixing the pulverized part of the solid fuel obtained in the compression molding step, the ratio of the loose bulk density to the hard bulk density of the mixture can be made relatively easy.
  • the average particle diameter of the pulverized solid fuel mixed in the mixing step is preferably 1 mm or more and 8 mm or less.
  • the pressure in the compression molding machine can be increased more reliably.
  • modified coal obtained by heating and dehydrating low-grade coal in oil may be used, and low-grade coal powder may be used as the binding powder coal.
  • low-grade coal powder may be used as the binding powder coal.
  • “high binding property” means that “crushing strength” measured in accordance with JIS-Z8841 (1993) when compression molding under the same conditions is high.
  • “Loose bulk density” means the apparent specific gravity of a granular material containing a large amount of air that has been dropped by an injection method (a method of dropping powder through a funnel-shaped member) and received in a container.
  • the “hard bulk density” means the apparent specific gravity of a powder obtained by tapping 180 times of a powder containing a large amount of air obtained by an injection method.
  • the “loose bulk density” and the “hard bulk density” can be measured using, for example, “Powder Tester PT-S type” manufactured by Hosokawa Micron.
  • the “average particle diameter” means a sieve opening with a mass integrated value of 50% in a particle size distribution obtained by a sieving test according to JIS-Z8815 (1994).
  • the method for producing a solid fuel can produce a solid fuel having a relatively high strength from a powder fuel.
  • FIG. 1 It is a schematic diagram which shows the structure of the manufacturing apparatus used for the manufacturing method of the solid fuel of one Embodiment of this invention. It is a typical detailed sectional view of the supply hopper of FIG.
  • FIG. 1 shows a schematic configuration of a solid fuel production apparatus used in a solid fuel production method according to an embodiment of the present invention.
  • 1 is an apparatus for obtaining granular solid fuel by compressing and molding coal-based powdered fuel.
  • the solid fuel production apparatus of FIG. 1 includes a first silo 1 that stores coal-based powdered fuel, a second silo 2 that stores binding powdered coal having a higher binding property than coal-based powdered fuel, and a coal-based powdered fuel. And a third silo 3 for storing pulverized fuel having an average particle size larger than that.
  • the solid fuel production apparatus of FIG. 1 includes a mixer 4 that mixes coal-based powdered fuel, binding powdered coal, and pulverized fuel supplied from silos 1, 2, and 3, and a raw material discharged from the mixer 4. And an intermediate silo 5 for storing the mixture.
  • the solid fuel production apparatus of FIG. 1 has a raw material supply hopper 6 that temporarily holds the raw material mixture discharged from the intermediate silo 5, and the raw material mixture is supplied from the raw material supply hopper 6. And a compression molding machine 7 for compressing and molding the desired solid fuel.
  • the 1 further includes a pulverizer 8 for pulverizing a part of the solid fuel formed by the compression molding machine 7.
  • the solid fuel pulverized by the pulverizer 8 is supplied to the third silo 3 as the pulverized fuel.
  • the conveyance of the granular material (coal-based powdered fuel, binding powdered coal, pulverized fuel, and solid fuel) between components should be performed by a known technique such as a chute, a belt conveyor, a bucket conveyor, or a pneumatic conveyor. Can do.
  • the method for producing the solid fuel that can be performed using the solid fuel production apparatus as described above includes a step of mixing the binding powdered coal and the pulverized fuel with the coal-based powder fuel by the mixer 4 ⁇ mixing step>
  • coal-based powdered fuel, binding powdered coal and pulverized fuel are supplied from the silos 1, 2 and 3 to the mixer 4, and the mixer 4 mixes these coal-based powdered fuel, binding powdered coal and pulverized fuel.
  • a raw material mixture is obtained.
  • the raw material mixture obtained in this way is transferred to the intermediate silo 5 and stored in the intermediate silo 5.
  • coal-based powder fuel examples include modified coal (Upgraded Brown Coal, etc.) obtained by heating and dehydrating small coal, such as pulverized coal and low-grade coal (subbituminous coal and lignite), in oil. Etc. can be used.
  • the manufacturing method of the said solid fuel can manufacture a granular solid fuel by using as a main raw material the reformed coal which was not easy to granulate conventionally.
  • Binding pulverized coal As the binding pulverized coal, pulverized coal having a higher binding property than that of the coal-based pulverized fuel may be used, but in order to suppress an increase in cost, it is preferable to use a relatively low-grade pulverized coal.
  • the lower limit of the 20% particle diameter D20 of the binding coal powder is preferably 0.005 mm, and more preferably 0.010 mm.
  • the upper limit of the 90% particle diameter D90 of the binding coal powder is preferably 3 mm, and more preferably 1 mm.
  • Pulverized fuel As the pulverized fuel, a pulverized solid fuel finally obtained by the solid fuel production method is used.
  • the lower limit of the average particle size of the pulverized fuel is preferably 1 mm, and more preferably 2 mm.
  • the upper limit of the average particle diameter of the pulverized fuel is preferably 8 mm, and more preferably 6 mm. If the average particle size of the pulverized fuel is less than the lower limit, the compression moldability of the raw material mixture may not be sufficiently improved. On the other hand, when the average particle size of the pulverized fuel exceeds the above upper limit, the miscibility with the coal-based powder fuel becomes insufficient, and the strength of the obtained solid fuel may vary.
  • the lower limit of the 20% particle diameter D20 of the pulverized fuel is preferably 0.5 mm, and more preferably 1 mm.
  • the upper limit of the 90% particle diameter D90 of the pulverized fuel is preferably 10 mm, and more preferably 7 mm.
  • the lower limit of the bulk density of the raw material mixture obtained by mixing coal-based powdered fuel, binding powdered coal and pulverized fuel is preferably 0.5 g / cc, more preferably 0.6 g / cc.
  • the upper limit of the bulk density of the raw material mixture is preferably 1.0 g / cc, more preferably 0.9 g / cc. If the bulk density of the raw material mixture is less than the above lower limit, the raw material mixture may not be sufficiently filled into the cavity of the compression molding machine 7 to be described later, and the raw material mixture may not be compression-molded. There is a possibility that the strength of is insufficient. On the other hand, when the solid bulk density of the raw material mixture exceeds the above upper limit, the filling of the raw material mixture into the cavity of the compression molding machine 7 may be excessive, which may cause an overload of the compression molding machine 7.
  • the lower limit of the ratio of the loose bulk density to the solid bulk density of the raw material mixture (hereinafter sometimes referred to as bulk density ratio) is preferably 0.5, and more preferably 0.55.
  • the upper limit of the bulk density ratio is 0.8, preferably 0.75. If the bulk density ratio is less than the above lower limit, the raw material mixture may not be sufficiently filled into the cavity of the compression molding machine 7 and the raw material mixture may not be compression molded, and the strength of the solid fuel obtained is insufficient There is a risk of becoming. On the other hand, when the bulk density ratio exceeds the upper limit, filling of the raw material mixture into the cavity of the compression molding machine 7 may be excessive and cause overloading of the compression molding machine 7.
  • the lower limit of the mixing ratio of the binding coal powder in the raw material mixture is preferably 5% by mass, and more preferably 8% by mass.
  • the upper limit of the mixing ratio of the binding coal powder is preferably 30% by mass, and more preferably 25% by mass.
  • the lower limit of the mixing ratio of the pulverized fuel in the raw material mixture is preferably 5% by mass, and more preferably 8% by mass.
  • the upper limit of the mixing ratio of the pulverized fuel is preferably 50% by mass, and more preferably 40% by mass.
  • the mixing ratio of the pulverized fuel is less than the lower limit, the strength of the solid fuel may not be sufficiently improved.
  • the mixing ratio of the pulverized fuel exceeds the above upper limit, the production efficiency of the solid fuel may be unnecessarily lowered, and the strength of the solid fuel obtained by forming gaps between the particles of the pulverized fuel becomes insufficient. There is a fear.
  • silos 1, 2, 3, and 5 coal-based powdered fuel, binding powdered coal, pulverized fuel, and a raw material mixture obtained by mixing these may be respectively stored and discharged as necessary. .
  • the first silo 1 for storing coal-based powdered fuel, the third silo 3 for storing pulverized fuel, and the intermediate silo 5 for storing raw material mixture can be configured to be able to have a nitrogen atmosphere inside.
  • the first silo 1, the third silo 3 and the intermediate silo 5 are provided with a measurement mechanism for measuring the carbon dioxide (CO 2 ) concentration inside, and when the CO 2 concentration measured by the measurement mechanism increases. It is preferable to include a gas supply mechanism for introducing nitrogen gas (N 2 ).
  • the mixer 4 only needs to be able to uniformly mix coal-based powdered fuel, binding powdered coal, and pulverized fuel.
  • a mixer that rotates a container a mixer having stirring blades, or the like can be used. It may be a continuous type or a continuous type.
  • things, such as a V type and a double cone type are mentioned, for example.
  • examples of the mixer having a stirring blade include a paddle mixer and a ribbon mixer.
  • the mixing time (residence time) of the raw material by the mixer 4 is generally preferably 30 minutes or less when the mixer 4 is a paddle mixer, for example. Mixing is required.
  • the degree of mixing of raw materials can be evaluated by, for example, collecting samples after mixing in small amounts and observing the variation in moisture. When the moisture value varies widely, mixing is insufficient, so it can be determined that the mixing time by the mixer 4 needs to be increased.
  • the raw material mixture is discharged from the intermediate silo 5 and supplied to the compression molding machine 7 while compressing the raw material mixture using the supply hopper 6.
  • the supply hopper 6 includes a supply hopper body 10 and a supply screw 11 that rotates within the supply hopper body 10.
  • the supply hopper 6 is connected to the raw material charging port of the compression molding machine 7 and supplies the raw material mixture to the compression molding machine 7 while compressing the raw material mixture by the supply screw 11.
  • the supply hopper main body 10 has at least an execution portion (a portion where the raw material mixture is compressed by the supply screw 11) formed in a cylindrical shape or a conical shape.
  • the supply screw 11 has a rotary shaft 12 concentric with the execution unit of the supply hopper main body 10 and screw fins 13 arranged in a spiral shape on the outer periphery of the rotary shaft 12.
  • the supply hopper 6 has a space volume corresponding to one rotation of the supply screw 11 (from the internal volume of the supply hopper main body 10 to the supply screw 11) by the diameter reduction of the supply hopper main body 10 and the change in the pitch of the screw fins 13 of the supply screw 11.
  • the volume obtained by subtracting the volume of is configured to gradually decrease.
  • screw space volume ratio As a lower limit of the ratio of the space volume of one execution portion lower end of the supply screw 11 to the space volume of one execution portion upper end of the supply screw 11 of the supply hopper 6 (hereinafter referred to as screw space volume ratio), 0.3 And 0.35 is preferable.
  • the upper limit of the screw space volume ratio is 0.6, preferably 0.55.
  • the screw space volume ratio is less than the lower limit, the supply of the raw material mixture to the compression molding machine 7 becomes excessive, and the compression molding machine 7 may be overloaded.
  • the screw space volume ratio exceeds the upper limit, a sufficient amount of the raw material mixture cannot be supplied to the cavity of the compression molding machine 7 to be described later, and the strength of the solid fuel may be insufficient.
  • the screw fin 13 of the supply screw 11 is less than two rounds, the space volume for one round of the execution unit upper end and the space volume for one round of the execution unit lower end are partly calculated. .
  • the lower limit of the ratio of the screw space volume ratio of the feed hopper 6 to the bulk density ratio of the raw material mixture is preferably 0.6, and more preferably 0.65.
  • the upper limit of the ratio of the screw space volume ratio of the supply hopper 6 to the bulk density ratio of the raw material mixture is preferably 0.9, more preferably 0.85.
  • Examples of the compression molding machine 7 used in the compression molding process include a double roll molding machine and a tableting molding machine.
  • a double roll molding machine having a relatively large processing capability is preferably used.
  • the double roll molding machine has a structure in which a pair of cylindrical rolls are horizontally adjacent to each other, and the rolls rotate in a direction from above to an adjacent point. A large number of cavities are provided on the outer peripheral surface of the pair of rolls so as to face each other and rotate synchronously. Thereby, a double roll molding machine can compress a granular material between opposing cavities, and can shape
  • pulverization step a part of the solid fuel obtained in the compression molding step is pulverized by the pulverizer 8 to obtain the above pulverized fuel.
  • the pulverized fuel thus obtained is transferred to the third silo 3 and stored.
  • the bulk density of the raw material mixture to be subjected to compression molding can be made larger than that of the coal-based powder fuel.
  • the pulverizer 8 is not particularly limited, and a known rotary cutter, hammer mill, or the like can be used.
  • a sieve for separating large-diameter particles in the fuel may be provided, and the separated large-diameter particles may be re-supplied to the pulverizer 8.
  • the ratio of the loose bulk density to the bulk density of the mixture is within the above range, and the supply screw 11 is executed with respect to the space volume corresponding to one round of the upper end of the supply screw 11 of the supply hopper 6.
  • the raw material mixture can be supplied to the compression molding machine 7 at a relatively high density by setting the ratio of the space volume for one round at the lower end of the part within the above range. For this reason, since the raw material mixture can be compression-molded by applying a sufficient pressure by the compression molding machine 7 in the method for producing the solid fuel, a solid fuel having a relatively high strength can be produced.
  • the pulverized fuel may not be mixed in the mixing step. That is, the raw material mixture supplied from the supply hopper to the compression molding machine may not include the pulverized fuel.
  • the strength of the solid fuel obtained in the compression molding process is measured, and the mixing ratio of the binding coal powder, the operation speed of the compression molding machine, etc. are determined according to the strength of the solid fuel. You may adjust.
  • a measuring method of measuring the strength of the solid fuel for example, a compression fracture test, a tensile test, an impact test, a drop test, or the like can be employed.
  • Example 1 a modified coal powder obtained by heating and dehydrating lignite coal in oil is used as the coal-based powder fuel, and a pulverized coal powder pulverized and passed through a sieve having a mesh opening of 3 mm is used as the binding powder coal.
  • the raw material mixture was obtained by mixing coal-based powdered fuel and binding powdered coal at a mass ratio of 90:10.
  • the loose bulk density and the hard bulk density of this raw material mixture were measured using, for example, “Powder Tester PT-S type” manufactured by Hosokawa Micron Corporation.
  • the loose bulk density was 0.50 g / cc
  • the solid bulk density was 0.72 g / cc.
  • the raw material mixture was supplied to a compression molding machine using a supply hopper having a screw space volume ratio of 0.52.
  • a compression molding machine a double roll molding machine “K-4020” manufactured by Furukawa Industries Systems Co., Ltd. was used, and a roll with a diameter of 1 m having a cavity having a major axis of 42 mm, a minor axis of 24 mm, and a volume of 15 cc was mounted.
  • the raw material mixture was compression molded by this compression molding machine to obtain a granular solid fuel.
  • the compression molding machine could be stably operated at a speed at which the production amount was 10 ton / h. Further, the crushing strength of the obtained solid fuel was measured according to JIS-Z8841 (1993) and found to be 100 kgf.
  • Example 2 A mixture of coal-based powdered fuel similar to that in Example 1 and binder powdered coal at a mass ratio of 80:10 is the same as that in Example 1 using a supply hopper having a screw space volume ratio of 0.47.
  • the granular solid fuel obtained by supplying to the compression molding machine was pulverized and passed through a sieve having an opening of 10 mm as a pulverized fuel.
  • Coal-based powdered fuel, binding powdered coal, and pulverized fuel were mixed at a mass ratio of 80:10:10 to obtain a raw material mixture.
  • Example 3 A solid fuel was produced under the same conditions as in Example 1 except that a feed hopper having a screw space volume ratio of 0.40 was used. The production amount at this time was 7.5 ton / h, and the crushing strength of the obtained solid fuel was 120 kgf.
  • Example 4 A solid fuel was produced under the same conditions as in Example 2 except that a feed hopper having a screw space volume ratio of 0.58 was used. The production amount at this time was 12 ton / h, and the crushing strength of the obtained solid fuel was 68 kgf.
  • Example 1 A mixture of coal-based powdered fuel similar to that in Example 1 and binding powdered coal at a mass ratio of 20:20 is used in the same manner as in Example 1 using a supply hopper having a screw space volume ratio of 0.60.
  • the granular solid fuel obtained by supplying to the compression molding machine was pulverized and passed through a sieve having an opening of 10 mm as a pulverized fuel.
  • Coal-based powdered fuel, binding powdered coal, and pulverized fuel were mixed at a mass ratio of 20:20:60 to obtain a raw material mixture.
  • the loose bulk density of the raw material mixture was 0.82 g / cc
  • the solid bulk density was 0.88 g / cc.
  • Comparative Example 2 A raw material mixture was obtained under the same conditions as in Example 1 except that a feed hopper with a screw space volume ratio of 0.15 was used, and this raw material mixture was compression molded with a compression molding machine. The machine stopped due to overload and solid fuel could not be obtained.
  • Example 3 A solid fuel was produced under the same conditions as in Example 1 except that a feed hopper having a screw space volume ratio of 0.80 was used. The production amount at this time was 12 ton / h, and the crushing strength of the obtained solid fuel was 15 kgf. Moreover, the obtained solid fuel was not formed sufficiently densely, and the shape was incomplete.
  • Table 1 summarizes the results of Examples 1 to 4 and Comparative Examples 1 to 3.
  • the table also shows the ratio of the loose bulk density to the bulk density of the raw material mixture (bulk density ratio) and the ratio of the screw space volume ratio to the bulk density ratio.
  • Example 1 in which the ratio of the screw space volume ratio to the bulk density ratio was within a preferable range was higher in productivity than Example 3 in which the ratio of the screw space volume ratio to the bulk density ratio was slightly smaller.
  • Example 2 in which the ratio of the screw space volume ratio to the bulk density ratio is within a preferable range, the strength of the solid fuel obtained is higher than that in Example 4 in which the ratio of the screw space volume ratio to the bulk density ratio is slightly larger. It was.
  • Comparative Example 1 where the bulk density ratio is too large and Comparative Example 2 where the screw space volume ratio is too small, the compression molding machine is overloaded, and in Comparative Example 3 where the screw space volume ratio is too large, the strength of the obtained solid fuel is low. It was enough.
  • the method for producing a solid fuel according to the present invention can be suitably used for producing a granular solid fuel using a coal-based powder fuel having inferior compression moldability as a raw material.

Abstract

The present invention addresses the issue of providing a production method for solid fuel, whereby a solid fuel having relatively high strength can be obtained. This production method for solid fuel compresses and molds coal-based powdered fuel and comprises: a step in which a binding coal powder having greater binding properties than the coal-based powdered fuel is mixed into the coal-based powdered fuel; a step in which a feeding hopper having a feed screw is used to supply the mixture obtained in the mixing step to a compression and molding machine; and a step in which the mixture is compressed and molded by the compression and molding machine. The loose bulk density of the mixture relative to the consolidated bulk density thereof is no more than 0.8 and the ratio between the spatial density of one lap of the lower end of the execution part of the feed screw in the feeding hopper and the spatial density of one lap of the upper end of the execution part of the feed screw is 0.3-0.6.

Description

固形燃料の製造方法Method for producing solid fuel
 本発明は、固形燃料の製造方法に関する。 The present invention relates to a method for producing a solid fuel.
 粉末燃料は、比較的嵩密度が小さいことや飛散により消失しやすいことから、ハンドリングコストが増大しやすく、粉塵公害を引き起こすおそれもある。このため、粉末燃料を粒状(ブリケット)に圧縮成型して取り扱いやすくすることが行われている。 Powdered fuel has a relatively small bulk density and is likely to disappear due to scattering, so that the handling cost is likely to increase and there is a risk of causing dust pollution. For this reason, powdered fuel is compressed and molded into granular (briquette) for easy handling.
 例えば褐炭等の低品位炭を油中で加熱脱水して得られる改質炭は、通常は粉末状となるため、圧縮成型して粒状化することが望まれる。しかしながら、炭化度の低い低品位炭から得られる改質炭を成型するためにはかなりの高圧で圧縮成型する必要があり、製造コストが上昇するだけでなく、加圧が不十分となって搬送途中に粉化するトラブルが生じるおそれがある。 For example, reformed coal obtained by heating and dehydrating low-grade coal such as lignite in oil is usually in the form of powder, so it is desired to granulate by compression molding. However, in order to mold reformed coal obtained from low-grade coal with a low degree of carbonization, it is necessary to perform compression molding at a considerably high pressure, which not only increases the manufacturing cost but also causes insufficient pressure to convey There is a risk of causing powdery troubles along the way.
 これに対して、改質炭を加湿して加圧成型することで、得られる固形燃料の強度を向上する技術が提案されている(特開2010-116544号公報参照)。しかしながら、上記公報に記載の方法でも、固形燃料の使用やハンドリングの態様によっては粉化が生じるおそれがある。 On the other hand, a technique for improving the strength of the obtained solid fuel by humidifying the reformed coal and press-molding has been proposed (see JP 2010-116544 A). However, even in the method described in the above publication, pulverization may occur depending on the use of solid fuel and the manner of handling.
特開2010-116544号公報JP 2010-116544 A
 上記不都合に鑑みて、本発明は、比較的強度の大きい固形燃料が得られる固形燃料の製造方法を提供することを課題とする。 In view of the above inconveniences, an object of the present invention is to provide a method for producing a solid fuel from which a solid fuel having a relatively high strength can be obtained.
 上記課題を解決するためになされた発明は、石炭系粉末燃料を圧縮成型する固形燃料の製造方法であって、上記石炭系粉末燃料に、この石炭系粉末燃料よりも結着性が大きい結着性粉炭を混合する工程と、供給スクリューを有する供給ホッパーを用いて上記混合工程で得られる混合体を圧縮成型機に供給する工程と、圧縮成型機で上記混合体を圧縮成型する工程とを備え、上記混合体の固めかさ密度に対する緩めかさ密度の比が0.8以下であり、上記供給ホッパーの供給スクリューの実行部上端1周分の空間体積に対する供給スクリューの実行部下端1周分の空間体積の比が0.3以上0.6以下である固形燃料の製造方法である。 The invention made in order to solve the above-mentioned problems is a method for producing a solid fuel by compression-molding a coal-based powdered fuel, and is bound to the coal-based powdered fuel with a higher binding property than the coal-based powdered fuel. A step of mixing the pulverized coal, a step of supplying the mixture obtained in the mixing step to the compression molding machine using a supply hopper having a supply screw, and a step of compression molding the mixture by the compression molding machine. The ratio of the loose bulk density to the hard bulk density of the mixture is 0.8 or less, and the space corresponding to the lower part of the execution part of the supply screw with respect to the spatial volume of the upper part of the supply part of the supply screw of the supply hopper This is a method for producing a solid fuel having a volume ratio of 0.3 to 0.6.
 当該固形燃料の製造方法は、上記混合体の固めかさ密度に対する緩めかさ密度の比を上記範囲内とし、かつ上記供給ホッパーの供給スクリューの実行部上端1周分の空間体積に対する供給スクリューの実行部下端1周分の空間体積の比を上記範囲内とすることによって、原料の混合体を圧縮成型機に比較的高密度に供給することができる。このため、当該固形燃料の製造方法は、圧縮成型機により十分な圧力を加えて原料の混合体を圧縮成型することができるので、比較的強度の大きい固形燃料を製造することができる。 The method for producing the solid fuel has a ratio of the loose bulk density to the solid bulk density of the mixture within the above range, and an execution part of the supply screw with respect to a space volume corresponding to one upper end of the execution part of the supply screw of the supply hopper. By setting the ratio of the space volume for one round of the lower end within the above range, the mixture of raw materials can be supplied to the compression molding machine at a relatively high density. For this reason, since the solid fuel manufacturing method can compress and mold the mixture of raw materials by applying sufficient pressure with a compression molding machine, it is possible to manufacture a solid fuel with relatively high strength.
 上記供給ホッパーの供給スクリューの実行部上端1周分の空間体積に対する供給スクリューの実行部下端1周分の空間体積の比としては、上記混合体の固めかさ密度に対する緩めかさ密度の比の0.6倍以上0.9倍以下が好ましい。このように、上記供給ホッパーの供給スクリューの実行部上端1周分の空間体積に対する供給スクリューの実行部下端1周分の空間体積の比を上記範囲内とすることによって、原料の混合体の圧縮成型機への供給量をより適切化することができ、得られる固形燃料の強度をより大きくすることができる。 The ratio of the space volume of one lower end of the execution part of the supply screw to the space volume of the upper end of the supply part of the supply screw of the supply hopper is 0. The ratio of the loose bulk density to the solid bulk density of the mixture. 6 times or more and 0.9 times or less are preferable. Thus, the ratio of the space volume of the lower part of the execution part of the supply screw to the space volume of the upper part of the execution part of the supply screw of the supply hopper is within the above range, thereby compressing the mixture of raw materials. The amount supplied to the molding machine can be made more appropriate, and the strength of the obtained solid fuel can be increased.
 上記混合工程で、上記圧縮成型工程で得られる固形燃料の一部を粉砕したものをさらに混合するとよい。このように、上記混合工程で、上記圧縮成型工程で得られる固形燃料の一部を粉砕したものをさらに混合することによって、上記混合体の固めかさ密度に対する緩めかさ密度の比を比較的容易に上記範囲内とすることができる。 In the mixing step, it is preferable to further mix a part of the solid fuel obtained in the compression molding step. In this way, in the mixing step, by further mixing the pulverized part of the solid fuel obtained in the compression molding step, the ratio of the loose bulk density to the hard bulk density of the mixture can be made relatively easy. Within the above range.
 上記混合工程で混合する粉砕した固形燃料の平均粒子径としては、1mm以上8mm以下が好ましい。このように、上記混合工程で混合する粉砕した固形燃料の平均粒子径が上記範囲内であることによって、圧縮成型機における圧力をより確実に大きくすることができる。 The average particle diameter of the pulverized solid fuel mixed in the mixing step is preferably 1 mm or more and 8 mm or less. Thus, when the average particle diameter of the pulverized solid fuel mixed in the mixing step is within the above range, the pressure in the compression molding machine can be increased more reliably.
 上記石炭系粉末燃料として低品位炭を油中で加熱脱水して得られる改質炭を用い、上記結着性粉炭として低品位炭の粉末を用いるとよい。このように、上記石炭系粉末燃料として低品位炭を油中で加熱脱水して得られる改質炭を用い、上記結着性粉炭として低品位炭の粉末を用いることによって、比較的安価で高品質な固形燃料を提供することができる。 As the coal-based powder fuel, modified coal obtained by heating and dehydrating low-grade coal in oil may be used, and low-grade coal powder may be used as the binding powder coal. Thus, by using the modified coal obtained by heating and dehydrating low-grade coal in oil as the coal-based powder fuel, and using the low-grade coal powder as the binding powder coal, it is relatively inexpensive and expensive. A quality solid fuel can be provided.
 なお、「結着性が大きい」とは、同じ条件で圧縮成型した場合にJIS-Z8841(1993)に準拠して測定される「圧壊強度」が大きいことを意味する。また。「緩めかさ密度」とは、注入法(ロート状の部材を通して粉体を落下させる方法)により落下させて容器に受けてできた多量に空気を含んだ粉粒体の見掛比重を意味する。また、「固めかさ密度」とは、注入法によって得られた多量に空気を含んだ粉粒体を180回タッピングして固めた粉粒体の見掛比重を意味する。なお、「緩めかさ密度」及び「固めかさ密度」は、例えばホソカワミクロン社の「パウダテスタPT-S型」を用いて測定することができる。また、「平均粒子径」とは、JIS-Z8815(1994)に準拠した篩分け試験により得られる粒度分布において、質量積算値が50%となる篩の目開きを意味する。 Note that “high binding property” means that “crushing strength” measured in accordance with JIS-Z8841 (1993) when compression molding under the same conditions is high. Also. “Loose bulk density” means the apparent specific gravity of a granular material containing a large amount of air that has been dropped by an injection method (a method of dropping powder through a funnel-shaped member) and received in a container. The “hard bulk density” means the apparent specific gravity of a powder obtained by tapping 180 times of a powder containing a large amount of air obtained by an injection method. The “loose bulk density” and the “hard bulk density” can be measured using, for example, “Powder Tester PT-S type” manufactured by Hosokawa Micron. The “average particle diameter” means a sieve opening with a mass integrated value of 50% in a particle size distribution obtained by a sieving test according to JIS-Z8815 (1994).
 以上のように、当該固形燃料の製造方法は、粉末燃料から比較的強度の大きい固形燃料を製造することができる。 As described above, the method for producing a solid fuel can produce a solid fuel having a relatively high strength from a powder fuel.
本発明の一実施形態の固形燃料の製造方法に用いる製造装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the manufacturing apparatus used for the manufacturing method of the solid fuel of one Embodiment of this invention. 図1の供給ホッパーの模式的詳細断面図である。It is a typical detailed sectional view of the supply hopper of FIG.
 以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
[固形燃料製造装置]
 図1に、本発明の一実施形態に係る固形燃料の製造方法に用いられる固形燃料製造装置の概略構成を示す。
[Solid fuel production equipment]
FIG. 1 shows a schematic configuration of a solid fuel production apparatus used in a solid fuel production method according to an embodiment of the present invention.
 図1の固形燃料製造装置は、石炭系粉末燃料を圧縮成型することにより粒状の固形燃料を得るための装置である。 1 is an apparatus for obtaining granular solid fuel by compressing and molding coal-based powdered fuel.
 図1の固形燃料製造装置は、石炭系粉末燃料を貯留する第1サイロ1と、石炭系粉末燃料よりも結着性が大きい結着性粉炭を貯留する第2サイロ2と、石炭系粉末燃料よりも平均粒子径が大きい粉砕燃料を貯留する第3サイロ3とを備える。 The solid fuel production apparatus of FIG. 1 includes a first silo 1 that stores coal-based powdered fuel, a second silo 2 that stores binding powdered coal having a higher binding property than coal-based powdered fuel, and a coal-based powdered fuel. And a third silo 3 for storing pulverized fuel having an average particle size larger than that.
 また、図1の固形燃料製造装置は、サイロ1、2、3から供給される石炭系粉末燃料、結着性粉炭及び粉砕燃料を混合する混合機4と、この混合機4から排出される原料混合体を貯留する中間サイロ5とを備える。 The solid fuel production apparatus of FIG. 1 includes a mixer 4 that mixes coal-based powdered fuel, binding powdered coal, and pulverized fuel supplied from silos 1, 2, and 3, and a raw material discharged from the mixer 4. And an intermediate silo 5 for storing the mixture.
 また、図1の固形燃料製造装置は、中間サイロ5から排出される原料混合体を一時的に保留する原料供給ホッパー6と、この原料供給ホッパー6から原料混合体が供給され、この原料混合体を圧縮成型して目的の固形燃料とする圧縮成型機7とを備える。 In addition, the solid fuel production apparatus of FIG. 1 has a raw material supply hopper 6 that temporarily holds the raw material mixture discharged from the intermediate silo 5, and the raw material mixture is supplied from the raw material supply hopper 6. And a compression molding machine 7 for compressing and molding the desired solid fuel.
 さらに、図1の固形燃料製造装置は、圧縮成型機7が形成した固形燃料の一部を粉砕する粉砕機8を備える。粉砕機8により粉砕された固形燃料は、上記粉砕燃料として第3サイロ3に供給されるようになっている。また、構成要素間の粉粒体(石炭系粉末燃料、結着性粉炭、粉砕燃料及び固形燃料)の搬送は、例えばシュート、ベルトコンベア、バケットコンベア、ニューマチックコンベア等、周知の技術によって行うことができる。 1 further includes a pulverizer 8 for pulverizing a part of the solid fuel formed by the compression molding machine 7. The solid fuel pulverized by the pulverizer 8 is supplied to the third silo 3 as the pulverized fuel. In addition, the conveyance of the granular material (coal-based powdered fuel, binding powdered coal, pulverized fuel, and solid fuel) between components should be performed by a known technique such as a chute, a belt conveyor, a bucket conveyor, or a pneumatic conveyor. Can do.
 以上のような固形燃料製造装置を使用して行うことができる当該固形燃料の製造方法は、混合機4により石炭系粉末燃料に結着性粉炭及び粉砕燃料を混合する工程<混合工程>と、供給ホッパー6を用いて原料混合体を圧縮成型機7に供給する工程<供給工程>と、圧縮成型機7で原料混合体を圧縮成型する工程<圧縮成型工程>と、この圧縮成型工程で得られる固形燃料の一部を粉砕する工程<粉砕工程>とを備える。 The method for producing the solid fuel that can be performed using the solid fuel production apparatus as described above includes a step of mixing the binding powdered coal and the pulverized fuel with the coal-based powder fuel by the mixer 4 <mixing step> The process of supplying the raw material mixture to the compression molding machine 7 using the supply hopper 6 <supply process>, the process of compressing the raw material mixture using the compression molding machine 7 <compression molding process>, and the compression molding process. And crushing a part of the solid fuel to be pulverized.
<混合工程>
 混合工程では、サイロ1、2、3から石炭系粉末燃料、結着性粉炭及び粉砕燃料を混合機4に供給し、混合機4によりこれら石炭系粉末燃料、結着性粉炭及び粉砕燃料を混合して原料混合体を得る。これにより得られる原料混合体は、中間サイロ5に移送されて、中間サイロ5に貯留される。
<Mixing process>
In the mixing step, coal-based powdered fuel, binding powdered coal and pulverized fuel are supplied from the silos 1, 2 and 3 to the mixer 4, and the mixer 4 mixes these coal-based powdered fuel, binding powdered coal and pulverized fuel. Thus, a raw material mixture is obtained. The raw material mixture obtained in this way is transferred to the intermediate silo 5 and stored in the intermediate silo 5.
(石炭系粉末燃料)
 固形燃料の主原料である石炭系粉末燃料としては、例えば小径の石炭である粉炭、低品位炭(亜瀝青炭や褐炭)を油中で加熱脱水して得られる改質炭(Upgraded Brown Coal等)などを用いることができる。中でも、当該固形燃料の製造方法は、従来は粒状化が容易ではなかった改質炭を主原料として粒状の固形燃料を製造することができる。
(Coal powder fuel)
Examples of coal-based powder fuel that is the main raw material of solid fuel include modified coal (Upgraded Brown Coal, etc.) obtained by heating and dehydrating small coal, such as pulverized coal and low-grade coal (subbituminous coal and lignite), in oil. Etc. can be used. Especially, the manufacturing method of the said solid fuel can manufacture a granular solid fuel by using as a main raw material the reformed coal which was not easy to granulate conventionally.
(結着性粉炭)
 結着性粉炭としては、石炭系粉末燃料よりも結着性が大きい粉炭を用いればよいが、コスト増大を抑制するために、比較的安価な低品位炭の粉砕炭を用いることが好ましい。
(Binding pulverized coal)
As the binding pulverized coal, pulverized coal having a higher binding property than that of the coal-based pulverized fuel may be used, but in order to suppress an increase in cost, it is preferable to use a relatively low-grade pulverized coal.
 結着性粉炭の20%粒子径D20の下限としては、0.005mmが好ましく、0.010mmがより好ましい。結着性粉炭の20%粒子径D20が上記下限に満たない場合、発塵等により結着性粉炭のハンドリングが難しくなるおそれがある。一方、結着性粉炭の90%粒子径D90の上限としては、3mmが好ましく、1mmがより好ましい。結着性粉炭の90%粒子径D90が上記上限を超える場合、石炭系粉末燃料との混合性が不十分となることで得られる固形燃料の強度がばらつくおそれがある。なお、「20%粒子径D20」及び「90%粒子径D90」とは、JIS-Z8815(1994)に準拠した篩分け試験において、篩下の累積質量が全粒子の質量の20%になったときの篩の目の大きさ及び90%になったときの篩の目の大きさを意味する。 The lower limit of the 20% particle diameter D20 of the binding coal powder is preferably 0.005 mm, and more preferably 0.010 mm. When the 20% particle diameter D20 of the binding powdered coal is less than the above lower limit, handling of the binding powdered coal may be difficult due to dusting or the like. On the other hand, the upper limit of the 90% particle diameter D90 of the binding coal powder is preferably 3 mm, and more preferably 1 mm. When the 90% particle diameter D90 of the binding coal powder exceeds the above upper limit, the strength of the solid fuel obtained by insufficient mixing with the coal-based powder fuel may vary. Note that “20% particle diameter D20” and “90% particle diameter D90” mean that, in a sieving test based on JIS-Z8815 (1994), the cumulative mass under the sieve was 20% of the mass of all particles. It means the size of the mesh of the screen when it is 90% and the size of the screen when it is 90%.
(粉砕燃料)
 粉砕燃料としては、当該固形燃料の製造方法によって最終的に得られる固形燃料を粉砕機8により粉砕したものを使用する。
(Pulverized fuel)
As the pulverized fuel, a pulverized solid fuel finally obtained by the solid fuel production method is used.
 粉砕燃料の平均粒子径の下限としては、1mmが好ましく、2mmがより好ましい。一方、粉砕燃料の平均粒子径の上限としては、8mmが好ましく、6mmがより好ましい。粉砕燃料の平均粒子径が上記下限に満たない場合、原料混合体の圧縮成型性を十分に向上できないおそれがある。逆に、粉砕燃料の平均粒子径が上記上限を超える場合、石炭系粉末燃料との混合性が不十分となって、得られる固形燃料の強度がばらつくおそれがある。 The lower limit of the average particle size of the pulverized fuel is preferably 1 mm, and more preferably 2 mm. On the other hand, the upper limit of the average particle diameter of the pulverized fuel is preferably 8 mm, and more preferably 6 mm. If the average particle size of the pulverized fuel is less than the lower limit, the compression moldability of the raw material mixture may not be sufficiently improved. On the other hand, when the average particle size of the pulverized fuel exceeds the above upper limit, the miscibility with the coal-based powder fuel becomes insufficient, and the strength of the obtained solid fuel may vary.
 また、粉砕燃料の20%粒子径D20の下限としては、0.5mmが好ましく、1mmがより好ましい。粉砕燃料の20%粒子径D20が上記下限に満たない場合、原料混合体の圧縮成型性を十分に向上できないおそれがある。一方、粉砕燃料の90%粒子径D90の上限としては、10mmが好ましく、7mmがより好ましい。粉砕燃料の90%粒子径D90が上記上限を超える場合、石炭系粉末燃料との混合性が不十分となって、得られる固形燃料の強度がばらつくおそれがある。 Further, the lower limit of the 20% particle diameter D20 of the pulverized fuel is preferably 0.5 mm, and more preferably 1 mm. When the 20% particle diameter D20 of the pulverized fuel is less than the lower limit, the compression moldability of the raw material mixture may not be sufficiently improved. On the other hand, the upper limit of the 90% particle diameter D90 of the pulverized fuel is preferably 10 mm, and more preferably 7 mm. When the 90% particle diameter D90 of the pulverized fuel exceeds the above upper limit, the miscibility with the coal-based powder fuel becomes insufficient, and the strength of the obtained solid fuel may vary.
(原料混合体)
 石炭系粉末燃料、結着性粉炭及び粉砕燃料を混合して得られる原料混合体の固めかさ密度の下限としては、0.5g/ccが好ましく、0.6g/ccがより好ましい。一方、原料混合体の固めかさ密度の上限としては、1.0g/ccが好ましく、0.9g/ccがより好ましい。原料混合体の固めかさ密度が上記下限に満たない場合、後述する圧縮成型機7のキャビティへの原料混合体の充填が不十分となって原料混合体を圧縮成型できないおそれや、得られる固形燃料の強度が不十分となるおそれがある。逆に、原料混合体の固めかさ密度が上記上限を超える場合、圧縮成型機7のキャビティへの原料混合体の充填が過剰となって圧縮成型機7の過負荷の原因となるおそれがある。
(Raw material mixture)
The lower limit of the bulk density of the raw material mixture obtained by mixing coal-based powdered fuel, binding powdered coal and pulverized fuel is preferably 0.5 g / cc, more preferably 0.6 g / cc. On the other hand, the upper limit of the bulk density of the raw material mixture is preferably 1.0 g / cc, more preferably 0.9 g / cc. If the bulk density of the raw material mixture is less than the above lower limit, the raw material mixture may not be sufficiently filled into the cavity of the compression molding machine 7 to be described later, and the raw material mixture may not be compression-molded. There is a possibility that the strength of is insufficient. On the other hand, when the solid bulk density of the raw material mixture exceeds the above upper limit, the filling of the raw material mixture into the cavity of the compression molding machine 7 may be excessive, which may cause an overload of the compression molding machine 7.
 原料混合体の固めかさ密度に対する緩めかさ密度の比(以下、かさ密度比ということがある)の下限としては、0.5が好ましく、0.55がより好ましい。一方、上記かさ密度比の上限としては、0.8であり、0.75が好ましい。上記かさ密度比が上記下限に満たない場合、圧縮成型機7のキャビティへの原料混合体の充填が不十分となって原料混合体を圧縮成型できないおそれや、得られる固形燃料の強度が不十分となるおそれがある。逆に、上記かさ密度比が上記上限を超える場合、圧縮成型機7のキャビティへの原料混合体の充填が過剰となって圧縮成型機7の過負荷の原因となるおそれがある。 The lower limit of the ratio of the loose bulk density to the solid bulk density of the raw material mixture (hereinafter sometimes referred to as bulk density ratio) is preferably 0.5, and more preferably 0.55. On the other hand, the upper limit of the bulk density ratio is 0.8, preferably 0.75. If the bulk density ratio is less than the above lower limit, the raw material mixture may not be sufficiently filled into the cavity of the compression molding machine 7 and the raw material mixture may not be compression molded, and the strength of the solid fuel obtained is insufficient There is a risk of becoming. On the other hand, when the bulk density ratio exceeds the upper limit, filling of the raw material mixture into the cavity of the compression molding machine 7 may be excessive and cause overloading of the compression molding machine 7.
 原料混合体における結着性粉炭の混合比(原料混合体全体に対する比率)の下限としては、5質量%が好ましく、8質量%がより好ましい。一方、結着性粉炭の混合比の上限としては、30質量%が好ましく、25質量%がより好ましい。結着性粉炭の混合比が上記下限に満たない場合、固形燃料の強度を十分に向上できないおそれがある。逆に、結着性粉炭の混合比が上記上限を超える場合、固形燃料の価格が不必要に増大するおそれある。 The lower limit of the mixing ratio of the binding coal powder in the raw material mixture (ratio to the entire raw material mixture) is preferably 5% by mass, and more preferably 8% by mass. On the other hand, the upper limit of the mixing ratio of the binding coal powder is preferably 30% by mass, and more preferably 25% by mass. When the mixing ratio of the binding coal powder is less than the above lower limit, the strength of the solid fuel may not be sufficiently improved. Conversely, if the mixing ratio of the binding coal powder exceeds the above upper limit, the price of the solid fuel may increase unnecessarily.
 原料混合体における粉砕燃料の混合比の下限としては、5質量%が好ましく、8質量%がより好ましい。一方、粉砕燃料の混合比の上限としては、50質量%が好ましく、40質量%がより好ましい。粉砕燃料の混合比が上記下限に満たない場合、固形燃料の強度を十分に向上できないおそれがある。逆に、粉砕燃料の混合比が上記上限を超える場合、固形燃料の製造効率が不必要に低下するおそれや、粉砕燃料の粒子間に隙間ができることで得られる固形燃料の強度が不十分となるおそれがある。 The lower limit of the mixing ratio of the pulverized fuel in the raw material mixture is preferably 5% by mass, and more preferably 8% by mass. On the other hand, the upper limit of the mixing ratio of the pulverized fuel is preferably 50% by mass, and more preferably 40% by mass. When the mixing ratio of the pulverized fuel is less than the lower limit, the strength of the solid fuel may not be sufficiently improved. Conversely, if the mixing ratio of the pulverized fuel exceeds the above upper limit, the production efficiency of the solid fuel may be unnecessarily lowered, and the strength of the solid fuel obtained by forming gaps between the particles of the pulverized fuel becomes insufficient. There is a fear.
(サイロ)
 サイロ1、2、3、5としては、石炭系粉末燃料、結着性粉炭、粉砕燃料及びこれらを混合した原料混合体をそれぞれ貯留し、必要に応じて排出することができるものであればよい。
(silo)
As silos 1, 2, 3, and 5, coal-based powdered fuel, binding powdered coal, pulverized fuel, and a raw material mixture obtained by mixing these may be respectively stored and discharged as necessary. .
 中でも、石炭系粉末燃料を貯留する第1サイロ1、粉砕燃料を貯留する第3サイロ3及び原料混合体を貯留する中間サイロ5は、内部を窒素雰囲気とすることができるよう構成されることが好ましい。より詳しくは、第1サイロ1、第3サイロ3及び中間サイロ5は、内部の二酸化炭素(CO)濃度を測定する測定機構と、測定機構が測定したCO濃度が上昇した場合に内部に窒素ガス(N)を導入するガス供給機構とを備えるものとすることが好ましい。 Among them, the first silo 1 for storing coal-based powdered fuel, the third silo 3 for storing pulverized fuel, and the intermediate silo 5 for storing raw material mixture can be configured to be able to have a nitrogen atmosphere inside. preferable. More specifically, the first silo 1, the third silo 3 and the intermediate silo 5 are provided with a measurement mechanism for measuring the carbon dioxide (CO 2 ) concentration inside, and when the CO 2 concentration measured by the measurement mechanism increases. It is preferable to include a gas supply mechanism for introducing nitrogen gas (N 2 ).
(混合機)
 混合機4としては、石炭系粉末燃料、結着性粉炭及び粉砕燃料を均等に混合できるものであればよく、例えば容器を回転するミキサー、撹拌羽根を有するミキサー等を用いることができ、バッチ式のものであっても連続式のものであってもよい。容器を回転するミキサーとしては、例えばV型、ダブルコーン型等のものが挙げられる。一方、撹拌羽根を有するミキサーとしては、例えばパドルミキサー、リボンミキサー等が挙げられる。また、混合機4として、動力を用いず、重力により落下する粉粒体を例えば固定撹拌羽根等を用いて混合する静的混合機を使用してもよい。
(Mixer)
The mixer 4 only needs to be able to uniformly mix coal-based powdered fuel, binding powdered coal, and pulverized fuel. For example, a mixer that rotates a container, a mixer having stirring blades, or the like can be used. It may be a continuous type or a continuous type. As a mixer which rotates a container, things, such as a V type and a double cone type, are mentioned, for example. On the other hand, examples of the mixer having a stirring blade include a paddle mixer and a ribbon mixer. Moreover, you may use the static mixer which mixes the granular material which falls by gravity without using power, for example using a fixed stirring blade etc. as the mixer 4. FIG.
 混合機4による原料の混合時間(滞留時間)としては、例として混合機4がパドルミキサーである場合、一般的には30分以下が望ましいが、これに限ったものではなく、原料を均等に混合することが必要とされる。原料の混合度合いは、例えば混合後のサンプルを少量ずつ採取し、その水分ばらつきを見ることで評価できる。水分値にばらつきが大きい場合は混合が不十分なので、混合機4による混合時間を大きくする必要があるものと判断できる。 The mixing time (residence time) of the raw material by the mixer 4 is generally preferably 30 minutes or less when the mixer 4 is a paddle mixer, for example. Mixing is required. The degree of mixing of raw materials can be evaluated by, for example, collecting samples after mixing in small amounts and observing the variation in moisture. When the moisture value varies widely, mixing is insufficient, so it can be determined that the mixing time by the mixer 4 needs to be increased.
<供給工程>
 供給工程では、中間サイロ5から原料混合体を排出し、供給ホッパー6を用いて原料混合体を圧縮しつつ圧縮成型機7に供給する。
<Supply process>
In the supply step, the raw material mixture is discharged from the intermediate silo 5 and supplied to the compression molding machine 7 while compressing the raw material mixture using the supply hopper 6.
(供給ホッパー)
 供給ホッパー6は、図2に示すように、供給ホッパー本体10と、この供給ホッパー本体10内で回転する供給スクリュー11とを有する。この供給ホッパー6は、圧縮成型機7の原料投入口に接続され、供給スクリュー11により原料混合体を圧縮しつつ圧縮成型機7に供給する。
(Supply hopper)
As shown in FIG. 2, the supply hopper 6 includes a supply hopper body 10 and a supply screw 11 that rotates within the supply hopper body 10. The supply hopper 6 is connected to the raw material charging port of the compression molding machine 7 and supplies the raw material mixture to the compression molding machine 7 while compressing the raw material mixture by the supply screw 11.
 供給ホッパー本体10は、少なくとも実行部(供給スクリュー11により原料混合体を圧縮する部分)が円筒状又は円錐状に形成される。 The supply hopper main body 10 has at least an execution portion (a portion where the raw material mixture is compressed by the supply screw 11) formed in a cylindrical shape or a conical shape.
 供給スクリュー11は、供給ホッパー本体10の実行部と同心の回転軸12と、この回転軸12の外周にらせん状に配設されるスクリューフィン13とを有する。 The supply screw 11 has a rotary shaft 12 concentric with the execution unit of the supply hopper main body 10 and screw fins 13 arranged in a spiral shape on the outer periphery of the rotary shaft 12.
 供給ホッパー6は、供給ホッパー本体10の縮径と、供給スクリュー11のスクリューフィン13のピッチの変化とによって、供給スクリュー11の1周分の空間体積(供給ホッパー本体10の内容積から供給スクリュー11の体積を減じた容積)が徐々に減少するよう構成される。 The supply hopper 6 has a space volume corresponding to one rotation of the supply screw 11 (from the internal volume of the supply hopper main body 10 to the supply screw 11) by the diameter reduction of the supply hopper main body 10 and the change in the pitch of the screw fins 13 of the supply screw 11. The volume obtained by subtracting the volume of is configured to gradually decrease.
 供給ホッパー6の供給スクリュー11の実行部上端1周分の空間体積に対する供給スクリュー11の実行部下端1周分の空間体積の比(以下、スクリュー空間体積比という)の下限としては、0.3であり、0.35が好ましい。一方、上記スクリュー空間体積比の上限としては、0.6であり、0.55が好ましい。上記スクリュー空間体積比が上記下限に満たない場合、圧縮成型機7への原料混合体の供給が過剰となることで圧縮成型機7が過負荷となるおそれがある。逆に、上記スクリュー空間体積比が上記上限を超える場合、後述する圧縮成型機7のキャビティに十分な量の原料混合体を供給することができず、固形燃料の強度が不足するおそれがある。なお、供給スクリュー11のスクリューフィン13が2周未満である場合、上記実行部上端1周分の空間体積と、上記実行部下端1周分の空間体積とは一部が重複して算出される。 As a lower limit of the ratio of the space volume of one execution portion lower end of the supply screw 11 to the space volume of one execution portion upper end of the supply screw 11 of the supply hopper 6 (hereinafter referred to as screw space volume ratio), 0.3 And 0.35 is preferable. On the other hand, the upper limit of the screw space volume ratio is 0.6, preferably 0.55. When the screw space volume ratio is less than the lower limit, the supply of the raw material mixture to the compression molding machine 7 becomes excessive, and the compression molding machine 7 may be overloaded. Conversely, when the screw space volume ratio exceeds the upper limit, a sufficient amount of the raw material mixture cannot be supplied to the cavity of the compression molding machine 7 to be described later, and the strength of the solid fuel may be insufficient. In addition, when the screw fin 13 of the supply screw 11 is less than two rounds, the space volume for one round of the execution unit upper end and the space volume for one round of the execution unit lower end are partly calculated. .
 供給ホッパー6のスクリュー空間体積比の原料混合体のかさ密度比に対する比率の下限としては、0.6が好ましく、0.65がより好ましい。一方、供給ホッパー6のスクリュー空間体積比の原料混合体のかさ密度比に対する比率の上限としては、0.9が好ましく、0.85がより好ましい。供給ホッパー6のスクリュー空間体積比の原料混合体のかさ密度比に対する比率が上記下限に満たない場合、圧縮成型機7への原料混合体の供給が過剰となることで圧縮成型機7が過負荷となるおそれがある。逆に、供給ホッパー6のスクリュー空間体積比の原料混合体のかさ密度比に対する比率が上記上限を超える場合、圧縮成型機7への原料混合体の供給が不十分となることで固形燃料の強度が不足するおそれがある。 The lower limit of the ratio of the screw space volume ratio of the feed hopper 6 to the bulk density ratio of the raw material mixture is preferably 0.6, and more preferably 0.65. On the other hand, the upper limit of the ratio of the screw space volume ratio of the supply hopper 6 to the bulk density ratio of the raw material mixture is preferably 0.9, more preferably 0.85. When the ratio of the screw space volume ratio of the supply hopper 6 to the bulk density ratio of the raw material mixture is less than the lower limit, the compression molding machine 7 is overloaded by excessive supply of the raw material mixture to the compression molding machine 7. There is a risk of becoming. Conversely, when the ratio of the screw space volume ratio of the supply hopper 6 to the bulk density ratio of the raw material mixture exceeds the above upper limit, the supply of the raw material mixture to the compression molding machine 7 becomes insufficient, so that the strength of the solid fuel May be insufficient.
<圧縮成型工程>
 圧縮成型工程では、圧縮成型機7を用いて原料混合体を圧縮成型することにより、粒状の固形燃料を得る。
<Compression molding process>
In the compression molding process, a granular solid fuel is obtained by compression molding the raw material mixture using the compression molding machine 7.
(圧縮成型機)
 圧縮成型工程で用いる圧縮成型機7としては、例えばダブルロール成型機、打錠成型機等が挙げられ、中でも比較的処理能力が大きいダブルロール成型機が好適に用いられる。ダブルロール成型機は、一対の円筒形のロールが水平に隣接する構造となっており、ロールが上方から隣接点に向かう方向に回転する。この一対のロールの外周表面には、多数のキャビティが一対のロールの間で対向しかつ同期回転するよう設けられる。これにより、ダブルロール成型機は、対向するキャビティ間で粉粒体を圧縮して粒状に成型することができる。
(Compression molding machine)
Examples of the compression molding machine 7 used in the compression molding process include a double roll molding machine and a tableting molding machine. Among them, a double roll molding machine having a relatively large processing capability is preferably used. The double roll molding machine has a structure in which a pair of cylindrical rolls are horizontally adjacent to each other, and the rolls rotate in a direction from above to an adjacent point. A large number of cavities are provided on the outer peripheral surface of the pair of rolls so as to face each other and rotate synchronously. Thereby, a double roll molding machine can compress a granular material between opposing cavities, and can shape | mold into a granule.
 また、特に圧縮成型機7としてダブルロール成型機を用いる場合、圧縮成型された粒状体だけでなく、原料混合体が成型されることなく一対のロールの隙間を通過して排出され得る。また、何らかの原因でキャビティへの原料混合体の供給が不十分となり、十分に圧縮されず粉化する場合もある。このため、成型されず排出される原料混合体を分離する篩を圧縮成型機7の直後に設けてもよい。成型された固形燃料から分離された原料混合体は、中間サイロ5に再供給すればよい。 In particular, when a double roll molding machine is used as the compression molding machine 7, not only the compression-molded granular material but also the raw material mixture can be discharged through the gap between the pair of rolls without being molded. Further, for some reason, the supply of the raw material mixture to the cavity becomes insufficient, and it may be pulverized without being sufficiently compressed. For this reason, you may provide the sieve which isolate | separates the raw material mixture discharged without shape | molding immediately after the compression molding machine 7. FIG. The raw material mixture separated from the molded solid fuel may be supplied again to the intermediate silo 5.
<粉砕工程>
 粉砕工程では、圧縮成型工程で得られる固形燃料の一部を粉砕機8で粉砕することにより、上述の粉砕燃料を得る。これにより得られた粉砕燃料は、第3サイロ3に移送されて貯留される。
<Crushing process>
In the pulverization step, a part of the solid fuel obtained in the compression molding step is pulverized by the pulverizer 8 to obtain the above pulverized fuel. The pulverized fuel thus obtained is transferred to the third silo 3 and stored.
 この粉砕工程で得られる粉砕燃料を石炭系粉末燃料に混合することにより、圧縮成型に供される原料混合体のかさ密度を石炭系粉末燃料よりも大きくすることができる。これにより、圧縮成型工程において、成型機のキャビティに十分な原料粉粒体を充填することが可能となり、成型時の圧力を比較的大きくして得られる固形燃料の強度を向上することができる。 By mixing the pulverized fuel obtained in this pulverization step with the coal-based powder fuel, the bulk density of the raw material mixture to be subjected to compression molding can be made larger than that of the coal-based powder fuel. Thereby, in the compression molding process, it becomes possible to fill the cavity of the molding machine with sufficient raw material granules, and the strength of the solid fuel obtained by relatively increasing the pressure during molding can be improved.
(粉砕機)
 粉砕機8としては、特に限定されず、公知の回転式カッターやハンマーミル等を用いることができる。
(Crusher)
The pulverizer 8 is not particularly limited, and a known rotary cutter, hammer mill, or the like can be used.
 粉砕機8の形式にもよるが、粉砕機8から十分に小径化されていない粉砕燃料が排出され得る場合、圧縮成型機7でのトラブルを防止するために、粉砕機8から排出される粉砕燃料中の大径粒子を分離する篩を設け、分離された大径粒子を粉砕機8に再供給するようにしてもよい。 Although depending on the type of the pulverizer 8, when pulverized fuel that has not been sufficiently reduced in diameter can be discharged from the pulverizer 8, the pulverization discharged from the pulverizer 8 in order to prevent troubles in the compression molding machine 7. A sieve for separating large-diameter particles in the fuel may be provided, and the separated large-diameter particles may be re-supplied to the pulverizer 8.
<利点>
 当該固形燃料の製造方法は、混合体の固めかさ密度に対する緩めかさ密度の比を上記範囲内とし、かつ供給ホッパー6の供給スクリュー11の実行部上端1周分の空間体積に対する供給スクリュー11の実行部下端1周分の空間体積の比を上記範囲内とすることによって、原料混合体を圧縮成型機7に比較的高密度に供給することができる。このため、当該固形燃料の製造方法は、圧縮成型機7により十分な圧力を加えて原料混合体を圧縮成型することができるので、比較的強度の大きい固形燃料を製造することができる。
<Advantages>
In the method for producing the solid fuel, the ratio of the loose bulk density to the bulk density of the mixture is within the above range, and the supply screw 11 is executed with respect to the space volume corresponding to one round of the upper end of the supply screw 11 of the supply hopper 6. The raw material mixture can be supplied to the compression molding machine 7 at a relatively high density by setting the ratio of the space volume for one round at the lower end of the part within the above range. For this reason, since the raw material mixture can be compression-molded by applying a sufficient pressure by the compression molding machine 7 in the method for producing the solid fuel, a solid fuel having a relatively high strength can be produced.
[その他の実施形態]
 上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other Embodiments]
The said embodiment does not limit the structure of this invention. Therefore, in the above-described embodiment, the components of each part of the above-described embodiment can be omitted, replaced, or added based on the description and common general knowledge of the present specification, and they are all interpreted as belonging to the scope of the present invention. Should.
 当該固形燃料の製造方法において、混合工程で粉砕燃料を混合しなくてもよい。つまり、供給ホッパーから圧縮成型機に供給する原料混合体は粉砕燃料を含まなくてもよい。 In the method for producing solid fuel, the pulverized fuel may not be mixed in the mixing step. That is, the raw material mixture supplied from the supply hopper to the compression molding machine may not include the pulverized fuel.
 また、当該固形燃料の製造方法において、圧縮成型工程で得られる固形燃料の強度を測定し、固形燃料の強度に応じて、結着性粉炭の原料の混合比、圧縮成型機の運転速度等を調整してもよい。なお、固形燃料の強度を測定の測定方法としては、例えば圧縮破壊試験、引張試験、衝撃試験、落下試験等を採用することができる。 Further, in the method for producing solid fuel, the strength of the solid fuel obtained in the compression molding process is measured, and the mixing ratio of the binding coal powder, the operation speed of the compression molding machine, etc. are determined according to the strength of the solid fuel. You may adjust. In addition, as a measuring method of measuring the strength of the solid fuel, for example, a compression fracture test, a tensile test, an impact test, a drop test, or the like can be employed.
 以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not construed as being limited based on the description of the examples.
(実施例1)
 先ず、石炭系粉末燃料として褐炭を油中で加熱脱水して得られた改質炭の粉末を使用し、結着性粉炭として褐炭を粉砕して目開き3mmの篩を通過したものを使用し、石炭系粉末燃料と結着性粉炭とを質量比90:10の割合で混合して原料混合体を得た。この原料混合体の緩めかさ密度及び固めかさ密度は、例えばホソカワミクロン社の「パウダテスタPT-S型」を用いて測定したところ、緩めかさ密度は0.50g/cc、固めかさ密度は0.72g/ccであった。
(Example 1)
First, a modified coal powder obtained by heating and dehydrating lignite coal in oil is used as the coal-based powder fuel, and a pulverized coal powder pulverized and passed through a sieve having a mesh opening of 3 mm is used as the binding powder coal. The raw material mixture was obtained by mixing coal-based powdered fuel and binding powdered coal at a mass ratio of 90:10. The loose bulk density and the hard bulk density of this raw material mixture were measured using, for example, “Powder Tester PT-S type” manufactured by Hosokawa Micron Corporation. The loose bulk density was 0.50 g / cc, and the solid bulk density was 0.72 g / cc. cc.
 上記原料混合体を、スクリュー空間体積比が0.52である供給ホッパーを用いて圧縮成型機に供給した。圧縮成型機としては、古河産機システムズ社のダブルロール成型機「K-4020」を使用し、長径42mm、短径24mm、容積15ccのキャビティを有する直径1mロールを装着した。この圧縮成型機により原料混合体を圧縮成型して粒状の固形燃料を得た。このとき、圧縮成型機は、生産量が10ton/hとなる速度で安定して運転することができた。また、得られた固形燃料の圧壊強度をJIS-Z8841(1993)に準拠して測定したところ、100kgfであった。 The raw material mixture was supplied to a compression molding machine using a supply hopper having a screw space volume ratio of 0.52. As a compression molding machine, a double roll molding machine “K-4020” manufactured by Furukawa Industries Systems Co., Ltd. was used, and a roll with a diameter of 1 m having a cavity having a major axis of 42 mm, a minor axis of 24 mm, and a volume of 15 cc was mounted. The raw material mixture was compression molded by this compression molding machine to obtain a granular solid fuel. At this time, the compression molding machine could be stably operated at a speed at which the production amount was 10 ton / h. Further, the crushing strength of the obtained solid fuel was measured according to JIS-Z8841 (1993) and found to be 100 kgf.
(実施例2)
 実施例1と同様の石炭系粉末燃料と結着性粉炭とを質量比80:10の割合で混合したものを、スクリュー空間体積比が0.47である供給ホッパーを用いて実施例1と同様の圧縮成型機に供給して得られた粒状の固形燃料を粉砕して目開き10mmの篩を通過したものを粉砕燃料とした。石炭系粉末燃料と結着性粉炭と粉砕燃料とを質量比80:10:10の割合で混合して原料混合体を得た。この原料混合体を圧縮成型機により圧縮成型し、得られた固形燃料を粉砕して新たな粉砕燃料を得るサイクルを運転条件が安定するまで繰り返した。この安定状態において、原料混合体の緩めかさ密度は0.55g/cc、固めかさ密度は0.88g/ccであった。また、このときの生産量は11ton/hであり、得られた固形燃料の圧壊強度は105kgfであった。
(Example 2)
A mixture of coal-based powdered fuel similar to that in Example 1 and binder powdered coal at a mass ratio of 80:10 is the same as that in Example 1 using a supply hopper having a screw space volume ratio of 0.47. The granular solid fuel obtained by supplying to the compression molding machine was pulverized and passed through a sieve having an opening of 10 mm as a pulverized fuel. Coal-based powdered fuel, binding powdered coal, and pulverized fuel were mixed at a mass ratio of 80:10:10 to obtain a raw material mixture. A cycle in which this raw material mixture was compression molded with a compression molding machine and the obtained solid fuel was pulverized to obtain a new pulverized fuel was repeated until the operating conditions were stabilized. In this stable state, the loose bulk density of the raw material mixture was 0.55 g / cc, and the solid bulk density was 0.88 g / cc. Moreover, the production amount at this time was 11 ton / h, and the crushing strength of the obtained solid fuel was 105 kgf.
(実施例3)
 スクリュー空間体積比が0.40である供給ホッパーを用いた以外は、実施例1と同様の条件で固形燃料を製造した。このときの生産量は7.5ton/hであり、得られた固形燃料の圧壊強度は120kgfであった。
(Example 3)
A solid fuel was produced under the same conditions as in Example 1 except that a feed hopper having a screw space volume ratio of 0.40 was used. The production amount at this time was 7.5 ton / h, and the crushing strength of the obtained solid fuel was 120 kgf.
(実施例4)
 スクリュー空間体積比が0.58である供給ホッパーを用いた以外は、実施例2と同様の条件で固形燃料を製造した。このときの生産量は12ton/hであり、得られた固形燃料の圧壊強度は68kgfであった。
Example 4
A solid fuel was produced under the same conditions as in Example 2 except that a feed hopper having a screw space volume ratio of 0.58 was used. The production amount at this time was 12 ton / h, and the crushing strength of the obtained solid fuel was 68 kgf.
(比較例1)
 実施例1と同様の石炭系粉末燃料と結着性粉炭とを質量比20:20の割合で混合したものを、スクリュー空間体積比が0.60である供給ホッパーを用いて実施例1と同様の圧縮成型機に供給して得られた粒状の固形燃料を粉砕して目開き10mmの篩を通過したものを粉砕燃料とした。石炭系粉末燃料と結着性粉炭と粉砕燃料とを質量比20:20:60の割合で混合して原料混合体を得た。この原料混合体を圧縮成型機により圧縮成型しようとしたが、圧縮成型機が過負荷により停止し、固形燃料を得ることができなかった。このときの原料混合体の緩めかさ密度は0.82g/cc、固めかさ密度は0.88g/ccであった。
(Comparative Example 1)
A mixture of coal-based powdered fuel similar to that in Example 1 and binding powdered coal at a mass ratio of 20:20 is used in the same manner as in Example 1 using a supply hopper having a screw space volume ratio of 0.60. The granular solid fuel obtained by supplying to the compression molding machine was pulverized and passed through a sieve having an opening of 10 mm as a pulverized fuel. Coal-based powdered fuel, binding powdered coal, and pulverized fuel were mixed at a mass ratio of 20:20:60 to obtain a raw material mixture. An attempt was made to compress this raw material mixture with a compression molding machine, but the compression molding machine stopped due to overload, and solid fuel could not be obtained. At this time, the loose bulk density of the raw material mixture was 0.82 g / cc, and the solid bulk density was 0.88 g / cc.
(比較例2)
 スクリュー空間体積比が0.15である供給ホッパーを用いた以外は、実施例1と同様の条件で原料混合体を得、この原料混合体を圧縮成型機により圧縮成型しようとしたが、圧縮成型機が過負荷により停止し、固形燃料を得ることができなかった。
(Comparative Example 2)
A raw material mixture was obtained under the same conditions as in Example 1 except that a feed hopper with a screw space volume ratio of 0.15 was used, and this raw material mixture was compression molded with a compression molding machine. The machine stopped due to overload and solid fuel could not be obtained.
(比較例3)
 スクリュー空間体積比が0.80である供給ホッパーを用いた以外は、実施例1と同様の条件で固形燃料を製造した。このときの生産量は12ton/hであり、得られた固形燃料の圧壊強度は15kgfであった。また、得られた固形燃料は、十分に緻密に形成されておらず、形状が不完全であった。
(Comparative Example 3)
A solid fuel was produced under the same conditions as in Example 1 except that a feed hopper having a screw space volume ratio of 0.80 was used. The production amount at this time was 12 ton / h, and the crushing strength of the obtained solid fuel was 15 kgf. Moreover, the obtained solid fuel was not formed sufficiently densely, and the shape was incomplete.
 次の表1に、上記実施例1~4及び比較例1~3の結果をまとめて示す。また、表には、原料混合体の固めかさ密度に対する緩めかさ密度の比(かさ密度比)と、スクリュー空間体積比のかさ密度比に対する比率とを合わせて示す。 Table 1 below summarizes the results of Examples 1 to 4 and Comparative Examples 1 to 3. The table also shows the ratio of the loose bulk density to the bulk density of the raw material mixture (bulk density ratio) and the ratio of the screw space volume ratio to the bulk density ratio.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この表に示す実施例1~4のように、かさ密度比及びスクリュー空間体積比を適切な範囲とすることによって、比較的強度の大きい固形燃料を製造することができることが確認できた。中でも、かさ密度比に対するスクリュー空間体積比の比率を好ましい範囲内とした実施例1は、かさ密度比に対するスクリュー空間体積比の比率が僅かに小さい実施例3よりも生産性が高かった。また、かさ密度比に対するスクリュー空間体積比の比率を好ましい範囲内とした実施例2は、かさ密度比に対するスクリュー空間体積比の比率が僅かに大きい実施例4よりも得られる固形燃料の強度が大きかった。一方、かさ密度比が大き過ぎる比較例1及びスクリュー空間体積比が小さ過ぎる比較例2は圧縮成型機が過負荷となり、スクリュー空間体積比が大き過ぎる比較例3は得られる固形燃料の強度が不十分となった。 As in Examples 1 to 4 shown in this table, it was confirmed that a solid fuel having a relatively high strength can be produced by setting the bulk density ratio and screw space volume ratio in appropriate ranges. In particular, Example 1 in which the ratio of the screw space volume ratio to the bulk density ratio was within a preferable range was higher in productivity than Example 3 in which the ratio of the screw space volume ratio to the bulk density ratio was slightly smaller. Further, in Example 2 in which the ratio of the screw space volume ratio to the bulk density ratio is within a preferable range, the strength of the solid fuel obtained is higher than that in Example 4 in which the ratio of the screw space volume ratio to the bulk density ratio is slightly larger. It was. On the other hand, in Comparative Example 1 where the bulk density ratio is too large and Comparative Example 2 where the screw space volume ratio is too small, the compression molding machine is overloaded, and in Comparative Example 3 where the screw space volume ratio is too large, the strength of the obtained solid fuel is low. It was enough.
 本発明に係る固形燃料の製造方法は、圧縮成型性に劣る石炭系粉末燃料を原料として粒状の固形燃料を製造するために好適に利用することができる。 The method for producing a solid fuel according to the present invention can be suitably used for producing a granular solid fuel using a coal-based powder fuel having inferior compression moldability as a raw material.
1、2、3、5 サイロ
4 混合機
6 供給ホッパー
7 圧縮成型機
8 粉砕機
10 供給ホッパー本体
11 供給スクリュー
12 回転軸
13 スクリューフィン
1, 2, 3, 5 Silo 4 Mixer 6 Supply hopper 7 Compression molding machine 8 Crusher 10 Supply hopper body 11 Supply screw 12 Rotating shaft 13 Screw fin

Claims (5)

  1.  石炭系粉末燃料を圧縮成型する固形燃料の製造方法であって、
     上記石炭系粉末燃料に、この石炭系粉末燃料よりも結着性が大きい結着性粉炭を混合する工程と、
     供給スクリューを有する供給ホッパーを用いて上記混合工程で得られる混合体を圧縮成型機に供給する工程と、
     圧縮成型機で上記混合体を圧縮成型する工程と
     を備え、
     上記混合体の固めかさ密度に対する緩めかさ密度の比が0.8以下であり、
     上記供給ホッパーの供給スクリューの実行部上端1周分の空間体積に対する供給スクリューの実行部下端1周分の空間体積の比が0.3以上0.6以下である固形燃料の製造方法。
    A method for producing a solid fuel by compression molding a coal-based powdered fuel,
    Mixing the coal-based powdered fuel with binding coal powder having a binding property larger than that of the coal-based powdered fuel;
    Supplying the mixture obtained in the mixing step to a compression molding machine using a supply hopper having a supply screw;
    A step of compression-molding the mixture with a compression molding machine,
    The ratio of the loose bulk density to the hard bulk density of the mixture is 0.8 or less,
    A method for producing a solid fuel, wherein a ratio of a space volume of one lower end of the execution part of the supply screw to a space volume of one upper end of the execution part of the supply screw of the supply hopper is 0.3 or more and 0.6 or less.
  2.  上記供給ホッパーの供給スクリューの実行部上端1周分の空間体積に対する供給スクリューの実行部下端1周分の空間体積の比が、上記混合体の固めかさ密度に対する緩めかさ密度の比の0.6倍以上0.9倍以下である請求項1に記載の固形燃料の製造方法。 The ratio of the space volume of the supply screw at the lower end of the supply screw to the space volume of the supply screw at the upper end of the supply portion of the supply hopper is 0.6, which is the ratio of the loose bulk density to the solid bulk density of the mixture. 2. The method for producing a solid fuel according to claim 1, wherein the method is not less than twice and not more than 0.9 times.
  3.  上記混合工程で、上記圧縮成型工程で得られる固形燃料の一部を粉砕したものをさらに混合する請求項1に記載の固形燃料の製造方法。 The method for producing a solid fuel according to claim 1, wherein in the mixing step, a part of the solid fuel obtained in the compression molding step is pulverized and further mixed.
  4.  上記混合工程で混合する粉砕した固形燃料の平均粒子径が1mm以上8mm以下である請求項3に記載の固形燃料の製造方法。 The method for producing a solid fuel according to claim 3, wherein an average particle diameter of the pulverized solid fuel mixed in the mixing step is 1 mm or more and 8 mm or less.
  5.  上記石炭系粉末燃料として低品位炭を油中で加熱脱水して得られる改質炭を用い、上記結着性粉炭として低品位炭の粉末を用いる請求項1から請求項4のいずれかに記載の固形燃料の製造方法。 The reformed coal obtained by heating and dehydrating low-grade coal in oil as the coal-based powder fuel, and using low-grade coal powder as the binding powder coal. Solid fuel production method.
PCT/JP2017/026685 2016-08-24 2017-07-24 Solid fuel production method WO2018037809A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016164091A JP6640679B2 (en) 2016-08-24 2016-08-24 Method for manufacturing solid fuel
JP2016-164091 2016-08-24

Publications (1)

Publication Number Publication Date
WO2018037809A1 true WO2018037809A1 (en) 2018-03-01

Family

ID=61245658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026685 WO2018037809A1 (en) 2016-08-24 2017-07-24 Solid fuel production method

Country Status (2)

Country Link
JP (1) JP6640679B2 (en)
WO (1) WO2018037809A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481301A (en) * 1977-12-13 1979-06-28 Mitsubishi Chem Ind Ltd Compression molding of coal powder
JPH11123598A (en) * 1997-10-21 1999-05-11 Hosokawa Micron Corp Briquetting machine and manufacture of briquette
WO2012137956A1 (en) * 2011-04-06 2012-10-11 株式会社神戸製鋼所 Solid fuel molding method
JP2014040570A (en) * 2012-07-23 2014-03-06 Nippon Steel & Sumikin Engineering Co Ltd Method of manufacturing coke for gasification melting furnace, and method of using the same
WO2015098935A1 (en) * 2013-12-25 2015-07-02 宇部興産株式会社 Molded coal fuel, and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481301A (en) * 1977-12-13 1979-06-28 Mitsubishi Chem Ind Ltd Compression molding of coal powder
JPH11123598A (en) * 1997-10-21 1999-05-11 Hosokawa Micron Corp Briquetting machine and manufacture of briquette
WO2012137956A1 (en) * 2011-04-06 2012-10-11 株式会社神戸製鋼所 Solid fuel molding method
JP2014040570A (en) * 2012-07-23 2014-03-06 Nippon Steel & Sumikin Engineering Co Ltd Method of manufacturing coke for gasification melting furnace, and method of using the same
WO2015098935A1 (en) * 2013-12-25 2015-07-02 宇部興産株式会社 Molded coal fuel, and production method thereof

Also Published As

Publication number Publication date
JP6640679B2 (en) 2020-02-05
JP2018030950A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
EP3546603A1 (en) Granulated product manufacturing apparatus, sintered ore manufacturing apparatus comprising same, and sintered ore manufacturing method
KR20100011990A (en) Method for production of carbon composite metal oxide briquette
KR20110022667A (en) Briquette manufacturing method, reductive metal manufacturing method, and zinc or lead separation method
JP6777471B2 (en) How to make calcium carbide
CN205452435U (en) Anode materials for lithium -ion battery apparatus for producing
CN203635304U (en) Bagging system for biological feed preparation
WO2018037809A1 (en) Solid fuel production method
JP6632496B2 (en) Method for manufacturing solid fuel
JP2009052138A (en) Process for producing carbonaceous-material-including metal oxide briquette
CN111808450A (en) Method for preparing high-quality granulated carbon black from cracking carbon slag
JP4795484B2 (en) Iron ore raw material grinding method
CN203663974U (en) Feeding structure on mineral powder grinding machine
JP5402785B2 (en) Granulation method of molded product
CN108525608A (en) A method of producing calcium carbide coke powder mix and convert calcium lime powder pressure ball molding
CN207745963U (en) Cycle crushing screening plant
US20210355395A1 (en) Process for coal fine aggregation
JP6591238B2 (en) Briquette manufacturing method and manufacturing apparatus
JP4441715B2 (en) Method for producing coal ash slurry material for ground material
US9427744B1 (en) Methods for processing carbonaceous materials
JP7403945B2 (en) Method for manufacturing coke oven charging coal
RU2058365C1 (en) Method for preparation of coal mixture for coking
CN207981061U (en) Recycling coke powder prepares the mixing device of formed coke
CN205949007U (en) Broken system of lime closed loop
KR101960933B1 (en) Forming apparatus and forming method for raw material
JPH1112626A (en) Production of reduced iron

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843295

Country of ref document: EP

Kind code of ref document: A1