WO2018037785A1 - Force transmission device and operation auxiliary device - Google Patents
Force transmission device and operation auxiliary device Download PDFInfo
- Publication number
- WO2018037785A1 WO2018037785A1 PCT/JP2017/026325 JP2017026325W WO2018037785A1 WO 2018037785 A1 WO2018037785 A1 WO 2018037785A1 JP 2017026325 W JP2017026325 W JP 2017026325W WO 2018037785 A1 WO2018037785 A1 WO 2018037785A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pulley
- force transmission
- transmission device
- relative rotation
- rotation
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H19/00—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
- F16H19/02—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
Definitions
- the present invention relates to a force transmission device using a pulley mechanism and an operation assisting device including such a force transmission device.
- a human-mounted robot has been known as a motion assist device that supports or assists the motion of a healthy person or a disabled person.
- the human body-mounted robot includes, for example, a joint portion to be worn by a user, a sensor for detecting the user's intention or state, or a surrounding situation, an actuator that applies rotational torque to the joint portion, and a control device. It is configured with.
- an actuator includes a motor and a transmission that converts high-speed rotation of the motor into low-speed rotation suitable for human movement.
- the transmission transmits the rotation of the motor to the joint at a gear ratio of 1/50 to 1/200, for example.
- the actuator is configured by combining, for example, a harmonic drive (registered trademark) or a worm gear and a DC motor.
- a robot that uses a force transmission device having a plurality of pulleys and a flexible force transmission member such as a cable, a wire, or a belt for rotationally driving a joint portion.
- a force transmission device having a pulley and a flexible force transmission member has an advantage that the degree of freedom in the layout of the actuator can be increased.
- such a force transmission device needs to be adjusted so that the tension of the force transmission member is kept high to a predetermined level so that the flexible force transmission member does not come off the pulley.
- Patent Document 1 discloses a robot arm mechanism having a tension adjustment mechanism constituted by a spring or an actuator between an actuator in which a pulley around which a wire is wound is attached to a rotating shaft and a pedestal portion. It is disclosed. In such a robot arm mechanism, loosening of the wire of the wire drive system can be prevented, and the wire can be prevented from coming off the pulley.
- the tension adjusting mechanism in the robot arm mechanism described in Patent Document 1 moves the entire actuator that rotates the pulley around which the wire is wound, thereby preventing a rapid tension change of the wire. For this reason, the tension adjusting mechanism has to secure a space in which the actuator and the pulley can be moved.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a novel, capable of maintaining the tension of a flexible force transmission member without moving the positions of an actuator and a pulley. Another object of the present invention is to provide an improved force transmission device and motion assist device.
- a first pulley, a second pulley, and a flexible force transmission member that spans at least the first pulley and the second pulley. And relative rotation in the opposite direction, allowing relative rotation of the first pulley in the same direction as the winding direction of the force transmission member wound around the first pulley with respect to the rotation shaft supporting the first pulley.
- a load that applies a load to the first pulley so as to cause the first pulley to rotate relative to a rotation shaft that supports the one-way clutch that prevents rotation and a rotation shaft that supports the first pulley.
- An application member is provided.
- a wearing tool that is attached to a user's human body and has a joint portion that connects the first member and the second member so as to be relatively rotatable, the first member, and the second member.
- An actuator that generates power for rotating the members of the first member, a first pulley, a second pulley, a flexible force transmission member that spans at least the first pulley and the second pulley, and a first pulley.
- a one-way clutch that allows relative rotation of the first pulley in one direction around the axis with respect to the rotating shaft to be supported and prevents relative rotation in the other direction, and an axis with respect to the rotating shaft that supports the first pulley
- a force applying device that includes a load applying member that applies a load to the first pulley so as to relatively rotate in one direction around the first pulley, and that transmits power generated from the actuator to the joint portion.
- the tension of the flexible force transmission member can be maintained without moving the positions of the actuator and the pulley. Therefore, an increase in size of the force transmission device or the operation assisting device can be suppressed.
- FIG. 1 is a perspective view showing the force transmission device 10
- FIG. 2 is a partial cross-sectional view for explaining the configuration of the force transmission device 10
- FIG. 3 is for explaining the configuration of the force transmission device 10.
- FIG. 3 for easy understanding, the first pulley 11 and the second pulley 21 supported by the same rotating shaft 41 are shown separately.
- the force transmission device 10 includes a rotation shaft 41 of the actuator 40, a first pulley 11 and a second pulley 21 supported by the rotation shaft 41, a wire 35 as a flexible force transmission member, and a wire 35. And a third pulley 31 to which the rotation of the first pulley 11 or the second pulley 21 is transmitted, and an output shaft 51 that supports the third pulley 31.
- the actuator 40 is a source of power transmitted by the force transmission device 10 and is driven and controlled by a control device (not shown).
- a rotary motor such as a servo motor or a stepping motor is used as the actuator 40, but the actuator 40 is not limited to such an example.
- the rotation shaft 41 outputs a rotation torque generated by the actuator 40.
- the actuator 40 may output rotational torque to the rotary shaft 41 via a reduction gear mechanism (not shown).
- the first pulley 11 and the second pulley 21 are supported by a common rotating shaft 41. Accordingly, one of the first pulley 11 and the second pulley 21 rotates with one degree of freedom in synchronization with the rotation of the other pulley.
- the first pulley 11 and the second pulley 21 each have a groove (not shown) around which the wire 35 is wound around the circumferential surface. Both ends of the wire 35 are wound around the first pulley 11 and the second pulley 21, and the end of the wire 35 is fixed.
- the winding direction of the wire 35 around the first pulley 11 is opposite to the winding direction of the wire 35 around the second pulley 21.
- the wire 35 is wound around the first pulley 11 in the clockwise direction, while being wound around the second pulley 21 in the counterclockwise direction. For this reason, when the actuator 40 is driven, the wire 35 is led out from one of the first pulley 11 or the second pulley 21, while the wire 35 is wound around the other pulley.
- the winding diameter of the wire 35 with respect to the first pulley 11 and the second pulley 21 is the same. Basically, the lead-out length of the wire 35 from one pulley and the winding length of the wire 35 to the other pulley are the same. It becomes.
- the wire 35 from the first pulley 11 to the second pulley 21 is wound around the third pulley 31 supported by the output shaft 51.
- the third pulley 31 is fixed to the output shaft 51, and the output shaft 51 rotates in synchronization with the rotation of the third pulley 31. Therefore, when the rotation shaft 41 rotates by the rotation torque of the actuator 40 and the first pulley 11 and the second pulley 21 rotate, the third pulley 31 is rotated via the wire 35 by the frictional force, and the output shaft 51 rotates. Thereby, the rotational torque output from the actuator 40 is output from the output shaft 51.
- the ratio (speed) between the rotation speed of the rotation shaft 41 and the rotation speed of the output shaft 51. Ratio) can be set to an appropriate ratio. Further, in the force transmission device 10 according to the present embodiment, since the axial direction of the rotary shaft 41 and the axial direction of the output shaft 51 are parallel, an increase in friction between the wire 35 and each pulley is suppressed. The reduction in power transmission efficiency is suppressed.
- the tension holding mechanism maintains the tension of the wire 35 high so that the wire 35 does not come off from any of the first pulley 11, the second pulley 21, or the third pulley 31 due to the slack of the wire 35. It is a mechanism to do. In particular, the wire 35 tends to be stretched or slack with time, and may be detached from any pulley.
- the tension holding mechanism can automatically maintain the tension in accordance with the elongation or slack of the wire 35 without requiring manual adjustment of the tension of the wire 35 by a user or the like.
- the tension holding mechanism is provided in each of the first pulley 11 and the second pulley 21 and includes a one-way clutch and a torsion spring as a load applying member.
- the first pulley 11 is supported on the rotary shaft 41 via the first one-way clutch 13.
- the first one-way clutch 13 allows relative rotation of the first pulley 11 in one direction around the axis with respect to the rotation shaft 41 and prevents relative rotation in the other direction.
- the first one-way clutch 13 allows relative rotation of the first pulley 11 in the counterclockwise direction with respect to the rotation shaft 41.
- the first one-way clutch 13 prevents relative rotation of the first pulley 11 in the clockwise direction with respect to the rotation shaft 41.
- the direction in which the first pulley 11 can rotate relative to the rotation shaft 41 is the same as the winding direction of the wire 35 on the first pulley 11.
- the first torsion spring 15 biases the first pulley 11 with respect to the rotation shaft 41 in a direction in which relative rotation is allowed.
- One end of the first torsion spring 15 is fixed to the first pulley 11, the other end is fixed to the rotating shaft 41, and the central portion is wound around the rotating shaft 41.
- the first torsion spring 15 always applies a tensile torque T ⁇ b> 1 to the first pulley 11 in the counterclockwise direction.
- the second pulley 21 is supported on the rotating shaft 41 via the second one-way clutch 23.
- the second one-way clutch 23 allows relative rotation of the second pulley 21 in one direction around the axis with respect to the rotation shaft 41 and prevents relative rotation in the other direction.
- the second one-way clutch 23 allows relative rotation of the second pulley 21 in the clockwise direction with respect to the rotation shaft 41.
- the second one-way clutch 23 prevents relative rotation of the second pulley 21 in the counterclockwise direction with respect to the rotation shaft 41.
- the direction in which the second pulley 21 can rotate relative to the rotation shaft 41 is the same as the winding direction of the wire 35 on the second pulley 21. That is, the first pulley 11 and the second pulley 21 are allowed to rotate relative to the common rotating shaft 41 in the opposite direction.
- the second torsion spring 25 biases the second pulley 21 with respect to the rotation shaft 41 in a direction in which relative rotation is allowed.
- One end of the second torsion spring 25 is fixed to the second pulley 21, the other end is fixed to the rotating shaft 41, and the central portion is wound around the rotating shaft 41.
- the second torsion spring 25 always applies a tensile torque T ⁇ b> 2 to the second pulley 21 in the clockwise direction.
- the one-way clutch a conventionally known one-way clutch such as a sprag type or a cam type can be appropriately used.
- the spring loads of the first torsion spring 15 and the second torsion spring 25 can be appropriately set according to a desired tension generated in the wire 35.
- the first load applying member and the second load applying member are not limited to the torsion springs, and are always the first pulley 11 or the second pulley within a period corresponding to the extension amount of the wire 35 or a range of relative rotation. 21 can be applied as long as the tensile torque T1, T2 can be continuously applied to the belt 21.
- a preload is applied to the wire 35 in advance in a state where the actuator 40 before use is not driven, and the tension of the wire 35 is maintained.
- the preload may be provided manually.
- the rotating shaft 41 is rotated by the actuator 40, the first pulley 11 and the second pulley 21 rotate as follows.
- the first pulley 11 When the wire 35 is stretched or slackened due to long-term use, the first pulley 11 is rotated relative to the rotation shaft 41 in the counterclockwise direction by the tensile torque T1 of the first torsion spring 15. Be made.
- the second pulley 21 When the wire 35 is stretched or slackened, the second pulley 21 is rotated relative to the rotating shaft 41 in the clockwise direction by the tensile torque T2 of the second torsion spring 25. Thereby, the tension of the wire 35 is maintained.
- the tension holding mechanism configured using the one-way clutch and the load applying member
- the tension of the wire 35 can be held without moving the position of the actuator 40 and each pulley in the space.
- the force transmission device 10 has a force transmission device 10 that has a force transmission device 10 that has a tension higher than that of the case where the tension of the wire 35 is maintained using an additional actuator, a separately arranged component, automatic control software, or the like. An increase in mass can be suppressed.
- the tension holding mechanism configured using the one-way clutch and the load applying member the tension of the wire 35 can be held with a relatively simple configuration.
- FIG. 4 is a partial cross-sectional view for explaining the configuration of the force transmission device 60 according to the first modification, and corresponds to FIG. 2 in the above embodiment.
- FIG. 5 is a schematic diagram for explaining the configuration of the force transmission device 60. In FIG. 5, for easy understanding, the first pulley 61 and the second pulley 71 supported by the same rotating shaft 41 are shown separately.
- the first load application member and the second load application member for urging the first pulley 61 or the second pulley 71 in a predetermined direction are arranged as described above. This is different from the force transmission device 10 according to the embodiment.
- the first pulley 61 has an annular projecting portion 62 projecting in the axial direction.
- One end side of a first constant tension spring 65 as a first load applying member is wound around the projecting portion 62. Further, the other end side of the first constant tension spring 65 is wound around the support shaft 59.
- the first constant tension spring 65 biases the first pulley 61 with respect to the rotation shaft 41 in a direction in which relative rotation is allowed.
- the first constant tension spring 65 always applies a tensile torque T1 to the first pulley 61 in the counterclockwise direction. Therefore, when the wire 35 is stretched or slackened, the first pulley 61 is rotated relative to the rotation shaft 41 in the counterclockwise direction by the tensile torque T1 of the first constant tension spring 65, and The tension of the wire 35 closer to the first pulley 61 than the third pulley 31 is maintained.
- the second pulley 71 has an annular projecting portion 72 projecting in the axial direction.
- One end side of a second constant tension spring 75 as a first load applying member is wound around the projecting portion 72.
- the other end side of the second constant tension spring 75 is wound around the support shaft 59 in the same manner as the first constant tension spring 65.
- the other end side of the second constant tension spring 75 may be supported by a support shaft different from the support shaft 59 that supports the other end side of the first constant tension spring 65.
- the second constant tension spring 75 biases the second pulley 71 in the direction in which relative rotation is allowed with respect to the rotation shaft 41.
- the second constant tension spring 75 always applies a tensile torque T2 to the second pulley 71 in the clockwise direction. Therefore, when the wire 35 is stretched or slackened, the second pulley 71 is rotated relative to the rotation shaft 41 in the clockwise direction by the tensile torque T2 of the second constant tension spring 75, and the first pulley The tension of the wire 35 closer to the second pulley 71 than the third pulley 31 is maintained. Thereby, it can prevent that the wire 35 remove
- FIG. 6 is a schematic diagram for explaining a configuration of a force transmission device 90 according to a second modification.
- the first pulley 91 and the second pulley 21 are supported by different first and second rotating shafts 47 and 49, respectively.
- a first gear 99 provided coaxially is fixed to the first rotating shaft 47
- a second gear 29 provided coaxially is fixed to the second rotating shaft 49.
- the first gear 99 and the second gear 29 are in mesh with each other, and the other rotary shaft and gear rotate in one degree of freedom in synchronization with the rotation of the one rotary shaft and gear.
- the ratio of the number of teeth of the second gear 29 to the first gear 99 is set equal to the ratio of the radius of the second pulley 21 to the first pulley 91, that is, the reduction ratio of the pulley. .
- the first pulley 91 and the second pulley 21 rotate in directions opposite to each other.
- the winding direction of the wire 35 on the first pulley 91 is the same clockwise direction as the winding direction of the wire 35 on the second pulley 21.
- the first one-way clutch 93 interposed between the first pulley 91 and the first rotating shaft 47 has the first pulley 91 in the clockwise direction with respect to the first rotating shaft 47. Relative rotation is allowed and relative rotation of the first pulley 91 in the counterclockwise direction is prevented.
- the first torsion spring 95 as the first load applying member urges the first pulley 91 in the direction in which relative rotation is allowed with respect to the first rotating shaft 47.
- the second one-way clutch 23 interposed between the second pulley 21 and the second rotation shaft 49 is connected to the second pulley 21 in the clockwise direction with respect to the second rotation shaft 49. Relative rotation of the second pulley 21 is prevented, and relative rotation of the second pulley 21 in the counterclockwise direction is prevented. Then, the second torsion spring 25 as the second load applying member biases the second pulley 21 in the direction in which relative rotation is allowed with respect to the second rotation shaft 49.
- the force transmission device 90 has one actuator that rotationally drives either one of the first rotating shaft 47 or the second rotating shaft 49.
- an actuator for rotationally driving the first rotary shaft 47 is provided, when the first rotary shaft 47 is rotated counterclockwise, the first pulley 91 rotates clockwise with respect to the first rotary shaft 47. Will rotate. For this reason, the first pulley 91 is not rotated by the rotational torque of the first rotating shaft 47 due to the function of the first one-way clutch 93.
- the first pulley 91 is fed out.
- the amount of the wire 35 is equal to the amount of the wire 35 wound around the second pulley 21, and the tension of the wire 35 operates without changing.
- the first pulley 91 is rotated clockwise by the rotation torque of the first rotation shaft 47, and the wire 35 is It is wound around a pulley 91.
- the second rotary shaft 49 rotates counterclockwise by the rotational torque of the first rotary shaft 47 transmitted through the first gear 99 and the second gear 29, the second one-way Due to the function of the clutch 23, the second pulley 21 is not rotated by the rotational torque of the second rotating shaft 49.
- the second pulley 21 rotates counterclockwise due to the tension of the wire 35 wound around the first pulley 91.
- the amount of the wire 35 sent out from the first pulley 91 and the amount of the wire 35 wound around the second pulley 21 are equal.
- the first pulley 91 When the wire 35 is stretched or slackened due to long-term use, the first pulley 91 is rotated in the clockwise direction with respect to the second rotation shaft 49 by the tensile torque T1 of the first torsion spring 95. The wire 35 is relatively rotated, and the tension of the wire 35 closer to the first pulley 91 than the third pulley 31 is maintained.
- the second pulley 21 When the wire 35 is stretched or loosened, the second pulley 21 is rotated relative to the second rotation shaft 49 in the clockwise direction by the tensile torque T2 of the second torsion spring 25. The tension of the wire 35 on the second pulley 21 side relative to the third pulley 31 is maintained. Thereby, it can prevent that the wire 35 remove
- FIG. 7 is an explanatory diagram illustrating an example of a human body-mounted robot 100 that rotates the joint portion 120 by the power generated by the actuator 40 via the force transmission device 10.
- the illustrated human-body-mounted robot 100 includes a joint portion 120, and a first arm portion 112 and a second arm portion 114 that are coupled to be rotatable about the joint portion 120.
- the upper part of the first arm portion 112 is fixed to a mounting belt 102 that is wrapped around the waist of a human body.
- the lower portion of the second arm portion 114 is fixed to a mounting belt 104 that is wound around the thigh of the human body.
- the relative rotation between the first arm part 112 and the second arm part 114 around the joint part 120 is operated by the actuator 40 via the force transmission device 10 and the cables 132 and 134.
- two cables 132 and 134 are connected to the joint portion 120, and one of the cables is advanced toward the joint portion 120 and the other cable is retracted from the joint portion 120, whereby the first arm
- the second arm portion 114 rotates clockwise or counterclockwise with respect to the portion 112.
- the cables 132 and 134 may be a single cable that is wound around the joint 120 and led out.
- the cables 132 and 134 are respectively fixed or wound around a fourth pulley 55 supported by the output shaft 51 that supports the third pulley 31 of the force transmission device 10.
- the cables 132 and 134 may be loop-shaped cables wound around the fourth pulley 55 and the joint portion 120.
- the second arm unit 114 rotates about the joint unit 120 clockwise by rotating the joint unit 120 clockwise as illustrated.
- the operation of raising the foot by the user is assisted.
- a control device not shown
- the output shaft 51 and the fourth pulley 55 are rotated clockwise.
- the cable 132 is retracted from the joint portion 120, while the cable 134 is led out toward the joint portion 120.
- the joint portion 120 rotates clockwise
- the second arm portion 114 rotates clockwise around the joint portion 120, so that a force that assists the user in raising the foot is generated.
- the control device (not shown) rotates the output shaft 51 and the fourth pulley 55 counterclockwise by driving the actuator 40.
- the cable 134 is now retracted from the joint portion 120, while the cable 132 is led out toward the joint portion 120.
- the joint portion 120 rotates counterclockwise, and the second arm portion 114 rotates counterclockwise around the joint portion 120, so that a force that assists the user to lower the foot is generated.
- the human body wearing robot 100 can automatically eliminate the elongation and slack of the wire 35 that transmits the power generated by the actuator 40 to the output shaft 51 in the force transmission device 10.
- the wire 35 can be prevented from coming off from the second pulley 21 or the third pulley 31.
- the human body-mounted robot 100 can suppress a decrease in power transmission efficiency from the actuator 40 to the joint portion 120. Therefore, the controllability of the rotational drive of the joint 120 can be maintained.
- a Bowden cable may be used as the cables 132 and 134 for rotating the joint portion 120.
- one end side of the protective covers 131 and 133 outside the cables 132 and 134 of the Bowden cable is fixed to the fixing unit 113 at a position different from the joint unit 120 in the human body wearing robot 100.
- one end sides of the protective covers 131 and 133 are fixed to the fixing portion 113 provided on the first arm portion 112, but may be fixed to a part of the mounting belt 102.
- the other ends of the protective covers 131 and 133 are fixed to a fixing portion (not shown) in the force transmission device 10.
- the actuator 40 and the force transmission device 10 can be arranged at a position away from the joint portion 120.
- the actuator 40 and the force transmission device 10 may be provided in the form of a backpack that the user carries on the back, or may be provided in the form of a hand-held or self-propelled cart.
- the human body-mounted robot (motion assisting device) 100 includes the above-described force transmission device 10, the power transmission of the force transmission device 10 is suppressed while suppressing the enlargement of the human body-mounted robot 100.
- the slack of the wire 35 as a member can be suppressed. Therefore, it is possible to suppress a reduction in power transmission efficiency to the joint portion 120 of the human body-mounted robot 100, and maintain controllability of the rotational drive of the joint portion 120.
- the force transmission device 10 according to the first embodiment includes the tension holding mechanism including the one-way clutch and the load applying member in each of the first pulley 11 and the second pulley 21.
- the force transmission device 210 according to the embodiment is different from the force transmission device 10 according to the first embodiment in that a tension holding mechanism including the one-way clutch 13 and the load applying member 15 is provided only in the first pulley 11.
- a tension holding mechanism including the one-way clutch 13 and the load applying member 15 is provided only in the first pulley 11.
- FIG. 8 is a partial cross-sectional view for explaining the configuration of the force transmission device 210
- FIG. 9 is a schematic diagram for explaining the configuration of the force transmission device 210. 8 to 9 show the second one-way clutch 23 and the second torsion spring 25 of the force transmission device 10 according to the first embodiment shown in FIGS. The example which fixed the pulley 221 to the rotating shaft 41 is shown. In FIG. 9, for easy understanding, the first pulley 11 and the second pulley 221 supported by the same rotating shaft 41 are shown separately.
- the configuration of the first pulley 11 having the one-way clutch 13 and the load applying member 15 can be the same as that of the first pulley 11 of the force transmission device 10 according to the first embodiment.
- the second pulley 221 is fixed to the rotating shaft 41 of the actuator. That is, the rotation shaft 41 and the second pulley 221 are configured not to rotate relative to each other. Except for this point, the configuration can be the same as the configuration of the force transmission device 10 according to the first embodiment.
- a preload is applied to the torsion spring 15 in advance in a state where the actuator before use is not driven, and the first pulley 11 is counterclockwise as shown in FIG.
- a tensile torque T1 that causes relative rotation in the rotating direction is generated.
- the preload may be provided manually. Thereby, the tension of the wire 35 is maintained when the actuator is in an inoperative state.
- the rotating shaft 41 is rotated by the actuator, the first pulley 11 and the second pulley 221 rotate as follows.
- the first pulley 11 When the wire 35 is stretched or slackened due to long-term use, the first pulley 11 is rotated relative to the rotating shaft 41 in the counterclockwise direction by the tensile torque T1 of the torsion spring 15; The tension of the wire 35 is maintained.
- the tension of the wire 35 can be held with a relatively simple configuration. Thereby, the enlargement of the force transmission device 210 can be suppressed. Further, according to the force transmission device 210 according to the present embodiment, since the one-way clutch and the torsion spring are provided in only one pulley, the mass of the force transmission device 210 can be further suppressed.
- the 1st modification and the 2nd modification of the force transmission apparatus 10 which concern on 1st Embodiment are applicable. That is, a constant tension spring may be used instead of the torsion spring 15, and the first pulley 11 and the second pulley 221 may be supported by different rotating shafts that are gear-connected to each other.
- a force transmission device 250 according to the third embodiment will be described with reference to FIG.
- the force transmission devices 10 and 210 according to the first and second embodiments use a torsion spring as a load applying member, but the force transmission device 250 according to the third embodiment is a load It differs from the force transmission devices 10 and 210 according to the first embodiment and the second embodiment in that a brake force generation member 251 is used as the application member.
- a brake force generation member 251 is used as the application member.
- FIG. 10 is a schematic diagram for explaining the configuration of the force transmission device 250.
- FIG. 10 shows an example in which the torsion spring 15 in the force transmission device according to the second embodiment shown in FIGS. 8 and 9 is eliminated and a brake force generating member 251 is newly provided.
- the first pulley 211 and the second pulley 221 supported by the same rotation shaft 41 are shown separately. Further, in FIG. 10, illustration of the wires 35 arranged in the grooves on the peripheral surfaces of the first pulley 211, the second pulley 221, and the third pulley 31 is omitted.
- the brake force generation member 251 is fixed to, for example, a housing that accommodates the force transmission device 250 and partly contacts the first pulley 211.
- the first pulley 211 rotates, the first pulley 211 can rotate while generating rotational resistance due to frictional force between the first pulley 211 and the brake force generating member 251.
- this frictional force is caused by the rotational torque of the first pulley 211 when the actuator is driven, while the relative rotation between the first pulley 211 and the brake force generation member 251 becomes impossible when the actuator is not driven.
- the first pulley 211 and the brake force generation member 251 are set to a size that allows relative rotation.
- the material of the brake force generating member 251 is not particularly limited, and may be, for example, resin, rubber, metal, or wood.
- the brake force generating member 251 is in contact with the peripheral surface of the first pulley 211, but the position where the brake force generating member 251 is in contact with the first pulley 211 may be a side surface. Good. Except for this point, the configuration can be the same as the configuration of the force transmission device 210 according to the second embodiment.
- the first pulley 211 is rotated counterclockwise in FIG. 10 without driving the actuator before use.
- the rotation of the first pulley 211 may be performed manually.
- the first pulley 211 and the rotating shaft 41 rotate relative to each other without rotating the rotating shaft 41 by the function of the one-way clutch 13.
- the second pulley 221 fixed to the rotating shaft 41 does not rotate.
- the first pulley 211 that is relatively rotated is held at the position after the rotation by the frictional force generated between the first pulley 211 and the brake force generating member 251. Thereby, the tension
- the rotating shaft 41 is rotated by the actuator, the first pulley 211 and the second pulley 221 rotate as follows.
- the force transmission device 250 according to the present embodiment can maintain the tension of the wire 35 by rotating the rotating shaft 41 clockwise by the actuator during use. Therefore, according to the force transmission device 250 according to the present embodiment, the tension of the wire 35 can be held with a relatively simple configuration, and an increase in size of the force transmission device 250 can be suppressed.
- the force transmission device 250 according to the present embodiment is compared with a case where the tension of the wire 35 is maintained using an additional actuator, a separately arranged component, automatic control software, or the like. The mass of 210 can be further suppressed.
- the second modification of the force transmission device 10 according to the first embodiment can also be applied to the force transmission device 250 according to the present embodiment. That is, the first pulley 211 and the second pulley 221 may be supported by different rotating shafts that are gear-connected to each other. Even when the torsion spring provided in each of the first pulley 11 and the second pulley 21 of the force transmission device 10 according to the first embodiment is replaced with a brake force generating member, The tension of the wire 35 is maintained by rotating the rotating shaft 41 in both clockwise and counterclockwise directions.
- the brake force generation member 251 may be fixed to a housing or the like and not always in contact with the first pulley 211, and may be configured to be able to advance and retreat toward the first pulley 211. For example, during normal times, the brake force generating member 251 is separated from the first pulley 211, and when the slack of the wire 35 of the force transmission device 250 is detected or at an arbitrary timing, the brake force is generated manually or by a drive mechanism. The generating member 251 may be moved to a position in contact with the first pulley 211 to restore the tension of the wire 35. With this configuration, the rotational resistance of the first pulley 211 while the wire 35 is not slackened can be reduced, and the load on the actuator can be reduced.
- the brake force generation member 251 may not be configured to be in direct contact with the first pulley 211.
- the first pulley 211 may be configured to give rotational resistance using an electromagnetic coil or the like that can generate a magnetic force when energized.
- the force transmission device As an application example of the force transmission device, an operation assisting device that generates an assisting force for the user's operation is illustrated, but the present invention is not limited to such an example.
- the force transmission device according to the present invention is applicable to various devices using a plurality of pulleys and a flexible force transmission member.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Robotics (AREA)
- Manipulator (AREA)
- Rehabilitation Tools (AREA)
Abstract
Provided is a force transmission device capable of holding the tension of a flexible force transmission member without changing the positions of an actuator and pulleys. Also provided is an operation auxiliary device. This force transmission device comprises: a first pulley; a second pulley; a flexible force transmission member which is stretched between at least the first pulley and the second pulley; a one-way clutch which allows the relative rotation of the first pulley in the same direction as the winding direction of the force transmission member with respect to the rotary shaft supporting the first pulley; and a load applying member which applies a load to the first pulley so that the first pully is relatively rotated in the direction in which the relative rotation is allowed.
Description
本発明は、プーリ機構を用いた力伝達装置、及び、そのような力伝達装置を備えた動作補助装置に関する。
The present invention relates to a force transmission device using a pulley mechanism and an operation assisting device including such a force transmission device.
近年、健常者あるいは障害者の動作を支援あるいは補助する動作補助装置としての人体装着型ロボットが知られている。人体装着型ロボットは、例えば、ユーザに装着される関節部と、ユーザの意図又は状態あるいは周囲の状況を検知するためのセンサと、関節部に対して回転トルクを付与するアクチュエータと、制御装置とを備えて構成される。一般的に、アクチュエータは、モータと、モータの高速回転を人体の動作に適した低速回転に変換する変速機とを備える。変速機は、例えば、1/50~1/200の変速比で、モータの回転を関節部に伝達する。アクチュエータは、例えば、ハーモニックドライブ(登録商標)又はウォームギヤとDCモータとを組み合わせて構成される。
In recent years, a human-mounted robot has been known as a motion assist device that supports or assists the motion of a healthy person or a disabled person. The human body-mounted robot includes, for example, a joint portion to be worn by a user, a sensor for detecting the user's intention or state, or a surrounding situation, an actuator that applies rotational torque to the joint portion, and a control device. It is configured with. In general, an actuator includes a motor and a transmission that converts high-speed rotation of the motor into low-speed rotation suitable for human movement. The transmission transmits the rotation of the motor to the joint at a gear ratio of 1/50 to 1/200, for example. The actuator is configured by combining, for example, a harmonic drive (registered trademark) or a worm gear and a DC motor.
かかる人体装着型ロボットにおいて、複数のプーリと、関節部を回転駆動させるためのケーブルやワイヤ、ベルト等の可撓性の力伝達部材とを有する力伝達装置を用いたロボットがある。プーリ及び可撓性の力伝達部材を有する力伝達装置は、アクチュエータのレイアウトの自由度を高められるという利点を有する。一方、かかる力伝達装置は、可撓性の力伝達部材がプーリから外れないように、力伝達部材の張力が所定程度に高く保たれるように調整する必要がある。
In such a human-mounted robot, there is a robot that uses a force transmission device having a plurality of pulleys and a flexible force transmission member such as a cable, a wire, or a belt for rotationally driving a joint portion. A force transmission device having a pulley and a flexible force transmission member has an advantage that the degree of freedom in the layout of the actuator can be increased. On the other hand, such a force transmission device needs to be adjusted so that the tension of the force transmission member is kept high to a predetermined level so that the flexible force transmission member does not come off the pulley.
例えば、特許文献1には、回転軸に、ワイヤが巻き掛けられたプーリが取り付けられたアクチュエータと、台座部との間に、ばね、もしくはアクチュエータにより構成されるテンション調整機構を有するロボットアーム機構が開示されている。かかるロボットアーム機構では、ワイヤ駆動系のワイヤの弛みが防止され、ワイヤがプーリから外れることを防止することができる。
For example, Patent Document 1 discloses a robot arm mechanism having a tension adjustment mechanism constituted by a spring or an actuator between an actuator in which a pulley around which a wire is wound is attached to a rotating shaft and a pedestal portion. It is disclosed. In such a robot arm mechanism, loosening of the wire of the wire drive system can be prevented, and the wire can be prevented from coming off the pulley.
しかしながら、特許文献1に記載のロボットアーム機構におけるテンション調整機構は、ワイヤが巻き掛けられたプーリを回転させるアクチュエータ全体を移動させて、ワイヤの急激な張力変化を防ぐようになっている。このため、テンション調整機構は、アクチュエータ及びプーリを移動させ得るスペースを確保しなければならなかった。
However, the tension adjusting mechanism in the robot arm mechanism described in Patent Document 1 moves the entire actuator that rotates the pulley around which the wire is wound, thereby preventing a rapid tension change of the wire. For this reason, the tension adjusting mechanism has to secure a space in which the actuator and the pulley can be moved.
本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、アクチュエータ及びプーリの位置を移動させることなく、可撓性の力伝達部材の張力を保持可能な、新規かつ改良された力伝達装置及び動作補助装置を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a novel, capable of maintaining the tension of a flexible force transmission member without moving the positions of an actuator and a pulley. Another object of the present invention is to provide an improved force transmission device and motion assist device.
上記課題を解決するために、本発明のある観点によれば、第1のプーリと、第2のプーリと、少なくとも第1のプーリ及び第2のプーリに掛け渡される可撓性の力伝達部材と、第1のプーリを支持する回転軸に対して、第1のプーリに巻き付けられた力伝達部材の巻き付け方向と同一方向への第1のプーリの相対回転を許容し、反対方向への相対回転を阻止するワンウェイクラッチと、第1のプーリを支持する回転軸に対して、相対回転が許容されている方向へと第1のプーリを相対回転させるように第1のプーリに負荷を与える負荷付与部材と、を備える、力伝達装置が提供される。
In order to solve the above-described problems, according to an aspect of the present invention, a first pulley, a second pulley, and a flexible force transmission member that spans at least the first pulley and the second pulley. And relative rotation in the opposite direction, allowing relative rotation of the first pulley in the same direction as the winding direction of the force transmission member wound around the first pulley with respect to the rotation shaft supporting the first pulley. A load that applies a load to the first pulley so as to cause the first pulley to rotate relative to a rotation shaft that supports the one-way clutch that prevents rotation and a rotation shaft that supports the first pulley. An application member is provided.
また、本発明の別の観点によれば、ユーザの人体に装着され、第1の部材及び第2の部材を相対回転可能に連結する関節部を有する装着具と、第1の部材及び第2の部材を相対回転させる動力を発生するアクチュエータと、第1のプーリ、第2のプーリ、少なくとも第1のプーリ及び第2のプーリに掛け渡される可撓性の力伝達部材、第1のプーリを支持する回転軸に対して軸回りの一方向への第1のプーリの相対回転を許容し他方向への相対回転を阻止するワンウェイクラッチ、及び第1のプーリを支持する回転軸に対して軸回りの一方向へと相対回転させるように第1のプーリに負荷を与える負荷付与部材、を有し、アクチュエータから発生した動力を関節部に伝達する力伝達装置と、を備えた、動作補助装置が提供される。
According to another aspect of the present invention, a wearing tool that is attached to a user's human body and has a joint portion that connects the first member and the second member so as to be relatively rotatable, the first member, and the second member. An actuator that generates power for rotating the members of the first member, a first pulley, a second pulley, a flexible force transmission member that spans at least the first pulley and the second pulley, and a first pulley. A one-way clutch that allows relative rotation of the first pulley in one direction around the axis with respect to the rotating shaft to be supported and prevents relative rotation in the other direction, and an axis with respect to the rotating shaft that supports the first pulley A force applying device that includes a load applying member that applies a load to the first pulley so as to relatively rotate in one direction around the first pulley, and that transmits power generated from the actuator to the joint portion. Is provided.
以上説明したように本発明によれば、アクチュエータ及びプーリの位置を移動させることなく、可撓性の力伝達部材の張力を保持することができる。したがって、力伝達装置あるいは動作補助装置の大型化を抑制することができる。
As described above, according to the present invention, the tension of the flexible force transmission member can be maintained without moving the positions of the actuator and the pulley. Therefore, an increase in size of the force transmission device or the operation assisting device can be suppressed.
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
<<1.第1の実施の形態>>
<1-1.力伝達装置の全体構成例>
図1~図3を参照して、第1の実施の形態に係る力伝達装置10について説明する。図1は、力伝達装置10を示す斜視図であり、図2は、力伝達装置10の構成を説明するための部分断面図であり、図3は、力伝達装置10の構成を説明するための模式図である。図3においては、理解を容易にするために、同一の回転軸41に支持された第1のプーリ11及び第2のプーリ21が分離して示されている。 << 1. First embodiment >>
<1-1. Example of overall configuration of force transmission device>
Aforce transmission device 10 according to a first embodiment will be described with reference to FIGS. FIG. 1 is a perspective view showing the force transmission device 10, FIG. 2 is a partial cross-sectional view for explaining the configuration of the force transmission device 10, and FIG. 3 is for explaining the configuration of the force transmission device 10. FIG. In FIG. 3, for easy understanding, the first pulley 11 and the second pulley 21 supported by the same rotating shaft 41 are shown separately.
<1-1.力伝達装置の全体構成例>
図1~図3を参照して、第1の実施の形態に係る力伝達装置10について説明する。図1は、力伝達装置10を示す斜視図であり、図2は、力伝達装置10の構成を説明するための部分断面図であり、図3は、力伝達装置10の構成を説明するための模式図である。図3においては、理解を容易にするために、同一の回転軸41に支持された第1のプーリ11及び第2のプーリ21が分離して示されている。 << 1. First embodiment >>
<1-1. Example of overall configuration of force transmission device>
A
力伝達装置10は、アクチュエータ40の回転軸41と、回転軸41に支持された第1のプーリ11及び第2のプーリ21と、可撓性の力伝達部材としてのワイヤ35と、ワイヤ35を介して第1のプーリ11又は第2のプーリ21の回転が伝達される第3のプーリ31と、第3のプーリ31を支持する出力軸51とを備える。
The force transmission device 10 includes a rotation shaft 41 of the actuator 40, a first pulley 11 and a second pulley 21 supported by the rotation shaft 41, a wire 35 as a flexible force transmission member, and a wire 35. And a third pulley 31 to which the rotation of the first pulley 11 or the second pulley 21 is transmitted, and an output shaft 51 that supports the third pulley 31.
アクチュエータ40は、力伝達装置10により伝達される動力の発生源であり、図示しない制御装置により駆動制御される。アクチュエータ40としては、例えば、サーボモータやステッピングモータ等の回転モータが用いられるが、かかる例に限定されない。回転軸41は、アクチュエータ40により生成される回転トルクを出力する。アクチュエータ40は、図示しない減速ギヤ機構を介して、回転軸41に回転トルクを出力してもよい。
The actuator 40 is a source of power transmitted by the force transmission device 10 and is driven and controlled by a control device (not shown). For example, a rotary motor such as a servo motor or a stepping motor is used as the actuator 40, but the actuator 40 is not limited to such an example. The rotation shaft 41 outputs a rotation torque generated by the actuator 40. The actuator 40 may output rotational torque to the rotary shaft 41 via a reduction gear mechanism (not shown).
第1のプーリ11及び第2のプーリ21は、共通の回転軸41に支持されている。したがって、第1のプーリ11及び第2のプーリ21のうちのいずれか一方のプーリは、他方のプーリの回転に同期して1自由度で回転する。第1のプーリ11及び第2のプーリ21は、それぞれ周面に、ワイヤ35が巻き掛けられる図示しない溝を有する。第1のプーリ11及び第2のプーリ21には、それぞれワイヤ35の両端側が巻き掛けられて、ワイヤ35の端部が固定されている。第1のプーリ11に対するワイヤ35の巻き付け方向は、第2のプーリ21に対するワイヤ35の巻き付け方向とは反対となっている。
The first pulley 11 and the second pulley 21 are supported by a common rotating shaft 41. Accordingly, one of the first pulley 11 and the second pulley 21 rotates with one degree of freedom in synchronization with the rotation of the other pulley. The first pulley 11 and the second pulley 21 each have a groove (not shown) around which the wire 35 is wound around the circumferential surface. Both ends of the wire 35 are wound around the first pulley 11 and the second pulley 21, and the end of the wire 35 is fixed. The winding direction of the wire 35 around the first pulley 11 is opposite to the winding direction of the wire 35 around the second pulley 21.
具体的に、図1及び図3において、ワイヤ35は、第1のプーリ11に対して時計回りに巻き付けられている一方、第2のプーリ21に対して反時計回りに巻き付けられている。このため、アクチュエータ40を駆動させたときに、第1のプーリ11又は第2のプーリ21のうちのいずれか一方のプーリからワイヤ35が導出される一方、他方のプーリにワイヤ35が巻き付けられる。第1のプーリ11及び第2のプーリ21に対するワイヤ35の巻き付き径は同一であり、基本的には一方のプーリからのワイヤ35の導出長さと他方のプーリへのワイヤ35の巻き付き長さは同一となる。
Specifically, in FIG. 1 and FIG. 3, the wire 35 is wound around the first pulley 11 in the clockwise direction, while being wound around the second pulley 21 in the counterclockwise direction. For this reason, when the actuator 40 is driven, the wire 35 is led out from one of the first pulley 11 or the second pulley 21, while the wire 35 is wound around the other pulley. The winding diameter of the wire 35 with respect to the first pulley 11 and the second pulley 21 is the same. Basically, the lead-out length of the wire 35 from one pulley and the winding length of the wire 35 to the other pulley are the same. It becomes.
第1のプーリ11から第2のプーリ21に至るワイヤ35は、出力軸51に支持された第3のプーリ31に巻き付けられている。第3のプーリ31は、出力軸51に固定されており、出力軸51は第3のプーリ31の回転に同期して回転する。したがって、アクチュエータ40の回転トルクにより回転軸41が回転し、第1のプーリ11及び第2のプーリ21が回転すると、摩擦力によってワイヤ35を介して第3のプーリ31が回転させられ、出力軸51が回転する。これにより、アクチュエータ40から出力された回転トルクが、出力軸51から出力される。
The wire 35 from the first pulley 11 to the second pulley 21 is wound around the third pulley 31 supported by the output shaft 51. The third pulley 31 is fixed to the output shaft 51, and the output shaft 51 rotates in synchronization with the rotation of the third pulley 31. Therefore, when the rotation shaft 41 rotates by the rotation torque of the actuator 40 and the first pulley 11 and the second pulley 21 rotate, the third pulley 31 is rotated via the wire 35 by the frictional force, and the output shaft 51 rotates. Thereby, the rotational torque output from the actuator 40 is output from the output shaft 51.
このとき、第1のプーリ11及び第2のプーリ21の直径と、第3のプーリ31の直径とを異ならせることにより、回転軸41の回転数と出力軸51の回転数との比(速度比)を適宜の比率に設定することができる。また、本実施形態に係る力伝達装置10では、回転軸41の軸方向と、出力軸51の軸方向とが平行となっているために、ワイヤ35と各プーリとの摩擦の増大が抑制され、力の伝達効率の低下が抑制されている。
At this time, by making the diameters of the first pulley 11 and the second pulley 21 different from the diameters of the third pulley 31, the ratio (speed) between the rotation speed of the rotation shaft 41 and the rotation speed of the output shaft 51. Ratio) can be set to an appropriate ratio. Further, in the force transmission device 10 according to the present embodiment, since the axial direction of the rotary shaft 41 and the axial direction of the output shaft 51 are parallel, an increase in friction between the wire 35 and each pulley is suppressed. The reduction in power transmission efficiency is suppressed.
<1-2.張力保持機構>
次に、本実施形態に係る力伝達装置10の張力保持機構の構成について説明する。張力保持機構は、ワイヤ35の弛みにより、ワイヤ35が第1のプーリ11、第2のプーリ21、又は第3のプーリ31のいずれかから外れることのないように、ワイヤ35の張力を高く維持するための機構である。特に、ワイヤ35は、時間の経過とともに伸びや弛みを生じやすく、いずれかのプーリから外れるおそれがある。張力保持機構は、ワイヤ35の張力をユーザ等により手動で調整することを要せずに、ワイヤ35の伸びや弛みに応じて自動で張力を維持可能になっている。 <1-2. Tension retention mechanism>
Next, the configuration of the tension holding mechanism of theforce transmission device 10 according to the present embodiment will be described. The tension holding mechanism maintains the tension of the wire 35 high so that the wire 35 does not come off from any of the first pulley 11, the second pulley 21, or the third pulley 31 due to the slack of the wire 35. It is a mechanism to do. In particular, the wire 35 tends to be stretched or slack with time, and may be detached from any pulley. The tension holding mechanism can automatically maintain the tension in accordance with the elongation or slack of the wire 35 without requiring manual adjustment of the tension of the wire 35 by a user or the like.
次に、本実施形態に係る力伝達装置10の張力保持機構の構成について説明する。張力保持機構は、ワイヤ35の弛みにより、ワイヤ35が第1のプーリ11、第2のプーリ21、又は第3のプーリ31のいずれかから外れることのないように、ワイヤ35の張力を高く維持するための機構である。特に、ワイヤ35は、時間の経過とともに伸びや弛みを生じやすく、いずれかのプーリから外れるおそれがある。張力保持機構は、ワイヤ35の張力をユーザ等により手動で調整することを要せずに、ワイヤ35の伸びや弛みに応じて自動で張力を維持可能になっている。 <1-2. Tension retention mechanism>
Next, the configuration of the tension holding mechanism of the
本実施形態に係る力伝達装置10において、張力保持機構は、第1のプーリ11及び第2のプーリ21それぞれに設けられ、ワンウェイクラッチと、負荷付与部材としてのトーションばねとにより構成されている。
In the force transmission device 10 according to the present embodiment, the tension holding mechanism is provided in each of the first pulley 11 and the second pulley 21 and includes a one-way clutch and a torsion spring as a load applying member.
図2及び図3に示すように、第1のプーリ11は、第1のワンウェイクラッチ13を介して回転軸41に支持されている。第1のワンウェイクラッチ13は、回転軸41に対して軸回りの一方向への第1のプーリ11の相対回転を許容し、他方向への相対回転を阻止する。図3において、第1のワンウェイクラッチ13は、回転軸41に対して反時計回りの方向への第1のプーリ11の相対回転を許容している。また、第1のワンウェイクラッチ13は、回転軸41に対して時計回りの方向への第1のプーリ11の相対回転を阻止する。回転軸41に対して第1のプーリ11が相対回転可能な方向は、第1のプーリ11上のワイヤ35の巻き付け方向と同一の方向となっている。
2 and 3, the first pulley 11 is supported on the rotary shaft 41 via the first one-way clutch 13. The first one-way clutch 13 allows relative rotation of the first pulley 11 in one direction around the axis with respect to the rotation shaft 41 and prevents relative rotation in the other direction. In FIG. 3, the first one-way clutch 13 allows relative rotation of the first pulley 11 in the counterclockwise direction with respect to the rotation shaft 41. The first one-way clutch 13 prevents relative rotation of the first pulley 11 in the clockwise direction with respect to the rotation shaft 41. The direction in which the first pulley 11 can rotate relative to the rotation shaft 41 is the same as the winding direction of the wire 35 on the first pulley 11.
第1のトーションばね15は、回転軸41に対して、相対回転が許容されている方向へと第1のプーリ11を付勢する。第1のトーションばね15の一端は第1のプーリ11に固定され、他端は回転軸41に固定され、中央部は回転軸41に巻き付けられている。図3に模式的に示したように、かかる第1のトーションばね15は、第1のプーリ11に対して、常に反時計回りの方向へと引張トルクT1をかけている。
The first torsion spring 15 biases the first pulley 11 with respect to the rotation shaft 41 in a direction in which relative rotation is allowed. One end of the first torsion spring 15 is fixed to the first pulley 11, the other end is fixed to the rotating shaft 41, and the central portion is wound around the rotating shaft 41. As schematically shown in FIG. 3, the first torsion spring 15 always applies a tensile torque T <b> 1 to the first pulley 11 in the counterclockwise direction.
また、第2のプーリ21は、第2のワンウェイクラッチ23を介して回転軸41に支持されている。第2のワンウェイクラッチ23は、回転軸41に対して軸回りの一方向への第2のプーリ21の相対回転を許容し、他方向への相対回転を阻止する。図3において、第2のワンウェイクラッチ23は、回転軸41に対して時計回りの方向への第2のプーリ21の相対回転を許容している。また、第2のワンウェイクラッチ23は、回転軸41に対して反時計回りの方向への第2のプーリ21の相対回転を阻止する。回転軸41に対して第2のプーリ21が相対回転可能な方向は、第2のプーリ21上のワイヤ35の巻き付け方向と同一の方向となっている。つまり、第1のプーリ11と第2のプーリ21とは、共通の回転軸41に対して反体方向への相対回転が許容されている。
Further, the second pulley 21 is supported on the rotating shaft 41 via the second one-way clutch 23. The second one-way clutch 23 allows relative rotation of the second pulley 21 in one direction around the axis with respect to the rotation shaft 41 and prevents relative rotation in the other direction. In FIG. 3, the second one-way clutch 23 allows relative rotation of the second pulley 21 in the clockwise direction with respect to the rotation shaft 41. Further, the second one-way clutch 23 prevents relative rotation of the second pulley 21 in the counterclockwise direction with respect to the rotation shaft 41. The direction in which the second pulley 21 can rotate relative to the rotation shaft 41 is the same as the winding direction of the wire 35 on the second pulley 21. That is, the first pulley 11 and the second pulley 21 are allowed to rotate relative to the common rotating shaft 41 in the opposite direction.
第2のトーションばね25は、回転軸41に対して、相対回転が許容されている方向へと第2のプーリ21を付勢する。第2のトーションばね25の一端は第2のプーリ21に固定され、他端は回転軸41に固定され、中央部は回転軸41に巻き付けられている。図3に模式的に示したように、かかる第2のトーションばね25は、第2のプーリ21に対して、常に時計回りの方向へと引張トルクT2をかけている。
The second torsion spring 25 biases the second pulley 21 with respect to the rotation shaft 41 in a direction in which relative rotation is allowed. One end of the second torsion spring 25 is fixed to the second pulley 21, the other end is fixed to the rotating shaft 41, and the central portion is wound around the rotating shaft 41. As schematically shown in FIG. 3, the second torsion spring 25 always applies a tensile torque T <b> 2 to the second pulley 21 in the clockwise direction.
ワンウェイクラッチとしては、スプラグ式又はカム式等の従来公知のワンウェイクラッチが適宜用いられ得る。第1のトーションばね15及び第2のトーションばね25のばね荷重は、ワイヤ35に生じさせる所望の張力に応じて適切に設定され得る。また、第1の負荷付与部材及び第2の負荷付与部材は、トーションばねに限られず、ワイヤ35の伸び量に対応可能な期間あるいは相対回転の範囲で常に第1のプーリ11又は第2のプーリ21に対して引張トルクT1,T2をかけ続けられるものであれば適用可能である。
As the one-way clutch, a conventionally known one-way clutch such as a sprag type or a cam type can be appropriately used. The spring loads of the first torsion spring 15 and the second torsion spring 25 can be appropriately set according to a desired tension generated in the wire 35. Further, the first load applying member and the second load applying member are not limited to the torsion springs, and are always the first pulley 11 or the second pulley within a period corresponding to the extension amount of the wire 35 or a range of relative rotation. 21 can be applied as long as the tensile torque T1, T2 can be continuously applied to the belt 21.
<1-3.動作>
このように構成された力伝達装置10において、使用前のアクチュエータ40を駆動させていない状態で、ワイヤ35にはあらかじめ予負荷が与えられて、ワイヤ35の張力は維持される。予負荷は手動で与えられてもよい。一方、アクチュエータ40により回転軸41が回転させられると、第1のプーリ11及び第2のプーリ21は以下のように回転する。 <1-3. Operation>
In theforce transmission device 10 configured as described above, a preload is applied to the wire 35 in advance in a state where the actuator 40 before use is not driven, and the tension of the wire 35 is maintained. The preload may be provided manually. On the other hand, when the rotating shaft 41 is rotated by the actuator 40, the first pulley 11 and the second pulley 21 rotate as follows.
このように構成された力伝達装置10において、使用前のアクチュエータ40を駆動させていない状態で、ワイヤ35にはあらかじめ予負荷が与えられて、ワイヤ35の張力は維持される。予負荷は手動で与えられてもよい。一方、アクチュエータ40により回転軸41が回転させられると、第1のプーリ11及び第2のプーリ21は以下のように回転する。 <1-3. Operation>
In the
例えば、図3において、回転軸41が時計回りに回転する場合、第1のプーリ11は、回転軸41に対して反時計回りに相対回転することになるため、第1のワンウェイクラッチ13の機能により、回転軸41の回転トルクによって回転することはない。ただし、第2のプーリ21は、第2のワンウェイクラッチ23の機能により、回転軸41の回転トルクによって時計回りに回転する。これにより、ワイヤ35は、第2のプーリ21に巻き付けられるため、結果として、ワイヤ35の張力により第1のプーリ11が回転する。したがって、第3のプーリ31が時計回りに回転して、出力軸51は時計回りの回転トルクを出力する。
For example, in FIG. 3, when the rotation shaft 41 rotates clockwise, the first pulley 11 rotates relative to the rotation shaft 41 counterclockwise, and thus the function of the first one-way clutch 13. Thus, the rotating shaft 41 does not rotate due to the rotational torque. However, the second pulley 21 rotates clockwise by the rotational torque of the rotating shaft 41 by the function of the second one-way clutch 23. As a result, the wire 35 is wound around the second pulley 21, and as a result, the first pulley 11 rotates due to the tension of the wire 35. Therefore, the third pulley 31 rotates clockwise, and the output shaft 51 outputs clockwise rotational torque.
また、アクチュエータ40により回転軸41が反時計回りに回転させられる場合には、反対に、第2のプーリ21は回転軸41の回転トルクにより回転することはなく、第1のプーリ11が回転軸41の回転トルクにより反時計回りに回転する。その結果、第1のプーリ11に巻き付けられるワイヤ35の張力により第2のプーリ21が回転する。したがって、第3のプーリ31が反時計回りに回転して、出力軸51は反時計回りの回転トルクを出力する。
On the other hand, when the rotation shaft 41 is rotated counterclockwise by the actuator 40, the second pulley 21 is not rotated by the rotation torque of the rotation shaft 41, and the first pulley 11 is rotated by the rotation shaft 41. It rotates counterclockwise by the rotational torque of 41. As a result, the second pulley 21 is rotated by the tension of the wire 35 wound around the first pulley 11. Therefore, the third pulley 31 rotates counterclockwise, and the output shaft 51 outputs a counterclockwise rotational torque.
そして、長期間の使用によってワイヤ35が伸びたり弛んだりした場合には、第1のトーションばね15の引張トルクT1によって第1のプーリ11が回転軸41に対して反時計回りの方向に相対回転させられる。また、ワイヤ35の伸びや弛みが生じた場合には、第2のトーションばね25の引張トルクT2によって第2のプーリ21が回転軸41に対して時計回りの方向に相対回転させられる。これにより、ワイヤ35の張力が維持される。
When the wire 35 is stretched or slackened due to long-term use, the first pulley 11 is rotated relative to the rotation shaft 41 in the counterclockwise direction by the tensile torque T1 of the first torsion spring 15. Be made. When the wire 35 is stretched or slackened, the second pulley 21 is rotated relative to the rotating shaft 41 in the clockwise direction by the tensile torque T2 of the second torsion spring 25. Thereby, the tension of the wire 35 is maintained.
このように、ワンウェイクラッチ及び負荷付与部材を用いて構成した張力保持機構によれば、アクチュエータ40及び各プーリの空間上の位置を移動させることなく、ワイヤ35の張力を保持することができる。これにより、力伝達装置10の大型化を抑制することができる。また、本実施形態に係る力伝達装置10は、追加のアクチュエータや、別途配置される部品、自動制御用のソフトウェア等を用いてワイヤ35の張力を保持する場合に比べて、力伝達装置10の質量の増加を抑制することができる。また、ワンウェイクラッチ及び負荷付与部材を用いて構成した張力保持機構によれば、比較的簡易な構成で、ワイヤ35の張力を保持させることができる。
As described above, according to the tension holding mechanism configured using the one-way clutch and the load applying member, the tension of the wire 35 can be held without moving the position of the actuator 40 and each pulley in the space. Thereby, the enlargement of the force transmission device 10 can be suppressed. Further, the force transmission device 10 according to the present embodiment has a force transmission device 10 that has a force transmission device 10 that has a tension higher than that of the case where the tension of the wire 35 is maintained using an additional actuator, a separately arranged component, automatic control software, or the like. An increase in mass can be suppressed. Further, according to the tension holding mechanism configured using the one-way clutch and the load applying member, the tension of the wire 35 can be held with a relatively simple configuration.
<1-4.変形例>
ここまで、第1の実施の形態に係る力伝達装置10について説明した。本実施形態に係る力伝達装置10は、種々の変形が可能である。以下、本実施形態に係る力伝達装置の変形例の幾つかを説明する。 <1-4. Modification>
So far, theforce transmission device 10 according to the first embodiment has been described. The force transmission device 10 according to the present embodiment can be variously modified. Hereinafter, some modified examples of the force transmission device according to the present embodiment will be described.
ここまで、第1の実施の形態に係る力伝達装置10について説明した。本実施形態に係る力伝達装置10は、種々の変形が可能である。以下、本実施形態に係る力伝達装置の変形例の幾つかを説明する。 <1-4. Modification>
So far, the
(1-4-1.第1の変形例)
図4は、第1の変形例に係る力伝達装置60の構成を説明するための部分断面図であり、上記実施形態における図2に対応する図である。図5は、力伝達装置60の構成を説明するための模式図である。図5においては、理解を容易にするために、同一の回転軸41に支持された第1のプーリ61及び第2のプーリ71が分離して示されている。 (1-4-1. First Modification)
FIG. 4 is a partial cross-sectional view for explaining the configuration of theforce transmission device 60 according to the first modification, and corresponds to FIG. 2 in the above embodiment. FIG. 5 is a schematic diagram for explaining the configuration of the force transmission device 60. In FIG. 5, for easy understanding, the first pulley 61 and the second pulley 71 supported by the same rotating shaft 41 are shown separately.
図4は、第1の変形例に係る力伝達装置60の構成を説明するための部分断面図であり、上記実施形態における図2に対応する図である。図5は、力伝達装置60の構成を説明するための模式図である。図5においては、理解を容易にするために、同一の回転軸41に支持された第1のプーリ61及び第2のプーリ71が分離して示されている。 (1-4-1. First Modification)
FIG. 4 is a partial cross-sectional view for explaining the configuration of the
第1の変形例に係る力伝達装置60は、第1のプーリ61又は第2のプーリ71を所定方向に付勢する第1の負荷付与部材及び第2の負荷付与部材の配設方法が上記実施形態に係る力伝達装置10とは異なる。第1のプーリ61は、軸方向に突設した円環状の突設部62を有する。当該突設部62には、第1の負荷付与部材としての第1の定張力ばね65の一端側が巻き付けられている。また、第1の定張力ばね65の他端側は、支持軸59に巻き付けられている。第1の定張力ばね65は、回転軸41に対して、相対回転が許容されている方向へと第1のプーリ61を付勢する。
In the force transmission device 60 according to the first modification, the first load application member and the second load application member for urging the first pulley 61 or the second pulley 71 in a predetermined direction are arranged as described above. This is different from the force transmission device 10 according to the embodiment. The first pulley 61 has an annular projecting portion 62 projecting in the axial direction. One end side of a first constant tension spring 65 as a first load applying member is wound around the projecting portion 62. Further, the other end side of the first constant tension spring 65 is wound around the support shaft 59. The first constant tension spring 65 biases the first pulley 61 with respect to the rotation shaft 41 in a direction in which relative rotation is allowed.
図5に模式的に示したように、かかる第1の定張力ばね65は、第1のプーリ61に対して、常に反時計回りの方向へと引張トルクT1をかけている。したがって、ワイヤ35に伸びや弛みが生じた場合には、第1の定張力ばね65の引張トルクT1によって第1のプーリ61が回転軸41に対して反時計回りの方向に相対回転させられ、第3のプーリ31よりも第1のプーリ61側のワイヤ35の張力が維持される。
As schematically shown in FIG. 5, the first constant tension spring 65 always applies a tensile torque T1 to the first pulley 61 in the counterclockwise direction. Therefore, when the wire 35 is stretched or slackened, the first pulley 61 is rotated relative to the rotation shaft 41 in the counterclockwise direction by the tensile torque T1 of the first constant tension spring 65, and The tension of the wire 35 closer to the first pulley 61 than the third pulley 31 is maintained.
また、第2のプーリ71は、軸方向に突設した円環状の突設部72を有する。当該突設部72には、第1の負荷付与部材としての第2の定張力ばね75の一端側が巻き付けられている。また、第2の定張力ばね75の他端側は、第1の定張力ばね65と同様に支持軸59に巻き付けられている。第2の定張力ばね75の他端側は、第1の定張力ばね65の他端側を支持する支持軸59とは別の支持軸に支持されてもよい。第2の定張力ばね75は、回転軸41に対して、相対回転が許容されている方向へと第2のプーリ71を付勢する。
The second pulley 71 has an annular projecting portion 72 projecting in the axial direction. One end side of a second constant tension spring 75 as a first load applying member is wound around the projecting portion 72. The other end side of the second constant tension spring 75 is wound around the support shaft 59 in the same manner as the first constant tension spring 65. The other end side of the second constant tension spring 75 may be supported by a support shaft different from the support shaft 59 that supports the other end side of the first constant tension spring 65. The second constant tension spring 75 biases the second pulley 71 in the direction in which relative rotation is allowed with respect to the rotation shaft 41.
図5に模式的に示したように、かかる第2の定張力ばね75は、第2のプーリ71に対して、常に時計回りの方向へと引張トルクT2をかけている。したがって、ワイヤ35に伸びや弛みが生じた場合には、第2の定張力ばね75の引張トルクT2によって第2のプーリ71が回転軸41に対して時計回りの方向に相対回転させられ、第3のプーリ31よりも第2のプーリ71側のワイヤ35の張力が維持される。これにより、各プーリからワイヤ35が外れることを防止することができる。
As schematically shown in FIG. 5, the second constant tension spring 75 always applies a tensile torque T2 to the second pulley 71 in the clockwise direction. Therefore, when the wire 35 is stretched or slackened, the second pulley 71 is rotated relative to the rotation shaft 41 in the clockwise direction by the tensile torque T2 of the second constant tension spring 75, and the first pulley The tension of the wire 35 closer to the second pulley 71 than the third pulley 31 is maintained. Thereby, it can prevent that the wire 35 remove | deviates from each pulley.
第1の変形例に係る力伝達装置60では、第1の負荷付与部材及び第2の負荷付与部材として定張力ばねが用いられている。このため、時間の経過に伴ってワイヤ35が劣化する場合であっても、ワイヤ35は常に一定の張力で保たれる。したがって、アクチュエータ40から出力される動力の伝達効率が大きく変化することを抑制することができる。
In the force transmission device 60 according to the first modification, constant tension springs are used as the first load applying member and the second load applying member. For this reason, even if it is a case where the wire 35 deteriorates with progress of time, the wire 35 is always maintained by fixed tension | tensile_strength. Therefore, it is possible to suppress the transmission efficiency of the power output from the actuator 40 from changing greatly.
(1-4-2.第2の変形例)
図6は、第2の変形例に係る力伝達装置90の構成を説明するための模式図である。第2の変形例に係る力伝達装置90では、第1のプーリ91及び第2のプーリ21がそれぞれ異なる第1の回転軸47及び第2の回転軸49に支持されている。第1の回転軸47には、同軸上に設けられた第1のギヤ99が固定され、第2の回転軸49には、同軸上に設けられた第2のギヤ29が固定されている。第1のギヤ99と第2のギヤ29とは噛み合っており、一方の回転軸及びギヤの回転に伴って、他方の回転軸及びギヤも同期して1自由度で回転する。第1のギヤ99に対する第2のギヤ29の歯数の比、すなわちギヤの減速比は、第1のプーリ91に対する第2のプーリ21の半径の比、すなわちプーリの減速比と等しく設定される。 (1-4-2. Second Modification)
FIG. 6 is a schematic diagram for explaining a configuration of aforce transmission device 90 according to a second modification. In the force transmission device 90 according to the second modification, the first pulley 91 and the second pulley 21 are supported by different first and second rotating shafts 47 and 49, respectively. A first gear 99 provided coaxially is fixed to the first rotating shaft 47, and a second gear 29 provided coaxially is fixed to the second rotating shaft 49. The first gear 99 and the second gear 29 are in mesh with each other, and the other rotary shaft and gear rotate in one degree of freedom in synchronization with the rotation of the one rotary shaft and gear. The ratio of the number of teeth of the second gear 29 to the first gear 99, that is, the gear reduction ratio, is set equal to the ratio of the radius of the second pulley 21 to the first pulley 91, that is, the reduction ratio of the pulley. .
図6は、第2の変形例に係る力伝達装置90の構成を説明するための模式図である。第2の変形例に係る力伝達装置90では、第1のプーリ91及び第2のプーリ21がそれぞれ異なる第1の回転軸47及び第2の回転軸49に支持されている。第1の回転軸47には、同軸上に設けられた第1のギヤ99が固定され、第2の回転軸49には、同軸上に設けられた第2のギヤ29が固定されている。第1のギヤ99と第2のギヤ29とは噛み合っており、一方の回転軸及びギヤの回転に伴って、他方の回転軸及びギヤも同期して1自由度で回転する。第1のギヤ99に対する第2のギヤ29の歯数の比、すなわちギヤの減速比は、第1のプーリ91に対する第2のプーリ21の半径の比、すなわちプーリの減速比と等しく設定される。 (1-4-2. Second Modification)
FIG. 6 is a schematic diagram for explaining a configuration of a
図6に示した例では、第1のプーリ91と第2のプーリ21とは互いに反対の方向に回転することになる。このため、第1のプーリ91上のワイヤ35の巻き付け方向は、第2のプーリ21上のワイヤ35の巻き付け方向と同じ時計回りの方向となっている。また、第1のプーリ91と第1の回転軸47との間に介在する第1のワンウェイクラッチ93は、第1の回転軸47に対して、時計回りの方向への第1のプーリ91の相対回転を許容し、反時計回りの方向への第1のプーリ91の相対回転を阻止する。そして、第1の負荷付与部材としての第1のトーションばね95は、第1の回転軸47に対して、相対回転が許容されている方向へと第1のプーリ91を付勢する。同様に、第2のプーリ21と第2の回転軸49との間に介在する第2のワンウェイクラッチ23は、第2の回転軸49に対して、時計回りの方向への第2のプーリ21の相対回転を許容し、反時計回りの方向への第2のプーリ21の相対回転を阻止する。そして、第2の負荷付与部材としての第2のトーションばね25は、第2の回転軸49に対して、相対回転が許容されている方向へと第2のプーリ21を付勢する。
In the example shown in FIG. 6, the first pulley 91 and the second pulley 21 rotate in directions opposite to each other. For this reason, the winding direction of the wire 35 on the first pulley 91 is the same clockwise direction as the winding direction of the wire 35 on the second pulley 21. Further, the first one-way clutch 93 interposed between the first pulley 91 and the first rotating shaft 47 has the first pulley 91 in the clockwise direction with respect to the first rotating shaft 47. Relative rotation is allowed and relative rotation of the first pulley 91 in the counterclockwise direction is prevented. Then, the first torsion spring 95 as the first load applying member urges the first pulley 91 in the direction in which relative rotation is allowed with respect to the first rotating shaft 47. Similarly, the second one-way clutch 23 interposed between the second pulley 21 and the second rotation shaft 49 is connected to the second pulley 21 in the clockwise direction with respect to the second rotation shaft 49. Relative rotation of the second pulley 21 is prevented, and relative rotation of the second pulley 21 in the counterclockwise direction is prevented. Then, the second torsion spring 25 as the second load applying member biases the second pulley 21 in the direction in which relative rotation is allowed with respect to the second rotation shaft 49.
第2の変形例に係る力伝達装置90は、第1の回転軸47又は第2の回転軸49のいずれか一方を回転駆動する1つのアクチュエータを有する。例えば、第1の回転軸47を回転駆動するアクチュエータが設けられる場合、第1の回転軸47を反時計回りに回転させると、第1のプーリ91は第1の回転軸47に対して時計回りに回転することになる。このため、第1のプーリ91は、第1のワンウェイクラッチ93の機能により、第1の回転軸47の回転トルクによって回転することはない。
The force transmission device 90 according to the second modification has one actuator that rotationally drives either one of the first rotating shaft 47 or the second rotating shaft 49. For example, in the case where an actuator for rotationally driving the first rotary shaft 47 is provided, when the first rotary shaft 47 is rotated counterclockwise, the first pulley 91 rotates clockwise with respect to the first rotary shaft 47. Will rotate. For this reason, the first pulley 91 is not rotated by the rotational torque of the first rotating shaft 47 due to the function of the first one-way clutch 93.
ただし、第1の回転軸47が反時計回りに回転する場合、第1のギヤ99及び第2のギヤ29を介して回転トルクが伝達され、第2の回転軸49が時計回りに回転する。第2の回転軸49が時計回りに回転すると、第2のプーリ21は第2の回転軸49に対して反時計回りに相対回転することになる。このため、第2のワンウェイクラッチ23の機能により、第2の回転軸49の回転トルクによって第2のプーリ21及び第2のギヤ29が時計回りに回転する。これにより、結果的に、ワイヤ35は第2のプーリ21に巻き付けられ、第1のプーリ91は、ワイヤ35の張力によって反時計回りの方向に回転する。このとき、第1のギヤ99に対する第2のギヤ29の減速比と、第1のプーリ91に対する第2のプーリ21の減速比とが等しく設定されているため、第1のプーリ91から送り出されるワイヤ35の量と、第2のプーリ21に巻き付けられるワイヤ35の量は等しく、ワイヤ35の張力は変化せずに動作する。
However, when the first rotating shaft 47 rotates counterclockwise, the rotational torque is transmitted through the first gear 99 and the second gear 29, and the second rotating shaft 49 rotates clockwise. When the second rotation shaft 49 rotates clockwise, the second pulley 21 rotates relative to the second rotation shaft 49 counterclockwise. Therefore, due to the function of the second one-way clutch 23, the second pulley 21 and the second gear 29 are rotated clockwise by the rotational torque of the second rotating shaft 49. As a result, the wire 35 is wound around the second pulley 21, and the first pulley 91 rotates in the counterclockwise direction due to the tension of the wire 35. At this time, since the reduction ratio of the second gear 29 to the first gear 99 and the reduction ratio of the second pulley 21 to the first pulley 91 are set to be equal to each other, the first pulley 91 is fed out. The amount of the wire 35 is equal to the amount of the wire 35 wound around the second pulley 21, and the tension of the wire 35 operates without changing.
アクチュエータにより第1の回転軸47が時計回りに回転させられる場合には、反対に、第1のプーリ91は第1の回転軸47の回転トルクにより時計回りに回転し、ワイヤ35が第1のプーリ91に巻き付けられる。このとき、第1のギヤ99及び第2のギヤ29を介して伝達される第1の回転軸47の回転トルクにより第2の回転軸49が反時計回りに回転しても、第2のワンウェイクラッチ23の機能により、第2のプーリ21は第2の回転軸49の回転トルクにより回転することはない。ただし、第2のプーリ21は、第1のプーリ91に巻き付けられるワイヤ35の張力によって、反時計回りに回転する。このときも同様に、第1のプーリ91から送り出されるワイヤ35の量と、第2のプーリ21に巻き付けられるワイヤ35の量は等しい。
When the first rotation shaft 47 is rotated clockwise by the actuator, on the contrary, the first pulley 91 is rotated clockwise by the rotation torque of the first rotation shaft 47, and the wire 35 is It is wound around a pulley 91. At this time, even if the second rotary shaft 49 rotates counterclockwise by the rotational torque of the first rotary shaft 47 transmitted through the first gear 99 and the second gear 29, the second one-way Due to the function of the clutch 23, the second pulley 21 is not rotated by the rotational torque of the second rotating shaft 49. However, the second pulley 21 rotates counterclockwise due to the tension of the wire 35 wound around the first pulley 91. Similarly, at this time, the amount of the wire 35 sent out from the first pulley 91 and the amount of the wire 35 wound around the second pulley 21 are equal.
そして、長期間の使用によってワイヤ35が伸びたり弛んだりした場合には、第1のトーションばね95の引張トルクT1によって第1のプーリ91が第2の回転軸49に対して時計回りの方向に相対回転させられ、第3のプーリ31よりも第1のプーリ91側のワイヤ35の張力が維持される。また、ワイヤ35の伸びや弛みが生じた場合には、第2のトーションばね25の引張トルクT2によって第2のプーリ21が第2の回転軸49に対して時計回りの方向に相対回転させられ、第3のプーリ31よりも第2のプーリ21側のワイヤ35の張力が維持される。これにより、各プーリからワイヤ35が外れることを防止することができる。
When the wire 35 is stretched or slackened due to long-term use, the first pulley 91 is rotated in the clockwise direction with respect to the second rotation shaft 49 by the tensile torque T1 of the first torsion spring 95. The wire 35 is relatively rotated, and the tension of the wire 35 closer to the first pulley 91 than the third pulley 31 is maintained. When the wire 35 is stretched or loosened, the second pulley 21 is rotated relative to the second rotation shaft 49 in the clockwise direction by the tensile torque T2 of the second torsion spring 25. The tension of the wire 35 on the second pulley 21 side relative to the third pulley 31 is maintained. Thereby, it can prevent that the wire 35 remove | deviates from each pulley.
<1-5.動作補助装置への適用例>
次に、図7を参照して、上記の実施形態に係る力伝達装置10を、動作補助装置としての人体装着ロボット100に適用した例について説明する。図7は、力伝達装置10を介してアクチュエータ40が発生する動力により関節部120を回転させる人体装着ロボット100の一例を示す説明図である。 <1-5. Application example to motion assist device>
Next, an example in which theforce transmission device 10 according to the above-described embodiment is applied to a human body-mounted robot 100 as an operation assisting device will be described with reference to FIG. FIG. 7 is an explanatory diagram illustrating an example of a human body-mounted robot 100 that rotates the joint portion 120 by the power generated by the actuator 40 via the force transmission device 10.
次に、図7を参照して、上記の実施形態に係る力伝達装置10を、動作補助装置としての人体装着ロボット100に適用した例について説明する。図7は、力伝達装置10を介してアクチュエータ40が発生する動力により関節部120を回転させる人体装着ロボット100の一例を示す説明図である。 <1-5. Application example to motion assist device>
Next, an example in which the
図示した人体装着ロボット100は、関節部120と、関節部120を中心に回動可能に連結された第1のアーム部112及び第2のアーム部114とを有する。第1のアーム部112の上部は、人体の腰に巻き付けられる装着ベルト102に固定されている。また、第2のアーム部114の下部は、人体の大腿部に巻き付けられる装着ベルト104に固定されている。関節部120を中心とする第1のアーム部112と第2のアーム部114との相対回転は、力伝達装置10及びケーブル132,134を介して、アクチュエータ40により動作される。
The illustrated human-body-mounted robot 100 includes a joint portion 120, and a first arm portion 112 and a second arm portion 114 that are coupled to be rotatable about the joint portion 120. The upper part of the first arm portion 112 is fixed to a mounting belt 102 that is wrapped around the waist of a human body. The lower portion of the second arm portion 114 is fixed to a mounting belt 104 that is wound around the thigh of the human body. The relative rotation between the first arm part 112 and the second arm part 114 around the joint part 120 is operated by the actuator 40 via the force transmission device 10 and the cables 132 and 134.
例えば、関節部120には2本のケーブル132,134が接続され、いずれか一方のケーブルを関節部120に向けて前進させ、他方のケーブルを関節部120から後退させることにより、第1のアーム部112に対して第2のアーム部114が、時計回りあるいは反時計回りに回動する。ケーブル132,134は、関節部120に巻き付けられて導出された1本のケーブルであってもよい。ケーブル132,134は、それぞれ、力伝達装置10の第3のプーリ31を支持する出力軸51に支持された第4のプーリ55に固定、あるいは巻き付けられている。ケーブル132,134は、第4のプーリ55及び関節部120に巻き掛けられたループ状のケーブルであってもよい。
For example, two cables 132 and 134 are connected to the joint portion 120, and one of the cables is advanced toward the joint portion 120 and the other cable is retracted from the joint portion 120, whereby the first arm The second arm portion 114 rotates clockwise or counterclockwise with respect to the portion 112. The cables 132 and 134 may be a single cable that is wound around the joint 120 and led out. The cables 132 and 134 are respectively fixed or wound around a fourth pulley 55 supported by the output shaft 51 that supports the third pulley 31 of the force transmission device 10. The cables 132 and 134 may be loop-shaped cables wound around the fourth pulley 55 and the joint portion 120.
かかる人体装着ロボット100において、例えば、ユーザが歩行する際に、関節部120が図示の時計回りに回動することにより、第2のアーム部114が関節部120を中心に時計回りに回動し、ユーザによる足を上げる動作が補助される。例えば、図7の例では、図示しない制御装置が、筋電位センサやユーザの足の動きを検出するセンサ等により、ユーザが足を上げようとしていることを検出すると、アクチュエータ40を駆動させることにより、出力軸51及び第4のプーリ55を時計回りに回転させる。これにより、ケーブル132が関節部120から後退する一方、ケーブル134が関節部120に向けて導出される。これにより、関節部120が時計回りに回転し、第2のアーム部114が関節部120を中心に時計回りに回動するため、ユーザによる足を上げる動作を補助する力が発生する。
In the human body-mounted robot 100, for example, when the user walks, the second arm unit 114 rotates about the joint unit 120 clockwise by rotating the joint unit 120 clockwise as illustrated. The operation of raising the foot by the user is assisted. For example, in the example of FIG. 7, when a control device (not shown) detects that the user is trying to raise his / her foot using a myoelectric potential sensor, a sensor for detecting the movement of the user's foot, or the like, The output shaft 51 and the fourth pulley 55 are rotated clockwise. As a result, the cable 132 is retracted from the joint portion 120, while the cable 134 is led out toward the joint portion 120. As a result, the joint portion 120 rotates clockwise, and the second arm portion 114 rotates clockwise around the joint portion 120, so that a force that assists the user in raising the foot is generated.
逆に、ユーザが足を下ろそうとしている場合には、図示しない制御装置は、アクチュエータ40を駆動させることにより、出力軸51及び第4のプーリ55を反時計回りに回転させる。これにより、今度は、ケーブル134が関節部120から後退する一方、ケーブル132が関節部120に向けて導出される。これにより、関節部120が反時計回りに回転し、第2のアーム部114が関節部120を中心に反時計回りに回動するため、ユーザによる足を下ろす動作を補助する力が発生する。
On the contrary, when the user is going to step down, the control device (not shown) rotates the output shaft 51 and the fourth pulley 55 counterclockwise by driving the actuator 40. As a result, the cable 134 is now retracted from the joint portion 120, while the cable 132 is led out toward the joint portion 120. As a result, the joint portion 120 rotates counterclockwise, and the second arm portion 114 rotates counterclockwise around the joint portion 120, so that a force that assists the user to lower the foot is generated.
本実施形態に係る人体装着ロボット100は、力伝達装置10のうちの、アクチュエータ40が発生する動力を出力軸51に伝達するワイヤ35の伸びや弛みを自動で解消できるため、第1のプーリ11、第2のプーリ21又は第3のプーリ31からワイヤ35が外れることを抑制することができる。また、人体装着ロボット100は、長時間の使用後においてもワイヤ35の張力が所定程度に維持されるため、アクチュエータ40から関節部120への動力伝達効率の低下を抑制することができる。したがって、関節部120の回転駆動の制御性を維持することができる。
The human body wearing robot 100 according to the present embodiment can automatically eliminate the elongation and slack of the wire 35 that transmits the power generated by the actuator 40 to the output shaft 51 in the force transmission device 10. The wire 35 can be prevented from coming off from the second pulley 21 or the third pulley 31. In addition, since the tension of the wire 35 is maintained at a predetermined level even after long-term use, the human body-mounted robot 100 can suppress a decrease in power transmission efficiency from the actuator 40 to the joint portion 120. Therefore, the controllability of the rotational drive of the joint 120 can be maintained.
関節部120を回動させるケーブル132,134としては、例えばボーデンケーブルが使用されてもよい。この場合、ボーデンケーブルのうち、ケーブル132,134の外側の防護カバー131,133の一端側は、人体装着ロボット100における、関節部120とは異なる位置で固定部113に固定される。図3に示す例では、防護カバー131,133の一端側が、第1のアーム部112に設けられた固定部113に固定されているが、装着ベルト102の一部に固定されてもよい。また、防護カバー131,133の他端側は、力伝達装置10内で、図示しない固定部に固定されている。ボーデンケーブルを使用することにより、防護カバー131,133の内側を通るケーブル132,134の動きが拘束され、衣服や身体等に直接接触することがないため、ケーブル132,134の配設に対する制限が少なくなる。
For example, a Bowden cable may be used as the cables 132 and 134 for rotating the joint portion 120. In this case, one end side of the protective covers 131 and 133 outside the cables 132 and 134 of the Bowden cable is fixed to the fixing unit 113 at a position different from the joint unit 120 in the human body wearing robot 100. In the example shown in FIG. 3, one end sides of the protective covers 131 and 133 are fixed to the fixing portion 113 provided on the first arm portion 112, but may be fixed to a part of the mounting belt 102. The other ends of the protective covers 131 and 133 are fixed to a fixing portion (not shown) in the force transmission device 10. By using the Bowden cable, the movement of the cables 132 and 134 passing through the inside of the protective covers 131 and 133 is restricted, and there is no direct contact with clothes or the body. Less.
また、かかる人体装着ロボット100の例において、アクチュエータ40及び力伝達装置10は、関節部120から離れた位置に配置することができる。例えば、アクチュエータ40及び力伝達装置10は、ユーザが背中に背負うバックパック等の形式で備えられてもよいし、手押式あるいは自走式の荷車等の形式で備えられてもよい。
In the example of the human body-mounted robot 100, the actuator 40 and the force transmission device 10 can be arranged at a position away from the joint portion 120. For example, the actuator 40 and the force transmission device 10 may be provided in the form of a backpack that the user carries on the back, or may be provided in the form of a hand-held or self-propelled cart.
このように、本実施形態に係る人体装着ロボット(動作補助装置)100は、上記の力伝達装置10を備えるために、人体装着ロボット100の大型化を抑制しつつ、力伝達装置10の動力伝達部材としてのワイヤ35の弛みを抑制することができる。したがって、人体装着ロボット100の関節部120への動力伝達効率の低下を抑制することができ、関節部120の回転駆動の制御性を維持することができる。
Thus, since the human body-mounted robot (motion assisting device) 100 according to the present embodiment includes the above-described force transmission device 10, the power transmission of the force transmission device 10 is suppressed while suppressing the enlargement of the human body-mounted robot 100. The slack of the wire 35 as a member can be suppressed. Therefore, it is possible to suppress a reduction in power transmission efficiency to the joint portion 120 of the human body-mounted robot 100, and maintain controllability of the rotational drive of the joint portion 120.
<<2.第2の実施の形態>>
図8~図9を参照して、第2の実施の形態に係る力伝達装置210について説明する。第1の実施の形態に係る力伝達装置10は、第1のプーリ11及び第2のプーリ21のそれぞれにワンウェイクラッチ及び負荷付与部材を含む張力保持機構を備えていたが、第2の実施の形態に係る力伝達装置210は、第1のプーリ11にのみワンウェイクラッチ13及び負荷付与部材15を含む張力保持機構を備える点で第1の実施の形態に係る力伝達装置10と異なっている。以下、本実施形態に係る力伝達装置210について、第1の実施の形態に係る力伝達装置10と異なる点について説明する。 << 2. Second embodiment >>
Aforce transmission device 210 according to the second embodiment will be described with reference to FIGS. The force transmission device 10 according to the first embodiment includes the tension holding mechanism including the one-way clutch and the load applying member in each of the first pulley 11 and the second pulley 21. The force transmission device 210 according to the embodiment is different from the force transmission device 10 according to the first embodiment in that a tension holding mechanism including the one-way clutch 13 and the load applying member 15 is provided only in the first pulley 11. Hereinafter, the difference between the force transmission device 210 according to the present embodiment and the force transmission device 10 according to the first embodiment will be described.
図8~図9を参照して、第2の実施の形態に係る力伝達装置210について説明する。第1の実施の形態に係る力伝達装置10は、第1のプーリ11及び第2のプーリ21のそれぞれにワンウェイクラッチ及び負荷付与部材を含む張力保持機構を備えていたが、第2の実施の形態に係る力伝達装置210は、第1のプーリ11にのみワンウェイクラッチ13及び負荷付与部材15を含む張力保持機構を備える点で第1の実施の形態に係る力伝達装置10と異なっている。以下、本実施形態に係る力伝達装置210について、第1の実施の形態に係る力伝達装置10と異なる点について説明する。 << 2. Second embodiment >>
A
図8は、力伝達装置210の構成を説明するための部分断面図であり、図9は、力伝達装置210の構成を説明するための模式図である。これらの図8~図9は、図2~図3に示した第1の実施の形態に係る力伝達装置10の第2のワンウェイクラッチ23及び第2のトーションばね25を無くして、第2のプーリ221を回転軸41に固定した例を示している。図9においては、理解を容易にするために、同一の回転軸41に支持された第1のプーリ11及び第2のプーリ221が分離して示されている。
FIG. 8 is a partial cross-sectional view for explaining the configuration of the force transmission device 210, and FIG. 9 is a schematic diagram for explaining the configuration of the force transmission device 210. 8 to 9 show the second one-way clutch 23 and the second torsion spring 25 of the force transmission device 10 according to the first embodiment shown in FIGS. The example which fixed the pulley 221 to the rotating shaft 41 is shown. In FIG. 9, for easy understanding, the first pulley 11 and the second pulley 221 supported by the same rotating shaft 41 are shown separately.
ワンウェイクラッチ13及び負荷付与部材15を有する第1のプーリ11の構成は、第1の実施の形態に係る力伝達装置10の第1のプーリ11と同様の構成とすることができる。本実施形態に係る力伝達装置210において、第2のプーリ221はアクチュエータの回転軸41に固定されている。つまり、回転軸41と第2のプーリ221とは相対回転しないように構成されている。これ以外の点は、第1の実施の形態に係る力伝達装置10の構成と同様の構成とすることができる。
The configuration of the first pulley 11 having the one-way clutch 13 and the load applying member 15 can be the same as that of the first pulley 11 of the force transmission device 10 according to the first embodiment. In the force transmission device 210 according to the present embodiment, the second pulley 221 is fixed to the rotating shaft 41 of the actuator. That is, the rotation shaft 41 and the second pulley 221 are configured not to rotate relative to each other. Except for this point, the configuration can be the same as the configuration of the force transmission device 10 according to the first embodiment.
第2の実施の形態に係る力伝達装置210において、使用前のアクチュエータを駆動させていない状態で、トーションばね15に対してあらかじめ予負荷が与えられ、第1のプーリ11を図9の反時計回り方向に相対回転させる引張トルクT1が生じる。予負荷は手動で与えられてもよい。これにより、アクチュエータの非作動状態において、ワイヤ35の張力は維持される。一方、アクチュエータにより回転軸41が回転させられると、第1のプーリ11及び第2のプーリ221は以下のように回転する。
In the force transmission device 210 according to the second embodiment, a preload is applied to the torsion spring 15 in advance in a state where the actuator before use is not driven, and the first pulley 11 is counterclockwise as shown in FIG. A tensile torque T1 that causes relative rotation in the rotating direction is generated. The preload may be provided manually. Thereby, the tension of the wire 35 is maintained when the actuator is in an inoperative state. On the other hand, when the rotating shaft 41 is rotated by the actuator, the first pulley 11 and the second pulley 221 rotate as follows.
例えば、図9において、回転軸41が時計回りに回転する場合、第1のプーリ11は、回転軸41に対して反時計回りに相対回転することになるため、ワンウェイクラッチ13の機能により、回転軸41の回転トルクによって回転することはない。ただし、回転軸41に固定された第2のプーリ221が時計回りに回転することによって、ワイヤ35が第2のプーリ221に巻き付けられる結果、ワイヤ35の張力により第1のプーリ11が時計回りに回転する。したがって、第3のプーリ31が時計回りに回転して、出力軸51は時計回りの回転トルクを出力する。
For example, in FIG. 9, when the rotation shaft 41 rotates clockwise, the first pulley 11 rotates counterclockwise with respect to the rotation shaft 41. It does not rotate due to the rotational torque of the shaft 41. However, when the second pulley 221 fixed to the rotating shaft 41 rotates clockwise, the wire 35 is wound around the second pulley 221, and as a result, the tension of the wire 35 causes the first pulley 11 to rotate clockwise. Rotate. Therefore, the third pulley 31 rotates clockwise, and the output shaft 51 outputs clockwise rotational torque.
また、アクチュエータにより回転軸41が反時計回りに回転する場合、第1のプーリ11はワンウェイクラッチ13の機能により、回転軸41の回転トルクによって反時計回りに回転する。同時に、回転軸41に固定された第2のプーリ221は、回転軸41の回転に伴って反時計回りに回転して、ワイヤ35を導出する。したがって、第3のプーリ31が反時計回りに回転して、出力軸51は反時計回りの回転トルクを出力する。
When the rotary shaft 41 is rotated counterclockwise by the actuator, the first pulley 11 is rotated counterclockwise by the rotational torque of the rotary shaft 41 by the function of the one-way clutch 13. At the same time, the second pulley 221 fixed to the rotating shaft 41 rotates counterclockwise with the rotation of the rotating shaft 41 and leads out the wire 35. Therefore, the third pulley 31 rotates counterclockwise, and the output shaft 51 outputs a counterclockwise rotational torque.
そして、長期間の使用によってワイヤ35が伸びたり弛んだりした場合には、トーションばね15の引張トルクT1によって第1のプーリ11が回転軸41に対して反時計回りの方向に相対回転させられ、ワイヤ35の張力が維持される。
When the wire 35 is stretched or slackened due to long-term use, the first pulley 11 is rotated relative to the rotating shaft 41 in the counterclockwise direction by the tensile torque T1 of the torsion spring 15; The tension of the wire 35 is maintained.
このように、一方のプーリにのみワンウェイクラッチ及びトーションばねを備える場合であっても、比較的簡易な構成で、ワイヤ35の張力を保持させることができる。これにより、力伝達装置210の大型化を抑制することができる。また、本実施形態に係る力伝達装置210によれば、一方のプーリにのみワンウェイクラッチ及びトーションばねを備える構成であるため、力伝達装置210の質量をより抑制することができる。
Thus, even when the one-way clutch and the torsion spring are provided only on one pulley, the tension of the wire 35 can be held with a relatively simple configuration. Thereby, the enlargement of the force transmission device 210 can be suppressed. Further, according to the force transmission device 210 according to the present embodiment, since the one-way clutch and the torsion spring are provided in only one pulley, the mass of the force transmission device 210 can be further suppressed.
なお、本実施形態に係る力伝達装置210においても、第1の実施の形態に係る力伝達装置10の第1の変形例及び第2の変形例を適用することができる。つまり、トーションばね15の代わりに定張力ばねが用いられてもよく、第1のプーリ11及び第2のプーリ221がそれぞれ互いにギヤ接続された異なる回転軸に支持されていてもよい。
In addition, also in the force transmission apparatus 210 which concerns on this embodiment, the 1st modification and the 2nd modification of the force transmission apparatus 10 which concern on 1st Embodiment are applicable. That is, a constant tension spring may be used instead of the torsion spring 15, and the first pulley 11 and the second pulley 221 may be supported by different rotating shafts that are gear-connected to each other.
<<3.第3の実施の形態>>
図10を参照して、第3の実施の形態に係る力伝達装置250について説明する。第1の実施の形態及び第2の実施の形態に係る力伝達装置10,210は、負荷付与部材としてトーションばねを用いていたが、第3の実施の形態に係る力伝達装置250は、負荷付与部材としてブレーキ力発生部材251を用いる点で第1の実施の形態及び第2の実施の形態に係る力伝達装置10,210と異なっている。以下、本実施形態に係る力伝達装置250について、第1の実施の形態及び第2の実施の形態に係る力伝達装置10,210と異なる点について説明する。 << 3. Third Embodiment >>
Aforce transmission device 250 according to the third embodiment will be described with reference to FIG. The force transmission devices 10 and 210 according to the first and second embodiments use a torsion spring as a load applying member, but the force transmission device 250 according to the third embodiment is a load It differs from the force transmission devices 10 and 210 according to the first embodiment and the second embodiment in that a brake force generation member 251 is used as the application member. Hereinafter, the difference between the force transmission device 250 according to the present embodiment and the force transmission devices 10 and 210 according to the first embodiment and the second embodiment will be described.
図10を参照して、第3の実施の形態に係る力伝達装置250について説明する。第1の実施の形態及び第2の実施の形態に係る力伝達装置10,210は、負荷付与部材としてトーションばねを用いていたが、第3の実施の形態に係る力伝達装置250は、負荷付与部材としてブレーキ力発生部材251を用いる点で第1の実施の形態及び第2の実施の形態に係る力伝達装置10,210と異なっている。以下、本実施形態に係る力伝達装置250について、第1の実施の形態及び第2の実施の形態に係る力伝達装置10,210と異なる点について説明する。 << 3. Third Embodiment >>
A
図10は、力伝達装置250の構成を説明するための模式図である。図10は、図8及び図9に示した第2の実施の形態に係る力伝達装置におけるトーションばね15を無くし、ブレーキ力発生部材251を新たに設けた例を示している。図10においては、理解を容易にするために、同一の回転軸41に支持された第1のプーリ211及び第2のプーリ221が分離して示されている。また、図10においては、第1のプーリ211、第2のプーリ221及び第3のプーリ31の周面の溝内に配置されるワイヤ35の図示が省略されている。
FIG. 10 is a schematic diagram for explaining the configuration of the force transmission device 250. FIG. 10 shows an example in which the torsion spring 15 in the force transmission device according to the second embodiment shown in FIGS. 8 and 9 is eliminated and a brake force generating member 251 is newly provided. In FIG. 10, for easy understanding, the first pulley 211 and the second pulley 221 supported by the same rotation shaft 41 are shown separately. Further, in FIG. 10, illustration of the wires 35 arranged in the grooves on the peripheral surfaces of the first pulley 211, the second pulley 221, and the third pulley 31 is omitted.
ブレーキ力発生部材251は、例えば力伝達装置250を収容するハウジングに固定され、一部において第1のプーリ211に接する。第1のプーリ211の回転時には、第1のプーリ211とブレーキ力発生部材251との間の摩擦力による回転抵抗が発生しつつ第1のプーリ211は回転可能になっている。この摩擦力は、例えばアクチュエータを駆動させていない状態で、第1のプーリ211とブレーキ力発生部材251との相対回転が不可能となる一方、アクチュエータの駆動時に第1のプーリ211の回転トルクによって第1のプーリ211とブレーキ力発生部材251との相対回転が可能となる大きさとされる。
The brake force generation member 251 is fixed to, for example, a housing that accommodates the force transmission device 250 and partly contacts the first pulley 211. When the first pulley 211 rotates, the first pulley 211 can rotate while generating rotational resistance due to frictional force between the first pulley 211 and the brake force generating member 251. For example, this frictional force is caused by the rotational torque of the first pulley 211 when the actuator is driven, while the relative rotation between the first pulley 211 and the brake force generation member 251 becomes impossible when the actuator is not driven. The first pulley 211 and the brake force generation member 251 are set to a size that allows relative rotation.
ブレーキ力発生部材251の材料は特に限定されるものではなく、例えば樹脂、ゴム、金属又は木材であってもよい。また、図10に示した例では、ブレーキ力発生部材251は第1のプーリ211の周面に接しているが、第1のプーリ211におけるブレーキ力発生部材251が接する位置は側面であってもよい。これ以外の点は、第2の実施の形態に係る力伝達装置210の構成と同様の構成とすることができる。
The material of the brake force generating member 251 is not particularly limited, and may be, for example, resin, rubber, metal, or wood. In the example shown in FIG. 10, the brake force generating member 251 is in contact with the peripheral surface of the first pulley 211, but the position where the brake force generating member 251 is in contact with the first pulley 211 may be a side surface. Good. Except for this point, the configuration can be the same as the configuration of the force transmission device 210 according to the second embodiment.
第3の実施の形態に係る力伝達装置250において、使用前のアクチュエータを駆動させていない状態で、第1のプーリ211は図10の反時計回り方向に回転させられる。第1のプーリ211の回転は手動で行われてもよい。このとき、ワンウェイクラッチ13の機能によって回転軸41は回転することなく第1のプーリ211と回転軸41とは相対回転する。また、回転軸41に固定された第2のプーリ221も回転しない。相対回転させられた第1のプーリ211は、ブレーキ力発生部材251との間で生じる摩擦力によって回転後の位置で保持される。これにより、アクチュエータの非作動状態においてもワイヤ35の張力が維持される。一方、アクチュエータにより回転軸41が回転させられると、第1のプーリ211及び第2のプーリ221は以下のように回転する。
In the force transmission device 250 according to the third embodiment, the first pulley 211 is rotated counterclockwise in FIG. 10 without driving the actuator before use. The rotation of the first pulley 211 may be performed manually. At this time, the first pulley 211 and the rotating shaft 41 rotate relative to each other without rotating the rotating shaft 41 by the function of the one-way clutch 13. Further, the second pulley 221 fixed to the rotating shaft 41 does not rotate. The first pulley 211 that is relatively rotated is held at the position after the rotation by the frictional force generated between the first pulley 211 and the brake force generating member 251. Thereby, the tension | tensile_strength of the wire 35 is maintained also in the non-operation state of an actuator. On the other hand, when the rotating shaft 41 is rotated by the actuator, the first pulley 211 and the second pulley 221 rotate as follows.
例えば、図10において、回転軸41が時計回りに回転する場合、第1のプーリ211は、回転軸41に対して反時計回りに相対回転することになるため、ワンウェイクラッチ13の機能により、回転軸41の回転トルクによって回転することはない。ただし、回転軸41に固定された第2のプーリ221が時計回りに回転することによって、ワイヤ35が第2のプーリ221に巻き付けられる結果、ワイヤ35の張力により第1のプーリ211が時計回りに回転する。したがって、第3のプーリ31が時計回りに回転して、出力軸51は時計回りの回転トルクを出力する。
For example, in FIG. 10, when the rotating shaft 41 rotates clockwise, the first pulley 211 rotates relative to the rotating shaft 41 counterclockwise. It does not rotate due to the rotational torque of the shaft 41. However, when the second pulley 221 fixed to the rotating shaft 41 rotates clockwise, the wire 35 is wound around the second pulley 221, and as a result, the first pulley 211 is rotated clockwise by the tension of the wire 35. Rotate. Therefore, the third pulley 31 rotates clockwise, and the output shaft 51 outputs clockwise rotational torque.
このとき、ワイヤ35に弛みが生じている場合には、第1のプーリ211とブレーキ力発生部材251との間の摩擦力により、ワイヤ35に所定の張力が生じるまでの間、第1のプーリ211が回転しない状態で維持される。これにより、ワイヤ35の張力が復元される。
At this time, if the wire 35 is slack, the first pulley until a predetermined tension is generated in the wire 35 due to the frictional force between the first pulley 211 and the brake force generation member 251. 211 is maintained without rotating. Thereby, the tension of the wire 35 is restored.
また、アクチュエータにより回転軸41が反時計回りに回転する場合、第1のプーリ211はワンウェイクラッチ13の機能により、回転軸41の回転トルクによってブレーキ力発生部材251からの摩擦力に抗して反時計回りに回転する。同時に、回転軸41に固定された第2のプーリ221は、回転軸41の回転に伴って反時計回りに回転して、ワイヤ35を導出する。したがって、第3のプーリ31が反時計回りに回転して、出力軸51は反時計回りの回転トルクを出力する。
When the rotation shaft 41 is rotated counterclockwise by the actuator, the first pulley 211 is counteracted by the function of the one-way clutch 13 against the frictional force from the brake force generating member 251 by the rotation torque of the rotation shaft 41. Rotate clockwise. At the same time, the second pulley 221 fixed to the rotating shaft 41 rotates counterclockwise with the rotation of the rotating shaft 41 and leads out the wire 35. Therefore, the third pulley 31 rotates counterclockwise, and the output shaft 51 outputs a counterclockwise rotational torque.
このように、本実施形態に係る力伝達装置250は、使用時においてアクチュエータによって回転軸41を時計回りに回転させることで、ワイヤ35の張力を維持することができる。したがって、本実施形態に係る力伝達装置250によれば、比較的簡易な構成で、ワイヤ35の張力を保持させることができ、力伝達装置250の大型化を抑制することができる。また、本実施形態に係る力伝達装置250によれば、追加のアクチュエータや、別途配置される部品、自動制御用のソフトウェア等を用いてワイヤ35の張力を保持する場合に比べて、力伝達装置210の質量をより抑制することができる。
As described above, the force transmission device 250 according to the present embodiment can maintain the tension of the wire 35 by rotating the rotating shaft 41 clockwise by the actuator during use. Therefore, according to the force transmission device 250 according to the present embodiment, the tension of the wire 35 can be held with a relatively simple configuration, and an increase in size of the force transmission device 250 can be suppressed. In addition, according to the force transmission device 250 according to the present embodiment, the force transmission device is compared with a case where the tension of the wire 35 is maintained using an additional actuator, a separately arranged component, automatic control software, or the like. The mass of 210 can be further suppressed.
なお、本実施形態に係る力伝達装置250においても、第1の実施の形態に係る力伝達装置10の第2の変形例を適用することができる。つまり、第1のプーリ211及び第2のプーリ221がそれぞれ互いにギヤ接続された異なる回転軸に支持されていてもよい。また、第1の実施の形態に係る力伝達装置10の第1のプーリ11及び第2のプーリ21のそれぞれに備えられたトーションばねをブレーキ力発生部材に置き換えた場合であっても、アクチュエータによって回転軸41を時計回り及び反時計回りの双方に回転させることで、ワイヤ35の張力が維持される。
Note that the second modification of the force transmission device 10 according to the first embodiment can also be applied to the force transmission device 250 according to the present embodiment. That is, the first pulley 211 and the second pulley 221 may be supported by different rotating shafts that are gear-connected to each other. Even when the torsion spring provided in each of the first pulley 11 and the second pulley 21 of the force transmission device 10 according to the first embodiment is replaced with a brake force generating member, The tension of the wire 35 is maintained by rotating the rotating shaft 41 in both clockwise and counterclockwise directions.
また、ブレーキ力発生部材251は、ハウジング等に固定されて第1のプーリ211に常時接していなくてもよく、第1のプーリ211に向けて進退可能に構成されていてもよい。例えば、通常時においてはブレーキ力発生部材251を第1のプーリ211から離間させておき、力伝達装置250のワイヤ35の弛みが検知されたときあるいは任意のタイミングで、手動又は駆動機構によってブレーキ力発生部材251を第1のプーリ211に接する位置に移動させて、ワイヤ35の張力を復元させてもよい。このように構成することにより、ワイヤ35の弛みが生じていない間における第1のプーリ211の回転抵抗が低減し、アクチュエータの負荷を低減させることができる。
Further, the brake force generation member 251 may be fixed to a housing or the like and not always in contact with the first pulley 211, and may be configured to be able to advance and retreat toward the first pulley 211. For example, during normal times, the brake force generating member 251 is separated from the first pulley 211, and when the slack of the wire 35 of the force transmission device 250 is detected or at an arbitrary timing, the brake force is generated manually or by a drive mechanism. The generating member 251 may be moved to a position in contact with the first pulley 211 to restore the tension of the wire 35. With this configuration, the rotational resistance of the first pulley 211 while the wire 35 is not slackened can be reduced, and the load on the actuator can be reduced.
また、ブレーキ力発生部材251は、第1のプーリ211に直接接する構成でなくてもよい。例えば、通電により磁力を発生可能な電磁コイル等を用いて、第1のプーリ211に回転抵抗を与えるように構成されてもよい。
Further, the brake force generation member 251 may not be configured to be in direct contact with the first pulley 211. For example, the first pulley 211 may be configured to give rotational resistance using an electromagnetic coil or the like that can generate a magnetic force when energized.
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
例えば、上記実施形態では、力伝達装置の適用例として、ユーザの動作の補助力を生成させる動作補助装置が例示されていたが、本発明はかかる例に限定されない。本発明に係る力伝達装置は、複数のプーリ及び可撓性の力伝達部材を用いた種々の装置に適用可能である。
For example, in the above-described embodiment, as an application example of the force transmission device, an operation assisting device that generates an assisting force for the user's operation is illustrated, but the present invention is not limited to such an example. The force transmission device according to the present invention is applicable to various devices using a plurality of pulleys and a flexible force transmission member.
10 力伝達装置
11 第1のプーリ
13 第1のワンウェイクラッチ
15 第1のトーションばね(負荷付与部材)
21 第2のプーリ
23 第2のワンウェイクラッチ
25 第2のトーションばね(負荷付与部材)
31 第3のプーリ
35 ワイヤ(力伝達部材)
40 アクチュエータ
41 回転軸
51 出力軸
100 人体装着ロボット(動作補助装置)
210 力伝達装置
221 第2のプーリ
250 力伝達装置
251 ブレーキ力発生部材(負荷付与部材)
DESCRIPTION OFSYMBOLS 10 Force transmission apparatus 11 1st pulley 13 1st one-way clutch 15 1st torsion spring (load provision member)
21Second pulley 23 Second one-way clutch 25 Second torsion spring (load applying member)
31Third pulley 35 Wire (force transmission member)
40Actuator 41 Rotating shaft 51 Output shaft 100 Human body wearing robot (motion assist device)
210Force transmission device 221 Second pulley 250 Force transmission device 251 Brake force generating member (load applying member)
11 第1のプーリ
13 第1のワンウェイクラッチ
15 第1のトーションばね(負荷付与部材)
21 第2のプーリ
23 第2のワンウェイクラッチ
25 第2のトーションばね(負荷付与部材)
31 第3のプーリ
35 ワイヤ(力伝達部材)
40 アクチュエータ
41 回転軸
51 出力軸
100 人体装着ロボット(動作補助装置)
210 力伝達装置
221 第2のプーリ
250 力伝達装置
251 ブレーキ力発生部材(負荷付与部材)
DESCRIPTION OF
21
31
40
210
Claims (9)
- 第1のプーリと、
第2のプーリと、
少なくとも前記第1のプーリ及び前記第2のプーリに掛け渡される可撓性の力伝達部材と、
前記第1のプーリを支持する回転軸に対して、前記第1のプーリに巻き付けられた前記力伝達部材の巻き付け方向と同一方向への前記第1のプーリの相対回転を許容し、反対方向への相対回転を阻止するワンウェイクラッチと、
前記第1のプーリを支持する回転軸に対して、前記相対回転が許容されている方向へと前記第1のプーリを相対回転させるように前記第1のプーリに負荷を与える負荷付与部材と、
を備える、力伝達装置。 A first pulley;
A second pulley;
A flexible force transmission member spanned between at least the first pulley and the second pulley;
The relative rotation of the first pulley is allowed in the same direction as the winding direction of the force transmission member wound around the first pulley with respect to the rotation shaft supporting the first pulley, and in the opposite direction. A one-way clutch that prevents relative rotation of
A load applying member that applies a load to the first pulley so as to relatively rotate the first pulley in a direction in which the relative rotation is allowed with respect to a rotation shaft that supports the first pulley;
A force transmission device comprising: - 前記第1のプーリ及び前記第2のプーリのうちのいずれか一方のプーリの回転に伴って、他方のプーリが1自由度で同期して回転する、請求項1に記載の力伝達装置。 The force transmission device according to claim 1, wherein the other pulley rotates synchronously with one degree of freedom as one of the first pulley and the second pulley rotates.
- 前記第1のプーリ及び前記第2のプーリが、1つの共通の回転軸に支持される、請求項1又は2に記載の力伝達装置。 The force transmission device according to claim 1 or 2, wherein the first pulley and the second pulley are supported by one common rotating shaft.
- 前記負荷付与部材がトーションばねであって、前記トーションばねの一端が前記回転軸に固定され他端が前記第1のプーリ又は前記第2のプーリに固定される、請求項1~3のいずれか1項に記載の力伝達装置。 The load applying member is a torsion spring, and one end of the torsion spring is fixed to the rotating shaft and the other end is fixed to the first pulley or the second pulley. The force transmission device according to item 1.
- 前記負荷付与部材は、前記第1のプーリに接して前記第1のプーリに対して回転抵抗を与える、請求項1~3のいずれか1項に記載の力伝達装置。 The force transmission device according to any one of claims 1 to 3, wherein the load applying member is in contact with the first pulley and provides rotational resistance to the first pulley.
- 前記力伝達装置は、前記第1のプーリと前記第2のプーリとの間の前記力伝達部材が掛け渡される第3のプーリを備える、請求項1~5のいずれか1項に記載の力伝達装置。 The force according to any one of claims 1 to 5, wherein the force transmission device includes a third pulley over which the force transmission member between the first pulley and the second pulley is stretched. Transmission device.
- 前記ワンウェイクラッチを第1のワンウェイクラッチとし、前記負荷付与部材を第1の負荷付与部材としたときに、
前記第2のプーリを支持する回転軸に対して、前記第2のプーリに巻き付けられた前記力伝達部材の巻き付け方向と同一方向への前記第2のプーリの相対回転を許容し、反対方向への相対回転を阻止する第2のワンウェイクラッチと、
前記第2のプーリを支持する回転軸に対して、前記相対回転が許容されている方向へと前記第2のプーリを相対回転させるように前記第2のプーリに負荷を与える第2の負荷付与部材と、
をさらに備える、請求項1~6のいずれか1項に記載の力伝達装置。 When the one-way clutch is a first one-way clutch and the load applying member is a first load applying member,
Allowing the relative rotation of the second pulley in the same direction as the winding direction of the force transmission member wound around the second pulley with respect to the rotation shaft supporting the second pulley, and in the opposite direction A second one-way clutch that prevents relative rotation of the
Second load application that applies a load to the second pulley so as to relatively rotate the second pulley in a direction in which the relative rotation is allowed with respect to a rotation shaft that supports the second pulley. Members,
The force transmission device according to any one of claims 1 to 6, further comprising: - 前記第1のプーリ及び前記第2のプーリが、1つの共通の回転軸に支持され、
前記第1のワンウェイクラッチは、前記共通の回転軸に対して軸回りの第1の方向への前記第1のプーリの相対回転を許容し第2の方向への相対回転を阻止し、
前記第1の負荷付与部材は、前記共通の回転軸に対して軸回りの前記第1の方向へと相対回転させるように前記第1のプーリに負荷を与え、
前記第2のワンウェイクラッチは、前記共通の回転軸に対して軸回りの前記第2の方向への前記第2のプーリの相対回転を許容し前記第1の方向への相対回転を阻止し、
前記第2の負荷付与部材は、前記共通の回転軸に対して軸回りの前記第2の方向へと相対回転させるように前記第2のプーリに負荷を与える、請求項7に記載の力伝達装置。 The first pulley and the second pulley are supported by one common rotating shaft,
The first one-way clutch allows relative rotation of the first pulley in a first direction around an axis with respect to the common rotation axis and prevents relative rotation in a second direction;
The first load applying member applies a load to the first pulley so as to relatively rotate in the first direction around the axis with respect to the common rotation axis,
The second one-way clutch allows relative rotation of the second pulley in the second direction around the axis with respect to the common rotation axis and prevents relative rotation in the first direction;
The force transmission according to claim 7, wherein the second load applying member applies a load to the second pulley so as to rotate relative to the common rotation axis in the second direction around the axis. apparatus. - ユーザの人体に装着され、第1の部材及び第2の部材を相対回転可能に連結する関節部を有する装着具と、
前記第1の部材及び前記第2の部材を相対回転させる動力を発生するアクチュエータと、
第1のプーリ、第2のプーリ、少なくとも前記第1のプーリ及び前記第2のプーリに掛け渡される可撓性の力伝達部材、前記第1のプーリを支持する回転軸に対して軸回りの一方向への前記第1のプーリの相対回転を許容し他方向への相対回転を阻止するワンウェイクラッチ、及び前記第1のプーリを支持する回転軸に対して軸回りの一方向へと相対回転させるように前記第1のプーリに負荷を与える負荷付与部材、を有し、前記アクチュエータから発生した動力を前記関節部に伝達する力伝達装置と、
を備えた、動作補助装置。
A wearing tool that is attached to a user's human body and has a joint portion that connects the first member and the second member in a relatively rotatable manner;
An actuator that generates power to relatively rotate the first member and the second member;
A first pulley, a second pulley, at least the first pulley and a flexible force transmission member that spans the second pulley, and a rotational axis that supports the first pulley. A one-way clutch that allows relative rotation of the first pulley in one direction and prevents relative rotation in the other direction, and relative rotation in one direction around the axis with respect to the rotation shaft that supports the first pulley A load applying member that applies a load to the first pulley so as to cause a force transmission device that transmits power generated from the actuator to the joint portion;
A motion assisting device.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016162667 | 2016-08-23 | ||
JP2016-162667 | 2016-08-23 | ||
JP2017-002154 | 2017-01-10 | ||
JP2017002154 | 2017-01-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018037785A1 true WO2018037785A1 (en) | 2018-03-01 |
Family
ID=61245586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/026325 WO2018037785A1 (en) | 2016-08-23 | 2017-07-20 | Force transmission device and operation auxiliary device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018037785A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109454629A (en) * | 2018-11-02 | 2019-03-12 | 北京机械设备研究所 | A kind of driving device of two-way decoupling |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59200858A (en) * | 1983-04-28 | 1984-11-14 | Oi Seisakusho Co Ltd | Looseness preventing device for reciprocatingly running rope |
JPH0291886U (en) * | 1988-12-30 | 1990-07-20 | ||
JP2008232360A (en) * | 2007-03-22 | 2008-10-02 | Toshiba Corp | Wire drive mechanism, robot arm mechanism, and robot |
-
2017
- 2017-07-20 WO PCT/JP2017/026325 patent/WO2018037785A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59200858A (en) * | 1983-04-28 | 1984-11-14 | Oi Seisakusho Co Ltd | Looseness preventing device for reciprocatingly running rope |
JPH0291886U (en) * | 1988-12-30 | 1990-07-20 | ||
JP2008232360A (en) * | 2007-03-22 | 2008-10-02 | Toshiba Corp | Wire drive mechanism, robot arm mechanism, and robot |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109454629A (en) * | 2018-11-02 | 2019-03-12 | 北京机械设备研究所 | A kind of driving device of two-way decoupling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012213543A (en) | Back strength assist device | |
CN109591001B (en) | Transmission device | |
JP5275465B2 (en) | Feeding and storing the power cord | |
KR20160117578A (en) | Tensioner | |
JP2008089175A (en) | Motion converting device | |
JP2012201134A5 (en) | ||
WO2018037785A1 (en) | Force transmission device and operation auxiliary device | |
JP2015168037A (en) | Robot joint structure and robot device | |
WO2021101856A1 (en) | Device for assisting motion of a joint | |
IT202100002558A1 (en) | CABLE OPERATED ROBOT | |
JP2006224229A (en) | Robot hand | |
JP2007319954A (en) | Movable shaft driving device and robot device | |
WO2017033885A1 (en) | Motor-driven hand | |
JP2011131305A (en) | Artificial muscle and flexible joint mechanism | |
WO2019244799A1 (en) | Surgical tool | |
US8146718B2 (en) | Automatic system brake | |
KR101685433B1 (en) | A cable-driven system using a spring - actuator mechanism | |
JP2018135974A (en) | Torque transmission device and operation auxiliary device | |
JP2006306169A (en) | Steering device for vehicle | |
CN109381326B (en) | Finger rehabilitation training device | |
WO2017110253A1 (en) | Assisting robot device | |
JP2018144169A (en) | Driving apparatus for action assisting apparatus | |
WO2017110251A1 (en) | Differential gear device | |
JP2016202580A (en) | Walking aid | |
JP2017046779A (en) | Walking assisting device and walking assisting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17843272 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17843272 Country of ref document: EP Kind code of ref document: A1 |