WO2018037652A1 - Consequent pole-type rotor, electric motor, and air conditioner - Google Patents

Consequent pole-type rotor, electric motor, and air conditioner Download PDF

Info

Publication number
WO2018037652A1
WO2018037652A1 PCT/JP2017/020020 JP2017020020W WO2018037652A1 WO 2018037652 A1 WO2018037652 A1 WO 2018037652A1 JP 2017020020 W JP2017020020 W JP 2017020020W WO 2018037652 A1 WO2018037652 A1 WO 2018037652A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
magnets
magnetic pole
rotor core
Prior art date
Application number
PCT/JP2017/020020
Other languages
French (fr)
Japanese (ja)
Inventor
優人 浦邊
及川 智明
山本 峰雄
石井 博幸
洋樹 麻生
隼一郎 尾屋
諒伍 ▲高▼橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201790000484.7U priority Critical patent/CN208835850U/en
Priority to JP2018535463A priority patent/JP6545393B2/en
Publication of WO2018037652A1 publication Critical patent/WO2018037652A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2746Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets arranged with the same polarity, e.g. consequent pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a continuous pole type rotor, an electric motor, and an air conditioner.
  • a rare earth magnet having a high energy density such as a neodymium sintered magnet is generally used as a permanent magnet of an electric motor mounted on a compressor of an air conditioner.
  • An electric motor using a neodymium sintered magnet has been developed for an air conditioner fan.
  • Such a permanent magnet is expensive because it contains a valuable rare earth element. Therefore, there is a strong demand for reducing the cost by reducing the amount of permanent magnet used and the processing cost.
  • Permanent magnets are generally processed into a specified shape by cutting block-like chunks. For this reason, the processing cost increases as the number of permanent magnets used in the electric motor increases.
  • a rotor As a method for reducing the number of permanent magnets used in an electric motor, there is a method in which a rotor is constituted by a so-called continuous pole.
  • the continuous pole type rotor magnet magnetic poles formed by permanent magnets and salient poles formed on the core material without using permanent magnets are alternately arranged in the circumferential direction. Therefore, the number of magnet magnetic poles and the number of salient poles are both half the number of poles. Also, half the number of magnetic poles has the same polarity, and half the number of salient poles has a different polarity from the magnetic pole.
  • the number of permanent magnets is half of the normal number.
  • the continuous pole type rotor there is a problem that the inductance differs between the magnetic pole and the salient pole, and vibration and noise increase due to the imbalance of the inductance.
  • the continuous pole type rotor disclosed in Patent Document 1 improves the asymmetry of the inductance by reducing the shape of the flux barrier at both ends of the permanent magnet, thereby reducing vibration and noise.
  • An electric motor using a continuous pole type rotor disclosed in Patent Document 1 includes a magnetic sensor that detects a position of the rotor in the rotation direction, and the magnetic sensor leaks in the axial direction from the magnet magnetic pole of the rotor.
  • the rotation control of the rotor is performed by alternately detecting the first magnetic field and the second magnetic field leaking in the axial direction from the salient poles of the rotor.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a continuous pole type rotor capable of improving the detection accuracy of the rotational position.
  • a continuous pole type rotor has a plurality of permanent magnets, and a first magnetic pole portion having a first polarity by the permanent magnets, A rotor core having a second magnetic pole portion having a second polarity different from the first polarity formed between adjacent permanent magnets, and an annular magnet provided at one end of the rotor core in the axial direction
  • a plurality of position detecting magnets arranged in the rotation direction of the rotor core and for detecting the positions of the first magnetic pole portion and the second magnetic pole portion of the rotor core;
  • a plurality of connecting portions that are provided between adjacent position detecting magnets and connect adjacent position detecting magnets to each other, and the plurality of position detecting magnets are arranged in the rotor core in the axial direction of the rotor core.
  • the polarity of the magnetic pole on the opposite end face is the same as the second polarity.
  • the continuous pole type rotor according to the present invention has an effect of improving the detection accuracy of the rotational position.
  • Sectional drawing of the electric motor provided with the consequent pole type rotor which concerns on Embodiment 1 of this invention Sectional view of the mold stator shown in FIG. Sectional drawing which shows the state by which the rotor was inserted in the mold stator shown in FIG.
  • Sectional view of the rotor shown in FIG. 1 is a perspective view of a continuum pole type rotor according to a first embodiment of the present invention. Front view of the rotor shown in FIG. The perspective view of the annular magnet shown in FIG.
  • FIG. 1 The figure which shows the 1st modification of the continuum pole type rotor which concerns on Embodiment 1 of this invention.
  • Front view of the rotor shown in FIG. The perspective view of the annular magnet shown in FIG.
  • Front view of the rotor shown in FIG. First perspective view of the annular magnet shown in FIG.
  • FIG. 1 is a cross-sectional view of an electric motor including a continuous pole type rotor according to Embodiment 1 of the present invention.
  • An electric motor 100 shown in FIG. 1 includes a mold stator 10, a rotor 20, and a metal bracket 30 attached to one end portion in the axial direction of the mold stator 10.
  • the “axial direction” is equal to the stacking direction of the plurality of rotor cores constituting the rotor 20.
  • the electric motor 100 is a brushless DC motor having a permanent magnet in the rotor 20 and driven by an inverter.
  • the rotor 20 is an internal magnet type and a continuous pole type.
  • the mold stator 10 includes a stator 40 and a mold resin 50 that covers the stator 40, and the axial direction of the mold stator 10 coincides with the axial direction of the shaft 23 that penetrates the rotor 20.
  • the stator core 41 which is a constituent element of the stator 40
  • the coil 42 wound around the stator core 41, the insulating portion 43 provided on the stator core 41, and the insulating portion 43 are provided.
  • the neutral point terminal 44b is shown.
  • the board 45 attached to the insulating portion 43 which is a component of the stator 40
  • the lead wire lead part 46 assembled to the board 45, and the lead wire 47 lead out from the lead wire lead part 46.
  • an IC (Integrated Circuit) 49a mounted on the substrate 45 and a Hall IC 49b which is a magnetic sensor mounted on the surface of the substrate 45 on the rotor 20 side are shown.
  • the rotor 20 is mounted on the shaft 23, the resin portion 24 that integrates the main body of the rotor 20 and the shaft assembly 27, and the load-side rolling attached to the shaft 23 and supported by the bearing support portion 11 of the mold stator 10.
  • a bearing 21a and an anti-load-side rolling bearing 21b attached to the shaft 23 and supported by the bracket 30 are provided.
  • the load side 110 represents the end surface side from which the shaft 23 projects out of both end surfaces of the electric motor 100
  • the anti-load side 120 represents the end surface side on which the bracket 30 is provided.
  • the rotor 20 is installed at one end portion 5a of the rotor core 5 in the axial direction, and a plurality of position detection magnets 70 for detecting the position of the rotor core 5 in the rotation direction, each of which is a position detection magnet. And a plurality of connecting portions 71 for connecting 70 together.
  • the Hall IC 49b alternately detects a magnetic field generated in the axial direction from the position detection magnet 70 and a magnetic field generated in the axial direction from a first magnetic pole portion described later, and has a pulse shape corresponding to the detected change in the magnetic field. Output a signal.
  • the IC 49a calculates the position of the rotor 20 in the rotation direction based on the signal output from the Hall IC 49b and controls the rotation of the rotor 20.
  • the Hall IC 49b is used as the position detection means for detecting the position of the rotor core 5 in the rotation direction.
  • the position detection means is not limited to the Hall IC 49b.
  • An element that alternately detects a magnetic field generated in the axial direction and a magnetic field generated in the axial direction from the first magnetic pole portion may be used.
  • the shaft assembly 27 includes an insulating sleeve 26 including a pair of insulating sleeves 26-1 and 26-2, and the insulating sleeve 26 is disposed between the anti-load side rolling bearing 21 b and the shaft 23.
  • FIG. 2 is a cross-sectional view of the mold stator shown in FIG.
  • the mold stator 10 has an opening 10b at one end in the axial direction of the mold stator 10, and the rotor 20 is inserted into the opening 10b.
  • a hole 11a larger than the diameter of the shaft assembly 27 of the rotor 20 shown in FIG. 1 is formed at the axial end of the mold stator 10 into which the load-side rolling bearing 21a of the rotor 20 inserted into the opening 10b is fitted. Opened.
  • FIG. 3 is a cross-sectional view showing a state where a rotor is inserted into the mold stator shown in FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals.
  • the rotor 20 inserted from the opening 10b of the mold stator 10 shown in FIG. 2 is arranged so that the load side of the shaft assembly 27 passes through the hole 11a shown in FIG.
  • the At this time, the load-side rolling bearing 21 a attached to the shaft 23 is pushed in until it contacts the bearing support portion 11 shown in FIG. 1 and is supported by the bearing support portion 11.
  • the bearing support portion 11 is an axial end portion of the mold stator 10 and is provided on the opposite side of the opening portion 10b.
  • the anti-load-side rolling bearing 21b is attached to the anti-load side of the shaft assembly 27.
  • the attachment of the anti-load side rolling bearing 21b is generally performed by press fitting.
  • an insulating sleeve 26 formed integrally with the shaft 23 is provided between the anti-load side rolling bearing 21b and the anti-load side of the shaft 23.
  • the bracket 30 shown in FIG. 1 closes the opening 10b of the mold stator 10 shown in FIG. 2 and supports the anti-load-side rolling bearing 21b shown in FIG. 3, and is press-fitted into the mold stator 10.
  • the bracket 30 includes a bearing support portion 30a and a press-fit portion 30b formed integrally with the bearing support portion 30a.
  • the bearing support portion 30a supports the anti-load side rolling bearing 21b.
  • the press-fit portion 30b has a ring shape.
  • the bracket 30 is attached to the mold stator 10 by press-fitting the press-fit portion 30b into the opening 10b side of the inner peripheral portion 10a of the mold stator 10.
  • the outer diameter of the press-fit portion 30b is larger than the inner diameter of the inner peripheral portion 10a of the mold stator 10 by the press-fit allowance.
  • the material of the bracket 30 include a galvanized steel plate, an aluminum alloy, an austenitic stainless alloy, a copper alloy, cast iron, steel, or an iron alloy.
  • the mold stator 10 shown in FIG. 2 includes a stator 40 and a mold resin 50 for molding.
  • An unsaturated polyester resin is used for the mold resin 50.
  • a bulk clay thermosetting resin (BMC) obtained by adding various additives to an unsaturated polyester resin is desirable for an electric motor.
  • Thermoplastic resins such as polybutylene terephthalate (PBT) and polyphenylene sulfide (PPS) also have a good aspect because they can recycle the runner during molding.
  • the unsaturated polyester resin and BMC have a linear expansion coefficient close to that of ferrous materials such as the stator core 41, the load side rolling bearing 21a, and the anti-load side rolling bearing 21b, and the thermal shrinkage rate is 1 of the thermoplastic resin. / 10 or less is excellent for obtaining dimensional accuracy.
  • the heat dissipation is excellent when the outer shell of the electric motor 100 is formed of unsaturated polyester resin and BMC. Further, when the outer shell of the electric motor 100 is formed of metal, the metal forming the outer shell of the electric motor 100 is separated from the coil 42 and the substrate 45 due to an insulating problem. On the other hand, since unsaturated polyester resin and BMC are insulators, there is no problem of insulation even when the coil 42 and the substrate 45 are covered, and since heat conductivity is high, the heat dissipation is excellent, and the high output of the electric motor 100 Contribute to
  • the load side rolling bearing 21 a is supported by the bearing support portion 11 formed of the mold resin 50, and the anti-load side rolling bearing 21 b and the bracket 30 are supported by the inner peripheral portion 10 a formed of the mold resin 50.
  • the axis of the rotor 20 and the axis of the stator 40 are deviated to cause vibration and noise.
  • an unsaturated polyester resin and BMC having a small heat shrinkage rate it becomes easy to ensure dimensional accuracy after molding.
  • Unsaturated polyester resin and BMC have linear expansion coefficients that are close to the linear expansion coefficients of ferrous materials such as the stator core 41, the load-side rolling bearing 21a, and the anti-load-side rolling bearing 21b. Deviation between the axis of the child 20 and the axis of the stator 40 can be suppressed.
  • the unsaturated polyester resin and BMC restrain the stator 40 when cured, the deformation of the stator 40 due to the excitation force of the electric motor 100 can be suppressed, and vibration and noise can be suppressed.
  • FIG. 4 is a configuration diagram of a stator core configured by a plurality of divided core portions and developed in a band shape.
  • the stator core 41 shown in FIG. 4 is obtained by arranging a plurality of divided core portions 400 such that each of the plurality of divided core portions 400 is in contact with another adjacent one of the plurality of divided core portions 400.
  • Each of the plurality of divided core portions 400 includes a back yoke 401 and teeth 402 protruding from the back yoke 401. Between adjacent back yokes 401, a thin portion 403 that connects the back yokes 401 is provided.
  • FIG. 5 is a diagram showing a state in which the developed stator core shown in FIG. 4 is bent and configured in an annular shape.
  • the annular stator core 41 shown in FIG. 5 is formed into an annular shape by folding the belt-shaped divided core portion 400 group at the thin portion 403 after the coils 42 of FIG. 1 are applied to each of the plurality of teeth 402 shown in FIG. Formed.
  • the stator core 41 composed of a plurality of divided core portions 400 can be wound with the coil 42 in a state of being developed in a band shape, so that the density of the coil 42 can be increased and high efficiency can be achieved. It is effective for conversion. However, since the split core portion 400 is connected by the thin wall portion 403, the rigidity of the stator core 41 when it is formed in an annular shape is low, and those having a large excitation force such as the continuous pole type electric motor 100 are not suitable. It is effective to mold the stator core 41 with a saturated polyester resin, that is, to cover the stator core 41 with an unsaturated polyester resin.
  • stator core 41 composed of a plurality of divided core portions 400 has a concavity and convexity at the end of the back yoke 401 in addition to the structure in which the back yokes 401 adjacent to each other are connected by a thin portion 403 as shown in FIG.
  • the structure may be such that a dowel is formed and the dowels are connected to each other, or a plurality of back yokes 401 separated from each other may be fixed together by welding or fitting.
  • the mold stator 10 satisfies the relationship of T1> T2. It is desirable to be configured.
  • the rigidity of the radially outer thickness T1 is increased by making the thickness T1 larger than the thickness T2.
  • “Radial direction” indicates the radial direction of the rotor 20.
  • the influence of the excitation force acting on the teeth 402 can be suppressed by providing the unsaturated polyester resin on the divided surface 404 between the adjacent divided core portions 400.
  • a hole 405 is formed in the split surface 404 of the annular stator core 41 shown in FIG.
  • the hole 405 is formed by providing a groove or notch between adjacent back yokes 401.
  • the holes 405 are filled with the unsaturated polyester resin.
  • the hole 405 does not need to be filled with unsaturated polyester in the entire region from one end surface to the other end surface in the axial direction of the stator core 41, and is slightly filled from one end surface in the axial direction of the stator core 41. Even in this case, the effect of damping the vibration can be expected.
  • the hole 405 of the dividing surface 404 can obtain the same effect even if it has a groove shape that opens to the outer peripheral surface of the stator core 41 or a groove shape that opens to the slot 406 side.
  • FIG. 6 is a cross-sectional view of the rotor shown in FIG.
  • the rotor 20 has an annular rotor core 5 and five magnet insertion holes 2 arranged in the circumferential direction.
  • “Circumferential direction” indicates the circumferential direction of the rotor 20.
  • the number of magnet insertion holes 2 is half the number of poles of the rotor 20.
  • the five magnet insertion holes 2 are arranged at equal intervals in the circumferential direction.
  • the five magnet insertion holes 2 are arranged at an equal distance from the rotation shaft 6.
  • the rotating shaft 6 coincides with the axis of the rotor core 5.
  • the five magnet insertion holes 2 penetrate the rotor core 5 in the axial direction.
  • the magnet insertion hole 2 is formed near the outer peripheral surface of the rotor core 5 and extends in the circumferential direction. Adjacent magnet insertion holes 2 are spaced apart.
  • the rotor core 5 has a shaft insertion hole 7 at the center.
  • the rotor core 5 is composed of a core material that is a soft magnetic material, and specifically, a plurality of electromagnetic steel plates are laminated.
  • the thickness of one electromagnetic steel sheet is generally 0.1 mm to 0.7 mm.
  • the five permanent magnets 1 are inserted into the five magnet insertion holes 2, respectively.
  • the permanent magnet 1 has a flat plate shape with a rectangular cross section. An example of the plate thickness of the permanent magnet 1 is 2 mm.
  • the permanent magnet 1 is a rare earth magnet and is a neodymium sintered magnet mainly composed of Nd (neodymium) -Fe (iron) -B (boron).
  • the magnet insertion hole 2 is composed of a rectangular first region 3A into which the permanent magnet 1 is inserted and two second regions 3B into which the permanent magnet 1 is not inserted.
  • the second region 3B is a first region 3B. One region is formed at each end in the longitudinal direction of the region 3A.
  • the second region 3B has a function of a flux barrier that suppresses the leakage magnetic flux a with respect to the permanent magnet 1 inserted in the first region 3A, and the magnetic flux density distribution on the outer peripheral surface of the rotor core 5 is determined. It has a function of short-circuiting the magnetic flux of the permanent magnet 1 inserted in the adjacent magnet insertion hole 2 through the rotor core 5 close to a sine wave.
  • the rotor 20 has ten magnetic poles arranged on the outer peripheral surface of the rotor core 5 so that the polarities are alternately arranged in the circumferential direction.
  • the rotor 20 is formed by five first magnetic poles each formed by five permanent magnets 1 and having the same polarity, and a rotor core 5 between the permanent magnets 1 adjacent to each other. It has five second magnetic poles having different polarities from the first magnetic poles.
  • the first magnetic pole is an N pole and the second magnetic pole is an S pole, but may be reversed.
  • the five permanent magnets 1 which are half the number of poles, each provide five first magnetic poles.
  • each of the five second magnetic poles having half the number of poles is formed on the core material of the rotor core 5 between the permanent magnets 1 adjacent to each other.
  • the second magnetic pole is a so-called salient pole and is formed by magnetizing the rotor 20.
  • the rotor 20 includes the first magnetic pole portion 60 having the first polarity by the permanent magnet 1 including the permanent magnet 1 and the second magnetic pole that is a core magnetic pole portion not including the permanent magnet 1 and is a virtual pole.
  • the second magnetic pole portions 61 are arranged alternately in the circumferential direction of the rotor 20.
  • the number of poles is an even number of 4 or more.
  • the outer shape of the rotor core 5 is a so-called flower circle shape.
  • the flower-circle shape is a shape in which the outer diameter of the rotor core 5 is maximum at the pole centers 62 and 63 and is minimum at the gap 64, and the arc from the pole centers 62 and 63 to the gap 64 is an arc shape. It is.
  • the pole center 62 is the pole center of the first magnetic pole
  • the pole center 63 is the pole center of the second magnetic pole.
  • the flower circle shape is a shape in which ten petals of the same shape and the same size are arranged at an equal angle. Therefore, the outer diameter of the rotor core 5 at the pole center 62 is equal to the outer diameter of the rotor core 5 at the pole center 63.
  • the circumferential width of the magnet insertion hole 2 is wider than the pole pitch.
  • FIG. 7 is a perspective view of a continuum pole type rotor according to the first embodiment of the present invention.
  • FIG. 8 is a front view of the rotor shown in FIG.
  • FIG. 9 is a perspective view of the annular magnet shown in FIG.
  • the rotor 20 is provided at one end portion 5a of the rotor core 5 in the axial direction, and includes a plurality of position detection magnets 70 for detecting the position of the rotor core 5 in the rotation direction. Between the adjacent position detection magnets 70, a plurality of connecting portions 71 are provided, each connecting the position detection magnets 70 to each other.
  • An annular magnet 72 is formed by alternately connecting the position detection magnet 70 and the connecting portion 71.
  • Each of the plurality of position detection magnets 70 has the same polarity as the second polarity of the second magnetic pole part 61 in the polarity of the one end face 70b1 in the axial direction, and the rotation of the second magnetic pole part 61. It is installed at the same phase as the phase in the direction.
  • the position detection magnet 70 includes two end faces 70b1 and 70b2 in the axial direction.
  • the end surface 70b1 is an end surface on the opposite side of the rotor core 5 of the position detection magnet 70.
  • the polarity of the end face 70b1 is the S pole.
  • the end surface 70b2 is an end surface of the position detection magnet 70 on the rotor core 5 side.
  • the polarity of the end face 70b2 is the N pole.
  • the magnetic flux direction of the position detecting magnet 70 is the axial direction as shown in FIG.
  • the second magnetic pole portion 61 has a radially outer polarity of S poles and a radially inner polarity of N poles.
  • the south pole of the second magnetic pole portion 61 corresponds to the second polarity described above.
  • the arrow from the north pole to the south pole of the second magnetic pole portion 61 indicates the magnetic flux direction of the second magnetic pole portion 61.
  • the magnetic flux leaking in the axial direction is assisted by the magnetic flux leaking in the axial direction from the position detection magnet 70, and is detected by the Hall IC 49b described above.
  • the first magnetic pole portion 60 has a radially outer polarity of N poles and a radially inner polarity of S poles.
  • the north pole of the first magnetic pole portion 60 corresponds to the first polarity described above.
  • the arrow from the north pole to the south pole of the first magnetic pole portion 60 indicates the magnetic flux direction of the first magnetic pole portion 60.
  • An example of the material of each of the plurality of position detection magnets 70 is a bond magnet. By using the bond magnet, the degree of freedom of processing of the position detection magnet 70 is increased compared to the case of using a sintered magnet. Therefore, the number of processing steps in manufacturing the position detection magnet 70 is reduced, and the position detection magnet is reduced. The manufacturing cost of 70 can be reduced.
  • Each of the plurality of connecting portions 71 may be made of the same material as the mold resin 50, or may be made of a magnet having the same polarity as the first polarity of the first magnetic pole portion 60.
  • the manufacturing cost of the rotor 20 can be reduced as compared with the case of constituting with a magnet.
  • the thickness of the connecting portion 71 in the axial direction is T3, the thickness of the position detecting magnet 70 in the axial direction is T4, the thickness of the connecting portion 71 in the radial direction is T5, and the thickness of the position detecting magnet 70 in the radial direction is T6.
  • the rotor 20 is configured such that the relationship of T4> T3 and T6> T5 is satisfied.
  • the magnetic flux leaking in the axial direction from the first magnetic pole portion 60 is larger than the magnetic flux leaking in the axial direction from the second magnetic pole portion 61. Therefore, the first magnetic field detected by the Hall IC 49b due to the magnetic flux leaking in the axial direction from the first magnetic pole portion 60 and the second magnetic field detected by the Hall IC 49b by the magnetic flux leaking from the second magnetic pole portion 61 in the axial direction. There is a possibility that the detection accuracy of the rotational position is lowered.
  • the rotor 20 includes the plurality of permanent magnets 1, and the first magnetic pole portion 60 having the first polarity by the permanent magnet 1 and the adjacent permanent magnet 1.
  • a rotor core 5 having a plurality of second magnetic pole portions 61 having a second polarity different from the formed first polarity, and provided at one end of the rotor core 5 in the axial direction of the rotor core 5.
  • the annular magnet 72 is arranged in the rotational direction of the rotor core 5 and detects the positions of the first magnetic pole portion 60 and the second magnetic pole portion 61 of the rotor core 5.
  • a plurality of position detecting magnets 70 and a plurality of connecting portions 71 provided between the adjacent position detecting magnets 70 and connecting the adjacent position detecting magnets 70 to each other.
  • the polarity of the magnetic poles of the end surface 70b1 opposite to the rotor core 5 in the axial direction of the rotor core 5 is the same as the second polarity.
  • the polarity of the end face 70b1 of the position detection magnet 70 may be the same as the second polarity, and is not limited to the S pole. That is, when the second polarity of the second magnetic pole portion 61 is N-pole, the polarity of the end face 70b1 of the position detection magnet 70 is N-pole.
  • the motor 100 shown in FIG. 1 Since the phases in the rotation direction of the first magnetic pole portion 60 and the position detection magnet 70 detected by the Hall IC 49b are the same, the motor 100 shown in FIG. 1 has a magnetic flux leaking in the axial direction from the first magnetic pole portion 60. By using the magnetic flux leaking in the axial direction from the position detection magnet 70, the position of the rotor 20 can be detected with high accuracy.
  • the rotor 20 according to the first embodiment uses the number of position detection magnets 70 corresponding to half the total number of magnetic poles, the number of position detection magnets 70 corresponding to the total number of magnetic poles is used. Thus, an increase in the manufacturing cost of the rotor 20 can be suppressed while improving the position detection accuracy.
  • the electric motor 100 according to the first embodiment uses the annular magnet 72, the assembly time of the rotor 20 is longer than when the plurality of position detection magnets 70 are individually manufactured and assembled to the rotor core 5. Can be shortened. Further, by using the annular magnet 72, it is possible to reduce the risk that the position detecting magnet 70 is detached when the rotor 20 is assembled and the yield is lowered, and the position detecting magnet 70 is detached during the operation of the electric motor 100. The risk of splashing within 100 can be reduced. Therefore, the electric motor 100 according to Embodiment 1 can improve the position detection accuracy while suppressing an increase in manufacturing cost of the electric motor 100 and suppressing a decrease in quality.
  • the following method can be illustrated as an installation method of the annular magnet 72 to the rotor core 5.
  • a rib-like member (not shown) between the shaft 23 and the position detecting magnet 70 and providing a rib-like member (not shown) between the shaft 23 and the connecting portion 71, the rotor core 5
  • a circular magnet 72 is installed.
  • a plurality of unillustrated pedestals arranged in the circumferential direction are provided at one end portion 5a of the rotor core 5 in the axial direction, and an annular magnet 72 is installed in the pedestal group.
  • FIG. 10 is a diagram showing a first modification of the consequent pole type rotor according to the first embodiment of the present invention.
  • FIG. 11 is a front view of the rotor shown in FIG. 12 is a perspective view of the annular magnet shown in FIG.
  • the difference between the rotor 20A shown in FIGS. 10, 11 and 12 and the rotor 20 shown in FIG. 7 is that the thickness of the connecting portion 71 in the radial direction is different.
  • the manufacturing cost of the annular magnet 72 can be reduced without reducing the position detection accuracy.
  • the thicknesses T3 and T5 of the connecting portion 71 are set in consideration of the strength that can prevent the rotors 20 and 20A from being damaged during manufacture and can prevent the motor 100 shown in FIG. 1 from being damaged during operation.
  • FIG. 13 is a view showing a second modification of the consequent pole type rotor according to the first embodiment of the present invention.
  • FIG. 14 is a front view of the rotor shown in FIG.
  • FIG. 15 is a first perspective view of the annular magnet shown in FIG. 16 is a second perspective view of the annular magnet shown in FIG.
  • the difference between the rotor 20B shown in FIGS. 13, 14 and 15 and the rotor 20 shown in FIG. 7 is that the annular magnet 72 of the rotor 20B has a plurality of protrusions 73 extending from the annular magnet 72 in the axial direction. Is provided.
  • each of the plurality of protrusions 73 is disposed near both end faces 70 a in the circumferential direction of the position detection magnet 70, and the other end face of the position detection magnet 70 in the axial direction.
  • the shape extends in the axial direction from the 70b2 side.
  • pedestals 74 are provided on both end faces 70 a in the circumferential direction of the position detection magnet 70.
  • the pedestal 74 is installed on the other end face 70b2 of the position detecting magnet 70 in the axial direction.
  • the protrusion 73 is installed on the pedestal 74 and is formed so as to extend on the opposite side of the pedestal 74 from the position detecting magnet 70 in the axial direction.
  • the protrusion 73 and the pedestal 74 are manufactured by integral molding with the annular magnet 72.
  • each of the plurality of protrusions 73 is inserted into the second region 3 ⁇ / b> B constituting the magnet insertion hole 2. At this time, when the pedestal 74 is in contact with the one end portion 5a of the rotor core 5, each of the plurality of protrusions 73 is positioned in the axial direction.
  • the rotational position detection accuracy can be improved by matching the phases of first magnetic pole portion 60 and position detection magnet 70 detected by Hall IC 49b in the rotational direction.
  • the plurality of protrusions 73 inserted into the second region 3B function as positioning protrusions for the annular magnet 72 in the rotation direction. Therefore, in the rotor 20 ⁇ / b> B, when the annular magnet 72 is assembled, a shift between the phase in the rotation direction of the position detection magnet 70 and the phase in the rotation direction of the second magnetic pole portion 61 can be suppressed. Therefore, the electric motor 100 using the rotor 20B can improve the detection accuracy of the rotational position compared to the electric motor 100 using the rotor 20 or the rotor 20A.
  • the rotor 20B can be manufactured by integrally forming the protrusion 73 and the pedestal 74 with the annular magnet 72, so that the position detecting magnet 70 and an axial positioning member (not shown) are individually manufactured to form the rotor core 5.
  • the assembly time of the rotor 20 can be shortened, and the number of manufactured parts can be reduced. Therefore, the yield is improved, and the increase in the manufacturing cost of the rotor 20B can be suppressed.
  • FIG. FIG. 17 is a diagram illustrating an example of a configuration of an air conditioner according to Embodiment 2 of the present invention.
  • the air conditioner 300 includes an indoor unit 310 and an outdoor unit 320 connected to the indoor unit 310.
  • An indoor unit blower (not shown) is mounted on the indoor unit 310, and an outdoor unit blower 330 is mounted on the outdoor unit 320.
  • a compressor 340 is mounted on the outdoor unit 320.
  • the electric motor 100 according to Embodiment 1 is used for the indoor unit blower, the outdoor unit blower 330, and the compressor 340.
  • the electric motor 100 according to the first embodiment as a drive source for the indoor unit blower, the outdoor unit blower 330, and the compressor 340, the accuracy of the rotational position is improved, and the motor efficiency is improved. And the air conditioner 300 which can suppress manufacturing cost can be obtained.
  • the electric motor 100 according to the first embodiment can be mounted on an electric device other than the air conditioner 300, and in this case, the same effect as that of the present embodiment can be obtained.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

A consequent pole-type rotor (20) comprises: a rotor core (5) having first magnetic pole sections (60) and second magnetic pole sections (61), said first magnetic pole sections (60) having a plurality of permanent magnets and having a first polarity as a result of the permanent magnets and said second magnetic pole sections (61) being formed between adjacent permanent magnets and having a second polarity being a different polarity from the first polarity; and an annular magnet (72) provided in one end section (5a) in the axial direction of the rotor core (5). The annular magnet (72) comprises: a plurality of position detection magnets (70) arranged in the rotational direction of the rotor core (5) and being for detecting the position of the first magnetic pole sections (60) and the second magnetic pole sections (61) of the rotor core (5); and a plurality of coupling sections (71) that are provided between adjacent position detection magnets and couple adjacent position detection magnets (70) to each other. In the plurality of position detection magnets (70), the polarity of the magnetic pole for an end surface on the opposite side to the rotor core (5) in the axial direction is the same as the second polarity.

Description

コンシクエントポール型の回転子、電動機および空気調和機Consecutive pole type rotor, electric motor and air conditioner
 本発明は、コンシクエントポール型の回転子、電動機および空気調和機に関する。 The present invention relates to a continuous pole type rotor, an electric motor, and an air conditioner.
 従来、空気調和機の省エネ性を向上させるため、空気調和機の圧縮機に搭載される電動機の永久磁石には、ネオジウム焼結磁石のようなエネルギー密度の高い希土類磁石が一般に用いられている。また、空気調和機のファン用に、ネオジウム焼結磁石を用いた電動機が開発されている。 Conventionally, in order to improve the energy saving performance of an air conditioner, a rare earth magnet having a high energy density such as a neodymium sintered magnet is generally used as a permanent magnet of an electric motor mounted on a compressor of an air conditioner. An electric motor using a neodymium sintered magnet has been developed for an air conditioner fan.
 このような永久磁石は貴重なレアアース元素を含有しているため、高価である。そのため、永久磁石の使用量および加工費を低減してコストを下げたいという要求は強い。 Such a permanent magnet is expensive because it contains a valuable rare earth element. Therefore, there is a strong demand for reducing the cost by reducing the amount of permanent magnet used and the processing cost.
 永久磁石は一般に、ブロック状の塊を切削して指定の形状に加工する。そのため、電動機に使用される永久磁石の個数が多いほど、加工費が増加する。 Permanent magnets are generally processed into a specified shape by cutting block-like chunks. For this reason, the processing cost increases as the number of permanent magnets used in the electric motor increases.
 電動機に使用される永久磁石の個数を削減する方法として、回転子をいわゆるコンシクエントポールで構成する方法がある。コンシクエントポール型の回転子では、永久磁石による磁石磁極と永久磁石によらずにコア材に形成される突極とが周方向に交互に配列される。従って、磁石磁極の個数と突極の個数は何れも極数の半分の個数である。また、極数の半分の個数の磁石磁極は同一の極性を持ち、極数の半分の個数の突極は磁石磁極と異なる極性を持つ。このように、コンシクエントポール型の回転子では、永久磁石の個数は通常の半分の個数となる。しかしながらコンシクエントポール型の回転子では、磁石磁極と突極とでインダクタンスが異なり、このインダクタンスのアンバランスに起因して、振動および騒音が大きくなるという課題がある。 As a method for reducing the number of permanent magnets used in an electric motor, there is a method in which a rotor is constituted by a so-called continuous pole. In the continuous pole type rotor, magnet magnetic poles formed by permanent magnets and salient poles formed on the core material without using permanent magnets are alternately arranged in the circumferential direction. Therefore, the number of magnet magnetic poles and the number of salient poles are both half the number of poles. Also, half the number of magnetic poles has the same polarity, and half the number of salient poles has a different polarity from the magnetic pole. As described above, in the continuous pole type rotor, the number of permanent magnets is half of the normal number. However, in the continuous pole type rotor, there is a problem that the inductance differs between the magnetic pole and the salient pole, and vibration and noise increase due to the imbalance of the inductance.
 この課題に対して、特許文献1に開示されるコンシクエントポール型の回転子は、永久磁石両端のフラックスバリア形状を工夫することによって、インダクタンスの非対称性を改善し、振動および騒音の低減を図っている。特許文献1に開示されるコンシクエントポール型の回転子を用いた電動機は、回転子の回転方向における位置を検出する磁気センサを備え、磁気センサが、回転子の磁石磁極から軸方向に漏れる第1の磁界と回転子の突極から軸方向に漏れる第2の磁界とを交互に検出することにより、回転子の回転制御を行う。 In response to this problem, the continuous pole type rotor disclosed in Patent Document 1 improves the asymmetry of the inductance by reducing the shape of the flux barrier at both ends of the permanent magnet, thereby reducing vibration and noise. ing. An electric motor using a continuous pole type rotor disclosed in Patent Document 1 includes a magnetic sensor that detects a position of the rotor in the rotation direction, and the magnetic sensor leaks in the axial direction from the magnet magnetic pole of the rotor. The rotation control of the rotor is performed by alternately detecting the first magnetic field and the second magnetic field leaking in the axial direction from the salient poles of the rotor.
特開2012-244783号公報JP 2012-244783 A
 しかしながら特許文献1に開示されるコンシクエントポール型の回転子では、磁石磁極から軸方向に漏れる磁束が突極から軸方向に漏れる磁束に比べて大きいため、磁気センサで検出される第1の磁界と第2の磁界とのアンバランスが大きくなり、回転位置の検出精度が低下する可能性がある。 However, in the continuous pole type rotor disclosed in Patent Document 1, since the magnetic flux leaking in the axial direction from the magnet magnetic pole is larger than the magnetic flux leaking in the axial direction from the salient pole, the first magnetic field detected by the magnetic sensor. There is a possibility that the imbalance between the first magnetic field and the second magnetic field increases, and the rotational position detection accuracy decreases.
 本発明は、上記に鑑みてなされたものであって、回転位置の検出精度を向上できるコンシクエントポール型の回転子を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a continuous pole type rotor capable of improving the detection accuracy of the rotational position.
 上述した課題を解決し、目的を達成するために、本発明に係るコンシクエントポール型の回転子は、複数の永久磁石を有し、永久磁石による第1の極性の第1の磁極部分と、隣り合う永久磁石間に形成された第1の極性と異なる第2の極性の第2の磁極部分と、を有する回転子コアと、回転子コアの軸方向の一端部に設けられた環状の磁石と、を備え、環状の磁石は、回転子コアの回転方向に配列され、回転子コアの第1の磁極部分と第2の磁極部分との位置を検出させるための複数の位置検出用磁石と、隣接する位置検出用磁石の間に設けられ、隣接する位置検出用磁石同士を連結する複数の連結部と、を備え、複数の位置検出用磁石は、回転子コアの軸方向の回転子コアとは反対側の端面の磁極の極性が第2の極性と同じ極性である。 In order to solve the above-described problems and achieve the object, a continuous pole type rotor according to the present invention has a plurality of permanent magnets, and a first magnetic pole portion having a first polarity by the permanent magnets, A rotor core having a second magnetic pole portion having a second polarity different from the first polarity formed between adjacent permanent magnets, and an annular magnet provided at one end of the rotor core in the axial direction A plurality of position detecting magnets arranged in the rotation direction of the rotor core and for detecting the positions of the first magnetic pole portion and the second magnetic pole portion of the rotor core; A plurality of connecting portions that are provided between adjacent position detecting magnets and connect adjacent position detecting magnets to each other, and the plurality of position detecting magnets are arranged in the rotor core in the axial direction of the rotor core. The polarity of the magnetic pole on the opposite end face is the same as the second polarity.
 本発明に係るコンシクエントポール型の回転子は、回転位置の検出精度を向上できるという効果を奏する。 The continuous pole type rotor according to the present invention has an effect of improving the detection accuracy of the rotational position.
本発明の実施の形態1に係るコンシクエントポール型の回転子を備えた電動機の断面図Sectional drawing of the electric motor provided with the consequent pole type rotor which concerns on Embodiment 1 of this invention 図1に示すモールド固定子の断面図Sectional view of the mold stator shown in FIG. 図2に示すモールド固定子に回転子が挿入された状態を示す断面図Sectional drawing which shows the state by which the rotor was inserted in the mold stator shown in FIG. 複数の分割コア部で構成され帯状に展開された固定子コアの構成図Configuration diagram of a stator core composed of a plurality of divided core portions and developed in a band shape 図4に示す展開された固定子コアを折り曲げて環状に構成した状態を示す図The figure which shows the state which bent the expand | deployed stator core shown in FIG. 4, and comprised it cyclically | annularly 図1に示す回転子の断面図Sectional view of the rotor shown in FIG. 本発明の実施の形態1に係るコンシクエントポール型の回転子の斜視図1 is a perspective view of a continuum pole type rotor according to a first embodiment of the present invention. 図7に示す回転子の正面図Front view of the rotor shown in FIG. 図7に示す環状の磁石の斜視図The perspective view of the annular magnet shown in FIG. 本発明の実施の形態1に係るコンシクエントポール型の回転子の第1の変形例を示す図The figure which shows the 1st modification of the continuum pole type rotor which concerns on Embodiment 1 of this invention. 図10に示す回転子の正面図Front view of the rotor shown in FIG. 図10に示す環状の磁石の斜視図The perspective view of the annular magnet shown in FIG. 本発明の実施の形態1に係るコンシクエントポール型の回転子の第2の変形例を示す図The figure which shows the 2nd modification of the continuum pole type rotor which concerns on Embodiment 1 of this invention. 図13に示す回転子の正面図Front view of the rotor shown in FIG. 図13に示す環状の磁石の第1の斜視図First perspective view of the annular magnet shown in FIG. 図13に示す環状の磁石の第2の斜視図Second perspective view of the annular magnet shown in FIG. 本発明の実施の形態2に係る空気調和機の構成の一例を示す図The figure which shows an example of a structure of the air conditioner which concerns on Embodiment 2 of this invention.
 以下に、本発明の実施の形態に係るコンシクエントポール型の回転子、電動機および空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 DETAILED DESCRIPTION OF THE INVENTION Hereinafter, a continuous pole type rotor, an electric motor, and an air conditioner according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は本発明の実施の形態1に係るコンシクエントポール型の回転子を備えた電動機の断面図である。図1に示される電動機100は、モールド固定子10と、回転子20と、モールド固定子10の軸方向一端部に取り付けられる金属製のブラケット30とを備える。「軸方向」は回転子20を構成する複数の回転子コアの積層方向に等しい。電動機100は、回転子20に永久磁石を有し、インバータで駆動されるブラシレスDCモータである。回転子20は内部磁石型でありかつコンシクエントポール型である。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of an electric motor including a continuous pole type rotor according to Embodiment 1 of the present invention. An electric motor 100 shown in FIG. 1 includes a mold stator 10, a rotor 20, and a metal bracket 30 attached to one end portion in the axial direction of the mold stator 10. The “axial direction” is equal to the stacking direction of the plurality of rotor cores constituting the rotor 20. The electric motor 100 is a brushless DC motor having a permanent magnet in the rotor 20 and driven by an inverter. The rotor 20 is an internal magnet type and a continuous pole type.
 モールド固定子10は、固定子40と固定子40を覆うモールド樹脂50とを備え、モールド固定子10の軸方向は回転子20に貫通するシャフト23の軸方向と一致している。図1では、固定子40の構成要素である、固定子コア41と、固定子コア41に巻回されたコイル42と、固定子コア41に設けられた絶縁部43と、絶縁部43に設けられた中性点端子44bとが示されている。また図1では、固定子40の構成要素である、絶縁部43に取り付けられた基板45と、基板45に組み付けられたリード線口出し部品46と、リード線口出し部品46から口出しされるリード線47と、基板45上に実装されたIC(Integrated Circuit)49aと、基板45の回転子20側の面上に実装された磁気センサであるホールIC49bとが示されている。 The mold stator 10 includes a stator 40 and a mold resin 50 that covers the stator 40, and the axial direction of the mold stator 10 coincides with the axial direction of the shaft 23 that penetrates the rotor 20. In FIG. 1, the stator core 41, which is a constituent element of the stator 40, the coil 42 wound around the stator core 41, the insulating portion 43 provided on the stator core 41, and the insulating portion 43 are provided. The neutral point terminal 44b is shown. In FIG. 1, the board 45 attached to the insulating portion 43, which is a component of the stator 40, the lead wire lead part 46 assembled to the board 45, and the lead wire 47 lead out from the lead wire lead part 46. In addition, an IC (Integrated Circuit) 49a mounted on the substrate 45 and a Hall IC 49b which is a magnetic sensor mounted on the surface of the substrate 45 on the rotor 20 side are shown.
 回転子20は、シャフト組立27と、回転子20本体とシャフト組立27とを一体にする樹脂部24と、シャフト23に取り付けられると共にモールド固定子10の軸受支持部11により支持された負荷側転がり軸受21aと、シャフト23に取り付けられると共にブラケット30により支持された反負荷側転がり軸受21bとを備える。負荷側110は、電動機100の両端面の内、シャフト23が突き出ている端面側を表し、反負荷側120は、ブラケット30が設けられている端面側を表す。 The rotor 20 is mounted on the shaft 23, the resin portion 24 that integrates the main body of the rotor 20 and the shaft assembly 27, and the load-side rolling attached to the shaft 23 and supported by the bearing support portion 11 of the mold stator 10. A bearing 21a and an anti-load-side rolling bearing 21b attached to the shaft 23 and supported by the bracket 30 are provided. The load side 110 represents the end surface side from which the shaft 23 projects out of both end surfaces of the electric motor 100, and the anti-load side 120 represents the end surface side on which the bracket 30 is provided.
 また回転子20は、軸方向における回転子コア5の一端部5aに設置され、回転子コア5の回転方向における位置を検出させるための複数の位置検出用磁石70と、各々が位置検出用磁石70同士を連結する複数の連結部71とを備える。ホールIC49bは、位置検出用磁石70から軸方向に発生する磁界と、後述する第1の磁極部分から軸方向に発生する磁界とを交互に検出し、検出した磁界の変化に対応したパルス状の信号を出力する。IC49aは、ホールIC49bから出力された信号に基づき回転子20の回転方向における位置を演算して回転子20の回転制御を行う。位置検出用磁石70および連結部71の詳細構成は後述する。なお、本実施の形態では、回転子コア5の回転方向における位置を検出する位置検出手段として、ホールIC49bを用いているが、位置検出手段はホールIC49bに限定されず、位置検出用磁石70から軸方向に発生する磁界と第1の磁極部分から軸方向に発生する磁界とを交互に検出する素子を用いてもよい。 The rotor 20 is installed at one end portion 5a of the rotor core 5 in the axial direction, and a plurality of position detection magnets 70 for detecting the position of the rotor core 5 in the rotation direction, each of which is a position detection magnet. And a plurality of connecting portions 71 for connecting 70 together. The Hall IC 49b alternately detects a magnetic field generated in the axial direction from the position detection magnet 70 and a magnetic field generated in the axial direction from a first magnetic pole portion described later, and has a pulse shape corresponding to the detected change in the magnetic field. Output a signal. The IC 49a calculates the position of the rotor 20 in the rotation direction based on the signal output from the Hall IC 49b and controls the rotation of the rotor 20. Detailed configurations of the position detection magnet 70 and the connecting portion 71 will be described later. In the present embodiment, the Hall IC 49b is used as the position detection means for detecting the position of the rotor core 5 in the rotation direction. However, the position detection means is not limited to the Hall IC 49b. An element that alternately detects a magnetic field generated in the axial direction and a magnetic field generated in the axial direction from the first magnetic pole portion may be used.
 シャフト組立27は、一対の絶縁スリーブ26-1,26-2から成る絶縁スリーブ26を備え、反負荷側転がり軸受21bとシャフト23との間に絶縁スリーブ26が配置される。 The shaft assembly 27 includes an insulating sleeve 26 including a pair of insulating sleeves 26-1 and 26-2, and the insulating sleeve 26 is disposed between the anti-load side rolling bearing 21 b and the shaft 23.
 図2は図1に示すモールド固定子の断面図である。図2では、図1と同一の構成要素に同一の符号を付している。モールド固定子10には、モールド固定子10の軸方向一端部に開口部10bが形成され、回転子20が開口部10bに挿入される。開口部10bに挿入された回転子20の負荷側転がり軸受21aが嵌め合わされるモールド固定子10の軸方向端部には、図1に示す回転子20のシャフト組立27の径より大きい孔11aが開けられている。 FIG. 2 is a cross-sectional view of the mold stator shown in FIG. In FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals. The mold stator 10 has an opening 10b at one end in the axial direction of the mold stator 10, and the rotor 20 is inserted into the opening 10b. A hole 11a larger than the diameter of the shaft assembly 27 of the rotor 20 shown in FIG. 1 is formed at the axial end of the mold stator 10 into which the load-side rolling bearing 21a of the rotor 20 inserted into the opening 10b is fitted. Opened.
 図3は図2に示すモールド固定子に回転子が挿入された状態を示す断面図である。図3では、図1と同一の構成要素に同一の符号を付している。図2に示すモールド固定子10の開口部10bから挿入された回転子20は、シャフト組立27の負荷側が図2に示す孔11aを貫通して、モールド固定子10の外部に引き出されるよう配置される。この際、シャフト23に取り付けられた負荷側転がり軸受21aは、図1に示す軸受支持部11に当接するまで押し込まれて、軸受支持部11により支持される。軸受支持部11は、モールド固定子10の軸方向端部であり、かつ、開口部10bの反対側に設けられている。 FIG. 3 is a cross-sectional view showing a state where a rotor is inserted into the mold stator shown in FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals. The rotor 20 inserted from the opening 10b of the mold stator 10 shown in FIG. 2 is arranged so that the load side of the shaft assembly 27 passes through the hole 11a shown in FIG. The At this time, the load-side rolling bearing 21 a attached to the shaft 23 is pushed in until it contacts the bearing support portion 11 shown in FIG. 1 and is supported by the bearing support portion 11. The bearing support portion 11 is an axial end portion of the mold stator 10 and is provided on the opposite side of the opening portion 10b.
 シャフト組立27の反負荷側には、反負荷側転がり軸受21bが取り付けられている。反負荷側転がり軸受21bの取り付けは一般的には圧入による。なお、詳細は後述するが、反負荷側転がり軸受21bとシャフト23の反負荷側との間には、シャフト23に一体成形し形成された絶縁スリーブ26が設けられる。 The anti-load-side rolling bearing 21b is attached to the anti-load side of the shaft assembly 27. The attachment of the anti-load side rolling bearing 21b is generally performed by press fitting. Although details will be described later, an insulating sleeve 26 formed integrally with the shaft 23 is provided between the anti-load side rolling bearing 21b and the anti-load side of the shaft 23.
 図1に示すブラケット30は、図2に示すモールド固定子10の開口部10bを閉塞すると共に、図3に示す反負荷側転がり軸受21bを支持するものであり、モールド固定子10に圧入される。ブラケット30は、軸受支持部30aと、軸受支持部30aと一体に形成された圧入部30bとを備える。軸受支持部30aは、反負荷側転がり軸受21bを支持する。圧入部30bはリング形状である。 The bracket 30 shown in FIG. 1 closes the opening 10b of the mold stator 10 shown in FIG. 2 and supports the anti-load-side rolling bearing 21b shown in FIG. 3, and is press-fitted into the mold stator 10. . The bracket 30 includes a bearing support portion 30a and a press-fit portion 30b formed integrally with the bearing support portion 30a. The bearing support portion 30a supports the anti-load side rolling bearing 21b. The press-fit portion 30b has a ring shape.
 モールド固定子10へのブラケット30の取り付けは、圧入部30bを、モールド固定子10の内周部10aの開口部10b側に圧入することでなされる。圧入部30bの外径は、モールド固定子10の内周部10aの内径よりも、圧入代の分だけ大きい。ブラケット30の材料としては、亜鉛メッキ鋼板、アルミニウム合金、オーステナイト系ステンレス合金、銅合金、鋳鉄、鋼または鉄合金を例示できる。 The bracket 30 is attached to the mold stator 10 by press-fitting the press-fit portion 30b into the opening 10b side of the inner peripheral portion 10a of the mold stator 10. The outer diameter of the press-fit portion 30b is larger than the inner diameter of the inner peripheral portion 10a of the mold stator 10 by the press-fit allowance. Examples of the material of the bracket 30 include a galvanized steel plate, an aluminum alloy, an austenitic stainless alloy, a copper alloy, cast iron, steel, or an iron alloy.
 以下にモールド固定子10の構成を説明する。図2に示されるモールド固定子10は、固定子40と、モールド成形用のモールド樹脂50とを備える。モールド樹脂50には不飽和ポリエステル樹脂を使用する。特に不飽和ポリエステル樹脂に各種の添加剤が加えられた塊粘土状の熱硬化性樹脂(Bulk Molding Compound:BMC)が電動機用として望ましい。ポリブチレンテレフタレート(PolyButylene Terephthalate:PBT)、ポリフェニレンサルファイド(Poly Phenylene Sulfide:PPS)といった熱可塑性樹脂の方が、成形時のランナーをリサイクルできるため良い面もある。 The configuration of the mold stator 10 will be described below. The mold stator 10 shown in FIG. 2 includes a stator 40 and a mold resin 50 for molding. An unsaturated polyester resin is used for the mold resin 50. In particular, a bulk clay thermosetting resin (BMC) obtained by adding various additives to an unsaturated polyester resin is desirable for an electric motor. Thermoplastic resins such as polybutylene terephthalate (PBT) and polyphenylene sulfide (PPS) also have a good aspect because they can recycle the runner during molding.
 しかしながら不飽和ポリエステル樹脂およびBMCは、線膨張係数が固定子コア41、負荷側転がり軸受21aおよび反負荷側転がり軸受21bといった鉄系材料の線膨張係数に近く、熱収縮率が熱可塑性樹脂の1/10以下であることにより、寸法精度を出すのに優れている。 However, the unsaturated polyester resin and BMC have a linear expansion coefficient close to that of ferrous materials such as the stator core 41, the load side rolling bearing 21a, and the anti-load side rolling bearing 21b, and the thermal shrinkage rate is 1 of the thermoplastic resin. / 10 or less is excellent for obtaining dimensional accuracy.
 また鉄およびアルミといった金属で電動機100の外郭を形成した場合に比べて、不飽和ポリエステル樹脂およびBMCで電動機100の外郭を形成した場合、放熱性が優れる。また金属で電動機100の外郭を形成した場合、絶縁性の問題により、電動機100の外郭を形成する金属を、コイル42と基板45とから離して構成される。これに対して不飽和ポリエステル樹脂およびBMCは絶縁物であるため、コイル42と基板45を覆っても絶縁性の問題がなく、熱伝導率も高いことから放熱性に優れ、電動機100の高出力化に貢献する。 Also, compared with the case where the outer shell of the electric motor 100 is formed of a metal such as iron and aluminum, the heat dissipation is excellent when the outer shell of the electric motor 100 is formed of unsaturated polyester resin and BMC. Further, when the outer shell of the electric motor 100 is formed of metal, the metal forming the outer shell of the electric motor 100 is separated from the coil 42 and the substrate 45 due to an insulating problem. On the other hand, since unsaturated polyester resin and BMC are insulators, there is no problem of insulation even when the coil 42 and the substrate 45 are covered, and since heat conductivity is high, the heat dissipation is excellent, and the high output of the electric motor 100 Contribute to
 負荷側転がり軸受21aは、モールド樹脂50で形成された軸受支持部11で支持され、反負荷側転がり軸受21bおよびブラケット30は、モールド樹脂50で形成された内周部10aで支持される。そのためモールド樹脂50の寸法精度が悪い場合、回転子20の軸心と固定子40の軸心とがずれて振動および騒音の発生要因となる。しかしながら熱収縮率の小さな不飽和ポリエステル樹脂およびBMCを使用することによって、モールド成形後の寸法精度を確保しやすくなる。 The load side rolling bearing 21 a is supported by the bearing support portion 11 formed of the mold resin 50, and the anti-load side rolling bearing 21 b and the bracket 30 are supported by the inner peripheral portion 10 a formed of the mold resin 50. For this reason, when the dimensional accuracy of the mold resin 50 is poor, the axis of the rotor 20 and the axis of the stator 40 are deviated to cause vibration and noise. However, by using an unsaturated polyester resin and BMC having a small heat shrinkage rate, it becomes easy to ensure dimensional accuracy after molding.
 また線膨張係数が大きな樹脂を使用した場合、電動機100が高温になった際、軸受のがたつきが問題となる場合がある。不飽和ポリエステル樹脂およびBMCは、線膨張係数が固定子コア41、負荷側転がり軸受21aおよび反負荷側転がり軸受21bといった鉄系材料の線膨張係数に近いため、電動機100の温度によらず、回転子20の軸心と固定子40の軸心とのずれを抑制できる。 In addition, when a resin having a large linear expansion coefficient is used, when the motor 100 becomes high temperature, there is a case where the rattling of the bearing becomes a problem. Unsaturated polyester resin and BMC have linear expansion coefficients that are close to the linear expansion coefficients of ferrous materials such as the stator core 41, the load-side rolling bearing 21a, and the anti-load-side rolling bearing 21b. Deviation between the axis of the child 20 and the axis of the stator 40 can be suppressed.
 また不飽和ポリエステル樹脂およびBMCは、硬化した際に固定子40を拘束するため、電動機100の加振力に伴う固定子40の変形を抑制でき、また振動および騒音を抑制できる。 Further, since the unsaturated polyester resin and BMC restrain the stator 40 when cured, the deformation of the stator 40 due to the excitation force of the electric motor 100 can be suppressed, and vibration and noise can be suppressed.
 図4は複数の分割コア部で構成され帯状に展開された固定子コアの構成図である。図4に示す固定子コア41は、複数の分割コア部400を、複数の分割コア部400のそれぞれが複数の分割コア部400の内の他の隣接する1つと接するように配列したものである。複数の分割コア部400は、それぞれがバックヨーク401とバックヨーク401から突出するティース402とを有する。隣接するバックヨーク401の間には、バックヨーク401同士を連結する薄肉部403が設けられている。 FIG. 4 is a configuration diagram of a stator core configured by a plurality of divided core portions and developed in a band shape. The stator core 41 shown in FIG. 4 is obtained by arranging a plurality of divided core portions 400 such that each of the plurality of divided core portions 400 is in contact with another adjacent one of the plurality of divided core portions 400. . Each of the plurality of divided core portions 400 includes a back yoke 401 and teeth 402 protruding from the back yoke 401. Between adjacent back yokes 401, a thin portion 403 that connects the back yokes 401 is provided.
 図5は図4に示す展開された固定子コアを折り曲げて環状に構成した状態を示す図である。図5に示す環状の固定子コア41は、図4に示す複数のティース402のそれぞれに図1のコイル42が施された後、帯状の分割コア部400群を薄肉部403で折り曲げて環状に形成したものである。 FIG. 5 is a diagram showing a state in which the developed stator core shown in FIG. 4 is bent and configured in an annular shape. The annular stator core 41 shown in FIG. 5 is formed into an annular shape by folding the belt-shaped divided core portion 400 group at the thin portion 403 after the coils 42 of FIG. 1 are applied to each of the plurality of teeth 402 shown in FIG. Formed.
 図4および図5のように複数の分割コア部400で構成された固定子コア41は、帯状に展開した状態でコイル42を巻くことができるため、コイル42の高密度化が可能となり高効率化に有効である。しかしながら分割コア部400が薄肉部403で連結されているため、環状に形成したときの固定子コア41の剛性が低く、コンシクエントポール型の電動機100のように加振力が大きなものは、不飽和ポリエステル樹脂で固定子コア41をモールドすること、すなわち不飽和ポリエステル樹脂で固定子コア41を覆うことが有効となる。 4 and 5, the stator core 41 composed of a plurality of divided core portions 400 can be wound with the coil 42 in a state of being developed in a band shape, so that the density of the coil 42 can be increased and high efficiency can be achieved. It is effective for conversion. However, since the split core portion 400 is connected by the thin wall portion 403, the rigidity of the stator core 41 when it is formed in an annular shape is low, and those having a large excitation force such as the continuous pole type electric motor 100 are not suitable. It is effective to mold the stator core 41 with a saturated polyester resin, that is, to cover the stator core 41 with an unsaturated polyester resin.
 なお複数の分割コア部400で構成される固定子コア41は、図4のように隣接するバックヨーク401同士が薄肉部403で連結されている構造以外にも、バックヨーク401の端部に凹凸状のダボを形成して、ダボを相互に連結する構造のものでもよいし、それぞれが分離された複数のバックヨーク401同士を溶接または嵌め合いで固定した構造のものでもよい。このように構成した固定子コア41を不飽和ポリエステル樹脂で覆うことで、振動および騒音を低減可能である。 In addition, the stator core 41 composed of a plurality of divided core portions 400 has a concavity and convexity at the end of the back yoke 401 in addition to the structure in which the back yokes 401 adjacent to each other are connected by a thin portion 403 as shown in FIG. The structure may be such that a dowel is formed and the dowels are connected to each other, or a plurality of back yokes 401 separated from each other may be fixed together by welding or fitting. By covering the stator core 41 configured in this manner with an unsaturated polyester resin, vibration and noise can be reduced.
 このように不飽和ポリエステル樹脂で固定子コア41を完全に覆うことが望ましいが、図2に示すように固定子コア41の外周部41-1から不飽和ポリエステル樹脂の外周部10-1までの厚みをT1とし、固定子コア41の内周部41-2から不飽和ポリエステル樹脂の内周部10-2までの厚みをT2としたとき、モールド固定子10は、T1>T2の関係が満たされるように構成することが望ましい。 In this way, it is desirable to completely cover the stator core 41 with the unsaturated polyester resin. However, as shown in FIG. 2, from the outer peripheral portion 41-1 of the stator core 41 to the outer peripheral portion 10-1 of the unsaturated polyester resin. When the thickness is T1 and the thickness from the inner peripheral portion 41-2 of the stator core 41 to the inner peripheral portion 10-2 of the unsaturated polyester resin is T2, the mold stator 10 satisfies the relationship of T1> T2. It is desirable to be configured.
 厚みT2をあまり大きくすると、回転子20の直径を小さくしなければならず、固定子コア41と回転子20との間の磁気的な隙間が大きくなり、電動機特性が低下する。そこで実施の形態1に係るモールド固定子10では、厚みT1を厚みT2よりも大きくすることにより、径方向外側の厚みT1の剛性を高くしている。「径方向」は回転子20の径方向を示す。 If the thickness T2 is increased too much, the diameter of the rotor 20 must be reduced, the magnetic gap between the stator core 41 and the rotor 20 will be increased, and the motor characteristics will be degraded. Therefore, in the mold stator 10 according to Embodiment 1, the rigidity of the radially outer thickness T1 is increased by making the thickness T1 larger than the thickness T2. “Radial direction” indicates the radial direction of the rotor 20.
 なお回転子20の軸心と固定子40の軸心とがずれて、固定子コア41と回転子20との間の隙間にアンバランスが生じると、偏心による加振力が重畳されるため、偏心を極力小さく組み付けなければならない。厚みT2が大きくなるとその分だけ上記の隙間にアンバランスが生じやすくなるため、厚みT2をゼロにすることも有効である、ただし、その場合には固定子コア41の隣接するティース402の間の空間をティース先端まで不飽和ポリエステル樹脂で埋めるようにする。加振力としては、ティース先端を左右に揺らす力もあり、ティース402の間の空間を完全に埋めることがこの力の影響を抑制することに繋がる。 In addition, since the axial center of the rotor 20 and the axial center of the stator 40 shift | deviate and the imbalance arises in the clearance gap between the stator core 41 and the rotor 20, the excitation force by eccentricity will be superimposed, Eccentricity must be assembled as small as possible. As the thickness T2 increases, unbalance is likely to occur in the gap, and it is also effective to make the thickness T2 zero. However, in that case, the gap between adjacent teeth 402 of the stator core 41 is effective. Fill the space with the unsaturated polyester resin up to the tip of the teeth. As the excitation force, there is also a force that swings the tip of the teeth to the left and right, and completely filling the space between the teeth 402 leads to suppressing the influence of this force.
 また図4および図5に示す固定子コア41の場合、隣接する分割コア部400の間の分割面404に不飽和ポリエステル樹脂を設けることにより、ティース402に働く加振力の影響を抑制できる。 Further, in the case of the stator core 41 shown in FIGS. 4 and 5, the influence of the excitation force acting on the teeth 402 can be suppressed by providing the unsaturated polyester resin on the divided surface 404 between the adjacent divided core portions 400.
 そこで固定子コア41には、図5に示す環状の固定子コア41の分割面404に孔405が形成される。この孔405は、隣接するバックヨーク401の間に溝または切り欠きを設けることにより形成される。環状の固定子コア41に不飽和ポリエステルをモールド成形する際、孔405に不飽和ポリエステル樹脂が充填される。孔405には、固定子コア41の軸方向の一端面から他端面までの全ての領域に不飽和ポリエステルを充填する必要はなく、固定子コア41の軸方向の一端面から僅かに充填されていればよく、この場合でも振動を減衰する効果が期待できる。充填量を多くするために孔405を大きくするほど磁気特性が低下するため、充填量は適宜決定される。なお分割面404の孔405は、固定子コア41の外周面に開口する溝形状、またはスロット406側に開口する溝形状でも、同様の効果を得ることができる。 Therefore, in the stator core 41, a hole 405 is formed in the split surface 404 of the annular stator core 41 shown in FIG. The hole 405 is formed by providing a groove or notch between adjacent back yokes 401. When the unsaturated polyester is molded into the annular stator core 41, the holes 405 are filled with the unsaturated polyester resin. The hole 405 does not need to be filled with unsaturated polyester in the entire region from one end surface to the other end surface in the axial direction of the stator core 41, and is slightly filled from one end surface in the axial direction of the stator core 41. Even in this case, the effect of damping the vibration can be expected. As the hole 405 is increased in order to increase the filling amount, the magnetic properties are deteriorated, so that the filling amount is appropriately determined. The hole 405 of the dividing surface 404 can obtain the same effect even if it has a groove shape that opens to the outer peripheral surface of the stator core 41 or a groove shape that opens to the slot 406 side.
 次に図1に示す回転子20の構成について説明する。 Next, the configuration of the rotor 20 shown in FIG. 1 will be described.
 図6は図1に示す回転子の断面図である。回転子20は、環状の回転子コア5と、周方向に配列された5個の磁石挿入孔2とを有する。「周方向」は回転子20の周方向を示す。磁石挿入孔2の個数は回転子20の極数の半分である。5個の磁石挿入孔2は周方向に等間隔で配列される。5個の磁石挿入孔2は、回転軸6から等距離で配置される。回転軸6は回転子コア5の軸に一致している。5個の磁石挿入孔2は、回転子コア5の軸方向に貫通している。磁石挿入孔2は、回転子コア5の外周面寄りに形成され、周方向に延伸している。隣接する磁石挿入孔2間は離間している。回転子コア5は中心部にシャフト挿入孔7を有する。 FIG. 6 is a cross-sectional view of the rotor shown in FIG. The rotor 20 has an annular rotor core 5 and five magnet insertion holes 2 arranged in the circumferential direction. “Circumferential direction” indicates the circumferential direction of the rotor 20. The number of magnet insertion holes 2 is half the number of poles of the rotor 20. The five magnet insertion holes 2 are arranged at equal intervals in the circumferential direction. The five magnet insertion holes 2 are arranged at an equal distance from the rotation shaft 6. The rotating shaft 6 coincides with the axis of the rotor core 5. The five magnet insertion holes 2 penetrate the rotor core 5 in the axial direction. The magnet insertion hole 2 is formed near the outer peripheral surface of the rotor core 5 and extends in the circumferential direction. Adjacent magnet insertion holes 2 are spaced apart. The rotor core 5 has a shaft insertion hole 7 at the center.
 回転子コア5は、軟磁性材であるコア材から構成され、具体的には複数枚の電磁鋼板を積層して構成される。電磁鋼板1枚の板厚は0.1mmから0.7mmが一般的である。 The rotor core 5 is composed of a core material that is a soft magnetic material, and specifically, a plurality of electromagnetic steel plates are laminated. The thickness of one electromagnetic steel sheet is generally 0.1 mm to 0.7 mm.
 5個の磁石挿入孔2には、それぞれ5個の永久磁石1が挿入されている。永久磁石1は、断面が矩形の平板状である。永久磁石1の板厚としては2mmを例示できる。永久磁石1は、希土類磁石であり、Nd(ネオジム)-Fe(鉄)-B(ホウ素)を主成分とするネオジム焼結磁石である。 The five permanent magnets 1 are inserted into the five magnet insertion holes 2, respectively. The permanent magnet 1 has a flat plate shape with a rectangular cross section. An example of the plate thickness of the permanent magnet 1 is 2 mm. The permanent magnet 1 is a rare earth magnet and is a neodymium sintered magnet mainly composed of Nd (neodymium) -Fe (iron) -B (boron).
 磁石挿入孔2は、永久磁石1が挿入される矩形状の第1の領域3Aと、永久磁石1が挿入されない2つの第2の領域3Bとで構成され、第2の領域3Bは、第1の領域3Aの長手方向の両端に1カ所ずつ形成されている。第2の領域3Bは、第1の領域3Aに挿入された永久磁石1に対して漏れ磁束aを抑制するフラックスバリアの働きを有しており、回転子コア5の外周面の磁束密度分布を正弦波に近づけ、隣接した磁石挿入孔2に挿入されている永久磁石1の磁束を回転子コア5を介して短絡させる働きを有している。 The magnet insertion hole 2 is composed of a rectangular first region 3A into which the permanent magnet 1 is inserted and two second regions 3B into which the permanent magnet 1 is not inserted. The second region 3B is a first region 3B. One region is formed at each end in the longitudinal direction of the region 3A. The second region 3B has a function of a flux barrier that suppresses the leakage magnetic flux a with respect to the permanent magnet 1 inserted in the first region 3A, and the magnetic flux density distribution on the outer peripheral surface of the rotor core 5 is determined. It has a function of short-circuiting the magnetic flux of the permanent magnet 1 inserted in the adjacent magnet insertion hole 2 through the rotor core 5 close to a sine wave.
 回転子20は、回転子コア5の外周面に周方向に極性が交互となるようにして配列される10個の磁極を有する。詳細には、回転子20は、5個の永久磁石1によりそれぞれ形成され同一の極性を持つ5個の第1の磁極と、各々が互いに隣接する永久磁石1間の回転子コア5に形成され第1の磁極と異なる極性を持つ5個の第2の磁極とを有する。図示例では、第1の磁極はN極、第2の磁極はS極としているが、逆にしてもよい。回転子20の10個の磁極は、極ピッチを360度/10=36度として、周方向に等角度間隔で配置される。 The rotor 20 has ten magnetic poles arranged on the outer peripheral surface of the rotor core 5 so that the polarities are alternately arranged in the circumferential direction. Specifically, the rotor 20 is formed by five first magnetic poles each formed by five permanent magnets 1 and having the same polarity, and a rotor core 5 between the permanent magnets 1 adjacent to each other. It has five second magnetic poles having different polarities from the first magnetic poles. In the illustrated example, the first magnetic pole is an N pole and the second magnetic pole is an S pole, but may be reversed. The ten magnetic poles of the rotor 20 are arranged at equiangular intervals in the circumferential direction with a pole pitch of 360 degrees / 10 = 36 degrees.
 このようにコンシクエントポール型の回転子20は、極数の半分の5個の永久磁石1がそれぞれ5個の第1の磁極を与える。さらに極数の半分の5個の第2の磁極のそれぞれは、互いに隣接する永久磁石1間において回転子コア5のコア材に形成される。第2の磁極はいわゆる突極であり、回転子20を着磁することにより形成される。 Thus, in the continuous pole type rotor 20, the five permanent magnets 1, which are half the number of poles, each provide five first magnetic poles. Further, each of the five second magnetic poles having half the number of poles is formed on the core material of the rotor core 5 between the permanent magnets 1 adjacent to each other. The second magnetic pole is a so-called salient pole and is formed by magnetizing the rotor 20.
 従って回転子20では、永久磁石1を含み永久磁石1による第1の極性を持つ第1の磁極部分60と、永久磁石1を含まないコア磁極部でありかつ仮想極である第2の磁極を有する第2の磁極部分61とが、回転子20の周方向に交互に配列される。コンシクエントポール型の回転子20では、極数は4以上の偶数となる。 Therefore, the rotor 20 includes the first magnetic pole portion 60 having the first polarity by the permanent magnet 1 including the permanent magnet 1 and the second magnetic pole that is a core magnetic pole portion not including the permanent magnet 1 and is a virtual pole. The second magnetic pole portions 61 are arranged alternately in the circumferential direction of the rotor 20. In the continuous pole type rotor 20, the number of poles is an even number of 4 or more.
 回転子コア5の外形はいわゆる花丸形状である。花丸形状とは、回転子コア5の外径が極中心62,63で最大となり、極間64で最小となる形状であって、極中心62,63から極間64までが弧状となる形状である。極中心62は第1の磁極の極中心であり、極中心63は第2の磁極の極中心である。図示例では、花丸形状は、10枚の同形同サイズの花弁が均等角度で配置された形状である。従って、極中心62での回転子コア5の外径は、極中心63での回転子コア5の外径に等しい。なお、磁石挿入孔2の周方向の幅は極ピッチよりも広い。 The outer shape of the rotor core 5 is a so-called flower circle shape. The flower-circle shape is a shape in which the outer diameter of the rotor core 5 is maximum at the pole centers 62 and 63 and is minimum at the gap 64, and the arc from the pole centers 62 and 63 to the gap 64 is an arc shape. It is. The pole center 62 is the pole center of the first magnetic pole, and the pole center 63 is the pole center of the second magnetic pole. In the illustrated example, the flower circle shape is a shape in which ten petals of the same shape and the same size are arranged at an equal angle. Therefore, the outer diameter of the rotor core 5 at the pole center 62 is equal to the outer diameter of the rotor core 5 at the pole center 63. The circumferential width of the magnet insertion hole 2 is wider than the pole pitch.
 図7は本発明の実施の形態1に係るコンシクエントポール型の回転子の斜視図である。図8は図7に示す回転子の正面図である。図9は図7に示す環状の磁石の斜視図である。回転子20は、軸方向における回転子コア5の一端部5aに設置され、回転子コア5の回転方向における位置を検出させるための複数の位置検出用磁石70を備える。隣接する位置検出用磁石70の間には、各々が位置検出用磁石70同士を連結する複数の連結部71が設けられている。位置検出用磁石70と連結部71とを交互に連結することにより環状の磁石72が形成される。 FIG. 7 is a perspective view of a continuum pole type rotor according to the first embodiment of the present invention. FIG. 8 is a front view of the rotor shown in FIG. FIG. 9 is a perspective view of the annular magnet shown in FIG. The rotor 20 is provided at one end portion 5a of the rotor core 5 in the axial direction, and includes a plurality of position detection magnets 70 for detecting the position of the rotor core 5 in the rotation direction. Between the adjacent position detection magnets 70, a plurality of connecting portions 71 are provided, each connecting the position detection magnets 70 to each other. An annular magnet 72 is formed by alternately connecting the position detection magnet 70 and the connecting portion 71.
 複数の位置検出用磁石70の各々は、軸方向における各々の一方の端面70b1の磁極の極性が第2の磁極部分61の第2の極性と同じ極性であり、第2の磁極部分61の回転方向における位相と同位相の位置に設置される。具体的には、位置検出用磁石70は、軸方向に2つの端面70b1,70b2を備える。端面70b1は、位置検出用磁石70の回転子コア5とは反対側の端面である。端面70b1の極性はS極である。端面70b2は、位置検出用磁石70の回転子コア5側の端面である。端面70b2の極性はN極である。位置検出用磁石70の磁束方向は図7に示すように軸方向である。第2の磁極部分61は、径方向外側の極性がS極であり、径方向内側の極性がN極である。第2の磁極部分61のS極は前述した第2の極性に相当する。図7に示すように、第2の磁極部分61のN極からS極に向かう矢印は、第2の磁極部分61の磁束方向を示す。第2の磁極部分61の磁束のうち、軸方向に漏れる磁束は、位置検出用磁石70から軸方向に漏れる磁束でアシストされ、前述したホールIC49bで検出される。なお、第1の磁極部分60は、径方向外側の極性がN極であり、径方向内側の極性がS極である。第1の磁極部分60のN極は前述した第1の極性に相当する。図7に示すように、第1の磁極部分60のN極からS極に向かう矢印は、第1の磁極部分60の磁束方向を示す。複数の位置検出用磁石70の各々の材料としては、ボンド磁石を例示できる。ボンド磁石を用いることにより、焼結磁石を用いる場合に比べて位置検出用磁石70の加工の自由度が高くなるため、位置検出用磁石70の製造時における加工工数が低減され、位置検出用磁石70の製造コストを低減できる。 Each of the plurality of position detection magnets 70 has the same polarity as the second polarity of the second magnetic pole part 61 in the polarity of the one end face 70b1 in the axial direction, and the rotation of the second magnetic pole part 61. It is installed at the same phase as the phase in the direction. Specifically, the position detection magnet 70 includes two end faces 70b1 and 70b2 in the axial direction. The end surface 70b1 is an end surface on the opposite side of the rotor core 5 of the position detection magnet 70. The polarity of the end face 70b1 is the S pole. The end surface 70b2 is an end surface of the position detection magnet 70 on the rotor core 5 side. The polarity of the end face 70b2 is the N pole. The magnetic flux direction of the position detecting magnet 70 is the axial direction as shown in FIG. The second magnetic pole portion 61 has a radially outer polarity of S poles and a radially inner polarity of N poles. The south pole of the second magnetic pole portion 61 corresponds to the second polarity described above. As shown in FIG. 7, the arrow from the north pole to the south pole of the second magnetic pole portion 61 indicates the magnetic flux direction of the second magnetic pole portion 61. Of the magnetic flux of the second magnetic pole portion 61, the magnetic flux leaking in the axial direction is assisted by the magnetic flux leaking in the axial direction from the position detection magnet 70, and is detected by the Hall IC 49b described above. The first magnetic pole portion 60 has a radially outer polarity of N poles and a radially inner polarity of S poles. The north pole of the first magnetic pole portion 60 corresponds to the first polarity described above. As shown in FIG. 7, the arrow from the north pole to the south pole of the first magnetic pole portion 60 indicates the magnetic flux direction of the first magnetic pole portion 60. An example of the material of each of the plurality of position detection magnets 70 is a bond magnet. By using the bond magnet, the degree of freedom of processing of the position detection magnet 70 is increased compared to the case of using a sintered magnet. Therefore, the number of processing steps in manufacturing the position detection magnet 70 is reduced, and the position detection magnet is reduced. The manufacturing cost of 70 can be reduced.
 複数の連結部71の各々は、モールド樹脂50と同じ材料で構成してもよいし、第1の磁極部分60の第1の極性と同じ極性の磁石で構成してもよい。複数の連結部71をモールド樹脂50と同じ材料で構成することにより、磁石で構成する場合に比べて回転子20の製造コストを低減できる。 Each of the plurality of connecting portions 71 may be made of the same material as the mold resin 50, or may be made of a magnet having the same polarity as the first polarity of the first magnetic pole portion 60. By constructing the plurality of connecting portions 71 with the same material as the mold resin 50, the manufacturing cost of the rotor 20 can be reduced as compared with the case of constituting with a magnet.
 軸方向における連結部71の厚みをT3とし、軸方向における位置検出用磁石70の厚みをT4とし、径方向における連結部71の厚みをT5とし、径方向における位置検出用磁石70の厚みをT6としたとき、回転子20は、T4>T3、かつ、T6>T5の関係が満たされるように構成されている。 The thickness of the connecting portion 71 in the axial direction is T3, the thickness of the position detecting magnet 70 in the axial direction is T4, the thickness of the connecting portion 71 in the radial direction is T5, and the thickness of the position detecting magnet 70 in the radial direction is T6. , The rotor 20 is configured such that the relationship of T4> T3 and T6> T5 is satisfied.
 コンシクエントポール型の回転子20では、第1の磁極部分60から軸方向に漏れる磁束が第2の磁極部分61から軸方向に漏れる磁束よりも大きい。そのため、第1の磁極部分60から軸方向に漏れる磁束によりホールIC49bで検出される第1の磁界と、第2の磁極部分61から軸方向に漏れる磁束によりホールIC49bで検出される第2の磁界とのアンバランスが大きくなり、回転位置の検出精度が低下する可能性がある。 In the continuous pole type rotor 20, the magnetic flux leaking in the axial direction from the first magnetic pole portion 60 is larger than the magnetic flux leaking in the axial direction from the second magnetic pole portion 61. Therefore, the first magnetic field detected by the Hall IC 49b due to the magnetic flux leaking in the axial direction from the first magnetic pole portion 60 and the second magnetic field detected by the Hall IC 49b by the magnetic flux leaking from the second magnetic pole portion 61 in the axial direction. There is a possibility that the detection accuracy of the rotational position is lowered.
 以上に説明したように実施の形態1に係る回転子20は、複数の永久磁石1を有し、永久磁石1による第1の極性の第1の磁極部分60と、隣り合う永久磁石1間に形成された第1の極性と異なる第2の極性の複数の第2の磁極部分61と、を有する回転子コア5と、回転子コア5の軸方向の回転子コア5の一端部に設けられた環状の磁石72と、を備え、環状の磁石72は、回転子コア5の回転方向に配列され、回転子コア5の第1の磁極部分60と第2の磁極部分61との位置を検出させるための複数の位置検出用磁石70と、隣接する位置検出用磁石70の間に設けられ、隣接する位置検出用磁石70同士を連結する複数の連結部71と、を備える。そして複数の位置検出用磁石70および複数の連結部71は、回転子コア5の軸方向の回転子コア5とは反対側の端面70b1の磁極の極性が第2の極性と同じ極性である。この構成により、第2の磁極部分61から軸方向に漏れる磁束は位置検出用磁石70から発生する磁束でアシストされるため、ホールIC49bで検出される第2の磁界は、位置検出用磁石70が無い場合に比べて、大きな値となる。これにより第1の磁界および第2の磁界のアンバランスが軽減される。なお、実施の形態1では位置検出用磁石70の端面70b1の極性は、第2の極性と同じ極であればよく、S極に限定されるものではない。すなわち、第2の磁極部分61の第2の極性がN極の場合、位置検出用磁石70の端面70b1の極性はN極である。 As described above, the rotor 20 according to the first embodiment includes the plurality of permanent magnets 1, and the first magnetic pole portion 60 having the first polarity by the permanent magnet 1 and the adjacent permanent magnet 1. A rotor core 5 having a plurality of second magnetic pole portions 61 having a second polarity different from the formed first polarity, and provided at one end of the rotor core 5 in the axial direction of the rotor core 5. The annular magnet 72 is arranged in the rotational direction of the rotor core 5 and detects the positions of the first magnetic pole portion 60 and the second magnetic pole portion 61 of the rotor core 5. A plurality of position detecting magnets 70 and a plurality of connecting portions 71 provided between the adjacent position detecting magnets 70 and connecting the adjacent position detecting magnets 70 to each other. In the plurality of position detecting magnets 70 and the plurality of connecting portions 71, the polarity of the magnetic poles of the end surface 70b1 opposite to the rotor core 5 in the axial direction of the rotor core 5 is the same as the second polarity. With this configuration, since the magnetic flux leaking in the axial direction from the second magnetic pole portion 61 is assisted by the magnetic flux generated from the position detection magnet 70, the second magnetic field detected by the Hall IC 49b is generated by the position detection magnet 70. It is a large value compared to the case without it. Thereby, the imbalance between the first magnetic field and the second magnetic field is reduced. In the first embodiment, the polarity of the end face 70b1 of the position detection magnet 70 may be the same as the second polarity, and is not limited to the S pole. That is, when the second polarity of the second magnetic pole portion 61 is N-pole, the polarity of the end face 70b1 of the position detection magnet 70 is N-pole.
 ホールIC49bで検出される第1の磁極部分60および位置検出用磁石70の回転方向における位相は一致しているため、図1に示す電動機100は、第1の磁極部分60から軸方向に漏れる磁束と位置検出用磁石70から軸方向に漏れる磁束とを利用することにより、回転子20の位置を精度良く検出できる。 Since the phases in the rotation direction of the first magnetic pole portion 60 and the position detection magnet 70 detected by the Hall IC 49b are the same, the motor 100 shown in FIG. 1 has a magnetic flux leaking in the axial direction from the first magnetic pole portion 60. By using the magnetic flux leaking in the axial direction from the position detection magnet 70, the position of the rotor 20 can be detected with high accuracy.
 実施の形態1に係る回転子20は、磁極数の総和の半分に相当する数の位置検出用磁石70を用いるため、磁極数の総和に相当する数の位置検出用磁石70を用いる場合に比べて、位置検出精度を向上させながら回転子20の製造コストの上昇を抑制できる。 Since the rotor 20 according to the first embodiment uses the number of position detection magnets 70 corresponding to half the total number of magnetic poles, the number of position detection magnets 70 corresponding to the total number of magnetic poles is used. Thus, an increase in the manufacturing cost of the rotor 20 can be suppressed while improving the position detection accuracy.
 また実施の形態1に係る電動機100は、環状の磁石72を用いるため、複数の位置検出用磁石70を個別に製造して回転子コア5に組み付ける場合に比べて、回転子20の組立時間を短縮できる。また環状の磁石72を用いることにより、回転子20の組立時に位置検出用磁石70が外れて歩留まりが低下するというリスクを軽減でき、さらに電動機100の動作中に位置検出用磁石70が外れて電動機100内に飛散するというリスクを軽減できる。従って実施の形態1に係る電動機100は、電動機100の製造コストの上昇を抑制し、かつ品質の低下を抑制しながら、位置検出精度を向上できる。 In addition, since the electric motor 100 according to the first embodiment uses the annular magnet 72, the assembly time of the rotor 20 is longer than when the plurality of position detection magnets 70 are individually manufactured and assembled to the rotor core 5. Can be shortened. Further, by using the annular magnet 72, it is possible to reduce the risk that the position detecting magnet 70 is detached when the rotor 20 is assembled and the yield is lowered, and the position detecting magnet 70 is detached during the operation of the electric motor 100. The risk of splashing within 100 can be reduced. Therefore, the electric motor 100 according to Embodiment 1 can improve the position detection accuracy while suppressing an increase in manufacturing cost of the electric motor 100 and suppressing a decrease in quality.
 なお回転子コア5への環状の磁石72の設置方法としては以下の方法を例示できる。
 (1)シャフト23と位置検出用磁石70との間に不図示のリブ状部材を設け、またシャフト23と連結部71との間に不図示のリブ状部材を設けることにより、回転子コア5へ環状の磁石72が設置される。
 (2)軸方向における回転子コア5の一端部5aにおいて、周方向に離間して配置される不図示の複数の台座を設け、当該台座群に環状の磁石72が設置される。
In addition, the following method can be illustrated as an installation method of the annular magnet 72 to the rotor core 5.
(1) By providing a rib-like member (not shown) between the shaft 23 and the position detecting magnet 70 and providing a rib-like member (not shown) between the shaft 23 and the connecting portion 71, the rotor core 5 A circular magnet 72 is installed.
(2) A plurality of unillustrated pedestals arranged in the circumferential direction are provided at one end portion 5a of the rotor core 5 in the axial direction, and an annular magnet 72 is installed in the pedestal group.
 以下では実施の形態1に係る回転子20の変形例を説明する。 Hereinafter, a modified example of the rotor 20 according to the first embodiment will be described.
 図10は本発明の実施の形態1に係るコンシクエントポール型の回転子の第1の変形例を示す図である。図11は図10に示す回転子の正面図である。図12は図10に示す環状の磁石の斜視図である。 FIG. 10 is a diagram showing a first modification of the consequent pole type rotor according to the first embodiment of the present invention. FIG. 11 is a front view of the rotor shown in FIG. 12 is a perspective view of the annular magnet shown in FIG.
 図10、図11および図12に示す回転子20Aと図7に示す回転子20との違いは、連結部71の径方向における厚みが異なることである。回転子20Aは、T4>T3、かつ、T5=T6の関係が満たされるように構成されている。連結部71は、第1の磁極部分60から軸方向に漏れる磁束をアシストする機能が不要であるため、連結部71の厚みT3,T5は、位置検出用磁石70の厚みT4,T6よりも薄くすることができる。そのため連結部71の厚みT3,T5を位置検出用磁石70の厚みT4,T6と同じにする場合に比べて、位置検出精度を低下させることなく環状の磁石72の製造コストを低減できる。なお連結部71の厚みT3,T5は、回転子20,20Aの製造時における破損を防止でき、また図1に示す電動機100の運転時における破損を防止できる強度を考慮して設定される。 The difference between the rotor 20A shown in FIGS. 10, 11 and 12 and the rotor 20 shown in FIG. 7 is that the thickness of the connecting portion 71 in the radial direction is different. The rotor 20A is configured such that the relationship of T4> T3 and T5 = T6 is satisfied. Since the connecting portion 71 does not need a function of assisting magnetic flux leaking in the axial direction from the first magnetic pole portion 60, the thickness T3 and T5 of the connecting portion 71 is thinner than the thickness T4 and T6 of the position detection magnet 70. can do. Therefore, compared with the case where the thicknesses T3 and T5 of the connecting portion 71 are the same as the thicknesses T4 and T6 of the position detection magnet 70, the manufacturing cost of the annular magnet 72 can be reduced without reducing the position detection accuracy. The thicknesses T3 and T5 of the connecting portion 71 are set in consideration of the strength that can prevent the rotors 20 and 20A from being damaged during manufacture and can prevent the motor 100 shown in FIG. 1 from being damaged during operation.
 図13は本発明の実施の形態1に係るコンシクエントポール型の回転子の第2の変形例を示す図である。図14は図13に示す回転子の正面図である。図15は図13に示す環状の磁石の第1の斜視図である。図16は図13に示す環状の磁石の第2の斜視図である。 FIG. 13 is a view showing a second modification of the consequent pole type rotor according to the first embodiment of the present invention. FIG. 14 is a front view of the rotor shown in FIG. FIG. 15 is a first perspective view of the annular magnet shown in FIG. 16 is a second perspective view of the annular magnet shown in FIG.
 図13、図14および図15に示す回転子20Bと図7に示す回転子20との違いは、回転子20Bの環状の磁石72には、環状の磁石72から軸方向の延びる複数の突起73が設けられていることである。 The difference between the rotor 20B shown in FIGS. 13, 14 and 15 and the rotor 20 shown in FIG. 7 is that the annular magnet 72 of the rotor 20B has a plurality of protrusions 73 extending from the annular magnet 72 in the axial direction. Is provided.
 図15および図16に示すように、複数の突起73の各々は、位置検出用磁石70の周方向における両方の端面70a寄りに設置され、かつ、軸方向における位置検出用磁石70の他方の端面70b2側から軸方向に延びる形状である。より具体的には、位置検出用磁石70の周方向における両方の端面70aには台座74が設けられている。台座74は、軸方向における位置検出用磁石70の他方の端面70b2に設置されている。突起73は、台座74に設置され、軸方向において台座74の位置検出用磁石70とは反対側に延びるように形成される。突起73および台座74は環状の磁石72と一体成型により製造される。 As shown in FIGS. 15 and 16, each of the plurality of protrusions 73 is disposed near both end faces 70 a in the circumferential direction of the position detection magnet 70, and the other end face of the position detection magnet 70 in the axial direction. The shape extends in the axial direction from the 70b2 side. More specifically, pedestals 74 are provided on both end faces 70 a in the circumferential direction of the position detection magnet 70. The pedestal 74 is installed on the other end face 70b2 of the position detecting magnet 70 in the axial direction. The protrusion 73 is installed on the pedestal 74 and is formed so as to extend on the opposite side of the pedestal 74 from the position detecting magnet 70 in the axial direction. The protrusion 73 and the pedestal 74 are manufactured by integral molding with the annular magnet 72.
 図13および図14に示すように、複数の突起73の各々は、磁石挿入孔2を構成する第2の領域3Bに挿入される。このとき台座74が回転子コア5の一端部5aに接することにより、軸方向における複数の突起73の各々の位置決めがなされる。 13 and 14, each of the plurality of protrusions 73 is inserted into the second region 3 </ b> B constituting the magnet insertion hole 2. At this time, when the pedestal 74 is in contact with the one end portion 5a of the rotor core 5, each of the plurality of protrusions 73 is positioned in the axial direction.
 本実施の形態に係る電動機100では、ホールIC49bで検出される第1の磁極部分60および位置検出用磁石70の回転方向における位相を一致させることにより、回転位置の検出精度を向上させることができる。図13から図16に示す回転子20Bでは、第2の領域3Bに挿入される複数の突起73が、回転方向における環状の磁石72の位置決め突起として機能する。従って回転子20Bでは、環状の磁石72の組み付け時において、位置検出用磁石70の回転方向における位相と第2の磁極部分61の回転方向における位相とのずれを抑制できる。従って、回転子20Bを用いた電動機100は、回転子20または回転子20Aを用いた電動機100に比べて、回転位置の検出精度を向上させることができる。 In electric motor 100 according to the present embodiment, the rotational position detection accuracy can be improved by matching the phases of first magnetic pole portion 60 and position detection magnet 70 detected by Hall IC 49b in the rotational direction. . In the rotor 20B shown in FIGS. 13 to 16, the plurality of protrusions 73 inserted into the second region 3B function as positioning protrusions for the annular magnet 72 in the rotation direction. Therefore, in the rotor 20 </ b> B, when the annular magnet 72 is assembled, a shift between the phase in the rotation direction of the position detection magnet 70 and the phase in the rotation direction of the second magnetic pole portion 61 can be suppressed. Therefore, the electric motor 100 using the rotor 20B can improve the detection accuracy of the rotational position compared to the electric motor 100 using the rotor 20 or the rotor 20A.
 また回転子20Bは、突起73および台座74を環状の磁石72と一体成型により製造できるため、位置検出用磁石70と不図示の軸方向位置決め用部材とを個別に製造して回転子コア5に組み付ける場合に比べて、回転子20の組立時間を短縮でき、また製造される部品数を低減できるため、歩留まりが向上し、回転子20Bの製造コストの上昇を抑制できる。 Further, the rotor 20B can be manufactured by integrally forming the protrusion 73 and the pedestal 74 with the annular magnet 72, so that the position detecting magnet 70 and an axial positioning member (not shown) are individually manufactured to form the rotor core 5. Compared to the assembly, the assembly time of the rotor 20 can be shortened, and the number of manufactured parts can be reduced. Therefore, the yield is improved, and the increase in the manufacturing cost of the rotor 20B can be suppressed.
実施の形態2.
 図17は本発明の実施の形態2に係る空気調和機の構成の一例を示す図である。空気調和機300は、室内機310と、室内機310に接続される室外機320とを備える。室内機310には不図示の室内機用送風機が搭載され、室外機320には室外機用送風機330が搭載されている。また、室外機320に圧縮機340が搭載されている。室内機用送風機、室外機用送風機330および圧縮機340には、実施の形態1に係る電動機100が使用されている。
Embodiment 2. FIG.
FIG. 17 is a diagram illustrating an example of a configuration of an air conditioner according to Embodiment 2 of the present invention. The air conditioner 300 includes an indoor unit 310 and an outdoor unit 320 connected to the indoor unit 310. An indoor unit blower (not shown) is mounted on the indoor unit 310, and an outdoor unit blower 330 is mounted on the outdoor unit 320. In addition, a compressor 340 is mounted on the outdoor unit 320. The electric motor 100 according to Embodiment 1 is used for the indoor unit blower, the outdoor unit blower 330, and the compressor 340.
 このように、室内機用送風機、室外機用送風機330および圧縮機340の駆動源として実施の形態1に係る電動機100を用いることにより、回転位置検出の精度が向上することにより電動機効率が向上すると共に製造コストを抑制できる空気調和機300を得ることができる。 Thus, by using the electric motor 100 according to the first embodiment as a drive source for the indoor unit blower, the outdoor unit blower 330, and the compressor 340, the accuracy of the rotational position is improved, and the motor efficiency is improved. And the air conditioner 300 which can suppress manufacturing cost can be obtained.
 なお実施の形態1に係る電動機100は、空気調和機300以外の電気機器に搭載することもでき、この場合も、本実施の形態と同様の効果を得ることができる。 The electric motor 100 according to the first embodiment can be mounted on an electric device other than the air conditioner 300, and in this case, the same effect as that of the present embodiment can be obtained.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 永久磁石、2 磁石挿入孔、3A 第1の領域、3B 第2の領域、5 回転子コア、5a 一端部、6 回転軸、7 シャフト挿入孔、10 モールド固定子、10-1,41-1 外周部、10-2,10a,41-2 内周部、10b 開口部、11,30a 軸受支持部、11a,405 孔、20,20A,20B 回転子、21a 負荷側転がり軸受、21b 反負荷側転がり軸受、23 シャフト、24 樹脂部、26,26-1 絶縁スリーブ、27 シャフト組立、30 ブラケット、30b 圧入部、40 固定子、41 固定子コア、42 コイル、43 絶縁部、44b 中性点端子、45 基板、46 リード線口出し部品、47 リード線、49b ホールIC、50 モールド樹脂、60 第1の磁極部分、61 第2の磁極部分、62,63 極中心、61a,61b,70a,70b1,70b2 端面、64 極間、70 位置検出用磁石、71 連結部、72 環状の磁石、73 突起、74 台座、100 電動機、110 負荷側、120 反負荷側、300 空気調和機、310 室内機、320 室外機、330 室外機用送風機、340 圧縮機、400 分割コア部、401 バックヨーク、402 ティース、403 薄肉部、404 分割面、406 スロット。 1 permanent magnet, 2 magnet insertion hole, 3A first region, 3B second region, 5 rotor core, 5a one end, 6 rotation shaft, 7 shaft insertion hole, 10 mold stator, 10-1, 41- 1 outer periphery, 10-2, 10a, 41-2 inner periphery, 10b opening, 11, 30a bearing support, 11a, 405 holes, 20, 20A, 20B rotor, 21a load side rolling bearing, 21b anti-load Side rolling bearing, 23 shaft, 24 resin part, 26, 26-1 insulation sleeve, 27 shaft assembly, 30 bracket, 30b press-fit part, 40 stator, 41 stator core, 42 coil, 43 insulation part, 44b neutral point Terminal, 45 substrate, 46 lead wire lead part, 47 lead wire, 49b Hall IC, 50 mold resin, 60 1st magnetic pole Minute, 61 second magnetic pole part, 62, 63 pole center, 61a, 61b, 70a, 70b1, 70b2, end face, 64 poles, 70 position detecting magnet, 71 connecting part, 72 annular magnet, 73 protrusion, 74 pedestal , 100 motor, 110 load side, 120 anti-load side, 300 air conditioner, 310 indoor unit, 320 outdoor unit, 330 outdoor unit blower, 340 compressor, 400 split core section, 401 back yoke, 402 teeth, 403 thin wall Part, 404 division surface, 406 slots.

Claims (9)

  1.  複数の永久磁石を有し、前記永久磁石による第1の極性の第1の磁極部分と、隣り合う前記永久磁石間に形成された前記第1の極性と異なる第2の極性の第2の磁極部分と、を有する回転子コアと、
     前記回転子コアの軸方向の一端部に設けられた環状の磁石と、
     を備え、
     前記環状の磁石は、
     前記回転子コアの回転方向に配列され、前記回転子コアの前記第1の磁極部分と前記第2の磁極部分との位置を検出させるための複数の位置検出用磁石と、
     隣接する前記位置検出用磁石の間に設けられ、隣接する前記位置検出用磁石同士を連結する複数の連結部と、
     を備え、
     前記複数の位置検出用磁石は、
     前記回転子コアの軸方向の前記回転子コアとは反対側の端面の磁極の極性が前記第2の極性と同じ極性であるコンシクエントポール型の回転子。
    A first magnetic pole portion having a plurality of permanent magnets and having a first polarity by the permanent magnet, and a second magnetic pole having a second polarity different from the first polarity formed between the adjacent permanent magnets A rotor core having a portion;
    An annular magnet provided at one end of the rotor core in the axial direction;
    With
    The annular magnet is
    A plurality of position detection magnets arranged in the rotation direction of the rotor core and for detecting positions of the first magnetic pole portion and the second magnetic pole portion of the rotor core;
    A plurality of connecting portions provided between the adjacent position detecting magnets and connecting the adjacent position detecting magnets;
    With
    The plurality of position detecting magnets are:
    A continuum pole type rotor in which the polarity of the magnetic pole on the end surface opposite to the rotor core in the axial direction of the rotor core is the same as the second polarity.
  2.  前記複数の位置検出用磁石は、前記回転子コアの回転方向の位相が前記第2の磁極部分の前記回転方向の位相と一致する位置に配置される請求項1に記載のコンシクエントポール型の回転子。 2. The continuous pole type magnet according to claim 1, wherein the plurality of position detection magnets are arranged at positions where a phase in a rotation direction of the rotor core coincides with a phase in the rotation direction of the second magnetic pole portion. Rotor.
  3.  前記複数の位置検出用磁石は、前記位置検出用磁石の厚みよりも薄い厚みの連結部により相互に連結される請求項1または請求項2に記載のコンシクエントポール型の回転子。 3. The continuous pole type rotor according to claim 1, wherein the plurality of position detecting magnets are connected to each other by a connecting portion having a thickness smaller than that of the position detecting magnet.
  4.  前記回転子コアは、前記永久磁石が挿入される複数の磁石挿入孔を備え、
     前記複数の位置検出用磁石は、前記位置検出用磁石の位置決めを行う突起を備え、
     前記突起は、前記磁石挿入孔に挿入される前記永久磁石と、前記磁石挿入孔との間の領域に挿入される請求項1から請求項3の何れか一項に記載のコンシクエントポール型の回転子。
    The rotor core includes a plurality of magnet insertion holes into which the permanent magnets are inserted,
    The plurality of position detection magnets include protrusions for positioning the position detection magnets,
    The continuous pole type according to any one of claims 1 to 3, wherein the protrusion is inserted into a region between the permanent magnet inserted into the magnet insertion hole and the magnet insertion hole. Rotor.
  5.  前記位置検出用磁石と前記突起との間には、前記回転子コアの一端部に接する台座が設けられる請求項4に記載のコンシクエントポール型の回転子。 The continuum pole type rotor according to claim 4, wherein a pedestal in contact with one end of the rotor core is provided between the position detecting magnet and the protrusion.
  6.  前記位置検出用磁石の厚みは、前記連結部の厚みよりも大きい請求項3から請求項5の何れか一項に記載のコンシクエントポール型の回転子。 The continuous pole type rotor according to any one of claims 3 to 5, wherein a thickness of the position detecting magnet is larger than a thickness of the connecting portion.
  7.  前記位置検出用磁石は、ボンド磁石で構成されている請求項1から請求項6の何れか一項に記載のコンシクエントポール型の回転子。 The continuous pole type rotor according to any one of claims 1 to 6, wherein the position detection magnet is formed of a bond magnet.
  8.  請求項1から請求項7の何れか一項に記載のコンシクエントポール型の回転子と固定子とを備える電動機。 An electric motor comprising the consequent pole type rotor and stator according to any one of claims 1 to 7.
  9.  請求項8に記載の電動機を備えた空気調和機。 An air conditioner equipped with the electric motor according to claim 8.
PCT/JP2017/020020 2016-08-22 2017-05-30 Consequent pole-type rotor, electric motor, and air conditioner WO2018037652A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201790000484.7U CN208835850U (en) 2016-08-22 2017-05-30 Commutate polar form rotor, motor and air conditioner
JP2018535463A JP6545393B2 (en) 2016-08-22 2017-05-30 Conscious pole rotor, motor and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2016/074385 2016-08-22
PCT/JP2016/074385 WO2018037455A1 (en) 2016-08-22 2016-08-22 Consequent pole-type rotor, electric motor, and air conditioner

Publications (1)

Publication Number Publication Date
WO2018037652A1 true WO2018037652A1 (en) 2018-03-01

Family

ID=61245736

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/074385 WO2018037455A1 (en) 2016-08-22 2016-08-22 Consequent pole-type rotor, electric motor, and air conditioner
PCT/JP2017/020020 WO2018037652A1 (en) 2016-08-22 2017-05-30 Consequent pole-type rotor, electric motor, and air conditioner

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074385 WO2018037455A1 (en) 2016-08-22 2016-08-22 Consequent pole-type rotor, electric motor, and air conditioner

Country Status (3)

Country Link
JP (1) JP6545393B2 (en)
CN (1) CN208835850U (en)
WO (2) WO2018037455A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108494174A (en) * 2018-04-09 2018-09-04 新疆金风科技股份有限公司 Measurement of air gap device and wind power generating set
WO2020183523A1 (en) * 2019-03-08 2020-09-17 三菱電機株式会社 Motor, fan, and air-conditioner
WO2021005883A1 (en) * 2019-07-11 2021-01-14 シナノケンシ株式会社 Brushless motor
WO2022254678A1 (en) * 2021-06-04 2022-12-08 三菱電機株式会社 Consequent-pole-type rotor, electric motor, compressor, and air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3154866A1 (en) * 2020-04-25 2021-10-25 121352 Canada Inc. (Technosub) Electric motors and methods of controlling thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138856A (en) * 1981-02-23 1982-08-27 Canon Inc Rotor for motor
JP2000152542A (en) * 1998-11-05 2000-05-30 Sony Corp Motor
JP2012244783A (en) * 2011-05-19 2012-12-10 Mitsubishi Electric Corp Magnet embedded type rotor, electric motor, compressor, air conditioner, and electric automobile
US20130043821A1 (en) * 2010-03-08 2013-02-21 Robert Bosch Gmbh Motor System Having an Electronically Commutated Electric Machine
WO2013094075A1 (en) * 2011-12-23 2013-06-27 三菱電機株式会社 Permanent magnet motor
JP2014135883A (en) * 2012-12-10 2014-07-24 Denso Corp Rotor, and dynamo-electric machine using the same
JP2014171320A (en) * 2013-03-04 2014-09-18 Denso Corp Rotary electric machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2524968T3 (en) * 2010-12-15 2014-12-16 Infranor Holding S.A. Permanent magnet synchronous motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138856A (en) * 1981-02-23 1982-08-27 Canon Inc Rotor for motor
JP2000152542A (en) * 1998-11-05 2000-05-30 Sony Corp Motor
US20130043821A1 (en) * 2010-03-08 2013-02-21 Robert Bosch Gmbh Motor System Having an Electronically Commutated Electric Machine
JP2012244783A (en) * 2011-05-19 2012-12-10 Mitsubishi Electric Corp Magnet embedded type rotor, electric motor, compressor, air conditioner, and electric automobile
WO2013094075A1 (en) * 2011-12-23 2013-06-27 三菱電機株式会社 Permanent magnet motor
JP2014135883A (en) * 2012-12-10 2014-07-24 Denso Corp Rotor, and dynamo-electric machine using the same
JP2014171320A (en) * 2013-03-04 2014-09-18 Denso Corp Rotary electric machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108494174A (en) * 2018-04-09 2018-09-04 新疆金风科技股份有限公司 Measurement of air gap device and wind power generating set
CN108494174B (en) * 2018-04-09 2019-06-04 新疆金风科技股份有限公司 Measurement of air gap device and wind power generating set
WO2020183523A1 (en) * 2019-03-08 2020-09-17 三菱電機株式会社 Motor, fan, and air-conditioner
JPWO2020183523A1 (en) * 2019-03-08 2021-10-14 三菱電機株式会社 Motors, fans, and air conditioners
JP7098047B2 (en) 2019-03-08 2022-07-08 三菱電機株式会社 Motors, fans, and air conditioners
WO2021005883A1 (en) * 2019-07-11 2021-01-14 シナノケンシ株式会社 Brushless motor
JP2021016228A (en) * 2019-07-11 2021-02-12 シナノケンシ株式会社 Brushless motor
WO2022254678A1 (en) * 2021-06-04 2022-12-08 三菱電機株式会社 Consequent-pole-type rotor, electric motor, compressor, and air conditioner

Also Published As

Publication number Publication date
WO2018037455A1 (en) 2018-03-01
JPWO2018037652A1 (en) 2018-11-01
CN208835850U (en) 2019-05-07
JP6545393B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
JP6599005B2 (en) Consecutive pole type rotor, electric motor and air conditioner
WO2018037449A1 (en) Consequent-pole-type rotor, electric motor, and air conditioner
JP6789396B2 (en) How to manufacture rotors, electric motors, blowers, air conditioners and rotors
WO2018037652A1 (en) Consequent pole-type rotor, electric motor, and air conditioner
JP5879121B2 (en) Axial gap rotating electric machine
KR102073132B1 (en) Electric motor and air conditioner
US11101708B2 (en) Rotor, motor, air conditioning apparatus, and manufacturing method of rotor
JP6545387B2 (en) Conscious pole rotor, motor and air conditioner
US20230253838A1 (en) Electric motor
JPWO2022019074A5 (en)
JP5471653B2 (en) Permanent magnet type electric motor
WO2020129210A1 (en) Rotor, electric motor, fan, air conditioner, and method for manufacturing rotor
JP2020010539A (en) Rotor and brushless motor
JP2008067528A (en) Motor
WO2022219923A1 (en) Rotor and electric motor
JP2024029631A (en) rotor
JP2007244169A (en) Motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018535463

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843140

Country of ref document: EP

Kind code of ref document: A1