WO2018037469A1 - Screw compressor and refrigeration cycle device - Google Patents

Screw compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2018037469A1
WO2018037469A1 PCT/JP2016/074443 JP2016074443W WO2018037469A1 WO 2018037469 A1 WO2018037469 A1 WO 2018037469A1 JP 2016074443 W JP2016074443 W JP 2016074443W WO 2018037469 A1 WO2018037469 A1 WO 2018037469A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
refrigerant liquid
refrigerant
slide valve
suction
Prior art date
Application number
PCT/JP2016/074443
Other languages
French (fr)
Japanese (ja)
Inventor
克也 前田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/074443 priority Critical patent/WO2018037469A1/en
Priority to EP16914144.7A priority patent/EP3505765B1/en
Priority to CN201680088556.8A priority patent/CN109642579B/en
Publication of WO2018037469A1 publication Critical patent/WO2018037469A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • F04C29/0014Injection of a fluid in the working chamber for sealing, cooling and lubricating with control systems for the injection of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a

Definitions

  • the present invention relates to a screw compressor and a refrigeration cycle apparatus used for refrigerant compression of a refrigerator, for example.
  • the single screw compressor accommodates a screw rotor having a plurality of spiral screw grooves on the outer peripheral surface and two disk-shaped gate rotors having a plurality of teeth in a casing.
  • a compression chamber is formed by a space surrounded by the casing, the screw groove of the screw rotor, and the teeth of the gate rotor. Then, as the screw rotor rotates, the teeth of the gate rotor move through the screw grooves of the screw rotor, and the operation of reducing the volume of the compression chamber after the expansion is repeated. While the volume of the compression chamber increases, the refrigerant is sucked into the compression chamber, and when the volume of the compression chamber starts to be reduced, the sucked refrigerant is compressed.
  • the screw groove which is a compression chamber, communicates with the discharge port, the compressed high-pressure refrigerant is discharged from the compression chamber.
  • the discharge temperature of the discharged refrigerant gas discharged from the compressor becomes high under high operating conditions with high and low differential pressures or when the motor speed is increased by an inverter.
  • the discharge temperature becomes high, there is a possibility that the screw rotor is thermally expanded and comes into contact with the casing and seizes.
  • the temperature of the suction gas sucked into the compressor is lower than the temperature of the discharge gas.
  • the screw rotor can be cooled by sucking the suction gas into the screw groove of the screw rotor.
  • the unsteady operation is an operation in which the degree of superheat of the suction gas (hereinafter referred to as “intake SH”) rapidly increases or becomes higher than the intake SH in the steady operation, for example, at the start of operation.
  • intake SH the degree of superheat of the suction gas
  • Patent Document 1 describes that the oil separated by the oil separator is cooled and injected into the compression chamber to lower the discharge temperature, but the temperature rise of the oil during unsteady operation is not studied. .
  • the discharge temperature rises and the temperature of the oil separated by the oil separator inevitably increases. For this reason, even if it cools with an oil cooler, oil cannot fully be cooled, but it will be supplied to a compression chamber with high temperature.
  • the temperature of the suction gas becomes high during the unsteady operation, there still remains a problem of seizure of the screw rotor.
  • the screw rotor will seize because high-temperature oil is directly injected into the compression chamber during unsteady operation.
  • the present invention has been made in order to solve the above-described problems, and can suppress an increase in discharge temperature and can suppress seizure of the screw rotor during unsteady operation.
  • An object is to provide a compressor and a refrigeration cycle apparatus.
  • a casing in which a refrigerant liquid flow path through which a refrigerant liquid from the outside passes is formed, and a plurality of screw grooves constituting a compression chamber are formed on the outer peripheral surface so as to rotate in the casing.
  • a screw rotor disposed between the casing and the screw rotor, and a slide valve that slides in the direction of the rotation axis of the screw rotor.
  • An oil injection port to be supplied is provided, and the slide valve has a refrigerant liquid injection channel for communicating the refrigerant liquid channel with the screw groove, and the refrigerant liquid injection channel is provided between immediately before and after the start of compression.
  • the first position to be communicated with the screw groove and the refrigerant liquid injection channel are communicated with the screw groove in the suction stroke before the compression is started.
  • a location, the position of the rotational axis than the first position is moved to a second position closer to the oil injection port.
  • a refrigeration cycle apparatus includes a refrigerant circuit in which the screw compressor, the condenser, the main decompressor, and the evaporator are connected in order.
  • the slide valve is positioned at the first position, and the liquid injection is started immediately before and after the start of compression, thereby suppressing an increase in discharge temperature. Also, the seizure of the screw rotor during unsteady operation is suppressed by liquid injection from the position where the slide valve is located at the second position and the position in the rotation axis direction is closer to the oil injection port than the first position. it can.
  • FIG. 4 is a development view of the outer periphery of the screw rotor of the screw compressor according to Embodiment 1 of the present invention, and shows the positional relationship between the screw groove and the injection port when the slide valve is disposed at the first position on the discharge side. It is.
  • FIG. 4 is a development view of the outer surface of the screw rotor of the screw compressor according to Embodiment 1 of the present invention, and shows the positional relationship between the screw groove and the injection port when the slide valve is arranged at the second position on the suction side.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle apparatus including a screw compressor according to Embodiment 1 of the present invention.
  • the same reference numerals are the same or equivalent, and this is common throughout the entire specification.
  • the forms of the constituent elements shown in the entire specification are merely examples and are not limited to these descriptions.
  • the refrigeration cycle apparatus 100 includes a refrigerant circuit in which a screw compressor 102, a condenser 104, a main expansion valve 105, and an evaporator 106 are connected in order by refrigerant piping.
  • the refrigeration cycle apparatus 100 further includes a refrigerant liquid pipe 108 that branches from between the condenser 104 and the main expansion valve 105 and is connected to the screw compressor 102.
  • the refrigerant liquid pipe 108 is provided with a flow rate control valve 111 that controls the flow rate of the refrigerant liquid pipe 108.
  • the flow control valve 111 is composed of, for example, an electronic expansion valve.
  • the refrigeration cycle apparatus 100 further includes an oil separator 112 that separates oil from the refrigerant discharged from the screw compressor 102, and an oil supply pipe 113 that supplies the oil separated by the oil separator 112 to the screw compressor 102. It has.
  • the oil separator 112 is introduced separately from the compressor.
  • the oil separator 112 may have an oil separator integrated type in which the function of the oil separator is provided in the compressor.
  • the screw compressor 102 sucks a refrigerant and compresses the refrigerant to a high temperature and high pressure state.
  • the screw compressor 102 is driven by power being supplied from a power supply source (not shown) to the motor 103 via the inverter 101.
  • the condenser 104 cools and condenses the refrigerant gas discharged from the screw compressor 102.
  • the main expansion valve 105 squeezes and expands the refrigerant liquid that passes through the refrigerant liquid pipe 109, and is composed of an electronic expansion valve.
  • the main expansion valve 105 constitutes a main pressure reducing device according to the present invention.
  • the main decompression device may be a mechanical expansion valve, a temperature expansion valve, a capillary tube, or any other type as long as it plays a similar role. .
  • the evaporator 106 evaporates the refrigerant that has flowed out of the main expansion valve 105.
  • a suction gas temperature sensor 120 that detects the temperature of the suction gas sucked into the screw compressor 102 is provided on the suction side of the screw compressor 102.
  • the suction temperature detected by the suction gas temperature sensor is output to the control device 110 described later.
  • the refrigeration cycle apparatus 100 further includes a control device 110.
  • the control device 110 performs overall control of the refrigeration cycle apparatus 100, such as opening control of the main expansion valve 105, position control of a slide valve described later, and opening control of the flow control valve 111.
  • the control device 110 controls the main expansion valve 105 so that the suction SH becomes a target value during steady operation.
  • the steady operation refers to an operation excluding the unsteady operation
  • the unsteady operation refers to, for example, when the degree of superheat of the suction gas (hereinafter referred to as suction SH) suddenly increases, such as at the start of operation, It refers to driving that is higher than suction SH.
  • control device 110 controls the flow rate control valve 111 according to the discharge temperature as the opening degree control of the flow rate control valve 111. Specifically, the flow control valve 111 is controlled so that the discharge temperature is within a preset setting range.
  • the control device 110 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic device such as a microcomputer or a CPU and software executed thereon.
  • the screw compressor 102 sucks and compresses refrigerant gas, which is a gaseous refrigerant, and then discharges it.
  • the discharge gas discharged from the screw compressor 102 flows into the oil separator 112.
  • the refrigerant and the oil mixed in the refrigerant are separated, and the refrigerant is cooled by the condenser 104.
  • the refrigerant cooled by the condenser 104 is branched after passing through the condenser 104, and the mainstream refrigerant is decompressed by the main expansion valve 105 and expanded. Then, the refrigerant flowing out from the main expansion valve 105 is heated by the evaporator 106 and becomes refrigerant gas.
  • the refrigerant gas flowing out of the evaporator 106 is sucked into the screw compressor 102.
  • the refrigerant liquid after passing through the condenser 104 the refrigerant branched from the mainstream refrigerant flows into the refrigerant liquid pipe 108. Then, the refrigerant liquid is injected into the compression chamber 5 by the differential pressure between the pressure of the refrigerant liquid in the refrigerant liquid pipe 108 and the pressure in the compression chamber of the screw compressor 102. The injected refrigerant liquid is mixed with the refrigerant gas being compressed, compressed, and discharged from the screw compressor 102.
  • the oil discharged together with the refrigerant from the screw compressor 102 is separated from the refrigerant by the oil separator 112 and returned to the screw compressor 102 through the oil supply pipe 113. As described above, the oil is returned to the screw compressor 102 so that the oil is not exhausted in the screw compressor 102.
  • FIG. 2 is a schematic configuration diagram of the screw compressor according to Embodiment 1 of the present invention.
  • FIG. 3 is a development view of the outer peripheral surface of the screw rotor of the screw compressor according to Embodiment 1 of the present invention, and the position of the screw groove and the injection port when the slide valve is disposed at the first position on the discharge side. It is a figure which shows a relationship.
  • FIG. 3 shows a relationship.
  • FIG. 4 is a development view of the outer periphery of the screw rotor of the screw compressor according to the first embodiment of the present invention, and the positions of the screw groove and the injection port when the slide valve is arranged at the second position on the suction side. It is a figure which shows a relationship.
  • the screw compressor 102 includes a casing 1, a screw rotor 3, a gate rotor 6, a motor 103 that rotationally drives the screw rotor 3, a slide valve 7, and the like.
  • the casing 1 accommodates the screw rotor 3, the gate rotor 6, the motor 103, the slide valve 7, and the like.
  • a cylindrical housing wall 1a that forms a substantially cylindrical space is formed, and a substantially columnar screw rotor 3 is disposed inside the housing wall 1a.
  • One end of the screw rotor 3 is a refrigerant suction side (right side in FIG. 2), and the other end is a discharge side (left side in FIG. 2).
  • a plurality of spiral screw grooves 3 a are formed on the outer peripheral surface of the screw rotor 3.
  • a rotating shaft 4 is provided integrally with the center of the screw rotor 3. The rotating shaft 4 is rotatably supported by a bearing 2 provided in the casing 1.
  • a motor 103 whose frequency is controlled by an inverter 101 is connected to the end of the rotating shaft 4 on the side opposite to the bearing 2.
  • the motor 103 includes a stator 103a that is inscribed and fixed to the casing 1, and a motor rotor 103b that is disposed inside the stator 103a.
  • the rotating shaft 4 is connected with the motor rotor 103b, and the screw rotor 3 is rotationally driven.
  • the gate rotor 6 has a disk shape, and a plurality of teeth 6a to be engaged with the screw grooves 3a are formed on the outer periphery. A space surrounded by the teeth 6 a of the gate rotor 6, the screw grooves 3 a and the housing wall 1 a of the casing 1 becomes the compression chamber 5.
  • the casing 1 has a partition wall (not shown) in which a low-pressure gas refrigerant is introduced from the evaporator 106 of the refrigerant circuit, and a high-pressure gas refrigerant discharged from the compression chamber 5 flows into the casing 1. It is divided into and.
  • a discharge port (see FIG. 5 described later) 10 that opens to a discharge chamber (not shown) is formed on the high pressure side in the casing 1.
  • the casing 1 is formed with an oil injection port 114 for supplying the oil separated by the oil separator 112 to the screw groove 3a.
  • the oil injection port 114 is formed at a position facing the screw groove 3 a between immediately before and after the start of compression.
  • the oil injection port 114 is provided in the casing 1, it may be provided in a slide valve for capacity control described later or a slide valve having a variable internal volume ratio.
  • an oil injection port may be provided on both the casing and the slide valve for controlling the capacity or having a variable internal volume ratio.
  • FIG. 2 shows a configuration in which one slide valve 7 for changing the liquid injection position is provided in the casing 1.
  • a slide valve for capacity control or a slide valve having a variable internal volume ratio is further provided. May be. 3 and 4 show an example in which a slide valve 11 for changing the internal volume is provided.
  • the slide valve 7 changes the injection position of the refrigerant liquid into the screw groove 3a constituting the compression chamber 5, and the refrigerant liquid injection flow path 7a for injecting the refrigerant liquid from the outside into the screw groove 3a is formed through.
  • the refrigerant liquid injection flow path 7a is provided on the surface side of the slide valve 7 facing the housing wall 1a of the casing 1, and is provided in communication with the liquid groove 7aa having a long groove shape extending in the sliding direction and the liquid groove 7aa. And a cylindrical injection port 7ab that opens to the screw rotor 3 side.
  • the slide valve 7 is configured to be movable between a first position on the discharge side (see FIG. 3) and a second position on the suction side (see FIG. 4). By moving to the first position on the discharge side, The injection timing can be delayed, and the injection timing can be advanced by moving to the second position on the suction side.
  • the position of the injection port 7ab in the state where the slide valve 7 is located at the first position is the position on the suction side of the casing 1 when the slide valve 7 and the casing 1 are viewed in plan view from the outside as shown in FIG.
  • the position is on the discharge side (left side in FIG. 3) along the end face 1d. Therefore, the position of the injection port 7ab in the state where the slide valve 7 is located at the first position can be said to be a position facing the screw groove 3a from immediately before the start of compression to immediately after the compression. Therefore, in a state where the slide valve 7 is located at the first position, liquid injection of the refrigerant liquid into the screw groove 3a is started immediately before and after the start of compression.
  • the position of the injection port 7ab in a state where the slide valve 7 is located at the second position on the suction side is a position facing the screw groove 3ab before the compression starts, that is, the suction stroke, as shown in FIG. Therefore, in a state where the slide valve 7 is positioned at the second position, the refrigerant liquid is injected into the screw groove 3a before the compression starts.
  • the refrigerant liquid is injected into the screw groove 3a in the suction stroke, if it is performed in the first half of the suction stroke, the suction of the suction gas into the compression chamber 5 is inhibited. For this reason, it is preferable to inject the refrigerant liquid into the screw groove 3a in the suction stroke in the latter half of the suction stroke.
  • the position of the injection port 7ab in the state where the slide valve 7 is located at the first position and the position of the oil injection port 114 are both “screw groove 3a between immediately before and after the start of compression.
  • the position in the circumferential direction is different. That is, the slide valve 7 is provided on the side opposite to the rotational direction of the screw rotor 3 with respect to the oil injection port 114 as shown in FIG. Therefore, the injection port 7ab and the oil injection port 114 in a state where the slide valve 7 is positioned at the first position are different in the position in the direction of the rotation shaft 4 (the position in the left-right direction in FIG. 3). Is located on the suction side (right side of FIG. 3).
  • the position of the injection port 7ab in the direction of the rotation shaft 4 is greater than that when the slide valve 7 is positioned at the first position on the discharge side. It approaches the port 114.
  • the slide valve 7 is connected to a drive device 9 such as a piston via a connecting rod 8, and can be moved in the slide groove 1 b to the first position and the second position by the drive of the drive device 9.
  • the driving device 9 is not limited to a driving method using a motor or the like separately from a piston driven by a gas pressure, a hydraulic drive, or a piston.
  • the casing 1 is formed with a refrigerant liquid flow path 1c that communicates the outside of the casing 1 and the slide groove 1b.
  • the refrigerant liquid flow path 1c has an opening on the slide groove 1b side of the refrigerant liquid flow path 1c in the liquid storage groove 7aa provided in the slide valve 7 regardless of whether the slide valve 7 is positioned at the first position or the second position.
  • the positional relationship with the slide valve 7 is set so as to communicate.
  • a refrigerant liquid pipe 108 (see FIG. 1) is connected to the opening of the refrigerant liquid flow path 1c on the casing outer side.
  • the refrigerant liquid branched from between the condenser 104 and the main expansion valve 105 is transferred to the refrigerant liquid pipe 108, the refrigerant liquid. It flows into the screw groove 3a constituting the compression chamber 5 through the flow path 1c and the refrigerant liquid injection flow path 7a.
  • the refrigerant used in the refrigerant circuit is not particularly limited.
  • an HFC refrigerant such as R134a or an HFO refrigerant that is a low GWP refrigerant is used as the refrigerant.
  • FIG. 5 is a diagram illustrating a compression principle of the screw compressor according to Embodiment 1 of the present invention.
  • the screw rotor 3 is rotated by the motor 103 (see FIG. 2) via the rotating shaft 4 (see FIG. 1), so that the teeth 6a of the gate rotor 6 are relatively moved in the screw groove 3a. Move to.
  • the suction stroke, the compression stroke, and the discharge stroke are set as one cycle, and this cycle is repeated.
  • the part enclosed by the dotted line shows the accommodating wall 1a of the casing 1, and the compression chamber 5 constituted by the screw groove 3a located in the region surrounded by the accommodating wall 1a is in the compression stroke.
  • each stroke will be described.
  • screw grooves 3ac and 3ad are in the compression stroke
  • screw grooves 3aa and 3ab are in the suction stroke
  • 3ae is in the discharge stroke.
  • the screw rotor 3 is driven by the motor 103 and rotates in the direction of the solid arrow from the state of FIG. 5A
  • the lower gate rotor 6 shown in FIG. Rotate to.
  • the upper gate rotor 6 shown in FIG. 5 rotates in the opposite direction to the lower gate rotor 6 as indicated by a hollow arrow.
  • the compression chamber 5 In the suction stroke, the compression chamber 5 has the most expanded volume, communicates with the low pressure space of the casing 1, and is filled with low pressure refrigerant gas.
  • the compression chamber 5 communicates with the discharge port 10 as shown in FIG. Thereby, the high-pressure refrigerant gas compressed in the compression chamber 5 is discharged to the outside from the discharge port 10. Then, the same compression is performed again on the back surface of the screw rotor 3.
  • the slide groove 1b and the refrigerant liquid injection flow path 7a of the slide valve 7 are not shown, but in the compression stroke, the refrigerant liquid flows into the screw groove 3a from the refrigerant liquid injection flow path 7a and is compressed.
  • the refrigerant gas in the chamber 5 is cooled, compressed together with the suction gas, and discharged outside in the discharge stroke.
  • the oil injection port 114 is not shown, but the oil separated by the oil separator 112 is supplied from the oil injection port 114 to the screw groove 3a.
  • refrigerant liquid injection (hereinafter sometimes referred to as liquid injection) for the purpose of suppressing an increase in discharge temperature is performed during steady operation.
  • the liquid injection at the time of steady operation starts in the compression chamber 5 immediately before and after the completion of the suction of the suction gas.
  • the positions of the liquid injection port and the oil injection port 114 in the direction of the rotation shaft 4 are close to each other. It is valid.
  • the high temperature oil separated by the oil separator 112 during the unsteady operation is supplied from the oil injection port 114 to the screw groove 3a.
  • oil is supplied to a circumferential region of the screw rotor 3 including a portion where the oil injection port 114 is located in a position of the screw rotor 3 in the direction of the rotation axis 4. It will be. For this reason, this peripheral area
  • the injection position is required to be different between the steady operation and the unsteady operation, and this is realized by the movement of the slide valve 7. Specifically, the slide valve 7 is moved to the first position on the discharge side during steady operation, and the slide valve 7 is moved to the second position on the suction side during non-steady operation. Note that it is possible to determine whether the current operation state is a steady operation state or an unsteady operation state based on the suction SH. That is, it can be determined that the steady operation is performed when the suction SH is low, and the unsteady operation is performed when the suction SH is high.
  • FIG. 6 is a view showing a flowchart of liquid injection control in the refrigeration cycle apparatus including the screw compressor according to Embodiment 1 of the present invention.
  • the flow control valve 111 shall open to the initial opening degree at the time of an operation start.
  • the control device 110 calculates the actual suction SH based on the suction gas temperature detected by the suction gas temperature sensor 120. Then, if the measured suction SH is not less than the set suction SH_A and not more than the set suction SH_B (step S1; Yes), that is, if in the steady operation state, the control device 110 discharges the slide valve 7 as shown in FIG. The first position is moved to the first position (step S2).
  • the set suction SH_A and the set suction SH_B are set in the control device 110 in advance.
  • the set suction SH_A and the set suction SH_B are threshold values for determining whether the operation is a steady operation or an unsteady operation.
  • the liquid back operation (unsteady operation) is performed, and if the measured suction SH is larger than the set suction SH_B, the suction SH raising operation (unsteady operation) is performed.
  • the liquid back operation the gasified refrigerant is normally sucked into the compressor, but the liquid and gas are mixed and sucked into the compressor. Then, by moving the slide valve 7 to the first position, the injection port 7ab moves to a position facing the screw groove 3ac between immediately before and after the start of compression.
  • the control device 110 controls the flow rate control valve 111 according to the actually measured discharge temperature detected by a discharge temperature sensor (not shown). Specifically, if the measured discharge temperature is higher than the first preset temperature set in advance (Step S3; No), the opening degree of the flow control valve 111 is increased (Step S4), and the measured discharge temperature is set to the first setting. If the temperature is lower than the second set temperature lower than the temperature (step S5; No), the opening degree of the flow control valve 111 is decreased (step S6). On the other hand, if the measured discharge temperature is not lower than the second set temperature and not higher than the first set temperature (step S3; Yes, step S5; Yes), the current opening degree is maintained.
  • step S1 determines whether the actually measured suction SH is larger than the set suction SH_B (step S7; Yes), that is, in the unsteady operation state.
  • the control device 110 slides as shown in FIG.
  • the valve 7 is moved to the second position on the suction side (step S8). Accordingly, as described above, the position of the injection port 7ab in the direction of the rotation axis 4 can be brought close to the oil injection port 114, and the screw rotor 3 can be effectively cooled. Further, since liquid injection is performed on the screw groove 3ab before the start of compression, that is, the screw groove 3ab in the suction stroke, it also contributes to a decrease in the measured suction SH. In this way, the measured suction SH decreases by performing liquid injection on the screw groove 3ab in the suction stroke.
  • step S9 the opening of the main expansion valve 105 is increased. If the measured discharge temperature is higher than the first set temperature (step S10; No), the opening degree of the flow control valve 111 is increased (step S11), and the process returns to step S9 to increase the opening degree of the main expansion valve 105. Repeat the operation. On the other hand, if the actually measured discharge temperature is equal to or lower than the first set temperature (step S10; Yes), the opening degree of the flow control valve 111 is reduced (step S12), and the process returns to step S1 to check the decrease state of the actually measured suction SH. .
  • step S1; No, step S7; No when the actual suction SH is not greater than or equal to the set suction SH_A and less than or equal to the set suction SH_B, and the actual suction SH is not greater than the set suction SH_B (step S1; No, step S7; No), that is, the actual suction SH is the set suction.
  • SH_A When it is less than SH_A, it is determined as a liquid back operation (unsteady operation).
  • the control device 110 moves the slide valve 7 to the first position on the discharge side (step S13), and then increases the suction SH to increase the suction SH.
  • the opening is reduced (step S14). Thereby, it switches to the state where liquid injection is started immediately before and after the start of compression.
  • the subsequent operation is as described above.
  • the slide valve 7 for moving the injection port 7ab according to the suction SH since the slide valve 7 for moving the injection port 7ab according to the suction SH is provided, the injection position of the liquid injection is changed between the steady operation and the unsteady operation. Can do. Therefore, at the time of steady operation, the liquid injection is started immediately before and after the start of the compression, so that the liquid refrigerant leaks to the suction side, and the discharge of the suction gas into the compression chamber 5 is not hindered. An increase in temperature can be suppressed.
  • liquid injection can be performed in a circumferential region where thermal expansion is likely to occur due to oil supply from the oil injection port 114, and quality defects such as seizure between the screw rotor 3 and the casing 1 can occur. Can be suppressed.
  • inhalation SH can be suppressed by liquid-injecting into the screw groove
  • the flow rate of the liquid injection can be adjusted according to the discharge temperature by the flow rate control valve 111, it is possible to suppress an increase in the discharge temperature with an optimal liquid injection amount. Therefore, since the inhibition of the refrigerant suction into the compression chamber 5 can be minimized, the influence on the performance degradation can be reduced.
  • Embodiment 2 in addition to the configuration of the first embodiment, an on-off valve 107 for opening and closing the flow path of the refrigerant liquid pipe 108 is provided in the refrigerant liquid pipe 108.
  • the on-off valve 107 is composed of, for example, an electromagnetic valve.
  • differences from the first embodiment will be described, and configurations not described in the first embodiment are the same as those in the first embodiment.
  • FIG. 7 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • the refrigeration cycle apparatus 100 of the second embodiment has a configuration in which an on-off valve 107 is further provided in the refrigerant liquid pipe 108 of the first embodiment shown in FIG.
  • the expansion valve constituting the flow control valve 111 is generally not guaranteed to completely close the flow path. For this reason, the flow path of the refrigerant liquid pipe 108 cannot be completely closed only by providing the flow rate control valve 111 in the refrigerant liquid pipe 108. Therefore, even if the flow control valve 111 is closed when it is not necessary to perform the liquid injection, the liquid injection is slightly performed. Therefore, by providing the on-off valve 107, it is possible to completely close the flow path of the refrigerant liquid pipe 108 and stop the liquid injection.
  • the same effects as in the first embodiment can be obtained, and the on / off valve 107 is provided in the refrigerant liquid pipe 108, so that the following effects are further obtained. That is, in the operation region where the discharge temperature is difficult to rise, the liquid injection can be stopped by closing the on-off valve 107. Therefore, it is possible to prevent the performance degradation due to the intermediate pressure rise due to the liquid injection being performed at an originally unnecessary timing.
  • the screw compressor 102 is a single screw compressor.
  • the present invention can be applied to other twin screw compressors, for example.
  • the present invention can be applied to a specification having an economizer as a configuration of the refrigeration cycle.
  • 1 casing 1a containing wall, 1aa inner peripheral surface, 1b slide groove, 1c refrigerant liquid flow path, 1d end surface, 2 bearing, 3 screw rotor, 3a screw groove, 3aa screw groove, 3ab screw groove, 3ac screw groove, 3ad screw Groove, 3ae screw groove, 4 rotary shaft, 5 compression chamber, 6 gate rotor, 6a tooth, 7 slide valve, 7a refrigerant liquid injection channel, 7aa liquid reservoir groove, 7ab injection port, 8 connecting rod, 9 drive unit, 10 Discharge port, 11 slide valve, 100 refrigeration cycle device, 101 inverter, 102 screw compressor, 103 motor, 103a stator, 103b motor rotor, 104 condenser, 105 main expansion valve, 106 evaporator, 107 on-off valve, 10 Refrigerant liquid pipe, 109 a refrigerant liquid pipe, 110 controller, 111 a flow control valve, 112 an oil separator, 113 an oil supply pipe, 114 oil injection

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A screw compressor equipped with: a casing in which is formed a refrigerant liquid flow path through which a refrigerant liquid passes from the outside; a screw rotor on the outer circumferential surface of which multiple screw grooves forming a compression chamber are formed, and which is arranged so as to rotate inside the casing; and a slide valve that is provided between the casing and the screw rotor, and that slides in the direction of the rotary shaft of the screw rotor. The casing and/or the slide valve are provided with an oil injection port for supplying oil to the screw grooves. The slide valve has a refrigerant liquid injection flow path enabling the refrigerant liquid flow path to communicate with the screw grooves, and moves between a first position, in which the refrigerant liquid injection flow path communicates with the screw grooves from immediately before compression to immediately after compression, and a second position, which is a position in which the refrigerant liquid injection flow path communicates with the screw grooves in an intake stroke before compression begins, and the position of the refrigerant liquid injection flow path in the direction of the rotary shaft is closer to the oil injection port than the first position.

Description

スクリュー圧縮機及び冷凍サイクル装置Screw compressor and refrigeration cycle apparatus
 本発明は、例えば冷凍機の冷媒圧縮に用いられるスクリュー圧縮機及び冷凍サイクル装置に関するものである。 The present invention relates to a screw compressor and a refrigeration cycle apparatus used for refrigerant compression of a refrigerator, for example.
 シングルスクリュー圧縮機は、外周面に複数の螺旋状のスクリュー溝を有するスクリューロータと、複数の歯を有する円板状の2つのゲートロータとをケーシング内に収容している。そして、ケーシングと、スクリューロータのスクリュー溝と、ゲートロータの歯とによって囲まれた空間で圧縮室を形成している。そして、スクリューロータの回転に伴って、ゲートロータの歯がスクリューロータのスクリュー溝を移動し、圧縮室の容積が拡大後に縮小する動作を繰り返す。圧縮室の容積が拡大する間は、冷媒が圧縮室へ吸込まれ、圧縮室の容積が縮小を始めると、吸込まれた冷媒が圧縮される。そして、圧縮室であるスクリュー溝が吐出口に連通すると、圧縮された高圧冷媒が圧縮室から吐出される。 The single screw compressor accommodates a screw rotor having a plurality of spiral screw grooves on the outer peripheral surface and two disk-shaped gate rotors having a plurality of teeth in a casing. A compression chamber is formed by a space surrounded by the casing, the screw groove of the screw rotor, and the teeth of the gate rotor. Then, as the screw rotor rotates, the teeth of the gate rotor move through the screw grooves of the screw rotor, and the operation of reducing the volume of the compression chamber after the expansion is repeated. While the volume of the compression chamber increases, the refrigerant is sucked into the compression chamber, and when the volume of the compression chamber starts to be reduced, the sucked refrigerant is compressed. When the screw groove, which is a compression chamber, communicates with the discharge port, the compressed high-pressure refrigerant is discharged from the compression chamber.
 この種のシングルスクリュー圧縮機では、高低差圧の大きい運転条件又はインバータによるモータ回転数増速時に、圧縮機から吐出される吐出冷媒ガスの吐出温度が高くなる。吐出温度が高くなると、スクリューロータが熱膨張してケーシングに接触して焼付くという不具合が発生する可能性がある。 In this type of single screw compressor, the discharge temperature of the discharged refrigerant gas discharged from the compressor becomes high under high operating conditions with high and low differential pressures or when the motor speed is increased by an inverter. When the discharge temperature becomes high, there is a possibility that the screw rotor is thermally expanded and comes into contact with the casing and seizes.
 そこで、従来より、吐出温度が設定温度より高い場合、圧縮機から吐出された吐出冷媒ガスに含まれる油を油分離器で分離し、分離した油を油クーラーで冷却して、圧縮室となるスクリュー溝へ注入することで、吐出温度の上昇を抑制している(例えば特許文献1参照)。 Therefore, conventionally, when the discharge temperature is higher than the set temperature, the oil contained in the discharge refrigerant gas discharged from the compressor is separated by an oil separator, and the separated oil is cooled by an oil cooler to form a compression chamber. By injecting into the screw groove, an increase in discharge temperature is suppressed (see, for example, Patent Document 1).
実開昭63-130686号公報Japanese Utility Model Publication No. 63-130686
 ところで、圧縮機に吸込まれる吸込ガスの温度は、吐出ガスの温度よりも低い。このため、定常運転時は、吸込ガスがスクリューロータのスクリュー溝内に吸込まれることで、スクリューロータを冷却することができる。しかし、非定常運転時は、圧縮機に吸込まれる吸込ガス自体の温度が高く、吸込ガスによる、スクリューロータの冷却効果が低減する。なお、非定常運転とは、例えば運転開始時など、吸込ガスの過熱度(以下、吸込SHという)が急上昇したり、定常運転時の吸込SHよりも高くなるなどの運転である。このようにスクリューロータの冷却効果が低減した場合、スクリューロータの熱膨張による焼付きが懸念される。このため、非定常運転時のスクリューロータの焼付きを防止することが求められている。 By the way, the temperature of the suction gas sucked into the compressor is lower than the temperature of the discharge gas. For this reason, during steady operation, the screw rotor can be cooled by sucking the suction gas into the screw groove of the screw rotor. However, during unsteady operation, the temperature of the suction gas itself sucked into the compressor is high, and the cooling effect of the screw rotor by the suction gas is reduced. The unsteady operation is an operation in which the degree of superheat of the suction gas (hereinafter referred to as “intake SH”) rapidly increases or becomes higher than the intake SH in the steady operation, for example, at the start of operation. When the cooling effect of the screw rotor is thus reduced, there is a concern about seizure due to thermal expansion of the screw rotor. For this reason, it is required to prevent seizure of the screw rotor during unsteady operation.
 特許文献1では、油分離器で分離された油を冷却して圧縮室にインジェクションし、吐出温度を下げることは記載されているものの、非定常運転時の油の温度上昇については検討されていない。非定常運転時は、吐出温度が上昇し、油分離器で分離された油の温度も必然的に高くなる。このため、油クーラーで冷却しても充分に油を冷却することができず、温度が高いまま圧縮室に供給されることになる。また、上述したように非定常運転時は吸込ガスの温度も高くなることから、スクリューロータの焼付きの問題を依然として抱えている。また更に、油クーラーを備えていない構成の場合も、非定常運転時において高温の油が直接圧縮室へ注入されるために、スクリューロータの焼付きの可能性がある。 Patent Document 1 describes that the oil separated by the oil separator is cooled and injected into the compression chamber to lower the discharge temperature, but the temperature rise of the oil during unsteady operation is not studied. . During unsteady operation, the discharge temperature rises and the temperature of the oil separated by the oil separator inevitably increases. For this reason, even if it cools with an oil cooler, oil cannot fully be cooled, but it will be supplied to a compression chamber with high temperature. Further, as described above, since the temperature of the suction gas becomes high during the unsteady operation, there still remains a problem of seizure of the screw rotor. Furthermore, even in a configuration without an oil cooler, there is a possibility that the screw rotor will seize because high-temperature oil is directly injected into the compression chamber during unsteady operation.
 本発明は、上記のような課題を解決するためになされたものであり、吐出温度の上昇を抑制することができると共に、非定常運転時のスクリューロータの焼付きを抑制することが可能なスクリュー圧縮機及び冷凍サイクル装置を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and can suppress an increase in discharge temperature and can suppress seizure of the screw rotor during unsteady operation. An object is to provide a compressor and a refrigeration cycle apparatus.
 本発明に係るスクリュー圧縮機は、外部からの冷媒液が通過する冷媒液流路が形成されたケーシングと、圧縮室を構成する複数のスクリュー溝が外周面に形成され、ケーシング内で回転するように配置されたスクリューロータと、ケーシングとスクリューロータとの間に設けられ、スクリューロータの回転軸方向にスライド移動するスライドバルブとを備え、ケーシング又はスライドバルブ又はその両方には、スクリュー溝に油を供給する油インジェクションポートが設けられており、スライドバルブは、冷媒液流路をスクリュー溝に連通させる冷媒液注入流路を有し、冷媒液注入流路を、圧縮開始直前から直後までの間のスクリュー溝に連通させる第1位置と、冷媒液注入流路を、圧縮開始前の吸込行程にあるスクリュー溝に連通させる位置であって、第1位置よりも回転軸方向の位置が油インジェクションポートに近づく第2位置とに移動する。 In the screw compressor according to the present invention, a casing in which a refrigerant liquid flow path through which a refrigerant liquid from the outside passes is formed, and a plurality of screw grooves constituting a compression chamber are formed on the outer peripheral surface so as to rotate in the casing. A screw rotor disposed between the casing and the screw rotor, and a slide valve that slides in the direction of the rotation axis of the screw rotor. An oil injection port to be supplied is provided, and the slide valve has a refrigerant liquid injection channel for communicating the refrigerant liquid channel with the screw groove, and the refrigerant liquid injection channel is provided between immediately before and after the start of compression. The first position to be communicated with the screw groove and the refrigerant liquid injection channel are communicated with the screw groove in the suction stroke before the compression is started. A location, the position of the rotational axis than the first position is moved to a second position closer to the oil injection port.
 本発明に係る冷凍サイクル装置は、上記のスクリュー圧縮機、凝縮器、主減圧装置及び蒸発器を順に接続した冷媒回路とを備えたものである。 A refrigeration cycle apparatus according to the present invention includes a refrigerant circuit in which the screw compressor, the condenser, the main decompressor, and the evaporator are connected in order.
 本発明によれば、スライドバルブが第1位置に位置し、圧縮開始直前から直後に液インジェクションを開始することで、吐出温度上昇を抑制することができる。また、スライドバルブが第2位置に位置して、回転軸方向の位置を第1位置よりも油インジェクションポートに近づけた位置から液インジェクションすることで、非定常運転時のスクリューロータの焼付きを抑制できる。 According to the present invention, the slide valve is positioned at the first position, and the liquid injection is started immediately before and after the start of compression, thereby suppressing an increase in discharge temperature. Also, the seizure of the screw rotor during unsteady operation is suppressed by liquid injection from the position where the slide valve is located at the second position and the position in the rotation axis direction is closer to the oil injection port than the first position. it can.
本発明の実施の形態1に係るスクリュー圧縮機を備えた冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device provided with the screw compressor concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係るスクリュー圧縮機の概略構成図である。It is a schematic block diagram of the screw compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクリュー圧縮機のスクリューロータ外周面の展開図で、スライドバルブが吐出側の第1位置に配置されたときの、スクリュー溝とインジェクションポートとの位置関係を示す図である。FIG. 4 is a development view of the outer periphery of the screw rotor of the screw compressor according to Embodiment 1 of the present invention, and shows the positional relationship between the screw groove and the injection port when the slide valve is disposed at the first position on the discharge side. It is. 本発明の実施の形態1に係るスクリュー圧縮機のスクリューロータ外周面の展開図で、スライドバルブが吸込側の第2位置に配置されたときの、スクリュー溝とインジェクションポートとの位置関係を示す図である。FIG. 4 is a development view of the outer surface of the screw rotor of the screw compressor according to Embodiment 1 of the present invention, and shows the positional relationship between the screw groove and the injection port when the slide valve is arranged at the second position on the suction side. It is. 本発明の実施の形態1に係るスクリュー圧縮機の圧縮原理を示す図である。It is a figure which shows the compression principle of the screw compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクリュー圧縮機を備えた冷凍サイクル装置における液インジェクション制御のフローチャートを示す図である。It is a figure which shows the flowchart of the liquid injection control in the refrigerating-cycle apparatus provided with the screw compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 2 of the present invention.
実施の形態1.
 図1は、本発明の実施の形態1に係るスクリュー圧縮機を備えた冷凍サイクル装置の冷媒回路図である。なお、図1及び以下に示す図において、同一の符号を付したものは同一又はこれに相当するものであり、これは明細書の全文において共通している。更に、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle apparatus including a screw compressor according to Embodiment 1 of the present invention. In FIG. 1 and the drawings shown below, the same reference numerals are the same or equivalent, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples and are not limited to these descriptions.
 冷凍サイクル装置100は、スクリュー圧縮機102と、凝縮器104と、主膨張弁105と、蒸発器106とを順に冷媒配管で接続した冷媒回路を備えている。冷凍サイクル装置100は更に凝縮器104と主膨張弁105との間から分岐し、スクリュー圧縮機102に接続された冷媒液配管108を有している。冷媒液配管108には、冷媒液配管108に流れる流量を制御する流量制御弁111が設けられている。流量制御弁111は、例えば電子膨張弁で構成される。冷凍サイクル装置100には更に、スクリュー圧縮機102から吐出された冷媒から油を分離する油分離器112と、油分離器112で分離された油をスクリュー圧縮機102に供給する油供給配管113とを備えている。ここでは油分離器112が圧縮機とは別置きの構成を紹介したが、圧縮機に油分離器の機能を設けた油分離器一体型の構成としてもよい。 The refrigeration cycle apparatus 100 includes a refrigerant circuit in which a screw compressor 102, a condenser 104, a main expansion valve 105, and an evaporator 106 are connected in order by refrigerant piping. The refrigeration cycle apparatus 100 further includes a refrigerant liquid pipe 108 that branches from between the condenser 104 and the main expansion valve 105 and is connected to the screw compressor 102. The refrigerant liquid pipe 108 is provided with a flow rate control valve 111 that controls the flow rate of the refrigerant liquid pipe 108. The flow control valve 111 is composed of, for example, an electronic expansion valve. The refrigeration cycle apparatus 100 further includes an oil separator 112 that separates oil from the refrigerant discharged from the screw compressor 102, and an oil supply pipe 113 that supplies the oil separated by the oil separator 112 to the screw compressor 102. It has. Here, the oil separator 112 is introduced separately from the compressor. However, the oil separator 112 may have an oil separator integrated type in which the function of the oil separator is provided in the compressor.
 スクリュー圧縮機102は、冷媒を吸込み、その冷媒を圧縮して高温且つ高圧の状態にするものである。スクリュー圧縮機102は、電力供給源(図示せず)からインバータ101を介してモータ103へ電力供給されることにより駆動される。 The screw compressor 102 sucks a refrigerant and compresses the refrigerant to a high temperature and high pressure state. The screw compressor 102 is driven by power being supplied from a power supply source (not shown) to the motor 103 via the inverter 101.
 凝縮器104はスクリュー圧縮機102からの吐出冷媒ガスを冷却、凝縮させるものである。主膨張弁105は、冷媒液配管109を通過する冷媒液を絞り膨張させるものであり、電子膨張弁で構成される。主膨張弁105は本発明に係る主減圧装置を構成する。主減圧装置は、電子膨張弁で構成する以外にも、機械式膨張弁、又は温度式膨張弁、キャピラリーチューブなど、同様な役割を成すものであれば、他の形式のものを用いてもよい。蒸発器106は主膨張弁105を流出した冷媒を蒸発させる。 The condenser 104 cools and condenses the refrigerant gas discharged from the screw compressor 102. The main expansion valve 105 squeezes and expands the refrigerant liquid that passes through the refrigerant liquid pipe 109, and is composed of an electronic expansion valve. The main expansion valve 105 constitutes a main pressure reducing device according to the present invention. In addition to the electronic decompression device, the main decompression device may be a mechanical expansion valve, a temperature expansion valve, a capillary tube, or any other type as long as it plays a similar role. . The evaporator 106 evaporates the refrigerant that has flowed out of the main expansion valve 105.
 スクリュー圧縮機102の吸込側には、スクリュー圧縮機102に吸込まれる吸込ガスの温度を検出する吸込ガス温度センサ120が設けられている。吸込ガス温度センサで検知された吸込温度は後述の制御装置110に出力される。 A suction gas temperature sensor 120 that detects the temperature of the suction gas sucked into the screw compressor 102 is provided on the suction side of the screw compressor 102. The suction temperature detected by the suction gas temperature sensor is output to the control device 110 described later.
 冷凍サイクル装置100には更に、制御装置110を備えている。制御装置110は、主膨張弁105の開度制御、後述のスライドバルブの位置制御、流量制御弁111の開度制御など、冷凍サイクル装置100全体の制御を行う。制御装置110は、主膨張弁105の開度制御として、定常運転時に吸込SHが目標値となるように主膨張弁105を制御している。ここで、定常運転とは、非定常運転を除く運転を指し、非定常運転とは、例えば運転開始時など、吸込ガスの過熱度(以下、吸込SHという)が急上昇したり、定常運転時の吸込SHよりも高くなったりする運転を指す。 The refrigeration cycle apparatus 100 further includes a control device 110. The control device 110 performs overall control of the refrigeration cycle apparatus 100, such as opening control of the main expansion valve 105, position control of a slide valve described later, and opening control of the flow control valve 111. As the opening degree control of the main expansion valve 105, the control device 110 controls the main expansion valve 105 so that the suction SH becomes a target value during steady operation. Here, the steady operation refers to an operation excluding the unsteady operation, and the unsteady operation refers to, for example, when the degree of superheat of the suction gas (hereinafter referred to as suction SH) suddenly increases, such as at the start of operation, It refers to driving that is higher than suction SH.
 また、制御装置110は、流量制御弁111の開度制御として、吐出温度に応じて流量制御弁111を制御している。具体的には、吐出温度が予め設定された設定範囲内に収まるように流量制御弁111を制御している。制御装置110は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコンやCPUのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。 Further, the control device 110 controls the flow rate control valve 111 according to the discharge temperature as the opening degree control of the flow rate control valve 111. Specifically, the flow control valve 111 is controlled so that the discharge temperature is within a preset setting range. The control device 110 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic device such as a microcomputer or a CPU and software executed thereon.
(冷媒回路の動作説明)
 次に、実施の形態1の冷凍サイクル装置100の動作について、図1を参照して説明する。
(Explanation of refrigerant circuit operation)
Next, operation | movement of the refrigerating-cycle apparatus 100 of Embodiment 1 is demonstrated with reference to FIG.
 スクリュー圧縮機102は、ガス状の冷媒である冷媒ガスを吸込んで圧縮した後、吐出する。スクリュー圧縮機102から吐出された吐出ガスは油分離器112に流入する。油分離器112では、冷媒と冷媒に混ざっている油とが分離され、冷媒は、凝縮器104で冷却される。凝縮器104で冷却された冷媒は、凝縮器104を通過後に分岐され、そのうちの主流冷媒は、主膨張弁105で減圧されて膨張する。そして、主膨張弁105から流出した冷媒は、蒸発器106で加熱され、冷媒ガスとなる。蒸発器106から流出した冷媒ガスはスクリュー圧縮機102に吸込まれる。 The screw compressor 102 sucks and compresses refrigerant gas, which is a gaseous refrigerant, and then discharges it. The discharge gas discharged from the screw compressor 102 flows into the oil separator 112. In the oil separator 112, the refrigerant and the oil mixed in the refrigerant are separated, and the refrigerant is cooled by the condenser 104. The refrigerant cooled by the condenser 104 is branched after passing through the condenser 104, and the mainstream refrigerant is decompressed by the main expansion valve 105 and expanded. Then, the refrigerant flowing out from the main expansion valve 105 is heated by the evaporator 106 and becomes refrigerant gas. The refrigerant gas flowing out of the evaporator 106 is sucked into the screw compressor 102.
 一方、凝縮器104を通過後の冷媒液のうち、主流冷媒から分岐した冷媒は、冷媒液配管108に流入する。そして冷媒液配管108内の冷媒液の圧力とスクリュー圧縮機102の圧縮室内の圧力との差圧により冷媒液が圧縮室5にインジェクションされる。インジェクションされた冷媒液は、圧縮途中の冷媒ガスと混合して圧縮され、スクリュー圧縮機102から吐出される。 On the other hand, of the refrigerant liquid after passing through the condenser 104, the refrigerant branched from the mainstream refrigerant flows into the refrigerant liquid pipe 108. Then, the refrigerant liquid is injected into the compression chamber 5 by the differential pressure between the pressure of the refrigerant liquid in the refrigerant liquid pipe 108 and the pressure in the compression chamber of the screw compressor 102. The injected refrigerant liquid is mixed with the refrigerant gas being compressed, compressed, and discharged from the screw compressor 102.
 また、スクリュー圧縮機102から冷媒と共に吐出された油は、油分離器112で冷媒から分離され、油供給配管113を通ってスクリュー圧縮機102に戻される。このように、油をスクリュー圧縮機102に戻すことで、スクリュー圧縮機102内で油が枯渇することのないようにしている。 Also, the oil discharged together with the refrigerant from the screw compressor 102 is separated from the refrigerant by the oil separator 112 and returned to the screw compressor 102 through the oil supply pipe 113. As described above, the oil is returned to the screw compressor 102 so that the oil is not exhausted in the screw compressor 102.
(スクリュー圧縮機)
 以下、本発明の実施の形態1に係るスクリュー圧縮機102について図2~図4を用いて説明する。図2は、本発明の実施の形態1に係るスクリュー圧縮機の概略構成図である。図3は、本発明の実施の形態1に係るスクリュー圧縮機のスクリューロータ外周面の展開図で、スライドバルブが吐出側の第1位置に配置されたときの、スクリュー溝とインジェクションポートとの位置関係を示す図である。図4は、本発明の実施の形態1に係るスクリュー圧縮機のスクリューロータ外周面の展開図で、スライドバルブが吸込側の第2位置に配置されたときの、スクリュー溝とインジェクションポートとの位置関係を示す図である。
(Screw compressor)
Hereinafter, the screw compressor 102 according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a schematic configuration diagram of the screw compressor according to Embodiment 1 of the present invention. FIG. 3 is a development view of the outer peripheral surface of the screw rotor of the screw compressor according to Embodiment 1 of the present invention, and the position of the screw groove and the injection port when the slide valve is disposed at the first position on the discharge side. It is a figure which shows a relationship. FIG. 4 is a development view of the outer periphery of the screw rotor of the screw compressor according to the first embodiment of the present invention, and the positions of the screw groove and the injection port when the slide valve is arranged at the second position on the suction side. It is a figure which shows a relationship.
 図2に示すように、スクリュー圧縮機102は、ケーシング1、スクリューロータ3、ゲートロータ6、スクリューロータ3を回転駆動させるモータ103及びスライドバルブ7などを備えている。ケーシング1は、スクリューロータ3、ゲートロータ6、モータ103及びスライドバルブ7などを収容するものである。 2, the screw compressor 102 includes a casing 1, a screw rotor 3, a gate rotor 6, a motor 103 that rotationally drives the screw rotor 3, a slide valve 7, and the like. The casing 1 accommodates the screw rotor 3, the gate rotor 6, the motor 103, the slide valve 7, and the like.
 ケーシング1内には、略円筒状の空間を内部に形成する円筒状の収容壁1aが形成され、収容壁1aの内部に、略円柱形状のスクリューロータ3が配置されている。このスクリューロータ3は、一端が冷媒の吸込側(図2の右側)となり、他端が吐出側(図2の左側)となる。スクリューロータ3の外周面には、複数の螺旋状のスクリュー溝3aが形成されている。また、スクリューロータ3の中心には、回転軸4が回転一体に設けられている。回転軸4は、ケーシング1に設けられた軸受2によって回転自在に支持されている。 In the casing 1, a cylindrical housing wall 1a that forms a substantially cylindrical space is formed, and a substantially columnar screw rotor 3 is disposed inside the housing wall 1a. One end of the screw rotor 3 is a refrigerant suction side (right side in FIG. 2), and the other end is a discharge side (left side in FIG. 2). A plurality of spiral screw grooves 3 a are formed on the outer peripheral surface of the screw rotor 3. In addition, a rotating shaft 4 is provided integrally with the center of the screw rotor 3. The rotating shaft 4 is rotatably supported by a bearing 2 provided in the casing 1.
 また、回転軸4の軸受2と反対側の端部には、例えばインバータ101で周波数制御されるモータ103が連結されている。モータ103はケーシング1に内接固定されたステータ103aとステータ103aの内側に配置されたモータロータ103bで構成されている。そして、モータロータ103bに回転軸4が連結され、スクリューロータ3が回転駆動される。 Further, for example, a motor 103 whose frequency is controlled by an inverter 101 is connected to the end of the rotating shaft 4 on the side opposite to the bearing 2. The motor 103 includes a stator 103a that is inscribed and fixed to the casing 1, and a motor rotor 103b that is disposed inside the stator 103a. And the rotating shaft 4 is connected with the motor rotor 103b, and the screw rotor 3 is rotationally driven.
 ゲートロータ6は、円板状の形状をしており、外周部には、スクリュー溝3aに噛み合わされる複数の歯6aが形成されている。そして、ゲートロータ6の歯6a、スクリュー溝3a及びケーシング1の収容壁1aによって囲まれた空間が圧縮室5となる。 The gate rotor 6 has a disk shape, and a plurality of teeth 6a to be engaged with the screw grooves 3a are formed on the outer periphery. A space surrounded by the teeth 6 a of the gate rotor 6, the screw grooves 3 a and the housing wall 1 a of the casing 1 becomes the compression chamber 5.
 また、ケーシング1内は、隔壁(図示せず)により、冷媒回路の蒸発器106から低圧のガス冷媒が導入される低圧側と、圧縮室5から吐出された高圧のガス冷媒が流入する高圧側とに区画されている。そして、ケーシング1内の高圧側には吐出室(図示せず)に開口する吐出口(後述の図5参照)10が形成されている。 Further, the casing 1 has a partition wall (not shown) in which a low-pressure gas refrigerant is introduced from the evaporator 106 of the refrigerant circuit, and a high-pressure gas refrigerant discharged from the compression chamber 5 flows into the casing 1. It is divided into and. A discharge port (see FIG. 5 described later) 10 that opens to a discharge chamber (not shown) is formed on the high pressure side in the casing 1.
 また、ケーシング1には、油分離器112で分離された油をスクリュー溝3aに供給する油インジェクションポート114が形成されている。油インジェクションポート114は、図3及び図4に示すように、圧縮開始直前から直後までの間のスクリュー溝3aに対向する位置に形成されている。なお、油インジェクションポート114をケーシング1に設けるとしたが、後述の容量制御用のスライドバルブ又は内部容積比可変のスライドバルブに設けてもよい。また更に前記ケーシングと前記容量制御用又は内部容積比可変のスライドバルブとの両方に油インジェクションポートを設けてもよい。 Further, the casing 1 is formed with an oil injection port 114 for supplying the oil separated by the oil separator 112 to the screw groove 3a. As shown in FIGS. 3 and 4, the oil injection port 114 is formed at a position facing the screw groove 3 a between immediately before and after the start of compression. Although the oil injection port 114 is provided in the casing 1, it may be provided in a slide valve for capacity control described later or a slide valve having a variable internal volume ratio. Furthermore, an oil injection port may be provided on both the casing and the slide valve for controlling the capacity or having a variable internal volume ratio.
 また、図2に示すとおり、ケーシング1の収容壁1aの内周面1aa側には、スクリューロータ3の回転軸4方向に延びるスライド溝1bが形成されている。このスライド溝1b内には、液インジェクション位置変更用のスライドバルブ7が回転軸4方向にスライド移動自在に収容されている。スライドバルブ7は、スクリュー溝3aの開口を塞いで圧縮室5を形成するため、ケーシング1と共に内周面1aaの一部を形成している。図2にはケーシング1内に液インジェクション位置変更用のスライドバルブ7を1つ設けた構成を図示しているが、その他に、容量制御用のスライドバルブ又は内部容積比可変のスライドバルブを更に設けてもよい。図3及び図4には、内部容積可変用のスライドバルブ11を設けた例を図示している。 Further, as shown in FIG. 2, a slide groove 1 b extending in the direction of the rotating shaft 4 of the screw rotor 3 is formed on the inner peripheral surface 1 aa side of the housing wall 1 a of the casing 1. A slide valve 7 for changing the liquid injection position is accommodated in the slide groove 1b so as to be slidable in the direction of the rotating shaft 4. The slide valve 7 forms part of the inner peripheral surface 1aa together with the casing 1 in order to close the opening of the screw groove 3a to form the compression chamber 5. FIG. 2 shows a configuration in which one slide valve 7 for changing the liquid injection position is provided in the casing 1. In addition, a slide valve for capacity control or a slide valve having a variable internal volume ratio is further provided. May be. 3 and 4 show an example in which a slide valve 11 for changing the internal volume is provided.
 スライドバルブ7は、圧縮室5を構成するスクリュー溝3aへの冷媒液のインジェクション位置を変えるものであり、外部からの冷媒液をスクリュー溝3aへインジェクションするための冷媒液注入流路7aが貫通形成されている。冷媒液注入流路7aは、スライドバルブ7においてケーシング1の収容壁1aと対向する表面側に設けられ、スライド方向に延びる長溝状の液溜め溝7aaと、液溜め溝7aaに連通して設けられ、スクリューロータ3側に開口する円筒状のインジェクションポート7abとを有している。 The slide valve 7 changes the injection position of the refrigerant liquid into the screw groove 3a constituting the compression chamber 5, and the refrigerant liquid injection flow path 7a for injecting the refrigerant liquid from the outside into the screw groove 3a is formed through. Has been. The refrigerant liquid injection flow path 7a is provided on the surface side of the slide valve 7 facing the housing wall 1a of the casing 1, and is provided in communication with the liquid groove 7aa having a long groove shape extending in the sliding direction and the liquid groove 7aa. And a cylindrical injection port 7ab that opens to the screw rotor 3 side.
 スライドバルブ7は、吐出側の第1位置(図3参照)と吸込側の第2位置(図4参照)とに移動可能に構成されており、吐出側の第1位置に移動することで、インジェクションタイミングを遅らせることができ、吸込側の第2位置に移動することで、インジェクションタイミングを早めることができる。 The slide valve 7 is configured to be movable between a first position on the discharge side (see FIG. 3) and a second position on the suction side (see FIG. 4). By moving to the first position on the discharge side, The injection timing can be delayed, and the injection timing can be advanced by moving to the second position on the suction side.
 スライドバルブ7が第1位置に位置した状態のインジェクションポート7abの位置は、図3に示すようにスライドバルブ7とケーシング1とをその外側から平面的に見たときに、ケーシング1の吸入側の端面1dに沿う吐出側(図3の左側)の位置となる。よって、スライドバルブ7が第1位置に位置した状態のインジェクションポート7abの位置は、見方を変えれば、圧縮開始直前から直後までの間のスクリュー溝3aに対向する位置と言える。したがって、スライドバルブ7が第1位置に位置した状態では、圧縮開始直前から直後に、冷媒液のスクリュー溝3aへの液インジェクションが開始されることになる。 The position of the injection port 7ab in the state where the slide valve 7 is located at the first position is the position on the suction side of the casing 1 when the slide valve 7 and the casing 1 are viewed in plan view from the outside as shown in FIG. The position is on the discharge side (left side in FIG. 3) along the end face 1d. Therefore, the position of the injection port 7ab in the state where the slide valve 7 is located at the first position can be said to be a position facing the screw groove 3a from immediately before the start of compression to immediately after the compression. Therefore, in a state where the slide valve 7 is located at the first position, liquid injection of the refrigerant liquid into the screw groove 3a is started immediately before and after the start of compression.
 また、スライドバルブ7が吸込側の第2位置に位置した状態のインジェクションポート7abの位置は、図4に示すように圧縮開始前つまり吸込行程のスクリュー溝3abに対向する位置となる。よって、スライドバルブ7が第2位置に位置した状態では、圧縮開始前のスクリュー溝3aに冷媒液がインジェクションされる。なお、吸込行程のスクリュー溝3aに冷媒液をインジェクションするにあたり、吸込行程の前半で行うと、吸込ガスの圧縮室5への吸込みが阻害される。このため、吸込行程のスクリュー溝3aへの冷媒液のインジェクションは、吸込行程の後半で行うことが好ましい。 Further, the position of the injection port 7ab in a state where the slide valve 7 is located at the second position on the suction side is a position facing the screw groove 3ab before the compression starts, that is, the suction stroke, as shown in FIG. Therefore, in a state where the slide valve 7 is positioned at the second position, the refrigerant liquid is injected into the screw groove 3a before the compression starts. In addition, when the refrigerant liquid is injected into the screw groove 3a in the suction stroke, if it is performed in the first half of the suction stroke, the suction of the suction gas into the compression chamber 5 is inhibited. For this reason, it is preferable to inject the refrigerant liquid into the screw groove 3a in the suction stroke in the latter half of the suction stroke.
 なお、スライドバルブ7が第1位置に位置した状態のインジェクションポート7abの位置と、油インジェクションポート114の位置とは、上述したように、共に、「圧縮開始直前から直後までの間のスクリュー溝3aに対向する位置」であるが、周方向の位置が異なっている。すなわち、スライドバルブ7は、図3に示したように油インジェクションポート114よりもスクリューロータ3の回転方向とは逆方向側に設けられている。よって、スライドバルブ7が第1位置に位置した状態のインジェクションポート7abと油インジェクションポート114とでは、回転軸4方向の位置(図3の左右方向の位置)が異なっており、油インジェクションポート114の方が、吸込側(図3の右側)に位置している。したがって、スライドバルブ7を吸込側の第2位置に位置させた場合、スライドバルブ7を吐出側の第1位置に位置させた場合よりも、インジェクションポート7abの回転軸4方向の位置が、油インジェクションポート114に近づくようになっている。 As described above, the position of the injection port 7ab in the state where the slide valve 7 is located at the first position and the position of the oil injection port 114 are both “screw groove 3a between immediately before and after the start of compression. The position in the circumferential direction is different. That is, the slide valve 7 is provided on the side opposite to the rotational direction of the screw rotor 3 with respect to the oil injection port 114 as shown in FIG. Therefore, the injection port 7ab and the oil injection port 114 in a state where the slide valve 7 is positioned at the first position are different in the position in the direction of the rotation shaft 4 (the position in the left-right direction in FIG. 3). Is located on the suction side (right side of FIG. 3). Therefore, when the slide valve 7 is positioned at the second position on the suction side, the position of the injection port 7ab in the direction of the rotation shaft 4 is greater than that when the slide valve 7 is positioned at the first position on the discharge side. It approaches the port 114.
 スライドバルブ7は、連結棒8を介してピストンなどの駆動装置9に接続されており、駆動装置9の駆動によって、スライド溝1b内を第1位置と第2位置とに移動可能となっている。ここで、駆動装置9はガス圧で駆動するものや油圧で駆動するもの、ピストンとは別にモータなどにより駆動方法を限定しない。 The slide valve 7 is connected to a drive device 9 such as a piston via a connecting rod 8, and can be moved in the slide groove 1 b to the first position and the second position by the drive of the drive device 9. . Here, the driving device 9 is not limited to a driving method using a motor or the like separately from a piston driven by a gas pressure, a hydraulic drive, or a piston.
 また、ケーシング1には、図2に示すようにケーシング1の外部とスライド溝1bとを連通する冷媒液流路1cが形成されている。冷媒液流路1cは、スライドバルブ7が第1位置及び第2位置のどちらに位置した状態でも、冷媒液流路1cのスライド溝1b側の開口がスライドバルブ7に設けた液溜め溝7aaに連通するように、スライドバルブ7との位置関係が設定されている。そして、冷媒液流路1cのケーシング外部側の開口には冷媒液配管108(図1参照)が接続される。 Further, as shown in FIG. 2, the casing 1 is formed with a refrigerant liquid flow path 1c that communicates the outside of the casing 1 and the slide groove 1b. The refrigerant liquid flow path 1c has an opening on the slide groove 1b side of the refrigerant liquid flow path 1c in the liquid storage groove 7aa provided in the slide valve 7 regardless of whether the slide valve 7 is positioned at the first position or the second position. The positional relationship with the slide valve 7 is set so as to communicate. A refrigerant liquid pipe 108 (see FIG. 1) is connected to the opening of the refrigerant liquid flow path 1c on the casing outer side.
 かかる構成により、スライドバルブ7が第1位置及び第2位置のどちらの位置に位置した状態でも、凝縮器104と主膨張弁105との間から分岐した冷媒液が、冷媒液配管108、冷媒液流路1c及び冷媒液注入流路7aを介して、圧縮室5を構成するスクリュー溝3aに流入するようになっている。 With this configuration, regardless of whether the slide valve 7 is positioned at the first position or the second position, the refrigerant liquid branched from between the condenser 104 and the main expansion valve 105 is transferred to the refrigerant liquid pipe 108, the refrigerant liquid. It flows into the screw groove 3a constituting the compression chamber 5 through the flow path 1c and the refrigerant liquid injection flow path 7a.
 ここで、冷媒回路に用いられる冷媒は、特に限定するものではない。例えば、冷媒には、R134aなどのHFC系冷媒、又は低GWP冷媒であるHFO系冷媒などが用いられる。 Here, the refrigerant used in the refrigerant circuit is not particularly limited. For example, an HFC refrigerant such as R134a or an HFO refrigerant that is a low GWP refrigerant is used as the refrigerant.
(動作説明)
 次に、本実施の形態1におけるスクリュー圧縮機の動作について説明する。
(Description of operation)
Next, the operation of the screw compressor in the first embodiment will be described.
 図5は、本発明の実施の形態1に係るスクリュー圧縮機の圧縮原理を示す図である。
 図5に示すように、スクリューロータ3がモータ103(図2参照)により回転軸4(図1参照)を介して回転させられることで、ゲートロータ6の歯6aがスクリュー溝3a内を相対的に移動する。これにより、圧縮室5内では、吸込行程、圧縮行程及び吐出行程を一サイクルとして、このサイクルを繰り返すようになっている。図5において点線で囲った部分はケーシング1の収容壁1aを示しており、この収容壁1aによって囲まれた領域内に位置するスクリュー溝3aで構成された圧縮室5は圧縮行程にある。ここでは、図5においてドットのハッチングで示した圧縮室5に着目して各行程について説明する。
FIG. 5 is a diagram illustrating a compression principle of the screw compressor according to Embodiment 1 of the present invention.
As shown in FIG. 5, the screw rotor 3 is rotated by the motor 103 (see FIG. 2) via the rotating shaft 4 (see FIG. 1), so that the teeth 6a of the gate rotor 6 are relatively moved in the screw groove 3a. Move to. As a result, in the compression chamber 5, the suction stroke, the compression stroke, and the discharge stroke are set as one cycle, and this cycle is repeated. In FIG. 5, the part enclosed by the dotted line shows the accommodating wall 1a of the casing 1, and the compression chamber 5 constituted by the screw groove 3a located in the region surrounded by the accommodating wall 1a is in the compression stroke. Here, focusing on the compression chamber 5 indicated by hatching of dots in FIG. 5, each stroke will be described.
 図5(a)においてスクリュー溝3ac、3adは圧縮行程にあり、スクリュー溝3aa、3abは吸込行程、3aeは吐出行程にある。図5(a)の状態からスクリューロータ3がモータ103により駆動されて実線矢印の方向に回転すると、図5に示す下側のゲートロータ6はスクリューロータ3の回転に伴い、白抜き矢印の方向に回転する。また、図5に示す上側のゲートロータ6は、白抜き矢印で示すように、下側のゲートロータ6とは反対方向に回転する。吸込行程では、圧縮室5は最も拡大した容積を有し、ケーシング1の低圧空間と連通しており、低圧の冷媒ガスが満たされている。 5A, screw grooves 3ac and 3ad are in the compression stroke, screw grooves 3aa and 3ab are in the suction stroke, and 3ae is in the discharge stroke. When the screw rotor 3 is driven by the motor 103 and rotates in the direction of the solid arrow from the state of FIG. 5A, the lower gate rotor 6 shown in FIG. Rotate to. Further, the upper gate rotor 6 shown in FIG. 5 rotates in the opposite direction to the lower gate rotor 6 as indicated by a hollow arrow. In the suction stroke, the compression chamber 5 has the most expanded volume, communicates with the low pressure space of the casing 1, and is filled with low pressure refrigerant gas.
 更にスクリューロータ3が回転すると、その回転に連動して2つのゲートロータ6の歯6aが順次、吐出口10の方へ回転移動する。これにより図5(b)のように圧縮室5の容積(体積)が縮小する。 When the screw rotor 3 further rotates, the teeth 6a of the two gate rotors 6 sequentially rotate toward the discharge port 10 in conjunction with the rotation. As a result, the volume (volume) of the compression chamber 5 is reduced as shown in FIG.
 引き続きスクリューロータ3が回転すると、図5(c)に示すように、圧縮室5が吐出口10に連通する。これにより、圧縮室5内で圧縮された高圧の冷媒ガスが吐出口10より外部へ吐出される。そして、再びスクリューロータ3の背面で同様の圧縮が行われる。 When the screw rotor 3 continues to rotate, the compression chamber 5 communicates with the discharge port 10 as shown in FIG. Thereby, the high-pressure refrigerant gas compressed in the compression chamber 5 is discharged to the outside from the discharge port 10. Then, the same compression is performed again on the back surface of the screw rotor 3.
 なお、図5ではスライド溝1b及びスライドバルブ7の冷媒液注入流路7aについては図示を省略しているが、圧縮行程において冷媒液注入流路7aより冷媒液がスクリュー溝3aに流入して圧縮室5内の冷媒ガスを冷却し、吸込ガスと一緒に圧縮され、吐出行程において外部に吐出される。また、図5では油インジェクションポート114の図示を省略しているが、油分離器112で分離された油が、油インジェクションポート114からスクリュー溝3aに供給されている。 In FIG. 5, the slide groove 1b and the refrigerant liquid injection flow path 7a of the slide valve 7 are not shown, but in the compression stroke, the refrigerant liquid flows into the screw groove 3a from the refrigerant liquid injection flow path 7a and is compressed. The refrigerant gas in the chamber 5 is cooled, compressed together with the suction gas, and discharged outside in the discharge stroke. In FIG. 5, the oil injection port 114 is not shown, but the oil separated by the oil separator 112 is supplied from the oil injection port 114 to the screw groove 3a.
 このように構成されたスクリュー圧縮機において、定常運転時には、吐出温度が高くなるのを抑えることを目的とした冷媒液のインジェクション(以下、液インジェクションという場合がある)が行われている。定常運転時の液インジェクションは、圧縮室5において吸込ガスの吸込完了直前から直後までの間に開始する。これにより、冷媒液が吸込側に漏れ流れて、吸込ガスの圧縮室5への吸込みが阻害される不都合を防止できる。 In the screw compressor configured as described above, refrigerant liquid injection (hereinafter sometimes referred to as liquid injection) for the purpose of suppressing an increase in discharge temperature is performed during steady operation. The liquid injection at the time of steady operation starts in the compression chamber 5 immediately before and after the completion of the suction of the suction gas. Thereby, the inconvenience that the refrigerant liquid leaks to the suction side and the suction of the suction gas into the compression chamber 5 is hindered can be prevented.
 そして、本実施の形態1では、上述したように定常運転時に液インジェクションを行って吐出温度が高くなるのを抑えつつ、非定常運転時のスクリューロータ3の焼付きを抑制することを可能としたことを特徴としている。 And in this Embodiment 1, as mentioned above, liquid injection was performed at the time of steady operation, and it became possible to suppress seizure of the screw rotor 3 at the time of unsteady operation, suppressing an increase in discharge temperature. It is characterized by that.
 非定常運転時のスクリューロータ3の焼付きを抑制するには、液インジェクションポートと油インジェクションポート114との回転軸4方向の位置(図3及び図4の左右方向の位置)が互いに近いことが有効である。非定常運転時に油分離器112で分離された高温の油は、油インジェクションポート114からスクリュー溝3aに供給される。その際、スクリューロータ3は回転しているため、スクリューロータ3の回転軸4方向の位置のうち、油インジェクションポート114が位置する部分を含むスクリューロータ3の周状領域に、油が供給されることになる。このため、スクリューロータ3の外周面のうち、この周状領域が、特に温度上昇して膨張しやすい。 In order to suppress seizure of the screw rotor 3 during unsteady operation, the positions of the liquid injection port and the oil injection port 114 in the direction of the rotation shaft 4 (positions in the left and right directions in FIGS. 3 and 4) are close to each other. It is valid. The high temperature oil separated by the oil separator 112 during the unsteady operation is supplied from the oil injection port 114 to the screw groove 3a. At that time, since the screw rotor 3 is rotating, oil is supplied to a circumferential region of the screw rotor 3 including a portion where the oil injection port 114 is located in a position of the screw rotor 3 in the direction of the rotation axis 4. It will be. For this reason, this peripheral area | region among the outer peripheral surfaces of the screw rotor 3 is easy to expand especially with a temperature rise.
 よって、この周状領域に液インジェクションが行われるようにすることで、高温となる部分を集中して冷却でき、スクリューロータ3の熱膨張を抑制してスクリューロータ3の焼付きを抑制することが可能となる。上記周状領域に液インジェクションを行うには、インジェクションポート7abの回転軸4方向の位置を油インジェクションポート114に近づければよい。 Therefore, by performing liquid injection in this circumferential region, it is possible to concentrate and cool the high temperature portion, and to suppress the thermal expansion of the screw rotor 3 and to suppress the seizure of the screw rotor 3. It becomes possible. In order to perform liquid injection in the circumferential region, the position of the injection port 7ab in the direction of the rotation axis 4 should be close to the oil injection port 114.
 以上のように、定常運転時と非定常運転時とではインジェクション位置を異ならせることが求められ、これを、スライドバルブ7の移動で実現する。具体的には、定常運転時にはスライドバルブ7を吐出側の第1位置に移動させ、非定常運転時にはスライドバルブ7を吸込側の第2位置に移動させる。なお、現在の運転状態が定常運転状態であるか非定常運転状態であるかの判断は、吸込SHに基づいて行える。つまり、吸込SHが低ければ定常運転、吸込SHが高ければ非定常運転、と判断できる。 As described above, the injection position is required to be different between the steady operation and the unsteady operation, and this is realized by the movement of the slide valve 7. Specifically, the slide valve 7 is moved to the first position on the discharge side during steady operation, and the slide valve 7 is moved to the second position on the suction side during non-steady operation. Note that it is possible to determine whether the current operation state is a steady operation state or an unsteady operation state based on the suction SH. That is, it can be determined that the steady operation is performed when the suction SH is low, and the unsteady operation is performed when the suction SH is high.
 以下、スライドバルブ7の移動を行う液インジェクション制御について図6のフローチャートを用いて説明する。 Hereinafter, the liquid injection control for moving the slide valve 7 will be described with reference to the flowchart of FIG.
 図6は、本発明の実施の形態1に係るスクリュー圧縮機を備えた冷凍サイクル装置における液インジェクション制御のフローチャートを示す図である。なお、流量制御弁111は、運転開始時に初期開度に開くものとする。 FIG. 6 is a view showing a flowchart of liquid injection control in the refrigeration cycle apparatus including the screw compressor according to Embodiment 1 of the present invention. In addition, the flow control valve 111 shall open to the initial opening degree at the time of an operation start.
 制御装置110(図1参照)は、吸込ガス温度センサ120により検知された吸込ガス温度に基づいて実測の吸込SHを算出する。そして、制御装置110は、実測吸込SHが、設定吸込SH_A以上、設定吸込SH_B以下であれば(ステップS1;Yes)、つまり定常運転状態であれば、図3に示すようにスライドバルブ7を吐出側の第1位置へ移動させる(ステップS2)。設定吸込SH_A及び設定吸込SH_Bは予め制御装置110に設定されている。設定吸込SH_A及び設定吸込SH_Bは、定常運転であるか非定常運転であるかを判断するための閾値である。すなわち、実測吸込SHが設定吸込SH_A未満であれば、液バック運転(非定常運転)であり、設定吸込SH_Bよりも大きければ吸込SH上昇運転(非定常運転)となる。液バック運転とは、通常圧縮機にはガス化した冷媒が吸い込まれるが、液とガスが混在した状態で圧縮機に吸い込まれることである。そして、スライドバルブ7を第1位置へ移動させることで、インジェクションポート7abが圧縮開始直前から直後までの間のスクリュー溝3acに対向する位置に移動する。 The control device 110 (see FIG. 1) calculates the actual suction SH based on the suction gas temperature detected by the suction gas temperature sensor 120. Then, if the measured suction SH is not less than the set suction SH_A and not more than the set suction SH_B (step S1; Yes), that is, if in the steady operation state, the control device 110 discharges the slide valve 7 as shown in FIG. The first position is moved to the first position (step S2). The set suction SH_A and the set suction SH_B are set in the control device 110 in advance. The set suction SH_A and the set suction SH_B are threshold values for determining whether the operation is a steady operation or an unsteady operation. That is, if the measured suction SH is less than the set suction SH_A, the liquid back operation (unsteady operation) is performed, and if the measured suction SH is larger than the set suction SH_B, the suction SH raising operation (unsteady operation) is performed. In the liquid back operation, the gasified refrigerant is normally sucked into the compressor, but the liquid and gas are mixed and sucked into the compressor. Then, by moving the slide valve 7 to the first position, the injection port 7ab moves to a position facing the screw groove 3ac between immediately before and after the start of compression.
 続いて、制御装置110は、吐出温度センサ(図示せず)により検知された実測の吐出温度に応じて流量制御弁111を制御する。具体的には、実測吐出温度が予め設定された第1設定温度よりも高ければ(ステップS3;No)、流量制御弁111の開度をアップし(ステップS4)、実測吐出温度が第1設定温度よりも低い第2設定温度よりも低ければ(ステップS5;No)、流量制御弁111の開度をダウンする(ステップS6)。一方、実測吐出温度が第2設定温度以上、且つ第1設定温度以下であれば(ステップS3;Yes、ステップS5;Yes)、現状の開度を維持する。 Subsequently, the control device 110 controls the flow rate control valve 111 according to the actually measured discharge temperature detected by a discharge temperature sensor (not shown). Specifically, if the measured discharge temperature is higher than the first preset temperature set in advance (Step S3; No), the opening degree of the flow control valve 111 is increased (Step S4), and the measured discharge temperature is set to the first setting. If the temperature is lower than the second set temperature lower than the temperature (step S5; No), the opening degree of the flow control valve 111 is decreased (step S6). On the other hand, if the measured discharge temperature is not lower than the second set temperature and not higher than the first set temperature (step S3; Yes, step S5; Yes), the current opening degree is maintained.
 一方、ステップS1の判断でNoであり、実測吸込SHが設定吸込SH_Bよりも大きければ(ステップS7;Yes)、つまり非定常運転状態であれば、制御装置110は、図4に示すようにスライドバルブ7を吸込側の第2位置へ移動させる(ステップS8)。これにより、上述したように、インジェクションポート7abの回転軸4方向の位置を、油インジェクションポート114に近づけることができ、スクリューロータ3を効果的に冷却することができる。また、圧縮開始前のスクリュー溝3ab、つまり吸込行程にあるスクリュー溝3abに液インジェクションが行われるため、実測吸込SHの低下にも寄与する。このように、吸込行程にあるスクリュー溝3abに液インジェクションを行うことで実測吸込SHが低下していく。 On the other hand, if the determination in step S1 is No and the actually measured suction SH is larger than the set suction SH_B (step S7; Yes), that is, in the unsteady operation state, the control device 110 slides as shown in FIG. The valve 7 is moved to the second position on the suction side (step S8). Accordingly, as described above, the position of the injection port 7ab in the direction of the rotation axis 4 can be brought close to the oil injection port 114, and the screw rotor 3 can be effectively cooled. Further, since liquid injection is performed on the screw groove 3ab before the start of compression, that is, the screw groove 3ab in the suction stroke, it also contributes to a decrease in the measured suction SH. In this way, the measured suction SH decreases by performing liquid injection on the screw groove 3ab in the suction stroke.
 そして、吸込SHを小さくするために、主膨張弁105の開度をアップする(ステップS9)。そして、実測吐出温度が第1設定温度よりも高ければ(ステップS10;No)、流量制御弁111の開度をアップし(ステップS11)、ステップS9に戻って主膨張弁105の開度をアップする動作を繰り返す。一方、実測吐出温度が第1設定温度以下であれば(ステップS10;Yes)、流量制御弁111の開度をダウン(ステップS12)してステップS1に戻り、実測吸込SHの低下状況をチェックする。 Then, in order to reduce the suction SH, the opening of the main expansion valve 105 is increased (step S9). If the measured discharge temperature is higher than the first set temperature (step S10; No), the opening degree of the flow control valve 111 is increased (step S11), and the process returns to step S9 to increase the opening degree of the main expansion valve 105. Repeat the operation. On the other hand, if the actually measured discharge temperature is equal to or lower than the first set temperature (step S10; Yes), the opening degree of the flow control valve 111 is reduced (step S12), and the process returns to step S1 to check the decrease state of the actually measured suction SH. .
 また、実測吸込SHが設定吸込SH_A以上、設定吸込SH_B以下でなく、且つ実測吸込SHが設定吸込SH_Bより大きくない場合(ステップS1;No、ステップS7;No)、つまり、実測吸込SHが設定吸込SH_A未満の場合、液バック運転(非定常運転)と判断する。制御装置110は、液バック運転(非定常運転)と判断すると、スライドバルブ7を吐出側の第1位置へ移動させ(ステップS13)、続いて吸込SHを大きくするために、主膨張弁105の開度をダウンする(ステップS14)。これにより、圧縮開始直前から直後に液インジェクションが開始される状態に切り替わる。これ以降の動作は上述の通りである。 Further, when the actual suction SH is not greater than or equal to the set suction SH_A and less than or equal to the set suction SH_B, and the actual suction SH is not greater than the set suction SH_B (step S1; No, step S7; No), that is, the actual suction SH is the set suction. When it is less than SH_A, it is determined as a liquid back operation (unsteady operation). When determining that the liquid back operation (unsteady operation) is performed, the control device 110 moves the slide valve 7 to the first position on the discharge side (step S13), and then increases the suction SH to increase the suction SH. The opening is reduced (step S14). Thereby, it switches to the state where liquid injection is started immediately before and after the start of compression. The subsequent operation is as described above.
 以上のように、実施の形態1によれば、吸込SHに応じてインジェクションポート7abを移動させるスライドバルブ7を設けたので、定常運転時と非定常運転時とで液インジェクションのインジェクション位置を変えることができる。よって、定常運転時は、圧縮開始直前から直後に液インジェクションを開始することで、液冷媒が吸込側に漏れて吸込ガスの圧縮室5への冷媒の吸込みを阻害する不都合を招くことなく、吐出温度の上昇を抑制することができる。 As described above, according to the first embodiment, since the slide valve 7 for moving the injection port 7ab according to the suction SH is provided, the injection position of the liquid injection is changed between the steady operation and the unsteady operation. Can do. Therefore, at the time of steady operation, the liquid injection is started immediately before and after the start of the compression, so that the liquid refrigerant leaks to the suction side, and the discharge of the suction gas into the compression chamber 5 is not hindered. An increase in temperature can be suppressed.
 また、非定常運転時は、液インジェクションを、油インジェクションポート114からの油供給によって熱膨張が起きやすい周状領域に行うことができ、スクリューロータ3とケーシング1との焼付きなどの品質不具合を抑制できる。また、非定常運転時は、吸込行程にあるスクリュー溝3aに液インジェクションすることで、吸込SHの上昇を抑制できる。 In addition, during non-steady operation, liquid injection can be performed in a circumferential region where thermal expansion is likely to occur due to oil supply from the oil injection port 114, and quality defects such as seizure between the screw rotor 3 and the casing 1 can occur. Can be suppressed. Moreover, at the time of unsteady driving | operation, the raise of suction | inhalation SH can be suppressed by liquid-injecting into the screw groove | channel 3a in a suction stroke.
 また、流量制御弁111によって液インジェクションの流量を吐出温度に応じて調整可能なため、最適な液インジェクション量で、吐出温度上昇の抑制が可能となる。よって、圧縮室5への冷媒の吸込みの阻害を最小限にとどめることができるため、性能低下への影響を小さくできる。 Further, since the flow rate of the liquid injection can be adjusted according to the discharge temperature by the flow rate control valve 111, it is possible to suppress an increase in the discharge temperature with an optimal liquid injection amount. Therefore, since the inhibition of the refrigerant suction into the compression chamber 5 can be minimized, the influence on the performance degradation can be reduced.
実施の形態2.
 実施の形態2は、実施の形態1の構成に加えて更に、冷媒液配管108に、冷媒液配管108の流路を開閉する開閉弁107を設けたものである。開閉弁107は例えば電磁弁で構成される。なお、本実施の形態2では実施の形態1との差異点を説明するものとし、本実施の形態1で説明されていない構成は実施の形態1と同様である。
Embodiment 2. FIG.
In the second embodiment, in addition to the configuration of the first embodiment, an on-off valve 107 for opening and closing the flow path of the refrigerant liquid pipe 108 is provided in the refrigerant liquid pipe 108. The on-off valve 107 is composed of, for example, an electromagnetic valve. In the second embodiment, differences from the first embodiment will be described, and configurations not described in the first embodiment are the same as those in the first embodiment.
 図7は、本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路図である。
 実施の形態2の冷凍サイクル装置100は、図1に示した実施の形態1の冷媒液配管108に更に、開閉弁107を設けた構成を有する。流量制御弁111を構成する膨張弁は、一般的に流路を完全に閉止することが保証されていない。このため、冷媒液配管108に流量制御弁111を設けただけでは、冷媒液配管108の流路を完全には閉止することができない。よって、液インジェクションを行う必要がない場合に流量制御弁111を閉止しても、僅かながら液インジェクションが行われてしまう。そこで、開閉弁107を設けることで、冷媒液配管108の流路を完全に閉止して、液インジェクションを停止することが可能となる。
FIG. 7 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
The refrigeration cycle apparatus 100 of the second embodiment has a configuration in which an on-off valve 107 is further provided in the refrigerant liquid pipe 108 of the first embodiment shown in FIG. The expansion valve constituting the flow control valve 111 is generally not guaranteed to completely close the flow path. For this reason, the flow path of the refrigerant liquid pipe 108 cannot be completely closed only by providing the flow rate control valve 111 in the refrigerant liquid pipe 108. Therefore, even if the flow control valve 111 is closed when it is not necessary to perform the liquid injection, the liquid injection is slightly performed. Therefore, by providing the on-off valve 107, it is possible to completely close the flow path of the refrigerant liquid pipe 108 and stop the liquid injection.
 実施の形態2では、実施の形態1と同様の効果が得られると共に、冷媒液配管108に開閉弁107を設けたため、更に以下の効果を有する。すなわち、吐出温度が上がりにくい運転領域では、開閉弁107を閉とすることで、液インジェクションを停止できる。よって、本来不要なタイミングで液インジェクションが行われることによる、中間圧力上昇に基づく性能低下を防止できる。 In the second embodiment, the same effects as in the first embodiment can be obtained, and the on / off valve 107 is provided in the refrigerant liquid pipe 108, so that the following effects are further obtained. That is, in the operation region where the discharge temperature is difficult to rise, the liquid injection can be stopped by closing the on-off valve 107. Therefore, it is possible to prevent the performance degradation due to the intermediate pressure rise due to the liquid injection being performed at an originally unnecessary timing.
 なお、本実施の形態1、2ではスクリュー圧縮機102をシングルスクリュー圧縮機としたが、その他の例えばツインスクリュー圧縮機にも本発明は適用できる。また更に、冷凍サイクルの構成として、エコノマイザを有する仕様においても本発明は適用できる。 In the first and second embodiments, the screw compressor 102 is a single screw compressor. However, the present invention can be applied to other twin screw compressors, for example. Furthermore, the present invention can be applied to a specification having an economizer as a configuration of the refrigeration cycle.
 1 ケーシング、1a 収容壁、1aa 内周面、1b スライド溝、1c 冷媒液流路、1d 端面、2 軸受、3 スクリューロータ、3a スクリュー溝、3aa スクリュー溝、3ab スクリュー溝、3ac スクリュー溝、3ad スクリュー溝、3ae スクリュー溝、4 回転軸、5 圧縮室、6 ゲートロータ、6a 歯、7 スライドバルブ、7a 冷媒液注入流路、7aa 液溜め溝、7ab インジェクションポート、8 連結棒、9 駆動装置、10 吐出口、11 スライドバルブ、100 冷凍サイクル装置、101 インバータ、102 スクリュー圧縮機、103 モータ、103a ステータ、103b モータロータ、104 凝縮器、105 主膨張弁、106 蒸発器、107 開閉弁、108 冷媒液配管、109 冷媒液配管、110 制御装置、111 流量制御弁、112 油分離器、113 油供給配管、114 油インジェクションポート、120 吸込ガス温度センサ。 1 casing, 1a containing wall, 1aa inner peripheral surface, 1b slide groove, 1c refrigerant liquid flow path, 1d end surface, 2 bearing, 3 screw rotor, 3a screw groove, 3aa screw groove, 3ab screw groove, 3ac screw groove, 3ad screw Groove, 3ae screw groove, 4 rotary shaft, 5 compression chamber, 6 gate rotor, 6a tooth, 7 slide valve, 7a refrigerant liquid injection channel, 7aa liquid reservoir groove, 7ab injection port, 8 connecting rod, 9 drive unit, 10 Discharge port, 11 slide valve, 100 refrigeration cycle device, 101 inverter, 102 screw compressor, 103 motor, 103a stator, 103b motor rotor, 104 condenser, 105 main expansion valve, 106 evaporator, 107 on-off valve, 10 Refrigerant liquid pipe, 109 a refrigerant liquid pipe, 110 controller, 111 a flow control valve, 112 an oil separator, 113 an oil supply pipe, 114 oil injection port 120 suction gas temperature sensor.

Claims (8)

  1.  外部からの冷媒液が通過する冷媒液流路が形成されたケーシングと、
     圧縮室を構成する複数のスクリュー溝が外周面に形成され、前記ケーシング内で回転するように配置されたスクリューロータと、
     前記ケーシングと前記スクリューロータとの間に設けられ、前記スクリューロータの回転軸方向にスライド移動するスライドバルブとを備え、
     前記ケーシング又は前記スライドバルブ又はその両方には、前記スクリュー溝に油を供給する油インジェクションポートが設けられており、
     前記スライドバルブは、前記冷媒液流路を前記スクリュー溝に連通させる冷媒液注入流路を有し、前記冷媒液注入流路を、圧縮開始直前から直後までの間の前記スクリュー溝に連通させる第1位置と、前記冷媒液注入流路を、圧縮開始前の吸込行程にある前記スクリュー溝に連通させる位置であって、前記第1位置よりも前記回転軸方向の位置が前記油インジェクションポートに近づく第2位置とに移動するスクリュー圧縮機。
    A casing in which a refrigerant liquid passage through which refrigerant liquid from the outside passes is formed;
    A plurality of screw grooves forming a compression chamber are formed on the outer peripheral surface, and a screw rotor arranged to rotate in the casing;
    A slide valve that is provided between the casing and the screw rotor and slides in the direction of the rotation axis of the screw rotor;
    The casing or the slide valve or both are provided with an oil injection port for supplying oil to the screw groove,
    The slide valve has a refrigerant liquid injection channel that communicates the refrigerant liquid channel with the screw groove, and the slide valve communicates with the screw groove between immediately before and after the start of compression. 1 position and a position where the refrigerant liquid injection flow path communicates with the screw groove in the suction stroke before the start of compression, and the position in the rotational axis direction is closer to the oil injection port than the first position. Screw compressor moving to the second position.
  2.  吸込ガスの吸込過熱度に応じて前記スライドバルブの位置が前記第1位置又は前記第2位置に切り替えられる請求項1記載のスクリュー圧縮機。 2. The screw compressor according to claim 1, wherein the position of the slide valve is switched to the first position or the second position in accordance with the suction superheat degree of the suction gas.
  3.  前記冷媒液注入流路は、前記スライドバルブが前記第1位置及び前記第2位置のどちらに位置しても前記冷媒液流路に連通する液溜め溝と、前記液溜め溝に連通するインジェクションポートとを有する請求項1又は請求項2記載のスクリュー圧縮機。 The refrigerant liquid injection channel includes a liquid reservoir groove that communicates with the refrigerant liquid channel regardless of whether the slide valve is located at the first position or the second position, and an injection port that communicates with the liquid reservoir groove. The screw compressor of Claim 1 or Claim 2 which has these.
  4.  請求項1~請求項3の何れか一項に記載のスクリュー圧縮機、凝縮器、主減圧装置及び蒸発器を順に接続した冷媒回路を備えた冷凍サイクル装置。 A refrigeration cycle apparatus comprising a refrigerant circuit in which the screw compressor, the condenser, the main decompression device, and the evaporator according to any one of claims 1 to 3 are connected in order.
  5.  前記凝縮器と前記主減圧装置との間から分岐し、前記スクリュー圧縮機の前記冷媒液流路に接続される冷媒液配管と、
     前記冷媒液配管に設けられ、前記冷媒液配管を流れる冷媒の流量を制御する流量制御弁と、
     前記スクリュー圧縮機から吐出された冷媒から油を分離する油分離器と、
     前記油分離器で分離された油を前記スクリュー圧縮機の前記油インジェクションポートに供給する油供給配管と、
     前記スクリュー圧縮機に吸込まれる冷媒の吸込過熱度に基づいて前記スライドバルブを前記第1位置又は前記第2位置に移動させる制御装置とを備えた請求項4記載の冷凍サイクル装置。
    A refrigerant liquid pipe branched from between the condenser and the main decompressor and connected to the refrigerant liquid flow path of the screw compressor;
    A flow rate control valve that is provided in the refrigerant liquid piping and controls a flow rate of the refrigerant flowing through the refrigerant liquid piping;
    An oil separator for separating oil from the refrigerant discharged from the screw compressor;
    An oil supply pipe for supplying oil separated by the oil separator to the oil injection port of the screw compressor;
    5. The refrigeration cycle apparatus according to claim 4, further comprising: a control device that moves the slide valve to the first position or the second position based on a suction superheat degree of the refrigerant sucked into the screw compressor.
  6.  前記制御装置は、前記吸込過熱度が予め設定された設定吸込過熱度以下の場合、前記スライドバルブを前記第1位置に移動させ、前記吸込過熱度が前記設定吸込過熱度よりも大きい場合、前記スライドバルブを前記第2位置に移動させる請求項5記載の冷凍サイクル装置。 The control device moves the slide valve to the first position when the suction superheat degree is equal to or lower than a preset suction superheat degree, and when the suction superheat degree is larger than the set suction superheat degree, The refrigeration cycle apparatus according to claim 5, wherein the slide valve is moved to the second position.
  7.  前記制御装置は、前記スクリュー圧縮機から吐出される冷媒の吐出温度が予め設定された設定範囲内となるように前記流量制御弁を制御する請求項5又は請求項6記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 5 or 6, wherein the control device controls the flow rate control valve so that a discharge temperature of refrigerant discharged from the screw compressor is within a preset setting range.
  8.  前記冷媒液配管の流路を開閉する開閉弁を備えた請求項5~請求項7の何れか一項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 5 to 7, further comprising an on-off valve that opens and closes a flow path of the refrigerant liquid pipe.
PCT/JP2016/074443 2016-08-23 2016-08-23 Screw compressor and refrigeration cycle device WO2018037469A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/074443 WO2018037469A1 (en) 2016-08-23 2016-08-23 Screw compressor and refrigeration cycle device
EP16914144.7A EP3505765B1 (en) 2016-08-23 2016-08-23 Screw compressor and refrigeration cycle device
CN201680088556.8A CN109642579B (en) 2016-08-23 2016-08-23 Screw compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/074443 WO2018037469A1 (en) 2016-08-23 2016-08-23 Screw compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2018037469A1 true WO2018037469A1 (en) 2018-03-01

Family

ID=61246500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074443 WO2018037469A1 (en) 2016-08-23 2016-08-23 Screw compressor and refrigeration cycle device

Country Status (3)

Country Link
EP (1) EP3505765B1 (en)
CN (1) CN109642579B (en)
WO (1) WO2018037469A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3660314A4 (en) * 2018-10-09 2020-06-03 Mayekawa Mfg. Co., Ltd. Screw compressor and refrigeration device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106061A1 (en) * 2019-11-26 2021-06-03 三菱電機株式会社 Screw compressor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091108U (en) * 1973-12-19 1975-08-01
JPS56118988U (en) * 1981-01-21 1981-09-10
JPS5738692A (en) * 1980-08-20 1982-03-03 Ebara Corp Oil returning device of refrigerator
JPS57193086U (en) * 1981-05-28 1982-12-07
US20050226758A1 (en) * 2002-12-03 2005-10-13 Bitzer Kuehlmaschinenbau Gmbh Screw compressor
WO2016084176A1 (en) * 2014-11-26 2016-06-02 三菱電機株式会社 Screw compressor and refrigeration cycle device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO117317B (en) * 1964-03-20 1969-07-28 Svenska Rotor Maskiner Ab
JP4183021B1 (en) * 2007-06-11 2008-11-19 ダイキン工業株式会社 Compressor and refrigeration equipment
CN102356240B (en) * 2009-03-16 2015-03-11 大金工业株式会社 Screw compressor
JP2012097645A (en) * 2010-11-01 2012-05-24 Daikin Industries Ltd Compressor
JPWO2015114851A1 (en) * 2014-01-29 2017-03-23 三菱電機株式会社 Screw compressor
EP3199814B1 (en) * 2014-09-24 2021-01-06 Mitsubishi Electric Corporation Screw compressor and refrigeration cycle device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091108U (en) * 1973-12-19 1975-08-01
JPS5738692A (en) * 1980-08-20 1982-03-03 Ebara Corp Oil returning device of refrigerator
JPS56118988U (en) * 1981-01-21 1981-09-10
JPS57193086U (en) * 1981-05-28 1982-12-07
US20050226758A1 (en) * 2002-12-03 2005-10-13 Bitzer Kuehlmaschinenbau Gmbh Screw compressor
WO2016084176A1 (en) * 2014-11-26 2016-06-02 三菱電機株式会社 Screw compressor and refrigeration cycle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3660314A4 (en) * 2018-10-09 2020-06-03 Mayekawa Mfg. Co., Ltd. Screw compressor and refrigeration device
US11333148B2 (en) 2018-10-09 2022-05-17 Mayekawa Mfg. Co., Ltd. Screw compressor and refrigeration device

Also Published As

Publication number Publication date
EP3505765A4 (en) 2019-08-14
EP3505765A1 (en) 2019-07-03
CN109642579B (en) 2020-12-01
EP3505765B1 (en) 2020-04-29
CN109642579A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
JP6685379B2 (en) Screw compressor and refrigeration cycle equipment
JP6058133B2 (en) Screw compressor and refrigeration cycle apparatus
JP5289433B2 (en) Two-stage rotary expander, expander-integrated compressor, and refrigeration cycle apparatus
EP3199814B1 (en) Screw compressor and refrigeration cycle device
JP4183021B1 (en) Compressor and refrigeration equipment
JP2007138919A (en) Two-stage screw compressor and two-stage compression refrigerator using this compressor
US8920149B2 (en) Single-screw compressor having an adjustment mechanism for adjusting a compression ratio of the compression chamber
CN109154455B (en) Refrigeration cycle device
WO2018037469A1 (en) Screw compressor and refrigeration cycle device
JP5951125B2 (en) Screw compressor and refrigeration cycle apparatus
JP6234611B2 (en) Screw compressor and refrigeration cycle equipment
JP2012197746A (en) Screw compressor
WO2017094057A1 (en) Single-screw compressor and refrigeration cycle device
JP5831345B2 (en) Refrigeration equipment
WO2022044149A1 (en) Refrigeration cycle device
JPWO2016046908A1 (en) Screw compressor and refrigeration cycle equipment
WO2016088207A1 (en) Refrigeration cycle circuit
EP3569950B1 (en) Refrigeration cycle device
TWI639770B (en) Single screw compressor and refrigeration cycle device
WO2022249239A1 (en) Compressor and refrigeration cycle device
JP7158603B2 (en) screw compressor
WO2022249237A1 (en) Compressor and refrigeration cycle device
WO2018008052A1 (en) Screw compressor and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016914144

Country of ref document: EP

Effective date: 20190325

NENP Non-entry into the national phase

Ref country code: JP