WO2018036565A1 - 终端的控制方法、终端、智能穿戴设备和系统 - Google Patents

终端的控制方法、终端、智能穿戴设备和系统 Download PDF

Info

Publication number
WO2018036565A1
WO2018036565A1 PCT/CN2017/099186 CN2017099186W WO2018036565A1 WO 2018036565 A1 WO2018036565 A1 WO 2018036565A1 CN 2017099186 W CN2017099186 W CN 2017099186W WO 2018036565 A1 WO2018036565 A1 WO 2018036565A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
motion data
wearable device
motion
acceleration
Prior art date
Application number
PCT/CN2017/099186
Other languages
English (en)
French (fr)
Inventor
王佰财
韩泉城
陈国乔
魏秋阳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US16/097,130 priority Critical patent/US11003224B2/en
Publication of WO2018036565A1 publication Critical patent/WO2018036565A1/zh
Priority to US17/315,719 priority patent/US11579666B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1643Details related to the display arrangement, including those related to the mounting of the display in the housing the display being associated to a digitizer, e.g. laptops that can be used as penpads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1694Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being a single or a set of motion sensors for pointer control or gesture input obtained by sensing movements of the portable computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3215Monitoring of peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3231Monitoring the presence, absence or movement of users
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/21Combinations with auxiliary equipment, e.g. with clocks or memoranda pads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72463User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions to restrict the functionality of the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0254Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity detecting a user operation or a tactile contact or a motion of the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to the field of electronic device control technologies, and in particular, to a terminal control method, a terminal, a smart wearable device, and a system.
  • the wrist-worn smart device refers to a smart device that can be fixed on the wrist of the user, such as a smart bracelet or a smart watch.
  • the user pre-binds the smart bracelet and the mobile phone.
  • the mobile phone can recognize the bound smart wristband through the bluetooth module, the unlocking operation is performed.
  • the mobile phone performs an unlocking operation.
  • the mobile phone when the distance between the user's smart bracelet and the mobile phone is relatively close, when the other user inputs an unlocking command on the mobile phone, the mobile phone also performs an unlocking operation, which may cause leakage of information in the mobile phone.
  • the present invention provides a method for controlling a terminal, a smart wearable device, a system, and a terminal, and reduces the possibility that information in the terminal is leaked on the premise that the state of the terminal is switched by the cooperation of the smart wearable device.
  • the embodiment of the present invention provides a method for controlling a terminal, where the terminal is in a binding state with the smart wearable device, and the control method includes:
  • Receiving a request for acquiring motion data to the smart wearable device when receiving an instruction indicating the switch state of the terminal receiving the smart wearable device sent by the smart wearable device within a predetermined time period First motion data; acquiring second motion data of the terminal within the predetermined time period; calculating a deviation value of the first motion data and the second motion data; if the deviation value is less than a deviation value threshold And in response to the instruction, switching the state of the terminal.
  • the terminal After receiving the instruction indicating the switching state, the terminal calculates the deviation value of the motion data of the device and the smart wearable device in the predetermined time period, and the terminal only responds to the instruction indicating the switching state when the deviation value is less than the deviation value threshold, and switches the terminal. status.
  • the user usually wears the smart wearable device on the body. In the case that other people pick up the user's terminal, since the terminal and the smart wearable device are on different people, the motion data of the terminal and the smart wearable device may exist in the same time period. There is a big difference. Even if other people input the command to switch the state at the terminal, it is difficult to trigger the terminal to perform state switching, thereby reducing the possibility that the information in the terminal is leaked.
  • the predetermined time period is before the first time, and the difference between the end time of the predetermined time period and the first time is less than or equal to the first time threshold, wherein the first time is the terminal receiving The time to the instruction indicating the switching state.
  • the terminal After receiving the instruction indicating the switching state, the terminal acquires the operation of the device and the smart watch within a predetermined time period before the first moment. Dynamic data, and based on the deviation values of the two sets of motion data to determine whether to perform state switching. This enables the terminal to acquire the motion data for determining whether to perform the state switching as soon as possible after receiving the instruction indicating the switching state, thereby completing the determination process of whether or not to perform the state switching as soon as possible, and improving the response speed of the terminal.
  • the difference between the termination time and the first time of the predetermined time period is less than or equal to the first time threshold, it is possible to reduce the operation execution state of the terminal in response to the operation of the other user within a period of time after the user of the terminal drops the terminal.
  • the probability of handover can further reduce the possibility that information in the terminal is leaked.
  • the predetermined time period is after the first time, and the difference between the start time and the first time of the predetermined time period is less than or equal to the first time threshold.
  • the terminal After receiving the instruction indicating the switching state, the terminal acquires motion data of the device and the smart watch within a predetermined time period after the first time, and determines whether to perform state switching based on the deviation values of the two sets of motion data. This enables the terminal to instruct the motion sensor to be turned on for a period of time only after receiving the instruction indicating the switching state, thereby reducing the power consumption of the terminal.
  • the smart wearable device can indicate itself only after receiving the request for acquiring the motion data sent by the terminal. The motion sensor is turned on for a period of time, thereby reducing the power consumption of the smart wearable device.
  • the terminal can obtain the instruction for indicating the switching state as soon as possible after receiving the instruction for determining the switching state.
  • the motion data of the state switching is performed, and the determination process of whether or not to perform the state switching can be completed as soon as possible, thereby improving the response speed of the terminal.
  • the first time threshold is set to zero.
  • the first motion data includes an acceleration of the smart wearable device on a specific coordinate axis in a first three-dimensional coordinate system; the second motion data is that the terminal is in a second three-dimensional coordinate system The acceleration on the particular coordinate axis.
  • the directions of the same coordinate axes of the first three-dimensional coordinate system and the second three-dimensional coordinate system are the same, that is, the directions of the X coordinate axes of the first three-dimensional coordinate system and the second three-dimensional coordinate system are the same, and the directions of the Y coordinate axes are consistent.
  • the direction of the Z coordinate axis is the same.
  • the terminal calculates the deviation values of the first motion data and the second motion data, including:
  • the terminal samples the first motion data and the second motion data respectively at M sampling moments, and obtains M first acceleration sampling sets and M second acceleration sampling sets, and uses M first acceleration sampling sets and M seconds.
  • Acceleration sampling set respectively calculating the acceleration deviation amount of the terminal and the smart wearable device at M sampling moments, and calculating an average value of the M acceleration deviation amounts, which can accurately reflect the movement state between the terminal and the smart wearable device
  • the difference is used as a basis for the terminal to determine whether to perform state switching in response to the state switching command, and the terminal can be accurately controlled.
  • the terminal calculates the amount of acceleration deviation at the ith sampling instant, including:
  • the terminal calculates the amount of acceleration deviation at the ith sampling instant, including:
  • the instruction indicating the terminal switching state includes: an instruction and/or a finger indicating that the terminal is unlocked The instruction that the terminal is bright.
  • the method after responding to the instruction indicating that the terminal is unlocked, the method further includes:
  • the user can hold the terminal by using the hand wearing the smart wearable device, and the arm can trigger the terminal to perform the unlocking operation in response to the instruction indicating that the terminal is unlocked, and the user adjusts the motion of the terminal by adjusting the movement range of the arm in the predetermined time period.
  • the amplitude can trigger the terminal to enter an operation mode corresponding to the amplitude interval of the motion range of the terminal after performing the unlocking operation, so that the user can conveniently and quickly control the terminal to directly enter the corresponding operation mode.
  • the embodiment of the present invention provides a terminal, where the terminal is in a binding state with the smart wearable device, and the terminal includes:
  • An input unit configured to receive an instruction indicating a switching state of the terminal in a state of the terminal lock screen
  • the processor in response to the instruction, instructing the communication interface to send a request for acquiring motion data to the smart wearable device, acquiring first motion data of the smart wearable device for a predetermined time period, and acquiring the terminal at the predetermined time a second motion data in the segment, calculating a deviation value of the first motion data and the second motion data, and if the deviation value is less than a deviation threshold, switching a state of the terminal;
  • the communication interface is configured to send a request for acquiring motion data to the smart wearable device, and receive a first motion of the smart wearable device sent by the smart wearable device for a predetermined time period in response to an indication of the processor data;
  • the motion sensor is configured to detect a motion state of the terminal, and obtain second motion data of the terminal within the predetermined time period.
  • the communication interface receives the first motion data of the smart wearable device sent by the smart wearable device in the predetermined time period, and specifically includes: the communication interface receiving the smart wearable device Transmitting an acceleration of the smart wearable device on a specific coordinate axis in the first three-dimensional coordinate system during the predetermined time period; the motion sensor detecting a motion state of the terminal, and obtaining the terminal within a predetermined time period
  • the second motion data specifically includes: the motion sensor detecting a motion state of the terminal, and obtaining an acceleration of the terminal on the specific coordinate axis in the second three-dimensional coordinate system during the predetermined time period.
  • the directions of the same coordinate axes of the first three-dimensional coordinate system and the second three-dimensional coordinate system are identical.
  • the first motion data acquired by the processor of the terminal includes: an acceleration of the smart wearable device on a specific coordinate axis in the first three-dimensional coordinate system within a predetermined time period, the processor acquires
  • the second motion data includes an acceleration of the terminal on the particular coordinate axis in a second three-dimensional coordinate system for a predetermined period of time.
  • the processor of the terminal calculates the deviation values of the first motion data and the second motion data, and specifically includes:
  • the processor samples the first motion data and the second motion data respectively at M sampling moments in the predetermined time period to obtain M first acceleration sample sets and M second acceleration samples a set, where M is an integer greater than 1; using the M first acceleration sample sets and the M second acceleration sample sets, respectively calculating an acceleration deviation amount at M sampling moments, wherein the ith sampling
  • the ingress unit of the terminal receives an instruction indicating the switching state of the terminal, and specifically includes: the input unit receives an instruction indicating that the terminal is unlocked, and/or receives an instruction that indicates that the terminal is bright. .
  • the processor of the terminal is further configured to: determine, according to the second motion data of the terminal in the predetermined time period, a range of motion of the terminal in the predetermined time period, and utilize The mapping relationship between the pre-stored amplitude interval and the operation mode determines an operation mode corresponding to the amplitude interval to which the motion amplitude belongs, and controls the terminal to enter an operation mode corresponding to the amplitude interval to which the motion amplitude belongs.
  • an embodiment of the present invention provides a smart wearable device, where the smart wearable device is in a binding state, and the smart wearable device includes:
  • a communication interface configured to receive a request for acquiring motion data sent by the terminal
  • a processor configured to: in response to the request for acquiring motion data, acquire first motion data of the smart wearable device for a predetermined time period, and instruct the communication interface to send the first motion data to the terminal;
  • the motion sensor is configured to detect a motion state of the smart wearable device, and obtain first motion data of the smart wearable device in the predetermined time period.
  • the smart wearable device When receiving the request for acquiring motion data sent by the terminal bound to the terminal, the smart wearable device acquires the first motion data of the device within a predetermined time period, and sends the first motion data to the terminal, so that the terminal utilizes the received A motion data and a second motion data of the terminal in the predetermined time period determine whether to perform state switching, because the terminal responds to the indication switching state only when the deviation value of the first motion data and the second motion data is less than the deviation threshold.
  • the command performs state switching, so the smart wearable device can perform state switching with the terminal and reduce the possibility that information in the terminal is leaked.
  • the predetermined time period is before the first time, and the difference between the end time of the predetermined time period and the first time is less than or equal to the first time threshold, wherein the first time is the terminal receiving The time to the instruction indicating the switching state.
  • the motion sensor of the smart wearable device detects the motion state of the smart wearable device, and obtains the first motion data of the smart wearable device for a predetermined period of time, which specifically includes: the motion sensor detects a motion state of the smart wearable device, Obtaining second motion data of the smart wearable device in a predetermined time period before the first moment, where the first time is a moment when the terminal receives an instruction indicating the handover state of the terminal, the predetermined time period The difference between the termination time and the first time is less than or equal to the first time threshold.
  • the terminal after receiving the instruction indicating the switching state, the terminal can acquire the motion data for determining whether to perform the state switching as soon as possible, thereby completing the determination process of whether to perform the state switching as soon as possible, and improving the response speed of the terminal. .
  • the difference between the termination time and the first time of the predetermined time period to be less than or equal to the first time threshold, it is possible to reduce the state of the terminal responding to the operation of other users within a period of time after the user of the terminal drops the terminal. The probability of handover can further reduce the possibility that information in the terminal is leaked.
  • the predetermined time period is after the first time, and the difference between the start time and the first time of the predetermined time period is less than or equal to the first time threshold.
  • the motion sensor of the smart wearable device detects the motion state of the smart wearable device, and obtains the first motion data of the smart wearable device for a predetermined period of time, which specifically includes: the motion sensor detects a motion state of the smart wearable device, Obtaining second motion data of the smart wearable device in a predetermined time period after the first time, where the first time is a time when the terminal receives an instruction indicating the switching state of the terminal, the predetermined time period The difference between the starting time and the first time is less than or equal to the first time threshold.
  • the terminal may instruct the motion sensor to be turned on for a period of time only after receiving the instruction indicating the switching state, thereby reducing the power consumption of the terminal, and the smart wearable device may indicate only after receiving the request for acquiring the motion data sent by the terminal.
  • the motion sensor is turned on for a period of time, thereby reducing the power consumption of the smart wearable device.
  • the terminal can acquire the motion data for determining whether to perform the state switching as soon as possible, and correspondingly can determine whether to perform the state switching as soon as possible. Process to improve the response speed of the terminal.
  • an embodiment of the present invention provides a system, including any one of the foregoing terminals and a smart wearable device, and the terminal and the smart wearable device are in a binding state.
  • FIG. 1 is a structural block diagram of a mobile phone and a smart watch disclosed in an embodiment of the present invention
  • FIG. 2 is a flowchart of a control method applied to the mobile phone and the smart watch shown in FIG. 1 according to an embodiment of the present invention
  • FIG. 3 is a flowchart of another control method applied to the mobile phone and the smart watch shown in FIG. 1 according to an embodiment of the present invention
  • FIG. 4 is a flowchart of another control method applied to the mobile phone and the smart watch shown in FIG. 1 according to an embodiment of the present invention.
  • the technical solution disclosed in the embodiment of the present invention is applied to a terminal and a smart wearable device.
  • the terminal can be a mobile phone, a tablet computer, a smart wearable device, a personal digital assistant (PDA), a point of sales (POS), and other electronic devices that can be held by a user, and
  • the terminal is configured with a motion sensor and is capable of recording motion data of the terminal.
  • the smart wearable device may be a wrist-worn smart wearable device or a smart wearable device that can be worn on the upper limb of the user, such as a smart wearable device that can be worn on the user's finger.
  • the smart wearable device is configured with a motion sensor capable of recording motion data of the smart wearable device.
  • the terminal and the smart wearable device in the embodiment of the present invention are in a bound state.
  • the binding state between the terminal and the smart wearable device means that a pairing relationship is established between the terminal and the smart wearable device, and data interaction can be performed.
  • the embodiment of the invention discloses a terminal and a control method thereof.
  • the smart wearable device bound to the terminal sends a request for acquiring the motion data to obtain the first motion data of the smart wearable device in the predetermined time period
  • the terminal further acquires the second motion data of the first motion data and the second motion data, and calculates the deviation value of the first motion data and the second motion data. If the calculated deviation value is less than the deviation threshold, the state of the terminal is switched in response to the instruction.
  • the terminal After receiving the instruction indicating the switching state, the terminal calculates the deviation value of the motion data of the device and the smart wearable device in the predetermined time period, and the terminal only responds to the instruction indicating the switching state when the deviation value is less than the deviation value threshold, and switches the terminal. status.
  • the user usually wears the smart wearable device on the body. In the case that other people pick up the user's terminal, since the terminal and the smart wearable device are on different people, the motion data of the terminal and the smart wearable device may exist in the same time period. There is a big difference. Even if other people input the command to switch the state at the terminal, it is difficult to trigger the terminal to perform state switching, thereby reducing the possibility that the information in the terminal is leaked.
  • the smart wearable device and the terminal move along with the movement of the user's arm, and the motion state of the smart wearable device and the terminal are similar,
  • the deviation between the motion data of the person is small, It is considered that the smart wearable device and the terminal are in a synchronous motion state, and when the user inputs an instruction indicating the switching state at the terminal, the terminal switches from the lock screen state to the other state in response to the instruction.
  • FIG. 1 is a block diagram showing a part of the structure of a mobile phone 100 and a smart watch 200 related to an embodiment of the present invention.
  • the mobile phone 100 and the smart watch 200 shown in FIG. 1 are in a bound state, that is, a pairing relationship is established between the mobile phone 100 and the smart watch 200, and data interaction can be performed.
  • the mobile phone 100 includes a radio frequency (RF) circuit 110 , a processor 120 , a memory 130 , an input unit 140 , a display unit 150 , an audio circuit 160 , a speaker 161 , a microphone 162 , a motion sensor 170 , and a wireless communication module 180 . And components such as power supply 190.
  • RF radio frequency
  • the structure of the handset shown in FIG. 1 does not constitute a limitation to the handset, and may include more or less components than those illustrated, or some components may be combined, or different components may be arranged.
  • the components of the mobile phone 100 will be specifically described below with reference to FIG. 1 :
  • the motion sensor 170 is configured to detect the motion state of the mobile phone 100 and obtain motion data of the mobile phone 100.
  • the motion sensor 170 can employ an acceleration sensor that can detect the magnitude of acceleration in various directions (generally three axes in a three-dimensional space coordinate system), and can detect the magnitude and direction of gravity when stationary.
  • the acceleration value detected by the acceleration sensor can be used as the motion data of the mobile phone 100, and the processor 120 determines the motion state of the mobile phone 100 over a period of time according to the motion data.
  • the RF circuit 110 can be used for transmitting and receiving information or receiving and transmitting signals during a call. In particular, after receiving the downlink information of the base station, the RF circuit 110 transmits the downlink information to the processor 120 for processing; in addition, the RF circuit 110 transmits the uplink data. To the base station.
  • the RF circuit 110 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • LNA Low Noise Amplifier
  • RF circuit 110 can also communicate with other devices over a wireless communication network.
  • Wireless communication can use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division Multiple) Access, CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), e-mail, Short Messaging Service (SMS), and the like.
  • GSM Global System of Mobile communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • SMS Short Messaging Service
  • the mobile phone 100 includes a wireless communication module 180 including, but not limited to, a wireless fidelity (WiFi) module 181 and a Bluetooth module 182.
  • WiFi is a short-range wireless transmission technology
  • the mobile phone 100 and another device configured with a WiFi module can perform data interaction through a router or a wireless hotspot.
  • Bluetooth is a short-range wireless transmission technology, and the mobile phone 100 can perform data interaction with another device configured with a Bluetooth module through the Bluetooth module 182.
  • the mobile phone 100 in the embodiment of the present invention can perform data interaction with the smart watch 200 through the wireless communication module 180.
  • the memory 130 is used to store software programs and modules, and the processor 120 executes various functional applications and data processing of the mobile phone 100 by running software programs and modules stored in the memory 130.
  • the memory 130 mainly includes a storage program area and a storage data area, wherein the storage program area can store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area can be stored according to The data created by the use of the mobile phone 100 (such as audio data, phone book, etc.) and the like.
  • memory 130 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 120 is the control center of the handset 100, which connects various components of the entire handset 100 using various interfaces and lines, by running or executing software programs and/or modules stored in the memory 130, and recalling data stored in the memory 130.
  • the various functions and data processing of the mobile phone 100 are performed, thereby realizing various services based on the mobile phone.
  • the processor 120 may include one or more processing orders.
  • the processor 120 can integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, an application, and the like, and the modem processor mainly processes wireless communication. It can be understood that the above modem processor may not be integrated into the processor 120.
  • the processor 120 controls the operation of the motion sensor 170 and acquires motion data obtained by the motion sensor 170.
  • the processor 120 can instruct the wireless communication module 180 and the RF circuit 110 to transmit data and acquire data received by the wireless communication module 180 and the RF circuit 110.
  • the processor 120 instructs the communication interface (the RF circuit 110, the WiFi module 181 or the Bluetooth module 182) to send a request for acquiring the motion data to the smart watch 200 in response to the instruction indicating the state of the mobile phone switching state, and obtains the communication interface receiving.
  • the first motion data of the smart watch 200 sent by the smart watch 200 during a predetermined time period acquires second motion data of the mobile phone 100 during the predetermined time period, and calculates the first motion data and the second motion data.
  • the deviation value if the deviation value is less than the deviation value threshold, switches the state of the mobile phone 100.
  • the input unit 140 is configured to receive input information (such as numbers, character information, and instructions, such as instructions indicating the state of the terminal switching), and generate key signal inputs related to user settings and function control of the mobile phone 100.
  • the input unit 140 may include a touch panel 141 and other input devices.
  • the touch panel 141 is also referred to as a touch screen, and can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 141 or near the touch panel 141. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 141 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits a signal to the touch controller;
  • the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and sends the signal to the processing.
  • the device 120 can receive commands from the processor 120 and execute them.
  • the touch panel 141 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 140 may also include other input devices.
  • other input devices may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 150 can be used to display information input by the user, information provided to the user by the mobile phone 100, and various menus of the mobile phone 100.
  • the display unit 150 may include a display panel 151.
  • the display panel 151 may be configured in the form of an LCD (Liquid Crystal Display), an OLED (Organic Light-Emitting Diode), or the like.
  • the touch panel 141 can cover the display panel 151. When the touch panel 141 detects a touch operation on or near the touch panel 141, the touch panel 141 transmits to the processor 120 to determine the type of the touch event, and then the processor 120 according to the touch event. The type provides a corresponding visual output on display panel 151.
  • the touch panel 141 and the display panel 151 are used as two independent components to implement the input and output functions of the mobile phone 100 in FIG. 1, in some embodiments, the touch panel 141 may be integrated with the display panel 151. To realize the input and output functions of the mobile phone 100.
  • Audio circuitry 160, speaker 161, and microphone 162 may provide an audio interface between the user and handset 100.
  • the audio circuit 160 can convert the audio data into an electrical signal for transmission to the speaker 161, which is converted into a sound signal output by the speaker 161; on the other hand, the microphone 162 converts the collected sound signal into an electrical signal, which is received by the audio circuit 160 and converted into audio.
  • the data is then output to the RF circuit 110 for transmission to another device (such as another handset) or the audio data is output to the memory 130 for further processing.
  • the handset 100 also includes a power source 190 (such as a battery) that powers the various components.
  • a power source 190 such as a battery
  • the power supply 190 can be logically connected to the processor 120 through the power management system, thereby implementing functions such as charge and discharge management and power consumption control of the power supply 190 through the power management system.
  • the mobile phone 100 may also include components such as a camera, and details are not described herein again.
  • the smart watch 200 includes components such as a processor 210, a memory 220, an input unit 230, a display unit 240, a motion sensor 250, a wireless communication module 260, and a power source 270.
  • a processor 210 a memory 220
  • an input unit 230 a display unit 240
  • a motion sensor 250 a motion sensor 260
  • a wireless communication module 260 a power source 270.
  • the smart watch structure shown in FIG. 1 It does not constitute a limitation to a smart watch, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the motion sensor 250 is used to detect the motion state of the smart watch 200, and obtain motion data of the smart watch 200.
  • the motion sensor 250 can employ an acceleration sensor.
  • the acceleration value detected by the acceleration sensor can be used as the motion data of the smart watch 200, and the processor 210 determines the motion state of the smart watch 200 over a period of time based on the motion data.
  • the smart watch 200 includes a wireless communication module 260 including, but not limited to, a WiFi module 261 and a Bluetooth module 262.
  • the smart watch 200 and another device configured with a WiFi module can perform data interaction through a router or a wireless hotspot.
  • the smart watch 200 is capable of data interaction with another device configured with a Bluetooth module via the Bluetooth module 262.
  • the smart watch 200 in the embodiment of the present invention can perform data interaction with the mobile phone 100 through the wireless communication module 260.
  • the smart watch 200 can also include an RF module.
  • the smart watch 200 can perform data interaction with the mobile phone 100 through an RF circuit.
  • the memory 220 is used to store software programs and modules, and the processor 210 executes various functional applications and data processing of the smart watch 200 by running software programs and modules stored in the memory 220.
  • the memory 220 may include a high speed random access memory, and may also include a nonvolatile memory such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 210 is a control center of the smart watch 200, which connects various components of the entire smart watch 200 using various interfaces and lines, by running or executing software programs and/or modules stored in the memory 220, and by calling them stored in the memory 220.
  • the data performs various functions and data processing of the smart watch 200.
  • the processor 210 can include one or more processing units.
  • the processor 210 controls the operation of the motion sensor 250 and acquires motion data obtained by the motion sensor 250.
  • the processor 250 can instruct the wireless communication module 260 to transmit data and acquire data received by the wireless communication module 260. If the smart watch is provided with an RF circuit, the processor 250 can instruct the RF circuit to transmit data and acquire data received by the RF circuit.
  • the processor 250 obtains the first motion data of the smart watch 200 for a predetermined period of time, in response to the request for acquiring the motion data sent by the mobile phone 100, which is received by the communication interface (the WiFi module 261, the Bluetooth module 262 or the RF module), indicating the smart
  • the communication interface of the watch 200 transmits the first motion data to the handset 100.
  • the input unit 230 is for receiving input information and generating a key signal input related to user setting and function control of the smart watch 200.
  • the input unit 230 may include a touch panel and other input devices, and other input devices may include, but are not limited to, one or more of a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a joystick, and the like. . In some smart watches, you can set only the physical keyboard and function keys, and do not set the touch panel to reduce equipment costs.
  • the display unit 240 can be used to display information input by the user, information provided to the user by the smart watch 200, and various menus of the smart watch 200.
  • the display unit 240 may include a display panel 241.
  • the display panel 241 may be configured in the form of an LCD, an OLED, or the like.
  • the touch panel may cover the display panel 241. When the touch panel detects a touch operation on or near the touch panel, the touch panel transmits to the processor 210 to determine the type of the touch event, and then the processor 210 is configured according to the type of the touch event.
  • a corresponding visual output is provided on display panel 240.
  • the touch panel can be integrated with the display panel 241 to implement the input and output functions of the smart watch 200.
  • the smart watch 200 also includes a power source 270 (such as a battery) that supplies power to the various components.
  • a power source 270 such as a battery
  • the power source 270 can be logically connected to the processor 210 through the power management system, thereby implementing functions such as charge and discharge management and power consumption control of the power source 270 through the power management system.
  • FIG. 2 is a flowchart of a control method applied to the mobile phone and the smart watch shown in FIG. 1 according to an embodiment of the present invention. Includes:
  • Step S201 The mobile phone receives an input instruction in a lock screen state.
  • the user can input commands through the touch panel, and can input commands through other input devices, such as inputting commands through a physical keyboard or function keys, or inputting voice commands through a microphone.
  • the mobile phone is in a lock screen state, and the input commands include, but are not limited to, control instructions for certain applications, for example, an instruction for adjusting the output volume of the audio player, an instruction to control the audio player to play another file;
  • An instruction to switch states for example, an instruction to instruct the handset to unlock and an instruction to instruct the handset to light up.
  • indicating that the mobile phone is bright is different from indicating that the mobile phone is unlocked.
  • the display unit of the mobile phone is illuminated but the mobile phone is not unlocked, the display unit displays partial data, such as display time information, date information, incoming call notification, received instant message, or notification information for the received instant message, and the user It is not possible to directly operate on the data displayed on the display.
  • Step S202 The mobile phone sends a request for acquiring motion data to the smart watch when receiving the instruction indicating the switching state.
  • the processor of the mobile phone determines whether the instruction is an instruction indicating the switching state of the mobile phone.
  • the processor of the mobile phone receives an instruction indicating the state of the mobile phone switching state (such as an instruction indicating unlocking or an instruction indicating a bright screen)
  • the communication interface is instructed to send a request to the smart watch in the bound state.
  • the request is used to instruct the smart watch to acquire its own motion data for a predetermined period of time, and feed back the acquired motion data to the mobile phone.
  • the request carries a time parameter, and the smart watch responds to the request to obtain first motion data of its own time period characterized by the time parameter.
  • the motion data of the smart watch is recorded as the first motion data.
  • Step S203 The smart watch acquires the first motion data of itself within a predetermined time period.
  • the smart watch is equipped with a motion sensor that, under the direction of the processor of the smart watch, detects the motion state of the smart watch to obtain the motion data of the smart watch.
  • the processor of the smart watch acquires the first motion data of the smart watch for a predetermined period of time.
  • Step S204 The smart watch sends the first motion data to the mobile phone.
  • Mobile phones and smart watches can interact with each other via Bluetooth modules and Bluetooth modules.
  • the mobile phone accesses the router or the wireless hotspot through the WiFi module
  • the smart watch accesses the router or the wireless hotspot through the WiFi module, thereby performing data interaction.
  • the smart watch is equipped with an RF module
  • the mobile phone and the smart watch access the base station through respective RF modules for data interaction.
  • Step S205 The mobile phone acquires second motion data of itself within a predetermined time period.
  • the mobile phone is configured with a motion sensor, which detects the motion state of the mobile phone and obtains the motion data of the mobile phone under the instruction of the processor of the mobile phone.
  • the processor of the mobile phone acquires the second motion data of the mobile phone during the predetermined time period simultaneously with or after receiving the instruction indicating the switching state, or after instructing the communication interface to send the request for acquiring the motion data to the smart watch.
  • the motion data of the mobile phone is recorded as the second motion data.
  • the first motion data includes: an acceleration of the smart watch on a specific coordinate axis in the first three-dimensional coordinate system
  • the second motion data includes: an acceleration of the mobile phone on the specific coordinate axis in the second three-dimensional coordinate system.
  • the directions of the same coordinate axes in the first three-dimensional coordinate system and the second three-dimensional coordinate system are the same, that is, the directions of the X coordinate axes in the first three-dimensional coordinate system and the second three-dimensional coordinate system are the same, and the directions of the Y coordinate axes are consistent.
  • the direction of the Z coordinate axis is the same.
  • the specific coordinate axis is a first coordinate axis, and the first coordinate axis is any one of an X coordinate axis, a Y coordinate axis, and a Z coordinate axis.
  • the specific coordinate axis is a first coordinate axis and a second coordinate axis, and the first coordinate axis and the second coordinate axis are any two of an X coordinate axis, a Y coordinate axis, and a Z coordinate axis.
  • the specific coordinate axes are an X coordinate axis, a Y coordinate axis, and a Z coordinate axis.
  • the first motion data includes an acceleration of the smart watch on the X coordinate axis in the first three-dimensional coordinate system
  • the second motion data includes an acceleration of the mobile phone on the X coordinate axis in the second three-dimensional coordinate system.
  • the first motion data includes accelerations of the smart watch on the X coordinate axis and the Y coordinate axis in the first three-dimensional coordinate system
  • the second motion data includes the X coordinate axis and the Y coordinate axis of the mobile phone in the second three-dimensional coordinate system. Acceleration on.
  • the first motion data includes accelerations of the smart watch in the first three-dimensional coordinate system on the X coordinate axis, the Y coordinate axis, and the Z coordinate axis
  • the second motion data includes the X coordinate axis and the Y coordinate of the mobile phone in the second three-dimensional coordinate system. Acceleration on the axis and the Z coordinate axis.
  • the first three-dimensional coordinate system and the second three-dimensional coordinate system may be a world coordinate system or a user coordinate system.
  • the first three-dimensional coordinate system and the second three-dimensional coordinate system in the embodiment of the present invention are defined as follows: the positive direction of the X-axis points from the coordinate origin to the right side, and the positive direction of the Y-axis points from the coordinate origin to the lower side.
  • the positive direction of the Z axis is the outer side of the plane formed by the coordinate origin from the X axis and the Y axis, that is, the direction away from the user.
  • Step S206 The mobile phone calculates a deviation value of the first motion data and the second motion data in the predetermined time period.
  • the processor of the mobile phone acquires the first motion data received by the wireless communication module or the RF module, acquires the second motion data obtained by the motion sensor of the mobile phone, and calculates the deviation amount of the first motion data and the second motion data.
  • the processor of the mobile phone calculates a deviation value of the first motion data and the second motion data within a predetermined time period, including:
  • the first motion data and the second motion data are respectively sampled at M sampling moments in the predetermined time period to obtain M first acceleration sampling sets and M second acceleration sampling sets.
  • M is an integer greater than one.
  • calculating one way of calculating the acceleration deviation amount of the i-th sampling time is: calculating a difference value of the acceleration sampling values on the same coordinate axis in the i-th first acceleration sampling set and the i-th second acceleration sampling set; The sum of the absolute values of the differences, which is the amount of acceleration deviation at the ith sampling instant.
  • Another way of calculating the acceleration deviation amount at the i-th sampling time is to calculate the difference of the acceleration sampling values on the same coordinate axis in the i-th first acceleration sampling set and the i-th second acceleration sampling set; The sum of the squared values of the values, which is the amount of acceleration deviation at the ith sampling instant.
  • Step S207 When the deviation value is less than the deviation value threshold, the mobile phone switches the state of the terminal in response to the instruction.
  • the processor After calculating the deviation value of the first motion data and the second motion data, if the calculated deviation value is less than the deviation value threshold, the processor switches the mobile phone from the lock screen state to the instruction instruction in response to the instruction indicating the switching state. The status of the indication.
  • the motion state of the smart watch and the mobile phone are similar, and the deviation of the motion data of the two is small, and the two can be considered to be synchronous motion. If other people pick up the user's mobile phone, the deviation of the motion data of the mobile phone and the smart watch is large. Therefore, if the deviation value of the motion data of the mobile phone and the smart watch in the predetermined time period is less than the deviation value threshold, it may be determined that the instruction indicating the switching state received by the mobile phone is generated by the user performing the operation of the mobile phone, and the mobile phone responds to the instruction, and switches status.
  • the deviation value of the motion data of the mobile phone and the smart watch in the predetermined time period is greater than or equal to the deviation value threshold, it may be determined that the instruction indicating the switching state received by the mobile phone is generated by another person performing the operation, and the mobile phone does not respond to the instruction, thereby avoiding The information in the phone is leaked to other people.
  • the instruction for indicating the state of the mobile phone switching includes an instruction for unlocking the mobile phone and an instruction for indicating that the mobile phone is bright.
  • the mobile phone receives an instruction to instruct the mobile phone to unlock, the mobile phone performs an unlocking operation in response to the instruction indicating that the deviation is less than the deviation threshold, and the mobile phone enters an unlocked state after being unlocked, and the unlocked state may also be referred to as a normal operation. status. If the mobile phone receives an instruction indicating that the mobile phone is bright, the mobile phone illuminates the display screen in response to the instruction indicating the bright screen when determining that the deviation value is less than the deviation value threshold.
  • the first motion data in the embodiment of the present invention is: an acceleration of the smart watch in the first coordinate axis and the second coordinate axis in the first three-dimensional coordinate system
  • the second motion data is: the second three-dimensional coordinate of the mobile phone
  • the first three-dimensional coordinate system and the second three-dimensional coordinate system include an X coordinate axis, a Y coordinate axis, and a Z coordinate axis
  • the first coordinate axis and the second coordinate axis are any one of an X coordinate axis, a Y coordinate axis, and a Z coordinate axis. Two axes.
  • the processor of the mobile phone calculates the deviation values of the first motion data and the second motion data in the predetermined time period, specifically:
  • the first motion data and the second motion data are respectively sampled to obtain M first acceleration sampling sets and M second acceleration sampling sets.
  • the first motion data is sampled at M sampling moments, M first acceleration sampling sets are obtained, and the second motion data is sampled at M sampling moments to obtain M second acceleration sampling sets, where M is an integer greater than 1.
  • the i-th first acceleration sampling set is obtained by sampling the first motion data at the ith sampling moment, and includes: an acceleration of the smart watch on the first coordinate axis and the second coordinate axis at the ith sampling moment sample value.
  • the acceleration deviation amount of the ith sampling moment is obtained by using the ith first acceleration sampling set and the ith second acceleration sampling set, the difference of the acceleration sampling values on the first coordinate axis, and the second coordinate axis The difference between the acceleration sample values is calculated.
  • the processor of the mobile phone can calculate the acceleration deviation amount of any one of the M sampling moments in a plurality of manners.
  • a method of calculating an acceleration deviation amount at the i-th sampling time calculating a difference between the acceleration sampling values on the first coordinate axis and the difference in the i-th first acceleration sampling set and the i-th second acceleration sampling set Recorded as the first difference; calculating the difference between the acceleration sample values on the second coordinate axis in the i-th first acceleration sample set and the i-th second acceleration sample set, the difference being recorded as the second difference; The sum of the absolute value of the first difference and the absolute value of the second difference, the sum being the amount of acceleration deviation of the i-th sampling instant.
  • Another way for the processor of the mobile phone to calculate the amount of acceleration deviation at the i-th sampling instant is to calculate the difference between the acceleration sample values on the first coordinate axis in the i-th first acceleration sample set and the i-th second acceleration sample set. a value, the difference is recorded as a first difference; calculating a difference between the acceleration sample values on the second coordinate axis in the i-th first acceleration sample set and the i-th second acceleration sample set, the difference is recorded as a second difference value; a sum of a square value of the first difference and a square value of the second difference, the sum value being used as the acceleration deviation amount of the i-th sampling time.
  • the first motion data in the embodiment of the present invention is: acceleration of the smart watch on three coordinate axes in the first three-dimensional coordinate system;
  • the second motion data is: three coordinates of the mobile phone in the second three-dimensional coordinate system Acceleration on the shaft.
  • the processor of the mobile phone calculates the deviation values of the first motion data and the second motion data, specifically:
  • the first motion data and the second motion data are respectively sampled to obtain M first acceleration sampling sets and M second acceleration sampling sets.
  • the first motion data is sampled at M sampling moments, M first acceleration sampling sets are obtained, and the second motion data is sampled at M sampling moments to obtain M second acceleration sampling sets, where M is an integer greater than 1.
  • the ith first acceleration sampling set is obtained by sampling the first motion data at the ith sampling moment, and includes: at the ith sampling moment, the smart watch is on the X coordinate axis, the Y coordinate axis, and the Z coordinate axis. Acceleration sample value.
  • the acceleration deviation amount at the i-th sampling time is obtained by using the ith first acceleration sampling set and the ith second acceleration sampling set, the difference of the acceleration sampling values on the X coordinate axis, and the acceleration sampling on the Y coordinate axis. The difference between the value and the difference between the acceleration sample values on the Z coordinate axis is calculated.
  • the processor of the mobile phone can calculate the acceleration deviation amount of any one of the M sampling moments in a plurality of manners.
  • the acceleration deviations of the smart watch and the mobile phone from sampling time 1 to sampling time 8 are: 0.09, 0.08, 0.05, 0.11, 0.08, 0.12, 0.07, 0.04.
  • Another way for the processor of the mobile phone to calculate the amount of acceleration deviation at the i-th sampling instant is to calculate the difference between the acceleration sample values on the X-axis and the i-th second acceleration sample set and the i-th second acceleration sample set.
  • the difference is recorded as a third difference; the difference between the acceleration sample values on the Y coordinate axis of the i-th first acceleration sample set and the i-th second acceleration sample set is calculated, and the difference is recorded as the fourth difference a value; calculating a difference between the acceleration sample values on the Z coordinate axis in the i-th first acceleration sample set and the i-th second acceleration sample set, the difference being recorded as a fifth difference; calculating a square of the third difference The sum of the value, the square of the fourth difference, and the square of the fifth difference, which is the amount of acceleration deviation at the ith sampling instant.
  • the first motion data in the embodiment of the present invention includes: an acceleration of the smart watch on the first coordinate axis in the first three-dimensional coordinate system;
  • the second motion data includes: the first coordinate of the mobile phone in the second three-dimensional coordinate system Acceleration on the shaft.
  • the first three-dimensional coordinate system and the second three-dimensional coordinate system include an X coordinate axis, a Y coordinate axis, and a Z coordinate axis, and the first coordinate axis is any one of an X coordinate axis, a Y coordinate axis, and a Z coordinate axis.
  • FIG. 3 is a flowchart of another control method applied to the mobile phone and the smart watch shown in FIG. 1 according to an embodiment of the present invention. include:
  • Step S301 The motion sensor inside the mobile phone control is in an on state, and stores motion data generated by the motion sensor.
  • the mobile phone is configured with a motion sensor, and the processor of the mobile phone indicates that the motion sensor is in an open state, and the motion sensor detects the motion state of the mobile phone to obtain motion data of the mobile phone, and the memory of the mobile phone stores motion data obtained by the motion sensor.
  • Step S302 The motion sensor inside the smart watch control is in an on state, and stores motion data generated by the motion sensor.
  • the smart watch is configured with a motion sensor.
  • the processor of the smart watch indicates that the motion sensor is in an open state, and the motion sensor detects the motion state of the smart watch to obtain motion data of the smart watch, and the memory of the smart watch stores motion data obtained by the motion sensor.
  • Step S303 The mobile phone receives an input instruction in a lock screen state.
  • Step S304 The mobile phone sends a request for acquiring motion data to the smart watch when receiving the instruction indicating the switching state.
  • the processor of the mobile phone determines whether the instruction is an instruction indicating the switching state of the mobile phone.
  • the communication interface is instructed to send a request to the smart watch in the bound state.
  • the request is for instructing the smart watch to transmit motion data within a predetermined time period, the predetermined time period is before the first time, and the difference between the end time of the predetermined time period and the first time is less than or equal to the first time Threshold.
  • the first moment is a moment when the mobile phone receives an instruction indicating a handover state of the mobile phone.
  • the request carries a time parameter that characterizes a time period prior to the first time instant, and the smart watch, in response to the request, acquires first motion data of its own time period characterized by the time parameter.
  • Step S305 The smart watch acquires the first motion data in the predetermined time period before the first time.
  • Step S306 The smart watch sends the first motion data to the mobile phone.
  • the motion sensor of the smart watch is turned on, and can detect the movement state of the smart watch to obtain the number of movements of the smart watch. According to this, the motion data is stored in the memory of the smart watch.
  • the processor of the smart watch responds to the request sent by the mobile phone, and obtains the first motion data in the predetermined time period before the first moment from the motion data stored in the memory, and instructs the communication interface of the smart watch to send the acquired first motion to the mobile phone. data.
  • the mobile phone and the smart watch perform data interaction through respective wireless communication modules or RF circuits, and the specific interaction manner can be referred to the above description.
  • Step S307 The mobile phone acquires the second motion data in the predetermined time period before the first time.
  • the motion sensor of the mobile phone is in an open state, and can detect the motion state of the mobile phone to obtain motion data of the mobile phone, and the motion data is stored in the memory of the mobile phone.
  • the processor of the mobile phone obtains the first time from the motion data stored in the memory, simultaneously with or after receiving the instruction indicating the state of the mobile phone switching state, or after instructing the communication interface to send the request for acquiring the motion data to the smart watch. Second exercise data for the previous predetermined time period.
  • Step S308 The mobile phone calculates a deviation value of the first motion data and the second motion data in the predetermined time period.
  • the data included in the first motion data and the second motion data, and the manner in which the processor of the mobile phone calculates the deviation values of the first motion data and the second motion data can be referred to the above description. .
  • Step S309 When the deviation value is less than the deviation value threshold, the mobile phone switches from the lock screen state to the state indicated by the instruction in response to the instruction.
  • the motion sensor of the mobile phone is in an open state, and the motion state of the mobile phone is detected to obtain the motion data of the mobile phone, and the motion data is stored in the memory of the mobile phone; the motion sensor of the smart watch is turned on, and the smart watch is detected.
  • the motion state is obtained by the motion data of the smart watch, and the motion data is stored in the memory of the smart watch.
  • the mobile phone After receiving the instruction indicating the switching state, acquires the second motion data of the device in the predetermined time period before the first time from the motion data stored in the internal memory, and receives the first motion data sent by the smart watch.
  • the first motion data is acquired by the smart watch in the motion data stored in the internal memory, and the mobile phone determines whether to perform state switching in response to the instruction based on the deviation values of the two sets of motion data.
  • the mobile phone can quickly acquire the motion data for determining whether to respond to the instruction to perform state switching, thereby completing the determination process of whether to respond to the instruction to perform state switching as soon as possible, and improving the mobile phone.
  • the speed of response by setting the difference between the termination time and the first time of the predetermined time period to be less than or equal to the first time threshold, it is possible to reduce the operation execution state of the terminal in response to the operation of the other user within a period of time after the user of the terminal drops the terminal. The probability of handover can further reduce the possibility that information in the terminal is leaked.
  • the first time threshold may be set to zero.
  • FIG. 4 is a flowchart of another control method applied to the mobile phone and the smart watch shown in FIG. 1 according to an embodiment of the present invention. include:
  • Step S401 The mobile phone receives an input instruction in a lock screen state.
  • Step S402 When receiving the instruction indicating the switching state, the mobile phone sends a request for acquiring the motion data to the smart watch.
  • the processor of the mobile phone determines whether the instruction is an instruction indicating the switching state of the mobile phone.
  • the communication interface is instructed to send a request to the smart watch in the bound state.
  • the request is for instructing the smart watch to transmit motion data within a predetermined time period after the first time, and the difference between the start time and the first time of the predetermined time period is less than or equal to the first Time threshold.
  • the first moment is a moment when the mobile phone receives an instruction indicating a handover state of the mobile phone.
  • the request carries a time parameter that characterizes a time period after the first time instant, and the smart watch responds to the request to obtain motion data for itself within the time period characterized by the time parameter.
  • Step S403 The smart watch acquires the first motion data of itself within a predetermined time period after the first time.
  • Step S404 The smart watch sends the first motion data to the mobile phone.
  • the motion sensor of the smart watch detects the motion state of the smart watch under the direction of the processor of the smart watch to obtain the motion data of the smart watch, and the motion data is stored in the memory of the smart watch.
  • the processor of the smart watch responds to the request sent by the mobile phone from the memory or The first motion data within a predetermined time period after the first moment is directly obtained directly from the motion sensor, and the communication interface of the smart watch is instructed to send the first motion data to the mobile phone.
  • the mobile phone and the smart watch exchange data through respective wireless communication modules or RF circuits.
  • Step S405 The mobile phone acquires the second motion data in the predetermined time period after the first time.
  • the processor of the mobile phone acquires the second motion data of the mobile phone within a predetermined time period after the first time.
  • the motion sensor of the mobile phone can be set to the off state by default.
  • the processor of the mobile phone When receiving the instruction indicating the switching state, the processor of the mobile phone indicates that the motion sensor of the mobile phone is turned on, so that the motion sensor detects the motion state of the mobile phone within a predetermined time period after the first time to obtain the second motion data, and the motion sensor is turned on. After the time reaches the predetermined length of time, the processor of the mobile phone controls the motion sensor to be turned off.
  • Step S406 The mobile phone calculates a deviation value of the first motion data and the second motion data in the predetermined time period.
  • the data included in the first motion data and the second motion data, and the manner in which the processor of the mobile phone calculates the deviation values of the first motion data and the second motion data can be referred to the above description. .
  • Step S407 When the deviation value is less than the deviation value threshold, the mobile phone switches from the lock screen state to the state indicated by the instruction in response to the instruction.
  • the mobile phone After receiving the instruction indicating the switching state, the mobile phone acquires the motion data of the device and the smart watch within a predetermined time period after the first time, and determines whether to perform the state switching based on the deviation values of the two sets of motion data.
  • This allows the mobile phone to indicate that the motion sensor of the mobile phone is turned on for a period of time only after receiving the instruction indicating the switching state, thereby reducing the power consumption of the mobile phone, and the smart watch can indicate the smart only when receiving the request for acquiring the motion data sent by the mobile phone.
  • the watch's motion sensor is turned on for a while, reducing the power consumption of the smart watch.
  • the terminal can obtain the instruction for indicating the switching state as soon as possible after receiving the instruction for determining the switching state.
  • the motion data of the state switching is performed, and the determination process of whether or not to perform the state switching can be completed as soon as possible, thereby improving the response speed of the terminal.
  • the first time threshold may be set to zero.
  • the mobile phone after responding to the instruction indicating the unlocking, the mobile phone further includes: determining, according to the second motion data of the mobile phone in the predetermined time period, the motion range of the mobile phone during the predetermined time period. And using the mapping relationship between the pre-stored amplitude interval and the operation mode, determining an operation mode corresponding to the amplitude interval to which the motion amplitude belongs; controlling the mobile phone to enter an operation mode corresponding to the amplitude interval to which the motion amplitude belongs.
  • the memory of the mobile phone stores a mapping relationship between the amplitude interval and the operation mode, and there is no overlap between the amplitude ranges, and different amplitude intervals correspond to different operation modes.
  • the operating modes of the mobile phone include, but are not limited to, a working mode, a learning mode, a casual mode, a guest mode, and a power saving mode.
  • the user can hold the mobile phone by using the hand wearing the smart watch, and the arm can trigger the mobile phone to perform the unlocking operation in response to the instruction indicating the unlocking, and the user can adjust the movement range of the arm within the predetermined time period.
  • the mobile phone can be triggered to enter an operation mode corresponding to the amplitude range of the mobile phone's motion range after performing the unlocking operation, so that the user can conveniently and quickly control the mobile phone to directly enter the corresponding operation mode.
  • the mobile phone after responding to the instruction indicating the unlocking, the mobile phone further includes: determining, according to the second motion data of the mobile phone in the predetermined time period, the displacement of the mobile phone within the predetermined time period; Using the mapping relationship between the pre-stored displacement interval and the operation mode, determine the operation mode corresponding to the displacement interval to which the displacement belongs, and control the mobile phone to enter the operation mode corresponding to the displacement interval to which the displacement belongs. formula.
  • the memory of the mobile phone stores a mapping relationship between the displacement interval and the operation mode, and there is no overlap between the displacement intervals, and different displacement intervals correspond to different operation modes.
  • the user can hold the mobile phone by using the hand wearing the smart watch, and the arm can trigger the mobile phone to perform the unlocking operation in response to the instruction indicating the unlocking, and the user adjusts the displacement of the arm within the predetermined time period. Adjusting the displacement of the mobile phone can trigger the mobile phone to enter an operation mode corresponding to the displacement interval of the displacement of the mobile phone after performing the unlocking operation, so that the user can conveniently and quickly control the mobile phone to directly enter the corresponding operation mode.
  • the embodiment of the present invention uses the mobile phone and the smart watch shown in FIG. 1 as an example to describe the control method for the terminal and the smart wearable device.
  • the above control method can be directly used. Applied to other terminals and smart wearable devices.
  • the embodiment of the present invention further provides a terminal, which includes: an input unit, a motion sensor, a communication interface, and a processor. See the structure of the mobile phone 100 in FIG.
  • the input unit is configured to receive an instruction indicating a handover state of the terminal in a terminal lock screen state.
  • the processor is configured to: in response to the instruction indicating the switching state of the terminal, instruct the communication interface to send a request for acquiring the motion data to the smart wearable device, acquire the first motion data of the smart wearable device in the predetermined time period, and acquire the terminal within the predetermined time period
  • the second motion data calculates a deviation value of the first motion data and the second motion data within a predetermined time period, and if the deviation value is less than the deviation value threshold, switches the state of the terminal.
  • a communication interface configured to send a request for acquiring the motion data to the smart wearable device, and receive the first motion data of the smart wearable device sent by the smart wearable device for a predetermined period of time.
  • the motion sensor is configured to detect a motion state of the terminal, and obtain second motion data of the terminal within the predetermined time period.
  • the predetermined time period is before the first time, and the difference between the end time of the predetermined time period and the first time is less than or equal to the first time threshold.
  • the first time is a time when the terminal receives an instruction indicating a handover state of the terminal.
  • the motion sensor of the terminal detects the motion state of the terminal, and obtains the second motion data of the terminal in the predetermined time period, specifically: the motion sensor detects the motion state of the terminal, and obtains the second motion of the terminal within a predetermined time period before the first time. Data, the difference between the end time of the predetermined time period and the first time is less than or equal to the first time threshold.
  • the processor of the terminal instructs the communication interface to send the request for acquiring the motion data to the smart wearable device, specifically: the processor instructs the communication interface to send, to the smart wearable device, a request for acquiring the motion data of the smart wearable device within a predetermined time period before the first time, The difference between the end time of the predetermined time period and the first time is less than or equal to the first time threshold.
  • the predetermined time period is after the first time, and the difference between the start time and the first time of the predetermined time period is less than or equal to the first time threshold.
  • the motion sensor of the terminal detects the motion state of the terminal, and obtains the second motion data of the terminal in the predetermined time period, specifically: the motion sensor detects the motion state of the terminal, and obtains the second motion of the terminal within a predetermined time period after the first time. Data, the difference between the start time and the first time of the predetermined time period is less than or equal to the first time threshold.
  • the processor of the terminal instructs the communication interface to send the request for acquiring the motion data to the smart wearable device, specifically: the processor instructs the communication interface to send, to the smart wearable device, a request for acquiring the motion data of the smart wearable device within a predetermined time period after the first time, The difference between the start time and the first time of the predetermined time period is less than or equal to the first time threshold.
  • the first time threshold is set to zero.
  • the first motion data acquired by the processor of the terminal includes acceleration on a specific coordinate axis in the first three-dimensional coordinate system of the smart wearable device
  • the second motion data acquired by the processor of the terminal includes the second three-dimensional coordinate of the terminal.
  • the acceleration on a particular axis in the system.
  • the directions of the same coordinates of the first three-dimensional coordinate system and the second three-dimensional coordinate system are identical.
  • the communication interface of the terminal receives the first motion data of the smart wearable device sent by the smart wearable device in a predetermined time period, and specifically includes: the communication interface receives the first three-dimensional coordinate of the smart wearable device sent by the smart wearable device within a predetermined time period The acceleration on a particular axis in the system.
  • the motion sensor of the terminal detects the motion state of the terminal, and obtains the second motion data of the terminal in the predetermined time period, specifically: the motion sensor detects the motion state of the terminal, and obtains that the terminal is specific in the second three-dimensional coordinate system within a predetermined time period. Acceleration on the coordinate axis.
  • the processor of the terminal calculates the deviation values of the first motion data and the second motion data, and specifically includes:
  • the processor samples the first motion data and the second motion data respectively at M sampling moments in the predetermined time period, and obtains M first acceleration sampling sets and M second acceleration sampling sets, where M is greater than 1.
  • the process of calculating the amount of acceleration deviation at each sampling instant by the processor is described in the foregoing.
  • the processor of the terminal is further configured to: determine, according to the second motion data of the terminal in the predetermined time period, a motion amplitude of the terminal in the predetermined time period, and use a mapping relationship between the pre-stored amplitude interval and the operation mode, The operation mode corresponding to the amplitude interval to which the motion amplitude belongs is determined, and the control terminal enters an operation mode corresponding to the amplitude interval to which the motion amplitude belongs.
  • the processor of the terminal is further configured to: determine, according to the second motion data of the terminal in the predetermined time period, a displacement of the terminal in the predetermined time period; determine, by using a mapping relationship between the pre-stored displacement interval and the operation mode, In an operation mode corresponding to the displacement interval to which the displacement belongs, the control terminal enters an operation mode corresponding to the displacement interval to which the displacement belongs.
  • the embodiment of the invention further discloses a smart wearable device, which comprises a motion sensor, a communication interface and a processor. See the structure of the smart watch in FIG. 1 .
  • the communication interface is configured to receive a request for acquiring motion data sent by the terminal.
  • the processor is configured to obtain, according to the request for acquiring the motion data, the first motion data of the smart wearable device for a predetermined period of time, and instruct the communication interface to send the first motion data to the terminal.
  • the motion sensor is configured to detect a motion state of the smart wearable device, and obtain first motion data of the smart wearable device within a predetermined time period.
  • the smart wearable device When receiving the request for acquiring motion data sent by the terminal bound to the terminal, the smart wearable device acquires the first motion data of the device within a predetermined time period, and sends the acquired first motion data to the terminal, so that the terminal utilizes the receiving The obtained first motion data and the second motion data of the terminal within the predetermined time period determine whether to perform state switching. Since the terminal performs state switching only in response to the instruction indicating the switching state when the deviation value of the first motion data and the second motion data is less than the deviation value threshold, the smart wearable device can perform state switching with the terminal and reduce information in the terminal. The possibility of being leaked.
  • the motion sensor of the smart wearable device detects the motion state of the smart wearable device, and obtains the first motion data of the smart wearable device for a predetermined period of time, specifically: the motion sensor detects the motion state of the smart wearable device, and obtains the smart wearable device.
  • the second motion data in the predetermined time period before the first time, the difference between the end time of the predetermined time period and the first time is less than or equal to the first time threshold.
  • the motion sensor of the smart wearable device detects the motion state of the smart wearable device, and obtains the first motion data of the smart wearable device for a predetermined period of time, specifically: the motion sensor detects the motion state of the smart wearable device, and obtains the smart wearable device.
  • the second motion data in the predetermined time period after the first time, the difference between the start time and the first time of the predetermined time period is less than or equal to the first time threshold.
  • the embodiment of the invention further discloses a system, comprising the terminal and the smart wearable device, wherein the terminal and the smart wearable device are in a binding state.
  • a system comprising the terminal and the smart wearable device, wherein the terminal and the smart wearable device are in a binding state.
  • the descriptions of the terminal, the smart wearable device, and the system are relatively simple, and the functions thereof can be referred to the related description about the control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Environmental & Geological Engineering (AREA)
  • Telephone Function (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本发明涉及电子设备控制技术领域,尤其涉及对终端状态切换的控制技术。在一种控制方法中,终端在锁屏状态下接收到指示切换状态的指令时,获取本设备以及与其处于绑定状态的智能穿戴设备在预定时间段内的运动数据,如果两组运动数据的偏差值小于偏差值阈值,则终端进行状态切换。通过本发明提供的方案,在智能穿戴设备的配合下实现终端的状态切换,并能够降低终端中信息被泄露的可能性。

Description

终端的控制方法、终端、智能穿戴设备和系统
本申请要求于2016年08月26日提交中国专利局、申请号为201610738550.2、发明名称为“终端的控制方法、终端、智能穿戴设备和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子设备控制技术领域,尤其涉及终端的控制方法、终端、智能穿戴设备和系统。
背景技术
随着科技的快速发展,智能穿戴设备得到广泛应用,例如腕戴式智能设备。其中,腕戴式智能设备是指能够固定在用户腕部的智能设备,如智能手环或者智能手表。
目前,通过智能穿戴设备与终端(如手机和平板电脑)的协同配合,能够实现更加丰富的功能。例如,目前出现了利用智能手环实现手机解锁的技术方案。该技术方案为:用户预先绑定智能手环和手机,当用户在手机输入解锁指令后,如果手机能够通过蓝牙模块识别到已绑定的智能手环,则执行解锁操作。基于上述技术方案,如果用户的智能手环和手机处于蓝牙模块的通信范围内,那么当用户在手机输入解锁指令后,手机执行解锁操作。
但是,基于上述技术方案,在用户的智能手环和手机的距离较近的情况下,当其他用户在该手机输入解锁指令时,该手机也会执行解锁操作,会造成手机中信息的泄露。
发明内容
有鉴于此,本发明提供终端、智能穿戴设备、系统及终端的控制方法,在通过智能穿戴设备的配合实现终端的状态切换的前提下,降低终端中信息被泄露的可能性。
为了实现上述目的,本发明实施例提供的技术方案如下:
一方面,本发明实施例提供一种终端的控制方法,所述终端与智能穿戴设备处于绑定状态,所述控制方法包括:
在锁屏状态下,当接收到指示所述终端切换状态的指令时,向所述智能穿戴设备发送获取运动数据的请求;接收所述智能穿戴设备发送的所述智能穿戴设备在预定时间段内的第一运动数据;获取所述终端在所述预定时间段内的第二运动数据;计算所述第一运动数据和所述第二运动数据的偏差值;若所述偏差值小于偏差值阈值,则响应所述指令,切换所述终端的状态。
终端在接收到指示切换状态的指令后,计算本设备与智能穿戴设备在预定时间段内的运动数据的偏差值,终端只有在偏差值小于偏差值阈值时才响应指示切换状态的指令,切换终端的状态。用户通常将智能穿戴设备佩戴在身上,在其他人员拿起该用户的终端的情况下,由于终端和智能穿戴设备在不同人员身上,因此终端和智能穿戴设备在同一时间段内的运动数据会存在很大差异,即便其他人员在终端输入切换状态的指令,也很难触发终端进行状态切换,从而能够降低终端中的信息被泄露的可能性。
在一个可能的设计中,该预定时间段在第一时刻之前,并且该预定时间段的终止时刻与第一时刻之间的差值小于或等于第一时间阈值,其中,第一时刻为终端接收到指示切换状态的指令的时刻。
终端在接收到指示切换状态的指令后,获取本设备和智能手表在第一时刻之前的预定时间段内的运 动数据,并基于两组运动数据的偏差值来判断是否进行状态切换。这使得终端在接收到指示切换状态的指令后,能够尽快地获取到用于判断是否进行状态切换的运动数据,从而能够尽快地完成是否要进行状态切换的判断过程,提高终端的响应速度。另外,通过设置该预定时间段的终止时刻与第一时刻之间的差值小于或等于第一时间阈值,能够降低在终端的用户放下终端后的一段时间内,终端响应其他用户的操作执行状态切换的概率,能够进一步降低终端中的信息被泄露的可能性。
在一个可能的设计中,该预定时间段在第一时刻之后,并且该预定时间段的起始时刻与第一时刻之间的差值小于或等于第一时间阈值。
终端在接收到指示切换状态的指令后,获取本设备和智能手表在第一时刻之后的预定时间段内的运动数据,并基于两组运动数据的偏差值来判断是否进行状态切换。这使得终端可以仅在接收到指示切换状态的指令后,指示运动传感器开启一段时间,从而降低终端的功耗,当然智能穿戴设备可以仅在接收到终端发送的获取运动数据的请求后,指示自身的运动传感器开启一段时间,从而降低智能穿戴设备的功耗。另外,通过设置该预定时间段的起始时刻与第一时刻之间的差值小于或等于第一时间阈值,使得终端在接收到指示切换状态的指令后,能够尽快地获取到用于判断是否进行状态切换的运动数据,相应的能够尽快地完成是否进行状态切换的判断过程,提高终端的响应速度。
在一个可能的设计中,该第一时间阈值设置为0。
在一个可能的设计中,所述第一运动数据包括所述智能穿戴设备在第一三维坐标系中特定坐标轴上的加速度;所述第二运动数据为所述终端在第二三维坐标系中所述特定坐标轴上的加速度。其中,第一三维坐标系和第二三维坐标系的相同坐标轴的方向一致,也就是说,第一三维坐标系和第二三维坐标系的X坐标轴的方向一致、Y坐标轴的方向一致、Z坐标轴的方向一致。
在一个可能的设计中,终端计算所述第一运动数据和所述第二运动数据的偏差值,包括:
在所述预定时间段中的M个采样时刻,分别对所述第一运动数据和所述第二运动数据进行采样,获得M个第一加速度采样集和M个第二加速度采样集,其中M为大于1的整数;利用所述M个第一加速度采样集和所述M个第二加速度采样集,分别计算得到在M个采样时刻的加速度偏差量,其中,第i个采样时刻的加速度偏差量,利用第i个第一加速度采样集和第i个第二加速度采样集中同一坐标轴上加速度采样值的差值计算得到,其中i=1,2,…M;计算所述M个采样时刻的加速度偏差量的平均值,所述平均值为所述第一运动数据和所述第二运动数据的偏差值。
终端在M个采样时刻分别对第一运动数据和第二运动数据进行采样,获得M个第一加速度采样集和M个第二加速度采样集,利用M个第一加速度采样集和M个第二加速度采样集,分别计算终端和智能穿戴设备在M个采样时刻的加速度偏差量,并计算M个加速度偏差量的平均值,该平均值能够准确地反映终端和智能穿戴设备的运动状态之间的差异,将该平均值作为终端判断是否响应状态切换指令进行状态切换的依据,能够准确的控制终端的运行。
在一个可能的设计中,终端计算第i个采样时刻的加速度偏差量,包括:
计算在第i个第一加速度采样集和第i个第二加速度采样集中同一坐标轴上加速度采样值的差值;计算各差值的绝对值的和值,所述和值为第i个采样时刻的加速度偏差量。
在一个可能的设计中,终端计算第i个采样时刻的加速度偏差量,包括:
计算在第i个第一加速度采样集和第i个第二加速度采样集中同一坐标轴上加速度采样值的差值;计算各差值的平方值的和值,所述和值为第i个采样时刻的加速度偏差量。
在一个可能的设计中,所述指示所述终端切换状态的指令包括:指示所述终端解锁的指令和/或指 示所述终端亮屏的指令。
在一个可能的设计中,在响应指示所述终端解锁的指令之后,还包括:
根据所述第二运动数据,确定所述终端在所述预定时间段内的运动幅度;利用预存的幅度区间和运行模式的映射关系,确定与所述运动幅度所属幅度区间对应的运行模式;控制所述终端进入与所述运动幅度所属幅度区间对应的运行模式。
用户通过使用佩戴有智能穿戴设备的手握持终端,并运动手臂就能够触发终端响应指示终端解锁的指令进行解锁操作,而且,用户通过调整手臂在预定时间段内的运动幅度来调整终端的运动幅度,就能够触发终端在执行解锁操作后,进入与终端的运动幅度所属幅度区间对应的运行模式,使得用户方便快捷地控制终端直接进入相应的运行模式。
另一方面,本发明实施例提供一种终端,所述终端与智能穿戴设备处于绑定状态,所述终端包括:
输入单元,用于在所述终端锁屏状态下,接收指示所述终端切换状态的指令;
处理器,用于响应所述指令,指示通信接口向智能穿戴设备发送获取运动数据的请求,获取所述智能穿戴设备在预定时间段内的第一运动数据,获取所述终端在所述预定时间段内的第二运动数据,计算所述第一运动数据和所述第二运动数据的偏差值,若所述偏差值小于偏差值阈值,则切换所述终端的状态;
所述通信接口,用于响应所述处理器的指示,向所述智能穿戴设备发送获取运动数据的请求,接收所述智能穿戴设备发送的所述智能穿戴设备在预定时间段内的第一运动数据;
所述运动传感器,用于检测所述终端的运动状态,得到所述终端在所述预定时间段内的第二运动数据。
在一个可能的设计中,所述通信接口接收所述智能穿戴设备发送的所述智能穿戴设备在所述预定时间段内的第一运动数据,具体包括:所述通信接口接收所述智能穿戴设备发送的,在所述预定时间段内所述智能穿戴设备在第一三维坐标系中特定坐标轴上的加速度;所述运动传感器检测所述终端的运动状态,得到所述终端在预定时间段内的第二运动数据,具体包括:所述运动传感器检测所述终端的运动状态,得到在所述预定时间段内所述终端在第二三维坐标系中所述特定坐标轴上的加速度。其中,第一三维坐标系和第二三维坐标系的相同坐标轴的方向一致。
也就是说,所述终端的处理器获取到的第一运动数据包括:在预定时间段内所述智能穿戴设备在第一三维坐标系中特定坐标轴上的加速度,所述处理器获取到的第二运动数据包括:在预定时间段内所述终端在第二三维坐标系中所述特定坐标轴上的加速度。
在一个可能的设计中,所述终端的处理器计算所述第一运动数据和所述第二运动数据的偏差值具体包括:
所述处理器在所述预定时间段中的M个采样时刻,分别对所述第一运动数据和所述第二运动数据进行采样,获得M个第一加速度采样集和M个第二加速度采样集,其中M为大于1的整数;利用所述M个第一加速度采样集和所述M个第二加速度采样集,分别计算得到在M个采样时刻的加速度偏差量,其中,第i个采样时刻的加速度偏差量,利用第i个第一加速度采样集和第i个第二加速度采样集中同一坐标轴上加速度采样值的差值计算得到,其中i=1,2,…M;计算所述M个采样时刻的加速度偏差量的平均值,所述平均值为所述第一运动数据和所述第二运动数据的偏差值。
在一个可能的设计中,所述终端的入单元接收指示所述终端切换状态的指令,具体包括:所述输入单元接收指示所述终端解锁的指令和/或接收指示所述终端亮屏的指令。
在一个可能的设计中,所述终端的处理器还用于:根据所述终端在所述预定时间段内的第二运动数据,确定所述终端在所述预定时间段内的运动幅度,利用预存的幅度区间和运行模式的映射关系,确定与所述运动幅度所属幅度区间对应的运行模式,控制所述终端进入与所述运动幅度所属幅度区间对应的运行模式。
另一方面,本发明实施例提供一种智能穿戴设备,所述智能穿戴设备与终端处于绑定状态,所述智能穿戴设备包括:
通信接口,用于接收终端发送的获取运动数据的请求;
处理器,用于响应所述获取运动数据的请求,获取所述智能穿戴设备在预定时间段内的第一运动数据,指示所述通信接口向所述终端发送所述第一运动数据;
所述运动传感器,用于检测所述智能穿戴设备的运动状态,得到所述智能穿戴设备在所述预定时间段内的第一运动数据。
智能穿戴设备接收到与其绑定的终端发送的获取运动数据的请求时,获取本设备在预定时间段内的第一运动数据,并向该终端发送第一运动数据,以便终端利用接收到的第一运动数据和终端在该预定时间段内的第二运动数据判断是否进行状态切换,由于终端仅在第一运动数据和第二运动数据的偏差值小于偏差值阈值时,才响应指示切换状态的指令进行状态切换,因此智能穿戴设备能够配合终端进行状态切换,并降低终端中的信息被泄露的可能性。
在一个可能的设计中,该预定时间段在第一时刻之前,并且该预定时间段的终止时刻与第一时刻之间的差值小于或等于第一时间阈值,其中,第一时刻为终端接收到指示切换状态的指令的时刻。
智能穿戴设备的运动传感器检测所述智能穿戴设备的运动状态,得到所述智能穿戴设备在预定时间段内的第一运动数据,具体包括:所述运动传感器检测所述智能穿戴设备的运动状态,得到所述智能穿戴设备在第一时刻之前的预定时间段内的第二运动数据,所述第一时刻为所述终端接收到指示所述终端切换状态的指令的时刻,所述预定时间段的终止时刻与所述第一时刻之间的差值小于或等于第一时间阈值。
基于该设计,终端在接收到指示切换状态的指令后,能够尽快地获取到用于判断是否进行状态切换的运动数据,从而能够尽快地完成是否要进行状态切换的判断过程,提高终端的响应速度。另外,通过设置该预定时间段的终止时刻与第一时刻之间的差值小于或等于第一时间阈值,能够降低在终端的用户放下终端后的一段时间内,终端响应其他用户的操作进行状态切换的概率,能够进一步降低终端中的信息被泄露的可能性。
在一个可能的设计中,该预定时间段在第一时刻之后,并且该预定时间段的起始时刻与第一时刻之间的差值小于或等于第一时间阈值。
智能穿戴设备的运动传感器检测所述智能穿戴设备的运动状态,得到所述智能穿戴设备在预定时间段内的第一运动数据,具体包括:所述运动传感器检测所述智能穿戴设备的运动状态,得到所述智能穿戴设备在第一时刻之后的预定时间段内的第二运动数据,所述第一时刻为所述终端接收到指示所述终端切换状态的指令的时刻,所述预定时间段的起始时刻与所述第一时刻之间的差值小于或等于第一时间阈值。
基于该设计,终端可以仅在接收到指示切换状态的指令后,指示运动传感器开启一段时间,从而降低终端的功耗,智能穿戴设备可以仅在接收到终端发送的获取运动数据的请求后,指示运动传感器开启一段时间,从而降低智能穿戴设备的功耗。另外,通过设置该预定时间段的起始时刻与第一时刻之间的 差值小于或等于第一时间阈值,使得终端在接收到指示切换状态的指令后,能够尽快地获取到用于判断是否执行状态切换的运动数据,相应的能够尽快地完成是否进行状态切换的判断过程,提高终端的响应速度。
另一方面,本发明实施例提供一种系统,包括上述任意一种终端和智能穿戴设备,并且所述终端和所述智能穿戴设备处于绑定状态。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例公开的手机和智能手表的结构框图;
图2为本发明实施例公开的应用于图1所示手机和智能手表的一种控制方法的流程图;
图3为本发明实施例公开的应用于图1所示手机和智能手表的另一种控制方法的流程图;
图4为本发明实施例公开的应用于图1所示手机和智能手表的另一种控制方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开的技术方案应用于终端和智能穿戴设备。该终端可以为手机、平板电脑、智能穿戴设备、个人数字助理(Personal Digital Assistant,简称:PDA)、销售移动设备(Point of Sales,简称:POS)以及其他能够被用户握持的电子设备,并且该终端配置有运动传感器、能够记录终端的运动数据。智能穿戴设备可以为腕戴式智能穿戴设备,也可以为能够佩戴于用户的上肢的智能穿戴设备,例如能够佩戴在用户手指的智能穿戴设备。该智能穿戴设备配置有运动传感器、能够记录智能穿戴设备的运动数据。本发明实施例中的终端和智能穿戴设备处于绑定状态。其中,终端和智能穿戴设备处于绑定状态是指:终端和智能穿戴设备之间建立了配对关系连接在一起,可以进行数据交互。
本发明实施例公开终端及其控制方法。终端处于锁屏状态下,当接收到指示切换状态的指令时,向与该终端绑定的智能穿戴设备发送获取运动数据的请求,以获取智能穿戴设备在预定时间段内的第一运动数据,终端还获取自身在该预定时间段内的第二运动数据,计算第一运动数据和第二运动数据的偏差值,若计算得到的偏差值小于偏差值阈值,则响应指令,切换终端的状态。
终端在接收到指示切换状态的指令后,计算本设备与智能穿戴设备在预定时间段内的运动数据的偏差值,终端只有在偏差值小于偏差值阈值时才响应指示切换状态的指令,切换终端的状态。用户通常将智能穿戴设备佩戴在身上,在其他人员拿起该用户的终端的情况下,由于终端和智能穿戴设备在不同人员身上,因此终端和智能穿戴设备在同一时间段内的运动数据会存在很大差异,即便其他人员在终端输入切换状态的指令,也很难触发终端进行状态切换,从而能够降低终端中的信息被泄露的可能性。对于终端的用户而言,在用户使用佩戴有智能穿戴设备的手握持终端的情况下,智能穿戴设备和终端都随着用户手臂的运动而运动,智能穿戴设备和终端的运动状态相似,两者的运动数据之间的偏差值很小,可 认为智能穿戴设备和终端处于同步运动状态,当用户在终端输入指示切换状态的指令时,终端响应该指令从锁屏状态切换到其他状态。
下面以终端为手机、智能穿戴设备为智能手表为例,对本发明实施例的应用场景进行介绍。图1示出了与本发明实施例相关的手机100和智能手表200的部分结构的框图。
图1所示的手机100和智能手表200处于绑定状态,也就是说:手机100和智能手表200之间建立了配对关系连接在一起,可以进行数据交互。
参考图1,手机100包括射频(Radio Frequency,RF)电路110、处理器120、存储器130、输入单元140、显示单元150、音频电路160、扬声器161、麦克风162、运动传感器170、无线通信模块180以及电源190等部件。本领域技术人员可以理解,图1中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图1对手机100的各个构成部件进行具体的介绍:
运动传感器170用于检测手机100的运动状态,得到手机100的运动数据。运动传感器170可以采用加速度传感器,加速度传感器可以检测各个方向(一般为三维空间坐标系中三轴)加速度的大小,静止时可检测出重力的大小及方向。加速度传感器检测得到的加速度值可作为手机100的运动数据,处理器120根据运动数据确定手机100在一段时间内的运动状态。
RF电路110可用于收发信息或在通话过程中接收和发送信号,特别地,RF电路110接收基站的下行信息后,将下行信息传输至处理器120进行处理;另外,RF电路110将上行数据发送给基站。通常,RF电路110包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)和双工器等。此外,RF电路110还可以通过无线通信网络和其他设备通信。无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
手机100包括无线通信模块180,无线通信模块180包括但不限于无线保真(wireless fidelity,WiFi)模块181和蓝牙模块182。WiFi属于短距离无线传输技术,手机100与另一配置有WiFi模块的设备,能够通过路由器或无线热点进行数据交互。蓝牙属于短距离无线传输技术,手机100能够通过蓝牙模块182与另一配置有蓝牙模块的设备进行数据交互。本发明实施例中的手机100可以通过无线通信模块180与智能手表200进行数据交互。
存储器130用于存储软件程序以及模块,处理器120通过运行存储在存储器130的软件程序以及模块,从而执行手机100的各种功能应用以及数据处理。存储器130主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图象播放功能等)等;存储数据区可存储根据手机100的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器130可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器120是手机100的控制中心,利用各种接口和线路连接整个手机100的各个部件,通过运行或执行存储在存储器130内的软件程序和/或模块,以及调用存储在存储器130内的数据,执行手机100的各种功能和数据处理,从而实现基于手机的多种业务。可选的,处理器120可包括一个或多个处理单 元;优选的,处理器120可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器120中。
处理器120控制运动传感器170的运行,并获取运动传感器170得到的运动数据,处理器120能够指示无线通信模块180和RF电路110发送数据,并获取无线通信模块180和RF电路110接收到的数据。手机100处于锁屏状态下,处理器120响应指示手机切换状态的指令,指示通信接口(RF电路110、WiFi模块181或者蓝牙模块182)向智能手表200发送获取运动数据的请求,获取通信接口接收到的、由智能手表200发送的该智能手表200在预定时间段内的第一运动数据,获取手机100在该预定时间段内的第二运动数据,计算第一运动数据和第二运动数据的偏差值,若偏差值小于偏差值阈值,切换手机100的状态。
输入单元140用于接收输入的信息(如数字、字符信息以及指令,例如指示终端切换状态的指令),以及产生与手机100的用户设置以及功能控制有关的键信号输入。具体地,输入单元140可包括触控面板141以及其他输入设备。触控面板141也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触控笔等任何适合的物体或附件在触控面板141上或在触控面板141附近的操作),并根据预先设定的程式驱动相应的连接装置。
可选的,触控面板141可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置接收触摸信息,将它转换成触点坐标,再送给处理器120,并能接收处理器120发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板141。
除了触控面板141之外,输入单元140还可以包括其他输入设备。具体地,其他输入设备可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元150可用于显示由用户输入的信息、手机100提供给用户的信息以及手机100的各种菜单。显示单元150可包括显示面板151,可选的,可以采用LCD(Liquid Crystal Display,液晶显示器)、OLED(Organic Light-Emitting Diode,有机发光二极管)等形式来配置显示面板151。进一步的,触控面板141可覆盖显示面板151,当触控面板141检测到在其上或附近的触摸操作后,传送给处理器120以确定触摸事件的类型,随后处理器120根据触摸事件的类型在显示面板151上提供相应的视觉输出。虽然在图1中,触控面板141与显示面板151是作为两个独立的部件来实现手机100的输入和输出功能,但是在某些实施例中,可以将触控面板141与显示面板151集成以实现手机100的输入和输出功能。
音频电路160、扬声器161和麦克风162可提供用户与手机100之间的音频接口。音频电路160可将音频数据转换为电信号传输到扬声器161,由扬声器161转换为声音信号输出;另一方面,麦克风162将收集的声音信号转换为电信号,由音频电路160接收后转换为音频数据,再将音频数据输出至RF电路110,以发送给另一设备(如另一手机),或者将音频数据输出至存储器130以便进一步处理。
手机100还包括给各个部件供电的电源190(比如电池)。优选的,电源190可以通过电源管理系统与处理器120逻辑相连,从而通过电源管理系统实现针对电源190的充放电管理和功耗控制等功能。
手机100还可以包括摄像头等部件,在此不再赘述。
参考图1,智能手表200包括处理器210、存储器220、输入单元230、显示单元240、运动传感器250、无线通信模块260以及电源270等部件。本领域技术人员可以理解,图1中示出的智能手表结构 并不构成对智能手表的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图1对智能手表200的各个构成部件进行具体的介绍:
运动传感器250用于检测智能手表200的运动状态,得到智能手表200的运动数据。运动传感器250可以采用加速度传感器。加速度传感器检测得到的加速度值可作为智能手表200的运动数据,处理器210根据运动数据确定智能手表200在一段时间内的运动状态。
智能手表200包括无线通信模块260,无线通信模块260包括但不限于WiFi模块261和蓝牙模块262。智能手表200与另一配置有WiFi模块的设备,能够通过路由器或无线热点进行数据交互。智能手表200能够通过蓝牙模块262与另一配置有蓝牙模块的设备进行数据交互。本发明实施例中的智能手表200可以通过无线通信模块260与手机100进行数据交互。
智能手表200还可以包括RF模块。智能手表200可以通过RF电路与手机100进行数据交互。
存储器220用于存储软件程序以及模块,处理器210通过运行存储在存储器220的软件程序以及模块,从而执行智能手表200的各种功能应用以及数据处理。存储器220可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器210是智能手表200的控制中心,利用各种接口和线路连接整个智能手表200的各个部件,通过运行或执行存储在存储器220内的软件程序和/或模块,以及调用存储在存储器220内的数据,执行智能手表200的各种功能和数据处理。可选的,处理器210可包括一个或多个处理单元。
处理器210控制运动传感器250的运行,并获取运动传感器250得到的运动数据,处理器250能够指示无线通信模块260发送数据,并获取无线通信模块260接收到的数据。若智能手表设置有RF电路,则处理器250能够指示RF电路发送数据,并获取RF电路接收到的数据。处理器250响应通信接口(WiFi模块261、蓝牙模块262或RF模块)接收到的、由手机100发送的获取运动数据的请求,获取智能手表200在预定时间段内的第一运动数据,指示智能手表200的通信接口向手机100发送第一运动数据。
输入单元230用于接收输入的信息,以及产生与智能手表200的用户设置以及功能控制有关的键信号输入。具体地,输入单元230可包括触控面板以及其他输入设备,其他输入设备可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、操作杆等中的一种或多种。在一些智能手表中,可以仅设置物理键盘和功能键,不设置触控面板,以降低设备成本。
显示单元240可用于显示由用户输入的信息、智能手表200提供给用户的信息以及智能手表200的各种菜单。显示单元240可包括显示面板241,可选的,可以采用LCD、OLED等形式来配置显示面板241。进一步的,触控面板可覆盖显示面板241,当触控面板检测到在其上或附近的触摸操作后,传送给处理器210以确定触摸事件的类型,随后处理器210根据触摸事件的类型在显示面板240上提供相应的视觉输出。在某些实施例中,可以将触控面板与显示面板241集成以实现智能手表200的输入和输出功能。
智能手表200还包括给各个部件供电的电源270(比如电池)。优选的,电源270可以通过电源管理系统与处理器210逻辑相连,从而通过电源管理系统实现针对电源270的充放电管理和功耗控制等功能。
下面结合图2对本发明公开的控制方法进行详细说明。图2为本发明实施例公开的应用于图1所示手机和智能手表的一种控制方法的流程图。包括:
步骤S201:手机在锁屏状态下,接收输入指令。
手机处于锁屏状态的情况下,用户可以通过触控面板输入指令,可以通过其他输入设备输入指令,如通过物理键盘或功能键输入指令,也可以通过麦克风输入语音形式的指令。手机处于锁屏状态下,输入的指令包括但不限于:针对某些应用的控制指令,例如,用于调节音频播放器的输出音量的指令,控制音频播放器播放另一文件的指令;指示手机切换状态的指令,例如,指示手机进行解锁的指令和指示手机亮屏的指令。
这里需要说明的是,指示手机亮屏与指示手机进行解锁是不同的。手机的显示单元被点亮但手机未解锁的情况下,显示单元显示部分数据,例如显示时间信息、日期信息、来电通知、接收到的即时消息或者针对接收到的即时消息的通知信息,而用户不能直接对显示屏显示的数据进行操作。
步骤S202:手机在接收到指示切换状态的指令时,向智能手表发送获取运动数据的请求。
手机的处理器接收到输入的指令后,确定该指令是否为指示手机切换状态的指令。当手机的处理器接收到指示手机切换状态的指令(如指示解锁的指令或者指示亮屏的指令)时,指示通信接口向处于绑定状态的智能手表发送请求。该请求用于指示智能手表获取自身在预定时间段内的运动数据,并向手机反馈获取到的运动数据。该请求携带有时间参数,智能手表响应该请求,获取自身在该时间参数所表征的时间段内的第一运动数据。为了便于描述,将智能手表的运动数据记为第一运动数据。
步骤S203:智能手表获取自身在预定时间段内的第一运动数据。
智能手表配置有运动传感器,在智能手表的处理器的指示下,该运动传感器检测智能手表的运动状态得到智能手表的运动数据。智能手表的处理器获取智能手表在预定时间段内的第一运动数据。
步骤S204:智能手表向手机发送第一运动数据。
手机和智能手表可以通过蓝牙模块和蓝牙模块进行数据交互。或者,手机通过WiFi模块接入路由器或者无线热点,智能手表通过WiFi模块接入路由器或者无线热点,从而进行数据交互。或者,在智能手表配置有RF模块的情况下,手机和智能手表通过各自的RF模块接入基站,进行数据交互。
步骤S205:手机获取自身在预定时间段内的第二运动数据。
手机配置有运动传感器,该运动传感器在手机的处理器的指示下,检测手机的运动状态得到手机的运动数据。手机的处理器在接收到指示切换状态的指令的同时或之后,或者在指示通信接口向智能手表发送获取运动数据的请求的同时或者之后,获取手机在该预定时间内的第二运动数据。为了便于表述,将手机的运动数据记为第二运动数据。
本发明实施例中,第一运动数据包括:智能手表在第一三维坐标系中特定坐标轴上的加速度,第二运动数据包括:手机在第二三维坐标系中该特定坐标轴上的加速度。其中,第一三维坐标系和第二三维坐标系中相同坐标轴的方向一致,也就是说,第一三维坐标系和第二三维坐标系中X坐标轴的方向一致,Y坐标轴的方向一致,Z坐标轴的方向一致。
作为一个示例,该特定坐标轴为第一坐标轴,第一坐标轴为X坐标轴、Y坐标轴和Z坐标轴中的任意一个。作为另一个示例,该特定坐标轴为第一坐标轴和第二坐标轴,第一坐标轴和第二坐标轴为X坐标轴、Y坐标轴和Z坐标轴中的任意两个。作为另一个示例,该特定坐标轴为X坐标轴、Y坐标轴和Z坐标轴。
例如:第一运动数据包括智能手表在第一三维坐标系中X坐标轴上的加速度,第二运动数据包括手机在第二三维坐标系中X坐标轴上的加速度。例如:第一运动数据包括智能手表在第一三维坐标系中X坐标轴和Y坐标轴上的加速度,第二运动数据包括手机在第二三维坐标系中X坐标轴和Y坐标轴 上的加速度。例如:第一运动数据包括智能手表在第一三维坐标系中X坐标轴、Y坐标轴和Z坐标轴上的加速度,第二运动数据包括手机在第二三维坐标系中X坐标轴、Y坐标轴和Z坐标轴上的加速度。
本发明公开的实施例中,第一三维坐标系和第二三维坐标系可以为世界坐标系或者用户坐标系。作为一个示例,本发明实施例中的第一三维坐标系和第二三维坐标系采用如下定义:X轴的正方向为从坐标原点指向右侧,Y轴的正方向为从坐标原点指向下侧,Z轴的正方向为从坐标原点指向X轴和Y轴所构成平面的外侧,也就是远离用户的方向。
步骤S206:手机计算在预定时间段内的第一运动数据和第二运动数据的偏差值。
手机的处理器获取无线通信模块或RF模块接收到的第一运动数据,获取手机的运动传感器得到的第二运动数据,计算第一运动数据和第二运动数据的偏差量。
手机的处理器计算在预定时间段内的第一运动数据和所述第二运动数据的偏差值,包括:
1、在该预定时间段中的M个采样时刻,分别对所述第一运动数据和所述第二运动数据进行采样,获得M个第一加速度采样集和M个第二加速度采样集。其中,M为大于1的整数。
2、利用所述M个第一加速度采样集和所述M个第二加速度采样集计算在M个采样时刻的加速度偏差量。其中,第i个采样时刻的加速度偏差量,利用第i个第一加速度采样集和第i个第二加速度采样集中同一坐标轴上加速度采样值的差值计算得到。其中,i=1,2,…M。
3、计算M个采样时刻的加速度偏差量的平均值,该平均值为第一运动数据和第二运动数据的偏差值。
其中,计算第i个采样时刻的加速度偏差量的一种方式为:计算在第i个第一加速度采样集和第i个第二加速度采样集中同一坐标轴上加速度采样值的差值;计算各差值的绝对值的和值,该和值为第i个采样时刻的加速度偏差量。
计算第i个采样时刻的加速度偏差量的另一种方式为:计算在第i个第一加速度采样集和第i个第二加速度采样集中同一坐标轴上加速度采样值的差值;计算各差值的平方值的和值,该和值为第i个采样时刻的加速度偏差量。
步骤S207:手机在偏差值小于偏差值阈值时,响应指令,切换终端的状态。
手机的处理器在计算第一运动数据和第二运动数据的偏差值之后,如果计算得到的偏差值小于偏差值阈值,则响应指示切换状态的指令,将手机从锁屏状态切换为该指令所指示的状态。
在用户佩戴有智能手表的手握持手机的情况下,智能手表和手机的运动状态相似,两者的运动数据的偏差较小,可认为两者是同步运动的。如果其他人员拿起该用户的手机,那么该手机和智能手表的运动数据的偏差较大。因此,如果手机和智能手表在预定时间段内的运动数据的偏差值小于偏差值阈值,那么可确定手机接收到的指示切换状态的指令是手机的用户执行操作产生的,手机响应该指令,切换状态。如果手机和智能手表在预定时间段内的运动数据的偏差值大于或等于偏差值阈值,那么可确定手机接收到的指示切换状态的指令是其他人员执行操作产生的,手机不响应该指令,避免手机中的信息被泄露给其他人员。
在本发明实施例中,指示手机切换状态的指令包括指示手机解锁的指令和指示手机亮屏的指令。
如果手机接收到指示手机进行解锁的指令,则手机在确定偏差值小于偏差值阈值时,响应该指示解锁的指令,执行解锁操作,手机在解锁之后进入解锁状态,解锁状态也可称为常规运行状态。如果手机接收到指示手机亮屏的指令,则手机在确定偏差值小于偏差值阈值时,响应该指示亮屏的指令,点亮显示屏。
作为一个示例,本发明实施例中的第一运动数据为:智能手表在第一三维坐标系中第一坐标轴和第二坐标轴上的加速度,第二运动数据为:手机在第二三维坐标系中第一坐标轴和第二坐标轴上的加速度。其中,第一三维坐标系和第二三维坐标系包括X坐标轴、Y坐标轴和Z坐标轴,第一坐标轴和第二坐标轴为X坐标轴、Y坐标轴和Z坐标轴中的任意两个坐标轴。
在该示例中,手机的处理器计算在预定时间段内的第一运动数据和第二运动数据的偏差值,具体为:
1、在该预定时间段中的M个采样时刻,分别对第一运动数据和第二运动数据进行采样,获得M个第一加速度采样集和M个第二加速度采样集。
在M个采样时刻对第一运动数据进行采样,获得M个第一加速度采样集,在M个采样时刻对第二运动数据进行采样,获得M个第二加速度采样集,M为大于1的整数。其中,第i个第一加速度采样集是在第i个采样时刻对第一运动数据采样得到的,包含:在第i个采样时刻,智能手表在第一坐标轴和第二坐标轴上的加速度采样值。第i个第二加速度采样集是在第i个采样时刻对第二运动数据采样得到的,包含:在第i个采样时刻,手机在第一坐标轴和第二坐标轴上的加速度采样值。其中,i=1,2,…M。
2、利用M个第一加速度采样集和M个第二加速度采样集,分别计算得到在M个采样时刻的加速度偏差量。其中,第i个采样时刻的加速度偏差量是利用第i个第一加速度采样集和第i个第二加速度采样集中,第一坐标轴上的加速度采样值的差值以及第二坐标轴上的加速度采样值的差值计算得到的。
3、计算M个采样时刻的加速度偏差量的平均值,该平均值为第一运动数据和所述第二运动数据的偏差值。
实施中,手机的处理器计算M个采样时刻中任意一个采样时刻的加速度偏差量可以采用多种方式。
计算第i个采样时刻的加速度偏差量的一种方式:计算第i个第一加速度采样集和第i个第二加速度采样集中,第一坐标轴上的加速度采样值的差值,该差值记为第一差值;计算第i个第一加速度采样集和第i个第二加速度采样集中,第二坐标轴上的加速度采样值的差值,该差值记为第二差值;计算第一差值的绝对值和第二差值的绝对值的和值,该和值作为第i个采样时刻的加速度偏差量。
手机的处理器计算第i个采样时刻的加速度偏差量的另一种方式:计算第i个第一加速度采样集和第i个第二加速度采样集中,第一坐标轴上的加速度采样值的差值,该差值记为第一差值;计算在第i个第一加速度采样集和第i个第二加速度采样集中,第二坐标轴上的加速度采样值的差值,该差值记为第二差值;计算第一差值的平方值和第二差值的平方值的和值,该和值作为第i个采样时刻的加速度偏差量。
也就是,计算第i个第一加速度采样集中第一坐标轴上的加速度采样值,与第i个第二加速度采样集中第一坐标轴上的加速度采样值的第一差值;计算第i个第一加速度采样集中第二坐标轴上的加速度采样值,与第i个第二加速度采样集中第二坐标轴上的加速度采样值的第二差值;计算第一差值的绝对值和第二差值的绝对值的和值,或者计算第一差值的平方值和第二差值的平方值的和值,前述和值作为第i个采样时刻的加速度偏差量。
作为一个示例,本发明实施例中的第一运动数据为:智能手表在第一三维坐标系中三个坐标轴上的加速度;第二运动数据为:手机在第二三维坐标系中三个坐标轴上的加速度。
在本示例中,手机的处理器计算第一运动数据和第二运动数据的偏差值,具体为:
1、在该预定时间段中的M个采样时刻,分别对第一运动数据和第二运动数据进行采样,获得M个第一加速度采样集和M个第二加速度采样集。
在M个采样时刻对第一运动数据进行采样,获得M个第一加速度采样集,在M个采样时刻对第二运动数据进行采样,获得M个第二加速度采样集,M为大于1的整数。其中,第i个第一加速度采样集是在第i个采样时刻对第一运动数据采样得到的,包含:在第i个采样时刻,智能手表在X坐标轴、Y坐标轴和Z坐标轴上的加速度采样值。第i个第二加速度采样集是在第i个采样时刻对第二运动数据采样得到的,包含:在第i个采样时刻,手机在X坐标轴、Y坐标轴和Z坐标轴上的加速度采样值。其中,i=1,2,…M。
2、利用M个第一加速度采样集和M个第二加速度采样集,分别计算得到在M个采样时刻的加速度偏差量。其中,第i个采样时刻的加速度偏差量是利用第i个第一加速度采样集和第i个第二加速度采样集中,X坐标轴上的加速度采样值的差值、Y坐标轴上的加速度采样值的差值以及Z坐标轴上的加速度采样值的差值计算得到的。
3、计算M个采样时刻的加速度偏差量的平均值,该平均值为第一运动数据和所述第二运动数据的偏差值。
实施中,手机的处理器计算M个采样时刻中任意一个采样时刻的加速度偏差量可以采用多种方式。
手机的处理器计算第i个采样时刻的加速度偏差量的一种方式:计算第i个第一加速度采样集和第i个第二加速度采样集中,X坐标轴上的加速度采样值的差值,该差值记为第三差值;计算第i个第一加速度采样集和第i个第二加速度采样集中,Y坐标轴上的加速度采样值的差值,该差值记为第四差值;计算第i个第一加速度采样集和第i个第二加速度采样集中,Z坐标轴上的加速度采样值的差值,该差值记为第五差值;计算第三差值的绝对值、第四差值的绝对值和第五差值的绝对值的和值,该和值作为第i个采样时刻的加速度偏差量。
例如:对手机和智能手表在预定时间段内8个时刻的X轴、Y轴和Z轴上的加速度进行采样,采样结果如表1所示。
表1
Figure PCTCN2017099186-appb-000001
智能手表和手机在采样时刻1至采样时刻8的加速度偏差量依次为:0.09、0.08、0.05、0.11、0.08、 0.12、0.07、0.04。
手机的处理器计算第i个采样时刻的加速度偏差量的另一种方式:计算第i个第一加速度采样集和第i个第二加速度采样集中,X坐标轴上的加速度采样值的差值,该差值记为第三差值;计算第i个第一加速度采样集和第i个第二加速度采样集中,Y坐标轴上的加速度采样值的差值,该差值记为第四差值;计算第i个第一加速度采样集和第i个第二加速度采样集中,Z坐标轴上的加速度采样值的差值,该差值记为第五差值;计算第三差值的平方值、第四差值的平方值和第五差值的平方值的和值,该和值作为第i个采样时刻的加速度偏差量。
也就是,计算第i个第一加速度采样集中X坐标轴上的加速度采样值,与第i个第二加速度采样集中X坐标轴上的加速度采样值的第三差值;计算第i个第一加速度采样集中Y坐标轴上的加速度采样值,与第i个第二加速度采样集中Y坐标轴上的加速度采样值的第四差值;计算第i个第一加速度采样集中Z坐标轴上的加速度采样值,与第i个第二加速度采样集中Z坐标轴上的加速度采样值的第五差值;计算第三差值的绝对值、第四差值的绝对值和第五差值的绝对值的和值,或者计算第三差值的平方值、第四差值的平方值和第五差值的平方值的和值,前述和值作为第i个采样时刻的加速度偏差量。
作为一个示例,本发明实施例中的第一运动数据包括:智能手表在第一三维坐标系中第一坐标轴上的加速度;第二运动数据包括:手机在第二三维坐标系中第一坐标轴上的加速度。其中,该第一三维坐标系和第二三维坐标系包括X坐标轴、Y坐标轴和Z坐标轴,第一坐标轴为X坐标轴、Y坐标轴和Z坐标轴中的任意一个坐标轴。
下面将结合更多的附图,对本发明的实施例进一步说明。
图3为本发明实施例公开的应用于图1所示手机和智能手表的另一种控制方法的流程图。包括:
步骤S301:手机控制内部的运动传感器处于开启状态,并存储运动传感器产生的运动数据。
手机配置有运动传感器,手机的处理器指示该运动传感器处于开启状态,由该运动传感器检测手机的运动状态得到手机的运动数据,手机的存储器存储运动传感器得到的运动数据。
步骤S302:智能手表控制内部的运动传感器处于开启状态,并存储运动传感器产生的运动数据。
智能手表配置有运动传感器,智能手表的处理器指示该运动传感器处于开启状态,由该运动传感器检测智能手表的运动状态得到智能手表的运动数据,智能手表的存储器存储运动传感器得到的运动数据。
步骤S303:手机在锁屏状态下,接收输入指令。
步骤S304:手机在接收到指示切换状态的指令时,向智能手表发送获取运动数据的请求。
手机的处理器接收到输入的指令后,确定该指令是否为指示手机切换状态的指令。当手机的处理器接收到指示手机切换状态的指令时,指示通信接口向处于绑定状态的智能手表发送请求。该请求用于指示智能手表发送在预定时间段内的运动数据,该预定时间段在第一时刻之前,且该预定时间段的终止时刻与第一时刻之间的差值小于或等于第一时间阈值。其中,第一时刻为手机接收到指示手机切换状态的指令的时刻。该请求携带有时间参数,该时间参数表征位于第一时刻之前的时间段,智能手表响应该请求,获取自身在该时间参数所表征的时间段内的第一运动数据。
步骤S305:智能手表获取自身在第一时刻之前的预定时间段内的第一运动数据。
步骤S306:智能手表向手机发送第一运动数据。
智能手表的运动传感器是处于开启状态的,能够检测智能手表的运动状态得到智能手表的运动数 据,该运动数据存储于智能手表的存储器。智能手表的处理器响应手机发送的请求,从存储器存储的运动数据中,获取第一时刻之前的预定时间段内的第一运动数据,指示智能手表的通信接口向手机发送获取到的第一运动数据。其中,手机和智能手表通过各自的无线通信模块或者RF电路进行数据交互,具体交互方式可参见上文的描述。
步骤S307:手机获取自身在第一时刻之前的预定时间段内的第二运动数据。
手机的运动传感器是处于开启状态的,能够检测手机的运动状态得到手机的运动数据,该运动数据存储于手机的存储器。手机的处理器在接收到指示手机切换状态的指令的同时或之后,或者在指示通信接口向智能手表发送获取运动数据的请求的同时或之后,从存储器存储的运动数据中,获取在第一时刻之前的预定时间段内的第二运动数据。
步骤S308:手机计算在该预定时间段内的第一运动数据和第二运动数据的偏差值。
图3所示的控制方法中,第一运动数据和第二运动数据所包含的数据,以及手机的处理器计算第一运动数据和第二运动数据的偏差值的方式,可以参见上文的描述。
步骤S309:手机在偏差值小于偏差值阈值时,响应指令,从锁屏状态切换为该指令所指示的状态。
本发明图3所示的控制方法,手机的运动传感器处于开启状态,检测手机的运动状态得到手机的运动数据,该运动数据存储于手机的存储器;智能手表的运动传感器处于开启状态,检测智能手表的运动状态得到智能手表的运动数据,该运动数据存储于智能手表的存储器。手机在接收到指示切换状态的指令后,从内部的存储器存储的运动数据中,获取本设备在第一时刻之前的预定时间段内的第二运动数据,接收智能手表发送的第一运动数据,该第一运动数据由智能手表在内部的存储器存储的运动数据中获取,手机基于两组运动数据的偏差值来判断是否响应指令进行状态切换。这使得手机在接收到指示切换状态的指令后,能够尽快地获取到用于判断是否响应指令进行状态切换的运动数据,从而能够尽快地完成是否要响应该指令进行状态切换的判断过程,提高手机的响应速度。另外,通过设置该预定时间段的终止时刻与第一时刻之间的差值小于或等于第一时间阈值,能够降低在终端的用户放下终端后的一段时间内,终端响应其他用户的操作执行状态切换的概率,能够进一步降低终端中的信息被泄露的可能性。
在图3所示的控制方法中,作为一种优选实施方式,该第一时间阈值可以设置为0。
图4为本发明实施例公开的应用于图1所示手机和智能手表的另一种控制方法的流程图。包括:
步骤S401:手机在锁屏状态下,接收输入指令。
步骤S402:手机在接收到指示切换状态的指令时,向智能手表发送获取运动数据的请求。
手机的处理器接收到输入的指令后,确定该指令是否为指示手机切换状态的指令。当手机的处理器接收到指示手机切换状态的指令时,指示通信接口向处于绑定状态的智能手表发送请求。该请求用于指示智能手表发送在预定时间段内的运动数据,该预定时间段在第一时刻之后,且该预定时间段的起始时刻与第一时刻之间的差值小于或等于第一时间阈值。其中,第一时刻为手机接收到指示手机切换状态的指令的时刻。该请求携带有时间参数,该时间参数表征位于第一时刻之后的时间段,智能手表响应该请求,获取自身在该时间参数所表征的时间段内的运动数据。
步骤S403:智能手表获取自身在第一时刻之后的预定时间段内的第一运动数据。
步骤S404:智能手表向手机发送第一运动数据。
智能手表的运动传感器在智能手表的处理器的指示下,检测智能手表的运动状态得到智能手表的运动数据,该运动数据存储于智能手表的存储器。智能手表的处理器响应手机发送的请求,从存储器或者 直接从运动传感器直接获取第一时刻之后的预定时间段内的第一运动数据,并指示智能手表的通信接口向手机发送第一运动数据。其中,手机和智能手表通过各自的无线通信模块或RF电路进行数据交互,具体交互方式可参见上文的描述。
步骤S405:手机获取自身在第一时刻之后的预定时间段内的第二运动数据。
这里需要说明的是,如果手机的运动传感器是处于开启状态的,那么手机的处理器获取手机在第一时刻之后的预定时间段内的第二运动数据即可。
另外,为了降低手机的功耗,可将手机的运动传感器默认设置为关闭状态。手机的处理器在接收到指示切换状态的指令时,指示手机的运动传感器开启,以便运动传感器在第一时刻之后的预定时间段内检测手机的运动状态得到第二运动数据,在运动传感器的开启时间达到预定时长后,手机的处理器控制运动传感器关闭。
步骤S406:手机计算在预定时间段内的第一运动数据和第二运动数据的偏差值。
图4所示的控制方法中,第一运动数据和第二运动数据所包含的数据,以及手机的处理器计算第一运动数据和第二运动数据的偏差值的方式,可以参见上文的描述。
步骤S407:手机在偏差值小于偏差值阈值时,响应指令,从锁屏状态切换为该指令所指示的状态。
手机在接收到指示切换状态的指令后,获取本设备和智能手表在第一时刻之后的预定时间段内的运动数据,并基于两组运动数据的偏差值来判断是否进行状态切换。这使得手机可以仅在接收到指示切换状态的指令后,指示手机的运动传感器开启一段时间,从而降低手机的功耗,智能手表可以仅在接收到手机发送的获取运动数据的请求时,指示智能手表的运动传感器开启一段时间,从而降低智能手表的功耗。另外,通过设置该预定时间段的起始时刻与第一时刻之间的差值小于或等于第一时间阈值,使得终端在接收到指示切换状态的指令后,能够尽快地获取到用于判断是否进行状态切换的运动数据,相应的能够尽快地完成是否进行状态切换的判断过程,提高终端的响应速度。
在图4所示的控制方法中,作为一种优选实施方式,该第一时间阈值可以设置为0。
可选的,在本发明公开的实施例中,手机在响应指示解锁的指令之后,还包括:根据手机在该预定时间段内的第二运动数据,确定手机在该预定时间段内的运动幅度;利用预存的幅度区间和运行模式的映射关系,确定与该运动幅度所属幅度区间对应的运行模式;控制手机进入与该运动幅度所属幅度区间对应的运行模式。
手机的存储器存储有幅度区间与运行模式的映射关系,各幅度区间之间没有重叠,且不同的幅度区间对应于不同的运行模式。手机的运行模式包括但不限于工作模式、学习模式、休闲模式、访客模式和节电模式。
对于手机的用户而言,用户通过使用佩戴有智能手表的手握持手机,并运动手臂就能够触发手机响应指示解锁的指令进行解锁操作,而且,用户通过调整手臂在预定时间段内的运动幅度来调整手机的运动幅度,就能够触发手机在执行解锁操作后,进入与手机的运动幅度所属幅度区间对应的运行模式,使得用户方便快捷地控制手机直接进入相应的运行模式。
可选的,在本发明公开的实施例中,手机在响应指示解锁的指令之后,还包括:根据手机在该预定时间段内的第二运动数据,确定手机在该预定时间段内的位移;利用预存的位移区间和运行模式的映射关系,确定与该位移所属位移区间对应的运行模式,控制手机进入与该位移所属位移区间对应的运行模 式。
手机的存储器存储有位移区间与运行模式的映射关系,各位移区间之间没有重叠,且不同的位移区间对应于不同的运行模式。
对于手机的用户而言,用户通过使用佩戴有智能手表的手握持手机,并运动手臂就能够触发手机响应指示解锁的指令进行解锁操作,而且,用户通过调整手臂在预定时间段内的位移来调整手机的位移,就能够触发手机在执行解锁操作后,进入与手机的位移所属位移区间对应的运行模式,使得用户方便快捷地控制手机直接进入相应的运行模式。
需要说明的是,本发明的实施例以图1所示的手机和智能手表为例对应用于终端和智能穿戴设备的控制方法进行说明,对本领域技术人员而言,可以直接将上述的控制方法应用于其他的终端和智能穿戴设备。
本发明实施例还提供一种终端,该终端包括:输入单元、运动传感器、通信接口和处理器,可以参见图1中手机100的结构。
输入单元,用于在终端锁屏状态下,接收指示终端切换状态的指令。
处理器,用于响应指示终端切换状态的指令,指示通信接口向智能穿戴设备发送获取运动数据的请求,获取智能穿戴设备在预定时间段内的第一运动数据,获取终端在该预定时间段内的第二运动数据,计算在预定时间段内的第一运动数据和第二运动数据的偏差值,若偏差值小于偏差值阈值,则切换终端的状态。
通信接口,用于响应处理器的指示,向智能穿戴设备发送获取运动数据的请求,接收智能穿戴设备发送的该智能穿戴设备在预定时间段内的第一运动数据。
运动传感器,用于检测终端的运动状态,得到终端在该预定时间段内的第二运动数据。
作为一个示例,该预定时间段在第一时刻之前,且该预定时间段的终止时刻与第一时刻之间的差值小于或等于第一时间阈值。第一时刻为终端接收到指示终端切换状态的指令的时刻。
终端的运动传感器检测终端的运动状态,得到终端在预定时间段内的第二运动数据,具体包括:运动传感器检测终端的运动状态,得到终端在第一时刻之前的预定时间段内的第二运动数据,该预定时间段的终止时刻与第一时刻之间的差值小于或等于第一时间阈值。
终端的处理器指示通信接口向智能穿戴设备发送获取运动数据的请求,具体包括:处理器指示通信接口向智能穿戴设备发送获取智能穿戴设备在第一时刻之前的预定时间段内运动数据的请求,该预定时间段的终止时刻与第一时刻之间的差值小于或等于第一时间阈值。
作为一个示例,该预定时间段在第一时刻之后,且该预定时间段的起始时刻与第一时刻之间的差值小于或等于第一时间阈值。
终端的运动传感器检测终端的运动状态,得到终端在预定时间段内的第二运动数据,具体包括:运动传感器检测终端的运动状态,得到终端在第一时刻之后的预定时间段内的第二运动数据,该预定时间段的起始时刻与第一时刻之间的差值小于或等于第一时间阈值。
终端的处理器指示通信接口向智能穿戴设备发送获取运动数据的请求,具体包括:处理器指示通信接口向智能穿戴设备发送获取智能穿戴设备在第一时刻之后的预定时间段内运动数据的请求,该预定时间段的起始时刻与第一时刻之间的差值小于或等于第一时间阈值。
优选的,该第一时间阈值设置为0。
作为一个示例,终端的处理器获取到的第一运动数据包括智能穿戴设备第一三维坐标系中特定坐标轴上的加速度,终端的处理器获取到的第二运动数据包括终端在第二三维坐标系中特定坐标轴上的加速度。第一三维坐标系和第二三维坐标系的相同坐标的方向一致。
终端的通信接口接收智能穿戴设备发送的该智能穿戴设备在预定时间段内的第一运动数据,具体包括:通信接口接收智能穿戴设备发送的在预定时间段内该智能穿戴设备在第一三维坐标系中特定坐标轴上的加速度。
终端的运动传感器检测终端的运动状态,得到终端在预定时间段内的第二运动数据,具体包括:运动传感器检测终端的运动状态,得到在预定时间段内该终端在第二三维坐标系中特定坐标轴上的加速度。
作为一个示例,终端的处理器在计算第一运动数据和第二运动数据的偏差值,具体包括:
处理器在预定时间段中的M个采样时刻,分别对第一运动数据和第二运动数据进行采样,获得M个第一加速度采样集和M个第二加速度采样集,其中M为大于1的整数;利用M个第一加速度采样集和M个第二加速度采样集,分别计算得到在M个采样时刻的加速度偏差量,其中,第i个采样时刻的加速度偏差量,利用第i个第一加速度采样集和第i个第二加速度采样集中同一坐标轴上加速度采样值的差值计算得到,其中i=1,2,…M;计算M个采样时刻的加速度偏差量的平均值,该平均值为第一运动数据和第二运动数据的偏差值。其中,处理器计算每个采样时刻的加速度偏差量的过程,请参见前文中的描述。
可选的,终端的处理器还用于:根据终端在该预定时间段内的第二运动数据,确定终端在该预定时间段内的运动幅度,利用预存的幅度区间和运行模式的映射关系,确定与运动幅度所属幅度区间对应的运行模式,控制终端进入与所述运动幅度所属幅度区间对应的运行模式。
可选的,终端的处理器还用于:根据终端在该预定时间段内的第二运动数据,确定终端在该预定时间段内的位移;利用预存的位移区间和运行模式的映射关系,确定与该位移所属位移区间对应的运行模式,控制终端进入与该位移所属位移区间对应的运行模式。
本发明实施例还公开一种智能穿戴设备,该智能穿戴设备包括运动传感器、通信接口和处理器,可以参见图1中智能手表的结构。
通信接口,用于接收终端发送的获取运动数据的请求。
处理器,用于响应获取运动数据的请求,获取智能穿戴设备在预定时间段内的第一运动数据,指示通信接口向终端发送该第一运动数据。
运动传感器,用于检测智能穿戴设备的运动状态,得到智能穿戴设备在预定时间段内的第一运动数据。
智能穿戴设备接收到与其绑定的终端发送的获取运动数据的请求时,获取本设备在预定时间段内的第一运动数据,并向该终端发送获取到的第一运动数据,以便终端利用接收到的第一运动数据和终端在该预定时间段内的第二运动数据判断是否进行状态切换。由于终端仅在第一运动数据和第二运动数据的偏差值小于偏差值阈值时,才响应指示切换状态的指令进行状态切换,因此智能穿戴设备能够配合终端进行状态切换,并且降低终端中的信息被泄露的可能性。
作为一个示例,智能穿戴设备的运动传感器检测智能穿戴设备的运动状态,得到智能穿戴设备在预定时间段内的第一运动数据,具体包括:运动传感器检测智能穿戴设备的运动状态,得到智能穿戴设备 在第一时刻之前的预定时间段内的第二运动数据,该预定时间段的终止时刻与第一时刻之间的差值小于或等于第一时间阈值。
作为一个示例,智能穿戴设备的运动传感器检测智能穿戴设备的运动状态,得到智能穿戴设备在预定时间段内的第一运动数据,具体包括:运动传感器检测智能穿戴设备的运动状态,得到智能穿戴设备在第一时刻之后的预定时间段内的第二运动数据,该预定时间段的起始时刻与第一时刻之间的差值小于或等于第一时间阈值。
本发明实施例还公开一种系统,该系统包括上述的终端和智能穿戴设备,其中终端和智能穿戴设备处于绑定状态。该系统中终端和智能穿戴设备的结构及功能请参见上文描述。
在本发明上述实施例中,对终端、智能穿戴设备和系统的描述较为简单,其功能可以参见关于控制方法的相关描述。

Claims (23)

  1. 一种终端的控制方法,其特征在于,所述终端与智能穿戴设备处于绑定状态,所述控制方法包括:
    在锁屏状态下,当接收到指示所述终端切换状态的指令时,向所述智能穿戴设备发送获取运动数据的请求;
    接收所述智能穿戴设备发送的所述智能穿戴设备在预定时间段内的第一运动数据;
    获取所述终端在所述预定时间段内的第二运动数据;
    计算所述第一运动数据和所述第二运动数据的偏差值;
    若所述偏差值小于偏差值阈值,则响应所述指令,切换所述终端的状态。
  2. 根据权利要求1所述的控制方法,其特征在于,所述预定时间段在第一时刻之前,且所述预定时间段的终止时刻与所述第一时刻之间的差值小于或等于第一时间阈值,所述第一时刻为所述终端接收到指示所述终端切换状态的指令的时刻。
  3. 根据权利要求1所述的控制方法,其特征在于,所述预定时间段在第一时刻之后,且所述预定时间段的起始时刻与所述第一时刻之间的差值小于或等于第一时间阈值,所述第一时刻为所述终端接收到指示所述终端切换状态的指令的时刻。
  4. 根据权利要求1至3中任一项所述的控制方法,其特征在于,
    所述第一运动数据包括所述智能穿戴设备在第一三维坐标系中特定坐标轴上的加速度;所述第二运动数据包括所述终端在第二三维坐标系中所述特定坐标轴上的加速度,所述第一三维坐标系和所述第二三维坐标系的相同坐标轴的方向一致。
  5. 根据权利要求4所述的控制方法,其特征在于,计算所述第一运动数据和所述第二运动数据的偏差值,包括:
    在所述预定时间段中的M个采样时刻,分别对所述第一运动数据和所述第二运动数据进行采样,获得M个第一加速度采样集和M个第二加速度采样集,其中M为大于1的整数;
    利用所述M个第一加速度采样集和所述M个第二加速度采样集,分别计算得到在M个采样时刻的加速度偏差量,其中,第i个采样时刻的加速度偏差量,利用第i个第一加速度采样集和第i个第二加速度采样集中同一坐标轴上加速度采样值的差值计算得到,其中i=1,2,…M;
    计算所述M个采样时刻的加速度偏差量的平均值,所述平均值为所述第一运动数据和所述第二运动数据的偏差值。
  6. 根据权利要求5所述的控制方法,其特征在于,计算第i个采样时刻的加速度偏差量,包括:
    计算在第i个第一加速度采样集和第i个第二加速度采样集中同一坐标轴上加速度采样值的差值;
    计算各差值的绝对值的和值,所述和值为第i个采样时刻的加速度偏差量。
  7. 根据权利要求5所述的控制方法,其特征在于,计算第i个采样时刻的加速度偏差量,包括:
    计算在第i个第一加速度采样集和第i个第二加速度采样集中同一坐标轴上加速度采样值的差值;
    计算各差值的平方值的和值,所述和值为第i个采样时刻的加速度偏差量。
  8. 根据权利要求1-7中任一项所述的控制方法,其特征在于,所述指示所述终端切换状态的指令包括:指示所述终端解锁的指令和/或指示所述终端亮屏的指令。
  9. 根据权利要求8所述的控制方法,其特征在于,在响应指示所述终端解锁的指令之后,还包括:
    根据所述第二运动数据,确定所述终端在所述预定时间段内的运动幅度;
    利用预存的幅度区间和运行模式的映射关系,确定与所述运动幅度所属幅度区间对应的运行模式;
    控制所述终端进入与所述运动幅度所属幅度区间对应的运行模式。
  10. 一种终端,其特征在于,所述终端与智能穿戴设备处于绑定状态,所述终端包括:
    输入单元,用于在所述终端锁屏状态下,接收指示所述终端切换状态的指令;
    处理器,用于响应所述指示所述终端切换状态的指令,指示通信接口向所述智能穿戴设备发送获取运动数据的请求,获取所述智能穿戴设备在预定时间段内的第一运动数据,获取所述终端在所述预定时间段内的第二运动数据,计算所述第一运动数据和所述第二运动数据的偏差值,若所述偏差值小于偏差值阈值,则切换所述终端的状态;
    所述通信接口,用于响应所述处理器的指示,向所述智能穿戴设备发送获取运动数据的请求,接收所述智能穿戴设备发送的所述智能穿戴设备在预定时间段内的第一运动数据;
    所述运动传感器,用于检测所述终端的运动状态,得到所述终端在所述预定时间段内的第二运动数据。
  11. 根据权利要求10所述的终端,其特征在于,
    所述运动传感器检测所述终端的运动状态,得到所述终端在预定时间段内的第二运动数据,具体包括:所述运动传感器检测所述终端的运动状态,得到所述终端在第一时刻之前的预定时间段内的第二运动数据,所述第一时刻为所述终端接收到指示所述终端切换状态的指令的时刻,所述预定时间段的终止时刻与所述第一时刻之间的差值小于或等于第一时间阈值;
    所述处理器指示所述通信接口向所述智能穿戴设备发送获取运动数据的请求,具体包括:所述处理器指示所述通信接口向所述智能穿戴设备发送获取所述智能穿戴设备在第一时刻之前的预定时间段内运动数据的请求,所述预定时间段的终止时刻与所述第一时刻之间的差值小于或等于第一时间阈值。
  12. 根据权利要求10所述的终端,其特征在于,
    所述运动传感器检测所述终端的运动状态,得到所述终端在预定时间段内的第二运动数据,具体包括:所述运动传感器检测所述终端的运动状态,得到所述终端在第一时刻之后的预定时间段内的第二运动数据,所述第一时刻为所述终端接收到指示所述终端切换状态的指令的时刻,所述预定时间段的起始时刻与所述第一时刻之间的差值小于或等于第一时间阈值;
    所述处理器指示所述通信接口向所述智能穿戴设备发送获取运动数据的请求,具体包括:所述处理器指示所述通信接口向所述智能穿戴设备发送获取所述智能穿戴设备在第一时刻之后的预定时间段内运动数据的请求,所述预定时间段的起始时刻与所述第一时刻之间的差值小于或等于第一时间阈值。
  13. 根据权利要求10所述的终端,其特征在于,
    所述通信接口接收所述智能穿戴设备发送的所述智能穿戴设备在所述预定时间段内的第一运动数据,具体包括:所述通信接口接收所述智能穿戴设备发送的在所述预定时间段内所述智能穿戴设备在第一三维坐标系中特定坐标轴上的加速度;
    所述运动传感器检测所述终端的运动状态,得到所述终端在所述预定时间段内的第二运动数据,具体包括:所述运动传感器检测所述终端的运动状态,得到在所述预定时间段内所述终端在第二三维坐标系中所述特定坐标轴上的加速度;
    所述第一三维坐标系和所述第二三维坐标系的相同坐标轴的方向一致。
  14. 根据权利要求13所述的终端,其特征在于,所述处理器计算所述第一运动数据和所述第二运 动数据的偏差值具体包括:
    所述处理器在所述预定时间段中的M个采样时刻,分别对所述第一运动数据和所述第二运动数据进行采样,获得M个第一加速度采样集和M个第二加速度采样集,其中M为大于1的整数;利用所述M个第一加速度采样集和所述M个第二加速度采样集,分别计算得到在M个采样时刻的加速度偏差量,其中,第i个采样时刻的加速度偏差量,利用第i个第一加速度采样集和第i个第二加速度采样集中同一坐标轴上加速度采样值的差值计算得到,其中i=1,2,…M;计算所述M个采样时刻的加速度偏差量的平均值,所述平均值为所述第一运动数据和所述第二运动数据的偏差值。
  15. 根据权利要求10至14中任一项所述的终端,其特征在于,所述输入单元接收指示所述终端切换状态的指令具体包括:所述输入单元接收指示所述终端解锁的指令和/或接收指示所述终端亮屏的指令。
  16. 根据权利要求15所述的终端,其特征在于,所述处理器还用于:
    根据所述第二运动数据,确定所述终端在所述预定时间段内的运动幅度,利用预存的幅度区间和运行模式的映射关系,确定与所述运动幅度所属幅度区间对应的运行模式,控制所述终端进入与所述运动幅度所属幅度区间对应的运行模式。
  17. 一种智能穿戴设备,其特征在于,所述智能穿戴设备与终端处于绑定状态,所述智能穿戴设备包括:
    通信接口,用于接收终端发送的获取运动数据的请求;
    处理器,用于响应所述获取运动数据的请求,获取所述智能穿戴设备在预定时间段内的第一运动数据,指示所述通信接口向所述终端发送所述第一运动数据;
    所述运动传感器,用于检测所述智能穿戴设备的运动状态,得到所述智能穿戴设备在所述预定时间段内的第一运动数据。
  18. 根据权利要求17所述的智能穿戴设备,其特征在于,所述运动传感器检测所述智能穿戴设备的运动状态,得到所述智能穿戴设备在预定时间段内的第一运动数据,具体包括:
    所述运动传感器检测所述智能穿戴设备的运动状态,得到所述智能穿戴设备在第一时刻之前的预定时间段内的第二运动数据,所述第一时刻为所述终端接收到指示所述终端切换状态的指令的时刻,所述预定时间段的终止时刻与所述第一时刻之间的差值小于或等于第一时间阈值。
  19. 根据权利要求17所述的智能穿戴设备,其特征在于,所述运动传感器检测所述智能穿戴设备的运动状态,得到所述智能穿戴设备在预定时间段内的第一运动数据,具体包括:
    所述运动传感器检测所述智能穿戴设备的运动状态,得到所述智能穿戴设备在第一时刻之后的预定时间段内的第二运动数据,所述第一时刻为所述终端接收到指示所述终端切换状态的指令的时刻,所述预定时间段的起始时刻与所述第一时刻之间的差值小于或等于第一时间阈值。
  20. 一种系统,其特征在于,包括如权利要求10至16中任一项所述的终端和如权利要求17至19中任一项所述的智能穿戴设备,所述终端和所述智能穿戴设备处于绑定状态。
  21. 一种终端设备,其特征在于,所述终端设备包括显示屏,存储器,一个或多个处理器,以及一个或多个程序;其中所述一个或多个程序被存储在所述存储器中;其特征在于,所述一个或多个处理器在执行所述一个或多个程序时,使得所述终端设备实现如权利要求1至9任一项所述的方法。
  22. 一种计算机可读存储介质,包括指令,其特征在于,当其在计算机上运行时,使得所述计算机执行如权利要求1-9一所述的方法。
  23. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1-9任意一项所述的方法。
PCT/CN2017/099186 2016-08-26 2017-08-25 终端的控制方法、终端、智能穿戴设备和系统 WO2018036565A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/097,130 US11003224B2 (en) 2016-08-26 2017-08-25 Control method for terminal, terminal, intelligent wearable device, and system
US17/315,719 US11579666B2 (en) 2016-08-26 2021-05-10 Control method for terminal, terminal, intelligent wearable device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610738550.2A CN107786721A (zh) 2016-08-26 2016-08-26 终端的控制方法、终端、智能穿戴设备和系统
CN201610738550.2 2016-08-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/097,130 A-371-Of-International US11003224B2 (en) 2016-08-26 2017-08-25 Control method for terminal, terminal, intelligent wearable device, and system
US17/315,719 Continuation US11579666B2 (en) 2016-08-26 2021-05-10 Control method for terminal, terminal, intelligent wearable device, and system

Publications (1)

Publication Number Publication Date
WO2018036565A1 true WO2018036565A1 (zh) 2018-03-01

Family

ID=61245521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099186 WO2018036565A1 (zh) 2016-08-26 2017-08-25 终端的控制方法、终端、智能穿戴设备和系统

Country Status (3)

Country Link
US (2) US11003224B2 (zh)
CN (1) CN107786721A (zh)
WO (1) WO2018036565A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710300A (zh) * 2020-12-01 2021-04-27 上海豪承信息技术有限公司 一种切换可穿戴设备的表盘的方法与设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108628217B (zh) * 2018-05-30 2022-03-11 努比亚技术有限公司 穿戴设备功耗控制方法、穿戴设备及计算机可读存储介质
US11005759B2 (en) * 2018-08-08 2021-05-11 Google Llc Delegated communication methods and systems for a wearable device
CN113282261B (zh) * 2021-06-10 2023-03-14 歌尔科技有限公司 智能显示方法、设备、计算机程序产品及存储介质
CN114190926B (zh) * 2021-11-29 2023-12-08 首都体育学院 基于可穿戴设备的运动状态监测系统及方法
CN116483241B (zh) * 2023-06-21 2024-03-29 深圳市微克科技股份有限公司 一种智能设备床头钟自适应方向调整方法、系统及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140173719A1 (en) * 2012-12-18 2014-06-19 Hon Hai Precision Industry Co., Ltd. Industrial manipulating system with multiple computers and industrial manipulating method
CN104915120A (zh) * 2015-06-24 2015-09-16 北京百纳威尔科技有限公司 终端的解锁方法和终端
CN105228084A (zh) * 2015-08-25 2016-01-06 小米科技有限责任公司 穿戴式智能设备检测数据处理方法和穿戴式智能设备
WO2016131245A1 (zh) * 2015-07-22 2016-08-25 中兴通讯股份有限公司 控制终端操作的方法及装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150135284A1 (en) * 2011-06-10 2015-05-14 Aliphcom Automatic electronic device adoption with a wearable device or a data-capable watch band
US9638537B2 (en) * 2012-06-21 2017-05-02 Cellepathy Inc. Interface selection in navigation guidance systems
US11157436B2 (en) * 2012-11-20 2021-10-26 Samsung Electronics Company, Ltd. Services associated with wearable electronic device
CN103197839A (zh) * 2013-03-26 2013-07-10 北京小米科技有限责任公司 一种解锁的方法、装置和设备
US20150193613A1 (en) * 2013-03-27 2015-07-09 Samsung Electronics Co., Ltd. Portable apparatus and method of connecting to external apparatus
US20140363797A1 (en) * 2013-05-28 2014-12-11 Lark Technologies, Inc. Method for providing wellness-related directives to a user
US10281987B1 (en) * 2013-08-09 2019-05-07 Leap Motion, Inc. Systems and methods of free-space gestural interaction
US20170279957A1 (en) * 2013-08-23 2017-09-28 Cellepathy Inc. Transportation-related mobile device context inferences
EP3078135B1 (en) * 2013-12-05 2019-12-11 Sony Corporation Pairing consumer electronic devices using a cross-body communications protocol
KR20150073366A (ko) * 2013-12-23 2015-07-01 삼성전자주식회사 전자 장치 간의 거리를 측정하는 방법 및 전자 장치
CN103885584B (zh) 2014-01-06 2016-11-09 北京奇虎科技有限公司 智能手表
US10146196B2 (en) * 2014-04-10 2018-12-04 Heartmiles, Llc Wearable environmental interaction unit
KR102224483B1 (ko) * 2014-07-07 2021-03-08 엘지전자 주식회사 터치 스크린을 포함하는 이동 단말기 및 그 제어 방법
US9986086B2 (en) * 2014-07-31 2018-05-29 Samsung Electronics Co., Ltd. Mobile terminal and method of operating the same
US9996109B2 (en) * 2014-08-16 2018-06-12 Google Llc Identifying gestures using motion data
KR102192419B1 (ko) * 2014-09-11 2020-12-17 삼성전자주식회사 웨어러블 장치를 사용하여 전자 장치를 제어하는 방법 및 전자 장치의 동작 방법
KR102226177B1 (ko) * 2014-09-24 2021-03-10 삼성전자주식회사 사용자 인증 방법 및 그 전자 장치
CN104615920B (zh) 2014-12-30 2020-06-02 小米科技有限责任公司 通知信息显示方法及装置
US9836963B1 (en) * 2015-01-20 2017-12-05 State Farm Mutual Automobile Insurance Company Determining corrective actions based upon broadcast of telematics data originating from another vehicle
JP6488754B2 (ja) * 2015-02-20 2019-03-27 富士通コネクテッドテクノロジーズ株式会社 情報処理装置、制御方法およびプログラム
KR101570354B1 (ko) * 2015-03-05 2015-11-19 엘지전자 주식회사 이동 단말기 및 그 제어 방법
US9842224B2 (en) * 2015-05-26 2017-12-12 Motorola Mobility Llc Portable electronic device proximity sensors and mode switching functionality
US9674426B2 (en) * 2015-06-07 2017-06-06 Apple Inc. Devices and methods for capturing and interacting with enhanced digital images
US9860451B2 (en) * 2015-06-07 2018-01-02 Apple Inc. Devices and methods for capturing and interacting with enhanced digital images
US10200598B2 (en) * 2015-06-07 2019-02-05 Apple Inc. Devices and methods for capturing and interacting with enhanced digital images
KR20170014297A (ko) * 2015-07-29 2017-02-08 엘지전자 주식회사 와치 타입의 이동 단말기 및 그 제어 방법
US10259066B2 (en) * 2015-08-17 2019-04-16 Lincoln Global, Inc. Method and system for welder theft protection
KR102432620B1 (ko) * 2015-11-12 2022-08-16 삼성전자주식회사 외부 객체의 근접에 따른 동작을 수행하는 전자 장치 및 그 방법
US20170142589A1 (en) * 2015-11-18 2017-05-18 Samsung Electronics Co., Ltd Method for adjusting usage policy and electronic device for supporting the same
CN105468267B (zh) * 2015-11-19 2019-07-12 上海与德通讯技术有限公司 一种手势识别方法、系统及移动终端
CN107197076A (zh) * 2016-03-14 2017-09-22 中兴通讯股份有限公司 一种终端设备的控制方法、移动终端及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140173719A1 (en) * 2012-12-18 2014-06-19 Hon Hai Precision Industry Co., Ltd. Industrial manipulating system with multiple computers and industrial manipulating method
CN104915120A (zh) * 2015-06-24 2015-09-16 北京百纳威尔科技有限公司 终端的解锁方法和终端
WO2016131245A1 (zh) * 2015-07-22 2016-08-25 中兴通讯股份有限公司 控制终端操作的方法及装置
CN105228084A (zh) * 2015-08-25 2016-01-06 小米科技有限责任公司 穿戴式智能设备检测数据处理方法和穿戴式智能设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710300A (zh) * 2020-12-01 2021-04-27 上海豪承信息技术有限公司 一种切换可穿戴设备的表盘的方法与设备

Also Published As

Publication number Publication date
US11579666B2 (en) 2023-02-14
US20210263567A1 (en) 2021-08-26
US20190317563A1 (en) 2019-10-17
US11003224B2 (en) 2021-05-11
CN107786721A (zh) 2018-03-09

Similar Documents

Publication Publication Date Title
WO2018036565A1 (zh) 终端的控制方法、终端、智能穿戴设备和系统
CN110417986B (zh) 一种灭屏显示的方法及电子设备
WO2015074567A1 (zh) 一种敲击控制方法及终端
WO2017088154A1 (zh) 一种情景模式切换的方法
EP2561722B1 (en) Use of mobile computing device sensors to initiate a telephone call or modify telephone operation
CN107425860B (zh) 天线切换系统和移动终端
WO2018076506A1 (zh) 一种双屏终端点亮屏幕的方法及终端
CN110476404B (zh) 消息获取方法和装置
WO2018195921A1 (zh) 解锁控制方法及相关产品
WO2018099043A1 (zh) 一种终端行为触发方法及终端
WO2018161353A1 (zh) 一种分享照片的方法和装置
CN107592615B (zh) 定位方法和装置
CN110299100B (zh) 显示方向调整方法、可穿戴设备及计算机可读存储介质
WO2016045027A1 (zh) 屏幕灵敏度调整方法和移动终端
CN108874121A (zh) 穿戴设备的控制方法、穿戴设备及计算机可读存储介质
KR20220123036A (ko) 터치 키, 제어 방법 및 전자 장치
CN110012148A (zh) 一种手环控制方法、手环及计算机可读存储介质
CN110098845B (zh) 消息处理方法、可穿戴设备、移动终端及可读存储介质
WO2019042478A1 (zh) 移动终端输入法软键盘的控制方法、存储介质及移动终端
CN110139270B (zh) 可穿戴设备配对方法、可穿戴设备及计算机可读存储介质
CN108769206B (zh) 数据同步方法、终端及存储介质
CN110071866B (zh) 一种即时通信应用控制方法、可穿戴设备及存储介质
CN110069200B (zh) 可穿戴设备输入控制方法、可穿戴设备及存储介质
CN109933187B (zh) 穿戴设备运行控制方法、穿戴设备及计算机可读存储介质
CN111372003A (zh) 一种摄像头切换方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842987

Country of ref document: EP

Kind code of ref document: A1