WO2018036296A1 - 用于电动汽车动力电池的相变冷却系统 - Google Patents

用于电动汽车动力电池的相变冷却系统 Download PDF

Info

Publication number
WO2018036296A1
WO2018036296A1 PCT/CN2017/092846 CN2017092846W WO2018036296A1 WO 2018036296 A1 WO2018036296 A1 WO 2018036296A1 CN 2017092846 W CN2017092846 W CN 2017092846W WO 2018036296 A1 WO2018036296 A1 WO 2018036296A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
evaporator
phase change
cooling system
change cooling
Prior art date
Application number
PCT/CN2017/092846
Other languages
English (en)
French (fr)
Inventor
王全明
方杰
Original Assignee
上海蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海蔚来汽车有限公司 filed Critical 上海蔚来汽车有限公司
Publication of WO2018036296A1 publication Critical patent/WO2018036296A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the utility model belongs to the field of new energy vehicles, and particularly provides a phase change cooling system for an electric vehicle power battery.
  • the power battery thermal management design of electric vehicles has problems of low cooling efficiency and high cost. It is well known that during the driving process of electric vehicles, especially in summer, the temperature rise of the power battery is very obvious, thereby affecting the driving performance and safety performance of the vehicle.
  • the power battery of electric vehicles generally adopts air cooling and liquid medium cooling methods, but the cooling efficiency of these two cooling methods is low, especially the liquid medium cooling method, and the cooling circuit needs to be separately designed, which not only increases the cost but also greatly increases Increase the quality of the battery pack to reduce the energy density of the battery pack. Therefore, it is particularly important to design a simple and efficient electric vehicle thermal battery thermal management system.
  • the present invention provides a phase change cooling system for an electric vehicle power battery, the phase change cooling system
  • An air conditioning system for an electric vehicle and comprising a compressor, a condenser, an evaporator, and a gas storage drying tank sequentially connected in a loop, wherein the evaporator includes the power battery, and the power battery is provided with useful
  • a refrigerant passage that circulates through the cooling medium, the refrigerant passage cooperating with a battery in the power battery to absorb heat generated during charging and discharging of the battery.
  • the evaporator further includes an air conditioning system evaporator, the air conditioning system evaporator being in parallel with the power battery.
  • the phase change cooling system further includes two expansion valves, one end of an expansion valve The other end is connected to the power battery; the other end of the expansion valve is connected to the condenser, and the other end is connected to the evaporator of the air conditioning system.
  • the phase change cooling system further includes an expansion valve, one end of the expansion valve is connected to the condenser, and the expansion valve is further One end is connected to the power battery and the air conditioner system evaporator, respectively.
  • the evaporator further includes an air conditioning system evaporator, the air conditioning system evaporator being in series with the power battery.
  • the air conditioning system evaporator is located between the power battery and the condenser, and the air conditioning system evaporator and the condenser An expansion valve is disposed therebetween; or the air conditioning system evaporator is located between the power battery and the gas storage drying tank, and an expansion valve is disposed between the power battery and the condenser.
  • the phase change cooling system further includes a monitoring system for monitoring the temperature of the power battery and controlling according to the monitored temperature The phase change cooling system operates.
  • the phase change cooling system further includes a first line and a second valve provided with a first valve, the second valve and the The air conditioning system evaporators are connected in series, the first line being in parallel with the second valve and the air conditioning system evaporator.
  • the phase change cooling system further includes a second line and a fourth valve provided with a third valve, the fourth valve and the The power cells are connected in series, and the second conduit is connected in parallel with the fourth valve and the power battery.
  • the power battery is connected in series to the air conditioning system of the electric vehicle, and the refrigerant channel for circulating the cooling medium of the air conditioning system is disposed in the power battery of the electric vehicle.
  • the refrigerant passage cooperates with the battery in the power battery to absorb the heat generated during charging and discharging of the battery, thereby improving the heat dissipation efficiency of the electric vehicle battery.
  • FIG. 1 is a system diagram of a phase change cooling system for an electric vehicle power battery of the present invention, wherein the power battery is connected in parallel with the air conditioner system evaporator.
  • FIG. 2 is a schematic diagram of a system for a phase change cooling system of an electric vehicle power battery according to the present invention, wherein the power battery is connected in series with the evaporator of the air conditioning system and both work simultaneously and simultaneously.
  • FIG. 3 is a system diagram of a phase change cooling system for an electric vehicle power battery of the present invention, wherein the power battery is connected in series with the air conditioner system evaporator, but both can work separately.
  • FIG. 4 is a schematic diagram of a system for a phase change cooling system of an electric vehicle power battery of the present invention, wherein the power battery is the only evaporator of the electric vehicle air conditioning system.
  • the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be, for example, a fixed connection or a Removable connection, or integral connection; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • installation may be, for example, a fixed connection or a Removable connection, or integral connection; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the power battery 6 in FIG. 1, FIG. 2, FIG. 3, and FIG. 4 described below is provided with a refrigerant passage for the circulation of the cooling medium, and the refrigerant passage cooperates with the battery in the power battery 6. Adjacent or contact) to absorb heat generated during battery charging and discharging.
  • a phase change cooling system for an electric vehicle power battery includes a compressor 1, a condenser 2, a gas storage drying tank 3, an expansion valve 4, and sequentially connected in a loop.
  • the power battery 6 and an air conditioning system evaporator 5 are connected in parallel at the power battery 6, preferably the air conditioning system evaporator 5 is controlled by a separate expansion valve 4.
  • R134a is used as a cooling medium, and the gaseous R134a is compressed by the compressor 1 and converted into a liquid R134a via the condenser 2 to release a large amount of heat.
  • the expansion valve 4 is opened, the liquid R134a flows to the air conditioning system to evaporate.
  • the battery 5 and the power battery 6 absorb a large amount of heat under the action of the air conditioner evaporator 5 and the power battery 6, and are converted into a gaseous state, thereby lowering the temperature of the battery pack, and the gaseous state R134a is stored and dried in the gas storage drying tank 3.
  • the user can select the air conditioning system evaporator 5 or the power battery 6 to work alone as needed, or the air conditioning system evaporator 5 and the power battery 6 can be operated simultaneously. It will be understood by those skilled in the art that the air conditioning system evaporator 5 and the power battery 6 can be jointly controlled by one expansion valve 4, but at this time, the air conditioning system evaporator 5 and the power battery 6 can only work together. Further, it should be understood that the gas storage drying tank 3 is provided with a desiccant for absorbing moisture in the gaseous cooling medium from the air conditioning system evaporator 5 and the power battery 6, so that the compressor 1 can operate more stably.
  • a phase change cooling system for an electric vehicle power battery includes a compressor 1, a condenser 2, an expansion valve 4, a power battery 6, a gas storage drying tank 3, which are sequentially connected in a loop, and is powered.
  • An air conditioning system evaporator 5 is disposed between the battery 6 and the expansion valve 4, and the operation of the power battery 6 and the air conditioning system evaporator 5 is controlled by the expansion valve 4. It will be understood by those skilled in the art that the air conditioning system evaporator 5 can also be disposed between the compressor 1 and the power battery 6.
  • the cooling principle of the cooling circuit shown in the figure is the same as that shown in FIG. 1.
  • R134a is used as the cooling medium
  • the air conditioner system evaporator 5 and the power battery 6 are jointly controlled by the expansion valve 4, and the liquid R134a is passed through the expansion valve 4. It passes through the air conditioner evaporator 5 and the power battery 6 in sequence.
  • a first line 9 provided with a first valve 8 is connected in parallel at the evaporator 5 of the air conditioning system, and a second valve 7 is further disposed between the evaporator 5 of the air conditioning system and the expansion valve 4, and The second valve 7 is connected in parallel with the first line 9 for allowing the power battery 6 to operate alone.
  • the valve control power battery 6 operates simultaneously with the air conditioner system evaporator 5, the first valve 8 is closed and the second valve 7 is opened; when the power battery 6 is operated alone, the first valve 8 is opened and the second valve 7 is closed.
  • a second line 11 provided with a third valve 10 is connected in parallel at the power battery 6, and a fourth valve 12 is further disposed between the air conditioner system evaporator 5 and the power battery 6 and is connected in parallel with the second line 11 for Make the air conditioning system evaporator 5 can Work alone.
  • the valve control power battery 6 operates simultaneously with the air conditioner system evaporator 5, the third valve 10 is closed and the fourth valve 12 is opened; when the air conditioning system evaporator 5 is operated alone, the third valve 10 is opened and the fourth valve 12 is closed.
  • first line 9, the second valve 7 and the second line 11 and the fourth valve 12 disposed at the power battery 6 in the air conditioner system evaporator 5 in Fig. 3 are also understood. Both can be placed in the phase cooling system as needed, or only one of them can be placed in the phase cooling system. It can also be understood by those skilled in the art that the second valve 7 and the fourth valve 12 can also be respectively disposed on the upper part of the air conditioner evaporator 5 and the power battery 6 (the upper part of the evaporator 5 of the air conditioning system shown in the figure and the power The upper side of the battery 6), provided that the parallel connection of the first line 9 and the second valve 7 and the parallel connection of the second line 11 and the fourth valve 12 are required.
  • first valve 8, the second valve 7, the third valve 10 and the fourth valve 12 can control not only the stop of the power battery 6 and the evaporator 5 of the air conditioning system by fully opening or closing. Operation, it is also possible to control the flow of R134a through both by partially opening or closing, further realizing the cooling power of both.
  • a phase change cooling system for an electric vehicle power battery includes a compressor 1, a condenser 2, an expansion valve 4, a power battery 6, and a gas storage drying tank 3 which are sequentially connected in a loop.
  • a compressor 1 As shown in FIG. 4, a phase change cooling system for an electric vehicle power battery includes a compressor 1, a condenser 2, an expansion valve 4, a power battery 6, and a gas storage drying tank 3 which are sequentially connected in a loop.
  • R134a as a cooling medium
  • those skilled in the art can select other materials as the cooling medium according to specific conditions.
  • a phase change cooling system for an electric vehicle power battery is further provided with a monitoring system (not shown in FIGS. 1-4) for monitoring the operating temperature of the battery pack when the temperature of the battery pack reaches a set value (according to When the battery performance setting, for example, 20 ° C), the monitoring system controls the expansion valve 4 to open, and the power battery 6 starts to work to cool the battery pack.
  • the monitoring system controls the expansion valve 4 to be closed, and the power battery 6 is cooled to stop working.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种用于电动汽车动力电池(6)的相变冷却系统,属于新能源汽车领域,用于解决现有电动汽车动力电池(6)冷却效率低、成本高的问题。相变冷却系统包括依次顺序连接成环路的压缩机(1)、冷凝器(2)、膨胀阀(4)、蒸发器和储气干燥罐(3),所述蒸发器包括所述动力电池(6),所述动力电池(6)中设置有用于冷却介质流通的冷媒通道,所述冷媒通道与所述动力电池(6)中的电池配合以便吸收电池充电和放电过程中产生的热量,并且所述蒸发器还包括空调系统蒸发器(5),所述空调系统蒸发器(5)与所述动力电池(6)串联或并联。所述相变冷却系统通过将电池包与蒸发器设置成一体而大幅度地降低了电动汽车动力电池(6)工作时的温度。

Description

用于电动汽车动力电池的相变冷却系统 技术领域
本实用新型属于新能源汽车领域,具体提供一种用于电动汽车动力电池的相变冷却系统。
背景技术
电动汽车的动力电池热管理设计存在冷却效率低,成本高等问题,众所周知,在电动汽车行驶过程中,尤其是在夏季,动力电池的温度升高非常明显,从而影响车辆的驾驶性能和安全性能。目前,电动汽车的动力电池普遍采用风冷和液体介质冷却方式,但是这两种冷却方式的冷却效率偏低,特别是液体介质冷却方式,需要单独设计冷却回路,不仅增加了成本,同时也大幅增加电池包的质量,从而降低电池包的能量密度。因此,设计一种简单高效的电动汽车动力电池热管理系统显得尤为重要。
相应地,本领域需要一种新的动力电池冷却方式以及冷却系统来解决上述问题。
实用新型内容
为了解决现有技术中的上述问题,即为了解决现有电动汽车动力电池冷却效率低的问题,本实用新型提供了一种用于电动汽车动力电池的相变冷却系统,所述相变冷却系统是电动汽车的空调系统并且包括依次顺序连接成环路的压缩机、冷凝器、蒸发器和储气干燥罐,其特征在于,所述蒸发器包括所述动力电池,所述动力电池中设置有用于冷却介质流通的冷媒通道,所述冷媒通道与所述动力电池中的电池配合以便吸收电池充电和放电过程中产生的热量。
在上述用于电动汽车动力电池的相变冷却系统的优选实施方式中,所述蒸发器还包括空调系统蒸发器,所述空调系统蒸发器与所述动力电池并联。
在上述用于电动汽车动力电池的相变冷却系统的优选实施方式中,所述相变冷却系统还包括两个膨胀阀,一个膨胀阀的一端 与所述冷凝器连接,另一端与所述动力电池连接;另一个膨胀阀的一端与所述冷凝器连接,另一端与所述空调系统蒸发器连接。
在上述用于电动汽车动力电池的相变冷却系统的优选实施方式中,所述相变冷却系统还包括一个膨胀阀,所述膨胀阀的一端与所述冷凝器连接,所述膨胀阀的另一端分别与所述动力电池和所述空调系统蒸发器连接。
在上述用于电动汽车动力电池的相变冷却系统的优选实施方式中,所述蒸发器还包括空调系统蒸发器,所述空调系统蒸发器与所述动力电池串联。
在上述用于电动汽车动力电池的相变冷却系统的优选实施方式中,所述空调系统蒸发器位于所述动力电池和所述冷凝器之间,并且所述空调系统蒸发器与所述冷凝器之间设置有膨胀阀;或者所述空调系统蒸发器位于所述动力电池和所述储气干燥罐之间,并且所述动力电池与所述冷凝器之间设置有膨胀阀。
在上述用于电动汽车动力电池的相变冷却系统的优选实施方式中,所述相变冷却系统还包括监控系统,所述监控系统用于监测所述动力电池的温度并根据监测到的温度控制所述相变冷却系统工作。
在上述用于电动汽车动力电池的相变冷却系统的优选实施方式中,所述相变冷却系统还包括设置有第一阀门的第一管路和第二阀门,所述第二阀门与所述空调系统蒸发器串联,所述第一管路与所述第二阀门和所述空调系统蒸发器并联。
在上述用于电动汽车动力电池的相变冷却系统的优选实施方式中,所述相变冷却系统还包括设置有第三阀门的第二管路和第四阀门,所述第四阀门与所述动力电池串联,所述第二管路与所述第四阀门和所述动力电池并联。
本领域技术人员能够理解的是,在本实用新型的优选技术方案中,动力电池被串联到电动汽车的空调系统中,同时在电动汽车的动力电池中设置用于空调系统冷却介质流通的冷媒通道,该冷媒通道与动力电池中的电池配合以便吸收电池充电和放电过程中产生的热量,从而提高电动汽车电池的散热效率。
附图说明
图1是本实用新型的用于电动汽车动力电池的相变冷却系统的系统示意图,其中动力电池与空调系统蒸发器并联。
图2是本实用新型的用于电动汽车动力电池的相变冷却系统的系统示意图,其中动力电池与空调系统蒸发器串联且两者同时工作、同时停止。
图3是本实用新型的用于电动汽车动力电池的相变冷却系统的系统示意图,其中动力电池与空调系统蒸发器串联但两者可单独工作。
图4是本实用新型的用于电动汽车动力电池的相变冷却系统的系统示意图,其中动力电池作为电动汽车空调系统唯一的蒸发器。
具体实施方式
下面参照附图来描述本实用新型的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本实用新型的技术原理,并非旨在限制本实用新型的保护范围。例如,在说明书附图中相位冷却系统中串联或并联的空调系统蒸发器虽然只有一个,但是,这种数量关系并非一成不变,本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。
还需要说明的是,在本实用新型的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本实用新型中的具体含义。
此外,还需要说明的是,下述图1、图2、图3和图4中的动力电池6内设置有用于冷却介质流通的冷媒通道,该冷媒通道与动力电池6中的电池配合(相邻或接触)以便吸收电池充电和放电过程中产生的热量。
如图1所示,用于电动汽车动力电池的相变冷却系统包括依次顺序连接成环路的压缩机1、冷凝器2、储气干燥罐3、膨胀阀4和 动力电池6,并且在动力电池6处并联有一个空调系统蒸发器5,优选地,该空调系统蒸发器5由一个单独的膨胀阀4控制。
继续参阅图1,优选地,用R134a作为冷却介质,气态R134a被压缩机1压缩并经由冷凝器2转化成液态R134a放出大量的热,当膨胀阀4开启时,液态R134a会分别流向空调系统蒸发器5和动力电池6,在空调系统蒸发器5和动力电池6的作用下吸收大量的热,转换成气态,从而降低电池包的温度,气态R134a储存在储气干燥罐3中干燥。用户可根据需要选择空调系统蒸发器5或动力电池6单独工作,也可以选择空调系统蒸发器5和动力电池6同时工作。本领域技术人员能够理解的是,空调系统蒸发器5和动力电池6可由一个膨胀阀4共同控制,但此时空调系统蒸发器5和动力电池6只能一起工作。此外,应当理解的是,储气干燥罐3中设置有干燥剂,用于吸收来自空调系统蒸发器5和动力电池6的气态冷却介质中的水分,以便压缩机1能够更稳定地工作。
如图2所示,用于电动汽车动力电池的相变冷却系统包括依次顺序连接成环路的压缩机1、冷凝器2、膨胀阀4和动力电池6、储气干燥罐3,并且在动力电池6与膨胀阀4之间设置有一个空调系统蒸发器5,并且由膨胀阀4控制动力电池6与空调系统蒸发器5的工作。本领域技术人员能理解的是,空调系统蒸发器5也可以设置在压缩机1与动力电池6之间。
继续参阅图2,图中所示冷却回路的冷却原理与图1所示相同,同样以R134a作为冷却介质,空调系统蒸发器5和动力电池6由膨胀阀4共同控制,液态R134a经由膨胀阀4依次经过空调系统蒸发器5和动力电池6。
如图3所示,在空调系统蒸发器5处并联一根设置有第一阀门8的第一管路9,进一步在空调系统蒸发器5与膨胀阀4之间设置第二阀门7,并且第二阀门7与第一管路9并联,用以使动力电池6可以单独工作。当阀控制动力电池6与空调系统蒸发器5同时工作时,第一阀门8关闭,第二阀门7打开;当动力电池6单独工作时,第一阀门8打开,第二阀门7关闭。在动力电池6处并联一根设置有第三阀门10的第二管路11,进一步在空调系统蒸发器5与动力电池6之间设置第四阀门12并与第二管路11并联,用以使空调系统蒸发器5可以 单独工作。当阀控制动力电池6与空调系统蒸发器5同时工作时,第三阀门10关闭,第四阀门12打开;当空调系统蒸发器5单独工作时,第三阀门10打开,第四阀门12关闭。
本领域技术人员还能够理解的是,图3中设置在空调系统蒸发器5处的第一管路9、第二阀门7和设置在动力电池6处的第二管路11、第四阀门12,两者可根据需要都设置在相位冷却系统中,或者只将其中之一设置在相位冷却系统中。本领域技术人员还能够理解的是,第二阀门7和第四阀门12,还可以分别设置在空调系统蒸发器5与动力电池6的上面(图中所示空调系统蒸发器5的上面与动力电池6的上面),但前提是需要保证第一管路9和第二阀门7的并联,第二管路11和第四阀门12的并联。本领域技术人员还能够理解的是,第一阀门8、第二阀门7、第三阀门10和第四阀门12不仅可以通过完全开启或闭合来控制动力电池6和空调系统蒸发器5的停止与运行,还可以通过部分开启或闭合来控制通过两者的R134a的流量,进一步实现控制两者的制冷功率。
如图4所示,用于电动汽车动力电池的相变冷却系统包括依次顺序连接成环路的压缩机1、冷凝器2、膨胀阀4、动力电池6、储气干燥罐3。除了采用R134a作为冷却介质外,本领域人员还可以根据具体情况选用其他的材料作为冷却介质。
用于电动汽车动力电池的相变冷却系统还设置有监控系统(图1-4中未示出),该监控系统用于监测电池包的工作温度,当电池包的温度达到设定值(根据电池性能设置,例如20℃)时,监控系统控制膨胀阀4开启,动力电池6开始工作给电池包降温。当电池包的温度低于该设定值或者小于该设定值且差别达到一定阈值时,监控系统控制膨胀阀4关闭,动力电池6冷却停止工作。
至此,已经结合附图所示的优选实施方式描述了本实用新型的技术方案,但是,本领域技术人员容易理解的是,本实用新型的保护范围显然不局限于这些具体实施方式。在不偏离本实用新型的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本实用新型的保护范围之内。

Claims (9)

  1. 一种用于电动汽车动力电池的相变冷却系统,所述相变冷却系统是电动汽车的空调系统并且包括依次顺序连接成环路的压缩机、冷凝器、蒸发器和储气干燥罐,
    其特征在于,所述蒸发器包括所述动力电池,所述动力电池中设置有用于冷却介质流通的冷媒通道,所述冷媒通道与所述动力电池中的电池配合以便吸收电池充电和放电过程中产生的热量。
  2. 根据权利要求1所述的用于电动汽车动力电池的相变冷却系统,其特征在于,所述蒸发器还包括空调系统蒸发器,所述空调系统蒸发器与所述动力电池并联。
  3. 根据权利要求2所述的用于电动汽车动力电池的相变冷却系统,其特征在于,所述相变冷却系统还包括两个膨胀阀,一个膨胀阀的一端与所述冷凝器连接,另一端与所述动力电池连接;另一个膨胀阀的一端与所述冷凝器连接,另一端与所述空调系统蒸发器连接。
  4. 根据权利要求2所述的用于电动汽车动力电池的相变冷却系统,其特征在于,所述相变冷却系统还包括一个膨胀阀,所述膨胀阀的一端与所述冷凝器连接,所述膨胀阀的另一端分别与所述动力电池和所述空调系统蒸发器连接。
  5. 根据权利要求1所述的用于电动汽车动力电池的相变冷却系统,其特征在于,所述蒸发器还包括空调系统蒸发器,所述空调系统蒸发器与所述动力电池串联。
  6. 根据权利要求5所述的用于电动汽车动力电池的相变冷却系统,其特征在于,所述空调系统蒸发器位于所述动力电池和所述冷凝器之间,并且所述空调系统蒸发器与所述冷凝器之间设置有膨胀阀;或者
    所述空调系统蒸发器位于所述动力电池和所述储气干燥罐之间,并且所述动力电池与所述冷凝器之间设置有膨胀阀。
  7. 根据权利要求1至6中任一项所述的用于电动汽车动力电池的相变冷却系统,其特征在于,所述相变冷却系统还包括监控系统,所述监控系统用于监测所述动力电池的温度并根据监测到的温度控制所述相变冷却系统工作。
  8. 根据权利要求5或6所述的用于电动汽车动力电池的相变冷却系统,其特征在于,所述相变冷却系统还包括设置有第一阀门的第一管路和第二阀门,所述第二阀门与所述空调系统蒸发器串联,所述第一管路与所述第二阀门和所述空调系统蒸发器并联。
  9. 根据权利要求8所述的用于电动汽车动力电池的相变冷却系统,其特征在于,所述相变冷却系统还包括设置有第三阀门的第二管路和第四阀门,所述第四阀门与所述动力电池串联,所述第二管路与所述第四阀门和所述动力电池并联。
PCT/CN2017/092846 2016-08-24 2017-07-13 用于电动汽车动力电池的相变冷却系统 WO2018036296A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620934631.5 2016-08-24
CN201620934631.5U CN205985267U (zh) 2016-08-24 2016-08-24 用于电动汽车动力电池的相变冷却系统

Publications (1)

Publication Number Publication Date
WO2018036296A1 true WO2018036296A1 (zh) 2018-03-01

Family

ID=58034537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092846 WO2018036296A1 (zh) 2016-08-24 2017-07-13 用于电动汽车动力电池的相变冷却系统

Country Status (2)

Country Link
CN (1) CN205985267U (zh)
WO (1) WO2018036296A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847512A (zh) * 2018-07-11 2018-11-20 苏州库宁换热系统科技有限公司 动力电池冷却系统管路结构
CN109060255A (zh) * 2018-11-02 2018-12-21 常州普莱德新能源电池科技有限公司 一种动力电池包热管理系统气密性检测工装及检测系统
CN110474129A (zh) * 2019-07-17 2019-11-19 南京航空航天大学 一种动力电池模组液体浸没式温控系统及其方法
CN111786049A (zh) * 2020-07-09 2020-10-16 大连理工大学 一种用于电池冷却的多模组共用一个冷凝腔的两相浸没式冷却系统
CN111864304A (zh) * 2020-08-11 2020-10-30 大连理工大学 一种利用相变材料储能的两相浸没式电池液冷装置
CN113328167A (zh) * 2021-05-12 2021-08-31 武汉理工大学 一种结合超材料和相变材料的汽车电池热管理系统
CN114448151A (zh) * 2021-12-23 2022-05-06 湖南聚源电驱智能装备有限公司 新能源汽车轮毂电机的冷却系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205985267U (zh) * 2016-08-24 2017-02-22 上海蔚来汽车有限公司 用于电动汽车动力电池的相变冷却系统
CN109004309A (zh) * 2017-06-07 2018-12-14 盾安环境技术有限公司 一种电动汽车电池热管理系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104181A (zh) * 2009-12-18 2011-06-22 上海汽车集团股份有限公司 动力蓄电池热管理系统及汽车
CN102112841A (zh) * 2008-07-29 2011-06-29 贝洱两合公司 用于机动车热源散热的装置
US20160219759A1 (en) * 2013-09-25 2016-07-28 Gree Electric Appliances, Inc. Of Zhuhai Power electronic device cooling system and distributed power generation system
CN205985267U (zh) * 2016-08-24 2017-02-22 上海蔚来汽车有限公司 用于电动汽车动力电池的相变冷却系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102112841A (zh) * 2008-07-29 2011-06-29 贝洱两合公司 用于机动车热源散热的装置
CN102104181A (zh) * 2009-12-18 2011-06-22 上海汽车集团股份有限公司 动力蓄电池热管理系统及汽车
US20160219759A1 (en) * 2013-09-25 2016-07-28 Gree Electric Appliances, Inc. Of Zhuhai Power electronic device cooling system and distributed power generation system
CN205985267U (zh) * 2016-08-24 2017-02-22 上海蔚来汽车有限公司 用于电动汽车动力电池的相变冷却系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847512A (zh) * 2018-07-11 2018-11-20 苏州库宁换热系统科技有限公司 动力电池冷却系统管路结构
CN109060255A (zh) * 2018-11-02 2018-12-21 常州普莱德新能源电池科技有限公司 一种动力电池包热管理系统气密性检测工装及检测系统
CN110474129A (zh) * 2019-07-17 2019-11-19 南京航空航天大学 一种动力电池模组液体浸没式温控系统及其方法
CN111786049A (zh) * 2020-07-09 2020-10-16 大连理工大学 一种用于电池冷却的多模组共用一个冷凝腔的两相浸没式冷却系统
CN111786049B (zh) * 2020-07-09 2024-05-07 大连理工大学 一种用于电池冷却的多模组共用一个冷凝腔的两相浸没式冷却系统
CN111864304A (zh) * 2020-08-11 2020-10-30 大连理工大学 一种利用相变材料储能的两相浸没式电池液冷装置
CN111864304B (zh) * 2020-08-11 2024-04-16 大连理工大学 一种利用相变材料储能的两相浸没式电池液冷装置
CN113328167A (zh) * 2021-05-12 2021-08-31 武汉理工大学 一种结合超材料和相变材料的汽车电池热管理系统
CN113328167B (zh) * 2021-05-12 2023-04-18 武汉理工大学 一种结合超材料和相变材料的汽车电池热管理系统
CN114448151A (zh) * 2021-12-23 2022-05-06 湖南聚源电驱智能装备有限公司 新能源汽车轮毂电机的冷却系统

Also Published As

Publication number Publication date
CN205985267U (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2018036296A1 (zh) 用于电动汽车动力电池的相变冷却系统
WO2018076846A1 (zh) 电动汽车电池包温度的智能控制系统和方法
CN106938601B (zh) 一种电动汽车热泵空调系统及其控制方法
CN103625242A (zh) 一种电动汽车热管理系统
CN203489519U (zh) 汽车制冷系统
KR20120140101A (ko) 차량용 히트펌프 시스템 및 그 제어방법
CN203580560U (zh) 一种电动汽车热管理系统
CN101545689B (zh) 空气调节装置
CN109830785B (zh) 一种新能源汽车电池冷却系统控制装置
CN104534593A (zh) 一种机房节能空调装置及制冷方法
CN108987850A (zh) 一种电动汽车电池温控系统及其控制方法
CN103474714A (zh) 电动汽车动力电池恒温方法及其系统
CN112339614B (zh) 一种适用于燃料电池汽车热系统的协同管理方法
CN204156059U (zh) 一种用于电动汽车风冷电池包热管理装置
CN104154692A (zh) 一种新型补气增焓系统及其控制方法
CN108638785B (zh) 基于相变蓄能除霜的新型电动汽车热泵空调系统及其控制方法
CN102297494A (zh) 多联机制冷低负荷稳定运行的方法及系统
CN111993884A (zh) 一种混合动力车辆热管理系统及混合动力车辆热管理方法
CN203478506U (zh) 一种空调室外机电控模块降温装置
KR20140103474A (ko) 전기자동차용 히트펌프 시스템 제어방법
CN203056038U (zh) 一种电动大巴车电池组冷却装置
CN203518143U (zh) 空调器
CN215377503U (zh) 一种液冷与直冷结合的电动汽车动力电池冷却装置
CN114953918A (zh) 一种电池直冷直热co2车辆热管理系统及其控制方法
CN113147311A (zh) 一种跨临界二氧化碳新能源汽车热管理系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842719

Country of ref document: EP

Kind code of ref document: A1