WO2018036264A1 - 一种直流站间通信切换方法 - Google Patents
一种直流站间通信切换方法 Download PDFInfo
- Publication number
- WO2018036264A1 WO2018036264A1 PCT/CN2017/090300 CN2017090300W WO2018036264A1 WO 2018036264 A1 WO2018036264 A1 WO 2018036264A1 CN 2017090300 W CN2017090300 W CN 2017090300W WO 2018036264 A1 WO2018036264 A1 WO 2018036264A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- communication
- stations
- control system
- ethernet
- duty
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 119
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000005540 biological transmission Effects 0.000 claims abstract description 43
- 238000005516 engineering process Methods 0.000 abstract description 3
- 230000006855 networking Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2801—Broadband local area networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/28—Routing or path finding of packets in data switching networks using route fault recovery
Definitions
- the invention belongs to the field of direct current transmission, and particularly relates to a method for switching communication between DC stations.
- the converter stations operate in the rectification and inverter modes respectively.
- the DC control systems that undertake the rectification and inverter control functions need to exchange information and coordinate control in real time, which requires inter-flow stations.
- Ability to communicate Since the physical locations of the converter stations are far apart, usually the communication between stations is realized by the power communication transmission network. From the perspective of redundancy, DC transmission generally has two sets of control systems with the same configuration and independent operation, one set is in the duty state and the other set is in the standby state. In order to reduce the number of communication channels between stations and reduce engineering investment, only the information of the two duty control systems needs to be transmitted, and a communication switching device is needed to forward the information of the duty system.
- the control system mostly outputs HDLC electrical signals to the communication switching device, and then the communication switching module passes the G.703 (E1) interface to the SDH transmission network to realize point-to-point communication between stations.
- This method is suitable for double-ended DC, but for multi-terminal DC, if the above-mentioned point-to-point communication method is still used, the DC control system requires more communication interfaces between stations, and more SDH channels are occupied, and the overall reliability of communication is lowered, and the expansion is inconvenient. There is a need to study a new method of switching communication between DC stations.
- the object of the present invention is to provide an Ethernet-based DC station communication switching method, which can improve communication speed, reduce transmission delay, simplify inter-station communication system design, support multiple inter-station networking communication, and satisfy multi-terminal DC interconnection. Coordinate control needs.
- the solution of the present invention is:
- a method for switching communication between DC stations includes the following steps:
- Step S100 The DC control system is connected to the communication transmission device through the communication switching module, and realizes the communication between the stations through the power communication transmission network;
- Step S101 The DC control system will indicate the duty status or the standby running status ACTIVE flag and the information to be exchanged between the stations, and send the information to the communication switching module by using the Ethernet message;
- Step S102 The communication switching module selects to send the Ethernet packet of the duty system to the communication transmission device according to the ACTIVE flag in the Ethernet packet, and sends the Ethernet packet to the other converter station via the power communication transmission network.
- the DC control system respectively connects two or more communication switching modules through independent communication ports, and each communication switching module uses a communication port to connect the communication transmission device; from the viewpoint of redundancy reliability, two communication are generally configured. Switch the module.
- the DC control system of the converter station has two sets of systems of the same configuration and independent operation, and the DC control system operates in a duty state (ie, ACTIVE is TRUE) or a standby state (ie, ACTIVE is FALSE).
- the DC control system composes the information to be exchanged between the stations, forms an Ethernet message frame in a certain format, and writes a duty or standby state (ie, an ACTIVE flag) in the Ethernet message, which is ACTIVE.
- the marked Ethernet message is sent to the communication switching module.
- step S102 the communication switching module receives the Ethernet packet from the DC control system from different ports, obtains the ACTIVE flag from the Ethernet packet, and forwards the duty status message to the communication port connected to the communication transmission device.
- the standby status message is discarded, so that the communication transmission device can only forward the message of the duty system to the power communication transmission network.
- Ethernet communication can reach 100Mbps or 1Gbps, which is much larger than the conventional G.703 (E1) 2Mbps, shortening the communication transmission delay, and Ethernet supports virtual local area network (VLAN) technology and multicast technology.
- VLAN virtual local area network
- Multiple DC stations can form a wide-area Ethernet network through the power communication transmission network.
- the DC control system of these stations can realize networking communication and multi-terminal DC interconnection. Coordinating control is very easy. Compared with traditional HDLC point-to-point communication has a great advantage.
- 1 is a schematic diagram of communication switching between DC converter stations proposed by the present invention
- FIG. 2 is a schematic diagram of the operation of the communication switching module.
- the present invention provides a method for switching communication between DC stations, including the following steps:
- Step S100 The DC control system is connected to the communication transmission device through the communication switching module, and realizes the communication between the stations through the power communication transmission network;
- each DC control system is connected to two communication switching modules through independent Ethernet communication ports. As shown in FIG. 1 , each DC control system has two inter-station Ethernet communication ports, and two communication switching modules are respectively connected.
- Each communication switching module is connected to the communication transmission device by using an Ethernet communication port.
- SDH is a transparent transmission pipe for Ethernet.
- an inter-station Ethernet communication channel can be established to implement wide area Ethernet communication.
- the number of communication switching modules is the same as the number of communication channels between stations. From the perspective of redundancy and reliability, two communication switching modules are generally configured to ensure that a single communication link is in error and does not cause interruption of communication of the upper layer service.
- Step S101 The DC control system will indicate the duty status or the standby running status ACTIVE flag and the information to be exchanged between the stations, and send the information to the communication switching module by using the Ethernet message;
- the converter station DC control system usually has 2 sets or more of the same configuration and independent operation system, and only one system is in the duty state (ACTIVE flag is TRUE), and the remaining systems are in the standby state (ACTIVE flag is FALSE).
- the DC control system combines the information exchanged between stations, forms an Ethernet message frame in a certain format, and writes an ACTIVE flag in the Ethernet message.
- the Ethernet message with the ACTIVE flag is sent to the communication switching module. .
- the ACTIVE flag can be defined in a fixed location of the Ethernet packet, for example, in the first byte of the APDU (Application Protocol Data Unit). This byte value 0x5A represents TRUE/duty, and other values represent FALSE/ spare.
- Step S102 The communication switching module selects to send the Ethernet packet of the duty system to the communication transmission device according to the ACTIVE flag in the Ethernet packet, and sends the Ethernet packet to the other converter station via the power communication transmission network.
- the communication switching module receives the Ethernet packet from the DC control system from different ports, obtains the ACTIVE flag from the Ethernet packet, and forwards the duty status message to the communication port connected to the communication transmission device.
- the standby status message is discarded, so that the communication transmission device can only forward the message of the duty system to the power communication transmission network.
- the communication transmission device can be operated in a point-to-point or networking communication mode.
- point-to-point mode can be used.
- network communication can be used to reduce the complexity of the communication system.
- the communication switching module can use the programmable logic device FPGA to process Ethernet messages.
- the FPGA can analyze the serial code stream of the Ethernet frames of the P1 and P2 ports in real time according to the IEC 802.3 Ethernet protocol.
- the ACTIVE flag on the fixed position of the Ethernet packet is extracted, and then the Ethernet packet whose ACTIVE is TRUE is forwarded to the P3 port through a strobe.
- the FPGA hard decoding has the highest real-time performance, and the transmission link delay of the communication cutting device can be less than 1 microsecond.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Small-Scale Networks (AREA)
Abstract
本发明公开一种直流站间通信切换方法,步骤是:直流控制系统通过通信切换模块连接通信传输设备,经电力通信传输网实现站间通信;直流控制系统将表示值班或备用的运行状态ACTIVE标志和站间需要交换的信息,用以太网报文发给通信切换模块;通信切换模块根据以太网报文中的ACTIVE标志,选择将值班系统的以太网报文发送给通信传输设备,经电力通信传输网送给其他换流站。这种以太网通信切换方法能够简化通信系统设计,满足两端直流和多端直流协调控制的需求,适应广域通信技术发展。
Description
本发明属于直流输电领域,特别涉及一种直流站间通信切换方法。
在直流输电系统中,换流站分别工作在整流、逆变两种运行方式,承担整流、逆变控制功能的直流控制系统之间需要实时交换信息、协调控制,这就要求换流站之间能够通信。由于换流站物理位置相隔较远,通常站间通信是通过电力通信传输网实现。从冗余方面考虑,直流输电一般有两套相同配置且独立运行的控制系统,一套处于值班状态,另一套处于备用状态。为减少站间通信通道数量、降低工程投资,仅需要将两侧值班控制系统的信息进行传输,需使用一个通信切换装置来转发值班系统的信息。目前实际工程中,控制系统大都输出HDLC电信号至通信切换装置,再由通信切换模块通过G.703(E1)接口至SDH传输网,实现了站间点对点通信。这种方式适合双端直流,但对于多端直流,如果仍然使用上述点对点通信方式,要求直流控制系统站间通信接口多、占用SDH通道多,通信整体可靠性降低,扩展不方便。需要研究一种新的直流站间通信切换方法。
发明内容
本发明的目的,在于提供一种基于以太网的直流站间通信切换方法,可以提高通信速度,减少传输延时,简化站间通信系统设计,支持多个站间组网通信,满足多端直流互联、协调控制需求。
为了达成上述目的,本发明的解决方案是:
一种直流站间通信切换方法,包括如下步骤:
步骤S100:直流控制系统通过通信切换模块连接通信传输设备,经电力通信传输网实现站间通信;
步骤S101:直流控制系统将表示值班或备用的运行状态ACTIVE标志和站间需要交换的信息,用以太网报文发给通信切换模块;
步骤S102:通信切换模块根据以太网报文中的ACTIVE标志,选择将值班系统的以太网报文发送给通信传输设备,经电力通信传输网送给其他换流站。
上述步骤S100中,直流控制系统通过独立的通信口,分别连接2个及以上的通信切换模块,每个通信切换模块用通信口连接通信传输设备;从冗余可靠方面考虑,一般配置两个通信切换模块。
上述步骤S101之前还包括:换流站直流控制系统有2套及以上相同配置且独立运行的系统,直流控制系统运行在值班状态(即ACTIVE为TRUE)或备用状态(即ACTIVE为FALSE)。
上述步骤S101中,直流控制系统将站间需要交换的信息,按一定格式组成以太网报文帧,并在以太网报文中写入值班或备用状态(即ACTIVE标志),这种带有ACTIVE标志的以太网报文被发送给通信切换模块。
上述步骤S102的详细内容是:通信切换模块从不同端口接收来自直流控制系统的以太网报文,从以太网报文中获得ACTIVE标志,将值班状态报文转发至与通信传输设备连接的通信口,将备用状态报文丢弃,这样通信传输设备只能转发值班系统的消息至电力通信传输网。
采取本方案后,直流站间通信系统设计将非常简洁、可靠,采用以太网通信传输速率可达到100Mbps或1Gbps,相比常规G.703(E1)的2Mbps提升巨大,缩短通信传输延时,另外以太网支持虚拟局域网技术(VLAN)、组播技术,多个直流站可以通过电力通信传输网组建一个广域范围的以太网,这些站的直流控制系统可以实现组网通信,多端直流的互联、协调控制变得非常容易。相比传统的HDLC点对点通信有非常大的优势。
图1是本发明所提出的直流换流站间通信切换示意图;
图2是通信切换模块工作示意图。
以下将结合附图,对本发明的技术方案进行详细说明。
如图1所示,本发明提供一种直流站间通信切换方法,包括如下步骤:
步骤S100:直流控制系统通过通信切换模块连接通信传输设备,经电力通信传输网实现站间通信;
这里,直流控制系统通过独立的以太网通信口,分别连接2个通信切换模块,如图1所示,每个直流控制系统有2个站间以太网通信口,分别连接2个通信切换模块。
每个通信切换模块用以太网通信口连接通信传输设备。对于目前广泛使用的SDH传输网,由于SDH工作在物理层,以太网工作在链路层,SDH对于以太网来说是透明传输管道。通过对换流站内的SDH通信传输设备进行配置,可以建立站间以太网通信通道,实现广域以太网通信。
通信切换模块数量与站间通信通道数量相同,从冗余可靠方面考虑,一般配置两个通信切换模块,保证单个通信环节出错,不会导致上层业务通信中断。
步骤S101:直流控制系统将表示值班或备用的运行状态ACTIVE标志和站间需要交换的信息,用以太网报文发给通信切换模块;
这里,换流站直流控制系统通常有2套及以上相同配置且独立运行的系统,有且只有1套系统处于值班状态(ACTIVE标志为TRUE),其余系统处于备用状态(ACTIVE标志为FALSE)。
直流控制系统将站间需要交换的信息,按一定格式组成以太网报文帧,并在以太网报文中写入ACTIVE标志,这种带有ACTIVE标志的以太网报文被发送给通信切换模块。
这个ACTIVE标志,可以定义在以太网报文某个固定位置,例如在APDU(应用数据单元Application Protocol Data Unit)的第一个字节,这个字节值0x5A代表TRUE/值班,其他值代表FALSE/备用。
步骤S102:通信切换模块根据以太网报文中的ACTIVE标志,选择将值班系统的以太网报文发送给通信传输设备,经电力通信传输网送给其他换流站。
这里,如图2所示,通信切换模块从不同端口接收来自直流控制系统的以太网报文,从以太网报文中获得ACTIVE标志,将值班状态报文转发至与通信传输设备连接的通信口,将备用状态报文丢弃,这样通信传输设备只能转发值班系统的消息至电力通信传输网。
对于电力通信传输网,通过设置,可以使得通信传输设备工作在点对点或者组网通信模式。对于常规双端直流,可以用点对点模式。对于多端直流,可以用组网通信方式,降低通信系统复杂度。
为提高报文转发的实时性,通信切换模块可以采用可编程逻辑器件FPGA来处理以太网报文,FPGA可以依据IEC 802.3以太网协议,实时解析P1、P2端口的以太网帧的串行码流,提取以太网报文固定位置上的ACTIVE标志,然后通过一个选通器,将ACTIVE为TRUE的以太网报文转发至P3端口。相比CPU软件解码再转发,FPGA硬解码实时性最高,通信切装置的传输环节延时可以小于1微秒。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。
Claims (5)
- 一种直流站间通信切换方法,其特征在于,包括如下步骤:步骤S100:直流控制系统通过通信切换模块连接通信传输设备,经电力通信传输网实现站间通信;步骤S101:直流控制系统将表示值班或备用的运行状态ACTIVE标志和站间需要交换的信息,用以太网报文发给通信切换模块;步骤S102:通信切换模块根据以太网报文中的ACTIVE标志,选择将值班系统的以太网报文发送给通信传输设备,经电力通信传输网送给其他换流站。
- 如权利要求1所述的一种直流站间通信切换方法,其特征在于:所述步骤S100中,直流控制系统通过独立的通信口,分别连接2个或以上的通信切换模块,每个通信切换模块用通信口连接通信传输设备。
- 如权利要求1所述的一种直流站间通信切换方法,其特征在于:所述步骤S101之前还包括:换流站直流控制系统有2套或以上相同配置且独立运行的系统,直流控制系统运行在值班状态或备用状态。
- 如权利要求1所述的一种直流站间通信切换方法,其特征在于:所述步骤S101中,直流控制系统将站间需要交换的信息组成以太网报文帧,并在以太网报文中写入ACTIVE标志,上述带有ACTIVE标志的以太网报文被发送给通信切换模块。
- 如权利要求1所述的一种直流站间通信切换方法,其特征在于:所述步骤S102中,通信切换模块从不同端口接收来自直流控制系统的以太网报文,从以太网报文中获得ACTIVE标志,将值班状态的报文转发至与通信传输设备连接的通信口,将备用状态的报文丢弃,即通信传输设备只能转发值班系统的消息至电力通信传输网。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610705767.3 | 2016-08-23 | ||
CN201610705767.3A CN106331091A (zh) | 2016-08-23 | 2016-08-23 | 一种直流站间通信切换方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018036264A1 true WO2018036264A1 (zh) | 2018-03-01 |
Family
ID=57742005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/090300 WO2018036264A1 (zh) | 2016-08-23 | 2017-06-27 | 一种直流站间通信切换方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106331091A (zh) |
WO (1) | WO2018036264A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106331091A (zh) * | 2016-08-23 | 2017-01-11 | 南京南瑞继保电气有限公司 | 一种直流站间通信切换方法 |
CN107947962A (zh) * | 2017-10-20 | 2018-04-20 | 南京南瑞继保电气有限公司 | 一种直流电网通讯系统及通讯方法 |
CN110912171B (zh) * | 2019-11-12 | 2024-05-14 | 许继电气股份有限公司 | 一种并联多端高压直流换流站控制权限切换系统及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101183883A (zh) * | 2006-11-14 | 2008-05-21 | 中兴通讯股份有限公司 | 一种采用模拟开关实现备份的e1/t1接口 |
US20130230051A1 (en) * | 2011-08-31 | 2013-09-05 | Metaswitch Networks Ltd. | Processing Requests |
CN204697087U (zh) * | 2015-05-14 | 2015-10-07 | 中国南方电网有限责任公司超高压输电公司贵阳局 | 一种新型高压直流输电系统远动数据传输系统 |
CN106331091A (zh) * | 2016-08-23 | 2017-01-11 | 南京南瑞继保电气有限公司 | 一种直流站间通信切换方法 |
CN205883310U (zh) * | 2016-07-26 | 2017-01-11 | 南京南瑞继保电气有限公司 | 一种直流站间通信切换装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201750206U (zh) * | 2010-08-04 | 2011-02-16 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 直流控制系统主控站与非主控站切换装置 |
-
2016
- 2016-08-23 CN CN201610705767.3A patent/CN106331091A/zh active Pending
-
2017
- 2017-06-27 WO PCT/CN2017/090300 patent/WO2018036264A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101183883A (zh) * | 2006-11-14 | 2008-05-21 | 中兴通讯股份有限公司 | 一种采用模拟开关实现备份的e1/t1接口 |
US20130230051A1 (en) * | 2011-08-31 | 2013-09-05 | Metaswitch Networks Ltd. | Processing Requests |
CN204697087U (zh) * | 2015-05-14 | 2015-10-07 | 中国南方电网有限责任公司超高压输电公司贵阳局 | 一种新型高压直流输电系统远动数据传输系统 |
CN205883310U (zh) * | 2016-07-26 | 2017-01-11 | 南京南瑞继保电气有限公司 | 一种直流站间通信切换装置 |
CN106331091A (zh) * | 2016-08-23 | 2017-01-11 | 南京南瑞继保电气有限公司 | 一种直流站间通信切换方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106331091A (zh) | 2017-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6014279B2 (ja) | ネットワーク仮想化のデータ伝送のための方法、デバイス、及びルーティングシステム | |
CN102571426B (zh) | 一种双归保护方法和装置 | |
CN102025541B (zh) | 一种实现组播保护的方法及系统 | |
US8400912B2 (en) | Activating a tunnel upon receiving a control packet | |
CN103534982B (zh) | 保护业务可靠性的方法、设备及网络虚拟化系统 | |
EP2498454A1 (en) | Method, device and system for processing service traffic based on pseudo wires | |
CN104270309B (zh) | 一种ip ran设备下实现多跳bfd的方法 | |
WO2018036264A1 (zh) | 一种直流站间通信切换方法 | |
EP2571203B1 (en) | Tunnel switching method and system for multi-protocol label switching services | |
GB2450644A (en) | Protection providing method and customer edge device | |
CN111711583B (zh) | 一种支持多冗余协议配置的交换机、变电站网络系统 | |
KR20120112703A (ko) | 데이터를 포워딩하기 위한 방법, 장치 및 시스템 | |
WO2012024952A1 (zh) | 一种基于点到多点业务的路径切换方法及系统 | |
CN103200467A (zh) | 光网络设备中的网元协议报文传递装置及方法 | |
CN105227393A (zh) | 一种双向转发检测方法 | |
CN101345686B (zh) | 虚拟专用局域网服务环路的处理方法、装置和系统 | |
WO2011097893A1 (zh) | 一种e1双向环网络的数据传输方法、装置及系统 | |
CN104038445A (zh) | 一种基于以太网的列车通信网络交换装置及系统 | |
CN105490937B (zh) | 以太虚拟网络网关切换方法和服务商边缘节点设备 | |
US8279752B1 (en) | Activating tunnels using control packets | |
WO2016124117A1 (zh) | 一种sdn中的链路保护方法、交换设备及网络控制器 | |
CN209982508U (zh) | 一种ip ran网络系统 | |
WO2012000374A1 (zh) | 接口业务集中处理方法和系统 | |
CN102407868B (zh) | 适用于轨道交通现代监控系统通讯规约的热备双连接方法 | |
CN104702498A (zh) | 一种通过协调保护减少设备间光连接数量的方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17842688 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17842688 Country of ref document: EP Kind code of ref document: A1 |